]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - arch/x86/kernel/fpu/core.c
Merge branches 'arm/omap', 'arm/msm', 'arm/smmu', 'arm/tegra', 'x86/vt-d', 'x86/amd...
[mirror_ubuntu-zesty-kernel.git] / arch / x86 / kernel / fpu / core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
78f7f1e5 8#include <asm/fpu/internal.h>
59a36d16 9#include <asm/fpu/regset.h>
fcbc99c4 10#include <asm/fpu/signal.h>
e1cebad4 11#include <asm/traps.h>
fcbc99c4 12
91066588 13#include <linux/hardirq.h>
1da177e4 14
6f575023
IM
15/*
16 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
17 * depending on the FPU hardware format:
18 */
c47ada30 19union fpregs_state init_fpstate __read_mostly;
6f575023 20
085cc281
IM
21/*
22 * Track whether the kernel is using the FPU state
23 * currently.
24 *
25 * This flag is used:
26 *
27 * - by IRQ context code to potentially use the FPU
28 * if it's unused.
29 *
30 * - to debug kernel_fpu_begin()/end() correctness
31 */
14e153ef
ON
32static DEFINE_PER_CPU(bool, in_kernel_fpu);
33
b0c050c5 34/*
36b544dc 35 * Track which context is using the FPU on the CPU:
b0c050c5 36 */
36b544dc 37DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
b0c050c5 38
416d49ac 39static void kernel_fpu_disable(void)
7575637a 40{
e97131a8 41 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
7575637a
ON
42 this_cpu_write(in_kernel_fpu, true);
43}
44
416d49ac 45static void kernel_fpu_enable(void)
7575637a 46{
e97131a8 47 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
7575637a
ON
48 this_cpu_write(in_kernel_fpu, false);
49}
50
085cc281
IM
51static bool kernel_fpu_disabled(void)
52{
53 return this_cpu_read(in_kernel_fpu);
54}
55
8546c008
LT
56/*
57 * Were we in an interrupt that interrupted kernel mode?
58 *
304bceda 59 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
8546c008
LT
60 * pair does nothing at all: the thread must not have fpu (so
61 * that we don't try to save the FPU state), and TS must
62 * be set (so that the clts/stts pair does nothing that is
63 * visible in the interrupted kernel thread).
5187b28f 64 *
4b2e762e
ON
65 * Except for the eagerfpu case when we return true; in the likely case
66 * the thread has FPU but we are not going to set/clear TS.
8546c008 67 */
416d49ac 68static bool interrupted_kernel_fpu_idle(void)
8546c008 69{
085cc281 70 if (kernel_fpu_disabled())
14e153ef
ON
71 return false;
72
5d2bd700 73 if (use_eager_fpu())
4b2e762e 74 return true;
304bceda 75
d5cea9b0 76 return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
8546c008
LT
77}
78
79/*
80 * Were we in user mode (or vm86 mode) when we were
81 * interrupted?
82 *
83 * Doing kernel_fpu_begin/end() is ok if we are running
84 * in an interrupt context from user mode - we'll just
85 * save the FPU state as required.
86 */
416d49ac 87static bool interrupted_user_mode(void)
8546c008
LT
88{
89 struct pt_regs *regs = get_irq_regs();
f39b6f0e 90 return regs && user_mode(regs);
8546c008
LT
91}
92
93/*
94 * Can we use the FPU in kernel mode with the
95 * whole "kernel_fpu_begin/end()" sequence?
96 *
97 * It's always ok in process context (ie "not interrupt")
98 * but it is sometimes ok even from an irq.
99 */
100bool irq_fpu_usable(void)
101{
102 return !in_interrupt() ||
103 interrupted_user_mode() ||
104 interrupted_kernel_fpu_idle();
105}
106EXPORT_SYMBOL(irq_fpu_usable);
107
b1a74bf8 108void __kernel_fpu_begin(void)
8546c008 109{
36b544dc 110 struct fpu *fpu = &current->thread.fpu;
8546c008 111
e97131a8 112 WARN_ON_FPU(!irq_fpu_usable());
63c6680c 113
3103ae3a 114 kernel_fpu_disable();
14e153ef 115
d5cea9b0 116 if (fpu->fpregs_active) {
4f836347 117 copy_fpregs_to_fpstate(fpu);
7aeccb83 118 } else {
36b544dc 119 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
32b49b3c 120 __fpregs_activate_hw();
8546c008
LT
121 }
122}
b1a74bf8 123EXPORT_SYMBOL(__kernel_fpu_begin);
8546c008 124
b1a74bf8 125void __kernel_fpu_end(void)
8546c008 126{
af2d94fd 127 struct fpu *fpu = &current->thread.fpu;
33a3ebdc 128
9ccc27a5 129 if (fpu->fpregs_active)
003e2e8b 130 copy_kernel_to_fpregs(&fpu->state);
9ccc27a5 131 else
32b49b3c 132 __fpregs_deactivate_hw();
14e153ef 133
3103ae3a 134 kernel_fpu_enable();
8546c008 135}
b1a74bf8 136EXPORT_SYMBOL(__kernel_fpu_end);
8546c008 137
d63e79b1
IM
138void kernel_fpu_begin(void)
139{
140 preempt_disable();
d63e79b1
IM
141 __kernel_fpu_begin();
142}
143EXPORT_SYMBOL_GPL(kernel_fpu_begin);
144
145void kernel_fpu_end(void)
146{
147 __kernel_fpu_end();
148 preempt_enable();
149}
150EXPORT_SYMBOL_GPL(kernel_fpu_end);
151
91066588
IM
152/*
153 * CR0::TS save/restore functions:
154 */
155int irq_ts_save(void)
156{
157 /*
158 * If in process context and not atomic, we can take a spurious DNA fault.
159 * Otherwise, doing clts() in process context requires disabling preemption
160 * or some heavy lifting like kernel_fpu_begin()
161 */
162 if (!in_atomic())
163 return 0;
164
165 if (read_cr0() & X86_CR0_TS) {
166 clts();
167 return 1;
168 }
169
170 return 0;
171}
172EXPORT_SYMBOL_GPL(irq_ts_save);
173
174void irq_ts_restore(int TS_state)
175{
176 if (TS_state)
177 stts();
178}
179EXPORT_SYMBOL_GPL(irq_ts_restore);
180
4af08f2f 181/*
48c4717f 182 * Save the FPU state (mark it for reload if necessary):
87cdb98a
IM
183 *
184 * This only ever gets called for the current task.
4af08f2f 185 */
0c070595 186void fpu__save(struct fpu *fpu)
8546c008 187{
e97131a8 188 WARN_ON_FPU(fpu != &current->thread.fpu);
87cdb98a 189
8546c008 190 preempt_disable();
d5cea9b0 191 if (fpu->fpregs_active) {
48c4717f 192 if (!copy_fpregs_to_fpstate(fpu))
66af8e27 193 fpregs_deactivate(fpu);
a9241ea5 194 }
8546c008
LT
195 preempt_enable();
196}
4af08f2f 197EXPORT_SYMBOL_GPL(fpu__save);
8546c008 198
0aba6978
IM
199/*
200 * Legacy x87 fpstate state init:
201 */
c47ada30 202static inline void fpstate_init_fstate(struct fregs_state *fp)
0aba6978
IM
203{
204 fp->cwd = 0xffff037fu;
205 fp->swd = 0xffff0000u;
206 fp->twd = 0xffffffffu;
207 fp->fos = 0xffff0000u;
208}
209
c47ada30 210void fpstate_init(union fpregs_state *state)
1da177e4 211{
60e019eb 212 if (!cpu_has_fpu) {
bf935b0b 213 fpstate_init_soft(&state->soft);
86603283 214 return;
e8a496ac 215 }
e8a496ac 216
bf935b0b 217 memset(state, 0, xstate_size);
1d23c451 218
0aba6978 219 if (cpu_has_fxsr)
bf935b0b 220 fpstate_init_fxstate(&state->fxsave);
0aba6978 221 else
bf935b0b 222 fpstate_init_fstate(&state->fsave);
86603283 223}
c0ee2cf6 224EXPORT_SYMBOL_GPL(fpstate_init);
86603283 225
bfd6fc05
IM
226/*
227 * Copy the current task's FPU state to a new task's FPU context.
228 *
aeb997b9
IM
229 * In both the 'eager' and the 'lazy' case we save hardware registers
230 * directly to the destination buffer.
bfd6fc05 231 */
f9bc977f 232static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
e102f30f 233{
e97131a8 234 WARN_ON_FPU(src_fpu != &current->thread.fpu);
bfd6fc05 235
b1652900
IM
236 /*
237 * Don't let 'init optimized' areas of the XSAVE area
238 * leak into the child task:
239 */
240 if (use_eager_fpu())
7366ed77 241 memset(&dst_fpu->state.xsave, 0, xstate_size);
b1652900
IM
242
243 /*
244 * Save current FPU registers directly into the child
245 * FPU context, without any memory-to-memory copying.
246 *
247 * If the FPU context got destroyed in the process (FNSAVE
248 * done on old CPUs) then copy it back into the source
249 * context and mark the current task for lazy restore.
250 *
251 * We have to do all this with preemption disabled,
252 * mostly because of the FNSAVE case, because in that
253 * case we must not allow preemption in the window
254 * between the FNSAVE and us marking the context lazy.
255 *
256 * It shouldn't be an issue as even FNSAVE is plenty
257 * fast in terms of critical section length.
258 */
259 preempt_disable();
260 if (!copy_fpregs_to_fpstate(dst_fpu)) {
261 memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
262 fpregs_deactivate(src_fpu);
e102f30f 263 }
b1652900 264 preempt_enable();
e102f30f
IM
265}
266
c69e098b 267int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
a752b53d 268{
c69e098b 269 dst_fpu->counter = 0;
d5cea9b0 270 dst_fpu->fpregs_active = 0;
c69e098b 271 dst_fpu->last_cpu = -1;
a752b53d 272
827409b2 273 if (src_fpu->fpstate_active && cpu_has_fpu)
f9bc977f 274 fpu_copy(dst_fpu, src_fpu);
c4d6ee6e 275
a752b53d
IM
276 return 0;
277}
278
97185c95 279/*
c4d72e2d
IM
280 * Activate the current task's in-memory FPU context,
281 * if it has not been used before:
97185c95 282 */
c4d72e2d 283void fpu__activate_curr(struct fpu *fpu)
97185c95 284{
e97131a8 285 WARN_ON_FPU(fpu != &current->thread.fpu);
97185c95 286
c4d72e2d 287 if (!fpu->fpstate_active) {
bf935b0b 288 fpstate_init(&fpu->state);
97185c95 289
c4d72e2d
IM
290 /* Safe to do for the current task: */
291 fpu->fpstate_active = 1;
292 }
97185c95 293}
c4d72e2d 294EXPORT_SYMBOL_GPL(fpu__activate_curr);
97185c95 295
05602812
IM
296/*
297 * This function must be called before we read a task's fpstate.
298 *
299 * If the task has not used the FPU before then initialize its
300 * fpstate.
301 *
302 * If the task has used the FPU before then save it.
303 */
304void fpu__activate_fpstate_read(struct fpu *fpu)
305{
306 /*
307 * If fpregs are active (in the current CPU), then
308 * copy them to the fpstate:
309 */
310 if (fpu->fpregs_active) {
311 fpu__save(fpu);
312 } else {
9ba6b791 313 if (!fpu->fpstate_active) {
05602812
IM
314 fpstate_init(&fpu->state);
315
316 /* Safe to do for current and for stopped child tasks: */
317 fpu->fpstate_active = 1;
318 }
319 }
320}
321
86603283 322/*
343763c3 323 * This function must be called before we write a task's fpstate.
af7f8721 324 *
343763c3
IM
325 * If the task has used the FPU before then unlazy it.
326 * If the task has not used the FPU before then initialize its fpstate.
af7f8721 327 *
343763c3
IM
328 * After this function call, after registers in the fpstate are
329 * modified and the child task has woken up, the child task will
330 * restore the modified FPU state from the modified context. If we
331 * didn't clear its lazy status here then the lazy in-registers
332 * state pending on its former CPU could be restored, corrupting
333 * the modifications.
86603283 334 */
6a81d7eb 335void fpu__activate_fpstate_write(struct fpu *fpu)
86603283 336{
47f01e8c 337 /*
343763c3
IM
338 * Only stopped child tasks can be used to modify the FPU
339 * state in the fpstate buffer:
47f01e8c 340 */
343763c3
IM
341 WARN_ON_FPU(fpu == &current->thread.fpu);
342
343 if (fpu->fpstate_active) {
344 /* Invalidate any lazy state: */
345 fpu->last_cpu = -1;
2fb29fc7 346 } else {
343763c3 347 fpstate_init(&fpu->state);
47f01e8c 348
343763c3
IM
349 /* Safe to do for stopped child tasks: */
350 fpu->fpstate_active = 1;
2fb29fc7 351 }
1da177e4
LT
352}
353
93b90712 354/*
be7436d5
IM
355 * 'fpu__restore()' is called to copy FPU registers from
356 * the FPU fpstate to the live hw registers and to activate
357 * access to the hardware registers, so that FPU instructions
358 * can be used afterwards.
93b90712 359 *
be7436d5
IM
360 * Must be called with kernel preemption disabled (for example
361 * with local interrupts disabled, as it is in the case of
362 * do_device_not_available()).
93b90712 363 */
e1884d69 364void fpu__restore(struct fpu *fpu)
93b90712 365{
c4d72e2d 366 fpu__activate_curr(fpu);
93b90712 367
232f62cd 368 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
93b90712 369 kernel_fpu_disable();
232f62cd 370 fpregs_activate(fpu);
003e2e8b 371 copy_kernel_to_fpregs(&fpu->state);
9ccc27a5 372 fpu->counter++;
93b90712
IM
373 kernel_fpu_enable();
374}
3a0aee48 375EXPORT_SYMBOL_GPL(fpu__restore);
93b90712 376
6ffc152e
IM
377/*
378 * Drops current FPU state: deactivates the fpregs and
379 * the fpstate. NOTE: it still leaves previous contents
380 * in the fpregs in the eager-FPU case.
381 *
382 * This function can be used in cases where we know that
383 * a state-restore is coming: either an explicit one,
384 * or a reschedule.
385 */
386void fpu__drop(struct fpu *fpu)
387{
388 preempt_disable();
389 fpu->counter = 0;
390
391 if (fpu->fpregs_active) {
392 /* Ignore delayed exceptions from user space */
393 asm volatile("1: fwait\n"
394 "2:\n"
395 _ASM_EXTABLE(1b, 2b));
396 fpregs_deactivate(fpu);
397 }
398
399 fpu->fpstate_active = 0;
400
401 preempt_enable();
402}
403
81541889
IM
404/*
405 * Clear FPU registers by setting them up from
406 * the init fpstate:
407 */
408static inline void copy_init_fpstate_to_fpregs(void)
409{
410 if (use_xsave())
c6813144 411 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
81541889 412 else
c6813144 413 copy_kernel_to_fxregs(&init_fpstate.fxsave);
81541889
IM
414}
415
6ffc152e 416/*
fbce7782
IM
417 * Clear the FPU state back to init state.
418 *
419 * Called by sys_execve(), by the signal handler code and by various
420 * error paths.
2e85591a 421 */
04c8e01d 422void fpu__clear(struct fpu *fpu)
81683cc8 423{
e97131a8 424 WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
4c138410 425
81683cc8
IM
426 if (!use_eager_fpu()) {
427 /* FPU state will be reallocated lazily at the first use. */
50338615 428 fpu__drop(fpu);
81683cc8 429 } else {
c5bedc68 430 if (!fpu->fpstate_active) {
c4d72e2d 431 fpu__activate_curr(fpu);
81683cc8
IM
432 user_fpu_begin();
433 }
81541889 434 copy_init_fpstate_to_fpregs();
81683cc8
IM
435 }
436}
437
e1cebad4
IM
438/*
439 * x87 math exception handling:
440 */
441
442static inline unsigned short get_fpu_cwd(struct fpu *fpu)
443{
444 if (cpu_has_fxsr) {
445 return fpu->state.fxsave.cwd;
446 } else {
447 return (unsigned short)fpu->state.fsave.cwd;
448 }
449}
450
451static inline unsigned short get_fpu_swd(struct fpu *fpu)
452{
453 if (cpu_has_fxsr) {
454 return fpu->state.fxsave.swd;
455 } else {
456 return (unsigned short)fpu->state.fsave.swd;
457 }
458}
459
460static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
461{
462 if (cpu_has_xmm) {
463 return fpu->state.fxsave.mxcsr;
464 } else {
465 return MXCSR_DEFAULT;
466 }
467}
468
469int fpu__exception_code(struct fpu *fpu, int trap_nr)
470{
471 int err;
472
473 if (trap_nr == X86_TRAP_MF) {
474 unsigned short cwd, swd;
475 /*
476 * (~cwd & swd) will mask out exceptions that are not set to unmasked
477 * status. 0x3f is the exception bits in these regs, 0x200 is the
478 * C1 reg you need in case of a stack fault, 0x040 is the stack
479 * fault bit. We should only be taking one exception at a time,
480 * so if this combination doesn't produce any single exception,
481 * then we have a bad program that isn't synchronizing its FPU usage
482 * and it will suffer the consequences since we won't be able to
483 * fully reproduce the context of the exception
484 */
485 cwd = get_fpu_cwd(fpu);
486 swd = get_fpu_swd(fpu);
487
488 err = swd & ~cwd;
489 } else {
490 /*
491 * The SIMD FPU exceptions are handled a little differently, as there
492 * is only a single status/control register. Thus, to determine which
493 * unmasked exception was caught we must mask the exception mask bits
494 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
495 */
496 unsigned short mxcsr = get_fpu_mxcsr(fpu);
497 err = ~(mxcsr >> 7) & mxcsr;
498 }
499
500 if (err & 0x001) { /* Invalid op */
501 /*
502 * swd & 0x240 == 0x040: Stack Underflow
503 * swd & 0x240 == 0x240: Stack Overflow
504 * User must clear the SF bit (0x40) if set
505 */
506 return FPE_FLTINV;
507 } else if (err & 0x004) { /* Divide by Zero */
508 return FPE_FLTDIV;
509 } else if (err & 0x008) { /* Overflow */
510 return FPE_FLTOVF;
511 } else if (err & 0x012) { /* Denormal, Underflow */
512 return FPE_FLTUND;
513 } else if (err & 0x020) { /* Precision */
514 return FPE_FLTRES;
515 }
516
517 /*
518 * If we're using IRQ 13, or supposedly even some trap
519 * X86_TRAP_MF implementations, it's possible
520 * we get a spurious trap, which is not an error.
521 */
522 return 0;
523}