]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/cpu/perf_event.c
perf/x86: Fix event/group validation
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
de0428a7
KW
40#include "perf_event.h"
41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
4e935e47
PZ
138static DEFINE_MUTEX(pmc_reserve_mutex);
139
b27ea29c
RR
140#ifdef CONFIG_X86_LOCAL_APIC
141
4e935e47
PZ
142static bool reserve_pmc_hardware(void)
143{
144 int i;
145
948b1bb8 146 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
148 goto perfctr_fail;
149 }
150
948b1bb8 151 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
153 goto eventsel_fail;
154 }
155
156 return true;
157
158eventsel_fail:
159 for (i--; i >= 0; i--)
41bf4989 160 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 161
948b1bb8 162 i = x86_pmu.num_counters;
4e935e47
PZ
163
164perfctr_fail:
165 for (i--; i >= 0; i--)
41bf4989 166 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 167
4e935e47
PZ
168 return false;
169}
170
171static void release_pmc_hardware(void)
172{
173 int i;
174
948b1bb8 175 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 178 }
4e935e47
PZ
179}
180
b27ea29c
RR
181#else
182
183static bool reserve_pmc_hardware(void) { return true; }
184static void release_pmc_hardware(void) {}
185
186#endif
187
33c6d6a7
DZ
188static bool check_hw_exists(void)
189{
a5ebe0ba
GD
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
192 int bios_fail = 0;
33c6d6a7 193
4407204c
PZ
194 /*
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
197 */
198 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 199 reg = x86_pmu_config_addr(i);
4407204c
PZ
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
a5ebe0ba
GD
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
204 bios_fail = 1;
205 val_fail = val;
206 reg_fail = reg;
207 }
4407204c
PZ
208 }
209
210 if (x86_pmu.num_counters_fixed) {
211 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212 ret = rdmsrl_safe(reg, &val);
213 if (ret)
214 goto msr_fail;
215 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
216 if (val & (0x03 << i*4)) {
217 bios_fail = 1;
218 val_fail = val;
219 reg_fail = reg;
220 }
4407204c
PZ
221 }
222 }
223
224 /*
bffd5fc2
AP
225 * Read the current value, change it and read it back to see if it
226 * matches, this is needed to detect certain hardware emulators
227 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 228 */
f285f92f 229 reg = x86_pmu_event_addr(0);
bffd5fc2
AP
230 if (rdmsrl_safe(reg, &val))
231 goto msr_fail;
232 val ^= 0xffffUL;
f285f92f
RR
233 ret = wrmsrl_safe(reg, val);
234 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 235 if (ret || val != val_new)
4407204c 236 goto msr_fail;
33c6d6a7 237
45daae57
IM
238 /*
239 * We still allow the PMU driver to operate:
240 */
a5ebe0ba
GD
241 if (bios_fail) {
242 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
244 }
45daae57
IM
245
246 return true;
4407204c
PZ
247
248msr_fail:
249 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
65d71fe1
PZI
250 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
252 reg, val_new);
45daae57 253
4407204c 254 return false;
33c6d6a7
DZ
255}
256
cdd6c482 257static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 258{
cdd6c482 259 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
4e935e47 260 release_pmc_hardware();
ca037701 261 release_ds_buffers();
4e935e47
PZ
262 mutex_unlock(&pmc_reserve_mutex);
263 }
264}
265
48070342
AS
266void hw_perf_lbr_event_destroy(struct perf_event *event)
267{
268 hw_perf_event_destroy(event);
269
270 /* undo the lbr/bts event accounting */
271 x86_del_exclusive(x86_lbr_exclusive_lbr);
272}
273
85cf9dba
RR
274static inline int x86_pmu_initialized(void)
275{
276 return x86_pmu.handle_irq != NULL;
277}
278
8326f44d 279static inline int
e994d7d2 280set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 281{
e994d7d2 282 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
283 unsigned int cache_type, cache_op, cache_result;
284 u64 config, val;
285
286 config = attr->config;
287
288 cache_type = (config >> 0) & 0xff;
289 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
290 return -EINVAL;
291
292 cache_op = (config >> 8) & 0xff;
293 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
294 return -EINVAL;
295
296 cache_result = (config >> 16) & 0xff;
297 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
298 return -EINVAL;
299
300 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
301
302 if (val == 0)
303 return -ENOENT;
304
305 if (val == -1)
306 return -EINVAL;
307
308 hwc->config |= val;
e994d7d2
AK
309 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
310 return x86_pmu_extra_regs(val, event);
8326f44d
IM
311}
312
48070342
AS
313/*
314 * Check if we can create event of a certain type (that no conflicting events
315 * are present).
316 */
317int x86_add_exclusive(unsigned int what)
318{
319 int ret = -EBUSY, i;
320
321 if (atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what]))
322 return 0;
323
324 mutex_lock(&pmc_reserve_mutex);
325 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++)
326 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
327 goto out;
328
329 atomic_inc(&x86_pmu.lbr_exclusive[what]);
330 ret = 0;
331
332out:
333 mutex_unlock(&pmc_reserve_mutex);
334 return ret;
335}
336
337void x86_del_exclusive(unsigned int what)
338{
339 atomic_dec(&x86_pmu.lbr_exclusive[what]);
340}
341
de0428a7 342int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
343{
344 struct perf_event_attr *attr = &event->attr;
345 struct hw_perf_event *hwc = &event->hw;
346 u64 config;
347
6c7e550f 348 if (!is_sampling_event(event)) {
c1726f34
RR
349 hwc->sample_period = x86_pmu.max_period;
350 hwc->last_period = hwc->sample_period;
e7850595 351 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
352 }
353
354 if (attr->type == PERF_TYPE_RAW)
ed13ec58 355 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
356
357 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 358 return set_ext_hw_attr(hwc, event);
c1726f34
RR
359
360 if (attr->config >= x86_pmu.max_events)
361 return -EINVAL;
362
363 /*
364 * The generic map:
365 */
366 config = x86_pmu.event_map(attr->config);
367
368 if (config == 0)
369 return -ENOENT;
370
371 if (config == -1LL)
372 return -EINVAL;
373
374 /*
375 * Branch tracing:
376 */
18a073a3
PZ
377 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
378 !attr->freq && hwc->sample_period == 1) {
c1726f34 379 /* BTS is not supported by this architecture. */
6809b6ea 380 if (!x86_pmu.bts_active)
c1726f34
RR
381 return -EOPNOTSUPP;
382
383 /* BTS is currently only allowed for user-mode. */
384 if (!attr->exclude_kernel)
385 return -EOPNOTSUPP;
48070342
AS
386
387 /* disallow bts if conflicting events are present */
388 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
389 return -EBUSY;
390
391 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
392 }
393
394 hwc->config |= config;
395
396 return 0;
397}
4261e0e0 398
ff3fb511
SE
399/*
400 * check that branch_sample_type is compatible with
401 * settings needed for precise_ip > 1 which implies
402 * using the LBR to capture ALL taken branches at the
403 * priv levels of the measurement
404 */
405static inline int precise_br_compat(struct perf_event *event)
406{
407 u64 m = event->attr.branch_sample_type;
408 u64 b = 0;
409
410 /* must capture all branches */
411 if (!(m & PERF_SAMPLE_BRANCH_ANY))
412 return 0;
413
414 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
415
416 if (!event->attr.exclude_user)
417 b |= PERF_SAMPLE_BRANCH_USER;
418
419 if (!event->attr.exclude_kernel)
420 b |= PERF_SAMPLE_BRANCH_KERNEL;
421
422 /*
423 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
424 */
425
426 return m == b;
427}
428
de0428a7 429int x86_pmu_hw_config(struct perf_event *event)
a072738e 430{
ab608344
PZ
431 if (event->attr.precise_ip) {
432 int precise = 0;
433
434 /* Support for constant skid */
c93dc84c 435 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
436 precise++;
437
5553be26 438 /* Support for IP fixup */
03de874a 439 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26
PZ
440 precise++;
441 }
ab608344
PZ
442
443 if (event->attr.precise_ip > precise)
444 return -EOPNOTSUPP;
4b854900
YZ
445 }
446 /*
447 * check that PEBS LBR correction does not conflict with
448 * whatever the user is asking with attr->branch_sample_type
449 */
450 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
451 u64 *br_type = &event->attr.branch_sample_type;
452
453 if (has_branch_stack(event)) {
454 if (!precise_br_compat(event))
455 return -EOPNOTSUPP;
456
457 /* branch_sample_type is compatible */
458
459 } else {
460 /*
461 * user did not specify branch_sample_type
462 *
463 * For PEBS fixups, we capture all
464 * the branches at the priv level of the
465 * event.
466 */
467 *br_type = PERF_SAMPLE_BRANCH_ANY;
468
469 if (!event->attr.exclude_user)
470 *br_type |= PERF_SAMPLE_BRANCH_USER;
471
472 if (!event->attr.exclude_kernel)
473 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 474 }
ab608344
PZ
475 }
476
e18bf526
YZ
477 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
478 event->attach_state |= PERF_ATTACH_TASK_DATA;
479
a072738e
CG
480 /*
481 * Generate PMC IRQs:
482 * (keep 'enabled' bit clear for now)
483 */
b4cdc5c2 484 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
485
486 /*
487 * Count user and OS events unless requested not to
488 */
b4cdc5c2
PZ
489 if (!event->attr.exclude_user)
490 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
491 if (!event->attr.exclude_kernel)
492 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 493
b4cdc5c2
PZ
494 if (event->attr.type == PERF_TYPE_RAW)
495 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 496
294fe0f5
AK
497 if (event->attr.sample_period && x86_pmu.limit_period) {
498 if (x86_pmu.limit_period(event, event->attr.sample_period) >
499 event->attr.sample_period)
500 return -EINVAL;
501 }
502
9d0fcba6 503 return x86_setup_perfctr(event);
a098f448
RR
504}
505
241771ef 506/*
0d48696f 507 * Setup the hardware configuration for a given attr_type
241771ef 508 */
b0a873eb 509static int __x86_pmu_event_init(struct perf_event *event)
241771ef 510{
4e935e47 511 int err;
241771ef 512
85cf9dba
RR
513 if (!x86_pmu_initialized())
514 return -ENODEV;
241771ef 515
4e935e47 516 err = 0;
cdd6c482 517 if (!atomic_inc_not_zero(&active_events)) {
4e935e47 518 mutex_lock(&pmc_reserve_mutex);
cdd6c482 519 if (atomic_read(&active_events) == 0) {
30dd568c
MM
520 if (!reserve_pmc_hardware())
521 err = -EBUSY;
f80c9e30
PZ
522 else
523 reserve_ds_buffers();
30dd568c
MM
524 }
525 if (!err)
cdd6c482 526 atomic_inc(&active_events);
4e935e47
PZ
527 mutex_unlock(&pmc_reserve_mutex);
528 }
529 if (err)
530 return err;
531
cdd6c482 532 event->destroy = hw_perf_event_destroy;
a1792cda 533
4261e0e0
RR
534 event->hw.idx = -1;
535 event->hw.last_cpu = -1;
536 event->hw.last_tag = ~0ULL;
b690081d 537
efc9f05d
SE
538 /* mark unused */
539 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
540 event->hw.branch_reg.idx = EXTRA_REG_NONE;
541
9d0fcba6 542 return x86_pmu.hw_config(event);
4261e0e0
RR
543}
544
de0428a7 545void x86_pmu_disable_all(void)
f87ad35d 546{
89cbc767 547 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
548 int idx;
549
948b1bb8 550 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
551 u64 val;
552
43f6201a 553 if (!test_bit(idx, cpuc->active_mask))
4295ee62 554 continue;
41bf4989 555 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 556 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 557 continue;
bb1165d6 558 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 559 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 560 }
f87ad35d
JSR
561}
562
a4eaf7f1 563static void x86_pmu_disable(struct pmu *pmu)
b56a3802 564{
89cbc767 565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 566
85cf9dba 567 if (!x86_pmu_initialized())
9e35ad38 568 return;
1da53e02 569
1a6e21f7
PZ
570 if (!cpuc->enabled)
571 return;
572
573 cpuc->n_added = 0;
574 cpuc->enabled = 0;
575 barrier();
1da53e02
SE
576
577 x86_pmu.disable_all();
b56a3802 578}
241771ef 579
de0428a7 580void x86_pmu_enable_all(int added)
f87ad35d 581{
89cbc767 582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
583 int idx;
584
948b1bb8 585 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 586 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 587
43f6201a 588 if (!test_bit(idx, cpuc->active_mask))
4295ee62 589 continue;
984b838c 590
d45dd923 591 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
592 }
593}
594
51b0fe39 595static struct pmu pmu;
1da53e02
SE
596
597static inline int is_x86_event(struct perf_event *event)
598{
599 return event->pmu == &pmu;
600}
601
1e2ad28f
RR
602/*
603 * Event scheduler state:
604 *
605 * Assign events iterating over all events and counters, beginning
606 * with events with least weights first. Keep the current iterator
607 * state in struct sched_state.
608 */
609struct sched_state {
610 int weight;
611 int event; /* event index */
612 int counter; /* counter index */
613 int unassigned; /* number of events to be assigned left */
614 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
615};
616
bc1738f6
RR
617/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
618#define SCHED_STATES_MAX 2
619
1e2ad28f
RR
620struct perf_sched {
621 int max_weight;
622 int max_events;
b371b594 623 struct event_constraint **constraints;
1e2ad28f 624 struct sched_state state;
bc1738f6
RR
625 int saved_states;
626 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
627};
628
629/*
630 * Initialize interator that runs through all events and counters.
631 */
b371b594 632static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
1e2ad28f
RR
633 int num, int wmin, int wmax)
634{
635 int idx;
636
637 memset(sched, 0, sizeof(*sched));
638 sched->max_events = num;
639 sched->max_weight = wmax;
b371b594 640 sched->constraints = constraints;
1e2ad28f
RR
641
642 for (idx = 0; idx < num; idx++) {
b371b594 643 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
644 break;
645 }
646
647 sched->state.event = idx; /* start with min weight */
648 sched->state.weight = wmin;
649 sched->state.unassigned = num;
650}
651
bc1738f6
RR
652static void perf_sched_save_state(struct perf_sched *sched)
653{
654 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
655 return;
656
657 sched->saved[sched->saved_states] = sched->state;
658 sched->saved_states++;
659}
660
661static bool perf_sched_restore_state(struct perf_sched *sched)
662{
663 if (!sched->saved_states)
664 return false;
665
666 sched->saved_states--;
667 sched->state = sched->saved[sched->saved_states];
668
669 /* continue with next counter: */
670 clear_bit(sched->state.counter++, sched->state.used);
671
672 return true;
673}
674
1e2ad28f
RR
675/*
676 * Select a counter for the current event to schedule. Return true on
677 * success.
678 */
bc1738f6 679static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
680{
681 struct event_constraint *c;
682 int idx;
683
684 if (!sched->state.unassigned)
685 return false;
686
687 if (sched->state.event >= sched->max_events)
688 return false;
689
b371b594 690 c = sched->constraints[sched->state.event];
4defea85 691 /* Prefer fixed purpose counters */
15c7ad51
RR
692 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
693 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 694 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
695 if (!__test_and_set_bit(idx, sched->state.used))
696 goto done;
697 }
698 }
1e2ad28f
RR
699 /* Grab the first unused counter starting with idx */
700 idx = sched->state.counter;
15c7ad51 701 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
1e2ad28f 702 if (!__test_and_set_bit(idx, sched->state.used))
4defea85 703 goto done;
1e2ad28f 704 }
1e2ad28f 705
4defea85
PZ
706 return false;
707
708done:
709 sched->state.counter = idx;
1e2ad28f 710
bc1738f6
RR
711 if (c->overlap)
712 perf_sched_save_state(sched);
713
714 return true;
715}
716
717static bool perf_sched_find_counter(struct perf_sched *sched)
718{
719 while (!__perf_sched_find_counter(sched)) {
720 if (!perf_sched_restore_state(sched))
721 return false;
722 }
723
1e2ad28f
RR
724 return true;
725}
726
727/*
728 * Go through all unassigned events and find the next one to schedule.
729 * Take events with the least weight first. Return true on success.
730 */
731static bool perf_sched_next_event(struct perf_sched *sched)
732{
733 struct event_constraint *c;
734
735 if (!sched->state.unassigned || !--sched->state.unassigned)
736 return false;
737
738 do {
739 /* next event */
740 sched->state.event++;
741 if (sched->state.event >= sched->max_events) {
742 /* next weight */
743 sched->state.event = 0;
744 sched->state.weight++;
745 if (sched->state.weight > sched->max_weight)
746 return false;
747 }
b371b594 748 c = sched->constraints[sched->state.event];
1e2ad28f
RR
749 } while (c->weight != sched->state.weight);
750
751 sched->state.counter = 0; /* start with first counter */
752
753 return true;
754}
755
756/*
757 * Assign a counter for each event.
758 */
b371b594 759int perf_assign_events(struct event_constraint **constraints, int n,
4b4969b1 760 int wmin, int wmax, int *assign)
1e2ad28f
RR
761{
762 struct perf_sched sched;
763
b371b594 764 perf_sched_init(&sched, constraints, n, wmin, wmax);
1e2ad28f
RR
765
766 do {
767 if (!perf_sched_find_counter(&sched))
768 break; /* failed */
769 if (assign)
770 assign[sched.state.event] = sched.state.counter;
771 } while (perf_sched_next_event(&sched));
772
773 return sched.state.unassigned;
774}
4a3dc121 775EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 776
de0428a7 777int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 778{
43b45780 779 struct event_constraint *c;
1da53e02 780 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 781 struct perf_event *e;
e979121b 782 int i, wmin, wmax, unsched = 0;
1da53e02
SE
783 struct hw_perf_event *hwc;
784
785 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
786
c5362c0c
MD
787 if (x86_pmu.start_scheduling)
788 x86_pmu.start_scheduling(cpuc);
789
1e2ad28f 790 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 791 cpuc->event_constraint[i] = NULL;
79cba822 792 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 793 cpuc->event_constraint[i] = c;
43b45780 794
1e2ad28f
RR
795 wmin = min(wmin, c->weight);
796 wmax = max(wmax, c->weight);
1da53e02
SE
797 }
798
8113070d
SE
799 /*
800 * fastpath, try to reuse previous register
801 */
c933c1a6 802 for (i = 0; i < n; i++) {
8113070d 803 hwc = &cpuc->event_list[i]->hw;
b371b594 804 c = cpuc->event_constraint[i];
8113070d
SE
805
806 /* never assigned */
807 if (hwc->idx == -1)
808 break;
809
810 /* constraint still honored */
63b14649 811 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
812 break;
813
814 /* not already used */
815 if (test_bit(hwc->idx, used_mask))
816 break;
817
34538ee7 818 __set_bit(hwc->idx, used_mask);
8113070d
SE
819 if (assign)
820 assign[i] = hwc->idx;
821 }
8113070d 822
1e2ad28f 823 /* slow path */
b371b594
PZ
824 if (i != n) {
825 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
e979121b 826 wmax, assign);
b371b594 827 }
8113070d 828
2f7f73a5 829 /*
e979121b
MD
830 * In case of success (unsched = 0), mark events as committed,
831 * so we do not put_constraint() in case new events are added
832 * and fail to be scheduled
833 *
834 * We invoke the lower level commit callback to lock the resource
835 *
836 * We do not need to do all of this in case we are called to
837 * validate an event group (assign == NULL)
2f7f73a5 838 */
e979121b 839 if (!unsched && assign) {
2f7f73a5
SE
840 for (i = 0; i < n; i++) {
841 e = cpuc->event_list[i];
842 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 843 if (x86_pmu.commit_scheduling)
b371b594 844 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5
SE
845 }
846 }
e979121b
MD
847
848 if (!assign || unsched) {
849
1da53e02 850 for (i = 0; i < n; i++) {
2f7f73a5
SE
851 e = cpuc->event_list[i];
852 /*
853 * do not put_constraint() on comitted events,
854 * because they are good to go
855 */
856 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
857 continue;
858
e979121b
MD
859 /*
860 * release events that failed scheduling
861 */
1da53e02 862 if (x86_pmu.put_event_constraints)
2f7f73a5 863 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
864 }
865 }
c5362c0c
MD
866
867 if (x86_pmu.stop_scheduling)
868 x86_pmu.stop_scheduling(cpuc);
869
e979121b 870 return unsched ? -EINVAL : 0;
1da53e02
SE
871}
872
873/*
874 * dogrp: true if must collect siblings events (group)
875 * returns total number of events and error code
876 */
877static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
878{
879 struct perf_event *event;
880 int n, max_count;
881
948b1bb8 882 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
883
884 /* current number of events already accepted */
885 n = cpuc->n_events;
886
887 if (is_x86_event(leader)) {
888 if (n >= max_count)
aa2bc1ad 889 return -EINVAL;
1da53e02
SE
890 cpuc->event_list[n] = leader;
891 n++;
892 }
893 if (!dogrp)
894 return n;
895
896 list_for_each_entry(event, &leader->sibling_list, group_entry) {
897 if (!is_x86_event(event) ||
8113070d 898 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
899 continue;
900
901 if (n >= max_count)
aa2bc1ad 902 return -EINVAL;
1da53e02
SE
903
904 cpuc->event_list[n] = event;
905 n++;
906 }
907 return n;
908}
909
1da53e02 910static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 911 struct cpu_hw_events *cpuc, int i)
1da53e02 912{
447a194b
SE
913 struct hw_perf_event *hwc = &event->hw;
914
915 hwc->idx = cpuc->assign[i];
916 hwc->last_cpu = smp_processor_id();
917 hwc->last_tag = ++cpuc->tags[i];
1da53e02 918
15c7ad51 919 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
920 hwc->config_base = 0;
921 hwc->event_base = 0;
15c7ad51 922 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 923 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
924 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
925 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 926 } else {
73d6e522
RR
927 hwc->config_base = x86_pmu_config_addr(hwc->idx);
928 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 929 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
930 }
931}
932
447a194b
SE
933static inline int match_prev_assignment(struct hw_perf_event *hwc,
934 struct cpu_hw_events *cpuc,
935 int i)
936{
937 return hwc->idx == cpuc->assign[i] &&
938 hwc->last_cpu == smp_processor_id() &&
939 hwc->last_tag == cpuc->tags[i];
940}
941
a4eaf7f1 942static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 943
a4eaf7f1 944static void x86_pmu_enable(struct pmu *pmu)
ee06094f 945{
89cbc767 946 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
947 struct perf_event *event;
948 struct hw_perf_event *hwc;
11164cd4 949 int i, added = cpuc->n_added;
1da53e02 950
85cf9dba 951 if (!x86_pmu_initialized())
2b9ff0db 952 return;
1a6e21f7
PZ
953
954 if (cpuc->enabled)
955 return;
956
1da53e02 957 if (cpuc->n_added) {
19925ce7 958 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
959 /*
960 * apply assignment obtained either from
961 * hw_perf_group_sched_in() or x86_pmu_enable()
962 *
963 * step1: save events moving to new counters
1da53e02 964 */
19925ce7 965 for (i = 0; i < n_running; i++) {
1da53e02
SE
966 event = cpuc->event_list[i];
967 hwc = &event->hw;
968
447a194b
SE
969 /*
970 * we can avoid reprogramming counter if:
971 * - assigned same counter as last time
972 * - running on same CPU as last time
973 * - no other event has used the counter since
974 */
975 if (hwc->idx == -1 ||
976 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
977 continue;
978
a4eaf7f1
PZ
979 /*
980 * Ensure we don't accidentally enable a stopped
981 * counter simply because we rescheduled.
982 */
983 if (hwc->state & PERF_HES_STOPPED)
984 hwc->state |= PERF_HES_ARCH;
985
986 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
987 }
988
c347a2f1
PZ
989 /*
990 * step2: reprogram moved events into new counters
991 */
1da53e02 992 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
993 event = cpuc->event_list[i];
994 hwc = &event->hw;
995
45e16a68 996 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 997 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
998 else if (i < n_running)
999 continue;
1da53e02 1000
a4eaf7f1
PZ
1001 if (hwc->state & PERF_HES_ARCH)
1002 continue;
1003
1004 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1005 }
1006 cpuc->n_added = 0;
1007 perf_events_lapic_init();
1008 }
1a6e21f7
PZ
1009
1010 cpuc->enabled = 1;
1011 barrier();
1012
11164cd4 1013 x86_pmu.enable_all(added);
ee06094f 1014}
ee06094f 1015
245b2e70 1016static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1017
ee06094f
IM
1018/*
1019 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1020 * To be called with the event disabled in hw:
ee06094f 1021 */
de0428a7 1022int x86_perf_event_set_period(struct perf_event *event)
241771ef 1023{
07088edb 1024 struct hw_perf_event *hwc = &event->hw;
e7850595 1025 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1026 s64 period = hwc->sample_period;
7645a24c 1027 int ret = 0, idx = hwc->idx;
ee06094f 1028
15c7ad51 1029 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1030 return 0;
1031
ee06094f 1032 /*
af901ca1 1033 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1034 */
1035 if (unlikely(left <= -period)) {
1036 left = period;
e7850595 1037 local64_set(&hwc->period_left, left);
9e350de3 1038 hwc->last_period = period;
e4abb5d4 1039 ret = 1;
ee06094f
IM
1040 }
1041
1042 if (unlikely(left <= 0)) {
1043 left += period;
e7850595 1044 local64_set(&hwc->period_left, left);
9e350de3 1045 hwc->last_period = period;
e4abb5d4 1046 ret = 1;
ee06094f 1047 }
1c80f4b5 1048 /*
dfc65094 1049 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1050 */
1051 if (unlikely(left < 2))
1052 left = 2;
241771ef 1053
e4abb5d4
PZ
1054 if (left > x86_pmu.max_period)
1055 left = x86_pmu.max_period;
1056
294fe0f5
AK
1057 if (x86_pmu.limit_period)
1058 left = x86_pmu.limit_period(event, left);
1059
245b2e70 1060 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f
IM
1061
1062 /*
cdd6c482 1063 * The hw event starts counting from this event offset,
ee06094f
IM
1064 * mark it to be able to extra future deltas:
1065 */
e7850595 1066 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1067
73d6e522 1068 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac
CG
1069
1070 /*
1071 * Due to erratum on certan cpu we need
1072 * a second write to be sure the register
1073 * is updated properly
1074 */
1075 if (x86_pmu.perfctr_second_write) {
73d6e522 1076 wrmsrl(hwc->event_base,
948b1bb8 1077 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1078 }
e4abb5d4 1079
cdd6c482 1080 perf_event_update_userpage(event);
194002b2 1081
e4abb5d4 1082 return ret;
2f18d1e8
IM
1083}
1084
de0428a7 1085void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1086{
0a3aee0d 1087 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1088 __x86_pmu_enable_event(&event->hw,
1089 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1090}
1091
b690081d 1092/*
a4eaf7f1 1093 * Add a single event to the PMU.
1da53e02
SE
1094 *
1095 * The event is added to the group of enabled events
1096 * but only if it can be scehduled with existing events.
fe9081cc 1097 */
a4eaf7f1 1098static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1099{
89cbc767 1100 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1101 struct hw_perf_event *hwc;
1102 int assign[X86_PMC_IDX_MAX];
1103 int n, n0, ret;
fe9081cc 1104
1da53e02 1105 hwc = &event->hw;
fe9081cc 1106
1da53e02 1107 n0 = cpuc->n_events;
24cd7f54
PZ
1108 ret = n = collect_events(cpuc, event, false);
1109 if (ret < 0)
1110 goto out;
53b441a5 1111
a4eaf7f1
PZ
1112 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1113 if (!(flags & PERF_EF_START))
1114 hwc->state |= PERF_HES_ARCH;
1115
4d1c52b0
LM
1116 /*
1117 * If group events scheduling transaction was started,
0d2eb44f 1118 * skip the schedulability test here, it will be performed
c347a2f1 1119 * at commit time (->commit_txn) as a whole.
4d1c52b0 1120 */
8d2cacbb 1121 if (cpuc->group_flag & PERF_EVENT_TXN)
24cd7f54 1122 goto done_collect;
4d1c52b0 1123
a072738e 1124 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1125 if (ret)
24cd7f54 1126 goto out;
1da53e02
SE
1127 /*
1128 * copy new assignment, now we know it is possible
1129 * will be used by hw_perf_enable()
1130 */
1131 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1132
24cd7f54 1133done_collect:
c347a2f1
PZ
1134 /*
1135 * Commit the collect_events() state. See x86_pmu_del() and
1136 * x86_pmu_*_txn().
1137 */
1da53e02 1138 cpuc->n_events = n;
356e1f2e 1139 cpuc->n_added += n - n0;
90151c35 1140 cpuc->n_txn += n - n0;
95cdd2e7 1141
24cd7f54
PZ
1142 ret = 0;
1143out:
24cd7f54 1144 return ret;
241771ef
IM
1145}
1146
a4eaf7f1 1147static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1148{
89cbc767 1149 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1150 int idx = event->hw.idx;
1151
a4eaf7f1
PZ
1152 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1153 return;
1154
1155 if (WARN_ON_ONCE(idx == -1))
1156 return;
1157
1158 if (flags & PERF_EF_RELOAD) {
1159 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1160 x86_perf_event_set_period(event);
1161 }
1162
1163 event->hw.state = 0;
d76a0812 1164
c08053e6
PZ
1165 cpuc->events[idx] = event;
1166 __set_bit(idx, cpuc->active_mask);
63e6be6d 1167 __set_bit(idx, cpuc->running);
aff3d91a 1168 x86_pmu.enable(event);
c08053e6 1169 perf_event_update_userpage(event);
a78ac325
PZ
1170}
1171
cdd6c482 1172void perf_event_print_debug(void)
241771ef 1173{
2f18d1e8 1174 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1175 u64 pebs, debugctl;
cdd6c482 1176 struct cpu_hw_events *cpuc;
5bb9efe3 1177 unsigned long flags;
1e125676
IM
1178 int cpu, idx;
1179
948b1bb8 1180 if (!x86_pmu.num_counters)
1e125676 1181 return;
241771ef 1182
5bb9efe3 1183 local_irq_save(flags);
241771ef
IM
1184
1185 cpu = smp_processor_id();
cdd6c482 1186 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1187
faa28ae0 1188 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1189 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1190 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1191 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1192 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1193
1194 pr_info("\n");
1195 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1196 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1197 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1198 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1199 if (x86_pmu.pebs_constraints) {
1200 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1201 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1202 }
da3e606d
AK
1203 if (x86_pmu.lbr_nr) {
1204 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1205 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1206 }
f87ad35d 1207 }
7645a24c 1208 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1209
948b1bb8 1210 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1211 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1212 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1213
245b2e70 1214 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1215
a1ef58f4 1216 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1217 cpu, idx, pmc_ctrl);
a1ef58f4 1218 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1219 cpu, idx, pmc_count);
a1ef58f4 1220 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1221 cpu, idx, prev_left);
241771ef 1222 }
948b1bb8 1223 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1224 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1225
a1ef58f4 1226 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1227 cpu, idx, pmc_count);
1228 }
5bb9efe3 1229 local_irq_restore(flags);
241771ef
IM
1230}
1231
de0428a7 1232void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1233{
89cbc767 1234 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1235 struct hw_perf_event *hwc = &event->hw;
241771ef 1236
a4eaf7f1
PZ
1237 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1238 x86_pmu.disable(event);
1239 cpuc->events[hwc->idx] = NULL;
1240 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1241 hwc->state |= PERF_HES_STOPPED;
1242 }
30dd568c 1243
a4eaf7f1
PZ
1244 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1245 /*
1246 * Drain the remaining delta count out of a event
1247 * that we are disabling:
1248 */
1249 x86_perf_event_update(event);
1250 hwc->state |= PERF_HES_UPTODATE;
1251 }
2e841873
PZ
1252}
1253
a4eaf7f1 1254static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1255{
89cbc767 1256 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1257 int i;
1258
2f7f73a5
SE
1259 /*
1260 * event is descheduled
1261 */
1262 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1263
90151c35
SE
1264 /*
1265 * If we're called during a txn, we don't need to do anything.
1266 * The events never got scheduled and ->cancel_txn will truncate
1267 * the event_list.
c347a2f1
PZ
1268 *
1269 * XXX assumes any ->del() called during a TXN will only be on
1270 * an event added during that same TXN.
90151c35 1271 */
8d2cacbb 1272 if (cpuc->group_flag & PERF_EVENT_TXN)
90151c35
SE
1273 return;
1274
c347a2f1
PZ
1275 /*
1276 * Not a TXN, therefore cleanup properly.
1277 */
a4eaf7f1 1278 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1279
1da53e02 1280 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1281 if (event == cpuc->event_list[i])
1282 break;
1283 }
1da53e02 1284
c347a2f1
PZ
1285 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1286 return;
26e61e89 1287
c347a2f1
PZ
1288 /* If we have a newly added event; make sure to decrease n_added. */
1289 if (i >= cpuc->n_events - cpuc->n_added)
1290 --cpuc->n_added;
1da53e02 1291
c347a2f1
PZ
1292 if (x86_pmu.put_event_constraints)
1293 x86_pmu.put_event_constraints(cpuc, event);
1294
1295 /* Delete the array entry. */
b371b594 1296 while (++i < cpuc->n_events) {
c347a2f1 1297 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1298 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1299 }
c347a2f1 1300 --cpuc->n_events;
1da53e02 1301
cdd6c482 1302 perf_event_update_userpage(event);
241771ef
IM
1303}
1304
de0428a7 1305int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1306{
df1a132b 1307 struct perf_sample_data data;
cdd6c482
IM
1308 struct cpu_hw_events *cpuc;
1309 struct perf_event *event;
11d1578f 1310 int idx, handled = 0;
9029a5e3
IM
1311 u64 val;
1312
89cbc767 1313 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1314
2bce5dac
DZ
1315 /*
1316 * Some chipsets need to unmask the LVTPC in a particular spot
1317 * inside the nmi handler. As a result, the unmasking was pushed
1318 * into all the nmi handlers.
1319 *
1320 * This generic handler doesn't seem to have any issues where the
1321 * unmasking occurs so it was left at the top.
1322 */
1323 apic_write(APIC_LVTPC, APIC_DM_NMI);
1324
948b1bb8 1325 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1326 if (!test_bit(idx, cpuc->active_mask)) {
1327 /*
1328 * Though we deactivated the counter some cpus
1329 * might still deliver spurious interrupts still
1330 * in flight. Catch them:
1331 */
1332 if (__test_and_clear_bit(idx, cpuc->running))
1333 handled++;
a29aa8a7 1334 continue;
63e6be6d 1335 }
962bf7a6 1336
cdd6c482 1337 event = cpuc->events[idx];
a4016a79 1338
cc2ad4ba 1339 val = x86_perf_event_update(event);
948b1bb8 1340 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1341 continue;
962bf7a6 1342
9e350de3 1343 /*
cdd6c482 1344 * event overflow
9e350de3 1345 */
4177c42a 1346 handled++;
fd0d000b 1347 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1348
07088edb 1349 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1350 continue;
1351
a8b0ca17 1352 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1353 x86_pmu_stop(event, 0);
a29aa8a7 1354 }
962bf7a6 1355
9e350de3
PZ
1356 if (handled)
1357 inc_irq_stat(apic_perf_irqs);
1358
a29aa8a7
RR
1359 return handled;
1360}
39d81eab 1361
cdd6c482 1362void perf_events_lapic_init(void)
241771ef 1363{
04da8a43 1364 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1365 return;
85cf9dba 1366
241771ef 1367 /*
c323d95f 1368 * Always use NMI for PMU
241771ef 1369 */
c323d95f 1370 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1371}
1372
9326638c 1373static int
9c48f1c6 1374perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1375{
14c63f17
DH
1376 u64 start_clock;
1377 u64 finish_clock;
e8a923cc 1378 int ret;
14c63f17 1379
cdd6c482 1380 if (!atomic_read(&active_events))
9c48f1c6 1381 return NMI_DONE;
4177c42a 1382
e8a923cc 1383 start_clock = sched_clock();
14c63f17 1384 ret = x86_pmu.handle_irq(regs);
e8a923cc 1385 finish_clock = sched_clock();
14c63f17
DH
1386
1387 perf_sample_event_took(finish_clock - start_clock);
1388
1389 return ret;
241771ef 1390}
9326638c 1391NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1392
de0428a7
KW
1393struct event_constraint emptyconstraint;
1394struct event_constraint unconstrained;
f87ad35d 1395
148f9bb8 1396static int
3f6da390
PZ
1397x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1398{
1399 unsigned int cpu = (long)hcpu;
7fdba1ca 1400 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1401 int i, ret = NOTIFY_OK;
3f6da390
PZ
1402
1403 switch (action & ~CPU_TASKS_FROZEN) {
1404 case CPU_UP_PREPARE:
90413464
SE
1405 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1406 cpuc->kfree_on_online[i] = NULL;
3f6da390 1407 if (x86_pmu.cpu_prepare)
b38b24ea 1408 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1409 break;
1410
1411 case CPU_STARTING:
1412 if (x86_pmu.cpu_starting)
1413 x86_pmu.cpu_starting(cpu);
1414 break;
1415
7fdba1ca 1416 case CPU_ONLINE:
90413464
SE
1417 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1418 kfree(cpuc->kfree_on_online[i]);
1419 cpuc->kfree_on_online[i] = NULL;
1420 }
7fdba1ca
PZ
1421 break;
1422
3f6da390
PZ
1423 case CPU_DYING:
1424 if (x86_pmu.cpu_dying)
1425 x86_pmu.cpu_dying(cpu);
1426 break;
1427
b38b24ea 1428 case CPU_UP_CANCELED:
3f6da390
PZ
1429 case CPU_DEAD:
1430 if (x86_pmu.cpu_dead)
1431 x86_pmu.cpu_dead(cpu);
1432 break;
1433
1434 default:
1435 break;
1436 }
1437
b38b24ea 1438 return ret;
3f6da390
PZ
1439}
1440
12558038
CG
1441static void __init pmu_check_apic(void)
1442{
1443 if (cpu_has_apic)
1444 return;
1445
1446 x86_pmu.apic = 0;
1447 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1448 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1449
1450 /*
1451 * If we have a PMU initialized but no APIC
1452 * interrupts, we cannot sample hardware
1453 * events (user-space has to fall back and
1454 * sample via a hrtimer based software event):
1455 */
1456 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1457
12558038
CG
1458}
1459
641cc938
JO
1460static struct attribute_group x86_pmu_format_group = {
1461 .name = "format",
1462 .attrs = NULL,
1463};
1464
8300daa2
JO
1465/*
1466 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1467 * out of events_attr attributes.
1468 */
1469static void __init filter_events(struct attribute **attrs)
1470{
3a54aaa0
SE
1471 struct device_attribute *d;
1472 struct perf_pmu_events_attr *pmu_attr;
8300daa2
JO
1473 int i, j;
1474
1475 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1476 d = (struct device_attribute *)attrs[i];
1477 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1478 /* str trumps id */
1479 if (pmu_attr->event_str)
1480 continue;
8300daa2
JO
1481 if (x86_pmu.event_map(i))
1482 continue;
1483
1484 for (j = i; attrs[j]; j++)
1485 attrs[j] = attrs[j + 1];
1486
1487 /* Check the shifted attr. */
1488 i--;
1489 }
1490}
1491
1a6461b1
AK
1492/* Merge two pointer arrays */
1493static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1494{
1495 struct attribute **new;
1496 int j, i;
1497
1498 for (j = 0; a[j]; j++)
1499 ;
1500 for (i = 0; b[i]; i++)
1501 j++;
1502 j++;
1503
1504 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1505 if (!new)
1506 return NULL;
1507
1508 j = 0;
1509 for (i = 0; a[i]; i++)
1510 new[j++] = a[i];
1511 for (i = 0; b[i]; i++)
1512 new[j++] = b[i];
1513 new[j] = NULL;
1514
1515 return new;
1516}
1517
f20093ee 1518ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1519 char *page)
1520{
1521 struct perf_pmu_events_attr *pmu_attr = \
1522 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1523 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1524
3a54aaa0
SE
1525 /* string trumps id */
1526 if (pmu_attr->event_str)
1527 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1528
3a54aaa0
SE
1529 return x86_pmu.events_sysfs_show(page, config);
1530}
a4747393
JO
1531
1532EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1533EVENT_ATTR(instructions, INSTRUCTIONS );
1534EVENT_ATTR(cache-references, CACHE_REFERENCES );
1535EVENT_ATTR(cache-misses, CACHE_MISSES );
1536EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1537EVENT_ATTR(branch-misses, BRANCH_MISSES );
1538EVENT_ATTR(bus-cycles, BUS_CYCLES );
1539EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1540EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1541EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1542
1543static struct attribute *empty_attrs;
1544
95d18aa2 1545static struct attribute *events_attr[] = {
a4747393
JO
1546 EVENT_PTR(CPU_CYCLES),
1547 EVENT_PTR(INSTRUCTIONS),
1548 EVENT_PTR(CACHE_REFERENCES),
1549 EVENT_PTR(CACHE_MISSES),
1550 EVENT_PTR(BRANCH_INSTRUCTIONS),
1551 EVENT_PTR(BRANCH_MISSES),
1552 EVENT_PTR(BUS_CYCLES),
1553 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1554 EVENT_PTR(STALLED_CYCLES_BACKEND),
1555 EVENT_PTR(REF_CPU_CYCLES),
1556 NULL,
1557};
1558
1559static struct attribute_group x86_pmu_events_group = {
1560 .name = "events",
1561 .attrs = events_attr,
1562};
1563
0bf79d44 1564ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1565{
43c032fe
JO
1566 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1567 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1568 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1569 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1570 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1571 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1572 ssize_t ret;
1573
1574 /*
1575 * We have whole page size to spend and just little data
1576 * to write, so we can safely use sprintf.
1577 */
1578 ret = sprintf(page, "event=0x%02llx", event);
1579
1580 if (umask)
1581 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1582
1583 if (edge)
1584 ret += sprintf(page + ret, ",edge");
1585
1586 if (pc)
1587 ret += sprintf(page + ret, ",pc");
1588
1589 if (any)
1590 ret += sprintf(page + ret, ",any");
1591
1592 if (inv)
1593 ret += sprintf(page + ret, ",inv");
1594
1595 if (cmask)
1596 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1597
1598 ret += sprintf(page + ret, "\n");
1599
1600 return ret;
1601}
1602
dda99116 1603static int __init init_hw_perf_events(void)
b56a3802 1604{
c1d6f42f 1605 struct x86_pmu_quirk *quirk;
72eae04d
RR
1606 int err;
1607
cdd6c482 1608 pr_info("Performance Events: ");
1123e3ad 1609
b56a3802
JSR
1610 switch (boot_cpu_data.x86_vendor) {
1611 case X86_VENDOR_INTEL:
72eae04d 1612 err = intel_pmu_init();
b56a3802 1613 break;
f87ad35d 1614 case X86_VENDOR_AMD:
72eae04d 1615 err = amd_pmu_init();
f87ad35d 1616 break;
4138960a 1617 default:
8a3da6c7 1618 err = -ENOTSUPP;
b56a3802 1619 }
1123e3ad 1620 if (err != 0) {
cdd6c482 1621 pr_cont("no PMU driver, software events only.\n");
004417a6 1622 return 0;
1123e3ad 1623 }
b56a3802 1624
12558038
CG
1625 pmu_check_apic();
1626
33c6d6a7 1627 /* sanity check that the hardware exists or is emulated */
4407204c 1628 if (!check_hw_exists())
004417a6 1629 return 0;
33c6d6a7 1630
1123e3ad 1631 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1632
e97df763
PZ
1633 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1634
c1d6f42f
PZ
1635 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1636 quirk->func();
3c44780b 1637
a1eac7ac
RR
1638 if (!x86_pmu.intel_ctrl)
1639 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1640
cdd6c482 1641 perf_events_lapic_init();
9c48f1c6 1642 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1643
63b14649 1644 unconstrained = (struct event_constraint)
948b1bb8 1645 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1646 0, x86_pmu.num_counters, 0, 0);
63b14649 1647
641cc938 1648 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1649
f20093ee
SE
1650 if (x86_pmu.event_attrs)
1651 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1652
a4747393
JO
1653 if (!x86_pmu.events_sysfs_show)
1654 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1655 else
1656 filter_events(x86_pmu_events_group.attrs);
a4747393 1657
1a6461b1
AK
1658 if (x86_pmu.cpu_events) {
1659 struct attribute **tmp;
1660
1661 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1662 if (!WARN_ON(!tmp))
1663 x86_pmu_events_group.attrs = tmp;
1664 }
1665
57c0c15b 1666 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1667 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1668 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1669 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1670 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1671 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1672 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1673
2e80a82a 1674 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1675 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1676
1677 return 0;
241771ef 1678}
004417a6 1679early_initcall(init_hw_perf_events);
621a01ea 1680
cdd6c482 1681static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1682{
cc2ad4ba 1683 x86_perf_event_update(event);
ee06094f
IM
1684}
1685
4d1c52b0
LM
1686/*
1687 * Start group events scheduling transaction
1688 * Set the flag to make pmu::enable() not perform the
1689 * schedulability test, it will be performed at commit time
1690 */
51b0fe39 1691static void x86_pmu_start_txn(struct pmu *pmu)
4d1c52b0 1692{
33696fc0 1693 perf_pmu_disable(pmu);
0a3aee0d
TH
1694 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1695 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1696}
1697
1698/*
1699 * Stop group events scheduling transaction
1700 * Clear the flag and pmu::enable() will perform the
1701 * schedulability test.
1702 */
51b0fe39 1703static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1704{
0a3aee0d 1705 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
90151c35 1706 /*
c347a2f1
PZ
1707 * Truncate collected array by the number of events added in this
1708 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1709 */
0a3aee0d
TH
1710 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1711 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1712 perf_pmu_enable(pmu);
4d1c52b0
LM
1713}
1714
1715/*
1716 * Commit group events scheduling transaction
1717 * Perform the group schedulability test as a whole
1718 * Return 0 if success
c347a2f1
PZ
1719 *
1720 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1721 */
51b0fe39 1722static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1723{
89cbc767 1724 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1725 int assign[X86_PMC_IDX_MAX];
1726 int n, ret;
1727
1728 n = cpuc->n_events;
1729
1730 if (!x86_pmu_initialized())
1731 return -EAGAIN;
1732
1733 ret = x86_pmu.schedule_events(cpuc, n, assign);
1734 if (ret)
1735 return ret;
1736
1737 /*
1738 * copy new assignment, now we know it is possible
1739 * will be used by hw_perf_enable()
1740 */
1741 memcpy(cpuc->assign, assign, n*sizeof(int));
1742
8d2cacbb 1743 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1744 perf_pmu_enable(pmu);
4d1c52b0
LM
1745 return 0;
1746}
cd8a38d3
SE
1747/*
1748 * a fake_cpuc is used to validate event groups. Due to
1749 * the extra reg logic, we need to also allocate a fake
1750 * per_core and per_cpu structure. Otherwise, group events
1751 * using extra reg may conflict without the kernel being
1752 * able to catch this when the last event gets added to
1753 * the group.
1754 */
1755static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1756{
1757 kfree(cpuc->shared_regs);
1758 kfree(cpuc);
1759}
1760
1761static struct cpu_hw_events *allocate_fake_cpuc(void)
1762{
1763 struct cpu_hw_events *cpuc;
1764 int cpu = raw_smp_processor_id();
1765
1766 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1767 if (!cpuc)
1768 return ERR_PTR(-ENOMEM);
1769
1770 /* only needed, if we have extra_regs */
1771 if (x86_pmu.extra_regs) {
1772 cpuc->shared_regs = allocate_shared_regs(cpu);
1773 if (!cpuc->shared_regs)
1774 goto error;
1775 }
b430f7c4 1776 cpuc->is_fake = 1;
cd8a38d3
SE
1777 return cpuc;
1778error:
1779 free_fake_cpuc(cpuc);
1780 return ERR_PTR(-ENOMEM);
1781}
4d1c52b0 1782
ca037701
PZ
1783/*
1784 * validate that we can schedule this event
1785 */
1786static int validate_event(struct perf_event *event)
1787{
1788 struct cpu_hw_events *fake_cpuc;
1789 struct event_constraint *c;
1790 int ret = 0;
1791
cd8a38d3
SE
1792 fake_cpuc = allocate_fake_cpuc();
1793 if (IS_ERR(fake_cpuc))
1794 return PTR_ERR(fake_cpuc);
ca037701 1795
79cba822 1796 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
1797
1798 if (!c || !c->weight)
aa2bc1ad 1799 ret = -EINVAL;
ca037701
PZ
1800
1801 if (x86_pmu.put_event_constraints)
1802 x86_pmu.put_event_constraints(fake_cpuc, event);
1803
cd8a38d3 1804 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1805
1806 return ret;
1807}
1808
1da53e02
SE
1809/*
1810 * validate a single event group
1811 *
1812 * validation include:
184f412c
IM
1813 * - check events are compatible which each other
1814 * - events do not compete for the same counter
1815 * - number of events <= number of counters
1da53e02
SE
1816 *
1817 * validation ensures the group can be loaded onto the
1818 * PMU if it was the only group available.
1819 */
fe9081cc
PZ
1820static int validate_group(struct perf_event *event)
1821{
1da53e02 1822 struct perf_event *leader = event->group_leader;
502568d5 1823 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1824 int ret = -EINVAL, n;
fe9081cc 1825
cd8a38d3
SE
1826 fake_cpuc = allocate_fake_cpuc();
1827 if (IS_ERR(fake_cpuc))
1828 return PTR_ERR(fake_cpuc);
1da53e02
SE
1829 /*
1830 * the event is not yet connected with its
1831 * siblings therefore we must first collect
1832 * existing siblings, then add the new event
1833 * before we can simulate the scheduling
1834 */
502568d5 1835 n = collect_events(fake_cpuc, leader, true);
1da53e02 1836 if (n < 0)
cd8a38d3 1837 goto out;
fe9081cc 1838
502568d5
PZ
1839 fake_cpuc->n_events = n;
1840 n = collect_events(fake_cpuc, event, false);
1da53e02 1841 if (n < 0)
cd8a38d3 1842 goto out;
fe9081cc 1843
502568d5 1844 fake_cpuc->n_events = n;
1da53e02 1845
a072738e 1846 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1847
502568d5 1848out:
cd8a38d3 1849 free_fake_cpuc(fake_cpuc);
502568d5 1850 return ret;
fe9081cc
PZ
1851}
1852
dda99116 1853static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1854{
51b0fe39 1855 struct pmu *tmp;
621a01ea
IM
1856 int err;
1857
b0a873eb
PZ
1858 switch (event->attr.type) {
1859 case PERF_TYPE_RAW:
1860 case PERF_TYPE_HARDWARE:
1861 case PERF_TYPE_HW_CACHE:
1862 break;
1863
1864 default:
1865 return -ENOENT;
1866 }
1867
1868 err = __x86_pmu_event_init(event);
fe9081cc 1869 if (!err) {
8113070d
SE
1870 /*
1871 * we temporarily connect event to its pmu
1872 * such that validate_group() can classify
1873 * it as an x86 event using is_x86_event()
1874 */
1875 tmp = event->pmu;
1876 event->pmu = &pmu;
1877
fe9081cc
PZ
1878 if (event->group_leader != event)
1879 err = validate_group(event);
ca037701
PZ
1880 else
1881 err = validate_event(event);
8113070d
SE
1882
1883 event->pmu = tmp;
fe9081cc 1884 }
a1792cda 1885 if (err) {
cdd6c482
IM
1886 if (event->destroy)
1887 event->destroy(event);
a1792cda 1888 }
621a01ea 1889
7911d3f7
AL
1890 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1891 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1892
b0a873eb 1893 return err;
621a01ea 1894}
d7d59fb3 1895
7911d3f7
AL
1896static void refresh_pce(void *ignored)
1897{
1898 if (current->mm)
1899 load_mm_cr4(current->mm);
1900}
1901
1902static void x86_pmu_event_mapped(struct perf_event *event)
1903{
1904 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1905 return;
1906
1907 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1908 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1909}
1910
1911static void x86_pmu_event_unmapped(struct perf_event *event)
1912{
1913 if (!current->mm)
1914 return;
1915
1916 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1917 return;
1918
1919 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1920 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1921}
1922
fe4a3308
PZ
1923static int x86_pmu_event_idx(struct perf_event *event)
1924{
1925 int idx = event->hw.idx;
1926
7911d3f7 1927 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
1928 return 0;
1929
15c7ad51
RR
1930 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1931 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
1932 idx |= 1 << 30;
1933 }
1934
1935 return idx + 1;
1936}
1937
0c9d42ed
PZ
1938static ssize_t get_attr_rdpmc(struct device *cdev,
1939 struct device_attribute *attr,
1940 char *buf)
1941{
1942 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1943}
1944
0c9d42ed
PZ
1945static ssize_t set_attr_rdpmc(struct device *cdev,
1946 struct device_attribute *attr,
1947 const char *buf, size_t count)
1948{
e2b297fc
SK
1949 unsigned long val;
1950 ssize_t ret;
1951
1952 ret = kstrtoul(buf, 0, &val);
1953 if (ret)
1954 return ret;
e97df763 1955
a6673429
AL
1956 if (val > 2)
1957 return -EINVAL;
1958
e97df763
PZ
1959 if (x86_pmu.attr_rdpmc_broken)
1960 return -ENOTSUPP;
0c9d42ed 1961
a6673429
AL
1962 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1963 /*
1964 * Changing into or out of always available, aka
1965 * perf-event-bypassing mode. This path is extremely slow,
1966 * but only root can trigger it, so it's okay.
1967 */
1968 if (val == 2)
1969 static_key_slow_inc(&rdpmc_always_available);
1970 else
1971 static_key_slow_dec(&rdpmc_always_available);
1972 on_each_cpu(refresh_pce, NULL, 1);
1973 }
1974
1975 x86_pmu.attr_rdpmc = val;
1976
0c9d42ed
PZ
1977 return count;
1978}
1979
1980static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1981
1982static struct attribute *x86_pmu_attrs[] = {
1983 &dev_attr_rdpmc.attr,
1984 NULL,
1985};
1986
1987static struct attribute_group x86_pmu_attr_group = {
1988 .attrs = x86_pmu_attrs,
1989};
1990
1991static const struct attribute_group *x86_pmu_attr_groups[] = {
1992 &x86_pmu_attr_group,
641cc938 1993 &x86_pmu_format_group,
a4747393 1994 &x86_pmu_events_group,
0c9d42ed
PZ
1995 NULL,
1996};
1997
ba532500 1998static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 1999{
ba532500
YZ
2000 if (x86_pmu.sched_task)
2001 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2002}
2003
c93dc84c
PZ
2004void perf_check_microcode(void)
2005{
2006 if (x86_pmu.check_microcode)
2007 x86_pmu.check_microcode();
2008}
2009EXPORT_SYMBOL_GPL(perf_check_microcode);
2010
b0a873eb 2011static struct pmu pmu = {
d010b332
SE
2012 .pmu_enable = x86_pmu_enable,
2013 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2014
c93dc84c 2015 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2016
c93dc84c 2017 .event_init = x86_pmu_event_init,
a4eaf7f1 2018
7911d3f7
AL
2019 .event_mapped = x86_pmu_event_mapped,
2020 .event_unmapped = x86_pmu_event_unmapped,
2021
d010b332
SE
2022 .add = x86_pmu_add,
2023 .del = x86_pmu_del,
2024 .start = x86_pmu_start,
2025 .stop = x86_pmu_stop,
2026 .read = x86_pmu_read,
a4eaf7f1 2027
c93dc84c
PZ
2028 .start_txn = x86_pmu_start_txn,
2029 .cancel_txn = x86_pmu_cancel_txn,
2030 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2031
c93dc84c 2032 .event_idx = x86_pmu_event_idx,
ba532500 2033 .sched_task = x86_pmu_sched_task,
e18bf526 2034 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2035};
2036
c1317ec2
AL
2037void arch_perf_update_userpage(struct perf_event *event,
2038 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2039{
20d1c86a
PZ
2040 struct cyc2ns_data *data;
2041
fa731587
PZ
2042 userpg->cap_user_time = 0;
2043 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2044 userpg->cap_user_rdpmc =
2045 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2046 userpg->pmc_width = x86_pmu.cntval_bits;
2047
35af99e6 2048 if (!sched_clock_stable())
e3f3541c
PZ
2049 return;
2050
20d1c86a
PZ
2051 data = cyc2ns_read_begin();
2052
34f43927
PZ
2053 /*
2054 * Internal timekeeping for enabled/running/stopped times
2055 * is always in the local_clock domain.
2056 */
fa731587 2057 userpg->cap_user_time = 1;
20d1c86a
PZ
2058 userpg->time_mult = data->cyc2ns_mul;
2059 userpg->time_shift = data->cyc2ns_shift;
2060 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2061
34f43927
PZ
2062 /*
2063 * cap_user_time_zero doesn't make sense when we're using a different
2064 * time base for the records.
2065 */
2066 if (event->clock == &local_clock) {
2067 userpg->cap_user_time_zero = 1;
2068 userpg->time_zero = data->cyc2ns_offset;
2069 }
20d1c86a
PZ
2070
2071 cyc2ns_read_end(data);
e3f3541c
PZ
2072}
2073
d7d59fb3
PZ
2074/*
2075 * callchain support
2076 */
2077
d7d59fb3
PZ
2078static int backtrace_stack(void *data, char *name)
2079{
038e836e 2080 return 0;
d7d59fb3
PZ
2081}
2082
2083static void backtrace_address(void *data, unsigned long addr, int reliable)
2084{
2085 struct perf_callchain_entry *entry = data;
2086
70791ce9 2087 perf_callchain_store(entry, addr);
d7d59fb3
PZ
2088}
2089
2090static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2091 .stack = backtrace_stack,
2092 .address = backtrace_address,
06d65bda 2093 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2094};
2095
56962b44
FW
2096void
2097perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2098{
927c7a9e
FW
2099 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2100 /* TODO: We don't support guest os callchain now */
ed805261 2101 return;
927c7a9e
FW
2102 }
2103
70791ce9 2104 perf_callchain_store(entry, regs->ip);
d7d59fb3 2105
e8e999cf 2106 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2107}
2108
bc6ca7b3
AS
2109static inline int
2110valid_user_frame(const void __user *fp, unsigned long size)
2111{
2112 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2113}
2114
d07bdfd3
PZ
2115static unsigned long get_segment_base(unsigned int segment)
2116{
2117 struct desc_struct *desc;
2118 int idx = segment >> 3;
2119
2120 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2121 if (idx > LDT_ENTRIES)
2122 return 0;
2123
2124 if (idx > current->active_mm->context.size)
2125 return 0;
2126
2127 desc = current->active_mm->context.ldt;
2128 } else {
2129 if (idx > GDT_ENTRIES)
2130 return 0;
2131
89cbc767 2132 desc = raw_cpu_ptr(gdt_page.gdt);
d07bdfd3
PZ
2133 }
2134
2135 return get_desc_base(desc + idx);
2136}
2137
257ef9d2 2138#ifdef CONFIG_COMPAT
d1a797f3
PA
2139
2140#include <asm/compat.h>
2141
257ef9d2
TE
2142static inline int
2143perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2144{
257ef9d2 2145 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2146 unsigned long ss_base, cs_base;
257ef9d2
TE
2147 struct stack_frame_ia32 frame;
2148 const void __user *fp;
74193ef0 2149
257ef9d2
TE
2150 if (!test_thread_flag(TIF_IA32))
2151 return 0;
2152
d07bdfd3
PZ
2153 cs_base = get_segment_base(regs->cs);
2154 ss_base = get_segment_base(regs->ss);
2155
2156 fp = compat_ptr(ss_base + regs->bp);
257ef9d2
TE
2157 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2158 unsigned long bytes;
2159 frame.next_frame = 0;
2160 frame.return_address = 0;
2161
2162 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2163 if (bytes != 0)
257ef9d2 2164 break;
74193ef0 2165
bc6ca7b3
AS
2166 if (!valid_user_frame(fp, sizeof(frame)))
2167 break;
2168
d07bdfd3
PZ
2169 perf_callchain_store(entry, cs_base + frame.return_address);
2170 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2
TE
2171 }
2172 return 1;
d7d59fb3 2173}
257ef9d2
TE
2174#else
2175static inline int
2176perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2177{
2178 return 0;
2179}
2180#endif
d7d59fb3 2181
56962b44
FW
2182void
2183perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2184{
2185 struct stack_frame frame;
2186 const void __user *fp;
2187
927c7a9e
FW
2188 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2189 /* TODO: We don't support guest os callchain now */
ed805261 2190 return;
927c7a9e 2191 }
5a6cec3a 2192
d07bdfd3
PZ
2193 /*
2194 * We don't know what to do with VM86 stacks.. ignore them for now.
2195 */
2196 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2197 return;
2198
74193ef0 2199 fp = (void __user *)regs->bp;
d7d59fb3 2200
70791ce9 2201 perf_callchain_store(entry, regs->ip);
d7d59fb3 2202
20afc60f
AV
2203 if (!current->mm)
2204 return;
2205
257ef9d2
TE
2206 if (perf_callchain_user32(regs, entry))
2207 return;
2208
f9188e02 2209 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2210 unsigned long bytes;
038e836e 2211 frame.next_frame = NULL;
d7d59fb3
PZ
2212 frame.return_address = 0;
2213
257ef9d2 2214 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
0a196848 2215 if (bytes != 0)
d7d59fb3
PZ
2216 break;
2217
bc6ca7b3
AS
2218 if (!valid_user_frame(fp, sizeof(frame)))
2219 break;
2220
70791ce9 2221 perf_callchain_store(entry, frame.return_address);
038e836e 2222 fp = frame.next_frame;
d7d59fb3
PZ
2223 }
2224}
2225
d07bdfd3
PZ
2226/*
2227 * Deal with code segment offsets for the various execution modes:
2228 *
2229 * VM86 - the good olde 16 bit days, where the linear address is
2230 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2231 *
2232 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2233 * to figure out what the 32bit base address is.
2234 *
2235 * X32 - has TIF_X32 set, but is running in x86_64
2236 *
2237 * X86_64 - CS,DS,SS,ES are all zero based.
2238 */
2239static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2240{
383f3af3
AL
2241 /*
2242 * For IA32 we look at the GDT/LDT segment base to convert the
2243 * effective IP to a linear address.
2244 */
2245
2246#ifdef CONFIG_X86_32
d07bdfd3
PZ
2247 /*
2248 * If we are in VM86 mode, add the segment offset to convert to a
2249 * linear address.
2250 */
2251 if (regs->flags & X86_VM_MASK)
2252 return 0x10 * regs->cs;
2253
55474c48 2254 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2255 return get_segment_base(regs->cs);
2256#else
c56716af
AL
2257 if (user_mode(regs) && !user_64bit_mode(regs) &&
2258 regs->cs != __USER32_CS)
2259 return get_segment_base(regs->cs);
d07bdfd3
PZ
2260#endif
2261 return 0;
2262}
dcf46b94 2263
d07bdfd3
PZ
2264unsigned long perf_instruction_pointer(struct pt_regs *regs)
2265{
39447b38 2266 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2267 return perf_guest_cbs->get_guest_ip();
dcf46b94 2268
d07bdfd3 2269 return regs->ip + code_segment_base(regs);
39447b38
ZY
2270}
2271
2272unsigned long perf_misc_flags(struct pt_regs *regs)
2273{
2274 int misc = 0;
dcf46b94 2275
39447b38 2276 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2277 if (perf_guest_cbs->is_user_mode())
2278 misc |= PERF_RECORD_MISC_GUEST_USER;
2279 else
2280 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2281 } else {
d07bdfd3 2282 if (user_mode(regs))
dcf46b94
ZY
2283 misc |= PERF_RECORD_MISC_USER;
2284 else
2285 misc |= PERF_RECORD_MISC_KERNEL;
2286 }
2287
39447b38 2288 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2289 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2290
2291 return misc;
2292}
b3d9468a
GN
2293
2294void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2295{
2296 cap->version = x86_pmu.version;
2297 cap->num_counters_gp = x86_pmu.num_counters;
2298 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2299 cap->bit_width_gp = x86_pmu.cntval_bits;
2300 cap->bit_width_fixed = x86_pmu.cntval_bits;
2301 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2302 cap->events_mask_len = x86_pmu.events_mask_len;
2303}
2304EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);