]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/hpet.c
x86: using HPET in MSI mode and setting up per CPU HPET timers, fix
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0
IM
3#include <linux/interrupt.h>
4#include <linux/sysdev.h>
28769149 5#include <linux/delay.h>
5d0cf410
JS
6#include <linux/errno.h>
7#include <linux/hpet.h>
8#include <linux/init.h>
58ac1e76 9#include <linux/cpu.h>
4588c1f0
IM
10#include <linux/pm.h>
11#include <linux/io.h>
5d0cf410 12
28769149 13#include <asm/fixmap.h>
06a24dec 14#include <asm/i8253.h>
4588c1f0 15#include <asm/hpet.h>
5d0cf410 16
4588c1f0
IM
17#define HPET_MASK CLOCKSOURCE_MASK(32)
18#define HPET_SHIFT 22
5d0cf410 19
b10db7f0
PM
20/* FSEC = 10^-15
21 NSEC = 10^-9 */
4588c1f0 22#define FSEC_PER_NSEC 1000000L
5d0cf410 23
26afe5f2 24#define HPET_DEV_USED_BIT 2
25#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26#define HPET_DEV_VALID 0x8
27#define HPET_DEV_FSB_CAP 0x1000
28#define HPET_DEV_PERI_CAP 0x2000
29
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
e9e2cdb4
TG
32/*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
4588c1f0 35unsigned long hpet_address;
26afe5f2 36unsigned long hpet_num_timers;
4588c1f0 37static void __iomem *hpet_virt_address;
e9e2cdb4 38
58ac1e76 39struct hpet_dev {
4588c1f0
IM
40 struct clock_event_device evt;
41 unsigned int num;
42 int cpu;
43 unsigned int irq;
44 unsigned int flags;
45 char name[10];
58ac1e76 46};
47
26afe5f2 48static struct hpet_dev *hpet_devs;
49
50static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
51
31c435d7 52unsigned long hpet_readl(unsigned long a)
e9e2cdb4
TG
53{
54 return readl(hpet_virt_address + a);
55}
56
57static inline void hpet_writel(unsigned long d, unsigned long a)
58{
59 writel(d, hpet_virt_address + a);
60}
61
28769149 62#ifdef CONFIG_X86_64
28769149 63#include <asm/pgtable.h>
2387ce57 64#endif
28769149 65
06a24dec
TG
66static inline void hpet_set_mapping(void)
67{
68 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
2387ce57
YL
69#ifdef CONFIG_X86_64
70 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
71#endif
06a24dec
TG
72}
73
74static inline void hpet_clear_mapping(void)
75{
76 iounmap(hpet_virt_address);
77 hpet_virt_address = NULL;
78}
79
e9e2cdb4
TG
80/*
81 * HPET command line enable / disable
82 */
83static int boot_hpet_disable;
b17530bd 84int hpet_force_user;
e9e2cdb4 85
4588c1f0 86static int __init hpet_setup(char *str)
e9e2cdb4
TG
87{
88 if (str) {
89 if (!strncmp("disable", str, 7))
90 boot_hpet_disable = 1;
b17530bd
TG
91 if (!strncmp("force", str, 5))
92 hpet_force_user = 1;
e9e2cdb4
TG
93 }
94 return 1;
95}
96__setup("hpet=", hpet_setup);
97
28769149
TG
98static int __init disable_hpet(char *str)
99{
100 boot_hpet_disable = 1;
101 return 1;
102}
103__setup("nohpet", disable_hpet);
104
e9e2cdb4
TG
105static inline int is_hpet_capable(void)
106{
4588c1f0 107 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
108}
109
110/*
111 * HPET timer interrupt enable / disable
112 */
113static int hpet_legacy_int_enabled;
114
115/**
116 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
117 */
118int is_hpet_enabled(void)
119{
120 return is_hpet_capable() && hpet_legacy_int_enabled;
121}
1bdbdaac 122EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4
TG
123
124/*
125 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
126 * timer 0 and timer 1 in case of RTC emulation.
127 */
128#ifdef CONFIG_HPET
f0ed4e69
VP
129static void hpet_reserve_msi_timers(struct hpet_data *hd)
130{
131 int i;
132
133 if (!hpet_devs)
134 return;
135
136 for (i = 0; i < hpet_num_timers; i++) {
137 struct hpet_dev *hdev = &hpet_devs[i];
138
139 if (!(hdev->flags & HPET_DEV_VALID))
140 continue;
141
142 hd->hd_irq[hdev->num] = hdev->irq;
143 hpet_reserve_timer(hd, hdev->num);
144 }
145}
146
e9e2cdb4
TG
147static void hpet_reserve_platform_timers(unsigned long id)
148{
149 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
150 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
151 unsigned int nrtimers, i;
e9e2cdb4
TG
152 struct hpet_data hd;
153
154 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
155
4588c1f0
IM
156 memset(&hd, 0, sizeof(hd));
157 hd.hd_phys_address = hpet_address;
158 hd.hd_address = hpet;
159 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
160 hpet_reserve_timer(&hd, 0);
161
162#ifdef CONFIG_HPET_EMULATE_RTC
163 hpet_reserve_timer(&hd, 1);
164#endif
5761d64b 165
64a76f66
DB
166 /*
167 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
168 * is wrong for i8259!) not the output IRQ. Many BIOS writers
169 * don't bother configuring *any* comparator interrupts.
170 */
e9e2cdb4
TG
171 hd.hd_irq[0] = HPET_LEGACY_8254;
172 hd.hd_irq[1] = HPET_LEGACY_RTC;
173
fc3fbc45 174 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
175 hd.hd_irq[i] = (readl(&timer->hpet_config) &
176 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 177 }
5761d64b 178
f0ed4e69 179 hpet_reserve_msi_timers(&hd);
26afe5f2 180
e9e2cdb4 181 hpet_alloc(&hd);
5761d64b 182
e9e2cdb4
TG
183}
184#else
185static void hpet_reserve_platform_timers(unsigned long id) { }
186#endif
187
188/*
189 * Common hpet info
190 */
191static unsigned long hpet_period;
192
610bf2f1 193static void hpet_legacy_set_mode(enum clock_event_mode mode,
e9e2cdb4 194 struct clock_event_device *evt);
610bf2f1 195static int hpet_legacy_next_event(unsigned long delta,
e9e2cdb4
TG
196 struct clock_event_device *evt);
197
198/*
199 * The hpet clock event device
200 */
201static struct clock_event_device hpet_clockevent = {
202 .name = "hpet",
203 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
610bf2f1
VP
204 .set_mode = hpet_legacy_set_mode,
205 .set_next_event = hpet_legacy_next_event,
e9e2cdb4
TG
206 .shift = 32,
207 .irq = 0,
59c69f2a 208 .rating = 50,
e9e2cdb4
TG
209};
210
211static void hpet_start_counter(void)
212{
213 unsigned long cfg = hpet_readl(HPET_CFG);
214
215 cfg &= ~HPET_CFG_ENABLE;
216 hpet_writel(cfg, HPET_CFG);
217 hpet_writel(0, HPET_COUNTER);
218 hpet_writel(0, HPET_COUNTER + 4);
219 cfg |= HPET_CFG_ENABLE;
220 hpet_writel(cfg, HPET_CFG);
221}
222
59c69f2a
VP
223static void hpet_resume_device(void)
224{
bfe0c1cc 225 force_hpet_resume();
59c69f2a
VP
226}
227
228static void hpet_restart_counter(void)
229{
230 hpet_resume_device();
231 hpet_start_counter();
232}
233
610bf2f1 234static void hpet_enable_legacy_int(void)
e9e2cdb4
TG
235{
236 unsigned long cfg = hpet_readl(HPET_CFG);
237
238 cfg |= HPET_CFG_LEGACY;
239 hpet_writel(cfg, HPET_CFG);
240 hpet_legacy_int_enabled = 1;
241}
242
610bf2f1
VP
243static void hpet_legacy_clockevent_register(void)
244{
610bf2f1
VP
245 /* Start HPET legacy interrupts */
246 hpet_enable_legacy_int();
247
248 /*
6fd592da
CM
249 * The mult factor is defined as (include/linux/clockchips.h)
250 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
251 * hpet_period is in units of femtoseconds (per cycle), so
252 * mult/2^shift = cyc/ns = 10^6/hpet_period
253 * mult = (10^6 * 2^shift)/hpet_period
254 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
610bf2f1 255 */
6fd592da
CM
256 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
257 hpet_period, hpet_clockevent.shift);
610bf2f1
VP
258 /* Calculate the min / max delta */
259 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
260 &hpet_clockevent);
7cfb0435
TG
261 /* 5 usec minimum reprogramming delta. */
262 hpet_clockevent.min_delta_ns = 5000;
610bf2f1
VP
263
264 /*
265 * Start hpet with the boot cpu mask and make it
266 * global after the IO_APIC has been initialized.
267 */
268 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
269 clockevents_register_device(&hpet_clockevent);
270 global_clock_event = &hpet_clockevent;
271 printk(KERN_DEBUG "hpet clockevent registered\n");
272}
273
26afe5f2 274static int hpet_setup_msi_irq(unsigned int irq);
275
b40d575b 276static void hpet_set_mode(enum clock_event_mode mode,
277 struct clock_event_device *evt, int timer)
e9e2cdb4
TG
278{
279 unsigned long cfg, cmp, now;
280 uint64_t delta;
281
4588c1f0 282 switch (mode) {
e9e2cdb4 283 case CLOCK_EVT_MODE_PERIODIC:
b40d575b 284 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
285 delta >>= evt->shift;
e9e2cdb4
TG
286 now = hpet_readl(HPET_COUNTER);
287 cmp = now + (unsigned long) delta;
b40d575b 288 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
289 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
290 HPET_TN_SETVAL | HPET_TN_32BIT;
b40d575b 291 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
292 /*
293 * The first write after writing TN_SETVAL to the
294 * config register sets the counter value, the second
295 * write sets the period.
296 */
b40d575b 297 hpet_writel(cmp, HPET_Tn_CMP(timer));
e9e2cdb4 298 udelay(1);
b40d575b 299 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
e9e2cdb4
TG
300 break;
301
302 case CLOCK_EVT_MODE_ONESHOT:
b40d575b 303 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
304 cfg &= ~HPET_TN_PERIODIC;
305 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
b40d575b 306 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
307 break;
308
309 case CLOCK_EVT_MODE_UNUSED:
310 case CLOCK_EVT_MODE_SHUTDOWN:
b40d575b 311 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4 312 cfg &= ~HPET_TN_ENABLE;
b40d575b 313 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4 314 break;
18de5bc4
TG
315
316 case CLOCK_EVT_MODE_RESUME:
26afe5f2 317 if (timer == 0) {
318 hpet_enable_legacy_int();
319 } else {
320 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
321 hpet_setup_msi_irq(hdev->irq);
322 disable_irq(hdev->irq);
323 irq_set_affinity(hdev->irq, cpumask_of_cpu(hdev->cpu));
324 enable_irq(hdev->irq);
325 }
18de5bc4 326 break;
e9e2cdb4
TG
327 }
328}
329
b40d575b 330static int hpet_next_event(unsigned long delta,
331 struct clock_event_device *evt, int timer)
e9e2cdb4 332{
f7676254 333 u32 cnt;
e9e2cdb4
TG
334
335 cnt = hpet_readl(HPET_COUNTER);
f7676254 336 cnt += (u32) delta;
b40d575b 337 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 338
72d43d9b
TG
339 /*
340 * We need to read back the CMP register to make sure that
341 * what we wrote hit the chip before we compare it to the
342 * counter.
343 */
344 WARN_ON((u32)hpet_readl(HPET_T0_CMP) != cnt);
345
f7676254 346 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
e9e2cdb4
TG
347}
348
b40d575b 349static void hpet_legacy_set_mode(enum clock_event_mode mode,
350 struct clock_event_device *evt)
351{
352 hpet_set_mode(mode, evt, 0);
353}
354
355static int hpet_legacy_next_event(unsigned long delta,
356 struct clock_event_device *evt)
357{
358 return hpet_next_event(delta, evt, 0);
359}
360
58ac1e76 361/*
362 * HPET MSI Support
363 */
26afe5f2 364#ifdef CONFIG_PCI_MSI
58ac1e76 365void hpet_msi_unmask(unsigned int irq)
366{
367 struct hpet_dev *hdev = get_irq_data(irq);
368 unsigned long cfg;
369
370 /* unmask it */
371 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
372 cfg |= HPET_TN_FSB;
373 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
374}
375
376void hpet_msi_mask(unsigned int irq)
377{
378 unsigned long cfg;
379 struct hpet_dev *hdev = get_irq_data(irq);
380
381 /* mask it */
382 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
383 cfg &= ~HPET_TN_FSB;
384 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
385}
386
387void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
388{
389 struct hpet_dev *hdev = get_irq_data(irq);
390
391 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
392 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
393}
394
395void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
396{
397 struct hpet_dev *hdev = get_irq_data(irq);
398
399 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
400 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
401 msg->address_hi = 0;
402}
403
26afe5f2 404static void hpet_msi_set_mode(enum clock_event_mode mode,
405 struct clock_event_device *evt)
406{
407 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
408 hpet_set_mode(mode, evt, hdev->num);
409}
410
411static int hpet_msi_next_event(unsigned long delta,
412 struct clock_event_device *evt)
413{
414 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
415 return hpet_next_event(delta, evt, hdev->num);
416}
417
418static int hpet_setup_msi_irq(unsigned int irq)
419{
420 if (arch_setup_hpet_msi(irq)) {
421 destroy_irq(irq);
422 return -EINVAL;
423 }
424 return 0;
425}
426
427static int hpet_assign_irq(struct hpet_dev *dev)
428{
429 unsigned int irq;
430
431 irq = create_irq();
432 if (!irq)
433 return -EINVAL;
434
435 set_irq_data(irq, dev);
436
437 if (hpet_setup_msi_irq(irq))
438 return -EINVAL;
439
440 dev->irq = irq;
441 return 0;
442}
443
444static irqreturn_t hpet_interrupt_handler(int irq, void *data)
445{
446 struct hpet_dev *dev = (struct hpet_dev *)data;
447 struct clock_event_device *hevt = &dev->evt;
448
449 if (!hevt->event_handler) {
450 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
451 dev->num);
452 return IRQ_HANDLED;
453 }
454
455 hevt->event_handler(hevt);
456 return IRQ_HANDLED;
457}
458
459static int hpet_setup_irq(struct hpet_dev *dev)
460{
461
462 if (request_irq(dev->irq, hpet_interrupt_handler,
463 IRQF_SHARED|IRQF_NOBALANCING, dev->name, dev))
464 return -1;
465
466 disable_irq(dev->irq);
467 irq_set_affinity(dev->irq, cpumask_of_cpu(dev->cpu));
468 enable_irq(dev->irq);
469
470 return 0;
471}
472
473/* This should be called in specific @cpu */
474static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
475{
476 struct clock_event_device *evt = &hdev->evt;
477 uint64_t hpet_freq;
478
479 WARN_ON(cpu != smp_processor_id());
480 if (!(hdev->flags & HPET_DEV_VALID))
481 return;
482
483 if (hpet_setup_msi_irq(hdev->irq))
484 return;
485
486 hdev->cpu = cpu;
487 per_cpu(cpu_hpet_dev, cpu) = hdev;
488 evt->name = hdev->name;
489 hpet_setup_irq(hdev);
490 evt->irq = hdev->irq;
491
492 evt->rating = 110;
493 evt->features = CLOCK_EVT_FEAT_ONESHOT;
494 if (hdev->flags & HPET_DEV_PERI_CAP)
495 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
496
497 evt->set_mode = hpet_msi_set_mode;
498 evt->set_next_event = hpet_msi_next_event;
499 evt->shift = 32;
500
501 /*
502 * The period is a femto seconds value. We need to calculate the
503 * scaled math multiplication factor for nanosecond to hpet tick
504 * conversion.
505 */
506 hpet_freq = 1000000000000000ULL;
507 do_div(hpet_freq, hpet_period);
508 evt->mult = div_sc((unsigned long) hpet_freq,
509 NSEC_PER_SEC, evt->shift);
510 /* Calculate the max delta */
511 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
512 /* 5 usec minimum reprogramming delta. */
513 evt->min_delta_ns = 5000;
514
515 evt->cpumask = cpumask_of_cpu(hdev->cpu);
516 clockevents_register_device(evt);
517}
518
519#ifdef CONFIG_HPET
520/* Reserve at least one timer for userspace (/dev/hpet) */
521#define RESERVE_TIMERS 1
522#else
523#define RESERVE_TIMERS 0
524#endif
525void hpet_msi_capability_lookup(unsigned int start_timer)
526{
527 unsigned int id;
528 unsigned int num_timers;
529 unsigned int num_timers_used = 0;
530 int i;
531
532 id = hpet_readl(HPET_ID);
533
534 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
535 num_timers++; /* Value read out starts from 0 */
536
537 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
538 if (!hpet_devs)
539 return;
540
541 hpet_num_timers = num_timers;
542
543 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
544 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
545 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
546
547 /* Only consider HPET timer with MSI support */
548 if (!(cfg & HPET_TN_FSB_CAP))
549 continue;
550
551 hdev->flags = 0;
552 if (cfg & HPET_TN_PERIODIC_CAP)
553 hdev->flags |= HPET_DEV_PERI_CAP;
554 hdev->num = i;
555
556 sprintf(hdev->name, "hpet%d", i);
557 if (hpet_assign_irq(hdev))
558 continue;
559
560 hdev->flags |= HPET_DEV_FSB_CAP;
561 hdev->flags |= HPET_DEV_VALID;
562 num_timers_used++;
563 if (num_timers_used == num_possible_cpus())
564 break;
565 }
566
567 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
568 num_timers, num_timers_used);
569}
570
571static struct hpet_dev *hpet_get_unused_timer(void)
572{
573 int i;
574
575 if (!hpet_devs)
576 return NULL;
577
578 for (i = 0; i < hpet_num_timers; i++) {
579 struct hpet_dev *hdev = &hpet_devs[i];
580
581 if (!(hdev->flags & HPET_DEV_VALID))
582 continue;
583 if (test_and_set_bit(HPET_DEV_USED_BIT,
584 (unsigned long *)&hdev->flags))
585 continue;
586 return hdev;
587 }
588 return NULL;
589}
590
591struct hpet_work_struct {
592 struct delayed_work work;
593 struct completion complete;
594};
595
596static void hpet_work(struct work_struct *w)
597{
598 struct hpet_dev *hdev;
599 int cpu = smp_processor_id();
600 struct hpet_work_struct *hpet_work;
601
602 hpet_work = container_of(w, struct hpet_work_struct, work.work);
603
604 hdev = hpet_get_unused_timer();
605 if (hdev)
606 init_one_hpet_msi_clockevent(hdev, cpu);
607
608 complete(&hpet_work->complete);
609}
610
611static int hpet_cpuhp_notify(struct notifier_block *n,
612 unsigned long action, void *hcpu)
613{
614 unsigned long cpu = (unsigned long)hcpu;
615 struct hpet_work_struct work;
616 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
617
618 switch (action & 0xf) {
619 case CPU_ONLINE:
620 INIT_DELAYED_WORK(&work.work, hpet_work);
621 init_completion(&work.complete);
622 /* FIXME: add schedule_work_on() */
623 schedule_delayed_work_on(cpu, &work.work, 0);
624 wait_for_completion(&work.complete);
625 break;
626 case CPU_DEAD:
627 if (hdev) {
628 free_irq(hdev->irq, hdev);
629 hdev->flags &= ~HPET_DEV_USED;
630 per_cpu(cpu_hpet_dev, cpu) = NULL;
631 }
632 break;
633 }
634 return NOTIFY_OK;
635}
636#else
637
638void hpet_msi_capability_lookup(unsigned int start_timer)
639{
640 return;
641}
642
643static int hpet_cpuhp_notify(struct notifier_block *n,
644 unsigned long action, void *hcpu)
645{
646 return NOTIFY_OK;
647}
648
649#endif
650
6bb74df4
JS
651/*
652 * Clock source related code
653 */
654static cycle_t read_hpet(void)
655{
656 return (cycle_t)hpet_readl(HPET_COUNTER);
657}
658
28769149
TG
659#ifdef CONFIG_X86_64
660static cycle_t __vsyscall_fn vread_hpet(void)
661{
662 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
663}
664#endif
665
6bb74df4
JS
666static struct clocksource clocksource_hpet = {
667 .name = "hpet",
668 .rating = 250,
669 .read = read_hpet,
670 .mask = HPET_MASK,
671 .shift = HPET_SHIFT,
672 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
59c69f2a 673 .resume = hpet_restart_counter,
28769149
TG
674#ifdef CONFIG_X86_64
675 .vread = vread_hpet,
676#endif
6bb74df4
JS
677};
678
610bf2f1 679static int hpet_clocksource_register(void)
e9e2cdb4 680{
6fd592da 681 u64 start, now;
075bcd1f 682 cycle_t t1;
e9e2cdb4 683
e9e2cdb4
TG
684 /* Start the counter */
685 hpet_start_counter();
686
075bcd1f
TG
687 /* Verify whether hpet counter works */
688 t1 = read_hpet();
689 rdtscll(start);
690
691 /*
692 * We don't know the TSC frequency yet, but waiting for
693 * 200000 TSC cycles is safe:
694 * 4 GHz == 50us
695 * 1 GHz == 200us
696 */
697 do {
698 rep_nop();
699 rdtscll(now);
700 } while ((now - start) < 200000UL);
701
702 if (t1 == read_hpet()) {
703 printk(KERN_WARNING
704 "HPET counter not counting. HPET disabled\n");
610bf2f1 705 return -ENODEV;
075bcd1f
TG
706 }
707
6fd592da
CM
708 /*
709 * The definition of mult is (include/linux/clocksource.h)
710 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
711 * so we first need to convert hpet_period to ns/cyc units:
712 * mult/2^shift = ns/cyc = hpet_period/10^6
713 * mult = (hpet_period * 2^shift)/10^6
714 * mult = (hpet_period << shift)/FSEC_PER_NSEC
6bb74df4 715 */
6fd592da 716 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
6bb74df4
JS
717
718 clocksource_register(&clocksource_hpet);
719
610bf2f1
VP
720 return 0;
721}
722
b02a7f22
PM
723/**
724 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
725 */
726int __init hpet_enable(void)
727{
728 unsigned long id;
a6825f1c 729 int i;
610bf2f1
VP
730
731 if (!is_hpet_capable())
732 return 0;
733
734 hpet_set_mapping();
735
736 /*
737 * Read the period and check for a sane value:
738 */
739 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
740
741 /*
742 * AMD SB700 based systems with spread spectrum enabled use a
743 * SMM based HPET emulation to provide proper frequency
744 * setting. The SMM code is initialized with the first HPET
745 * register access and takes some time to complete. During
746 * this time the config register reads 0xffffffff. We check
747 * for max. 1000 loops whether the config register reads a non
748 * 0xffffffff value to make sure that HPET is up and running
749 * before we go further. A counting loop is safe, as the HPET
750 * access takes thousands of CPU cycles. On non SB700 based
751 * machines this check is only done once and has no side
752 * effects.
753 */
754 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
755 if (i == 1000) {
756 printk(KERN_WARNING
757 "HPET config register value = 0xFFFFFFFF. "
758 "Disabling HPET\n");
759 goto out_nohpet;
760 }
761 }
762
610bf2f1
VP
763 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
764 goto out_nohpet;
765
766 /*
767 * Read the HPET ID register to retrieve the IRQ routing
768 * information and the number of channels
769 */
770 id = hpet_readl(HPET_ID);
771
772#ifdef CONFIG_HPET_EMULATE_RTC
773 /*
774 * The legacy routing mode needs at least two channels, tick timer
775 * and the rtc emulation channel.
776 */
777 if (!(id & HPET_ID_NUMBER))
778 goto out_nohpet;
779#endif
780
781 if (hpet_clocksource_register())
782 goto out_nohpet;
783
e9e2cdb4 784 if (id & HPET_ID_LEGSUP) {
610bf2f1 785 hpet_legacy_clockevent_register();
26afe5f2 786 hpet_msi_capability_lookup(2);
e9e2cdb4
TG
787 return 1;
788 }
26afe5f2 789 hpet_msi_capability_lookup(0);
e9e2cdb4 790 return 0;
5d0cf410 791
e9e2cdb4 792out_nohpet:
06a24dec 793 hpet_clear_mapping();
399afa4f 794 boot_hpet_disable = 1;
e9e2cdb4
TG
795 return 0;
796}
797
28769149
TG
798/*
799 * Needs to be late, as the reserve_timer code calls kalloc !
800 *
801 * Not a problem on i386 as hpet_enable is called from late_time_init,
802 * but on x86_64 it is necessary !
803 */
804static __init int hpet_late_init(void)
805{
26afe5f2 806 int cpu;
807
59c69f2a 808 if (boot_hpet_disable)
28769149
TG
809 return -ENODEV;
810
59c69f2a
VP
811 if (!hpet_address) {
812 if (!force_hpet_address)
813 return -ENODEV;
814
815 hpet_address = force_hpet_address;
816 hpet_enable();
817 if (!hpet_virt_address)
818 return -ENODEV;
819 }
820
28769149 821 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
59c69f2a 822
26afe5f2 823 for_each_online_cpu(cpu) {
824 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
825 }
826
827 /* This notifier should be called after workqueue is ready */
828 hotcpu_notifier(hpet_cpuhp_notify, -20);
829
28769149
TG
830 return 0;
831}
832fs_initcall(hpet_late_init);
833
c86c7fbc
OH
834void hpet_disable(void)
835{
836 if (is_hpet_capable()) {
837 unsigned long cfg = hpet_readl(HPET_CFG);
838
839 if (hpet_legacy_int_enabled) {
840 cfg &= ~HPET_CFG_LEGACY;
841 hpet_legacy_int_enabled = 0;
842 }
843 cfg &= ~HPET_CFG_ENABLE;
844 hpet_writel(cfg, HPET_CFG);
845 }
846}
847
e9e2cdb4
TG
848#ifdef CONFIG_HPET_EMULATE_RTC
849
850/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
851 * is enabled, we support RTC interrupt functionality in software.
852 * RTC has 3 kinds of interrupts:
853 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
854 * is updated
855 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
856 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
857 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
858 * (1) and (2) above are implemented using polling at a frequency of
859 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
860 * overhead. (DEFAULT_RTC_INT_FREQ)
861 * For (3), we use interrupts at 64Hz or user specified periodic
862 * frequency, whichever is higher.
863 */
864#include <linux/mc146818rtc.h>
865#include <linux/rtc.h>
1bdbdaac 866#include <asm/rtc.h>
e9e2cdb4
TG
867
868#define DEFAULT_RTC_INT_FREQ 64
869#define DEFAULT_RTC_SHIFT 6
870#define RTC_NUM_INTS 1
871
872static unsigned long hpet_rtc_flags;
7e2a31da 873static int hpet_prev_update_sec;
e9e2cdb4
TG
874static struct rtc_time hpet_alarm_time;
875static unsigned long hpet_pie_count;
876static unsigned long hpet_t1_cmp;
877static unsigned long hpet_default_delta;
878static unsigned long hpet_pie_delta;
879static unsigned long hpet_pie_limit;
880
1bdbdaac
BW
881static rtc_irq_handler irq_handler;
882
883/*
884 * Registers a IRQ handler.
885 */
886int hpet_register_irq_handler(rtc_irq_handler handler)
887{
888 if (!is_hpet_enabled())
889 return -ENODEV;
890 if (irq_handler)
891 return -EBUSY;
892
893 irq_handler = handler;
894
895 return 0;
896}
897EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
898
899/*
900 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
901 * and does cleanup.
902 */
903void hpet_unregister_irq_handler(rtc_irq_handler handler)
904{
905 if (!is_hpet_enabled())
906 return;
907
908 irq_handler = NULL;
909 hpet_rtc_flags = 0;
910}
911EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
912
e9e2cdb4
TG
913/*
914 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
915 * is not supported by all HPET implementations for timer 1.
916 *
917 * hpet_rtc_timer_init() is called when the rtc is initialized.
918 */
919int hpet_rtc_timer_init(void)
920{
921 unsigned long cfg, cnt, delta, flags;
922
923 if (!is_hpet_enabled())
924 return 0;
925
926 if (!hpet_default_delta) {
927 uint64_t clc;
928
929 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
930 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
931 hpet_default_delta = (unsigned long) clc;
932 }
933
934 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
935 delta = hpet_default_delta;
936 else
937 delta = hpet_pie_delta;
938
939 local_irq_save(flags);
940
941 cnt = delta + hpet_readl(HPET_COUNTER);
942 hpet_writel(cnt, HPET_T1_CMP);
943 hpet_t1_cmp = cnt;
944
945 cfg = hpet_readl(HPET_T1_CFG);
946 cfg &= ~HPET_TN_PERIODIC;
947 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
948 hpet_writel(cfg, HPET_T1_CFG);
949
950 local_irq_restore(flags);
951
952 return 1;
953}
1bdbdaac 954EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4
TG
955
956/*
957 * The functions below are called from rtc driver.
958 * Return 0 if HPET is not being used.
959 * Otherwise do the necessary changes and return 1.
960 */
961int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
962{
963 if (!is_hpet_enabled())
964 return 0;
965
966 hpet_rtc_flags &= ~bit_mask;
967 return 1;
968}
1bdbdaac 969EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
970
971int hpet_set_rtc_irq_bit(unsigned long bit_mask)
972{
973 unsigned long oldbits = hpet_rtc_flags;
974
975 if (!is_hpet_enabled())
976 return 0;
977
978 hpet_rtc_flags |= bit_mask;
979
7e2a31da
DB
980 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
981 hpet_prev_update_sec = -1;
982
e9e2cdb4
TG
983 if (!oldbits)
984 hpet_rtc_timer_init();
985
986 return 1;
987}
1bdbdaac 988EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
989
990int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
991 unsigned char sec)
992{
993 if (!is_hpet_enabled())
994 return 0;
995
996 hpet_alarm_time.tm_hour = hrs;
997 hpet_alarm_time.tm_min = min;
998 hpet_alarm_time.tm_sec = sec;
999
1000 return 1;
1001}
1bdbdaac 1002EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1003
1004int hpet_set_periodic_freq(unsigned long freq)
1005{
1006 uint64_t clc;
1007
1008 if (!is_hpet_enabled())
1009 return 0;
1010
1011 if (freq <= DEFAULT_RTC_INT_FREQ)
1012 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1013 else {
1014 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1015 do_div(clc, freq);
1016 clc >>= hpet_clockevent.shift;
1017 hpet_pie_delta = (unsigned long) clc;
1018 }
1019 return 1;
1020}
1bdbdaac 1021EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1022
1023int hpet_rtc_dropped_irq(void)
1024{
1025 return is_hpet_enabled();
1026}
1bdbdaac 1027EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1028
1029static void hpet_rtc_timer_reinit(void)
1030{
1031 unsigned long cfg, delta;
1032 int lost_ints = -1;
1033
1034 if (unlikely(!hpet_rtc_flags)) {
1035 cfg = hpet_readl(HPET_T1_CFG);
1036 cfg &= ~HPET_TN_ENABLE;
1037 hpet_writel(cfg, HPET_T1_CFG);
1038 return;
1039 }
1040
1041 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1042 delta = hpet_default_delta;
1043 else
1044 delta = hpet_pie_delta;
1045
1046 /*
1047 * Increment the comparator value until we are ahead of the
1048 * current count.
1049 */
1050 do {
1051 hpet_t1_cmp += delta;
1052 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1053 lost_ints++;
1054 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
1055
1056 if (lost_ints) {
1057 if (hpet_rtc_flags & RTC_PIE)
1058 hpet_pie_count += lost_ints;
1059 if (printk_ratelimit())
7e2a31da 1060 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1061 lost_ints);
1062 }
1063}
1064
1065irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1066{
1067 struct rtc_time curr_time;
1068 unsigned long rtc_int_flag = 0;
1069
1070 hpet_rtc_timer_reinit();
1bdbdaac 1071 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1072
1073 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 1074 get_rtc_time(&curr_time);
e9e2cdb4
TG
1075
1076 if (hpet_rtc_flags & RTC_UIE &&
1077 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1078 if (hpet_prev_update_sec >= 0)
1079 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1080 hpet_prev_update_sec = curr_time.tm_sec;
1081 }
1082
1083 if (hpet_rtc_flags & RTC_PIE &&
1084 ++hpet_pie_count >= hpet_pie_limit) {
1085 rtc_int_flag |= RTC_PF;
1086 hpet_pie_count = 0;
1087 }
1088
8ee291f8 1089 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1090 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1091 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1092 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1093 rtc_int_flag |= RTC_AF;
1094
1095 if (rtc_int_flag) {
1096 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1097 if (irq_handler)
1098 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1099 }
1100 return IRQ_HANDLED;
1101}
1bdbdaac 1102EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1103#endif