]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/hpet.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0 3#include <linux/interrupt.h>
69c60c88 4#include <linux/export.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/errno.h>
334955ef 7#include <linux/i8253.h>
5a0e3ad6 8#include <linux/slab.h>
5d0cf410
JS
9#include <linux/hpet.h>
10#include <linux/init.h>
58ac1e76 11#include <linux/cpu.h>
4588c1f0
IM
12#include <linux/pm.h>
13#include <linux/io.h>
5d0cf410 14
cd4d09ec 15#include <asm/cpufeature.h>
d746d1eb 16#include <asm/irqdomain.h>
28769149 17#include <asm/fixmap.h>
4588c1f0 18#include <asm/hpet.h>
16f871bc 19#include <asm/time.h>
5d0cf410 20
4588c1f0 21#define HPET_MASK CLOCKSOURCE_MASK(32)
5d0cf410 22
b10db7f0
PM
23/* FSEC = 10^-15
24 NSEC = 10^-9 */
4588c1f0 25#define FSEC_PER_NSEC 1000000L
5d0cf410 26
26afe5f2 27#define HPET_DEV_USED_BIT 2
28#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29#define HPET_DEV_VALID 0x8
30#define HPET_DEV_FSB_CAP 0x1000
31#define HPET_DEV_PERI_CAP 0x2000
32
f1c18071
TG
33#define HPET_MIN_CYCLES 128
34#define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
e9e2cdb4
TG
36/*
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 */
4588c1f0 39unsigned long hpet_address;
c8bc6f3c 40u8 hpet_blockid; /* OS timer block num */
3d45ac4b 41bool hpet_msi_disable;
73472a46 42
e951e4af 43#ifdef CONFIG_PCI_MSI
3d45ac4b 44static unsigned int hpet_num_timers;
e951e4af 45#endif
4588c1f0 46static void __iomem *hpet_virt_address;
e9e2cdb4 47
58ac1e76 48struct hpet_dev {
4588c1f0
IM
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
58ac1e76 55};
56
a3819e3e 57static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
3f7787b3
FW
58{
59 return container_of(evtdev, struct hpet_dev, evt);
60}
61
5946fa3d 62inline unsigned int hpet_readl(unsigned int a)
e9e2cdb4
TG
63{
64 return readl(hpet_virt_address + a);
65}
66
5946fa3d 67static inline void hpet_writel(unsigned int d, unsigned int a)
e9e2cdb4
TG
68{
69 writel(d, hpet_virt_address + a);
70}
71
28769149 72#ifdef CONFIG_X86_64
28769149 73#include <asm/pgtable.h>
2387ce57 74#endif
28769149 75
06a24dec
TG
76static inline void hpet_set_mapping(void)
77{
78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79}
80
81static inline void hpet_clear_mapping(void)
82{
83 iounmap(hpet_virt_address);
84 hpet_virt_address = NULL;
85}
86
e9e2cdb4
TG
87/*
88 * HPET command line enable / disable
89 */
3d45ac4b
JB
90bool boot_hpet_disable;
91bool hpet_force_user;
92static bool hpet_verbose;
e9e2cdb4 93
4588c1f0 94static int __init hpet_setup(char *str)
e9e2cdb4 95{
b2d6aba9
JB
96 while (str) {
97 char *next = strchr(str, ',');
98
99 if (next)
100 *next++ = 0;
e9e2cdb4 101 if (!strncmp("disable", str, 7))
3d45ac4b 102 boot_hpet_disable = true;
b17530bd 103 if (!strncmp("force", str, 5))
3d45ac4b 104 hpet_force_user = true;
b98103a5 105 if (!strncmp("verbose", str, 7))
3d45ac4b 106 hpet_verbose = true;
b2d6aba9 107 str = next;
e9e2cdb4
TG
108 }
109 return 1;
110}
111__setup("hpet=", hpet_setup);
112
28769149
TG
113static int __init disable_hpet(char *str)
114{
3d45ac4b 115 boot_hpet_disable = true;
28769149
TG
116 return 1;
117}
118__setup("nohpet", disable_hpet);
119
e9e2cdb4
TG
120static inline int is_hpet_capable(void)
121{
4588c1f0 122 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
123}
124
125/*
126 * HPET timer interrupt enable / disable
127 */
3d45ac4b 128static bool hpet_legacy_int_enabled;
e9e2cdb4
TG
129
130/**
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 */
133int is_hpet_enabled(void)
134{
135 return is_hpet_capable() && hpet_legacy_int_enabled;
136}
1bdbdaac 137EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 138
b98103a5
AH
139static void _hpet_print_config(const char *function, int line)
140{
141 u32 i, timers, l, h;
142 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 l = hpet_readl(HPET_ID);
144 h = hpet_readl(HPET_PERIOD);
145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 l = hpet_readl(HPET_CFG);
148 h = hpet_readl(HPET_STATUS);
149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 l = hpet_readl(HPET_COUNTER);
151 h = hpet_readl(HPET_COUNTER+4);
152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153
154 for (i = 0; i < timers; i++) {
155 l = hpet_readl(HPET_Tn_CFG(i));
156 h = hpet_readl(HPET_Tn_CFG(i)+4);
157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_CMP(i));
160 h = hpet_readl(HPET_Tn_CMP(i)+4);
161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 i, l, h);
163 l = hpet_readl(HPET_Tn_ROUTE(i));
164 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 i, l, h);
167 }
168}
169
170#define hpet_print_config() \
171do { \
172 if (hpet_verbose) \
02f1f217 173 _hpet_print_config(__func__, __LINE__); \
b98103a5
AH
174} while (0)
175
e9e2cdb4
TG
176/*
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
179 */
180#ifdef CONFIG_HPET
f0ed4e69 181
5f79f2f2 182static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 183
5946fa3d 184static void hpet_reserve_platform_timers(unsigned int id)
e9e2cdb4
TG
185{
186 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 unsigned int nrtimers, i;
e9e2cdb4
TG
189 struct hpet_data hd;
190
191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192
4588c1f0
IM
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet;
196 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
197 hpet_reserve_timer(&hd, 0);
198
199#ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd, 1);
201#endif
5761d64b 202
64a76f66
DB
203 /*
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
207 */
e9e2cdb4
TG
208 hd.hd_irq[0] = HPET_LEGACY_8254;
209 hd.hd_irq[1] = HPET_LEGACY_RTC;
210
fc3fbc45 211 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
212 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 214 }
5761d64b 215
f0ed4e69 216 hpet_reserve_msi_timers(&hd);
26afe5f2 217
e9e2cdb4 218 hpet_alloc(&hd);
5761d64b 219
e9e2cdb4
TG
220}
221#else
5946fa3d 222static void hpet_reserve_platform_timers(unsigned int id) { }
e9e2cdb4
TG
223#endif
224
225/*
226 * Common hpet info
227 */
ab0e08f1 228static unsigned long hpet_freq;
e9e2cdb4 229
c8b5db7d 230static struct clock_event_device hpet_clockevent;
e9e2cdb4 231
8d6f0c82 232static void hpet_stop_counter(void)
e9e2cdb4 233{
3d45ac4b 234 u32 cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
235 cfg &= ~HPET_CFG_ENABLE;
236 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
237}
238
239static void hpet_reset_counter(void)
240{
e9e2cdb4
TG
241 hpet_writel(0, HPET_COUNTER);
242 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
243}
244
245static void hpet_start_counter(void)
246{
5946fa3d 247 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
248 cfg |= HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
250}
251
8d6f0c82
AH
252static void hpet_restart_counter(void)
253{
254 hpet_stop_counter();
7a6f9cbb 255 hpet_reset_counter();
8d6f0c82
AH
256 hpet_start_counter();
257}
258
59c69f2a
VP
259static void hpet_resume_device(void)
260{
bfe0c1cc 261 force_hpet_resume();
59c69f2a
VP
262}
263
17622339 264static void hpet_resume_counter(struct clocksource *cs)
59c69f2a
VP
265{
266 hpet_resume_device();
8d6f0c82 267 hpet_restart_counter();
59c69f2a
VP
268}
269
610bf2f1 270static void hpet_enable_legacy_int(void)
e9e2cdb4 271{
5946fa3d 272 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
273
274 cfg |= HPET_CFG_LEGACY;
275 hpet_writel(cfg, HPET_CFG);
3d45ac4b 276 hpet_legacy_int_enabled = true;
e9e2cdb4
TG
277}
278
610bf2f1
VP
279static void hpet_legacy_clockevent_register(void)
280{
610bf2f1
VP
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
283
610bf2f1
VP
284 /*
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
287 */
320ab2b0 288 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
ab0e08f1
TG
289 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
610bf2f1
VP
291 global_clock_event = &hpet_clockevent;
292 printk(KERN_DEBUG "hpet clockevent registered\n");
293}
294
c8b5db7d 295static int hpet_set_periodic(struct clock_event_device *evt, int timer)
e9e2cdb4 296{
5946fa3d 297 unsigned int cfg, cmp, now;
e9e2cdb4
TG
298 uint64_t delta;
299
c8b5db7d
VK
300 hpet_stop_counter();
301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 delta >>= evt->shift;
303 now = hpet_readl(HPET_COUNTER);
304 cmp = now + (unsigned int)delta;
305 cfg = hpet_readl(HPET_Tn_CFG(timer));
306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 HPET_TN_32BIT;
308 hpet_writel(cfg, HPET_Tn_CFG(timer));
309 hpet_writel(cmp, HPET_Tn_CMP(timer));
310 udelay(1);
311 /*
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
317 */
318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 hpet_start_counter();
320 hpet_print_config();
321
322 return 0;
323}
324
325static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326{
327 unsigned int cfg;
328
329 cfg = hpet_readl(HPET_Tn_CFG(timer));
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
333
334 return 0;
335}
336
337static int hpet_shutdown(struct clock_event_device *evt, int timer)
338{
339 unsigned int cfg;
340
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_ENABLE;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
344
345 return 0;
346}
347
348static int hpet_resume(struct clock_event_device *evt, int timer)
349{
350 if (!timer) {
351 hpet_enable_legacy_int();
352 } else {
353 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354
aaaec6fc 355 irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
c8b5db7d 356 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
bb1a2c26 357 disable_hardirq(hdev->irq);
c8b5db7d
VK
358 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359 enable_irq(hdev->irq);
e9e2cdb4 360 }
c8b5db7d
VK
361 hpet_print_config();
362
363 return 0;
e9e2cdb4
TG
364}
365
b40d575b 366static int hpet_next_event(unsigned long delta,
367 struct clock_event_device *evt, int timer)
e9e2cdb4 368{
f7676254 369 u32 cnt;
995bd3bb 370 s32 res;
e9e2cdb4
TG
371
372 cnt = hpet_readl(HPET_COUNTER);
f7676254 373 cnt += (u32) delta;
b40d575b 374 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 375
72d43d9b 376 /*
995bd3bb
TG
377 * HPETs are a complete disaster. The compare register is
378 * based on a equal comparison and neither provides a less
379 * than or equal functionality (which would require to take
380 * the wraparound into account) nor a simple count down event
381 * mode. Further the write to the comparator register is
382 * delayed internally up to two HPET clock cycles in certain
f1c18071
TG
383 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384 * longer delays. We worked around that by reading back the
385 * compare register, but that required another workaround for
386 * ICH9,10 chips where the first readout after write can
387 * return the old stale value. We already had a minimum
388 * programming delta of 5us enforced, but a NMI or SMI hitting
995bd3bb
TG
389 * between the counter readout and the comparator write can
390 * move us behind that point easily. Now instead of reading
391 * the compare register back several times, we make the ETIME
392 * decision based on the following: Return ETIME if the
f1c18071 393 * counter value after the write is less than HPET_MIN_CYCLES
995bd3bb 394 * away from the event or if the counter is already ahead of
f1c18071
TG
395 * the event. The minimum programming delta for the generic
396 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
72d43d9b 397 */
995bd3bb 398 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
72d43d9b 399
f1c18071 400 return res < HPET_MIN_CYCLES ? -ETIME : 0;
e9e2cdb4
TG
401}
402
c8b5db7d 403static int hpet_legacy_shutdown(struct clock_event_device *evt)
b40d575b 404{
c8b5db7d
VK
405 return hpet_shutdown(evt, 0);
406}
407
408static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
409{
410 return hpet_set_oneshot(evt, 0);
411}
412
413static int hpet_legacy_set_periodic(struct clock_event_device *evt)
414{
415 return hpet_set_periodic(evt, 0);
416}
417
418static int hpet_legacy_resume(struct clock_event_device *evt)
419{
420 return hpet_resume(evt, 0);
b40d575b 421}
422
423static int hpet_legacy_next_event(unsigned long delta,
424 struct clock_event_device *evt)
425{
426 return hpet_next_event(delta, evt, 0);
427}
428
c8b5db7d
VK
429/*
430 * The hpet clock event device
431 */
432static struct clock_event_device hpet_clockevent = {
433 .name = "hpet",
434 .features = CLOCK_EVT_FEAT_PERIODIC |
435 CLOCK_EVT_FEAT_ONESHOT,
436 .set_state_periodic = hpet_legacy_set_periodic,
437 .set_state_oneshot = hpet_legacy_set_oneshot,
438 .set_state_shutdown = hpet_legacy_shutdown,
439 .tick_resume = hpet_legacy_resume,
440 .set_next_event = hpet_legacy_next_event,
441 .irq = 0,
442 .rating = 50,
443};
444
58ac1e76 445/*
446 * HPET MSI Support
447 */
26afe5f2 448#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
449
450static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
451static struct hpet_dev *hpet_devs;
3cb96f0c 452static struct irq_domain *hpet_domain;
5f79f2f2 453
d0fbca8f 454void hpet_msi_unmask(struct irq_data *data)
58ac1e76 455{
ff96b4d0 456 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
5946fa3d 457 unsigned int cfg;
58ac1e76 458
459 /* unmask it */
460 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
6acf5a8c 461 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
58ac1e76 462 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463}
464
d0fbca8f 465void hpet_msi_mask(struct irq_data *data)
58ac1e76 466{
ff96b4d0 467 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
5946fa3d 468 unsigned int cfg;
58ac1e76 469
470 /* mask it */
471 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
6acf5a8c 472 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
58ac1e76 473 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
474}
475
d0fbca8f 476void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
58ac1e76 477{
58ac1e76 478 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
479 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
480}
481
d0fbca8f 482void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
58ac1e76 483{
58ac1e76 484 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
485 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
486 msg->address_hi = 0;
487}
488
c8b5db7d 489static int hpet_msi_shutdown(struct clock_event_device *evt)
26afe5f2 490{
491 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
c8b5db7d
VK
492
493 return hpet_shutdown(evt, hdev->num);
494}
495
496static int hpet_msi_set_oneshot(struct clock_event_device *evt)
497{
498 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
499
500 return hpet_set_oneshot(evt, hdev->num);
501}
502
503static int hpet_msi_set_periodic(struct clock_event_device *evt)
504{
505 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
506
507 return hpet_set_periodic(evt, hdev->num);
508}
509
510static int hpet_msi_resume(struct clock_event_device *evt)
511{
512 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
513
514 return hpet_resume(evt, hdev->num);
26afe5f2 515}
516
517static int hpet_msi_next_event(unsigned long delta,
518 struct clock_event_device *evt)
519{
520 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
521 return hpet_next_event(delta, evt, hdev->num);
522}
523
26afe5f2 524static irqreturn_t hpet_interrupt_handler(int irq, void *data)
525{
526 struct hpet_dev *dev = (struct hpet_dev *)data;
527 struct clock_event_device *hevt = &dev->evt;
528
529 if (!hevt->event_handler) {
530 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
531 dev->num);
532 return IRQ_HANDLED;
533 }
534
535 hevt->event_handler(hevt);
536 return IRQ_HANDLED;
537}
538
539static int hpet_setup_irq(struct hpet_dev *dev)
540{
541
542 if (request_irq(dev->irq, hpet_interrupt_handler,
d20d2efb 543 IRQF_TIMER | IRQF_NOBALANCING,
507fa3a3 544 dev->name, dev))
26afe5f2 545 return -1;
546
547 disable_irq(dev->irq);
0de26520 548 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 549 enable_irq(dev->irq);
550
c81bba49
YL
551 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
552 dev->name, dev->irq);
553
26afe5f2 554 return 0;
555}
556
557/* This should be called in specific @cpu */
558static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
559{
560 struct clock_event_device *evt = &hdev->evt;
26afe5f2 561
562 WARN_ON(cpu != smp_processor_id());
563 if (!(hdev->flags & HPET_DEV_VALID))
564 return;
565
26afe5f2 566 hdev->cpu = cpu;
567 per_cpu(cpu_hpet_dev, cpu) = hdev;
568 evt->name = hdev->name;
569 hpet_setup_irq(hdev);
570 evt->irq = hdev->irq;
571
572 evt->rating = 110;
573 evt->features = CLOCK_EVT_FEAT_ONESHOT;
c8b5db7d 574 if (hdev->flags & HPET_DEV_PERI_CAP) {
26afe5f2 575 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
c8b5db7d
VK
576 evt->set_state_periodic = hpet_msi_set_periodic;
577 }
26afe5f2 578
c8b5db7d
VK
579 evt->set_state_shutdown = hpet_msi_shutdown;
580 evt->set_state_oneshot = hpet_msi_set_oneshot;
581 evt->tick_resume = hpet_msi_resume;
26afe5f2 582 evt->set_next_event = hpet_msi_next_event;
320ab2b0 583 evt->cpumask = cpumask_of(hdev->cpu);
ab0e08f1
TG
584
585 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
586 0x7FFFFFFF);
26afe5f2 587}
588
589#ifdef CONFIG_HPET
590/* Reserve at least one timer for userspace (/dev/hpet) */
591#define RESERVE_TIMERS 1
592#else
593#define RESERVE_TIMERS 0
594#endif
5f79f2f2
VP
595
596static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 597{
598 unsigned int id;
599 unsigned int num_timers;
600 unsigned int num_timers_used = 0;
3cb96f0c 601 int i, irq;
26afe5f2 602
73472a46
PV
603 if (hpet_msi_disable)
604 return;
605
39fe05e5
SL
606 if (boot_cpu_has(X86_FEATURE_ARAT))
607 return;
26afe5f2 608 id = hpet_readl(HPET_ID);
609
610 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
611 num_timers++; /* Value read out starts from 0 */
b98103a5 612 hpet_print_config();
26afe5f2 613
3cb96f0c
JL
614 hpet_domain = hpet_create_irq_domain(hpet_blockid);
615 if (!hpet_domain)
616 return;
617
26afe5f2 618 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
619 if (!hpet_devs)
620 return;
621
622 hpet_num_timers = num_timers;
623
624 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
625 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
5946fa3d 626 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
26afe5f2 627
628 /* Only consider HPET timer with MSI support */
629 if (!(cfg & HPET_TN_FSB_CAP))
630 continue;
631
cb17b2a6
TG
632 hdev->flags = 0;
633 if (cfg & HPET_TN_PERIODIC_CAP)
634 hdev->flags |= HPET_DEV_PERI_CAP;
635 sprintf(hdev->name, "hpet%d", i);
636 hdev->num = i;
637
3cb96f0c 638 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
bafac298 639 if (irq <= 0)
3cb96f0c
JL
640 continue;
641
3cb96f0c 642 hdev->irq = irq;
26afe5f2 643 hdev->flags |= HPET_DEV_FSB_CAP;
644 hdev->flags |= HPET_DEV_VALID;
645 num_timers_used++;
646 if (num_timers_used == num_possible_cpus())
647 break;
648 }
649
650 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
651 num_timers, num_timers_used);
652}
653
5f79f2f2
VP
654#ifdef CONFIG_HPET
655static void hpet_reserve_msi_timers(struct hpet_data *hd)
656{
657 int i;
658
659 if (!hpet_devs)
660 return;
661
662 for (i = 0; i < hpet_num_timers; i++) {
663 struct hpet_dev *hdev = &hpet_devs[i];
664
665 if (!(hdev->flags & HPET_DEV_VALID))
666 continue;
667
668 hd->hd_irq[hdev->num] = hdev->irq;
669 hpet_reserve_timer(hd, hdev->num);
670 }
671}
672#endif
673
26afe5f2 674static struct hpet_dev *hpet_get_unused_timer(void)
675{
676 int i;
677
678 if (!hpet_devs)
679 return NULL;
680
681 for (i = 0; i < hpet_num_timers; i++) {
682 struct hpet_dev *hdev = &hpet_devs[i];
683
684 if (!(hdev->flags & HPET_DEV_VALID))
685 continue;
686 if (test_and_set_bit(HPET_DEV_USED_BIT,
687 (unsigned long *)&hdev->flags))
688 continue;
689 return hdev;
690 }
691 return NULL;
692}
693
694struct hpet_work_struct {
695 struct delayed_work work;
696 struct completion complete;
697};
698
699static void hpet_work(struct work_struct *w)
700{
701 struct hpet_dev *hdev;
702 int cpu = smp_processor_id();
703 struct hpet_work_struct *hpet_work;
704
705 hpet_work = container_of(w, struct hpet_work_struct, work.work);
706
707 hdev = hpet_get_unused_timer();
708 if (hdev)
709 init_one_hpet_msi_clockevent(hdev, cpu);
710
711 complete(&hpet_work->complete);
712}
713
48d7f6c7 714static int hpet_cpuhp_online(unsigned int cpu)
26afe5f2 715{
26afe5f2 716 struct hpet_work_struct work;
48d7f6c7
SAS
717
718 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
719 init_completion(&work.complete);
720 /* FIXME: add schedule_work_on() */
721 schedule_delayed_work_on(cpu, &work.work, 0);
722 wait_for_completion(&work.complete);
723 destroy_delayed_work_on_stack(&work.work);
724 return 0;
725}
726
727static int hpet_cpuhp_dead(unsigned int cpu)
728{
26afe5f2 729 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
730
48d7f6c7
SAS
731 if (!hdev)
732 return 0;
733 free_irq(hdev->irq, hdev);
734 hdev->flags &= ~HPET_DEV_USED;
735 per_cpu(cpu_hpet_dev, cpu) = NULL;
736 return 0;
26afe5f2 737}
738#else
739
5f79f2f2
VP
740static void hpet_msi_capability_lookup(unsigned int start_timer)
741{
742 return;
743}
744
745#ifdef CONFIG_HPET
746static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 747{
748 return;
749}
5f79f2f2 750#endif
26afe5f2 751
48d7f6c7
SAS
752#define hpet_cpuhp_online NULL
753#define hpet_cpuhp_dead NULL
26afe5f2 754
755#endif
756
6bb74df4
JS
757/*
758 * Clock source related code
759 */
f99fd22e
WL
760#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
761/*
762 * Reading the HPET counter is a very slow operation. If a large number of
763 * CPUs are trying to access the HPET counter simultaneously, it can cause
764 * massive delay and slow down system performance dramatically. This may
765 * happen when HPET is the default clock source instead of TSC. For a
766 * really large system with hundreds of CPUs, the slowdown may be so
767 * severe that it may actually crash the system because of a NMI watchdog
768 * soft lockup, for example.
769 *
770 * If multiple CPUs are trying to access the HPET counter at the same time,
771 * we don't actually need to read the counter multiple times. Instead, the
772 * other CPUs can use the counter value read by the first CPU in the group.
773 *
774 * This special feature is only enabled on x86-64 systems. It is unlikely
775 * that 32-bit x86 systems will have enough CPUs to require this feature
776 * with its associated locking overhead. And we also need 64-bit atomic
777 * read.
778 *
779 * The lock and the hpet value are stored together and can be read in a
780 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
781 * is 32 bits in size.
782 */
783union hpet_lock {
784 struct {
785 arch_spinlock_t lock;
786 u32 value;
787 };
788 u64 lockval;
789};
790
791static union hpet_lock hpet __cacheline_aligned = {
792 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
793};
794
a5a1d1c2 795static u64 read_hpet(struct clocksource *cs)
f99fd22e
WL
796{
797 unsigned long flags;
798 union hpet_lock old, new;
799
800 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
801
802 /*
803 * Read HPET directly if in NMI.
804 */
805 if (in_nmi())
a5a1d1c2 806 return (u64)hpet_readl(HPET_COUNTER);
f99fd22e
WL
807
808 /*
809 * Read the current state of the lock and HPET value atomically.
810 */
811 old.lockval = READ_ONCE(hpet.lockval);
812
813 if (arch_spin_is_locked(&old.lock))
814 goto contended;
815
816 local_irq_save(flags);
817 if (arch_spin_trylock(&hpet.lock)) {
818 new.value = hpet_readl(HPET_COUNTER);
819 /*
820 * Use WRITE_ONCE() to prevent store tearing.
821 */
822 WRITE_ONCE(hpet.value, new.value);
823 arch_spin_unlock(&hpet.lock);
824 local_irq_restore(flags);
a5a1d1c2 825 return (u64)new.value;
f99fd22e
WL
826 }
827 local_irq_restore(flags);
828
829contended:
830 /*
831 * Contended case
832 * --------------
833 * Wait until the HPET value change or the lock is free to indicate
834 * its value is up-to-date.
835 *
836 * It is possible that old.value has already contained the latest
837 * HPET value while the lock holder was in the process of releasing
838 * the lock. Checking for lock state change will enable us to return
839 * the value immediately instead of waiting for the next HPET reader
840 * to come along.
841 */
842 do {
843 cpu_relax();
844 new.lockval = READ_ONCE(hpet.lockval);
845 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
846
a5a1d1c2 847 return (u64)new.value;
f99fd22e
WL
848}
849#else
850/*
851 * For UP or 32-bit.
852 */
a5a1d1c2 853static u64 read_hpet(struct clocksource *cs)
6bb74df4 854{
a5a1d1c2 855 return (u64)hpet_readl(HPET_COUNTER);
6bb74df4 856}
f99fd22e 857#endif
6bb74df4
JS
858
859static struct clocksource clocksource_hpet = {
860 .name = "hpet",
861 .rating = 250,
862 .read = read_hpet,
863 .mask = HPET_MASK,
6bb74df4 864 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 865 .resume = hpet_resume_counter,
6bb74df4
JS
866};
867
610bf2f1 868static int hpet_clocksource_register(void)
e9e2cdb4 869{
6fd592da 870 u64 start, now;
a5a1d1c2 871 u64 t1;
e9e2cdb4 872
e9e2cdb4 873 /* Start the counter */
8d6f0c82 874 hpet_restart_counter();
e9e2cdb4 875
075bcd1f 876 /* Verify whether hpet counter works */
8e19608e 877 t1 = hpet_readl(HPET_COUNTER);
4ea1636b 878 start = rdtsc();
075bcd1f
TG
879
880 /*
881 * We don't know the TSC frequency yet, but waiting for
882 * 200000 TSC cycles is safe:
883 * 4 GHz == 50us
884 * 1 GHz == 200us
885 */
886 do {
887 rep_nop();
4ea1636b 888 now = rdtsc();
075bcd1f
TG
889 } while ((now - start) < 200000UL);
890
8e19608e 891 if (t1 == hpet_readl(HPET_COUNTER)) {
075bcd1f
TG
892 printk(KERN_WARNING
893 "HPET counter not counting. HPET disabled\n");
610bf2f1 894 return -ENODEV;
075bcd1f
TG
895 }
896
f12a15be 897 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
610bf2f1
VP
898 return 0;
899}
900
396e2c6f
JB
901static u32 *hpet_boot_cfg;
902
b02a7f22
PM
903/**
904 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
905 */
906int __init hpet_enable(void)
907{
396e2c6f 908 u32 hpet_period, cfg, id;
ab0e08f1 909 u64 freq;
396e2c6f 910 unsigned int i, last;
610bf2f1
VP
911
912 if (!is_hpet_capable())
913 return 0;
914
915 hpet_set_mapping();
916
917 /*
918 * Read the period and check for a sane value:
919 */
920 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
921
922 /*
923 * AMD SB700 based systems with spread spectrum enabled use a
924 * SMM based HPET emulation to provide proper frequency
925 * setting. The SMM code is initialized with the first HPET
926 * register access and takes some time to complete. During
927 * this time the config register reads 0xffffffff. We check
928 * for max. 1000 loops whether the config register reads a non
929 * 0xffffffff value to make sure that HPET is up and running
930 * before we go further. A counting loop is safe, as the HPET
931 * access takes thousands of CPU cycles. On non SB700 based
932 * machines this check is only done once and has no side
933 * effects.
934 */
935 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
936 if (i == 1000) {
937 printk(KERN_WARNING
938 "HPET config register value = 0xFFFFFFFF. "
939 "Disabling HPET\n");
940 goto out_nohpet;
941 }
942 }
943
610bf2f1
VP
944 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
945 goto out_nohpet;
946
ab0e08f1
TG
947 /*
948 * The period is a femto seconds value. Convert it to a
949 * frequency.
950 */
951 freq = FSEC_PER_SEC;
952 do_div(freq, hpet_period);
953 hpet_freq = freq;
954
610bf2f1
VP
955 /*
956 * Read the HPET ID register to retrieve the IRQ routing
957 * information and the number of channels
958 */
959 id = hpet_readl(HPET_ID);
b98103a5 960 hpet_print_config();
610bf2f1 961
396e2c6f
JB
962 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
963
610bf2f1
VP
964#ifdef CONFIG_HPET_EMULATE_RTC
965 /*
966 * The legacy routing mode needs at least two channels, tick timer
967 * and the rtc emulation channel.
968 */
396e2c6f 969 if (!last)
610bf2f1
VP
970 goto out_nohpet;
971#endif
972
396e2c6f
JB
973 cfg = hpet_readl(HPET_CFG);
974 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
975 GFP_KERNEL);
976 if (hpet_boot_cfg)
977 *hpet_boot_cfg = cfg;
978 else
979 pr_warn("HPET initial state will not be saved\n");
980 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1b38a3a1 981 hpet_writel(cfg, HPET_CFG);
396e2c6f
JB
982 if (cfg)
983 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
984 cfg);
985
986 for (i = 0; i <= last; ++i) {
987 cfg = hpet_readl(HPET_Tn_CFG(i));
988 if (hpet_boot_cfg)
989 hpet_boot_cfg[i + 1] = cfg;
990 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
991 hpet_writel(cfg, HPET_Tn_CFG(i));
992 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
993 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
994 | HPET_TN_FSB | HPET_TN_FSB_CAP);
995 if (cfg)
996 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
997 cfg, i);
998 }
999 hpet_print_config();
1000
610bf2f1
VP
1001 if (hpet_clocksource_register())
1002 goto out_nohpet;
1003
e9e2cdb4 1004 if (id & HPET_ID_LEGSUP) {
610bf2f1 1005 hpet_legacy_clockevent_register();
e9e2cdb4
TG
1006 return 1;
1007 }
1008 return 0;
5d0cf410 1009
e9e2cdb4 1010out_nohpet:
06a24dec 1011 hpet_clear_mapping();
bacbe999 1012 hpet_address = 0;
e9e2cdb4
TG
1013 return 0;
1014}
1015
28769149
TG
1016/*
1017 * Needs to be late, as the reserve_timer code calls kalloc !
1018 *
1019 * Not a problem on i386 as hpet_enable is called from late_time_init,
1020 * but on x86_64 it is necessary !
1021 */
1022static __init int hpet_late_init(void)
1023{
48d7f6c7 1024 int ret;
26afe5f2 1025
59c69f2a 1026 if (boot_hpet_disable)
28769149
TG
1027 return -ENODEV;
1028
59c69f2a
VP
1029 if (!hpet_address) {
1030 if (!force_hpet_address)
1031 return -ENODEV;
1032
1033 hpet_address = force_hpet_address;
1034 hpet_enable();
59c69f2a
VP
1035 }
1036
39c04b55
JF
1037 if (!hpet_virt_address)
1038 return -ENODEV;
1039
39fe05e5
SL
1040 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1041 hpet_msi_capability_lookup(2);
1042 else
1043 hpet_msi_capability_lookup(0);
1044
28769149 1045 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 1046 hpet_print_config();
59c69f2a 1047
73472a46
PV
1048 if (hpet_msi_disable)
1049 return 0;
1050
39fe05e5
SL
1051 if (boot_cpu_has(X86_FEATURE_ARAT))
1052 return 0;
1053
26afe5f2 1054 /* This notifier should be called after workqueue is ready */
73c1b41e 1055 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
48d7f6c7
SAS
1056 hpet_cpuhp_online, NULL);
1057 if (ret)
1058 return ret;
73c1b41e 1059 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
48d7f6c7
SAS
1060 hpet_cpuhp_dead);
1061 if (ret)
1062 goto err_cpuhp;
28769149 1063 return 0;
48d7f6c7
SAS
1064
1065err_cpuhp:
1066 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1067 return ret;
28769149
TG
1068}
1069fs_initcall(hpet_late_init);
1070
c86c7fbc
OH
1071void hpet_disable(void)
1072{
ff487808 1073 if (is_hpet_capable() && hpet_virt_address) {
396e2c6f 1074 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
c86c7fbc 1075
396e2c6f
JB
1076 if (hpet_boot_cfg)
1077 cfg = *hpet_boot_cfg;
1078 else if (hpet_legacy_int_enabled) {
c86c7fbc 1079 cfg &= ~HPET_CFG_LEGACY;
3d45ac4b 1080 hpet_legacy_int_enabled = false;
c86c7fbc
OH
1081 }
1082 cfg &= ~HPET_CFG_ENABLE;
1083 hpet_writel(cfg, HPET_CFG);
396e2c6f
JB
1084
1085 if (!hpet_boot_cfg)
1086 return;
1087
1088 id = hpet_readl(HPET_ID);
1089 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1090
1091 for (id = 0; id <= last; ++id)
1092 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1093
1094 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1095 hpet_writel(*hpet_boot_cfg, HPET_CFG);
c86c7fbc
OH
1096 }
1097}
1098
e9e2cdb4
TG
1099#ifdef CONFIG_HPET_EMULATE_RTC
1100
1101/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1102 * is enabled, we support RTC interrupt functionality in software.
1103 * RTC has 3 kinds of interrupts:
1104 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1105 * is updated
1106 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1107 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1108 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1109 * (1) and (2) above are implemented using polling at a frequency of
1110 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1111 * overhead. (DEFAULT_RTC_INT_FREQ)
1112 * For (3), we use interrupts at 64Hz or user specified periodic
1113 * frequency, whichever is higher.
1114 */
1115#include <linux/mc146818rtc.h>
1116#include <linux/rtc.h>
1117
1118#define DEFAULT_RTC_INT_FREQ 64
1119#define DEFAULT_RTC_SHIFT 6
1120#define RTC_NUM_INTS 1
1121
1122static unsigned long hpet_rtc_flags;
7e2a31da 1123static int hpet_prev_update_sec;
e9e2cdb4
TG
1124static struct rtc_time hpet_alarm_time;
1125static unsigned long hpet_pie_count;
ff08f76d 1126static u32 hpet_t1_cmp;
5946fa3d
JB
1127static u32 hpet_default_delta;
1128static u32 hpet_pie_delta;
e9e2cdb4
TG
1129static unsigned long hpet_pie_limit;
1130
1bdbdaac
BW
1131static rtc_irq_handler irq_handler;
1132
ff08f76d
PE
1133/*
1134 * Check that the hpet counter c1 is ahead of the c2
1135 */
1136static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1137{
1138 return (s32)(c2 - c1) < 0;
1139}
1140
1bdbdaac
BW
1141/*
1142 * Registers a IRQ handler.
1143 */
1144int hpet_register_irq_handler(rtc_irq_handler handler)
1145{
1146 if (!is_hpet_enabled())
1147 return -ENODEV;
1148 if (irq_handler)
1149 return -EBUSY;
1150
1151 irq_handler = handler;
1152
1153 return 0;
1154}
1155EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1156
1157/*
1158 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1159 * and does cleanup.
1160 */
1161void hpet_unregister_irq_handler(rtc_irq_handler handler)
1162{
1163 if (!is_hpet_enabled())
1164 return;
1165
1166 irq_handler = NULL;
1167 hpet_rtc_flags = 0;
1168}
1169EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1170
e9e2cdb4
TG
1171/*
1172 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1173 * is not supported by all HPET implementations for timer 1.
1174 *
1175 * hpet_rtc_timer_init() is called when the rtc is initialized.
1176 */
1177int hpet_rtc_timer_init(void)
1178{
5946fa3d
JB
1179 unsigned int cfg, cnt, delta;
1180 unsigned long flags;
e9e2cdb4
TG
1181
1182 if (!is_hpet_enabled())
1183 return 0;
1184
1185 if (!hpet_default_delta) {
1186 uint64_t clc;
1187
1188 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1189 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
5946fa3d 1190 hpet_default_delta = clc;
e9e2cdb4
TG
1191 }
1192
1193 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1194 delta = hpet_default_delta;
1195 else
1196 delta = hpet_pie_delta;
1197
1198 local_irq_save(flags);
1199
1200 cnt = delta + hpet_readl(HPET_COUNTER);
1201 hpet_writel(cnt, HPET_T1_CMP);
1202 hpet_t1_cmp = cnt;
1203
1204 cfg = hpet_readl(HPET_T1_CFG);
1205 cfg &= ~HPET_TN_PERIODIC;
1206 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1207 hpet_writel(cfg, HPET_T1_CFG);
1208
1209 local_irq_restore(flags);
1210
1211 return 1;
1212}
1bdbdaac 1213EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4 1214
2ded6e6a
ML
1215static void hpet_disable_rtc_channel(void)
1216{
3d45ac4b 1217 u32 cfg = hpet_readl(HPET_T1_CFG);
2ded6e6a
ML
1218 cfg &= ~HPET_TN_ENABLE;
1219 hpet_writel(cfg, HPET_T1_CFG);
1220}
1221
e9e2cdb4
TG
1222/*
1223 * The functions below are called from rtc driver.
1224 * Return 0 if HPET is not being used.
1225 * Otherwise do the necessary changes and return 1.
1226 */
1227int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1228{
1229 if (!is_hpet_enabled())
1230 return 0;
1231
1232 hpet_rtc_flags &= ~bit_mask;
2ded6e6a
ML
1233 if (unlikely(!hpet_rtc_flags))
1234 hpet_disable_rtc_channel();
1235
e9e2cdb4
TG
1236 return 1;
1237}
1bdbdaac 1238EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1239
1240int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1241{
1242 unsigned long oldbits = hpet_rtc_flags;
1243
1244 if (!is_hpet_enabled())
1245 return 0;
1246
1247 hpet_rtc_flags |= bit_mask;
1248
7e2a31da
DB
1249 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1250 hpet_prev_update_sec = -1;
1251
e9e2cdb4
TG
1252 if (!oldbits)
1253 hpet_rtc_timer_init();
1254
1255 return 1;
1256}
1bdbdaac 1257EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1258
1259int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1260 unsigned char sec)
1261{
1262 if (!is_hpet_enabled())
1263 return 0;
1264
1265 hpet_alarm_time.tm_hour = hrs;
1266 hpet_alarm_time.tm_min = min;
1267 hpet_alarm_time.tm_sec = sec;
1268
1269 return 1;
1270}
1bdbdaac 1271EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1272
1273int hpet_set_periodic_freq(unsigned long freq)
1274{
1275 uint64_t clc;
1276
1277 if (!is_hpet_enabled())
1278 return 0;
1279
1280 if (freq <= DEFAULT_RTC_INT_FREQ)
1281 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1282 else {
1283 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1284 do_div(clc, freq);
1285 clc >>= hpet_clockevent.shift;
5946fa3d 1286 hpet_pie_delta = clc;
b4a5e8a1 1287 hpet_pie_limit = 0;
e9e2cdb4
TG
1288 }
1289 return 1;
1290}
1bdbdaac 1291EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1292
1293int hpet_rtc_dropped_irq(void)
1294{
1295 return is_hpet_enabled();
1296}
1bdbdaac 1297EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1298
1299static void hpet_rtc_timer_reinit(void)
1300{
2ded6e6a 1301 unsigned int delta;
e9e2cdb4
TG
1302 int lost_ints = -1;
1303
2ded6e6a
ML
1304 if (unlikely(!hpet_rtc_flags))
1305 hpet_disable_rtc_channel();
e9e2cdb4
TG
1306
1307 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1308 delta = hpet_default_delta;
1309 else
1310 delta = hpet_pie_delta;
1311
1312 /*
1313 * Increment the comparator value until we are ahead of the
1314 * current count.
1315 */
1316 do {
1317 hpet_t1_cmp += delta;
1318 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1319 lost_ints++;
ff08f76d 1320 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1321
1322 if (lost_ints) {
1323 if (hpet_rtc_flags & RTC_PIE)
1324 hpet_pie_count += lost_ints;
1325 if (printk_ratelimit())
7e2a31da 1326 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1327 lost_ints);
1328 }
1329}
1330
1331irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1332{
1333 struct rtc_time curr_time;
1334 unsigned long rtc_int_flag = 0;
1335
1336 hpet_rtc_timer_reinit();
1bdbdaac 1337 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1338
1339 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
22cc1ca3 1340 mc146818_get_time(&curr_time);
e9e2cdb4
TG
1341
1342 if (hpet_rtc_flags & RTC_UIE &&
1343 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1344 if (hpet_prev_update_sec >= 0)
1345 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1346 hpet_prev_update_sec = curr_time.tm_sec;
1347 }
1348
1349 if (hpet_rtc_flags & RTC_PIE &&
1350 ++hpet_pie_count >= hpet_pie_limit) {
1351 rtc_int_flag |= RTC_PF;
1352 hpet_pie_count = 0;
1353 }
1354
8ee291f8 1355 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1356 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1357 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1358 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1359 rtc_int_flag |= RTC_AF;
1360
1361 if (rtc_int_flag) {
1362 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1363 if (irq_handler)
1364 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1365 }
1366 return IRQ_HANDLED;
1367}
1bdbdaac 1368EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1369#endif