]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/cpu/resctrl/rdtgroup.c
mmap locking API: convert mmap_sem comments
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / resctrl / rdtgroup.c
CommitLineData
2025cf9e 1// SPDX-License-Identifier: GPL-2.0-only
5ff193fb
FY
2/*
3 * User interface for Resource Alloction in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
5ff193fb
FY
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
d9b48c86 15#include <linux/cacheinfo.h>
12e0110c 16#include <linux/cpu.h>
37707ec6 17#include <linux/debugfs.h>
5ff193fb 18#include <linux/fs.h>
23bf1b6b 19#include <linux/fs_parser.h>
5ff193fb
FY
20#include <linux/sysfs.h>
21#include <linux/kernfs.h>
9b3a7fd0 22#include <linux/seq_buf.h>
4e978d06 23#include <linux/seq_file.h>
3f07c014 24#include <linux/sched/signal.h>
29930025 25#include <linux/sched/task.h>
5ff193fb 26#include <linux/slab.h>
e02737d5 27#include <linux/task_work.h>
23bf1b6b 28#include <linux/user_namespace.h>
5ff193fb
FY
29
30#include <uapi/linux/magic.h>
31
8dd97c65 32#include <asm/resctrl.h>
fa7d9493 33#include "internal.h"
5ff193fb 34
4af4a88e
VS
35DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
1b5c0b75 37DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
cb2200e9 38static struct kernfs_root *rdt_root;
5ff193fb
FY
39struct rdtgroup rdtgroup_default;
40LIST_HEAD(rdt_all_groups);
41
4e978d06
FY
42/* Kernel fs node for "info" directory under root */
43static struct kernfs_node *kn_info;
44
4af4a88e
VS
45/* Kernel fs node for "mon_groups" directory under root */
46static struct kernfs_node *kn_mongrp;
47
48/* Kernel fs node for "mon_data" directory under root */
49static struct kernfs_node *kn_mondata;
50
9b3a7fd0
TL
51static struct seq_buf last_cmd_status;
52static char last_cmd_status_buf[512];
53
37707ec6
RC
54struct dentry *debugfs_resctrl;
55
9b3a7fd0
TL
56void rdt_last_cmd_clear(void)
57{
58 lockdep_assert_held(&rdtgroup_mutex);
59 seq_buf_clear(&last_cmd_status);
60}
61
62void rdt_last_cmd_puts(const char *s)
63{
64 lockdep_assert_held(&rdtgroup_mutex);
65 seq_buf_puts(&last_cmd_status, s);
66}
67
68void rdt_last_cmd_printf(const char *fmt, ...)
69{
70 va_list ap;
71
72 va_start(ap, fmt);
73 lockdep_assert_held(&rdtgroup_mutex);
74 seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 va_end(ap);
76}
77
60cf5e10
FY
78/*
79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80 * we can keep a bitmap of free CLOSIDs in a single integer.
81 *
82 * Using a global CLOSID across all resources has some advantages and
83 * some drawbacks:
84 * + We can simply set "current->closid" to assign a task to a resource
85 * group.
86 * + Context switch code can avoid extra memory references deciding which
87 * CLOSID to load into the PQR_ASSOC MSR
88 * - We give up some options in configuring resource groups across multi-socket
89 * systems.
90 * - Our choices on how to configure each resource become progressively more
91 * limited as the number of resources grows.
92 */
93static int closid_free_map;
c793da8e
RC
94static int closid_free_map_len;
95
96int closids_supported(void)
97{
98 return closid_free_map_len;
99}
60cf5e10
FY
100
101static void closid_init(void)
102{
103 struct rdt_resource *r;
104 int rdt_min_closid = 32;
105
106 /* Compute rdt_min_closid across all resources */
1b5c0b75 107 for_each_alloc_enabled_rdt_resource(r)
60cf5e10
FY
108 rdt_min_closid = min(rdt_min_closid, r->num_closid);
109
110 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111
112 /* CLOSID 0 is always reserved for the default group */
113 closid_free_map &= ~1;
c793da8e 114 closid_free_map_len = rdt_min_closid;
60cf5e10
FY
115}
116
cb2200e9 117static int closid_alloc(void)
60cf5e10 118{
0734ded1 119 u32 closid = ffs(closid_free_map);
60cf5e10
FY
120
121 if (closid == 0)
122 return -ENOSPC;
123 closid--;
124 closid_free_map &= ~(1 << closid);
125
126 return closid;
127}
128
024d15be 129void closid_free(int closid)
60cf5e10
FY
130{
131 closid_free_map |= 1 << closid;
132}
133
0b9aa656
RC
134/**
135 * closid_allocated - test if provided closid is in use
136 * @closid: closid to be tested
137 *
138 * Return: true if @closid is currently associated with a resource group,
139 * false if @closid is free
140 */
95f0b77e 141static bool closid_allocated(unsigned int closid)
0b9aa656
RC
142{
143 return (closid_free_map & (1 << closid)) == 0;
144}
145
472ef09b
RC
146/**
147 * rdtgroup_mode_by_closid - Return mode of resource group with closid
148 * @closid: closid if the resource group
149 *
150 * Each resource group is associated with a @closid. Here the mode
151 * of a resource group can be queried by searching for it using its closid.
152 *
153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154 */
155enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156{
157 struct rdtgroup *rdtgrp;
158
159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 if (rdtgrp->closid == closid)
161 return rdtgrp->mode;
162 }
163
164 return RDT_NUM_MODES;
165}
166
d48d7a57 167static const char * const rdt_mode_str[] = {
bb9fec69
RC
168 [RDT_MODE_SHAREABLE] = "shareable",
169 [RDT_MODE_EXCLUSIVE] = "exclusive",
170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
d48d7a57
RC
172};
173
174/**
175 * rdtgroup_mode_str - Return the string representation of mode
176 * @mode: the resource group mode as &enum rdtgroup_mode
177 *
178 * Return: string representation of valid mode, "unknown" otherwise
179 */
180static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181{
182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 return "unknown";
184
185 return rdt_mode_str[mode];
186}
187
4e978d06
FY
188/* set uid and gid of rdtgroup dirs and files to that of the creator */
189static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190{
191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 .ia_uid = current_fsuid(),
193 .ia_gid = current_fsgid(), };
194
195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 return 0;
198
199 return kernfs_setattr(kn, &iattr);
200}
201
202static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203{
204 struct kernfs_node *kn;
205 int ret;
206
207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
488dee96 208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4e978d06
FY
209 0, rft->kf_ops, rft, NULL, NULL);
210 if (IS_ERR(kn))
211 return PTR_ERR(kn);
212
213 ret = rdtgroup_kn_set_ugid(kn);
214 if (ret) {
215 kernfs_remove(kn);
216 return ret;
217 }
218
219 return 0;
220}
221
4e978d06
FY
222static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223{
224 struct kernfs_open_file *of = m->private;
225 struct rftype *rft = of->kn->priv;
226
227 if (rft->seq_show)
228 return rft->seq_show(of, m, arg);
229 return 0;
230}
231
232static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 size_t nbytes, loff_t off)
234{
235 struct rftype *rft = of->kn->priv;
236
237 if (rft->write)
238 return rft->write(of, buf, nbytes, off);
239
240 return -EINVAL;
241}
242
243static struct kernfs_ops rdtgroup_kf_single_ops = {
244 .atomic_write_len = PAGE_SIZE,
245 .write = rdtgroup_file_write,
246 .seq_show = rdtgroup_seqfile_show,
247};
248
d89b7379
VS
249static struct kernfs_ops kf_mondata_ops = {
250 .atomic_write_len = PAGE_SIZE,
251 .seq_show = rdtgroup_mondata_show,
252};
253
4ffa3c97
JO
254static bool is_cpu_list(struct kernfs_open_file *of)
255{
256 struct rftype *rft = of->kn->priv;
257
258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259}
260
12e0110c
TL
261static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 struct seq_file *s, void *v)
263{
264 struct rdtgroup *rdtgrp;
b61b8bba 265 struct cpumask *mask;
12e0110c
TL
266 int ret = 0;
267
268 rdtgrp = rdtgroup_kn_lock_live(of->kn);
269
4ffa3c97 270 if (rdtgrp) {
b61b8bba
JJ
271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 if (!rdtgrp->plr->d) {
273 rdt_last_cmd_clear();
274 rdt_last_cmd_puts("Cache domain offline\n");
275 ret = -ENODEV;
276 } else {
277 mask = &rdtgrp->plr->d->cpu_mask;
278 seq_printf(s, is_cpu_list(of) ?
279 "%*pbl\n" : "%*pb\n",
280 cpumask_pr_args(mask));
281 }
282 } else {
33dc3e41
RC
283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 cpumask_pr_args(&rdtgrp->cpu_mask));
b61b8bba 285 }
4ffa3c97 286 } else {
12e0110c 287 ret = -ENOENT;
4ffa3c97 288 }
12e0110c
TL
289 rdtgroup_kn_unlock(of->kn);
290
291 return ret;
292}
293
f4107702 294/*
352940ec 295 * This is safe against resctrl_sched_in() called from __switch_to()
f4107702 296 * because __switch_to() is executed with interrupts disabled. A local call
a9fcf862 297 * from update_closid_rmid() is proteced against __switch_to() because
f4107702
FY
298 * preemption is disabled.
299 */
a9fcf862 300static void update_cpu_closid_rmid(void *info)
f4107702 301{
b09d981b
VS
302 struct rdtgroup *r = info;
303
a9fcf862 304 if (r) {
a9110b55
VS
305 this_cpu_write(pqr_state.default_closid, r->closid);
306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
a9fcf862 307 }
b09d981b 308
f4107702
FY
309 /*
310 * We cannot unconditionally write the MSR because the current
311 * executing task might have its own closid selected. Just reuse
312 * the context switch code.
313 */
352940ec 314 resctrl_sched_in();
f4107702
FY
315}
316
0efc89be
FY
317/*
318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319 *
b09d981b 320 * Per task closids/rmids must have been set up before calling this function.
0efc89be
FY
321 */
322static void
a9fcf862 323update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
f4107702
FY
324{
325 int cpu = get_cpu();
326
327 if (cpumask_test_cpu(cpu, cpu_mask))
a9fcf862
VS
328 update_cpu_closid_rmid(r);
329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
f4107702
FY
330 put_cpu();
331}
332
a9fcf862
VS
333static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 cpumask_var_t tmpmask)
335{
336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 struct list_head *head;
338
339 /* Check whether cpus belong to parent ctrl group */
340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
94457b36 341 if (cpumask_weight(tmpmask)) {
723f1a0d 342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
a9fcf862 343 return -EINVAL;
94457b36 344 }
a9fcf862
VS
345
346 /* Check whether cpus are dropped from this group */
347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 if (cpumask_weight(tmpmask)) {
349 /* Give any dropped cpus to parent rdtgroup */
350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 update_closid_rmid(tmpmask, prgrp);
352 }
353
354 /*
355 * If we added cpus, remove them from previous group that owned them
356 * and update per-cpu rmid
357 */
358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 if (cpumask_weight(tmpmask)) {
360 head = &prgrp->mon.crdtgrp_list;
361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 if (crgrp == rdtgrp)
363 continue;
364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 tmpmask);
366 }
367 update_closid_rmid(tmpmask, rdtgrp);
368 }
369
370 /* Done pushing/pulling - update this group with new mask */
371 cpumask_copy(&rdtgrp->cpu_mask, newmask);
372
373 return 0;
374}
375
376static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377{
378 struct rdtgroup *crgrp;
379
380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 /* update the child mon group masks as well*/
382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384}
385
b09d981b 386static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
a9fcf862 387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
b09d981b 388{
a9fcf862
VS
389 struct rdtgroup *r, *crgrp;
390 struct list_head *head;
b09d981b
VS
391
392 /* Check whether cpus are dropped from this group */
393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 if (cpumask_weight(tmpmask)) {
395 /* Can't drop from default group */
94457b36
TL
396 if (rdtgrp == &rdtgroup_default) {
397 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
b09d981b 398 return -EINVAL;
94457b36 399 }
b09d981b
VS
400
401 /* Give any dropped cpus to rdtgroup_default */
402 cpumask_or(&rdtgroup_default.cpu_mask,
403 &rdtgroup_default.cpu_mask, tmpmask);
a9fcf862 404 update_closid_rmid(tmpmask, &rdtgroup_default);
b09d981b
VS
405 }
406
407 /*
a9fcf862
VS
408 * If we added cpus, remove them from previous group and
409 * the prev group's child groups that owned them
410 * and update per-cpu closid/rmid.
b09d981b
VS
411 */
412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 if (cpumask_weight(tmpmask)) {
414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 if (r == rdtgrp)
416 continue;
a9fcf862
VS
417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 if (cpumask_weight(tmpmask1))
419 cpumask_rdtgrp_clear(r, tmpmask1);
b09d981b 420 }
a9fcf862 421 update_closid_rmid(tmpmask, rdtgrp);
b09d981b
VS
422 }
423
424 /* Done pushing/pulling - update this group with new mask */
425 cpumask_copy(&rdtgrp->cpu_mask, newmask);
426
a9fcf862
VS
427 /*
428 * Clear child mon group masks since there is a new parent mask
429 * now and update the rmid for the cpus the child lost.
430 */
431 head = &rdtgrp->mon.crdtgrp_list;
432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 update_closid_rmid(tmpmask, rdtgrp);
435 cpumask_clear(&crgrp->cpu_mask);
436 }
437
b09d981b
VS
438 return 0;
439}
440
12e0110c
TL
441static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 char *buf, size_t nbytes, loff_t off)
443{
a9fcf862 444 cpumask_var_t tmpmask, newmask, tmpmask1;
b09d981b 445 struct rdtgroup *rdtgrp;
f4107702 446 int ret;
12e0110c
TL
447
448 if (!buf)
449 return -EINVAL;
450
451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 return -ENOMEM;
453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 free_cpumask_var(tmpmask);
455 return -ENOMEM;
456 }
a9fcf862
VS
457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 free_cpumask_var(tmpmask);
459 free_cpumask_var(newmask);
460 return -ENOMEM;
461 }
a2584e1d 462
12e0110c
TL
463 rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 if (!rdtgrp) {
465 ret = -ENOENT;
466 goto unlock;
467 }
468
c966dac8
RC
469 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 ret = -EINVAL;
723f1a0d 472 rdt_last_cmd_puts("Pseudo-locking in progress\n");
c966dac8
RC
473 goto unlock;
474 }
475
4ffa3c97
JO
476 if (is_cpu_list(of))
477 ret = cpulist_parse(buf, newmask);
478 else
479 ret = cpumask_parse(buf, newmask);
480
94457b36 481 if (ret) {
723f1a0d 482 rdt_last_cmd_puts("Bad CPU list/mask\n");
12e0110c 483 goto unlock;
94457b36 484 }
12e0110c 485
12e0110c
TL
486 /* check that user didn't specify any offline cpus */
487 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 if (cpumask_weight(tmpmask)) {
489 ret = -EINVAL;
723f1a0d 490 rdt_last_cmd_puts("Can only assign online CPUs\n");
a2584e1d 491 goto unlock;
12e0110c
TL
492 }
493
b09d981b 494 if (rdtgrp->type == RDTCTRL_GROUP)
a9fcf862
VS
495 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 else if (rdtgrp->type == RDTMON_GROUP)
497 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
b09d981b
VS
498 else
499 ret = -EINVAL;
12e0110c 500
12e0110c
TL
501unlock:
502 rdtgroup_kn_unlock(of->kn);
503 free_cpumask_var(tmpmask);
504 free_cpumask_var(newmask);
a9fcf862 505 free_cpumask_var(tmpmask1);
12e0110c
TL
506
507 return ret ?: nbytes;
508}
509
e02737d5
FY
510struct task_move_callback {
511 struct callback_head work;
512 struct rdtgroup *rdtgrp;
513};
514
515static void move_myself(struct callback_head *head)
516{
517 struct task_move_callback *callback;
518 struct rdtgroup *rdtgrp;
519
520 callback = container_of(head, struct task_move_callback, work);
521 rdtgrp = callback->rdtgrp;
522
523 /*
524 * If resource group was deleted before this task work callback
525 * was invoked, then assign the task to root group and free the
526 * resource group.
527 */
528 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
529 (rdtgrp->flags & RDT_DELETED)) {
530 current->closid = 0;
d6aaba61 531 current->rmid = 0;
e02737d5
FY
532 kfree(rdtgrp);
533 }
534
dc433797
XS
535 if (unlikely(current->flags & PF_EXITING))
536 goto out;
537
74fcdae1 538 preempt_disable();
4f341a5e 539 /* update PQR_ASSOC MSR to make resource group go into effect */
352940ec 540 resctrl_sched_in();
74fcdae1 541 preempt_enable();
4f341a5e 542
dc433797 543out:
e02737d5
FY
544 kfree(callback);
545}
546
547static int __rdtgroup_move_task(struct task_struct *tsk,
548 struct rdtgroup *rdtgrp)
549{
550 struct task_move_callback *callback;
551 int ret;
552
553 callback = kzalloc(sizeof(*callback), GFP_KERNEL);
554 if (!callback)
555 return -ENOMEM;
556 callback->work.func = move_myself;
557 callback->rdtgrp = rdtgrp;
558
559 /*
560 * Take a refcount, so rdtgrp cannot be freed before the
561 * callback has been invoked.
562 */
563 atomic_inc(&rdtgrp->waitcount);
564 ret = task_work_add(tsk, &callback->work, true);
565 if (ret) {
566 /*
567 * Task is exiting. Drop the refcount and free the callback.
568 * No need to check the refcount as the group cannot be
569 * deleted before the write function unlocks rdtgroup_mutex.
570 */
571 atomic_dec(&rdtgrp->waitcount);
572 kfree(callback);
723f1a0d 573 rdt_last_cmd_puts("Task exited\n");
e02737d5 574 } else {
d6aaba61
VS
575 /*
576 * For ctrl_mon groups move both closid and rmid.
577 * For monitor groups, can move the tasks only from
578 * their parent CTRL group.
579 */
580 if (rdtgrp->type == RDTCTRL_GROUP) {
581 tsk->closid = rdtgrp->closid;
582 tsk->rmid = rdtgrp->mon.rmid;
583 } else if (rdtgrp->type == RDTMON_GROUP) {
29e74f35 584 if (rdtgrp->mon.parent->closid == tsk->closid) {
d6aaba61 585 tsk->rmid = rdtgrp->mon.rmid;
29e74f35
TL
586 } else {
587 rdt_last_cmd_puts("Can't move task to different control group\n");
d6aaba61 588 ret = -EINVAL;
29e74f35 589 }
d6aaba61 590 }
e02737d5
FY
591 }
592 return ret;
593}
594
f7a6e3f6
RC
595/**
596 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
597 * @r: Resource group
598 *
599 * Return: 1 if tasks have been assigned to @r, 0 otherwise
600 */
601int rdtgroup_tasks_assigned(struct rdtgroup *r)
602{
603 struct task_struct *p, *t;
604 int ret = 0;
605
606 lockdep_assert_held(&rdtgroup_mutex);
607
608 rcu_read_lock();
609 for_each_process_thread(p, t) {
610 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
611 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
612 ret = 1;
613 break;
614 }
615 }
616 rcu_read_unlock();
617
618 return ret;
619}
620
e02737d5
FY
621static int rdtgroup_task_write_permission(struct task_struct *task,
622 struct kernfs_open_file *of)
623{
624 const struct cred *tcred = get_task_cred(task);
625 const struct cred *cred = current_cred();
626 int ret = 0;
627
628 /*
629 * Even if we're attaching all tasks in the thread group, we only
630 * need to check permissions on one of them.
631 */
632 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
633 !uid_eq(cred->euid, tcred->uid) &&
29e74f35
TL
634 !uid_eq(cred->euid, tcred->suid)) {
635 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
e02737d5 636 ret = -EPERM;
29e74f35 637 }
e02737d5
FY
638
639 put_cred(tcred);
640 return ret;
641}
642
643static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
644 struct kernfs_open_file *of)
645{
646 struct task_struct *tsk;
647 int ret;
648
649 rcu_read_lock();
650 if (pid) {
651 tsk = find_task_by_vpid(pid);
652 if (!tsk) {
653 rcu_read_unlock();
29e74f35 654 rdt_last_cmd_printf("No task %d\n", pid);
e02737d5
FY
655 return -ESRCH;
656 }
657 } else {
658 tsk = current;
659 }
660
661 get_task_struct(tsk);
662 rcu_read_unlock();
663
664 ret = rdtgroup_task_write_permission(tsk, of);
665 if (!ret)
666 ret = __rdtgroup_move_task(tsk, rdtgrp);
667
668 put_task_struct(tsk);
669 return ret;
670}
671
672static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
673 char *buf, size_t nbytes, loff_t off)
674{
675 struct rdtgroup *rdtgrp;
676 int ret = 0;
677 pid_t pid;
678
679 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
680 return -EINVAL;
681 rdtgrp = rdtgroup_kn_lock_live(of->kn);
c966dac8
RC
682 if (!rdtgrp) {
683 rdtgroup_kn_unlock(of->kn);
684 return -ENOENT;
685 }
29e74f35 686 rdt_last_cmd_clear();
e02737d5 687
c966dac8
RC
688 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
689 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
690 ret = -EINVAL;
723f1a0d 691 rdt_last_cmd_puts("Pseudo-locking in progress\n");
c966dac8
RC
692 goto unlock;
693 }
694
695 ret = rdtgroup_move_task(pid, rdtgrp, of);
e02737d5 696
c966dac8 697unlock:
e02737d5
FY
698 rdtgroup_kn_unlock(of->kn);
699
700 return ret ?: nbytes;
701}
702
703static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
704{
705 struct task_struct *p, *t;
706
707 rcu_read_lock();
708 for_each_process_thread(p, t) {
d6aaba61
VS
709 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
710 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
e02737d5
FY
711 seq_printf(s, "%d\n", t->pid);
712 }
713 rcu_read_unlock();
714}
715
716static int rdtgroup_tasks_show(struct kernfs_open_file *of,
717 struct seq_file *s, void *v)
718{
719 struct rdtgroup *rdtgrp;
720 int ret = 0;
721
722 rdtgrp = rdtgroup_kn_lock_live(of->kn);
723 if (rdtgrp)
724 show_rdt_tasks(rdtgrp, s);
725 else
726 ret = -ENOENT;
727 rdtgroup_kn_unlock(of->kn);
728
729 return ret;
730}
731
e79f15a4
CY
732#ifdef CONFIG_PROC_CPU_RESCTRL
733
734/*
735 * A task can only be part of one resctrl control group and of one monitor
736 * group which is associated to that control group.
737 *
738 * 1) res:
739 * mon:
740 *
741 * resctrl is not available.
742 *
743 * 2) res:/
744 * mon:
745 *
746 * Task is part of the root resctrl control group, and it is not associated
747 * to any monitor group.
748 *
749 * 3) res:/
750 * mon:mon0
751 *
752 * Task is part of the root resctrl control group and monitor group mon0.
753 *
754 * 4) res:group0
755 * mon:
756 *
757 * Task is part of resctrl control group group0, and it is not associated
758 * to any monitor group.
759 *
760 * 5) res:group0
761 * mon:mon1
762 *
763 * Task is part of resctrl control group group0 and monitor group mon1.
764 */
765int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
766 struct pid *pid, struct task_struct *tsk)
767{
768 struct rdtgroup *rdtg;
769 int ret = 0;
770
771 mutex_lock(&rdtgroup_mutex);
772
773 /* Return empty if resctrl has not been mounted. */
774 if (!static_branch_unlikely(&rdt_enable_key)) {
775 seq_puts(s, "res:\nmon:\n");
776 goto unlock;
777 }
778
779 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
780 struct rdtgroup *crg;
781
782 /*
783 * Task information is only relevant for shareable
784 * and exclusive groups.
785 */
786 if (rdtg->mode != RDT_MODE_SHAREABLE &&
787 rdtg->mode != RDT_MODE_EXCLUSIVE)
788 continue;
789
790 if (rdtg->closid != tsk->closid)
791 continue;
792
793 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
794 rdtg->kn->name);
795 seq_puts(s, "mon:");
796 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
797 mon.crdtgrp_list) {
798 if (tsk->rmid != crg->mon.rmid)
799 continue;
800 seq_printf(s, "%s", crg->kn->name);
801 break;
802 }
803 seq_putc(s, '\n');
804 goto unlock;
805 }
806 /*
807 * The above search should succeed. Otherwise return
808 * with an error.
809 */
810 ret = -ENOENT;
811unlock:
812 mutex_unlock(&rdtgroup_mutex);
813
814 return ret;
815}
816#endif
817
9b3a7fd0
TL
818static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
819 struct seq_file *seq, void *v)
820{
821 int len;
822
823 mutex_lock(&rdtgroup_mutex);
824 len = seq_buf_used(&last_cmd_status);
825 if (len)
826 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
827 else
828 seq_puts(seq, "ok\n");
829 mutex_unlock(&rdtgroup_mutex);
830 return 0;
831}
832
4e978d06
FY
833static int rdt_num_closids_show(struct kernfs_open_file *of,
834 struct seq_file *seq, void *v)
835{
836 struct rdt_resource *r = of->kn->parent->priv;
837
838 seq_printf(seq, "%d\n", r->num_closid);
4e978d06
FY
839 return 0;
840}
841
2545e9f5 842static int rdt_default_ctrl_show(struct kernfs_open_file *of,
4e978d06
FY
843 struct seq_file *seq, void *v)
844{
845 struct rdt_resource *r = of->kn->parent->priv;
846
2545e9f5 847 seq_printf(seq, "%x\n", r->default_ctrl);
4e978d06
FY
848 return 0;
849}
850
53a114a6
SL
851static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
852 struct seq_file *seq, void *v)
853{
854 struct rdt_resource *r = of->kn->parent->priv;
855
d3e11b4d 856 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
db69ef65
VS
857 return 0;
858}
859
0dd2d749
FY
860static int rdt_shareable_bits_show(struct kernfs_open_file *of,
861 struct seq_file *seq, void *v)
862{
863 struct rdt_resource *r = of->kn->parent->priv;
864
865 seq_printf(seq, "%x\n", r->cache.shareable_bits);
866 return 0;
867}
868
e6519011
RC
869/**
870 * rdt_bit_usage_show - Display current usage of resources
871 *
872 * A domain is a shared resource that can now be allocated differently. Here
873 * we display the current regions of the domain as an annotated bitmask.
874 * For each domain of this resource its allocation bitmask
875 * is annotated as below to indicate the current usage of the corresponding bit:
876 * 0 - currently unused
877 * X - currently available for sharing and used by software and hardware
878 * H - currently used by hardware only but available for software use
879 * S - currently used and shareable by software only
880 * E - currently used exclusively by one resource group
f4e80d67 881 * P - currently pseudo-locked by one resource group
e6519011
RC
882 */
883static int rdt_bit_usage_show(struct kernfs_open_file *of,
884 struct seq_file *seq, void *v)
885{
886 struct rdt_resource *r = of->kn->parent->priv;
32f010de
RC
887 /*
888 * Use unsigned long even though only 32 bits are used to ensure
889 * test_bit() is used safely.
890 */
891 unsigned long sw_shareable = 0, hw_shareable = 0;
892 unsigned long exclusive = 0, pseudo_locked = 0;
e6519011 893 struct rdt_domain *dom;
f4e80d67 894 int i, hwb, swb, excl, psl;
e6519011
RC
895 enum rdtgrp_mode mode;
896 bool sep = false;
897 u32 *ctrl;
898
899 mutex_lock(&rdtgroup_mutex);
900 hw_shareable = r->cache.shareable_bits;
901 list_for_each_entry(dom, &r->domains, list) {
902 if (sep)
903 seq_putc(seq, ';');
904 ctrl = dom->ctrl_val;
905 sw_shareable = 0;
906 exclusive = 0;
907 seq_printf(seq, "%d=", dom->id);
47d53b18 908 for (i = 0; i < closids_supported(); i++, ctrl++) {
e6519011
RC
909 if (!closid_allocated(i))
910 continue;
911 mode = rdtgroup_mode_by_closid(i);
912 switch (mode) {
913 case RDT_MODE_SHAREABLE:
914 sw_shareable |= *ctrl;
915 break;
916 case RDT_MODE_EXCLUSIVE:
917 exclusive |= *ctrl;
918 break;
f4e80d67 919 case RDT_MODE_PSEUDO_LOCKSETUP:
bb9fec69 920 /*
f4e80d67
RC
921 * RDT_MODE_PSEUDO_LOCKSETUP is possible
922 * here but not included since the CBM
923 * associated with this CLOSID in this mode
924 * is not initialized and no task or cpu can be
925 * assigned this CLOSID.
bb9fec69 926 */
f4e80d67 927 break;
bb9fec69 928 case RDT_MODE_PSEUDO_LOCKED:
e6519011
RC
929 case RDT_NUM_MODES:
930 WARN(1,
931 "invalid mode for closid %d\n", i);
932 break;
933 }
934 }
935 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
f4e80d67 936 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
32f010de
RC
937 hwb = test_bit(i, &hw_shareable);
938 swb = test_bit(i, &sw_shareable);
939 excl = test_bit(i, &exclusive);
940 psl = test_bit(i, &pseudo_locked);
e6519011
RC
941 if (hwb && swb)
942 seq_putc(seq, 'X');
943 else if (hwb && !swb)
944 seq_putc(seq, 'H');
945 else if (!hwb && swb)
946 seq_putc(seq, 'S');
947 else if (excl)
948 seq_putc(seq, 'E');
f4e80d67
RC
949 else if (psl)
950 seq_putc(seq, 'P');
e6519011
RC
951 else /* Unused bits remain */
952 seq_putc(seq, '0');
953 }
954 sep = true;
955 }
956 seq_putc(seq, '\n');
957 mutex_unlock(&rdtgroup_mutex);
958 return 0;
959}
960
db69ef65
VS
961static int rdt_min_bw_show(struct kernfs_open_file *of,
962 struct seq_file *seq, void *v)
963{
964 struct rdt_resource *r = of->kn->parent->priv;
53a114a6 965
db69ef65
VS
966 seq_printf(seq, "%u\n", r->membw.min_bw);
967 return 0;
968}
969
d4ab3320
VS
970static int rdt_num_rmids_show(struct kernfs_open_file *of,
971 struct seq_file *seq, void *v)
972{
973 struct rdt_resource *r = of->kn->parent->priv;
974
975 seq_printf(seq, "%d\n", r->num_rmid);
976
977 return 0;
978}
979
980static int rdt_mon_features_show(struct kernfs_open_file *of,
981 struct seq_file *seq, void *v)
982{
983 struct rdt_resource *r = of->kn->parent->priv;
984 struct mon_evt *mevt;
985
986 list_for_each_entry(mevt, &r->evt_list, list)
987 seq_printf(seq, "%s\n", mevt->name);
988
989 return 0;
990}
991
db69ef65
VS
992static int rdt_bw_gran_show(struct kernfs_open_file *of,
993 struct seq_file *seq, void *v)
994{
995 struct rdt_resource *r = of->kn->parent->priv;
996
997 seq_printf(seq, "%u\n", r->membw.bw_gran);
998 return 0;
999}
1000
1001static int rdt_delay_linear_show(struct kernfs_open_file *of,
1002 struct seq_file *seq, void *v)
1003{
1004 struct rdt_resource *r = of->kn->parent->priv;
1005
1006 seq_printf(seq, "%u\n", r->membw.delay_linear);
53a114a6
SL
1007 return 0;
1008}
1009
d4ab3320
VS
1010static int max_threshold_occ_show(struct kernfs_open_file *of,
1011 struct seq_file *seq, void *v)
1012{
1013 struct rdt_resource *r = of->kn->parent->priv;
1014
352940ec 1015 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
d4ab3320
VS
1016
1017 return 0;
1018}
1019
1020static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1021 char *buf, size_t nbytes, loff_t off)
1022{
1023 struct rdt_resource *r = of->kn->parent->priv;
1024 unsigned int bytes;
1025 int ret;
1026
1027 ret = kstrtouint(buf, 0, &bytes);
1028 if (ret)
1029 return ret;
1030
1031 if (bytes > (boot_cpu_data.x86_cache_size * 1024))
1032 return -EINVAL;
1033
352940ec 1034 resctrl_cqm_threshold = bytes / r->mon_scale;
d4ab3320 1035
5707b46a 1036 return nbytes;
d4ab3320
VS
1037}
1038
d48d7a57
RC
1039/*
1040 * rdtgroup_mode_show - Display mode of this resource group
1041 */
1042static int rdtgroup_mode_show(struct kernfs_open_file *of,
1043 struct seq_file *s, void *v)
1044{
1045 struct rdtgroup *rdtgrp;
1046
1047 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1048 if (!rdtgrp) {
1049 rdtgroup_kn_unlock(of->kn);
1050 return -ENOENT;
1051 }
1052
1053 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1054
1055 rdtgroup_kn_unlock(of->kn);
1056 return 0;
1057}
1058
521348b0
RC
1059/**
1060 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
1061 * @r: RDT resource to which RDT domain @d belongs
1062 * @d: Cache instance for which a CDP peer is requested
1063 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
1064 * Used to return the result.
1065 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
1066 * Used to return the result.
1067 *
1068 * RDT resources are managed independently and by extension the RDT domains
1069 * (RDT resource instances) are managed independently also. The Code and
1070 * Data Prioritization (CDP) RDT resources, while managed independently,
1071 * could refer to the same underlying hardware. For example,
1072 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1073 *
1074 * When provided with an RDT resource @r and an instance of that RDT
1075 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1076 * resource and the exact instance that shares the same hardware.
1077 *
1078 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1079 * If a CDP peer was found, @r_cdp will point to the peer RDT resource
1080 * and @d_cdp will point to the peer RDT domain.
1081 */
e5f3530c
RC
1082static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1083 struct rdt_resource **r_cdp,
1084 struct rdt_domain **d_cdp)
521348b0
RC
1085{
1086 struct rdt_resource *_r_cdp = NULL;
1087 struct rdt_domain *_d_cdp = NULL;
1088 int ret = 0;
1089
1090 switch (r->rid) {
1091 case RDT_RESOURCE_L3DATA:
1092 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1093 break;
1094 case RDT_RESOURCE_L3CODE:
1095 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA];
1096 break;
1097 case RDT_RESOURCE_L2DATA:
1098 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE];
1099 break;
1100 case RDT_RESOURCE_L2CODE:
1101 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA];
1102 break;
1103 default:
1104 ret = -ENOENT;
1105 goto out;
1106 }
1107
1108 /*
1109 * When a new CPU comes online and CDP is enabled then the new
1110 * RDT domains (if any) associated with both CDP RDT resources
1111 * are added in the same CPU online routine while the
1112 * rdtgroup_mutex is held. It should thus not happen for one
1113 * RDT domain to exist and be associated with its RDT CDP
1114 * resource but there is no RDT domain associated with the
1115 * peer RDT CDP resource. Hence the WARN.
1116 */
1117 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
52eb7433 1118 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
521348b0
RC
1119 _r_cdp = NULL;
1120 ret = -EINVAL;
1121 }
1122
1123out:
1124 *r_cdp = _r_cdp;
1125 *d_cdp = _d_cdp;
1126
1127 return ret;
1128}
1129
49f7b4ef 1130/**
e5f3530c 1131 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
49f7b4ef
RC
1132 * @r: Resource to which domain instance @d belongs.
1133 * @d: The domain instance for which @closid is being tested.
1134 * @cbm: Capacity bitmask being tested.
1135 * @closid: Intended closid for @cbm.
1136 * @exclusive: Only check if overlaps with exclusive resource groups
1137 *
1138 * Checks if provided @cbm intended to be used for @closid on domain
1139 * @d overlaps with any other closids or other hardware usage associated
1140 * with this domain. If @exclusive is true then only overlaps with
1141 * resource groups in exclusive mode will be considered. If @exclusive
1142 * is false then overlaps with any resource group or hardware entities
1143 * will be considered.
1144 *
49e00eee
RC
1145 * @cbm is unsigned long, even if only 32 bits are used, to make the
1146 * bitmap functions work correctly.
1147 *
49f7b4ef
RC
1148 * Return: false if CBM does not overlap, true if it does.
1149 */
e5f3530c
RC
1150static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1151 unsigned long cbm, int closid, bool exclusive)
49f7b4ef 1152{
49f7b4ef 1153 enum rdtgrp_mode mode;
49e00eee 1154 unsigned long ctrl_b;
49f7b4ef
RC
1155 u32 *ctrl;
1156 int i;
1157
1158 /* Check for any overlap with regions used by hardware directly */
1159 if (!exclusive) {
49e00eee
RC
1160 ctrl_b = r->cache.shareable_bits;
1161 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
49f7b4ef
RC
1162 return true;
1163 }
1164
1165 /* Check for overlap with other resource groups */
1166 ctrl = d->ctrl_val;
f0df4e1a 1167 for (i = 0; i < closids_supported(); i++, ctrl++) {
49e00eee 1168 ctrl_b = *ctrl;
dfe9674b
RC
1169 mode = rdtgroup_mode_by_closid(i);
1170 if (closid_allocated(i) && i != closid &&
1171 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
49e00eee 1172 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
49f7b4ef
RC
1173 if (exclusive) {
1174 if (mode == RDT_MODE_EXCLUSIVE)
1175 return true;
1176 continue;
1177 }
1178 return true;
1179 }
1180 }
1181 }
1182
1183 return false;
1184}
1185
e5f3530c
RC
1186/**
1187 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1188 * @r: Resource to which domain instance @d belongs.
1189 * @d: The domain instance for which @closid is being tested.
1190 * @cbm: Capacity bitmask being tested.
1191 * @closid: Intended closid for @cbm.
1192 * @exclusive: Only check if overlaps with exclusive resource groups
1193 *
1194 * Resources that can be allocated using a CBM can use the CBM to control
1195 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1196 * for overlap. Overlap test is not limited to the specific resource for
1197 * which the CBM is intended though - when dealing with CDP resources that
1198 * share the underlying hardware the overlap check should be performed on
1199 * the CDP resource sharing the hardware also.
1200 *
1201 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1202 * overlap test.
1203 *
1204 * Return: true if CBM overlap detected, false if there is no overlap
1205 */
1206bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1207 unsigned long cbm, int closid, bool exclusive)
1208{
1209 struct rdt_resource *r_cdp;
1210 struct rdt_domain *d_cdp;
1211
1212 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1213 return true;
1214
1215 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1216 return false;
1217
1218 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1219}
1220
49f7b4ef
RC
1221/**
1222 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1223 *
1224 * An exclusive resource group implies that there should be no sharing of
1225 * its allocated resources. At the time this group is considered to be
1226 * exclusive this test can determine if its current schemata supports this
1227 * setting by testing for overlap with all other resource groups.
1228 *
1229 * Return: true if resource group can be exclusive, false if there is overlap
1230 * with allocations of other resource groups and thus this resource group
1231 * cannot be exclusive.
1232 */
1233static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1234{
1235 int closid = rdtgrp->closid;
1236 struct rdt_resource *r;
939b90b2 1237 bool has_cache = false;
49f7b4ef
RC
1238 struct rdt_domain *d;
1239
1240 for_each_alloc_enabled_rdt_resource(r) {
939b90b2
RC
1241 if (r->rid == RDT_RESOURCE_MBA)
1242 continue;
1243 has_cache = true;
49f7b4ef
RC
1244 list_for_each_entry(d, &r->domains, list) {
1245 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
939b90b2 1246 rdtgrp->closid, false)) {
723f1a0d 1247 rdt_last_cmd_puts("Schemata overlaps\n");
49f7b4ef 1248 return false;
939b90b2 1249 }
49f7b4ef
RC
1250 }
1251 }
1252
939b90b2 1253 if (!has_cache) {
723f1a0d 1254 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
939b90b2
RC
1255 return false;
1256 }
1257
49f7b4ef
RC
1258 return true;
1259}
1260
1261/**
1262 * rdtgroup_mode_write - Modify the resource group's mode
1263 *
1264 */
d48d7a57
RC
1265static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1266 char *buf, size_t nbytes, loff_t off)
1267{
1268 struct rdtgroup *rdtgrp;
1269 enum rdtgrp_mode mode;
1270 int ret = 0;
1271
1272 /* Valid input requires a trailing newline */
1273 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1274 return -EINVAL;
1275 buf[nbytes - 1] = '\0';
1276
1277 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1278 if (!rdtgrp) {
1279 rdtgroup_kn_unlock(of->kn);
1280 return -ENOENT;
1281 }
1282
1283 rdt_last_cmd_clear();
1284
1285 mode = rdtgrp->mode;
1286
49f7b4ef 1287 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
dfe9674b
RC
1288 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1289 (!strcmp(buf, "pseudo-locksetup") &&
1290 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1291 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
d48d7a57
RC
1292 goto out;
1293
dfe9674b 1294 if (mode == RDT_MODE_PSEUDO_LOCKED) {
45682489 1295 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
dfe9674b
RC
1296 ret = -EINVAL;
1297 goto out;
1298 }
1299
d48d7a57 1300 if (!strcmp(buf, "shareable")) {
dfe9674b
RC
1301 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1302 ret = rdtgroup_locksetup_exit(rdtgrp);
1303 if (ret)
1304 goto out;
1305 }
d48d7a57 1306 rdtgrp->mode = RDT_MODE_SHAREABLE;
49f7b4ef
RC
1307 } else if (!strcmp(buf, "exclusive")) {
1308 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
49f7b4ef
RC
1309 ret = -EINVAL;
1310 goto out;
1311 }
dfe9674b
RC
1312 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1313 ret = rdtgroup_locksetup_exit(rdtgrp);
1314 if (ret)
1315 goto out;
1316 }
49f7b4ef 1317 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
dfe9674b
RC
1318 } else if (!strcmp(buf, "pseudo-locksetup")) {
1319 ret = rdtgroup_locksetup_enter(rdtgrp);
1320 if (ret)
1321 goto out;
1322 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
d48d7a57 1323 } else {
45682489 1324 rdt_last_cmd_puts("Unknown or unsupported mode\n");
d48d7a57
RC
1325 ret = -EINVAL;
1326 }
1327
1328out:
1329 rdtgroup_kn_unlock(of->kn);
1330 return ret ?: nbytes;
1331}
1332
d9b48c86
RC
1333/**
1334 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1335 * @r: RDT resource to which @d belongs.
1336 * @d: RDT domain instance.
1337 * @cbm: bitmask for which the size should be computed.
1338 *
1339 * The bitmask provided associated with the RDT domain instance @d will be
1340 * translated into how many bytes it represents. The size in bytes is
1341 * computed by first dividing the total cache size by the CBM length to
1342 * determine how many bytes each bit in the bitmask represents. The result
1343 * is multiplied with the number of bits set in the bitmask.
49e00eee
RC
1344 *
1345 * @cbm is unsigned long, even if only 32 bits are used to make the
1346 * bitmap functions work correctly.
d9b48c86
RC
1347 */
1348unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
49e00eee 1349 struct rdt_domain *d, unsigned long cbm)
d9b48c86
RC
1350{
1351 struct cpu_cacheinfo *ci;
1352 unsigned int size = 0;
1353 int num_b, i;
1354
49e00eee 1355 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
d9b48c86
RC
1356 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1357 for (i = 0; i < ci->num_leaves; i++) {
1358 if (ci->info_list[i].level == r->cache_level) {
1359 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1360 break;
1361 }
1362 }
1363
1364 return size;
1365}
1366
1367/**
1368 * rdtgroup_size_show - Display size in bytes of allocated regions
1369 *
1370 * The "size" file mirrors the layout of the "schemata" file, printing the
1371 * size in bytes of each region instead of the capacity bitmask.
1372 *
1373 */
1374static int rdtgroup_size_show(struct kernfs_open_file *of,
1375 struct seq_file *s, void *v)
1376{
1377 struct rdtgroup *rdtgrp;
1378 struct rdt_resource *r;
1379 struct rdt_domain *d;
1380 unsigned int size;
b61b8bba 1381 int ret = 0;
f968dc11
RC
1382 bool sep;
1383 u32 ctrl;
d9b48c86
RC
1384
1385 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1386 if (!rdtgrp) {
1387 rdtgroup_kn_unlock(of->kn);
1388 return -ENOENT;
1389 }
1390
f4e80d67 1391 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
b61b8bba
JJ
1392 if (!rdtgrp->plr->d) {
1393 rdt_last_cmd_clear();
1394 rdt_last_cmd_puts("Cache domain offline\n");
1395 ret = -ENODEV;
1396 } else {
1397 seq_printf(s, "%*s:", max_name_width,
1398 rdtgrp->plr->r->name);
1399 size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1400 rdtgrp->plr->d,
1401 rdtgrp->plr->cbm);
1402 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1403 }
f4e80d67
RC
1404 goto out;
1405 }
1406
d9b48c86 1407 for_each_alloc_enabled_rdt_resource(r) {
f968dc11 1408 sep = false;
d9b48c86
RC
1409 seq_printf(s, "%*s:", max_name_width, r->name);
1410 list_for_each_entry(d, &r->domains, list) {
1411 if (sep)
1412 seq_putc(s, ';');
dfe9674b
RC
1413 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1414 size = 0;
1415 } else {
f968dc11
RC
1416 ctrl = (!is_mba_sc(r) ?
1417 d->ctrl_val[rdtgrp->closid] :
1418 d->mbps_val[rdtgrp->closid]);
1419 if (r->rid == RDT_RESOURCE_MBA)
1420 size = ctrl;
1421 else
1422 size = rdtgroup_cbm_to_size(r, d, ctrl);
dfe9674b 1423 }
d9b48c86
RC
1424 seq_printf(s, "%d=%u", d->id, size);
1425 sep = true;
1426 }
1427 seq_putc(s, '\n');
1428 }
1429
f4e80d67 1430out:
d9b48c86
RC
1431 rdtgroup_kn_unlock(of->kn);
1432
b61b8bba 1433 return ret;
d9b48c86
RC
1434}
1435
4e978d06 1436/* rdtgroup information files for one cache resource. */
5dc1d5c6 1437static struct rftype res_common_files[] = {
9b3a7fd0
TL
1438 {
1439 .name = "last_cmd_status",
1440 .mode = 0444,
1441 .kf_ops = &rdtgroup_kf_single_ops,
1442 .seq_show = rdt_last_cmd_status_show,
1443 .fflags = RF_TOP_INFO,
1444 },
4e978d06
FY
1445 {
1446 .name = "num_closids",
1447 .mode = 0444,
1448 .kf_ops = &rdtgroup_kf_single_ops,
1449 .seq_show = rdt_num_closids_show,
5dc1d5c6 1450 .fflags = RF_CTRL_INFO,
4e978d06 1451 },
d4ab3320
VS
1452 {
1453 .name = "mon_features",
1454 .mode = 0444,
1455 .kf_ops = &rdtgroup_kf_single_ops,
1456 .seq_show = rdt_mon_features_show,
1457 .fflags = RF_MON_INFO,
1458 },
1459 {
1460 .name = "num_rmids",
1461 .mode = 0444,
1462 .kf_ops = &rdtgroup_kf_single_ops,
1463 .seq_show = rdt_num_rmids_show,
1464 .fflags = RF_MON_INFO,
1465 },
4e978d06
FY
1466 {
1467 .name = "cbm_mask",
1468 .mode = 0444,
1469 .kf_ops = &rdtgroup_kf_single_ops,
2545e9f5 1470 .seq_show = rdt_default_ctrl_show,
5dc1d5c6 1471 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
4e978d06 1472 },
53a114a6
SL
1473 {
1474 .name = "min_cbm_bits",
1475 .mode = 0444,
1476 .kf_ops = &rdtgroup_kf_single_ops,
1477 .seq_show = rdt_min_cbm_bits_show,
5dc1d5c6 1478 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
db69ef65 1479 },
0dd2d749
FY
1480 {
1481 .name = "shareable_bits",
1482 .mode = 0444,
1483 .kf_ops = &rdtgroup_kf_single_ops,
1484 .seq_show = rdt_shareable_bits_show,
1485 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1486 },
e6519011
RC
1487 {
1488 .name = "bit_usage",
1489 .mode = 0444,
1490 .kf_ops = &rdtgroup_kf_single_ops,
1491 .seq_show = rdt_bit_usage_show,
1492 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1493 },
db69ef65
VS
1494 {
1495 .name = "min_bandwidth",
1496 .mode = 0444,
1497 .kf_ops = &rdtgroup_kf_single_ops,
1498 .seq_show = rdt_min_bw_show,
5dc1d5c6 1499 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
db69ef65
VS
1500 },
1501 {
1502 .name = "bandwidth_gran",
1503 .mode = 0444,
1504 .kf_ops = &rdtgroup_kf_single_ops,
1505 .seq_show = rdt_bw_gran_show,
5dc1d5c6 1506 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
db69ef65
VS
1507 },
1508 {
1509 .name = "delay_linear",
1510 .mode = 0444,
1511 .kf_ops = &rdtgroup_kf_single_ops,
1512 .seq_show = rdt_delay_linear_show,
5dc1d5c6
TL
1513 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1514 },
d4ab3320
VS
1515 {
1516 .name = "max_threshold_occupancy",
1517 .mode = 0644,
1518 .kf_ops = &rdtgroup_kf_single_ops,
1519 .write = max_threshold_occ_write,
1520 .seq_show = max_threshold_occ_show,
1521 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1522 },
5dc1d5c6
TL
1523 {
1524 .name = "cpus",
1525 .mode = 0644,
1526 .kf_ops = &rdtgroup_kf_single_ops,
1527 .write = rdtgroup_cpus_write,
1528 .seq_show = rdtgroup_cpus_show,
1529 .fflags = RFTYPE_BASE,
1530 },
1531 {
1532 .name = "cpus_list",
1533 .mode = 0644,
1534 .kf_ops = &rdtgroup_kf_single_ops,
1535 .write = rdtgroup_cpus_write,
1536 .seq_show = rdtgroup_cpus_show,
1537 .flags = RFTYPE_FLAGS_CPUS_LIST,
1538 .fflags = RFTYPE_BASE,
1539 },
1540 {
1541 .name = "tasks",
1542 .mode = 0644,
1543 .kf_ops = &rdtgroup_kf_single_ops,
1544 .write = rdtgroup_tasks_write,
1545 .seq_show = rdtgroup_tasks_show,
1546 .fflags = RFTYPE_BASE,
1547 },
1548 {
1549 .name = "schemata",
1550 .mode = 0644,
1551 .kf_ops = &rdtgroup_kf_single_ops,
1552 .write = rdtgroup_schemata_write,
1553 .seq_show = rdtgroup_schemata_show,
1554 .fflags = RF_CTRL_BASE,
db69ef65 1555 },
d48d7a57
RC
1556 {
1557 .name = "mode",
1558 .mode = 0644,
1559 .kf_ops = &rdtgroup_kf_single_ops,
1560 .write = rdtgroup_mode_write,
1561 .seq_show = rdtgroup_mode_show,
1562 .fflags = RF_CTRL_BASE,
1563 },
d9b48c86
RC
1564 {
1565 .name = "size",
1566 .mode = 0444,
1567 .kf_ops = &rdtgroup_kf_single_ops,
1568 .seq_show = rdtgroup_size_show,
1569 .fflags = RF_CTRL_BASE,
1570 },
1571
db69ef65
VS
1572};
1573
5dc1d5c6 1574static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
db69ef65 1575{
5dc1d5c6
TL
1576 struct rftype *rfts, *rft;
1577 int ret, len;
1578
1579 rfts = res_common_files;
1580 len = ARRAY_SIZE(res_common_files);
1581
1582 lockdep_assert_held(&rdtgroup_mutex);
1583
1584 for (rft = rfts; rft < rfts + len; rft++) {
1585 if ((fflags & rft->fflags) == rft->fflags) {
1586 ret = rdtgroup_add_file(kn, rft);
1587 if (ret)
1588 goto error;
1589 }
1590 }
1591
1592 return 0;
1593error:
1594 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1595 while (--rft >= rfts) {
1596 if ((fflags & rft->fflags) == rft->fflags)
1597 kernfs_remove_by_name(kn, rft->name);
1598 }
1599 return ret;
db69ef65
VS
1600}
1601
125db711
RC
1602/**
1603 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1604 * @r: The resource group with which the file is associated.
1605 * @name: Name of the file
1606 *
1607 * The permissions of named resctrl file, directory, or link are modified
1608 * to not allow read, write, or execute by any user.
1609 *
1610 * WARNING: This function is intended to communicate to the user that the
1611 * resctrl file has been locked down - that it is not relevant to the
1612 * particular state the system finds itself in. It should not be relied
1613 * on to protect from user access because after the file's permissions
1614 * are restricted the user can still change the permissions using chmod
1615 * from the command line.
1616 *
1617 * Return: 0 on success, <0 on failure.
1618 */
1619int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1620{
1621 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1622 struct kernfs_node *kn;
1623 int ret = 0;
1624
1625 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1626 if (!kn)
1627 return -ENOENT;
1628
1629 switch (kernfs_type(kn)) {
1630 case KERNFS_DIR:
1631 iattr.ia_mode = S_IFDIR;
1632 break;
1633 case KERNFS_FILE:
1634 iattr.ia_mode = S_IFREG;
1635 break;
1636 case KERNFS_LINK:
1637 iattr.ia_mode = S_IFLNK;
1638 break;
1639 }
1640
1641 ret = kernfs_setattr(kn, &iattr);
1642 kernfs_put(kn);
1643 return ret;
1644}
1645
1646/**
1647 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1648 * @r: The resource group with which the file is associated.
1649 * @name: Name of the file
392487de 1650 * @mask: Mask of permissions that should be restored
125db711
RC
1651 *
1652 * Restore the permissions of the named file. If @name is a directory the
1653 * permissions of its parent will be used.
1654 *
1655 * Return: 0 on success, <0 on failure.
1656 */
392487de
RC
1657int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1658 umode_t mask)
125db711
RC
1659{
1660 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1661 struct kernfs_node *kn, *parent;
1662 struct rftype *rfts, *rft;
1663 int ret, len;
1664
1665 rfts = res_common_files;
1666 len = ARRAY_SIZE(res_common_files);
1667
1668 for (rft = rfts; rft < rfts + len; rft++) {
1669 if (!strcmp(rft->name, name))
392487de 1670 iattr.ia_mode = rft->mode & mask;
125db711
RC
1671 }
1672
1673 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1674 if (!kn)
1675 return -ENOENT;
1676
1677 switch (kernfs_type(kn)) {
1678 case KERNFS_DIR:
1679 parent = kernfs_get_parent(kn);
1680 if (parent) {
1681 iattr.ia_mode |= parent->mode;
1682 kernfs_put(parent);
1683 }
1684 iattr.ia_mode |= S_IFDIR;
1685 break;
1686 case KERNFS_FILE:
1687 iattr.ia_mode |= S_IFREG;
1688 break;
1689 case KERNFS_LINK:
1690 iattr.ia_mode |= S_IFLNK;
1691 break;
1692 }
1693
1694 ret = kernfs_setattr(kn, &iattr);
1695 kernfs_put(kn);
1696 return ret;
1697}
1698
5dc1d5c6
TL
1699static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1700 unsigned long fflags)
6a507a6a 1701{
5dc1d5c6
TL
1702 struct kernfs_node *kn_subdir;
1703 int ret;
1704
1705 kn_subdir = kernfs_create_dir(kn_info, name,
1706 kn_info->mode, r);
1707 if (IS_ERR(kn_subdir))
1708 return PTR_ERR(kn_subdir);
1709
1710 kernfs_get(kn_subdir);
1711 ret = rdtgroup_kn_set_ugid(kn_subdir);
1712 if (ret)
1713 return ret;
1714
1715 ret = rdtgroup_add_files(kn_subdir, fflags);
1716 if (!ret)
1717 kernfs_activate(kn_subdir);
1718
1719 return ret;
6a507a6a
VS
1720}
1721
4e978d06
FY
1722static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1723{
4e978d06 1724 struct rdt_resource *r;
5dc1d5c6 1725 unsigned long fflags;
d4ab3320 1726 char name[32];
5dc1d5c6 1727 int ret;
4e978d06
FY
1728
1729 /* create the directory */
1730 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1731 if (IS_ERR(kn_info))
1732 return PTR_ERR(kn_info);
1733 kernfs_get(kn_info);
1734
9b3a7fd0
TL
1735 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1736 if (ret)
1737 goto out_destroy;
1738
1b5c0b75 1739 for_each_alloc_enabled_rdt_resource(r) {
5dc1d5c6
TL
1740 fflags = r->fflags | RF_CTRL_INFO;
1741 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
4e978d06
FY
1742 if (ret)
1743 goto out_destroy;
4e978d06 1744 }
d4ab3320
VS
1745
1746 for_each_mon_enabled_rdt_resource(r) {
1747 fflags = r->fflags | RF_MON_INFO;
1748 sprintf(name, "%s_MON", r->name);
1749 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1750 if (ret)
1751 goto out_destroy;
1752 }
1753
4e978d06
FY
1754 /*
1755 * This extra ref will be put in kernfs_remove() and guarantees
1756 * that @rdtgrp->kn is always accessible.
1757 */
1758 kernfs_get(kn_info);
1759
1760 ret = rdtgroup_kn_set_ugid(kn_info);
1761 if (ret)
1762 goto out_destroy;
1763
1764 kernfs_activate(kn_info);
1765
1766 return 0;
1767
1768out_destroy:
1769 kernfs_remove(kn_info);
1770 return ret;
1771}
1772
c7d9aac6
VS
1773static int
1774mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1775 char *name, struct kernfs_node **dest_kn)
1776{
1777 struct kernfs_node *kn;
1778 int ret;
1779
1780 /* create the directory */
1781 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1782 if (IS_ERR(kn))
1783 return PTR_ERR(kn);
1784
1785 if (dest_kn)
1786 *dest_kn = kn;
1787
1788 /*
1789 * This extra ref will be put in kernfs_remove() and guarantees
1790 * that @rdtgrp->kn is always accessible.
1791 */
1792 kernfs_get(kn);
1793
1794 ret = rdtgroup_kn_set_ugid(kn);
1795 if (ret)
1796 goto out_destroy;
1797
1798 kernfs_activate(kn);
1799
1800 return 0;
1801
1802out_destroy:
1803 kernfs_remove(kn);
1804 return ret;
1805}
99adde9b 1806
5ff193fb
FY
1807static void l3_qos_cfg_update(void *arg)
1808{
1809 bool *enable = arg;
1810
aa50453a 1811 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
5ff193fb
FY
1812}
1813
99adde9b 1814static void l2_qos_cfg_update(void *arg)
5ff193fb 1815{
99adde9b
FY
1816 bool *enable = arg;
1817
aa50453a 1818 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
99adde9b
FY
1819}
1820
19c635ab
VS
1821static inline bool is_mba_linear(void)
1822{
1823 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1824}
1825
99adde9b
FY
1826static int set_cache_qos_cfg(int level, bool enable)
1827{
1828 void (*update)(void *arg);
1829 struct rdt_resource *r_l;
5ff193fb
FY
1830 cpumask_var_t cpu_mask;
1831 struct rdt_domain *d;
1832 int cpu;
1833
99adde9b
FY
1834 if (level == RDT_RESOURCE_L3)
1835 update = l3_qos_cfg_update;
1836 else if (level == RDT_RESOURCE_L2)
1837 update = l2_qos_cfg_update;
1838 else
1839 return -EINVAL;
1840
ab6a2114
SB
1841 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1842 return -ENOMEM;
1843
99adde9b
FY
1844 r_l = &rdt_resources_all[level];
1845 list_for_each_entry(d, &r_l->domains, list) {
5ff193fb
FY
1846 /* Pick one CPU from each domain instance to update MSR */
1847 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1848 }
1849 cpu = get_cpu();
1850 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1851 if (cpumask_test_cpu(cpu, cpu_mask))
99adde9b 1852 update(&enable);
5ff193fb 1853 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
99adde9b 1854 smp_call_function_many(cpu_mask, update, &enable, 1);
5ff193fb
FY
1855 put_cpu();
1856
1857 free_cpumask_var(cpu_mask);
1858
1859 return 0;
1860}
1861
9fe04507
JM
1862/* Restore the qos cfg state when a domain comes online */
1863void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1864{
1865 if (!r->alloc_capable)
1866 return;
1867
1868 if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1869 l2_qos_cfg_update(&r->alloc_enabled);
1870
1871 if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1872 l3_qos_cfg_update(&r->alloc_enabled);
1873}
1874
19c635ab
VS
1875/*
1876 * Enable or disable the MBA software controller
1877 * which helps user specify bandwidth in MBps.
1878 * MBA software controller is supported only if
1879 * MBM is supported and MBA is in linear scale.
1880 */
1881static int set_mba_sc(bool mba_sc)
1882{
1883 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1bd2a63b 1884 struct rdt_domain *d;
19c635ab
VS
1885
1886 if (!is_mbm_enabled() || !is_mba_linear() ||
1887 mba_sc == is_mba_sc(r))
1888 return -EINVAL;
1889
1890 r->membw.mba_sc = mba_sc;
1bd2a63b
VS
1891 list_for_each_entry(d, &r->domains, list)
1892 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
19c635ab
VS
1893
1894 return 0;
1895}
1896
99adde9b 1897static int cdp_enable(int level, int data_type, int code_type)
5ff193fb 1898{
99adde9b
FY
1899 struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1900 struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1901 struct rdt_resource *r_l = &rdt_resources_all[level];
5ff193fb
FY
1902 int ret;
1903
99adde9b
FY
1904 if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1905 !r_lcode->alloc_capable)
5ff193fb
FY
1906 return -EINVAL;
1907
99adde9b 1908 ret = set_cache_qos_cfg(level, true);
5ff193fb 1909 if (!ret) {
99adde9b
FY
1910 r_l->alloc_enabled = false;
1911 r_ldata->alloc_enabled = true;
1912 r_lcode->alloc_enabled = true;
5ff193fb
FY
1913 }
1914 return ret;
1915}
1916
99adde9b
FY
1917static int cdpl3_enable(void)
1918{
1919 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1920 RDT_RESOURCE_L3CODE);
1921}
1922
1923static int cdpl2_enable(void)
5ff193fb 1924{
99adde9b
FY
1925 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1926 RDT_RESOURCE_L2CODE);
1927}
1928
1929static void cdp_disable(int level, int data_type, int code_type)
1930{
1931 struct rdt_resource *r = &rdt_resources_all[level];
5ff193fb 1932
1b5c0b75 1933 r->alloc_enabled = r->alloc_capable;
5ff193fb 1934
99adde9b
FY
1935 if (rdt_resources_all[data_type].alloc_enabled) {
1936 rdt_resources_all[data_type].alloc_enabled = false;
1937 rdt_resources_all[code_type].alloc_enabled = false;
1938 set_cache_qos_cfg(level, false);
5ff193fb
FY
1939 }
1940}
1941
99adde9b
FY
1942static void cdpl3_disable(void)
1943{
1944 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1945}
1946
1947static void cdpl2_disable(void)
1948{
1949 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1950}
1951
1952static void cdp_disable_all(void)
1953{
1954 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1955 cdpl3_disable();
1956 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1957 cdpl2_disable();
1958}
1959
60cf5e10
FY
1960/*
1961 * We don't allow rdtgroup directories to be created anywhere
1962 * except the root directory. Thus when looking for the rdtgroup
1963 * structure for a kernfs node we are either looking at a directory,
1964 * in which case the rdtgroup structure is pointed at by the "priv"
1965 * field, otherwise we have a file, and need only look to the parent
1966 * to find the rdtgroup.
1967 */
1968static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1969{
f57b3087
FY
1970 if (kernfs_type(kn) == KERNFS_DIR) {
1971 /*
1972 * All the resource directories use "kn->priv"
1973 * to point to the "struct rdtgroup" for the
1974 * resource. "info" and its subdirectories don't
1975 * have rdtgroup structures, so return NULL here.
1976 */
1977 if (kn == kn_info || kn->parent == kn_info)
1978 return NULL;
1979 else
1980 return kn->priv;
1981 } else {
60cf5e10 1982 return kn->parent->priv;
f57b3087 1983 }
60cf5e10
FY
1984}
1985
1986struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1987{
1988 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1989
f57b3087
FY
1990 if (!rdtgrp)
1991 return NULL;
1992
60cf5e10
FY
1993 atomic_inc(&rdtgrp->waitcount);
1994 kernfs_break_active_protection(kn);
1995
1996 mutex_lock(&rdtgroup_mutex);
1997
1998 /* Was this group deleted while we waited? */
1999 if (rdtgrp->flags & RDT_DELETED)
2000 return NULL;
2001
2002 return rdtgrp;
2003}
2004
2005void rdtgroup_kn_unlock(struct kernfs_node *kn)
2006{
2007 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2008
f57b3087
FY
2009 if (!rdtgrp)
2010 return;
2011
60cf5e10
FY
2012 mutex_unlock(&rdtgroup_mutex);
2013
2014 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2015 (rdtgrp->flags & RDT_DELETED)) {
e0bdfe8e
RC
2016 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2017 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2018 rdtgroup_pseudo_lock_remove(rdtgrp);
60cf5e10 2019 kernfs_unbreak_active_protection(kn);
49ec8f5b 2020 kernfs_put(rdtgrp->kn);
60cf5e10
FY
2021 kfree(rdtgrp);
2022 } else {
2023 kernfs_unbreak_active_protection(kn);
2024 }
2025}
2026
4af4a88e
VS
2027static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2028 struct rdtgroup *prgrp,
2029 struct kernfs_node **mon_data_kn);
2030
23bf1b6b 2031static int rdt_enable_ctx(struct rdt_fs_context *ctx)
5ff193fb 2032{
23bf1b6b
DH
2033 int ret = 0;
2034
2035 if (ctx->enable_cdpl2)
2036 ret = cdpl2_enable();
2037
2038 if (!ret && ctx->enable_cdpl3)
2039 ret = cdpl3_enable();
2040
2041 if (!ret && ctx->enable_mba_mbps)
2042 ret = set_mba_sc(true);
2043
2044 return ret;
2045}
2046
2047static int rdt_get_tree(struct fs_context *fc)
2048{
2049 struct rdt_fs_context *ctx = rdt_fc2context(fc);
e3302683
VS
2050 struct rdt_domain *dom;
2051 struct rdt_resource *r;
5ff193fb
FY
2052 int ret;
2053
87943db7 2054 cpus_read_lock();
5ff193fb
FY
2055 mutex_lock(&rdtgroup_mutex);
2056 /*
2057 * resctrl file system can only be mounted once.
2058 */
4af4a88e 2059 if (static_branch_unlikely(&rdt_enable_key)) {
23bf1b6b 2060 ret = -EBUSY;
5ff193fb
FY
2061 goto out;
2062 }
2063
23bf1b6b
DH
2064 ret = rdt_enable_ctx(ctx);
2065 if (ret < 0)
5ff193fb 2066 goto out_cdp;
5ff193fb 2067
60cf5e10
FY
2068 closid_init();
2069
4e978d06 2070 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
23bf1b6b
DH
2071 if (ret < 0)
2072 goto out_mba;
4e978d06 2073
4af4a88e
VS
2074 if (rdt_mon_capable) {
2075 ret = mongroup_create_dir(rdtgroup_default.kn,
334b0f4e 2076 &rdtgroup_default, "mon_groups",
4af4a88e 2077 &kn_mongrp);
23bf1b6b 2078 if (ret < 0)
4af4a88e 2079 goto out_info;
4af4a88e
VS
2080 kernfs_get(kn_mongrp);
2081
2082 ret = mkdir_mondata_all(rdtgroup_default.kn,
2083 &rdtgroup_default, &kn_mondata);
23bf1b6b 2084 if (ret < 0)
4af4a88e 2085 goto out_mongrp;
4af4a88e
VS
2086 kernfs_get(kn_mondata);
2087 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2088 }
2089
32206ab3 2090 ret = rdt_pseudo_lock_init();
23bf1b6b 2091 if (ret)
32206ab3 2092 goto out_mondata;
32206ab3 2093
23bf1b6b
DH
2094 ret = kernfs_get_tree(fc);
2095 if (ret < 0)
32206ab3 2096 goto out_psl;
4af4a88e
VS
2097
2098 if (rdt_alloc_capable)
87943db7 2099 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
4af4a88e 2100 if (rdt_mon_capable)
87943db7 2101 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
5ff193fb 2102
4af4a88e 2103 if (rdt_alloc_capable || rdt_mon_capable)
87943db7 2104 static_branch_enable_cpuslocked(&rdt_enable_key);
e3302683
VS
2105
2106 if (is_mbm_enabled()) {
2107 r = &rdt_resources_all[RDT_RESOURCE_L3];
2108 list_for_each_entry(dom, &r->domains, list)
bbc4615e 2109 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
e3302683
VS
2110 }
2111
5ff193fb
FY
2112 goto out;
2113
32206ab3
RC
2114out_psl:
2115 rdt_pseudo_lock_release();
4af4a88e
VS
2116out_mondata:
2117 if (rdt_mon_capable)
2118 kernfs_remove(kn_mondata);
2119out_mongrp:
2120 if (rdt_mon_capable)
2121 kernfs_remove(kn_mongrp);
2122out_info:
79298acc 2123 kernfs_remove(kn_info);
23bf1b6b
DH
2124out_mba:
2125 if (ctx->enable_mba_mbps)
2126 set_mba_sc(false);
5ff193fb 2127out_cdp:
99adde9b 2128 cdp_disable_all();
5ff193fb 2129out:
9b3a7fd0 2130 rdt_last_cmd_clear();
5ff193fb 2131 mutex_unlock(&rdtgroup_mutex);
87943db7 2132 cpus_read_unlock();
23bf1b6b
DH
2133 return ret;
2134}
2135
2136enum rdt_param {
2137 Opt_cdp,
2138 Opt_cdpl2,
faa3604e 2139 Opt_mba_mbps,
23bf1b6b
DH
2140 nr__rdt_params
2141};
2142
d7167b14 2143static const struct fs_parameter_spec rdt_fs_parameters[] = {
23bf1b6b
DH
2144 fsparam_flag("cdp", Opt_cdp),
2145 fsparam_flag("cdpl2", Opt_cdpl2),
faa3604e 2146 fsparam_flag("mba_MBps", Opt_mba_mbps),
23bf1b6b
DH
2147 {}
2148};
2149
23bf1b6b
DH
2150static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2151{
2152 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2153 struct fs_parse_result result;
2154 int opt;
2155
d7167b14 2156 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
23bf1b6b
DH
2157 if (opt < 0)
2158 return opt;
2159
2160 switch (opt) {
2161 case Opt_cdp:
2162 ctx->enable_cdpl3 = true;
2163 return 0;
2164 case Opt_cdpl2:
2165 ctx->enable_cdpl2 = true;
2166 return 0;
faa3604e 2167 case Opt_mba_mbps:
23bf1b6b
DH
2168 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2169 return -EINVAL;
2170 ctx->enable_mba_mbps = true;
2171 return 0;
2172 }
2173
2174 return -EINVAL;
2175}
2176
2177static void rdt_fs_context_free(struct fs_context *fc)
2178{
2179 struct rdt_fs_context *ctx = rdt_fc2context(fc);
5ff193fb 2180
23bf1b6b
DH
2181 kernfs_free_fs_context(fc);
2182 kfree(ctx);
2183}
2184
2185static const struct fs_context_operations rdt_fs_context_ops = {
2186 .free = rdt_fs_context_free,
2187 .parse_param = rdt_parse_param,
2188 .get_tree = rdt_get_tree,
2189};
2190
2191static int rdt_init_fs_context(struct fs_context *fc)
2192{
2193 struct rdt_fs_context *ctx;
2194
2195 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2196 if (!ctx)
2197 return -ENOMEM;
2198
2199 ctx->kfc.root = rdt_root;
2200 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2201 fc->fs_private = &ctx->kfc;
2202 fc->ops = &rdt_fs_context_ops;
f7a99451 2203 put_user_ns(fc->user_ns);
23bf1b6b
DH
2204 fc->user_ns = get_user_ns(&init_user_ns);
2205 fc->global = true;
2206 return 0;
5ff193fb
FY
2207}
2208
2545e9f5 2209static int reset_all_ctrls(struct rdt_resource *r)
5ff193fb
FY
2210{
2211 struct msr_param msr_param;
2212 cpumask_var_t cpu_mask;
2213 struct rdt_domain *d;
2214 int i, cpu;
2215
2216 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2217 return -ENOMEM;
2218
2219 msr_param.res = r;
2220 msr_param.low = 0;
2221 msr_param.high = r->num_closid;
2222
2223 /*
2224 * Disable resource control for this resource by setting all
2225 * CBMs in all domains to the maximum mask value. Pick one CPU
2226 * from each domain to update the MSRs below.
2227 */
2228 list_for_each_entry(d, &r->domains, list) {
2229 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2230
2231 for (i = 0; i < r->num_closid; i++)
2545e9f5 2232 d->ctrl_val[i] = r->default_ctrl;
5ff193fb
FY
2233 }
2234 cpu = get_cpu();
2235 /* Update CBM on this cpu if it's in cpu_mask. */
2236 if (cpumask_test_cpu(cpu, cpu_mask))
2545e9f5 2237 rdt_ctrl_update(&msr_param);
5ff193fb 2238 /* Update CBM on all other cpus in cpu_mask. */
2545e9f5 2239 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
5ff193fb
FY
2240 put_cpu();
2241
2242 free_cpumask_var(cpu_mask);
2243
2244 return 0;
2245}
2246
f3cbeaca
VS
2247static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2248{
2249 return (rdt_alloc_capable &&
2250 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2251}
2252
2253static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2254{
2255 return (rdt_mon_capable &&
2256 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2257}
2258
4e978d06 2259/*
0efc89be
FY
2260 * Move tasks from one to the other group. If @from is NULL, then all tasks
2261 * in the systems are moved unconditionally (used for teardown).
2262 *
2263 * If @mask is not NULL the cpus on which moved tasks are running are set
2264 * in that mask so the update smp function call is restricted to affected
2265 * cpus.
4e978d06 2266 */
0efc89be
FY
2267static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2268 struct cpumask *mask)
4e978d06 2269{
e02737d5
FY
2270 struct task_struct *p, *t;
2271
e02737d5 2272 read_lock(&tasklist_lock);
0efc89be 2273 for_each_process_thread(p, t) {
f3cbeaca
VS
2274 if (!from || is_closid_match(t, from) ||
2275 is_rmid_match(t, from)) {
0efc89be 2276 t->closid = to->closid;
f3cbeaca
VS
2277 t->rmid = to->mon.rmid;
2278
0efc89be
FY
2279#ifdef CONFIG_SMP
2280 /*
2281 * This is safe on x86 w/o barriers as the ordering
2282 * of writing to task_cpu() and t->on_cpu is
2283 * reverse to the reading here. The detection is
2284 * inaccurate as tasks might move or schedule
2285 * before the smp function call takes place. In
2286 * such a case the function call is pointless, but
2287 * there is no other side effect.
2288 */
2289 if (mask && t->on_cpu)
2290 cpumask_set_cpu(task_cpu(t), mask);
2291#endif
2292 }
2293 }
e02737d5 2294 read_unlock(&tasklist_lock);
0efc89be
FY
2295}
2296
f3cbeaca
VS
2297static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2298{
2299 struct rdtgroup *sentry, *stmp;
2300 struct list_head *head;
2301
2302 head = &rdtgrp->mon.crdtgrp_list;
2303 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2304 free_rmid(sentry->mon.rmid);
2305 list_del(&sentry->mon.crdtgrp_list);
b8511ccc
XS
2306
2307 if (atomic_read(&sentry->waitcount) != 0)
2308 sentry->flags = RDT_DELETED;
2309 else
2310 kfree(sentry);
f3cbeaca
VS
2311 }
2312}
2313
0efc89be
FY
2314/*
2315 * Forcibly remove all of subdirectories under root.
2316 */
2317static void rmdir_all_sub(void)
2318{
2319 struct rdtgroup *rdtgrp, *tmp;
2320
2321 /* Move all tasks to the default resource group */
2322 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
60cf5e10 2323
60cf5e10 2324 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
4af4a88e
VS
2325 /* Free any child rmids */
2326 free_all_child_rdtgrp(rdtgrp);
2327
60cf5e10
FY
2328 /* Remove each rdtgroup other than root */
2329 if (rdtgrp == &rdtgroup_default)
2330 continue;
c7cc0cc1 2331
e0bdfe8e
RC
2332 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2333 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2334 rdtgroup_pseudo_lock_remove(rdtgrp);
2335
c7cc0cc1
FY
2336 /*
2337 * Give any CPUs back to the default group. We cannot copy
2338 * cpu_online_mask because a CPU might have executed the
2339 * offline callback already, but is still marked online.
2340 */
2341 cpumask_or(&rdtgroup_default.cpu_mask,
2342 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2343
4af4a88e
VS
2344 free_rmid(rdtgrp->mon.rmid);
2345
60cf5e10
FY
2346 kernfs_remove(rdtgrp->kn);
2347 list_del(&rdtgrp->rdtgroup_list);
b8511ccc
XS
2348
2349 if (atomic_read(&rdtgrp->waitcount) != 0)
2350 rdtgrp->flags = RDT_DELETED;
2351 else
2352 kfree(rdtgrp);
60cf5e10 2353 }
0efc89be 2354 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
a9fcf862 2355 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
0efc89be 2356
4e978d06 2357 kernfs_remove(kn_info);
4af4a88e
VS
2358 kernfs_remove(kn_mongrp);
2359 kernfs_remove(kn_mondata);
4e978d06
FY
2360}
2361
5ff193fb
FY
2362static void rdt_kill_sb(struct super_block *sb)
2363{
2364 struct rdt_resource *r;
2365
36b6f9fc 2366 cpus_read_lock();
5ff193fb
FY
2367 mutex_lock(&rdtgroup_mutex);
2368
19c635ab
VS
2369 set_mba_sc(false);
2370
5ff193fb 2371 /*Put everything back to default values. */
1b5c0b75 2372 for_each_alloc_enabled_rdt_resource(r)
2545e9f5 2373 reset_all_ctrls(r);
99adde9b 2374 cdp_disable_all();
4e978d06 2375 rmdir_all_sub();
746e0859 2376 rdt_pseudo_lock_release();
472ef09b 2377 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
36b6f9fc
RC
2378 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2379 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2380 static_branch_disable_cpuslocked(&rdt_enable_key);
5ff193fb
FY
2381 kernfs_kill_sb(sb);
2382 mutex_unlock(&rdtgroup_mutex);
36b6f9fc 2383 cpus_read_unlock();
5ff193fb
FY
2384}
2385
2386static struct file_system_type rdt_fs_type = {
23bf1b6b
DH
2387 .name = "resctrl",
2388 .init_fs_context = rdt_init_fs_context,
d7167b14 2389 .parameters = rdt_fs_parameters,
23bf1b6b 2390 .kill_sb = rdt_kill_sb,
5ff193fb
FY
2391};
2392
d89b7379
VS
2393static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2394 void *priv)
2395{
2396 struct kernfs_node *kn;
2397 int ret = 0;
2398
488dee96
DT
2399 kn = __kernfs_create_file(parent_kn, name, 0444,
2400 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
d89b7379
VS
2401 &kf_mondata_ops, priv, NULL, NULL);
2402 if (IS_ERR(kn))
2403 return PTR_ERR(kn);
2404
2405 ret = rdtgroup_kn_set_ugid(kn);
2406 if (ret) {
2407 kernfs_remove(kn);
2408 return ret;
2409 }
2410
2411 return ret;
2412}
2413
895c663e
VS
2414/*
2415 * Remove all subdirectories of mon_data of ctrl_mon groups
2416 * and monitor groups with given domain id.
2417 */
2418void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2419{
2420 struct rdtgroup *prgrp, *crgrp;
2421 char name[32];
2422
2423 if (!r->mon_enabled)
2424 return;
2425
2426 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2427 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2428 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2429
2430 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2431 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2432 }
2433}
2434
d89b7379
VS
2435static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2436 struct rdt_domain *d,
2437 struct rdt_resource *r, struct rdtgroup *prgrp)
2438{
2439 union mon_data_bits priv;
2440 struct kernfs_node *kn;
2441 struct mon_evt *mevt;
a4de1dfd 2442 struct rmid_read rr;
d89b7379
VS
2443 char name[32];
2444 int ret;
2445
2446 sprintf(name, "mon_%s_%02d", r->name, d->id);
2447 /* create the directory */
2448 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2449 if (IS_ERR(kn))
2450 return PTR_ERR(kn);
2451
2452 /*
2453 * This extra ref will be put in kernfs_remove() and guarantees
2454 * that kn is always accessible.
2455 */
2456 kernfs_get(kn);
2457 ret = rdtgroup_kn_set_ugid(kn);
2458 if (ret)
2459 goto out_destroy;
2460
2461 if (WARN_ON(list_empty(&r->evt_list))) {
2462 ret = -EPERM;
2463 goto out_destroy;
2464 }
2465
2466 priv.u.rid = r->rid;
2467 priv.u.domid = d->id;
2468 list_for_each_entry(mevt, &r->evt_list, list) {
2469 priv.u.evtid = mevt->evtid;
2470 ret = mon_addfile(kn, mevt->name, priv.priv);
2471 if (ret)
2472 goto out_destroy;
a4de1dfd
VS
2473
2474 if (is_mbm_event(mevt->evtid))
46637d45 2475 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
d89b7379
VS
2476 }
2477 kernfs_activate(kn);
2478 return 0;
2479
2480out_destroy:
2481 kernfs_remove(kn);
2482 return ret;
2483}
2484
895c663e
VS
2485/*
2486 * Add all subdirectories of mon_data for "ctrl_mon" groups
2487 * and "monitor" groups with given domain id.
2488 */
2489void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2490 struct rdt_domain *d)
2491{
2492 struct kernfs_node *parent_kn;
2493 struct rdtgroup *prgrp, *crgrp;
2494 struct list_head *head;
2495
2496 if (!r->mon_enabled)
2497 return;
2498
2499 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2500 parent_kn = prgrp->mon.mon_data_kn;
2501 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2502
2503 head = &prgrp->mon.crdtgrp_list;
2504 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2505 parent_kn = crgrp->mon.mon_data_kn;
2506 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2507 }
2508 }
2509}
2510
d89b7379
VS
2511static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2512 struct rdt_resource *r,
2513 struct rdtgroup *prgrp)
2514{
2515 struct rdt_domain *dom;
2516 int ret;
2517
2518 list_for_each_entry(dom, &r->domains, list) {
2519 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2520 if (ret)
2521 return ret;
2522 }
2523
2524 return 0;
2525}
2526
2527/*
2528 * This creates a directory mon_data which contains the monitored data.
2529 *
2530 * mon_data has one directory for each domain whic are named
2531 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2532 * with L3 domain looks as below:
2533 * ./mon_data:
2534 * mon_L3_00
2535 * mon_L3_01
2536 * mon_L3_02
2537 * ...
2538 *
2539 * Each domain directory has one file per event:
2540 * ./mon_L3_00/:
2541 * llc_occupancy
2542 *
2543 */
2544static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2545 struct rdtgroup *prgrp,
2546 struct kernfs_node **dest_kn)
2547{
2548 struct rdt_resource *r;
2549 struct kernfs_node *kn;
2550 int ret;
2551
2552 /*
2553 * Create the mon_data directory first.
2554 */
334b0f4e 2555 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
d89b7379
VS
2556 if (ret)
2557 return ret;
2558
2559 if (dest_kn)
2560 *dest_kn = kn;
2561
2562 /*
2563 * Create the subdirectories for each domain. Note that all events
2564 * in a domain like L3 are grouped into a resource whose domain is L3
2565 */
2566 for_each_mon_enabled_rdt_resource(r) {
2567 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2568 if (ret)
2569 goto out_destroy;
2570 }
2571
2572 return 0;
2573
2574out_destroy:
2575 kernfs_remove(kn);
2576 return ret;
2577}
2578
95f0b77e
RC
2579/**
2580 * cbm_ensure_valid - Enforce validity on provided CBM
2581 * @_val: Candidate CBM
2582 * @r: RDT resource to which the CBM belongs
2583 *
2584 * The provided CBM represents all cache portions available for use. This
2585 * may be represented by a bitmap that does not consist of contiguous ones
2586 * and thus be an invalid CBM.
2587 * Here the provided CBM is forced to be a valid CBM by only considering
2588 * the first set of contiguous bits as valid and clearing all bits.
2589 * The intention here is to provide a valid default CBM with which a new
2590 * resource group is initialized. The user can follow this with a
2591 * modification to the CBM if the default does not satisfy the
2592 * requirements.
2593 */
2ef085bd 2594static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
95f0b77e 2595{
95f0b77e
RC
2596 unsigned int cbm_len = r->cache.cbm_len;
2597 unsigned long first_bit, zero_bit;
2ef085bd 2598 unsigned long val = _val;
95f0b77e 2599
2ef085bd
RC
2600 if (!val)
2601 return 0;
95f0b77e 2602
32f010de
RC
2603 first_bit = find_first_bit(&val, cbm_len);
2604 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
95f0b77e
RC
2605
2606 /* Clear any remaining bits to ensure contiguous region */
32f010de 2607 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2ef085bd 2608 return (u32)val;
95f0b77e
RC
2609}
2610
7390619a
XS
2611/*
2612 * Initialize cache resources per RDT domain
2613 *
2614 * Set the RDT domain up to start off with all usable allocations. That is,
2615 * all shareable and unused bits. All-zero CBM is invalid.
2616 */
2617static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2618 u32 closid)
2619{
2620 struct rdt_resource *r_cdp = NULL;
2621 struct rdt_domain *d_cdp = NULL;
2622 u32 used_b = 0, unused_b = 0;
2623 unsigned long tmp_cbm;
2624 enum rdtgrp_mode mode;
2625 u32 peer_ctl, *ctrl;
2626 int i;
2627
2628 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2629 d->have_new_ctrl = false;
2630 d->new_ctrl = r->cache.shareable_bits;
2631 used_b = r->cache.shareable_bits;
2632 ctrl = d->ctrl_val;
2633 for (i = 0; i < closids_supported(); i++, ctrl++) {
2634 if (closid_allocated(i) && i != closid) {
2635 mode = rdtgroup_mode_by_closid(i);
2636 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
87d3aa28
JM
2637 /*
2638 * ctrl values for locksetup aren't relevant
2639 * until the schemata is written, and the mode
2640 * becomes RDT_MODE_PSEUDO_LOCKED.
2641 */
2642 continue;
7390619a
XS
2643 /*
2644 * If CDP is active include peer domain's
2645 * usage to ensure there is no overlap
2646 * with an exclusive group.
2647 */
2648 if (d_cdp)
2649 peer_ctl = d_cdp->ctrl_val[i];
2650 else
2651 peer_ctl = 0;
2652 used_b |= *ctrl | peer_ctl;
2653 if (mode == RDT_MODE_SHAREABLE)
2654 d->new_ctrl |= *ctrl | peer_ctl;
2655 }
2656 }
2657 if (d->plr && d->plr->cbm > 0)
2658 used_b |= d->plr->cbm;
2659 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2660 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2661 d->new_ctrl |= unused_b;
2662 /*
2663 * Force the initial CBM to be valid, user can
2664 * modify the CBM based on system availability.
2665 */
2ef085bd 2666 d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
7390619a
XS
2667 /*
2668 * Assign the u32 CBM to an unsigned long to ensure that
2669 * bitmap_weight() does not access out-of-bound memory.
2670 */
2671 tmp_cbm = d->new_ctrl;
2672 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2673 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2674 return -ENOSPC;
2675 }
2676 d->have_new_ctrl = true;
2677
2678 return 0;
2679}
2680
47820e73
XS
2681/*
2682 * Initialize cache resources with default values.
95f0b77e
RC
2683 *
2684 * A new RDT group is being created on an allocation capable (CAT)
2685 * supporting system. Set this group up to start off with all usable
7390619a 2686 * allocations.
95f0b77e 2687 *
7390619a
XS
2688 * If there are no more shareable bits available on any domain then
2689 * the entire allocation will fail.
95f0b77e 2690 */
47820e73
XS
2691static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2692{
2693 struct rdt_domain *d;
2694 int ret;
2695
2696 list_for_each_entry(d, &r->domains, list) {
2697 ret = __init_one_rdt_domain(d, r, closid);
2698 if (ret < 0)
2699 return ret;
2700 }
2701
2702 return 0;
2703}
2704
2705/* Initialize MBA resource with default values. */
2706static void rdtgroup_init_mba(struct rdt_resource *r)
2707{
2708 struct rdt_domain *d;
2709
2710 list_for_each_entry(d, &r->domains, list) {
2711 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2712 d->have_new_ctrl = true;
2713 }
2714}
2715
2716/* Initialize the RDT group's allocations. */
95f0b77e
RC
2717static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2718{
95f0b77e 2719 struct rdt_resource *r;
7390619a 2720 int ret;
95f0b77e
RC
2721
2722 for_each_alloc_enabled_rdt_resource(r) {
47820e73
XS
2723 if (r->rid == RDT_RESOURCE_MBA) {
2724 rdtgroup_init_mba(r);
2725 } else {
2726 ret = rdtgroup_init_cat(r, rdtgrp->closid);
7390619a
XS
2727 if (ret < 0)
2728 return ret;
95f0b77e 2729 }
95f0b77e 2730
95f0b77e
RC
2731 ret = update_domains(r, rdtgrp->closid);
2732 if (ret < 0) {
723f1a0d 2733 rdt_last_cmd_puts("Failed to initialize allocations\n");
95f0b77e
RC
2734 return ret;
2735 }
47820e73 2736
95f0b77e
RC
2737 }
2738
40fba00f
XS
2739 rdtgrp->mode = RDT_MODE_SHAREABLE;
2740
95f0b77e
RC
2741 return 0;
2742}
2743
65b4f403 2744static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
65b4f403 2745 const char *name, umode_t mode,
c7d9aac6 2746 enum rdt_group_type rtype, struct rdtgroup **r)
60cf5e10 2747{
65b4f403 2748 struct rdtgroup *prdtgrp, *rdtgrp;
60cf5e10 2749 struct kernfs_node *kn;
65b4f403
VS
2750 uint files = 0;
2751 int ret;
60cf5e10 2752
334b0f4e 2753 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
65b4f403 2754 if (!prdtgrp) {
60cf5e10
FY
2755 ret = -ENODEV;
2756 goto out_unlock;
2757 }
2758
c966dac8
RC
2759 if (rtype == RDTMON_GROUP &&
2760 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2761 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2762 ret = -EINVAL;
723f1a0d 2763 rdt_last_cmd_puts("Pseudo-locking in progress\n");
c966dac8
RC
2764 goto out_unlock;
2765 }
2766
60cf5e10
FY
2767 /* allocate the rdtgroup. */
2768 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2769 if (!rdtgrp) {
2770 ret = -ENOSPC;
723f1a0d 2771 rdt_last_cmd_puts("Kernel out of memory\n");
65b4f403 2772 goto out_unlock;
60cf5e10 2773 }
65b4f403 2774 *r = rdtgrp;
c7d9aac6
VS
2775 rdtgrp->mon.parent = prdtgrp;
2776 rdtgrp->type = rtype;
2777 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
60cf5e10
FY
2778
2779 /* kernfs creates the directory for rdtgrp */
65b4f403 2780 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
60cf5e10
FY
2781 if (IS_ERR(kn)) {
2782 ret = PTR_ERR(kn);
cfd0f34e 2783 rdt_last_cmd_puts("kernfs create error\n");
65b4f403 2784 goto out_free_rgrp;
60cf5e10
FY
2785 }
2786 rdtgrp->kn = kn;
2787
2788 /*
2789 * kernfs_remove() will drop the reference count on "kn" which
2790 * will free it. But we still need it to stick around for the
2791 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2792 * here, which will be dropped inside rdtgroup_kn_unlock().
2793 */
2794 kernfs_get(kn);
2795
2796 ret = rdtgroup_kn_set_ugid(kn);
cfd0f34e
TL
2797 if (ret) {
2798 rdt_last_cmd_puts("kernfs perm error\n");
60cf5e10 2799 goto out_destroy;
cfd0f34e 2800 }
60cf5e10 2801
c7d9aac6 2802 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
65b4f403 2803 ret = rdtgroup_add_files(kn, files);
cfd0f34e
TL
2804 if (ret) {
2805 rdt_last_cmd_puts("kernfs fill error\n");
12e0110c 2806 goto out_destroy;
cfd0f34e 2807 }
12e0110c 2808
c7d9aac6
VS
2809 if (rdt_mon_capable) {
2810 ret = alloc_rmid();
cfd0f34e 2811 if (ret < 0) {
723f1a0d 2812 rdt_last_cmd_puts("Out of RMIDs\n");
c7d9aac6 2813 goto out_destroy;
cfd0f34e 2814 }
c7d9aac6 2815 rdtgrp->mon.rmid = ret;
d89b7379
VS
2816
2817 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
cfd0f34e
TL
2818 if (ret) {
2819 rdt_last_cmd_puts("kernfs subdir error\n");
d89b7379 2820 goto out_idfree;
cfd0f34e 2821 }
c7d9aac6 2822 }
60cf5e10
FY
2823 kernfs_activate(kn);
2824
65b4f403 2825 /*
334b0f4e 2826 * The caller unlocks the parent_kn upon success.
65b4f403
VS
2827 */
2828 return 0;
60cf5e10 2829
d89b7379
VS
2830out_idfree:
2831 free_rmid(rdtgrp->mon.rmid);
60cf5e10
FY
2832out_destroy:
2833 kernfs_remove(rdtgrp->kn);
65b4f403 2834out_free_rgrp:
60cf5e10 2835 kfree(rdtgrp);
60cf5e10 2836out_unlock:
334b0f4e 2837 rdtgroup_kn_unlock(parent_kn);
65b4f403
VS
2838 return ret;
2839}
2840
2841static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2842{
2843 kernfs_remove(rgrp->kn);
c7d9aac6 2844 free_rmid(rgrp->mon.rmid);
65b4f403
VS
2845 kfree(rgrp);
2846}
2847
c7d9aac6
VS
2848/*
2849 * Create a monitor group under "mon_groups" directory of a control
2850 * and monitor group(ctrl_mon). This is a resource group
2851 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2852 */
2853static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
32ada3b9 2854 const char *name, umode_t mode)
c7d9aac6
VS
2855{
2856 struct rdtgroup *rdtgrp, *prgrp;
2857 int ret;
2858
32ada3b9 2859 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
c7d9aac6
VS
2860 if (ret)
2861 return ret;
2862
2863 prgrp = rdtgrp->mon.parent;
2864 rdtgrp->closid = prgrp->closid;
2865
2866 /*
2867 * Add the rdtgrp to the list of rdtgrps the parent
2868 * ctrl_mon group has to track.
2869 */
2870 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2871
334b0f4e 2872 rdtgroup_kn_unlock(parent_kn);
c7d9aac6
VS
2873 return ret;
2874}
2875
65b4f403
VS
2876/*
2877 * These are rdtgroups created under the root directory. Can be used
c7d9aac6 2878 * to allocate and monitor resources.
65b4f403 2879 */
c7d9aac6 2880static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
c7d9aac6 2881 const char *name, umode_t mode)
65b4f403
VS
2882{
2883 struct rdtgroup *rdtgrp;
2884 struct kernfs_node *kn;
2885 u32 closid;
2886 int ret;
2887
32ada3b9 2888 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
65b4f403
VS
2889 if (ret)
2890 return ret;
2891
2892 kn = rdtgrp->kn;
2893 ret = closid_alloc();
cfd0f34e 2894 if (ret < 0) {
723f1a0d 2895 rdt_last_cmd_puts("Out of CLOSIDs\n");
65b4f403 2896 goto out_common_fail;
cfd0f34e 2897 }
65b4f403 2898 closid = ret;
36e74d35 2899 ret = 0;
65b4f403
VS
2900
2901 rdtgrp->closid = closid;
95f0b77e
RC
2902 ret = rdtgroup_init_alloc(rdtgrp);
2903 if (ret < 0)
2904 goto out_id_free;
2905
65b4f403
VS
2906 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2907
c7d9aac6
VS
2908 if (rdt_mon_capable) {
2909 /*
2910 * Create an empty mon_groups directory to hold the subset
2911 * of tasks and cpus to monitor.
2912 */
334b0f4e 2913 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
cfd0f34e
TL
2914 if (ret) {
2915 rdt_last_cmd_puts("kernfs subdir error\n");
95f0b77e 2916 goto out_del_list;
cfd0f34e 2917 }
c7d9aac6
VS
2918 }
2919
65b4f403
VS
2920 goto out_unlock;
2921
95f0b77e
RC
2922out_del_list:
2923 list_del(&rdtgrp->rdtgroup_list);
c7d9aac6
VS
2924out_id_free:
2925 closid_free(closid);
65b4f403
VS
2926out_common_fail:
2927 mkdir_rdt_prepare_clean(rdtgrp);
2928out_unlock:
334b0f4e 2929 rdtgroup_kn_unlock(parent_kn);
60cf5e10
FY
2930 return ret;
2931}
2932
c7d9aac6
VS
2933/*
2934 * We allow creating mon groups only with in a directory called "mon_groups"
2935 * which is present in every ctrl_mon group. Check if this is a valid
2936 * "mon_groups" directory.
2937 *
2938 * 1. The directory should be named "mon_groups".
2939 * 2. The mon group itself should "not" be named "mon_groups".
2940 * This makes sure "mon_groups" directory always has a ctrl_mon group
2941 * as parent.
2942 */
2943static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2944{
2945 return (!strcmp(kn->name, "mon_groups") &&
2946 strcmp(name, "mon_groups"));
2947}
2948
65b4f403
VS
2949static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2950 umode_t mode)
2951{
2952 /* Do not accept '\n' to avoid unparsable situation. */
2953 if (strchr(name, '\n'))
2954 return -EINVAL;
2955
2956 /*
2957 * If the parent directory is the root directory and RDT
c7d9aac6
VS
2958 * allocation is supported, add a control and monitoring
2959 * subdirectory
65b4f403
VS
2960 */
2961 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
32ada3b9 2962 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
c7d9aac6
VS
2963
2964 /*
2965 * If RDT monitoring is supported and the parent directory is a valid
2966 * "mon_groups" directory, add a monitoring subdirectory.
2967 */
2968 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
32ada3b9 2969 return rdtgroup_mkdir_mon(parent_kn, name, mode);
65b4f403
VS
2970
2971 return -EPERM;
2972}
2973
f3cbeaca
VS
2974static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2975 cpumask_var_t tmpmask)
2976{
2977 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2978 int cpu;
2979
2980 /* Give any tasks back to the parent group */
2981 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2982
2983 /* Update per cpu rmid of the moved CPUs first */
2984 for_each_cpu(cpu, &rdtgrp->cpu_mask)
a9110b55 2985 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
f3cbeaca
VS
2986 /*
2987 * Update the MSR on moved CPUs and CPUs which have moved
2988 * task running on them.
2989 */
2990 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2991 update_closid_rmid(tmpmask, NULL);
2992
2993 rdtgrp->flags = RDT_DELETED;
2994 free_rmid(rdtgrp->mon.rmid);
2995
2996 /*
2997 * Remove the rdtgrp from the parent ctrl_mon group's list
2998 */
2999 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3000 list_del(&rdtgrp->mon.crdtgrp_list);
3001
3002 /*
3003 * one extra hold on this, will drop when we kfree(rdtgrp)
3004 * in rdtgroup_kn_unlock()
3005 */
3006 kernfs_get(kn);
3007 kernfs_remove(rdtgrp->kn);
3008
3009 return 0;
3010}
3011
17eafd07
RC
3012static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
3013 struct rdtgroup *rdtgrp)
3014{
3015 rdtgrp->flags = RDT_DELETED;
3016 list_del(&rdtgrp->rdtgroup_list);
3017
3018 /*
3019 * one extra hold on this, will drop when we kfree(rdtgrp)
3020 * in rdtgroup_kn_unlock()
3021 */
3022 kernfs_get(kn);
3023 kernfs_remove(rdtgrp->kn);
3024 return 0;
3025}
3026
f9049547
VS
3027static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3028 cpumask_var_t tmpmask)
60cf5e10 3029{
f9049547 3030 int cpu;
60cf5e10 3031
e02737d5 3032 /* Give any tasks back to the default group */
0efc89be 3033 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
e02737d5 3034
12e0110c
TL
3035 /* Give any CPUs back to the default group */
3036 cpumask_or(&rdtgroup_default.cpu_mask,
3037 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
0efc89be 3038
f3cbeaca
VS
3039 /* Update per cpu closid and rmid of the moved CPUs first */
3040 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
a9110b55
VS
3041 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3042 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
f3cbeaca
VS
3043 }
3044
0efc89be
FY
3045 /*
3046 * Update the MSR on moved CPUs and CPUs which have moved
3047 * task running on them.
3048 */
3049 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
a9fcf862 3050 update_closid_rmid(tmpmask, NULL);
12e0110c 3051
60cf5e10 3052 closid_free(rdtgrp->closid);
f3cbeaca
VS
3053 free_rmid(rdtgrp->mon.rmid);
3054
074fadee
XS
3055 rdtgroup_ctrl_remove(kn, rdtgrp);
3056
f3cbeaca
VS
3057 /*
3058 * Free all the child monitor group rmids.
3059 */
3060 free_all_child_rdtgrp(rdtgrp);
3061
f9049547
VS
3062 return 0;
3063}
3064
3065static int rdtgroup_rmdir(struct kernfs_node *kn)
3066{
3067 struct kernfs_node *parent_kn = kn->parent;
3068 struct rdtgroup *rdtgrp;
3069 cpumask_var_t tmpmask;
3070 int ret = 0;
3071
3072 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3073 return -ENOMEM;
3074
3075 rdtgrp = rdtgroup_kn_lock_live(kn);
3076 if (!rdtgrp) {
3077 ret = -EPERM;
3078 goto out;
3079 }
3080
3081 /*
3082 * If the rdtgroup is a ctrl_mon group and parent directory
f3cbeaca
VS
3083 * is the root directory, remove the ctrl_mon group.
3084 *
3085 * If the rdtgroup is a mon group and parent directory
3086 * is a valid "mon_groups" directory, remove the mon group.
f9049547 3087 */
b0151da5
RC
3088 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3089 rdtgrp != &rdtgroup_default) {
e0bdfe8e
RC
3090 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3091 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3092 ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3093 } else {
3094 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3095 }
3096 } else if (rdtgrp->type == RDTMON_GROUP &&
3097 is_mon_groups(parent_kn, kn->name)) {
f3cbeaca 3098 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
e0bdfe8e 3099 } else {
f9049547 3100 ret = -EPERM;
e0bdfe8e 3101 }
f9049547 3102
0efc89be 3103out:
60cf5e10 3104 rdtgroup_kn_unlock(kn);
0efc89be
FY
3105 free_cpumask_var(tmpmask);
3106 return ret;
60cf5e10
FY
3107}
3108
76ae054c
SL
3109static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3110{
1b5c0b75 3111 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
76ae054c 3112 seq_puts(seq, ",cdp");
2cc81c69
XS
3113
3114 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3115 seq_puts(seq, ",cdpl2");
3116
3117 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3118 seq_puts(seq, ",mba_MBps");
3119
76ae054c
SL
3120 return 0;
3121}
3122
5ff193fb 3123static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
76ae054c
SL
3124 .mkdir = rdtgroup_mkdir,
3125 .rmdir = rdtgroup_rmdir,
3126 .show_options = rdtgroup_show_options,
5ff193fb
FY
3127};
3128
3129static int __init rdtgroup_setup_root(void)
3130{
12e0110c
TL
3131 int ret;
3132
5ff193fb 3133 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
21220bb1
RC
3134 KERNFS_ROOT_CREATE_DEACTIVATED |
3135 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
5ff193fb
FY
3136 &rdtgroup_default);
3137 if (IS_ERR(rdt_root))
3138 return PTR_ERR(rdt_root);
3139
3140 mutex_lock(&rdtgroup_mutex);
3141
3142 rdtgroup_default.closid = 0;
c7d9aac6
VS
3143 rdtgroup_default.mon.rmid = 0;
3144 rdtgroup_default.type = RDTCTRL_GROUP;
3145 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3146
5ff193fb
FY
3147 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3148
5dc1d5c6 3149 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
12e0110c
TL
3150 if (ret) {
3151 kernfs_destroy_root(rdt_root);
3152 goto out;
3153 }
3154
5ff193fb
FY
3155 rdtgroup_default.kn = rdt_root->kn;
3156 kernfs_activate(rdtgroup_default.kn);
3157
12e0110c 3158out:
5ff193fb
FY
3159 mutex_unlock(&rdtgroup_mutex);
3160
12e0110c 3161 return ret;
5ff193fb
FY
3162}
3163
3164/*
3165 * rdtgroup_init - rdtgroup initialization
3166 *
3167 * Setup resctrl file system including set up root, create mount point,
3168 * register rdtgroup filesystem, and initialize files under root directory.
3169 *
3170 * Return: 0 on success or -errno
3171 */
3172int __init rdtgroup_init(void)
3173{
3174 int ret = 0;
3175
9b3a7fd0
TL
3176 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3177 sizeof(last_cmd_status_buf));
3178
5ff193fb
FY
3179 ret = rdtgroup_setup_root();
3180 if (ret)
3181 return ret;
3182
3183 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3184 if (ret)
3185 goto cleanup_root;
3186
3187 ret = register_filesystem(&rdt_fs_type);
3188 if (ret)
3189 goto cleanup_mountpoint;
3190
37707ec6
RC
3191 /*
3192 * Adding the resctrl debugfs directory here may not be ideal since
3193 * it would let the resctrl debugfs directory appear on the debugfs
3194 * filesystem before the resctrl filesystem is mounted.
3195 * It may also be ok since that would enable debugging of RDT before
3196 * resctrl is mounted.
3197 * The reason why the debugfs directory is created here and not in
3198 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3199 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3200 * (the lockdep class of inode->i_rwsem). Other filesystem
3201 * interactions (eg. SyS_getdents) have the lock ordering:
c1e8d7c6
ML
3202 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3203 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
37707ec6 3204 * is taken, thus creating dependency:
c1e8d7c6 3205 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
37707ec6
RC
3206 * issues considering the other two lock dependencies.
3207 * By creating the debugfs directory here we avoid a dependency
3208 * that may cause deadlock (even though file operations cannot
3209 * occur until the filesystem is mounted, but I do not know how to
3210 * tell lockdep that).
3211 */
3212 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3213
5ff193fb
FY
3214 return 0;
3215
3216cleanup_mountpoint:
3217 sysfs_remove_mount_point(fs_kobj, "resctrl");
3218cleanup_root:
3219 kernfs_destroy_root(rdt_root);
3220
3221 return ret;
3222}
0af6a48d
RC
3223
3224void __exit rdtgroup_exit(void)
3225{
37707ec6 3226 debugfs_remove_recursive(debugfs_resctrl);
0af6a48d
RC
3227 unregister_filesystem(&rdt_fs_type);
3228 sysfs_remove_mount_point(fs_kobj, "resctrl");
3229 kernfs_destroy_root(rdt_root);
3230}