]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/hpet.c
x86, hpet: Disable per-cpu hpet timer if ARAT is supported
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0
IM
3#include <linux/interrupt.h>
4#include <linux/sysdev.h>
28769149 5#include <linux/delay.h>
5d0cf410
JS
6#include <linux/errno.h>
7#include <linux/hpet.h>
8#include <linux/init.h>
58ac1e76 9#include <linux/cpu.h>
4588c1f0
IM
10#include <linux/pm.h>
11#include <linux/io.h>
5d0cf410 12
28769149 13#include <asm/fixmap.h>
06a24dec 14#include <asm/i8253.h>
4588c1f0 15#include <asm/hpet.h>
5d0cf410 16
4588c1f0
IM
17#define HPET_MASK CLOCKSOURCE_MASK(32)
18#define HPET_SHIFT 22
5d0cf410 19
b10db7f0
PM
20/* FSEC = 10^-15
21 NSEC = 10^-9 */
4588c1f0 22#define FSEC_PER_NSEC 1000000L
5d0cf410 23
26afe5f2 24#define HPET_DEV_USED_BIT 2
25#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26#define HPET_DEV_VALID 0x8
27#define HPET_DEV_FSB_CAP 0x1000
28#define HPET_DEV_PERI_CAP 0x2000
29
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
e9e2cdb4
TG
32/*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
4588c1f0 35unsigned long hpet_address;
e951e4af 36#ifdef CONFIG_PCI_MSI
3b71e9e3 37static unsigned long hpet_num_timers;
e951e4af 38#endif
4588c1f0 39static void __iomem *hpet_virt_address;
e9e2cdb4 40
58ac1e76 41struct hpet_dev {
4588c1f0
IM
42 struct clock_event_device evt;
43 unsigned int num;
44 int cpu;
45 unsigned int irq;
46 unsigned int flags;
47 char name[10];
58ac1e76 48};
49
31c435d7 50unsigned long hpet_readl(unsigned long a)
e9e2cdb4
TG
51{
52 return readl(hpet_virt_address + a);
53}
54
55static inline void hpet_writel(unsigned long d, unsigned long a)
56{
57 writel(d, hpet_virt_address + a);
58}
59
28769149 60#ifdef CONFIG_X86_64
28769149 61#include <asm/pgtable.h>
2387ce57 62#endif
28769149 63
06a24dec
TG
64static inline void hpet_set_mapping(void)
65{
66 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
2387ce57
YL
67#ifdef CONFIG_X86_64
68 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69#endif
06a24dec
TG
70}
71
72static inline void hpet_clear_mapping(void)
73{
74 iounmap(hpet_virt_address);
75 hpet_virt_address = NULL;
76}
77
e9e2cdb4
TG
78/*
79 * HPET command line enable / disable
80 */
81static int boot_hpet_disable;
b17530bd 82int hpet_force_user;
b98103a5 83static int hpet_verbose;
e9e2cdb4 84
4588c1f0 85static int __init hpet_setup(char *str)
e9e2cdb4
TG
86{
87 if (str) {
88 if (!strncmp("disable", str, 7))
89 boot_hpet_disable = 1;
b17530bd
TG
90 if (!strncmp("force", str, 5))
91 hpet_force_user = 1;
b98103a5
AH
92 if (!strncmp("verbose", str, 7))
93 hpet_verbose = 1;
e9e2cdb4
TG
94 }
95 return 1;
96}
97__setup("hpet=", hpet_setup);
98
28769149
TG
99static int __init disable_hpet(char *str)
100{
101 boot_hpet_disable = 1;
102 return 1;
103}
104__setup("nohpet", disable_hpet);
105
e9e2cdb4
TG
106static inline int is_hpet_capable(void)
107{
4588c1f0 108 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
109}
110
111/*
112 * HPET timer interrupt enable / disable
113 */
114static int hpet_legacy_int_enabled;
115
116/**
117 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
118 */
119int is_hpet_enabled(void)
120{
121 return is_hpet_capable() && hpet_legacy_int_enabled;
122}
1bdbdaac 123EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 124
b98103a5
AH
125static void _hpet_print_config(const char *function, int line)
126{
127 u32 i, timers, l, h;
128 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
129 l = hpet_readl(HPET_ID);
130 h = hpet_readl(HPET_PERIOD);
131 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
132 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
133 l = hpet_readl(HPET_CFG);
134 h = hpet_readl(HPET_STATUS);
135 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
136 l = hpet_readl(HPET_COUNTER);
137 h = hpet_readl(HPET_COUNTER+4);
138 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
139
140 for (i = 0; i < timers; i++) {
141 l = hpet_readl(HPET_Tn_CFG(i));
142 h = hpet_readl(HPET_Tn_CFG(i)+4);
143 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
144 i, l, h);
145 l = hpet_readl(HPET_Tn_CMP(i));
146 h = hpet_readl(HPET_Tn_CMP(i)+4);
147 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
148 i, l, h);
149 l = hpet_readl(HPET_Tn_ROUTE(i));
150 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
151 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
152 i, l, h);
153 }
154}
155
156#define hpet_print_config() \
157do { \
158 if (hpet_verbose) \
159 _hpet_print_config(__FUNCTION__, __LINE__); \
160} while (0)
161
e9e2cdb4
TG
162/*
163 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
164 * timer 0 and timer 1 in case of RTC emulation.
165 */
166#ifdef CONFIG_HPET
f0ed4e69 167
5f79f2f2 168static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 169
e9e2cdb4
TG
170static void hpet_reserve_platform_timers(unsigned long id)
171{
172 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
173 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
174 unsigned int nrtimers, i;
e9e2cdb4
TG
175 struct hpet_data hd;
176
177 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
178
4588c1f0
IM
179 memset(&hd, 0, sizeof(hd));
180 hd.hd_phys_address = hpet_address;
181 hd.hd_address = hpet;
182 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
183 hpet_reserve_timer(&hd, 0);
184
185#ifdef CONFIG_HPET_EMULATE_RTC
186 hpet_reserve_timer(&hd, 1);
187#endif
5761d64b 188
64a76f66
DB
189 /*
190 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
191 * is wrong for i8259!) not the output IRQ. Many BIOS writers
192 * don't bother configuring *any* comparator interrupts.
193 */
e9e2cdb4
TG
194 hd.hd_irq[0] = HPET_LEGACY_8254;
195 hd.hd_irq[1] = HPET_LEGACY_RTC;
196
fc3fbc45 197 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
198 hd.hd_irq[i] = (readl(&timer->hpet_config) &
199 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 200 }
5761d64b 201
f0ed4e69 202 hpet_reserve_msi_timers(&hd);
26afe5f2 203
e9e2cdb4 204 hpet_alloc(&hd);
5761d64b 205
e9e2cdb4
TG
206}
207#else
208static void hpet_reserve_platform_timers(unsigned long id) { }
209#endif
210
211/*
212 * Common hpet info
213 */
214static unsigned long hpet_period;
215
610bf2f1 216static void hpet_legacy_set_mode(enum clock_event_mode mode,
e9e2cdb4 217 struct clock_event_device *evt);
610bf2f1 218static int hpet_legacy_next_event(unsigned long delta,
e9e2cdb4
TG
219 struct clock_event_device *evt);
220
221/*
222 * The hpet clock event device
223 */
224static struct clock_event_device hpet_clockevent = {
225 .name = "hpet",
226 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
610bf2f1
VP
227 .set_mode = hpet_legacy_set_mode,
228 .set_next_event = hpet_legacy_next_event,
e9e2cdb4
TG
229 .shift = 32,
230 .irq = 0,
59c69f2a 231 .rating = 50,
e9e2cdb4
TG
232};
233
8d6f0c82 234static void hpet_stop_counter(void)
e9e2cdb4
TG
235{
236 unsigned long cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
237 cfg &= ~HPET_CFG_ENABLE;
238 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
239}
240
241static void hpet_reset_counter(void)
242{
e9e2cdb4
TG
243 hpet_writel(0, HPET_COUNTER);
244 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
245}
246
247static void hpet_start_counter(void)
248{
249 unsigned long cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
250 cfg |= HPET_CFG_ENABLE;
251 hpet_writel(cfg, HPET_CFG);
252}
253
8d6f0c82
AH
254static void hpet_restart_counter(void)
255{
256 hpet_stop_counter();
7a6f9cbb 257 hpet_reset_counter();
8d6f0c82
AH
258 hpet_start_counter();
259}
260
59c69f2a
VP
261static void hpet_resume_device(void)
262{
bfe0c1cc 263 force_hpet_resume();
59c69f2a
VP
264}
265
8d6f0c82 266static void hpet_resume_counter(void)
59c69f2a
VP
267{
268 hpet_resume_device();
8d6f0c82 269 hpet_restart_counter();
59c69f2a
VP
270}
271
610bf2f1 272static void hpet_enable_legacy_int(void)
e9e2cdb4
TG
273{
274 unsigned long cfg = hpet_readl(HPET_CFG);
275
276 cfg |= HPET_CFG_LEGACY;
277 hpet_writel(cfg, HPET_CFG);
278 hpet_legacy_int_enabled = 1;
279}
280
610bf2f1
VP
281static void hpet_legacy_clockevent_register(void)
282{
610bf2f1
VP
283 /* Start HPET legacy interrupts */
284 hpet_enable_legacy_int();
285
286 /*
6fd592da
CM
287 * The mult factor is defined as (include/linux/clockchips.h)
288 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
289 * hpet_period is in units of femtoseconds (per cycle), so
290 * mult/2^shift = cyc/ns = 10^6/hpet_period
291 * mult = (10^6 * 2^shift)/hpet_period
292 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
610bf2f1 293 */
6fd592da
CM
294 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
295 hpet_period, hpet_clockevent.shift);
610bf2f1
VP
296 /* Calculate the min / max delta */
297 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
298 &hpet_clockevent);
7cfb0435
TG
299 /* 5 usec minimum reprogramming delta. */
300 hpet_clockevent.min_delta_ns = 5000;
610bf2f1
VP
301
302 /*
303 * Start hpet with the boot cpu mask and make it
304 * global after the IO_APIC has been initialized.
305 */
320ab2b0 306 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
610bf2f1
VP
307 clockevents_register_device(&hpet_clockevent);
308 global_clock_event = &hpet_clockevent;
309 printk(KERN_DEBUG "hpet clockevent registered\n");
310}
311
26afe5f2 312static int hpet_setup_msi_irq(unsigned int irq);
313
b40d575b 314static void hpet_set_mode(enum clock_event_mode mode,
315 struct clock_event_device *evt, int timer)
e9e2cdb4 316{
7a6f9cbb 317 unsigned long cfg, cmp, now;
e9e2cdb4
TG
318 uint64_t delta;
319
4588c1f0 320 switch (mode) {
e9e2cdb4 321 case CLOCK_EVT_MODE_PERIODIC:
c23e253e 322 hpet_stop_counter();
b40d575b 323 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
324 delta >>= evt->shift;
7a6f9cbb
AH
325 now = hpet_readl(HPET_COUNTER);
326 cmp = now + (unsigned long) delta;
b40d575b 327 cfg = hpet_readl(HPET_Tn_CFG(timer));
b13e2464
JS
328 /* Make sure we use edge triggered interrupts */
329 cfg &= ~HPET_TN_LEVEL;
e9e2cdb4
TG
330 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
331 HPET_TN_SETVAL | HPET_TN_32BIT;
b40d575b 332 hpet_writel(cfg, HPET_Tn_CFG(timer));
7a6f9cbb
AH
333 hpet_writel(cmp, HPET_Tn_CMP(timer));
334 udelay(1);
335 /*
336 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
337 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
338 * bit is automatically cleared after the first write.
339 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
340 * Publication # 24674)
341 */
b40d575b 342 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
c23e253e 343 hpet_start_counter();
b98103a5 344 hpet_print_config();
e9e2cdb4
TG
345 break;
346
347 case CLOCK_EVT_MODE_ONESHOT:
b40d575b 348 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
349 cfg &= ~HPET_TN_PERIODIC;
350 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
b40d575b 351 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
352 break;
353
354 case CLOCK_EVT_MODE_UNUSED:
355 case CLOCK_EVT_MODE_SHUTDOWN:
b40d575b 356 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4 357 cfg &= ~HPET_TN_ENABLE;
b40d575b 358 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4 359 break;
18de5bc4
TG
360
361 case CLOCK_EVT_MODE_RESUME:
26afe5f2 362 if (timer == 0) {
363 hpet_enable_legacy_int();
364 } else {
365 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
366 hpet_setup_msi_irq(hdev->irq);
367 disable_irq(hdev->irq);
0de26520 368 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
26afe5f2 369 enable_irq(hdev->irq);
370 }
b98103a5 371 hpet_print_config();
18de5bc4 372 break;
e9e2cdb4
TG
373 }
374}
375
b40d575b 376static int hpet_next_event(unsigned long delta,
377 struct clock_event_device *evt, int timer)
e9e2cdb4 378{
f7676254 379 u32 cnt;
e9e2cdb4
TG
380
381 cnt = hpet_readl(HPET_COUNTER);
f7676254 382 cnt += (u32) delta;
b40d575b 383 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 384
72d43d9b
TG
385 /*
386 * We need to read back the CMP register to make sure that
387 * what we wrote hit the chip before we compare it to the
388 * counter.
389 */
89d77a1e 390 WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
72d43d9b 391
f7676254 392 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
e9e2cdb4
TG
393}
394
b40d575b 395static void hpet_legacy_set_mode(enum clock_event_mode mode,
396 struct clock_event_device *evt)
397{
398 hpet_set_mode(mode, evt, 0);
399}
400
401static int hpet_legacy_next_event(unsigned long delta,
402 struct clock_event_device *evt)
403{
404 return hpet_next_event(delta, evt, 0);
405}
406
58ac1e76 407/*
408 * HPET MSI Support
409 */
26afe5f2 410#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
411
412static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
413static struct hpet_dev *hpet_devs;
414
58ac1e76 415void hpet_msi_unmask(unsigned int irq)
416{
417 struct hpet_dev *hdev = get_irq_data(irq);
418 unsigned long cfg;
419
420 /* unmask it */
421 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
422 cfg |= HPET_TN_FSB;
423 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
424}
425
426void hpet_msi_mask(unsigned int irq)
427{
428 unsigned long cfg;
429 struct hpet_dev *hdev = get_irq_data(irq);
430
431 /* mask it */
432 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
433 cfg &= ~HPET_TN_FSB;
434 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
435}
436
437void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
438{
439 struct hpet_dev *hdev = get_irq_data(irq);
440
441 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
442 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
443}
444
445void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
446{
447 struct hpet_dev *hdev = get_irq_data(irq);
448
449 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
450 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
451 msg->address_hi = 0;
452}
453
26afe5f2 454static void hpet_msi_set_mode(enum clock_event_mode mode,
455 struct clock_event_device *evt)
456{
457 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
458 hpet_set_mode(mode, evt, hdev->num);
459}
460
461static int hpet_msi_next_event(unsigned long delta,
462 struct clock_event_device *evt)
463{
464 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
465 return hpet_next_event(delta, evt, hdev->num);
466}
467
468static int hpet_setup_msi_irq(unsigned int irq)
469{
470 if (arch_setup_hpet_msi(irq)) {
471 destroy_irq(irq);
472 return -EINVAL;
473 }
474 return 0;
475}
476
477static int hpet_assign_irq(struct hpet_dev *dev)
478{
479 unsigned int irq;
480
481 irq = create_irq();
482 if (!irq)
483 return -EINVAL;
484
485 set_irq_data(irq, dev);
486
487 if (hpet_setup_msi_irq(irq))
488 return -EINVAL;
489
490 dev->irq = irq;
491 return 0;
492}
493
494static irqreturn_t hpet_interrupt_handler(int irq, void *data)
495{
496 struct hpet_dev *dev = (struct hpet_dev *)data;
497 struct clock_event_device *hevt = &dev->evt;
498
499 if (!hevt->event_handler) {
500 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
501 dev->num);
502 return IRQ_HANDLED;
503 }
504
505 hevt->event_handler(hevt);
506 return IRQ_HANDLED;
507}
508
509static int hpet_setup_irq(struct hpet_dev *dev)
510{
511
512 if (request_irq(dev->irq, hpet_interrupt_handler,
507fa3a3
TG
513 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
514 dev->name, dev))
26afe5f2 515 return -1;
516
517 disable_irq(dev->irq);
0de26520 518 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 519 enable_irq(dev->irq);
520
c81bba49
YL
521 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
522 dev->name, dev->irq);
523
26afe5f2 524 return 0;
525}
526
527/* This should be called in specific @cpu */
528static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
529{
530 struct clock_event_device *evt = &hdev->evt;
531 uint64_t hpet_freq;
532
533 WARN_ON(cpu != smp_processor_id());
534 if (!(hdev->flags & HPET_DEV_VALID))
535 return;
536
537 if (hpet_setup_msi_irq(hdev->irq))
538 return;
539
540 hdev->cpu = cpu;
541 per_cpu(cpu_hpet_dev, cpu) = hdev;
542 evt->name = hdev->name;
543 hpet_setup_irq(hdev);
544 evt->irq = hdev->irq;
545
546 evt->rating = 110;
547 evt->features = CLOCK_EVT_FEAT_ONESHOT;
548 if (hdev->flags & HPET_DEV_PERI_CAP)
549 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
550
551 evt->set_mode = hpet_msi_set_mode;
552 evt->set_next_event = hpet_msi_next_event;
553 evt->shift = 32;
554
555 /*
556 * The period is a femto seconds value. We need to calculate the
557 * scaled math multiplication factor for nanosecond to hpet tick
558 * conversion.
559 */
560 hpet_freq = 1000000000000000ULL;
561 do_div(hpet_freq, hpet_period);
562 evt->mult = div_sc((unsigned long) hpet_freq,
563 NSEC_PER_SEC, evt->shift);
564 /* Calculate the max delta */
565 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
566 /* 5 usec minimum reprogramming delta. */
567 evt->min_delta_ns = 5000;
568
320ab2b0 569 evt->cpumask = cpumask_of(hdev->cpu);
26afe5f2 570 clockevents_register_device(evt);
571}
572
573#ifdef CONFIG_HPET
574/* Reserve at least one timer for userspace (/dev/hpet) */
575#define RESERVE_TIMERS 1
576#else
577#define RESERVE_TIMERS 0
578#endif
5f79f2f2
VP
579
580static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 581{
582 unsigned int id;
583 unsigned int num_timers;
584 unsigned int num_timers_used = 0;
585 int i;
586
39fe05e5
SL
587 if (boot_cpu_has(X86_FEATURE_ARAT))
588 return;
26afe5f2 589 id = hpet_readl(HPET_ID);
590
591 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
592 num_timers++; /* Value read out starts from 0 */
b98103a5 593 hpet_print_config();
26afe5f2 594
595 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
596 if (!hpet_devs)
597 return;
598
599 hpet_num_timers = num_timers;
600
601 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
602 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
603 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
604
605 /* Only consider HPET timer with MSI support */
606 if (!(cfg & HPET_TN_FSB_CAP))
607 continue;
608
609 hdev->flags = 0;
610 if (cfg & HPET_TN_PERIODIC_CAP)
611 hdev->flags |= HPET_DEV_PERI_CAP;
612 hdev->num = i;
613
614 sprintf(hdev->name, "hpet%d", i);
615 if (hpet_assign_irq(hdev))
616 continue;
617
618 hdev->flags |= HPET_DEV_FSB_CAP;
619 hdev->flags |= HPET_DEV_VALID;
620 num_timers_used++;
621 if (num_timers_used == num_possible_cpus())
622 break;
623 }
624
625 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
626 num_timers, num_timers_used);
627}
628
5f79f2f2
VP
629#ifdef CONFIG_HPET
630static void hpet_reserve_msi_timers(struct hpet_data *hd)
631{
632 int i;
633
634 if (!hpet_devs)
635 return;
636
637 for (i = 0; i < hpet_num_timers; i++) {
638 struct hpet_dev *hdev = &hpet_devs[i];
639
640 if (!(hdev->flags & HPET_DEV_VALID))
641 continue;
642
643 hd->hd_irq[hdev->num] = hdev->irq;
644 hpet_reserve_timer(hd, hdev->num);
645 }
646}
647#endif
648
26afe5f2 649static struct hpet_dev *hpet_get_unused_timer(void)
650{
651 int i;
652
653 if (!hpet_devs)
654 return NULL;
655
656 for (i = 0; i < hpet_num_timers; i++) {
657 struct hpet_dev *hdev = &hpet_devs[i];
658
659 if (!(hdev->flags & HPET_DEV_VALID))
660 continue;
661 if (test_and_set_bit(HPET_DEV_USED_BIT,
662 (unsigned long *)&hdev->flags))
663 continue;
664 return hdev;
665 }
666 return NULL;
667}
668
669struct hpet_work_struct {
670 struct delayed_work work;
671 struct completion complete;
672};
673
674static void hpet_work(struct work_struct *w)
675{
676 struct hpet_dev *hdev;
677 int cpu = smp_processor_id();
678 struct hpet_work_struct *hpet_work;
679
680 hpet_work = container_of(w, struct hpet_work_struct, work.work);
681
682 hdev = hpet_get_unused_timer();
683 if (hdev)
684 init_one_hpet_msi_clockevent(hdev, cpu);
685
686 complete(&hpet_work->complete);
687}
688
689static int hpet_cpuhp_notify(struct notifier_block *n,
690 unsigned long action, void *hcpu)
691{
692 unsigned long cpu = (unsigned long)hcpu;
693 struct hpet_work_struct work;
694 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
695
696 switch (action & 0xf) {
697 case CPU_ONLINE:
336f6c32 698 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
26afe5f2 699 init_completion(&work.complete);
700 /* FIXME: add schedule_work_on() */
701 schedule_delayed_work_on(cpu, &work.work, 0);
702 wait_for_completion(&work.complete);
336f6c32 703 destroy_timer_on_stack(&work.work.timer);
26afe5f2 704 break;
705 case CPU_DEAD:
706 if (hdev) {
707 free_irq(hdev->irq, hdev);
708 hdev->flags &= ~HPET_DEV_USED;
709 per_cpu(cpu_hpet_dev, cpu) = NULL;
710 }
711 break;
712 }
713 return NOTIFY_OK;
714}
715#else
716
ba374c9b
SN
717static int hpet_setup_msi_irq(unsigned int irq)
718{
719 return 0;
720}
5f79f2f2
VP
721static void hpet_msi_capability_lookup(unsigned int start_timer)
722{
723 return;
724}
725
726#ifdef CONFIG_HPET
727static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 728{
729 return;
730}
5f79f2f2 731#endif
26afe5f2 732
733static int hpet_cpuhp_notify(struct notifier_block *n,
734 unsigned long action, void *hcpu)
735{
736 return NOTIFY_OK;
737}
738
739#endif
740
6bb74df4
JS
741/*
742 * Clock source related code
743 */
8e19608e 744static cycle_t read_hpet(struct clocksource *cs)
6bb74df4
JS
745{
746 return (cycle_t)hpet_readl(HPET_COUNTER);
747}
748
28769149
TG
749#ifdef CONFIG_X86_64
750static cycle_t __vsyscall_fn vread_hpet(void)
751{
752 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
753}
754#endif
755
6bb74df4
JS
756static struct clocksource clocksource_hpet = {
757 .name = "hpet",
758 .rating = 250,
759 .read = read_hpet,
760 .mask = HPET_MASK,
761 .shift = HPET_SHIFT,
762 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 763 .resume = hpet_resume_counter,
28769149
TG
764#ifdef CONFIG_X86_64
765 .vread = vread_hpet,
766#endif
6bb74df4
JS
767};
768
610bf2f1 769static int hpet_clocksource_register(void)
e9e2cdb4 770{
6fd592da 771 u64 start, now;
075bcd1f 772 cycle_t t1;
e9e2cdb4 773
e9e2cdb4 774 /* Start the counter */
8d6f0c82 775 hpet_restart_counter();
e9e2cdb4 776
075bcd1f 777 /* Verify whether hpet counter works */
8e19608e 778 t1 = hpet_readl(HPET_COUNTER);
075bcd1f
TG
779 rdtscll(start);
780
781 /*
782 * We don't know the TSC frequency yet, but waiting for
783 * 200000 TSC cycles is safe:
784 * 4 GHz == 50us
785 * 1 GHz == 200us
786 */
787 do {
788 rep_nop();
789 rdtscll(now);
790 } while ((now - start) < 200000UL);
791
8e19608e 792 if (t1 == hpet_readl(HPET_COUNTER)) {
075bcd1f
TG
793 printk(KERN_WARNING
794 "HPET counter not counting. HPET disabled\n");
610bf2f1 795 return -ENODEV;
075bcd1f
TG
796 }
797
6fd592da
CM
798 /*
799 * The definition of mult is (include/linux/clocksource.h)
800 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
801 * so we first need to convert hpet_period to ns/cyc units:
802 * mult/2^shift = ns/cyc = hpet_period/10^6
803 * mult = (hpet_period * 2^shift)/10^6
804 * mult = (hpet_period << shift)/FSEC_PER_NSEC
6bb74df4 805 */
6fd592da 806 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
6bb74df4
JS
807
808 clocksource_register(&clocksource_hpet);
809
610bf2f1
VP
810 return 0;
811}
812
b02a7f22
PM
813/**
814 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
815 */
816int __init hpet_enable(void)
817{
818 unsigned long id;
a6825f1c 819 int i;
610bf2f1
VP
820
821 if (!is_hpet_capable())
822 return 0;
823
824 hpet_set_mapping();
825
826 /*
827 * Read the period and check for a sane value:
828 */
829 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
830
831 /*
832 * AMD SB700 based systems with spread spectrum enabled use a
833 * SMM based HPET emulation to provide proper frequency
834 * setting. The SMM code is initialized with the first HPET
835 * register access and takes some time to complete. During
836 * this time the config register reads 0xffffffff. We check
837 * for max. 1000 loops whether the config register reads a non
838 * 0xffffffff value to make sure that HPET is up and running
839 * before we go further. A counting loop is safe, as the HPET
840 * access takes thousands of CPU cycles. On non SB700 based
841 * machines this check is only done once and has no side
842 * effects.
843 */
844 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
845 if (i == 1000) {
846 printk(KERN_WARNING
847 "HPET config register value = 0xFFFFFFFF. "
848 "Disabling HPET\n");
849 goto out_nohpet;
850 }
851 }
852
610bf2f1
VP
853 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
854 goto out_nohpet;
855
856 /*
857 * Read the HPET ID register to retrieve the IRQ routing
858 * information and the number of channels
859 */
860 id = hpet_readl(HPET_ID);
b98103a5 861 hpet_print_config();
610bf2f1
VP
862
863#ifdef CONFIG_HPET_EMULATE_RTC
864 /*
865 * The legacy routing mode needs at least two channels, tick timer
866 * and the rtc emulation channel.
867 */
868 if (!(id & HPET_ID_NUMBER))
869 goto out_nohpet;
870#endif
871
872 if (hpet_clocksource_register())
873 goto out_nohpet;
874
e9e2cdb4 875 if (id & HPET_ID_LEGSUP) {
610bf2f1 876 hpet_legacy_clockevent_register();
e9e2cdb4
TG
877 return 1;
878 }
879 return 0;
5d0cf410 880
e9e2cdb4 881out_nohpet:
06a24dec 882 hpet_clear_mapping();
bacbe999 883 hpet_address = 0;
e9e2cdb4
TG
884 return 0;
885}
886
28769149
TG
887/*
888 * Needs to be late, as the reserve_timer code calls kalloc !
889 *
890 * Not a problem on i386 as hpet_enable is called from late_time_init,
891 * but on x86_64 it is necessary !
892 */
893static __init int hpet_late_init(void)
894{
26afe5f2 895 int cpu;
896
59c69f2a 897 if (boot_hpet_disable)
28769149
TG
898 return -ENODEV;
899
59c69f2a
VP
900 if (!hpet_address) {
901 if (!force_hpet_address)
902 return -ENODEV;
903
904 hpet_address = force_hpet_address;
905 hpet_enable();
59c69f2a
VP
906 }
907
39c04b55
JF
908 if (!hpet_virt_address)
909 return -ENODEV;
910
39fe05e5
SL
911 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
912 hpet_msi_capability_lookup(2);
913 else
914 hpet_msi_capability_lookup(0);
915
28769149 916 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 917 hpet_print_config();
59c69f2a 918
39fe05e5
SL
919 if (boot_cpu_has(X86_FEATURE_ARAT))
920 return 0;
921
26afe5f2 922 for_each_online_cpu(cpu) {
923 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
924 }
925
926 /* This notifier should be called after workqueue is ready */
927 hotcpu_notifier(hpet_cpuhp_notify, -20);
928
28769149
TG
929 return 0;
930}
931fs_initcall(hpet_late_init);
932
c86c7fbc
OH
933void hpet_disable(void)
934{
935 if (is_hpet_capable()) {
936 unsigned long cfg = hpet_readl(HPET_CFG);
937
938 if (hpet_legacy_int_enabled) {
939 cfg &= ~HPET_CFG_LEGACY;
940 hpet_legacy_int_enabled = 0;
941 }
942 cfg &= ~HPET_CFG_ENABLE;
943 hpet_writel(cfg, HPET_CFG);
944 }
945}
946
e9e2cdb4
TG
947#ifdef CONFIG_HPET_EMULATE_RTC
948
949/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
950 * is enabled, we support RTC interrupt functionality in software.
951 * RTC has 3 kinds of interrupts:
952 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
953 * is updated
954 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
955 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
956 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
957 * (1) and (2) above are implemented using polling at a frequency of
958 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
959 * overhead. (DEFAULT_RTC_INT_FREQ)
960 * For (3), we use interrupts at 64Hz or user specified periodic
961 * frequency, whichever is higher.
962 */
963#include <linux/mc146818rtc.h>
964#include <linux/rtc.h>
1bdbdaac 965#include <asm/rtc.h>
e9e2cdb4
TG
966
967#define DEFAULT_RTC_INT_FREQ 64
968#define DEFAULT_RTC_SHIFT 6
969#define RTC_NUM_INTS 1
970
971static unsigned long hpet_rtc_flags;
7e2a31da 972static int hpet_prev_update_sec;
e9e2cdb4
TG
973static struct rtc_time hpet_alarm_time;
974static unsigned long hpet_pie_count;
ff08f76d 975static u32 hpet_t1_cmp;
e9e2cdb4
TG
976static unsigned long hpet_default_delta;
977static unsigned long hpet_pie_delta;
978static unsigned long hpet_pie_limit;
979
1bdbdaac
BW
980static rtc_irq_handler irq_handler;
981
ff08f76d
PE
982/*
983 * Check that the hpet counter c1 is ahead of the c2
984 */
985static inline int hpet_cnt_ahead(u32 c1, u32 c2)
986{
987 return (s32)(c2 - c1) < 0;
988}
989
1bdbdaac
BW
990/*
991 * Registers a IRQ handler.
992 */
993int hpet_register_irq_handler(rtc_irq_handler handler)
994{
995 if (!is_hpet_enabled())
996 return -ENODEV;
997 if (irq_handler)
998 return -EBUSY;
999
1000 irq_handler = handler;
1001
1002 return 0;
1003}
1004EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1005
1006/*
1007 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1008 * and does cleanup.
1009 */
1010void hpet_unregister_irq_handler(rtc_irq_handler handler)
1011{
1012 if (!is_hpet_enabled())
1013 return;
1014
1015 irq_handler = NULL;
1016 hpet_rtc_flags = 0;
1017}
1018EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1019
e9e2cdb4
TG
1020/*
1021 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1022 * is not supported by all HPET implementations for timer 1.
1023 *
1024 * hpet_rtc_timer_init() is called when the rtc is initialized.
1025 */
1026int hpet_rtc_timer_init(void)
1027{
1028 unsigned long cfg, cnt, delta, flags;
1029
1030 if (!is_hpet_enabled())
1031 return 0;
1032
1033 if (!hpet_default_delta) {
1034 uint64_t clc;
1035
1036 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1037 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1038 hpet_default_delta = (unsigned long) clc;
1039 }
1040
1041 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1042 delta = hpet_default_delta;
1043 else
1044 delta = hpet_pie_delta;
1045
1046 local_irq_save(flags);
1047
1048 cnt = delta + hpet_readl(HPET_COUNTER);
1049 hpet_writel(cnt, HPET_T1_CMP);
1050 hpet_t1_cmp = cnt;
1051
1052 cfg = hpet_readl(HPET_T1_CFG);
1053 cfg &= ~HPET_TN_PERIODIC;
1054 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1055 hpet_writel(cfg, HPET_T1_CFG);
1056
1057 local_irq_restore(flags);
1058
1059 return 1;
1060}
1bdbdaac 1061EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4
TG
1062
1063/*
1064 * The functions below are called from rtc driver.
1065 * Return 0 if HPET is not being used.
1066 * Otherwise do the necessary changes and return 1.
1067 */
1068int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1069{
1070 if (!is_hpet_enabled())
1071 return 0;
1072
1073 hpet_rtc_flags &= ~bit_mask;
1074 return 1;
1075}
1bdbdaac 1076EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1077
1078int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1079{
1080 unsigned long oldbits = hpet_rtc_flags;
1081
1082 if (!is_hpet_enabled())
1083 return 0;
1084
1085 hpet_rtc_flags |= bit_mask;
1086
7e2a31da
DB
1087 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1088 hpet_prev_update_sec = -1;
1089
e9e2cdb4
TG
1090 if (!oldbits)
1091 hpet_rtc_timer_init();
1092
1093 return 1;
1094}
1bdbdaac 1095EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1096
1097int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1098 unsigned char sec)
1099{
1100 if (!is_hpet_enabled())
1101 return 0;
1102
1103 hpet_alarm_time.tm_hour = hrs;
1104 hpet_alarm_time.tm_min = min;
1105 hpet_alarm_time.tm_sec = sec;
1106
1107 return 1;
1108}
1bdbdaac 1109EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1110
1111int hpet_set_periodic_freq(unsigned long freq)
1112{
1113 uint64_t clc;
1114
1115 if (!is_hpet_enabled())
1116 return 0;
1117
1118 if (freq <= DEFAULT_RTC_INT_FREQ)
1119 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1120 else {
1121 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1122 do_div(clc, freq);
1123 clc >>= hpet_clockevent.shift;
1124 hpet_pie_delta = (unsigned long) clc;
1125 }
1126 return 1;
1127}
1bdbdaac 1128EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1129
1130int hpet_rtc_dropped_irq(void)
1131{
1132 return is_hpet_enabled();
1133}
1bdbdaac 1134EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1135
1136static void hpet_rtc_timer_reinit(void)
1137{
1138 unsigned long cfg, delta;
1139 int lost_ints = -1;
1140
1141 if (unlikely(!hpet_rtc_flags)) {
1142 cfg = hpet_readl(HPET_T1_CFG);
1143 cfg &= ~HPET_TN_ENABLE;
1144 hpet_writel(cfg, HPET_T1_CFG);
1145 return;
1146 }
1147
1148 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1149 delta = hpet_default_delta;
1150 else
1151 delta = hpet_pie_delta;
1152
1153 /*
1154 * Increment the comparator value until we are ahead of the
1155 * current count.
1156 */
1157 do {
1158 hpet_t1_cmp += delta;
1159 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1160 lost_ints++;
ff08f76d 1161 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1162
1163 if (lost_ints) {
1164 if (hpet_rtc_flags & RTC_PIE)
1165 hpet_pie_count += lost_ints;
1166 if (printk_ratelimit())
7e2a31da 1167 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1168 lost_ints);
1169 }
1170}
1171
1172irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1173{
1174 struct rtc_time curr_time;
1175 unsigned long rtc_int_flag = 0;
1176
1177 hpet_rtc_timer_reinit();
1bdbdaac 1178 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1179
1180 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 1181 get_rtc_time(&curr_time);
e9e2cdb4
TG
1182
1183 if (hpet_rtc_flags & RTC_UIE &&
1184 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1185 if (hpet_prev_update_sec >= 0)
1186 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1187 hpet_prev_update_sec = curr_time.tm_sec;
1188 }
1189
1190 if (hpet_rtc_flags & RTC_PIE &&
1191 ++hpet_pie_count >= hpet_pie_limit) {
1192 rtc_int_flag |= RTC_PF;
1193 hpet_pie_count = 0;
1194 }
1195
8ee291f8 1196 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1197 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1198 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1199 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1200 rtc_int_flag |= RTC_AF;
1201
1202 if (rtc_int_flag) {
1203 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1204 if (irq_handler)
1205 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1206 }
1207 return IRQ_HANDLED;
1208}
1bdbdaac 1209EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1210#endif