]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/cpu/perf_event.c
perf, x86: Change x86_pmu.{enable,disable} calling convention
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
74193ef0 24#include <linux/highmem.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
241771ef 27
241771ef 28#include <asm/apic.h>
d7d59fb3 29#include <asm/stacktrace.h>
4e935e47 30#include <asm/nmi.h>
241771ef 31
cdd6c482 32static u64 perf_event_mask __read_mostly;
703e937c 33
cdd6c482
IM
34/* The maximal number of PEBS events: */
35#define MAX_PEBS_EVENTS 4
30dd568c
MM
36
37/* The size of a BTS record in bytes: */
38#define BTS_RECORD_SIZE 24
39
40/* The size of a per-cpu BTS buffer in bytes: */
5622f295 41#define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
30dd568c
MM
42
43/* The BTS overflow threshold in bytes from the end of the buffer: */
5622f295 44#define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
30dd568c
MM
45
46
47/*
48 * Bits in the debugctlmsr controlling branch tracing.
49 */
50#define X86_DEBUGCTL_TR (1 << 6)
51#define X86_DEBUGCTL_BTS (1 << 7)
52#define X86_DEBUGCTL_BTINT (1 << 8)
53#define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
54#define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
55
56/*
57 * A debug store configuration.
58 *
59 * We only support architectures that use 64bit fields.
60 */
61struct debug_store {
62 u64 bts_buffer_base;
63 u64 bts_index;
64 u64 bts_absolute_maximum;
65 u64 bts_interrupt_threshold;
66 u64 pebs_buffer_base;
67 u64 pebs_index;
68 u64 pebs_absolute_maximum;
69 u64 pebs_interrupt_threshold;
cdd6c482 70 u64 pebs_event_reset[MAX_PEBS_EVENTS];
30dd568c
MM
71};
72
1da53e02 73struct event_constraint {
c91e0f5d
PZ
74 union {
75 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
b622d644 76 u64 idxmsk64;
c91e0f5d 77 };
b622d644
PZ
78 u64 code;
79 u64 cmask;
272d30be 80 int weight;
1da53e02
SE
81};
82
38331f62
SE
83struct amd_nb {
84 int nb_id; /* NorthBridge id */
85 int refcnt; /* reference count */
86 struct perf_event *owners[X86_PMC_IDX_MAX];
87 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
88};
89
cdd6c482 90struct cpu_hw_events {
1da53e02 91 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
43f6201a 92 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
4b39fd96 93 unsigned long interrupts;
b0f3f28e 94 int enabled;
30dd568c 95 struct debug_store *ds;
241771ef 96
1da53e02
SE
97 int n_events;
98 int n_added;
99 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
447a194b 100 u64 tags[X86_PMC_IDX_MAX];
1da53e02 101 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
38331f62 102 struct amd_nb *amd_nb;
b690081d
SE
103};
104
fce877e3 105#define __EVENT_CONSTRAINT(c, n, m, w) {\
b622d644 106 { .idxmsk64 = (n) }, \
c91e0f5d
PZ
107 .code = (c), \
108 .cmask = (m), \
fce877e3 109 .weight = (w), \
c91e0f5d 110}
b690081d 111
fce877e3
PZ
112#define EVENT_CONSTRAINT(c, n, m) \
113 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
114
ed8777fc
PZ
115#define INTEL_EVENT_CONSTRAINT(c, n) \
116 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
8433be11 117
ed8777fc 118#define FIXED_EVENT_CONSTRAINT(c, n) \
b622d644 119 EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
8433be11 120
ed8777fc
PZ
121#define EVENT_CONSTRAINT_END \
122 EVENT_CONSTRAINT(0, 0, 0)
123
124#define for_each_event_constraint(e, c) \
125 for ((e) = (c); (e)->cmask; (e)++)
b690081d 126
241771ef 127/*
5f4ec28f 128 * struct x86_pmu - generic x86 pmu
241771ef 129 */
5f4ec28f 130struct x86_pmu {
faa28ae0
RR
131 const char *name;
132 int version;
a3288106 133 int (*handle_irq)(struct pt_regs *);
9e35ad38
PZ
134 void (*disable_all)(void);
135 void (*enable_all)(void);
aff3d91a
PZ
136 void (*enable)(struct perf_event *);
137 void (*disable)(struct perf_event *);
169e41eb
JSR
138 unsigned eventsel;
139 unsigned perfctr;
b0f3f28e
PZ
140 u64 (*event_map)(int);
141 u64 (*raw_event)(u64);
169e41eb 142 int max_events;
cdd6c482
IM
143 int num_events;
144 int num_events_fixed;
145 int event_bits;
146 u64 event_mask;
04da8a43 147 int apic;
c619b8ff 148 u64 max_period;
9e35ad38 149 u64 intel_ctrl;
30dd568c
MM
150 void (*enable_bts)(u64 config);
151 void (*disable_bts)(void);
63b14649
PZ
152
153 struct event_constraint *
154 (*get_event_constraints)(struct cpu_hw_events *cpuc,
155 struct perf_event *event);
156
c91e0f5d
PZ
157 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
158 struct perf_event *event);
63b14649 159 struct event_constraint *event_constraints;
3f6da390
PZ
160
161 void (*cpu_prepare)(int cpu);
162 void (*cpu_starting)(int cpu);
163 void (*cpu_dying)(int cpu);
164 void (*cpu_dead)(int cpu);
b56a3802
JSR
165};
166
4a06bd85 167static struct x86_pmu x86_pmu __read_mostly;
b56a3802 168
cdd6c482 169static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
170 .enabled = 1,
171};
241771ef 172
07088edb 173static int x86_perf_event_set_period(struct perf_event *event);
b690081d 174
8326f44d 175/*
dfc65094 176 * Generalized hw caching related hw_event table, filled
8326f44d 177 * in on a per model basis. A value of 0 means
dfc65094
IM
178 * 'not supported', -1 means 'hw_event makes no sense on
179 * this CPU', any other value means the raw hw_event
8326f44d
IM
180 * ID.
181 */
182
183#define C(x) PERF_COUNT_HW_CACHE_##x
184
185static u64 __read_mostly hw_cache_event_ids
186 [PERF_COUNT_HW_CACHE_MAX]
187 [PERF_COUNT_HW_CACHE_OP_MAX]
188 [PERF_COUNT_HW_CACHE_RESULT_MAX];
189
ee06094f 190/*
cdd6c482
IM
191 * Propagate event elapsed time into the generic event.
192 * Can only be executed on the CPU where the event is active.
ee06094f
IM
193 * Returns the delta events processed.
194 */
4b7bfd0d 195static u64
cc2ad4ba 196x86_perf_event_update(struct perf_event *event)
ee06094f 197{
cc2ad4ba 198 struct hw_perf_event *hwc = &event->hw;
cdd6c482 199 int shift = 64 - x86_pmu.event_bits;
ec3232bd 200 u64 prev_raw_count, new_raw_count;
cc2ad4ba 201 int idx = hwc->idx;
ec3232bd 202 s64 delta;
ee06094f 203
30dd568c
MM
204 if (idx == X86_PMC_IDX_FIXED_BTS)
205 return 0;
206
ee06094f 207 /*
cdd6c482 208 * Careful: an NMI might modify the previous event value.
ee06094f
IM
209 *
210 * Our tactic to handle this is to first atomically read and
211 * exchange a new raw count - then add that new-prev delta
cdd6c482 212 * count to the generic event atomically:
ee06094f
IM
213 */
214again:
215 prev_raw_count = atomic64_read(&hwc->prev_count);
cdd6c482 216 rdmsrl(hwc->event_base + idx, new_raw_count);
ee06094f
IM
217
218 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
219 new_raw_count) != prev_raw_count)
220 goto again;
221
222 /*
223 * Now we have the new raw value and have updated the prev
224 * timestamp already. We can now calculate the elapsed delta
cdd6c482 225 * (event-)time and add that to the generic event.
ee06094f
IM
226 *
227 * Careful, not all hw sign-extends above the physical width
ec3232bd 228 * of the count.
ee06094f 229 */
ec3232bd
PZ
230 delta = (new_raw_count << shift) - (prev_raw_count << shift);
231 delta >>= shift;
ee06094f 232
cdd6c482 233 atomic64_add(delta, &event->count);
ee06094f 234 atomic64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
235
236 return new_raw_count;
ee06094f
IM
237}
238
cdd6c482 239static atomic_t active_events;
4e935e47
PZ
240static DEFINE_MUTEX(pmc_reserve_mutex);
241
242static bool reserve_pmc_hardware(void)
243{
04da8a43 244#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
245 int i;
246
247 if (nmi_watchdog == NMI_LOCAL_APIC)
248 disable_lapic_nmi_watchdog();
249
cdd6c482 250 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 251 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
4e935e47
PZ
252 goto perfctr_fail;
253 }
254
cdd6c482 255 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85 256 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
4e935e47
PZ
257 goto eventsel_fail;
258 }
04da8a43 259#endif
4e935e47
PZ
260
261 return true;
262
04da8a43 263#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
264eventsel_fail:
265 for (i--; i >= 0; i--)
4a06bd85 266 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47 267
cdd6c482 268 i = x86_pmu.num_events;
4e935e47
PZ
269
270perfctr_fail:
271 for (i--; i >= 0; i--)
4a06bd85 272 release_perfctr_nmi(x86_pmu.perfctr + i);
4e935e47
PZ
273
274 if (nmi_watchdog == NMI_LOCAL_APIC)
275 enable_lapic_nmi_watchdog();
276
277 return false;
04da8a43 278#endif
4e935e47
PZ
279}
280
281static void release_pmc_hardware(void)
282{
04da8a43 283#ifdef CONFIG_X86_LOCAL_APIC
4e935e47
PZ
284 int i;
285
cdd6c482 286 for (i = 0; i < x86_pmu.num_events; i++) {
4a06bd85
RR
287 release_perfctr_nmi(x86_pmu.perfctr + i);
288 release_evntsel_nmi(x86_pmu.eventsel + i);
4e935e47
PZ
289 }
290
291 if (nmi_watchdog == NMI_LOCAL_APIC)
292 enable_lapic_nmi_watchdog();
04da8a43 293#endif
4e935e47
PZ
294}
295
30dd568c
MM
296static inline bool bts_available(void)
297{
298 return x86_pmu.enable_bts != NULL;
299}
300
3f6da390 301static void init_debug_store_on_cpu(int cpu)
30dd568c 302{
cdd6c482 303 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
304
305 if (!ds)
306 return;
307
308 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
596da17f 309 (u32)((u64)(unsigned long)ds),
310 (u32)((u64)(unsigned long)ds >> 32));
30dd568c
MM
311}
312
3f6da390 313static void fini_debug_store_on_cpu(int cpu)
30dd568c 314{
cdd6c482 315 if (!per_cpu(cpu_hw_events, cpu).ds)
30dd568c
MM
316 return;
317
318 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
319}
320
321static void release_bts_hardware(void)
322{
323 int cpu;
324
325 if (!bts_available())
326 return;
327
328 get_online_cpus();
329
330 for_each_online_cpu(cpu)
331 fini_debug_store_on_cpu(cpu);
332
333 for_each_possible_cpu(cpu) {
cdd6c482 334 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
30dd568c
MM
335
336 if (!ds)
337 continue;
338
cdd6c482 339 per_cpu(cpu_hw_events, cpu).ds = NULL;
30dd568c 340
596da17f 341 kfree((void *)(unsigned long)ds->bts_buffer_base);
30dd568c
MM
342 kfree(ds);
343 }
344
345 put_online_cpus();
346}
347
348static int reserve_bts_hardware(void)
349{
350 int cpu, err = 0;
351
352 if (!bts_available())
747b50aa 353 return 0;
30dd568c
MM
354
355 get_online_cpus();
356
357 for_each_possible_cpu(cpu) {
358 struct debug_store *ds;
359 void *buffer;
360
361 err = -ENOMEM;
362 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
363 if (unlikely(!buffer))
364 break;
365
366 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
367 if (unlikely(!ds)) {
368 kfree(buffer);
369 break;
370 }
371
596da17f 372 ds->bts_buffer_base = (u64)(unsigned long)buffer;
30dd568c
MM
373 ds->bts_index = ds->bts_buffer_base;
374 ds->bts_absolute_maximum =
375 ds->bts_buffer_base + BTS_BUFFER_SIZE;
376 ds->bts_interrupt_threshold =
377 ds->bts_absolute_maximum - BTS_OVFL_TH;
378
cdd6c482 379 per_cpu(cpu_hw_events, cpu).ds = ds;
30dd568c
MM
380 err = 0;
381 }
382
383 if (err)
384 release_bts_hardware();
385 else {
386 for_each_online_cpu(cpu)
387 init_debug_store_on_cpu(cpu);
388 }
389
390 put_online_cpus();
391
392 return err;
393}
394
cdd6c482 395static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 396{
cdd6c482 397 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 398 release_pmc_hardware();
30dd568c 399 release_bts_hardware();
4e935e47
PZ
400 mutex_unlock(&pmc_reserve_mutex);
401 }
402}
403
85cf9dba
RR
404static inline int x86_pmu_initialized(void)
405{
406 return x86_pmu.handle_irq != NULL;
407}
408
8326f44d 409static inline int
cdd6c482 410set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
8326f44d
IM
411{
412 unsigned int cache_type, cache_op, cache_result;
413 u64 config, val;
414
415 config = attr->config;
416
417 cache_type = (config >> 0) & 0xff;
418 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
419 return -EINVAL;
420
421 cache_op = (config >> 8) & 0xff;
422 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
423 return -EINVAL;
424
425 cache_result = (config >> 16) & 0xff;
426 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
427 return -EINVAL;
428
429 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
430
431 if (val == 0)
432 return -ENOENT;
433
434 if (val == -1)
435 return -EINVAL;
436
437 hwc->config |= val;
438
439 return 0;
440}
441
241771ef 442/*
0d48696f 443 * Setup the hardware configuration for a given attr_type
241771ef 444 */
cdd6c482 445static int __hw_perf_event_init(struct perf_event *event)
241771ef 446{
cdd6c482
IM
447 struct perf_event_attr *attr = &event->attr;
448 struct hw_perf_event *hwc = &event->hw;
9c74fb50 449 u64 config;
4e935e47 450 int err;
241771ef 451
85cf9dba
RR
452 if (!x86_pmu_initialized())
453 return -ENODEV;
241771ef 454
4e935e47 455 err = 0;
cdd6c482 456 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 457 mutex_lock(&pmc_reserve_mutex);
cdd6c482 458 if (atomic_read(&active_events) == 0) {
30dd568c
MM
459 if (!reserve_pmc_hardware())
460 err = -EBUSY;
461 else
747b50aa 462 err = reserve_bts_hardware();
30dd568c
MM
463 }
464 if (!err)
cdd6c482 465 atomic_inc(&active_events);
4e935e47
PZ
466 mutex_unlock(&pmc_reserve_mutex);
467 }
468 if (err)
469 return err;
470
cdd6c482 471 event->destroy = hw_perf_event_destroy;
a1792cda 472
241771ef 473 /*
0475f9ea 474 * Generate PMC IRQs:
241771ef
IM
475 * (keep 'enabled' bit clear for now)
476 */
0475f9ea 477 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
241771ef 478
b690081d 479 hwc->idx = -1;
447a194b
SE
480 hwc->last_cpu = -1;
481 hwc->last_tag = ~0ULL;
b690081d 482
241771ef 483 /*
0475f9ea 484 * Count user and OS events unless requested not to.
241771ef 485 */
0d48696f 486 if (!attr->exclude_user)
0475f9ea 487 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
0d48696f 488 if (!attr->exclude_kernel)
241771ef 489 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
0475f9ea 490
bd2b5b12 491 if (!hwc->sample_period) {
b23f3325 492 hwc->sample_period = x86_pmu.max_period;
9e350de3 493 hwc->last_period = hwc->sample_period;
bd2b5b12 494 atomic64_set(&hwc->period_left, hwc->sample_period);
04da8a43
IM
495 } else {
496 /*
497 * If we have a PMU initialized but no APIC
498 * interrupts, we cannot sample hardware
cdd6c482
IM
499 * events (user-space has to fall back and
500 * sample via a hrtimer based software event):
04da8a43
IM
501 */
502 if (!x86_pmu.apic)
503 return -EOPNOTSUPP;
bd2b5b12 504 }
d2517a49 505
241771ef 506 /*
dfc65094 507 * Raw hw_event type provide the config in the hw_event structure
241771ef 508 */
a21ca2ca
IM
509 if (attr->type == PERF_TYPE_RAW) {
510 hwc->config |= x86_pmu.raw_event(attr->config);
320ebf09
PZ
511 if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
512 perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
513 return -EACCES;
8326f44d 514 return 0;
241771ef 515 }
241771ef 516
8326f44d
IM
517 if (attr->type == PERF_TYPE_HW_CACHE)
518 return set_ext_hw_attr(hwc, attr);
519
520 if (attr->config >= x86_pmu.max_events)
521 return -EINVAL;
9c74fb50 522
8326f44d
IM
523 /*
524 * The generic map:
525 */
9c74fb50
PZ
526 config = x86_pmu.event_map(attr->config);
527
528 if (config == 0)
529 return -ENOENT;
530
531 if (config == -1LL)
532 return -EINVAL;
533
747b50aa 534 /*
535 * Branch tracing:
536 */
537 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1653192f 538 (hwc->sample_period == 1)) {
539 /* BTS is not supported by this architecture. */
540 if (!bts_available())
541 return -EOPNOTSUPP;
542
543 /* BTS is currently only allowed for user-mode. */
544 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
545 return -EOPNOTSUPP;
546 }
747b50aa 547
9c74fb50 548 hwc->config |= config;
4e935e47 549
241771ef
IM
550 return 0;
551}
552
8c48e444 553static void x86_pmu_disable_all(void)
f87ad35d 554{
cdd6c482 555 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
556 int idx;
557
cdd6c482 558 for (idx = 0; idx < x86_pmu.num_events; idx++) {
b0f3f28e
PZ
559 u64 val;
560
43f6201a 561 if (!test_bit(idx, cpuc->active_mask))
4295ee62 562 continue;
8c48e444 563 rdmsrl(x86_pmu.eventsel + idx, val);
bb1165d6 564 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 565 continue;
bb1165d6 566 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 567 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d 568 }
f87ad35d
JSR
569}
570
9e35ad38 571void hw_perf_disable(void)
b56a3802 572{
1da53e02
SE
573 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
574
85cf9dba 575 if (!x86_pmu_initialized())
9e35ad38 576 return;
1da53e02 577
1a6e21f7
PZ
578 if (!cpuc->enabled)
579 return;
580
581 cpuc->n_added = 0;
582 cpuc->enabled = 0;
583 barrier();
1da53e02
SE
584
585 x86_pmu.disable_all();
b56a3802 586}
241771ef 587
8c48e444 588static void x86_pmu_enable_all(void)
f87ad35d 589{
cdd6c482 590 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
f87ad35d
JSR
591 int idx;
592
cdd6c482
IM
593 for (idx = 0; idx < x86_pmu.num_events; idx++) {
594 struct perf_event *event = cpuc->events[idx];
4295ee62 595 u64 val;
b0f3f28e 596
43f6201a 597 if (!test_bit(idx, cpuc->active_mask))
4295ee62 598 continue;
984b838c 599
cdd6c482 600 val = event->hw.config;
bb1165d6 601 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
8c48e444 602 wrmsrl(x86_pmu.eventsel + idx, val);
f87ad35d
JSR
603 }
604}
605
1da53e02
SE
606static const struct pmu pmu;
607
608static inline int is_x86_event(struct perf_event *event)
609{
610 return event->pmu == &pmu;
611}
612
613static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
614{
63b14649 615 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
1da53e02 616 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
c933c1a6 617 int i, j, w, wmax, num = 0;
1da53e02
SE
618 struct hw_perf_event *hwc;
619
620 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
621
622 for (i = 0; i < n; i++) {
b622d644
PZ
623 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
624 constraints[i] = c;
1da53e02
SE
625 }
626
8113070d
SE
627 /*
628 * fastpath, try to reuse previous register
629 */
c933c1a6 630 for (i = 0; i < n; i++) {
8113070d 631 hwc = &cpuc->event_list[i]->hw;
81269a08 632 c = constraints[i];
8113070d
SE
633
634 /* never assigned */
635 if (hwc->idx == -1)
636 break;
637
638 /* constraint still honored */
63b14649 639 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
640 break;
641
642 /* not already used */
643 if (test_bit(hwc->idx, used_mask))
644 break;
645
8113070d
SE
646 set_bit(hwc->idx, used_mask);
647 if (assign)
648 assign[i] = hwc->idx;
649 }
c933c1a6 650 if (i == n)
8113070d
SE
651 goto done;
652
653 /*
654 * begin slow path
655 */
656
657 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
658
1da53e02
SE
659 /*
660 * weight = number of possible counters
661 *
662 * 1 = most constrained, only works on one counter
663 * wmax = least constrained, works on any counter
664 *
665 * assign events to counters starting with most
666 * constrained events.
667 */
668 wmax = x86_pmu.num_events;
669
670 /*
671 * when fixed event counters are present,
672 * wmax is incremented by 1 to account
673 * for one more choice
674 */
675 if (x86_pmu.num_events_fixed)
676 wmax++;
677
8113070d 678 for (w = 1, num = n; num && w <= wmax; w++) {
1da53e02 679 /* for each event */
8113070d 680 for (i = 0; num && i < n; i++) {
81269a08 681 c = constraints[i];
1da53e02
SE
682 hwc = &cpuc->event_list[i]->hw;
683
272d30be 684 if (c->weight != w)
1da53e02
SE
685 continue;
686
984b3f57 687 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
1da53e02
SE
688 if (!test_bit(j, used_mask))
689 break;
690 }
691
692 if (j == X86_PMC_IDX_MAX)
693 break;
1da53e02 694
8113070d
SE
695 set_bit(j, used_mask);
696
1da53e02
SE
697 if (assign)
698 assign[i] = j;
699 num--;
700 }
701 }
8113070d 702done:
1da53e02
SE
703 /*
704 * scheduling failed or is just a simulation,
705 * free resources if necessary
706 */
707 if (!assign || num) {
708 for (i = 0; i < n; i++) {
709 if (x86_pmu.put_event_constraints)
710 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
711 }
712 }
713 return num ? -ENOSPC : 0;
714}
715
716/*
717 * dogrp: true if must collect siblings events (group)
718 * returns total number of events and error code
719 */
720static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
721{
722 struct perf_event *event;
723 int n, max_count;
724
725 max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
726
727 /* current number of events already accepted */
728 n = cpuc->n_events;
729
730 if (is_x86_event(leader)) {
731 if (n >= max_count)
732 return -ENOSPC;
733 cpuc->event_list[n] = leader;
734 n++;
735 }
736 if (!dogrp)
737 return n;
738
739 list_for_each_entry(event, &leader->sibling_list, group_entry) {
740 if (!is_x86_event(event) ||
8113070d 741 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
742 continue;
743
744 if (n >= max_count)
745 return -ENOSPC;
746
747 cpuc->event_list[n] = event;
748 n++;
749 }
750 return n;
751}
752
1da53e02 753static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 754 struct cpu_hw_events *cpuc, int i)
1da53e02 755{
447a194b
SE
756 struct hw_perf_event *hwc = &event->hw;
757
758 hwc->idx = cpuc->assign[i];
759 hwc->last_cpu = smp_processor_id();
760 hwc->last_tag = ++cpuc->tags[i];
1da53e02
SE
761
762 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
763 hwc->config_base = 0;
764 hwc->event_base = 0;
765 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
766 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
767 /*
768 * We set it so that event_base + idx in wrmsr/rdmsr maps to
769 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
770 */
771 hwc->event_base =
772 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
773 } else {
774 hwc->config_base = x86_pmu.eventsel;
775 hwc->event_base = x86_pmu.perfctr;
776 }
777}
778
447a194b
SE
779static inline int match_prev_assignment(struct hw_perf_event *hwc,
780 struct cpu_hw_events *cpuc,
781 int i)
782{
783 return hwc->idx == cpuc->assign[i] &&
784 hwc->last_cpu == smp_processor_id() &&
785 hwc->last_tag == cpuc->tags[i];
786}
787
d76a0812 788static void x86_pmu_stop(struct perf_event *event);
2e841873 789
9e35ad38 790void hw_perf_enable(void)
ee06094f 791{
1da53e02
SE
792 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
793 struct perf_event *event;
794 struct hw_perf_event *hwc;
795 int i;
796
85cf9dba 797 if (!x86_pmu_initialized())
2b9ff0db 798 return;
1a6e21f7
PZ
799
800 if (cpuc->enabled)
801 return;
802
1da53e02
SE
803 if (cpuc->n_added) {
804 /*
805 * apply assignment obtained either from
806 * hw_perf_group_sched_in() or x86_pmu_enable()
807 *
808 * step1: save events moving to new counters
809 * step2: reprogram moved events into new counters
810 */
811 for (i = 0; i < cpuc->n_events; i++) {
812
813 event = cpuc->event_list[i];
814 hwc = &event->hw;
815
447a194b
SE
816 /*
817 * we can avoid reprogramming counter if:
818 * - assigned same counter as last time
819 * - running on same CPU as last time
820 * - no other event has used the counter since
821 */
822 if (hwc->idx == -1 ||
823 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
824 continue;
825
d76a0812 826 x86_pmu_stop(event);
1da53e02
SE
827
828 hwc->idx = -1;
829 }
830
831 for (i = 0; i < cpuc->n_events; i++) {
832
833 event = cpuc->event_list[i];
834 hwc = &event->hw;
835
836 if (hwc->idx == -1) {
447a194b 837 x86_assign_hw_event(event, cpuc, i);
07088edb 838 x86_perf_event_set_period(event);
1da53e02
SE
839 }
840 /*
841 * need to mark as active because x86_pmu_disable()
447a194b 842 * clear active_mask and events[] yet it preserves
1da53e02
SE
843 * idx
844 */
845 set_bit(hwc->idx, cpuc->active_mask);
846 cpuc->events[hwc->idx] = event;
847
aff3d91a 848 x86_pmu.enable(event);
1da53e02
SE
849 perf_event_update_userpage(event);
850 }
851 cpuc->n_added = 0;
852 perf_events_lapic_init();
853 }
1a6e21f7
PZ
854
855 cpuc->enabled = 1;
856 barrier();
857
9e35ad38 858 x86_pmu.enable_all();
ee06094f 859}
ee06094f 860
aff3d91a 861static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc)
b0f3f28e 862{
aff3d91a 863 (void)checking_wrmsrl(hwc->config_base + hwc->idx,
bb1165d6 864 hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
b0f3f28e
PZ
865}
866
aff3d91a 867static inline void x86_pmu_disable_event(struct perf_event *event)
b0f3f28e 868{
aff3d91a
PZ
869 struct hw_perf_event *hwc = &event->hw;
870 (void)checking_wrmsrl(hwc->config_base + hwc->idx, hwc->config);
b0f3f28e
PZ
871}
872
245b2e70 873static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 874
ee06094f
IM
875/*
876 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 877 * To be called with the event disabled in hw:
ee06094f 878 */
e4abb5d4 879static int
07088edb 880x86_perf_event_set_period(struct perf_event *event)
241771ef 881{
07088edb 882 struct hw_perf_event *hwc = &event->hw;
2f18d1e8 883 s64 left = atomic64_read(&hwc->period_left);
e4abb5d4 884 s64 period = hwc->sample_period;
07088edb 885 int err, ret = 0, idx = hwc->idx;
ee06094f 886
30dd568c
MM
887 if (idx == X86_PMC_IDX_FIXED_BTS)
888 return 0;
889
ee06094f 890 /*
af901ca1 891 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
892 */
893 if (unlikely(left <= -period)) {
894 left = period;
895 atomic64_set(&hwc->period_left, left);
9e350de3 896 hwc->last_period = period;
e4abb5d4 897 ret = 1;
ee06094f
IM
898 }
899
900 if (unlikely(left <= 0)) {
901 left += period;
902 atomic64_set(&hwc->period_left, left);
9e350de3 903 hwc->last_period = period;
e4abb5d4 904 ret = 1;
ee06094f 905 }
1c80f4b5 906 /*
dfc65094 907 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
908 */
909 if (unlikely(left < 2))
910 left = 2;
241771ef 911
e4abb5d4
PZ
912 if (left > x86_pmu.max_period)
913 left = x86_pmu.max_period;
914
245b2e70 915 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
916
917 /*
cdd6c482 918 * The hw event starts counting from this event offset,
ee06094f
IM
919 * mark it to be able to extra future deltas:
920 */
2f18d1e8 921 atomic64_set(&hwc->prev_count, (u64)-left);
ee06094f 922
cdd6c482
IM
923 err = checking_wrmsrl(hwc->event_base + idx,
924 (u64)(-left) & x86_pmu.event_mask);
e4abb5d4 925
cdd6c482 926 perf_event_update_userpage(event);
194002b2 927
e4abb5d4 928 return ret;
2f18d1e8
IM
929}
930
aff3d91a 931static void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 932{
cdd6c482 933 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
7c90cc45 934 if (cpuc->enabled)
aff3d91a 935 __x86_pmu_enable_event(&event->hw);
241771ef
IM
936}
937
b690081d 938/*
1da53e02
SE
939 * activate a single event
940 *
941 * The event is added to the group of enabled events
942 * but only if it can be scehduled with existing events.
943 *
944 * Called with PMU disabled. If successful and return value 1,
945 * then guaranteed to call perf_enable() and hw_perf_enable()
fe9081cc
PZ
946 */
947static int x86_pmu_enable(struct perf_event *event)
948{
949 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
950 struct hw_perf_event *hwc;
951 int assign[X86_PMC_IDX_MAX];
952 int n, n0, ret;
fe9081cc 953
1da53e02 954 hwc = &event->hw;
fe9081cc 955
1da53e02
SE
956 n0 = cpuc->n_events;
957 n = collect_events(cpuc, event, false);
958 if (n < 0)
959 return n;
53b441a5 960
1da53e02
SE
961 ret = x86_schedule_events(cpuc, n, assign);
962 if (ret)
963 return ret;
964 /*
965 * copy new assignment, now we know it is possible
966 * will be used by hw_perf_enable()
967 */
968 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 969
1da53e02
SE
970 cpuc->n_events = n;
971 cpuc->n_added = n - n0;
95cdd2e7
IM
972
973 return 0;
241771ef
IM
974}
975
d76a0812
SE
976static int x86_pmu_start(struct perf_event *event)
977{
aff3d91a 978 if (event->hw.idx == -1)
d76a0812
SE
979 return -EAGAIN;
980
07088edb 981 x86_perf_event_set_period(event);
aff3d91a 982 x86_pmu.enable(event);
d76a0812
SE
983
984 return 0;
985}
986
cdd6c482 987static void x86_pmu_unthrottle(struct perf_event *event)
a78ac325 988{
cdd6c482
IM
989 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
990 struct hw_perf_event *hwc = &event->hw;
a78ac325
PZ
991
992 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
cdd6c482 993 cpuc->events[hwc->idx] != event))
a78ac325
PZ
994 return;
995
aff3d91a 996 x86_pmu.enable(event);
a78ac325
PZ
997}
998
cdd6c482 999void perf_event_print_debug(void)
241771ef 1000{
2f18d1e8 1001 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
cdd6c482 1002 struct cpu_hw_events *cpuc;
5bb9efe3 1003 unsigned long flags;
1e125676
IM
1004 int cpu, idx;
1005
cdd6c482 1006 if (!x86_pmu.num_events)
1e125676 1007 return;
241771ef 1008
5bb9efe3 1009 local_irq_save(flags);
241771ef
IM
1010
1011 cpu = smp_processor_id();
cdd6c482 1012 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1013
faa28ae0 1014 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1015 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1016 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1017 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1018 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1019
1020 pr_info("\n");
1021 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1022 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1023 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1024 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
f87ad35d 1025 }
1da53e02 1026 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1027
cdd6c482 1028 for (idx = 0; idx < x86_pmu.num_events; idx++) {
4a06bd85
RR
1029 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1030 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
241771ef 1031
245b2e70 1032 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1033
a1ef58f4 1034 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1035 cpu, idx, pmc_ctrl);
a1ef58f4 1036 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1037 cpu, idx, pmc_count);
a1ef58f4 1038 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1039 cpu, idx, prev_left);
241771ef 1040 }
cdd6c482 1041 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
2f18d1e8
IM
1042 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1043
a1ef58f4 1044 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1045 cpu, idx, pmc_count);
1046 }
5bb9efe3 1047 local_irq_restore(flags);
241771ef
IM
1048}
1049
d76a0812 1050static void x86_pmu_stop(struct perf_event *event)
241771ef 1051{
d76a0812 1052 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
cdd6c482 1053 struct hw_perf_event *hwc = &event->hw;
2e841873 1054 int idx = hwc->idx;
241771ef 1055
09534238
RR
1056 /*
1057 * Must be done before we disable, otherwise the nmi handler
1058 * could reenable again:
1059 */
43f6201a 1060 clear_bit(idx, cpuc->active_mask);
aff3d91a 1061 x86_pmu.disable(event);
241771ef 1062
ee06094f 1063 /*
cdd6c482 1064 * Drain the remaining delta count out of a event
ee06094f
IM
1065 * that we are disabling:
1066 */
cc2ad4ba 1067 x86_perf_event_update(event);
30dd568c 1068
cdd6c482 1069 cpuc->events[idx] = NULL;
2e841873
PZ
1070}
1071
1072static void x86_pmu_disable(struct perf_event *event)
1073{
1074 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1075 int i;
1076
d76a0812 1077 x86_pmu_stop(event);
194002b2 1078
1da53e02
SE
1079 for (i = 0; i < cpuc->n_events; i++) {
1080 if (event == cpuc->event_list[i]) {
1081
1082 if (x86_pmu.put_event_constraints)
1083 x86_pmu.put_event_constraints(cpuc, event);
1084
1085 while (++i < cpuc->n_events)
1086 cpuc->event_list[i-1] = cpuc->event_list[i];
1087
1088 --cpuc->n_events;
6c9687ab 1089 break;
1da53e02
SE
1090 }
1091 }
cdd6c482 1092 perf_event_update_userpage(event);
241771ef
IM
1093}
1094
8c48e444 1095static int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1096{
df1a132b 1097 struct perf_sample_data data;
cdd6c482
IM
1098 struct cpu_hw_events *cpuc;
1099 struct perf_event *event;
1100 struct hw_perf_event *hwc;
11d1578f 1101 int idx, handled = 0;
9029a5e3
IM
1102 u64 val;
1103
dc1d628a 1104 perf_sample_data_init(&data, 0);
df1a132b 1105
cdd6c482 1106 cpuc = &__get_cpu_var(cpu_hw_events);
962bf7a6 1107
cdd6c482 1108 for (idx = 0; idx < x86_pmu.num_events; idx++) {
43f6201a 1109 if (!test_bit(idx, cpuc->active_mask))
a29aa8a7 1110 continue;
962bf7a6 1111
cdd6c482
IM
1112 event = cpuc->events[idx];
1113 hwc = &event->hw;
a4016a79 1114
cc2ad4ba 1115 val = x86_perf_event_update(event);
cdd6c482 1116 if (val & (1ULL << (x86_pmu.event_bits - 1)))
48e22d56 1117 continue;
962bf7a6 1118
9e350de3 1119 /*
cdd6c482 1120 * event overflow
9e350de3
PZ
1121 */
1122 handled = 1;
cdd6c482 1123 data.period = event->hw.last_period;
9e350de3 1124
07088edb 1125 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1126 continue;
1127
cdd6c482 1128 if (perf_event_overflow(event, 1, &data, regs))
aff3d91a 1129 x86_pmu.disable(event);
a29aa8a7 1130 }
962bf7a6 1131
9e350de3
PZ
1132 if (handled)
1133 inc_irq_stat(apic_perf_irqs);
1134
a29aa8a7
RR
1135 return handled;
1136}
39d81eab 1137
b6276f35
PZ
1138void smp_perf_pending_interrupt(struct pt_regs *regs)
1139{
1140 irq_enter();
1141 ack_APIC_irq();
1142 inc_irq_stat(apic_pending_irqs);
cdd6c482 1143 perf_event_do_pending();
b6276f35
PZ
1144 irq_exit();
1145}
1146
cdd6c482 1147void set_perf_event_pending(void)
b6276f35 1148{
04da8a43 1149#ifdef CONFIG_X86_LOCAL_APIC
7d428966
PZ
1150 if (!x86_pmu.apic || !x86_pmu_initialized())
1151 return;
1152
b6276f35 1153 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
04da8a43 1154#endif
b6276f35
PZ
1155}
1156
cdd6c482 1157void perf_events_lapic_init(void)
241771ef 1158{
04da8a43
IM
1159#ifdef CONFIG_X86_LOCAL_APIC
1160 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1161 return;
85cf9dba 1162
241771ef 1163 /*
c323d95f 1164 * Always use NMI for PMU
241771ef 1165 */
c323d95f 1166 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 1167#endif
241771ef
IM
1168}
1169
1170static int __kprobes
cdd6c482 1171perf_event_nmi_handler(struct notifier_block *self,
241771ef
IM
1172 unsigned long cmd, void *__args)
1173{
1174 struct die_args *args = __args;
1175 struct pt_regs *regs;
b0f3f28e 1176
cdd6c482 1177 if (!atomic_read(&active_events))
63a809a2
PZ
1178 return NOTIFY_DONE;
1179
b0f3f28e
PZ
1180 switch (cmd) {
1181 case DIE_NMI:
1182 case DIE_NMI_IPI:
1183 break;
241771ef 1184
b0f3f28e 1185 default:
241771ef 1186 return NOTIFY_DONE;
b0f3f28e 1187 }
241771ef
IM
1188
1189 regs = args->regs;
1190
04da8a43 1191#ifdef CONFIG_X86_LOCAL_APIC
241771ef 1192 apic_write(APIC_LVTPC, APIC_DM_NMI);
04da8a43 1193#endif
a4016a79
PZ
1194 /*
1195 * Can't rely on the handled return value to say it was our NMI, two
cdd6c482 1196 * events could trigger 'simultaneously' raising two back-to-back NMIs.
a4016a79
PZ
1197 *
1198 * If the first NMI handles both, the latter will be empty and daze
1199 * the CPU.
1200 */
a3288106 1201 x86_pmu.handle_irq(regs);
241771ef 1202
a4016a79 1203 return NOTIFY_STOP;
241771ef
IM
1204}
1205
f22f54f4
PZ
1206static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1207 .notifier_call = perf_event_nmi_handler,
1208 .next = NULL,
1209 .priority = 1
1210};
1211
63b14649 1212static struct event_constraint unconstrained;
38331f62 1213static struct event_constraint emptyconstraint;
63b14649 1214
63b14649 1215static struct event_constraint *
f22f54f4 1216x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1da53e02 1217{
63b14649 1218 struct event_constraint *c;
1da53e02 1219
1da53e02
SE
1220 if (x86_pmu.event_constraints) {
1221 for_each_event_constraint(c, x86_pmu.event_constraints) {
63b14649
PZ
1222 if ((event->hw.config & c->cmask) == c->code)
1223 return c;
1da53e02
SE
1224 }
1225 }
63b14649
PZ
1226
1227 return &unconstrained;
1da53e02
SE
1228}
1229
1da53e02 1230static int x86_event_sched_in(struct perf_event *event,
6e37738a 1231 struct perf_cpu_context *cpuctx)
1da53e02
SE
1232{
1233 int ret = 0;
1234
1235 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1236 event->oncpu = smp_processor_id();
1da53e02
SE
1237 event->tstamp_running += event->ctx->time - event->tstamp_stopped;
1238
1239 if (!is_x86_event(event))
1240 ret = event->pmu->enable(event);
1241
1242 if (!ret && !is_software_event(event))
1243 cpuctx->active_oncpu++;
1244
1245 if (!ret && event->attr.exclusive)
1246 cpuctx->exclusive = 1;
1247
1248 return ret;
1249}
1250
1251static void x86_event_sched_out(struct perf_event *event,
6e37738a 1252 struct perf_cpu_context *cpuctx)
1da53e02
SE
1253{
1254 event->state = PERF_EVENT_STATE_INACTIVE;
1255 event->oncpu = -1;
1256
1257 if (!is_x86_event(event))
1258 event->pmu->disable(event);
1259
1260 event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
1261
1262 if (!is_software_event(event))
1263 cpuctx->active_oncpu--;
1264
1265 if (event->attr.exclusive || !cpuctx->active_oncpu)
1266 cpuctx->exclusive = 0;
1267}
1268
1269/*
1270 * Called to enable a whole group of events.
1271 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
1272 * Assumes the caller has disabled interrupts and has
1273 * frozen the PMU with hw_perf_save_disable.
1274 *
1275 * called with PMU disabled. If successful and return value 1,
1276 * then guaranteed to call perf_enable() and hw_perf_enable()
1277 */
1278int hw_perf_group_sched_in(struct perf_event *leader,
1279 struct perf_cpu_context *cpuctx,
6e37738a 1280 struct perf_event_context *ctx)
1da53e02 1281{
6e37738a 1282 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1da53e02
SE
1283 struct perf_event *sub;
1284 int assign[X86_PMC_IDX_MAX];
1285 int n0, n1, ret;
1286
1287 /* n0 = total number of events */
1288 n0 = collect_events(cpuc, leader, true);
1289 if (n0 < 0)
1290 return n0;
1291
1292 ret = x86_schedule_events(cpuc, n0, assign);
1293 if (ret)
1294 return ret;
1295
6e37738a 1296 ret = x86_event_sched_in(leader, cpuctx);
1da53e02
SE
1297 if (ret)
1298 return ret;
1299
1300 n1 = 1;
1301 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
8113070d 1302 if (sub->state > PERF_EVENT_STATE_OFF) {
6e37738a 1303 ret = x86_event_sched_in(sub, cpuctx);
1da53e02
SE
1304 if (ret)
1305 goto undo;
1306 ++n1;
1307 }
1308 }
1309 /*
1310 * copy new assignment, now we know it is possible
1311 * will be used by hw_perf_enable()
1312 */
1313 memcpy(cpuc->assign, assign, n0*sizeof(int));
1314
1315 cpuc->n_events = n0;
1316 cpuc->n_added = n1;
1317 ctx->nr_active += n1;
1318
1319 /*
1320 * 1 means successful and events are active
1321 * This is not quite true because we defer
1322 * actual activation until hw_perf_enable() but
1323 * this way we* ensure caller won't try to enable
1324 * individual events
1325 */
1326 return 1;
1327undo:
6e37738a 1328 x86_event_sched_out(leader, cpuctx);
1da53e02
SE
1329 n0 = 1;
1330 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1331 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
6e37738a 1332 x86_event_sched_out(sub, cpuctx);
1da53e02
SE
1333 if (++n0 == n1)
1334 break;
1335 }
1336 }
1337 return ret;
1338}
1339
f22f54f4
PZ
1340#include "perf_event_amd.c"
1341#include "perf_event_p6.c"
1342#include "perf_event_intel.c"
f87ad35d 1343
3f6da390
PZ
1344static int __cpuinit
1345x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1346{
1347 unsigned int cpu = (long)hcpu;
1348
1349 switch (action & ~CPU_TASKS_FROZEN) {
1350 case CPU_UP_PREPARE:
1351 if (x86_pmu.cpu_prepare)
1352 x86_pmu.cpu_prepare(cpu);
1353 break;
1354
1355 case CPU_STARTING:
1356 if (x86_pmu.cpu_starting)
1357 x86_pmu.cpu_starting(cpu);
1358 break;
1359
1360 case CPU_DYING:
1361 if (x86_pmu.cpu_dying)
1362 x86_pmu.cpu_dying(cpu);
1363 break;
1364
1365 case CPU_DEAD:
1366 if (x86_pmu.cpu_dead)
1367 x86_pmu.cpu_dead(cpu);
1368 break;
1369
1370 default:
1371 break;
1372 }
1373
1374 return NOTIFY_OK;
1375}
1376
12558038
CG
1377static void __init pmu_check_apic(void)
1378{
1379 if (cpu_has_apic)
1380 return;
1381
1382 x86_pmu.apic = 0;
1383 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1384 pr_info("no hardware sampling interrupt available.\n");
1385}
1386
cdd6c482 1387void __init init_hw_perf_events(void)
b56a3802 1388{
b622d644 1389 struct event_constraint *c;
72eae04d
RR
1390 int err;
1391
cdd6c482 1392 pr_info("Performance Events: ");
1123e3ad 1393
b56a3802
JSR
1394 switch (boot_cpu_data.x86_vendor) {
1395 case X86_VENDOR_INTEL:
72eae04d 1396 err = intel_pmu_init();
b56a3802 1397 break;
f87ad35d 1398 case X86_VENDOR_AMD:
72eae04d 1399 err = amd_pmu_init();
f87ad35d 1400 break;
4138960a
RR
1401 default:
1402 return;
b56a3802 1403 }
1123e3ad 1404 if (err != 0) {
cdd6c482 1405 pr_cont("no PMU driver, software events only.\n");
b56a3802 1406 return;
1123e3ad 1407 }
b56a3802 1408
12558038
CG
1409 pmu_check_apic();
1410
1123e3ad 1411 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1412
cdd6c482
IM
1413 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
1414 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1415 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
1416 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
241771ef 1417 }
cdd6c482
IM
1418 perf_event_mask = (1 << x86_pmu.num_events) - 1;
1419 perf_max_events = x86_pmu.num_events;
241771ef 1420
cdd6c482
IM
1421 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
1422 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1423 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
1424 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
703e937c 1425 }
862a1a5f 1426
cdd6c482
IM
1427 perf_event_mask |=
1428 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
1429 x86_pmu.intel_ctrl = perf_event_mask;
241771ef 1430
cdd6c482
IM
1431 perf_events_lapic_init();
1432 register_die_notifier(&perf_event_nmi_notifier);
1123e3ad 1433
63b14649 1434 unconstrained = (struct event_constraint)
fce877e3
PZ
1435 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
1436 0, x86_pmu.num_events);
63b14649 1437
b622d644
PZ
1438 if (x86_pmu.event_constraints) {
1439 for_each_event_constraint(c, x86_pmu.event_constraints) {
1440 if (c->cmask != INTEL_ARCH_FIXED_MASK)
1441 continue;
1442
1443 c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
1444 c->weight += x86_pmu.num_events;
1445 }
1446 }
1447
57c0c15b
IM
1448 pr_info("... version: %d\n", x86_pmu.version);
1449 pr_info("... bit width: %d\n", x86_pmu.event_bits);
1450 pr_info("... generic registers: %d\n", x86_pmu.num_events);
1451 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
1452 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1453 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
1454 pr_info("... event mask: %016Lx\n", perf_event_mask);
3f6da390
PZ
1455
1456 perf_cpu_notifier(x86_pmu_notifier);
241771ef 1457}
621a01ea 1458
cdd6c482 1459static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1460{
cc2ad4ba 1461 x86_perf_event_update(event);
ee06094f
IM
1462}
1463
4aeb0b42
RR
1464static const struct pmu pmu = {
1465 .enable = x86_pmu_enable,
1466 .disable = x86_pmu_disable,
d76a0812
SE
1467 .start = x86_pmu_start,
1468 .stop = x86_pmu_stop,
4aeb0b42 1469 .read = x86_pmu_read,
a78ac325 1470 .unthrottle = x86_pmu_unthrottle,
621a01ea
IM
1471};
1472
1da53e02
SE
1473/*
1474 * validate a single event group
1475 *
1476 * validation include:
184f412c
IM
1477 * - check events are compatible which each other
1478 * - events do not compete for the same counter
1479 * - number of events <= number of counters
1da53e02
SE
1480 *
1481 * validation ensures the group can be loaded onto the
1482 * PMU if it was the only group available.
1483 */
fe9081cc
PZ
1484static int validate_group(struct perf_event *event)
1485{
1da53e02 1486 struct perf_event *leader = event->group_leader;
502568d5
PZ
1487 struct cpu_hw_events *fake_cpuc;
1488 int ret, n;
fe9081cc 1489
502568d5
PZ
1490 ret = -ENOMEM;
1491 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1492 if (!fake_cpuc)
1493 goto out;
fe9081cc 1494
1da53e02
SE
1495 /*
1496 * the event is not yet connected with its
1497 * siblings therefore we must first collect
1498 * existing siblings, then add the new event
1499 * before we can simulate the scheduling
1500 */
502568d5
PZ
1501 ret = -ENOSPC;
1502 n = collect_events(fake_cpuc, leader, true);
1da53e02 1503 if (n < 0)
502568d5 1504 goto out_free;
fe9081cc 1505
502568d5
PZ
1506 fake_cpuc->n_events = n;
1507 n = collect_events(fake_cpuc, event, false);
1da53e02 1508 if (n < 0)
502568d5 1509 goto out_free;
fe9081cc 1510
502568d5 1511 fake_cpuc->n_events = n;
1da53e02 1512
502568d5
PZ
1513 ret = x86_schedule_events(fake_cpuc, n, NULL);
1514
1515out_free:
1516 kfree(fake_cpuc);
1517out:
1518 return ret;
fe9081cc
PZ
1519}
1520
cdd6c482 1521const struct pmu *hw_perf_event_init(struct perf_event *event)
621a01ea 1522{
8113070d 1523 const struct pmu *tmp;
621a01ea
IM
1524 int err;
1525
cdd6c482 1526 err = __hw_perf_event_init(event);
fe9081cc 1527 if (!err) {
8113070d
SE
1528 /*
1529 * we temporarily connect event to its pmu
1530 * such that validate_group() can classify
1531 * it as an x86 event using is_x86_event()
1532 */
1533 tmp = event->pmu;
1534 event->pmu = &pmu;
1535
fe9081cc
PZ
1536 if (event->group_leader != event)
1537 err = validate_group(event);
8113070d
SE
1538
1539 event->pmu = tmp;
fe9081cc 1540 }
a1792cda 1541 if (err) {
cdd6c482
IM
1542 if (event->destroy)
1543 event->destroy(event);
9ea98e19 1544 return ERR_PTR(err);
a1792cda 1545 }
621a01ea 1546
4aeb0b42 1547 return &pmu;
621a01ea 1548}
d7d59fb3
PZ
1549
1550/*
1551 * callchain support
1552 */
1553
1554static inline
f9188e02 1555void callchain_store(struct perf_callchain_entry *entry, u64 ip)
d7d59fb3 1556{
f9188e02 1557 if (entry->nr < PERF_MAX_STACK_DEPTH)
d7d59fb3
PZ
1558 entry->ip[entry->nr++] = ip;
1559}
1560
245b2e70
TH
1561static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1562static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
d7d59fb3
PZ
1563
1564
1565static void
1566backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1567{
1568 /* Ignore warnings */
1569}
1570
1571static void backtrace_warning(void *data, char *msg)
1572{
1573 /* Ignore warnings */
1574}
1575
1576static int backtrace_stack(void *data, char *name)
1577{
038e836e 1578 return 0;
d7d59fb3
PZ
1579}
1580
1581static void backtrace_address(void *data, unsigned long addr, int reliable)
1582{
1583 struct perf_callchain_entry *entry = data;
1584
1585 if (reliable)
1586 callchain_store(entry, addr);
1587}
1588
1589static const struct stacktrace_ops backtrace_ops = {
1590 .warning = backtrace_warning,
1591 .warning_symbol = backtrace_warning_symbol,
1592 .stack = backtrace_stack,
1593 .address = backtrace_address,
06d65bda 1594 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
1595};
1596
038e836e
IM
1597#include "../dumpstack.h"
1598
d7d59fb3
PZ
1599static void
1600perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1601{
f9188e02 1602 callchain_store(entry, PERF_CONTEXT_KERNEL);
038e836e 1603 callchain_store(entry, regs->ip);
d7d59fb3 1604
48b5ba9c 1605 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
d7d59fb3
PZ
1606}
1607
74193ef0
PZ
1608/*
1609 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1610 */
1611static unsigned long
1612copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
d7d59fb3 1613{
74193ef0
PZ
1614 unsigned long offset, addr = (unsigned long)from;
1615 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1616 unsigned long size, len = 0;
1617 struct page *page;
1618 void *map;
d7d59fb3
PZ
1619 int ret;
1620
74193ef0
PZ
1621 do {
1622 ret = __get_user_pages_fast(addr, 1, 0, &page);
1623 if (!ret)
1624 break;
d7d59fb3 1625
74193ef0
PZ
1626 offset = addr & (PAGE_SIZE - 1);
1627 size = min(PAGE_SIZE - offset, n - len);
d7d59fb3 1628
74193ef0
PZ
1629 map = kmap_atomic(page, type);
1630 memcpy(to, map+offset, size);
1631 kunmap_atomic(map, type);
1632 put_page(page);
1633
1634 len += size;
1635 to += size;
1636 addr += size;
1637
1638 } while (len < n);
1639
1640 return len;
1641}
1642
1643static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1644{
1645 unsigned long bytes;
1646
1647 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1648
1649 return bytes == sizeof(*frame);
d7d59fb3
PZ
1650}
1651
1652static void
1653perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1654{
1655 struct stack_frame frame;
1656 const void __user *fp;
1657
5a6cec3a
IM
1658 if (!user_mode(regs))
1659 regs = task_pt_regs(current);
1660
74193ef0 1661 fp = (void __user *)regs->bp;
d7d59fb3 1662
f9188e02 1663 callchain_store(entry, PERF_CONTEXT_USER);
d7d59fb3
PZ
1664 callchain_store(entry, regs->ip);
1665
f9188e02 1666 while (entry->nr < PERF_MAX_STACK_DEPTH) {
038e836e 1667 frame.next_frame = NULL;
d7d59fb3
PZ
1668 frame.return_address = 0;
1669
1670 if (!copy_stack_frame(fp, &frame))
1671 break;
1672
5a6cec3a 1673 if ((unsigned long)fp < regs->sp)
d7d59fb3
PZ
1674 break;
1675
1676 callchain_store(entry, frame.return_address);
038e836e 1677 fp = frame.next_frame;
d7d59fb3
PZ
1678 }
1679}
1680
1681static void
1682perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1683{
1684 int is_user;
1685
1686 if (!regs)
1687 return;
1688
1689 is_user = user_mode(regs);
1690
d7d59fb3
PZ
1691 if (is_user && current->state != TASK_RUNNING)
1692 return;
1693
1694 if (!is_user)
1695 perf_callchain_kernel(regs, entry);
1696
1697 if (current->mm)
1698 perf_callchain_user(regs, entry);
1699}
1700
1701struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1702{
1703 struct perf_callchain_entry *entry;
1704
1705 if (in_nmi())
245b2e70 1706 entry = &__get_cpu_var(pmc_nmi_entry);
d7d59fb3 1707 else
245b2e70 1708 entry = &__get_cpu_var(pmc_irq_entry);
d7d59fb3
PZ
1709
1710 entry->nr = 0;
1711
1712 perf_do_callchain(regs, entry);
1713
1714 return entry;
1715}