]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/hpet.c
x86: Don't include linux/irq.h from asm/hardirq.h
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0 3#include <linux/interrupt.h>
f901f138 4#include <linux/irq.h>
69c60c88 5#include <linux/export.h>
28769149 6#include <linux/delay.h>
5d0cf410 7#include <linux/errno.h>
334955ef 8#include <linux/i8253.h>
5a0e3ad6 9#include <linux/slab.h>
5d0cf410
JS
10#include <linux/hpet.h>
11#include <linux/init.h>
58ac1e76 12#include <linux/cpu.h>
4588c1f0
IM
13#include <linux/pm.h>
14#include <linux/io.h>
5d0cf410 15
cd4d09ec 16#include <asm/cpufeature.h>
d746d1eb 17#include <asm/irqdomain.h>
28769149 18#include <asm/fixmap.h>
4588c1f0 19#include <asm/hpet.h>
16f871bc 20#include <asm/time.h>
5d0cf410 21
4588c1f0 22#define HPET_MASK CLOCKSOURCE_MASK(32)
5d0cf410 23
b10db7f0
PM
24/* FSEC = 10^-15
25 NSEC = 10^-9 */
4588c1f0 26#define FSEC_PER_NSEC 1000000L
5d0cf410 27
26afe5f2 28#define HPET_DEV_USED_BIT 2
29#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
30#define HPET_DEV_VALID 0x8
31#define HPET_DEV_FSB_CAP 0x1000
32#define HPET_DEV_PERI_CAP 0x2000
33
f1c18071
TG
34#define HPET_MIN_CYCLES 128
35#define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
36
e9e2cdb4
TG
37/*
38 * HPET address is set in acpi/boot.c, when an ACPI entry exists
39 */
4588c1f0 40unsigned long hpet_address;
c8bc6f3c 41u8 hpet_blockid; /* OS timer block num */
3d45ac4b 42bool hpet_msi_disable;
73472a46 43
e951e4af 44#ifdef CONFIG_PCI_MSI
3d45ac4b 45static unsigned int hpet_num_timers;
e951e4af 46#endif
4588c1f0 47static void __iomem *hpet_virt_address;
e9e2cdb4 48
58ac1e76 49struct hpet_dev {
4588c1f0
IM
50 struct clock_event_device evt;
51 unsigned int num;
52 int cpu;
53 unsigned int irq;
54 unsigned int flags;
55 char name[10];
58ac1e76 56};
57
a3819e3e 58static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
3f7787b3
FW
59{
60 return container_of(evtdev, struct hpet_dev, evt);
61}
62
5946fa3d 63inline unsigned int hpet_readl(unsigned int a)
e9e2cdb4
TG
64{
65 return readl(hpet_virt_address + a);
66}
67
5946fa3d 68static inline void hpet_writel(unsigned int d, unsigned int a)
e9e2cdb4
TG
69{
70 writel(d, hpet_virt_address + a);
71}
72
28769149 73#ifdef CONFIG_X86_64
28769149 74#include <asm/pgtable.h>
2387ce57 75#endif
28769149 76
06a24dec
TG
77static inline void hpet_set_mapping(void)
78{
79 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
80}
81
82static inline void hpet_clear_mapping(void)
83{
84 iounmap(hpet_virt_address);
85 hpet_virt_address = NULL;
86}
87
e9e2cdb4
TG
88/*
89 * HPET command line enable / disable
90 */
3d45ac4b
JB
91bool boot_hpet_disable;
92bool hpet_force_user;
93static bool hpet_verbose;
e9e2cdb4 94
4588c1f0 95static int __init hpet_setup(char *str)
e9e2cdb4 96{
b2d6aba9
JB
97 while (str) {
98 char *next = strchr(str, ',');
99
100 if (next)
101 *next++ = 0;
e9e2cdb4 102 if (!strncmp("disable", str, 7))
3d45ac4b 103 boot_hpet_disable = true;
b17530bd 104 if (!strncmp("force", str, 5))
3d45ac4b 105 hpet_force_user = true;
b98103a5 106 if (!strncmp("verbose", str, 7))
3d45ac4b 107 hpet_verbose = true;
b2d6aba9 108 str = next;
e9e2cdb4
TG
109 }
110 return 1;
111}
112__setup("hpet=", hpet_setup);
113
28769149
TG
114static int __init disable_hpet(char *str)
115{
3d45ac4b 116 boot_hpet_disable = true;
28769149
TG
117 return 1;
118}
119__setup("nohpet", disable_hpet);
120
e9e2cdb4
TG
121static inline int is_hpet_capable(void)
122{
4588c1f0 123 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
124}
125
126/*
127 * HPET timer interrupt enable / disable
128 */
3d45ac4b 129static bool hpet_legacy_int_enabled;
e9e2cdb4
TG
130
131/**
132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
133 */
134int is_hpet_enabled(void)
135{
136 return is_hpet_capable() && hpet_legacy_int_enabled;
137}
1bdbdaac 138EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 139
b98103a5
AH
140static void _hpet_print_config(const char *function, int line)
141{
142 u32 i, timers, l, h;
143 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
144 l = hpet_readl(HPET_ID);
145 h = hpet_readl(HPET_PERIOD);
146 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
147 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
148 l = hpet_readl(HPET_CFG);
149 h = hpet_readl(HPET_STATUS);
150 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
151 l = hpet_readl(HPET_COUNTER);
152 h = hpet_readl(HPET_COUNTER+4);
153 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
154
155 for (i = 0; i < timers; i++) {
156 l = hpet_readl(HPET_Tn_CFG(i));
157 h = hpet_readl(HPET_Tn_CFG(i)+4);
158 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
159 i, l, h);
160 l = hpet_readl(HPET_Tn_CMP(i));
161 h = hpet_readl(HPET_Tn_CMP(i)+4);
162 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
163 i, l, h);
164 l = hpet_readl(HPET_Tn_ROUTE(i));
165 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
166 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
167 i, l, h);
168 }
169}
170
171#define hpet_print_config() \
172do { \
173 if (hpet_verbose) \
02f1f217 174 _hpet_print_config(__func__, __LINE__); \
b98103a5
AH
175} while (0)
176
e9e2cdb4
TG
177/*
178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
179 * timer 0 and timer 1 in case of RTC emulation.
180 */
181#ifdef CONFIG_HPET
f0ed4e69 182
5f79f2f2 183static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 184
5946fa3d 185static void hpet_reserve_platform_timers(unsigned int id)
e9e2cdb4
TG
186{
187 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
188 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
189 unsigned int nrtimers, i;
e9e2cdb4
TG
190 struct hpet_data hd;
191
192 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
193
4588c1f0
IM
194 memset(&hd, 0, sizeof(hd));
195 hd.hd_phys_address = hpet_address;
196 hd.hd_address = hpet;
197 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
198 hpet_reserve_timer(&hd, 0);
199
200#ifdef CONFIG_HPET_EMULATE_RTC
201 hpet_reserve_timer(&hd, 1);
202#endif
5761d64b 203
64a76f66
DB
204 /*
205 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
206 * is wrong for i8259!) not the output IRQ. Many BIOS writers
207 * don't bother configuring *any* comparator interrupts.
208 */
e9e2cdb4
TG
209 hd.hd_irq[0] = HPET_LEGACY_8254;
210 hd.hd_irq[1] = HPET_LEGACY_RTC;
211
fc3fbc45 212 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
213 hd.hd_irq[i] = (readl(&timer->hpet_config) &
214 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 215 }
5761d64b 216
f0ed4e69 217 hpet_reserve_msi_timers(&hd);
26afe5f2 218
e9e2cdb4 219 hpet_alloc(&hd);
5761d64b 220
e9e2cdb4
TG
221}
222#else
5946fa3d 223static void hpet_reserve_platform_timers(unsigned int id) { }
e9e2cdb4
TG
224#endif
225
226/*
227 * Common hpet info
228 */
ab0e08f1 229static unsigned long hpet_freq;
e9e2cdb4 230
c8b5db7d 231static struct clock_event_device hpet_clockevent;
e9e2cdb4 232
8d6f0c82 233static void hpet_stop_counter(void)
e9e2cdb4 234{
3d45ac4b 235 u32 cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
236 cfg &= ~HPET_CFG_ENABLE;
237 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
238}
239
240static void hpet_reset_counter(void)
241{
e9e2cdb4
TG
242 hpet_writel(0, HPET_COUNTER);
243 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
244}
245
246static void hpet_start_counter(void)
247{
5946fa3d 248 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
249 cfg |= HPET_CFG_ENABLE;
250 hpet_writel(cfg, HPET_CFG);
251}
252
8d6f0c82
AH
253static void hpet_restart_counter(void)
254{
255 hpet_stop_counter();
7a6f9cbb 256 hpet_reset_counter();
8d6f0c82
AH
257 hpet_start_counter();
258}
259
59c69f2a
VP
260static void hpet_resume_device(void)
261{
bfe0c1cc 262 force_hpet_resume();
59c69f2a
VP
263}
264
17622339 265static void hpet_resume_counter(struct clocksource *cs)
59c69f2a
VP
266{
267 hpet_resume_device();
8d6f0c82 268 hpet_restart_counter();
59c69f2a
VP
269}
270
610bf2f1 271static void hpet_enable_legacy_int(void)
e9e2cdb4 272{
5946fa3d 273 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
274
275 cfg |= HPET_CFG_LEGACY;
276 hpet_writel(cfg, HPET_CFG);
3d45ac4b 277 hpet_legacy_int_enabled = true;
e9e2cdb4
TG
278}
279
610bf2f1
VP
280static void hpet_legacy_clockevent_register(void)
281{
610bf2f1
VP
282 /* Start HPET legacy interrupts */
283 hpet_enable_legacy_int();
284
610bf2f1
VP
285 /*
286 * Start hpet with the boot cpu mask and make it
287 * global after the IO_APIC has been initialized.
288 */
803ff8a7 289 hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
ab0e08f1
TG
290 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
291 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
610bf2f1
VP
292 global_clock_event = &hpet_clockevent;
293 printk(KERN_DEBUG "hpet clockevent registered\n");
294}
295
c8b5db7d 296static int hpet_set_periodic(struct clock_event_device *evt, int timer)
e9e2cdb4 297{
5946fa3d 298 unsigned int cfg, cmp, now;
e9e2cdb4
TG
299 uint64_t delta;
300
c8b5db7d
VK
301 hpet_stop_counter();
302 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
303 delta >>= evt->shift;
304 now = hpet_readl(HPET_COUNTER);
305 cmp = now + (unsigned int)delta;
306 cfg = hpet_readl(HPET_Tn_CFG(timer));
307 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
308 HPET_TN_32BIT;
309 hpet_writel(cfg, HPET_Tn_CFG(timer));
310 hpet_writel(cmp, HPET_Tn_CMP(timer));
311 udelay(1);
312 /*
313 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
314 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
315 * bit is automatically cleared after the first write.
316 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
317 * Publication # 24674)
318 */
319 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
320 hpet_start_counter();
321 hpet_print_config();
322
323 return 0;
324}
325
326static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
327{
328 unsigned int cfg;
329
330 cfg = hpet_readl(HPET_Tn_CFG(timer));
331 cfg &= ~HPET_TN_PERIODIC;
332 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
333 hpet_writel(cfg, HPET_Tn_CFG(timer));
334
335 return 0;
336}
337
338static int hpet_shutdown(struct clock_event_device *evt, int timer)
339{
340 unsigned int cfg;
341
342 cfg = hpet_readl(HPET_Tn_CFG(timer));
343 cfg &= ~HPET_TN_ENABLE;
344 hpet_writel(cfg, HPET_Tn_CFG(timer));
345
346 return 0;
347}
348
bb68cfe2
TG
349static int hpet_resume(struct clock_event_device *evt)
350{
351 hpet_enable_legacy_int();
c8b5db7d 352 hpet_print_config();
c8b5db7d 353 return 0;
e9e2cdb4
TG
354}
355
b40d575b 356static int hpet_next_event(unsigned long delta,
357 struct clock_event_device *evt, int timer)
e9e2cdb4 358{
f7676254 359 u32 cnt;
995bd3bb 360 s32 res;
e9e2cdb4
TG
361
362 cnt = hpet_readl(HPET_COUNTER);
f7676254 363 cnt += (u32) delta;
b40d575b 364 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 365
72d43d9b 366 /*
995bd3bb
TG
367 * HPETs are a complete disaster. The compare register is
368 * based on a equal comparison and neither provides a less
369 * than or equal functionality (which would require to take
370 * the wraparound into account) nor a simple count down event
371 * mode. Further the write to the comparator register is
372 * delayed internally up to two HPET clock cycles in certain
f1c18071
TG
373 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
374 * longer delays. We worked around that by reading back the
375 * compare register, but that required another workaround for
376 * ICH9,10 chips where the first readout after write can
377 * return the old stale value. We already had a minimum
378 * programming delta of 5us enforced, but a NMI or SMI hitting
995bd3bb
TG
379 * between the counter readout and the comparator write can
380 * move us behind that point easily. Now instead of reading
381 * the compare register back several times, we make the ETIME
382 * decision based on the following: Return ETIME if the
f1c18071 383 * counter value after the write is less than HPET_MIN_CYCLES
995bd3bb 384 * away from the event or if the counter is already ahead of
f1c18071
TG
385 * the event. The minimum programming delta for the generic
386 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
72d43d9b 387 */
995bd3bb 388 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
72d43d9b 389
f1c18071 390 return res < HPET_MIN_CYCLES ? -ETIME : 0;
e9e2cdb4
TG
391}
392
c8b5db7d 393static int hpet_legacy_shutdown(struct clock_event_device *evt)
b40d575b 394{
c8b5db7d
VK
395 return hpet_shutdown(evt, 0);
396}
397
398static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
399{
400 return hpet_set_oneshot(evt, 0);
401}
402
403static int hpet_legacy_set_periodic(struct clock_event_device *evt)
404{
405 return hpet_set_periodic(evt, 0);
406}
407
408static int hpet_legacy_resume(struct clock_event_device *evt)
409{
bb68cfe2 410 return hpet_resume(evt);
b40d575b 411}
412
413static int hpet_legacy_next_event(unsigned long delta,
414 struct clock_event_device *evt)
415{
416 return hpet_next_event(delta, evt, 0);
417}
418
c8b5db7d
VK
419/*
420 * The hpet clock event device
421 */
422static struct clock_event_device hpet_clockevent = {
423 .name = "hpet",
424 .features = CLOCK_EVT_FEAT_PERIODIC |
425 CLOCK_EVT_FEAT_ONESHOT,
426 .set_state_periodic = hpet_legacy_set_periodic,
427 .set_state_oneshot = hpet_legacy_set_oneshot,
428 .set_state_shutdown = hpet_legacy_shutdown,
429 .tick_resume = hpet_legacy_resume,
430 .set_next_event = hpet_legacy_next_event,
431 .irq = 0,
432 .rating = 50,
433};
434
58ac1e76 435/*
436 * HPET MSI Support
437 */
26afe5f2 438#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
439
440static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
441static struct hpet_dev *hpet_devs;
3cb96f0c 442static struct irq_domain *hpet_domain;
5f79f2f2 443
d0fbca8f 444void hpet_msi_unmask(struct irq_data *data)
58ac1e76 445{
ff96b4d0 446 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
5946fa3d 447 unsigned int cfg;
58ac1e76 448
449 /* unmask it */
450 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
6acf5a8c 451 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
58ac1e76 452 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
453}
454
d0fbca8f 455void hpet_msi_mask(struct irq_data *data)
58ac1e76 456{
ff96b4d0 457 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
5946fa3d 458 unsigned int cfg;
58ac1e76 459
460 /* mask it */
461 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
6acf5a8c 462 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
58ac1e76 463 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
464}
465
d0fbca8f 466void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
58ac1e76 467{
58ac1e76 468 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
469 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
470}
471
d0fbca8f 472void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
58ac1e76 473{
58ac1e76 474 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
475 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
476 msg->address_hi = 0;
477}
478
c8b5db7d 479static int hpet_msi_shutdown(struct clock_event_device *evt)
26afe5f2 480{
481 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
c8b5db7d
VK
482
483 return hpet_shutdown(evt, hdev->num);
484}
485
486static int hpet_msi_set_oneshot(struct clock_event_device *evt)
487{
488 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
489
490 return hpet_set_oneshot(evt, hdev->num);
491}
492
493static int hpet_msi_set_periodic(struct clock_event_device *evt)
494{
495 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
496
497 return hpet_set_periodic(evt, hdev->num);
498}
499
500static int hpet_msi_resume(struct clock_event_device *evt)
501{
502 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
bb68cfe2
TG
503 struct irq_data *data = irq_get_irq_data(hdev->irq);
504 struct msi_msg msg;
c8b5db7d 505
bb68cfe2
TG
506 /* Restore the MSI msg and unmask the interrupt */
507 irq_chip_compose_msi_msg(data, &msg);
508 hpet_msi_write(hdev, &msg);
509 hpet_msi_unmask(data);
510 return 0;
26afe5f2 511}
512
513static int hpet_msi_next_event(unsigned long delta,
514 struct clock_event_device *evt)
515{
516 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
517 return hpet_next_event(delta, evt, hdev->num);
518}
519
26afe5f2 520static irqreturn_t hpet_interrupt_handler(int irq, void *data)
521{
522 struct hpet_dev *dev = (struct hpet_dev *)data;
523 struct clock_event_device *hevt = &dev->evt;
524
525 if (!hevt->event_handler) {
526 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
527 dev->num);
528 return IRQ_HANDLED;
529 }
530
531 hevt->event_handler(hevt);
532 return IRQ_HANDLED;
533}
534
535static int hpet_setup_irq(struct hpet_dev *dev)
536{
537
538 if (request_irq(dev->irq, hpet_interrupt_handler,
d20d2efb 539 IRQF_TIMER | IRQF_NOBALANCING,
507fa3a3 540 dev->name, dev))
26afe5f2 541 return -1;
542
543 disable_irq(dev->irq);
0de26520 544 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 545 enable_irq(dev->irq);
546
c81bba49
YL
547 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
548 dev->name, dev->irq);
549
26afe5f2 550 return 0;
551}
552
553/* This should be called in specific @cpu */
554static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
555{
556 struct clock_event_device *evt = &hdev->evt;
26afe5f2 557
558 WARN_ON(cpu != smp_processor_id());
559 if (!(hdev->flags & HPET_DEV_VALID))
560 return;
561
26afe5f2 562 hdev->cpu = cpu;
563 per_cpu(cpu_hpet_dev, cpu) = hdev;
564 evt->name = hdev->name;
565 hpet_setup_irq(hdev);
566 evt->irq = hdev->irq;
567
568 evt->rating = 110;
569 evt->features = CLOCK_EVT_FEAT_ONESHOT;
c8b5db7d 570 if (hdev->flags & HPET_DEV_PERI_CAP) {
26afe5f2 571 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
c8b5db7d
VK
572 evt->set_state_periodic = hpet_msi_set_periodic;
573 }
26afe5f2 574
c8b5db7d
VK
575 evt->set_state_shutdown = hpet_msi_shutdown;
576 evt->set_state_oneshot = hpet_msi_set_oneshot;
577 evt->tick_resume = hpet_msi_resume;
26afe5f2 578 evt->set_next_event = hpet_msi_next_event;
320ab2b0 579 evt->cpumask = cpumask_of(hdev->cpu);
ab0e08f1
TG
580
581 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
582 0x7FFFFFFF);
26afe5f2 583}
584
585#ifdef CONFIG_HPET
586/* Reserve at least one timer for userspace (/dev/hpet) */
587#define RESERVE_TIMERS 1
588#else
589#define RESERVE_TIMERS 0
590#endif
5f79f2f2
VP
591
592static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 593{
594 unsigned int id;
595 unsigned int num_timers;
596 unsigned int num_timers_used = 0;
3cb96f0c 597 int i, irq;
26afe5f2 598
73472a46
PV
599 if (hpet_msi_disable)
600 return;
601
39fe05e5
SL
602 if (boot_cpu_has(X86_FEATURE_ARAT))
603 return;
26afe5f2 604 id = hpet_readl(HPET_ID);
605
606 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
607 num_timers++; /* Value read out starts from 0 */
b98103a5 608 hpet_print_config();
26afe5f2 609
3cb96f0c
JL
610 hpet_domain = hpet_create_irq_domain(hpet_blockid);
611 if (!hpet_domain)
612 return;
613
26afe5f2 614 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
615 if (!hpet_devs)
616 return;
617
618 hpet_num_timers = num_timers;
619
620 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
621 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
5946fa3d 622 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
26afe5f2 623
624 /* Only consider HPET timer with MSI support */
625 if (!(cfg & HPET_TN_FSB_CAP))
626 continue;
627
cb17b2a6
TG
628 hdev->flags = 0;
629 if (cfg & HPET_TN_PERIODIC_CAP)
630 hdev->flags |= HPET_DEV_PERI_CAP;
631 sprintf(hdev->name, "hpet%d", i);
632 hdev->num = i;
633
3cb96f0c 634 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
bafac298 635 if (irq <= 0)
3cb96f0c
JL
636 continue;
637
3cb96f0c 638 hdev->irq = irq;
26afe5f2 639 hdev->flags |= HPET_DEV_FSB_CAP;
640 hdev->flags |= HPET_DEV_VALID;
641 num_timers_used++;
642 if (num_timers_used == num_possible_cpus())
643 break;
644 }
645
646 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
647 num_timers, num_timers_used);
648}
649
5f79f2f2
VP
650#ifdef CONFIG_HPET
651static void hpet_reserve_msi_timers(struct hpet_data *hd)
652{
653 int i;
654
655 if (!hpet_devs)
656 return;
657
658 for (i = 0; i < hpet_num_timers; i++) {
659 struct hpet_dev *hdev = &hpet_devs[i];
660
661 if (!(hdev->flags & HPET_DEV_VALID))
662 continue;
663
664 hd->hd_irq[hdev->num] = hdev->irq;
665 hpet_reserve_timer(hd, hdev->num);
666 }
667}
668#endif
669
26afe5f2 670static struct hpet_dev *hpet_get_unused_timer(void)
671{
672 int i;
673
674 if (!hpet_devs)
675 return NULL;
676
677 for (i = 0; i < hpet_num_timers; i++) {
678 struct hpet_dev *hdev = &hpet_devs[i];
679
680 if (!(hdev->flags & HPET_DEV_VALID))
681 continue;
682 if (test_and_set_bit(HPET_DEV_USED_BIT,
683 (unsigned long *)&hdev->flags))
684 continue;
685 return hdev;
686 }
687 return NULL;
688}
689
690struct hpet_work_struct {
691 struct delayed_work work;
692 struct completion complete;
693};
694
695static void hpet_work(struct work_struct *w)
696{
697 struct hpet_dev *hdev;
698 int cpu = smp_processor_id();
699 struct hpet_work_struct *hpet_work;
700
701 hpet_work = container_of(w, struct hpet_work_struct, work.work);
702
703 hdev = hpet_get_unused_timer();
704 if (hdev)
705 init_one_hpet_msi_clockevent(hdev, cpu);
706
707 complete(&hpet_work->complete);
708}
709
48d7f6c7 710static int hpet_cpuhp_online(unsigned int cpu)
26afe5f2 711{
26afe5f2 712 struct hpet_work_struct work;
48d7f6c7
SAS
713
714 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
715 init_completion(&work.complete);
716 /* FIXME: add schedule_work_on() */
717 schedule_delayed_work_on(cpu, &work.work, 0);
718 wait_for_completion(&work.complete);
719 destroy_delayed_work_on_stack(&work.work);
720 return 0;
721}
722
723static int hpet_cpuhp_dead(unsigned int cpu)
724{
26afe5f2 725 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
726
48d7f6c7
SAS
727 if (!hdev)
728 return 0;
729 free_irq(hdev->irq, hdev);
730 hdev->flags &= ~HPET_DEV_USED;
731 per_cpu(cpu_hpet_dev, cpu) = NULL;
732 return 0;
26afe5f2 733}
734#else
735
5f79f2f2
VP
736static void hpet_msi_capability_lookup(unsigned int start_timer)
737{
738 return;
739}
740
741#ifdef CONFIG_HPET
742static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 743{
744 return;
745}
5f79f2f2 746#endif
26afe5f2 747
48d7f6c7
SAS
748#define hpet_cpuhp_online NULL
749#define hpet_cpuhp_dead NULL
26afe5f2 750
751#endif
752
6bb74df4
JS
753/*
754 * Clock source related code
755 */
f99fd22e
WL
756#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
757/*
758 * Reading the HPET counter is a very slow operation. If a large number of
759 * CPUs are trying to access the HPET counter simultaneously, it can cause
760 * massive delay and slow down system performance dramatically. This may
761 * happen when HPET is the default clock source instead of TSC. For a
762 * really large system with hundreds of CPUs, the slowdown may be so
763 * severe that it may actually crash the system because of a NMI watchdog
764 * soft lockup, for example.
765 *
766 * If multiple CPUs are trying to access the HPET counter at the same time,
767 * we don't actually need to read the counter multiple times. Instead, the
768 * other CPUs can use the counter value read by the first CPU in the group.
769 *
770 * This special feature is only enabled on x86-64 systems. It is unlikely
771 * that 32-bit x86 systems will have enough CPUs to require this feature
772 * with its associated locking overhead. And we also need 64-bit atomic
773 * read.
774 *
775 * The lock and the hpet value are stored together and can be read in a
776 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
777 * is 32 bits in size.
778 */
779union hpet_lock {
780 struct {
781 arch_spinlock_t lock;
782 u32 value;
783 };
784 u64 lockval;
785};
786
787static union hpet_lock hpet __cacheline_aligned = {
788 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
789};
790
a5a1d1c2 791static u64 read_hpet(struct clocksource *cs)
f99fd22e
WL
792{
793 unsigned long flags;
794 union hpet_lock old, new;
795
796 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
797
798 /*
799 * Read HPET directly if in NMI.
800 */
801 if (in_nmi())
a5a1d1c2 802 return (u64)hpet_readl(HPET_COUNTER);
f99fd22e
WL
803
804 /*
805 * Read the current state of the lock and HPET value atomically.
806 */
807 old.lockval = READ_ONCE(hpet.lockval);
808
809 if (arch_spin_is_locked(&old.lock))
810 goto contended;
811
812 local_irq_save(flags);
813 if (arch_spin_trylock(&hpet.lock)) {
814 new.value = hpet_readl(HPET_COUNTER);
815 /*
816 * Use WRITE_ONCE() to prevent store tearing.
817 */
818 WRITE_ONCE(hpet.value, new.value);
819 arch_spin_unlock(&hpet.lock);
820 local_irq_restore(flags);
a5a1d1c2 821 return (u64)new.value;
f99fd22e
WL
822 }
823 local_irq_restore(flags);
824
825contended:
826 /*
827 * Contended case
828 * --------------
829 * Wait until the HPET value change or the lock is free to indicate
830 * its value is up-to-date.
831 *
832 * It is possible that old.value has already contained the latest
833 * HPET value while the lock holder was in the process of releasing
834 * the lock. Checking for lock state change will enable us to return
835 * the value immediately instead of waiting for the next HPET reader
836 * to come along.
837 */
838 do {
839 cpu_relax();
840 new.lockval = READ_ONCE(hpet.lockval);
841 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
842
a5a1d1c2 843 return (u64)new.value;
f99fd22e
WL
844}
845#else
846/*
847 * For UP or 32-bit.
848 */
a5a1d1c2 849static u64 read_hpet(struct clocksource *cs)
6bb74df4 850{
a5a1d1c2 851 return (u64)hpet_readl(HPET_COUNTER);
6bb74df4 852}
f99fd22e 853#endif
6bb74df4
JS
854
855static struct clocksource clocksource_hpet = {
856 .name = "hpet",
857 .rating = 250,
858 .read = read_hpet,
859 .mask = HPET_MASK,
6bb74df4 860 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 861 .resume = hpet_resume_counter,
6bb74df4
JS
862};
863
610bf2f1 864static int hpet_clocksource_register(void)
e9e2cdb4 865{
6fd592da 866 u64 start, now;
a5a1d1c2 867 u64 t1;
e9e2cdb4 868
e9e2cdb4 869 /* Start the counter */
8d6f0c82 870 hpet_restart_counter();
e9e2cdb4 871
075bcd1f 872 /* Verify whether hpet counter works */
8e19608e 873 t1 = hpet_readl(HPET_COUNTER);
4ea1636b 874 start = rdtsc();
075bcd1f
TG
875
876 /*
877 * We don't know the TSC frequency yet, but waiting for
878 * 200000 TSC cycles is safe:
879 * 4 GHz == 50us
880 * 1 GHz == 200us
881 */
882 do {
883 rep_nop();
4ea1636b 884 now = rdtsc();
075bcd1f
TG
885 } while ((now - start) < 200000UL);
886
8e19608e 887 if (t1 == hpet_readl(HPET_COUNTER)) {
075bcd1f
TG
888 printk(KERN_WARNING
889 "HPET counter not counting. HPET disabled\n");
610bf2f1 890 return -ENODEV;
075bcd1f
TG
891 }
892
f12a15be 893 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
610bf2f1
VP
894 return 0;
895}
896
396e2c6f
JB
897static u32 *hpet_boot_cfg;
898
b02a7f22
PM
899/**
900 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
901 */
902int __init hpet_enable(void)
903{
396e2c6f 904 u32 hpet_period, cfg, id;
ab0e08f1 905 u64 freq;
396e2c6f 906 unsigned int i, last;
610bf2f1
VP
907
908 if (!is_hpet_capable())
909 return 0;
910
911 hpet_set_mapping();
912
913 /*
914 * Read the period and check for a sane value:
915 */
916 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
917
918 /*
919 * AMD SB700 based systems with spread spectrum enabled use a
920 * SMM based HPET emulation to provide proper frequency
921 * setting. The SMM code is initialized with the first HPET
922 * register access and takes some time to complete. During
923 * this time the config register reads 0xffffffff. We check
924 * for max. 1000 loops whether the config register reads a non
925 * 0xffffffff value to make sure that HPET is up and running
926 * before we go further. A counting loop is safe, as the HPET
927 * access takes thousands of CPU cycles. On non SB700 based
928 * machines this check is only done once and has no side
929 * effects.
930 */
931 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
932 if (i == 1000) {
933 printk(KERN_WARNING
934 "HPET config register value = 0xFFFFFFFF. "
935 "Disabling HPET\n");
936 goto out_nohpet;
937 }
938 }
939
610bf2f1
VP
940 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
941 goto out_nohpet;
942
ab0e08f1
TG
943 /*
944 * The period is a femto seconds value. Convert it to a
945 * frequency.
946 */
947 freq = FSEC_PER_SEC;
948 do_div(freq, hpet_period);
949 hpet_freq = freq;
950
610bf2f1
VP
951 /*
952 * Read the HPET ID register to retrieve the IRQ routing
953 * information and the number of channels
954 */
955 id = hpet_readl(HPET_ID);
b98103a5 956 hpet_print_config();
610bf2f1 957
396e2c6f
JB
958 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
959
610bf2f1
VP
960#ifdef CONFIG_HPET_EMULATE_RTC
961 /*
962 * The legacy routing mode needs at least two channels, tick timer
963 * and the rtc emulation channel.
964 */
396e2c6f 965 if (!last)
610bf2f1
VP
966 goto out_nohpet;
967#endif
968
396e2c6f
JB
969 cfg = hpet_readl(HPET_CFG);
970 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
971 GFP_KERNEL);
972 if (hpet_boot_cfg)
973 *hpet_boot_cfg = cfg;
974 else
975 pr_warn("HPET initial state will not be saved\n");
976 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1b38a3a1 977 hpet_writel(cfg, HPET_CFG);
396e2c6f
JB
978 if (cfg)
979 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
980 cfg);
981
982 for (i = 0; i <= last; ++i) {
983 cfg = hpet_readl(HPET_Tn_CFG(i));
984 if (hpet_boot_cfg)
985 hpet_boot_cfg[i + 1] = cfg;
986 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
987 hpet_writel(cfg, HPET_Tn_CFG(i));
988 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
989 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
990 | HPET_TN_FSB | HPET_TN_FSB_CAP);
991 if (cfg)
992 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
993 cfg, i);
994 }
995 hpet_print_config();
996
610bf2f1
VP
997 if (hpet_clocksource_register())
998 goto out_nohpet;
999
e9e2cdb4 1000 if (id & HPET_ID_LEGSUP) {
610bf2f1 1001 hpet_legacy_clockevent_register();
e9e2cdb4
TG
1002 return 1;
1003 }
1004 return 0;
5d0cf410 1005
e9e2cdb4 1006out_nohpet:
06a24dec 1007 hpet_clear_mapping();
bacbe999 1008 hpet_address = 0;
e9e2cdb4
TG
1009 return 0;
1010}
1011
28769149
TG
1012/*
1013 * Needs to be late, as the reserve_timer code calls kalloc !
1014 *
1015 * Not a problem on i386 as hpet_enable is called from late_time_init,
1016 * but on x86_64 it is necessary !
1017 */
1018static __init int hpet_late_init(void)
1019{
48d7f6c7 1020 int ret;
26afe5f2 1021
59c69f2a 1022 if (boot_hpet_disable)
28769149
TG
1023 return -ENODEV;
1024
59c69f2a
VP
1025 if (!hpet_address) {
1026 if (!force_hpet_address)
1027 return -ENODEV;
1028
1029 hpet_address = force_hpet_address;
1030 hpet_enable();
59c69f2a
VP
1031 }
1032
39c04b55
JF
1033 if (!hpet_virt_address)
1034 return -ENODEV;
1035
39fe05e5
SL
1036 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1037 hpet_msi_capability_lookup(2);
1038 else
1039 hpet_msi_capability_lookup(0);
1040
28769149 1041 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 1042 hpet_print_config();
59c69f2a 1043
73472a46
PV
1044 if (hpet_msi_disable)
1045 return 0;
1046
39fe05e5
SL
1047 if (boot_cpu_has(X86_FEATURE_ARAT))
1048 return 0;
1049
26afe5f2 1050 /* This notifier should be called after workqueue is ready */
73c1b41e 1051 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
48d7f6c7
SAS
1052 hpet_cpuhp_online, NULL);
1053 if (ret)
1054 return ret;
73c1b41e 1055 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
48d7f6c7
SAS
1056 hpet_cpuhp_dead);
1057 if (ret)
1058 goto err_cpuhp;
28769149 1059 return 0;
48d7f6c7
SAS
1060
1061err_cpuhp:
1062 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1063 return ret;
28769149
TG
1064}
1065fs_initcall(hpet_late_init);
1066
c86c7fbc
OH
1067void hpet_disable(void)
1068{
ff487808 1069 if (is_hpet_capable() && hpet_virt_address) {
396e2c6f 1070 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
c86c7fbc 1071
396e2c6f
JB
1072 if (hpet_boot_cfg)
1073 cfg = *hpet_boot_cfg;
1074 else if (hpet_legacy_int_enabled) {
c86c7fbc 1075 cfg &= ~HPET_CFG_LEGACY;
3d45ac4b 1076 hpet_legacy_int_enabled = false;
c86c7fbc
OH
1077 }
1078 cfg &= ~HPET_CFG_ENABLE;
1079 hpet_writel(cfg, HPET_CFG);
396e2c6f
JB
1080
1081 if (!hpet_boot_cfg)
1082 return;
1083
1084 id = hpet_readl(HPET_ID);
1085 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1086
1087 for (id = 0; id <= last; ++id)
1088 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1089
1090 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1091 hpet_writel(*hpet_boot_cfg, HPET_CFG);
c86c7fbc
OH
1092 }
1093}
1094
e9e2cdb4
TG
1095#ifdef CONFIG_HPET_EMULATE_RTC
1096
1097/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1098 * is enabled, we support RTC interrupt functionality in software.
1099 * RTC has 3 kinds of interrupts:
1100 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1101 * is updated
1102 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1103 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1104 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1105 * (1) and (2) above are implemented using polling at a frequency of
1106 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1107 * overhead. (DEFAULT_RTC_INT_FREQ)
1108 * For (3), we use interrupts at 64Hz or user specified periodic
1109 * frequency, whichever is higher.
1110 */
1111#include <linux/mc146818rtc.h>
1112#include <linux/rtc.h>
1113
1114#define DEFAULT_RTC_INT_FREQ 64
1115#define DEFAULT_RTC_SHIFT 6
1116#define RTC_NUM_INTS 1
1117
1118static unsigned long hpet_rtc_flags;
7e2a31da 1119static int hpet_prev_update_sec;
e9e2cdb4
TG
1120static struct rtc_time hpet_alarm_time;
1121static unsigned long hpet_pie_count;
ff08f76d 1122static u32 hpet_t1_cmp;
5946fa3d
JB
1123static u32 hpet_default_delta;
1124static u32 hpet_pie_delta;
e9e2cdb4
TG
1125static unsigned long hpet_pie_limit;
1126
1bdbdaac
BW
1127static rtc_irq_handler irq_handler;
1128
ff08f76d
PE
1129/*
1130 * Check that the hpet counter c1 is ahead of the c2
1131 */
1132static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1133{
1134 return (s32)(c2 - c1) < 0;
1135}
1136
1bdbdaac
BW
1137/*
1138 * Registers a IRQ handler.
1139 */
1140int hpet_register_irq_handler(rtc_irq_handler handler)
1141{
1142 if (!is_hpet_enabled())
1143 return -ENODEV;
1144 if (irq_handler)
1145 return -EBUSY;
1146
1147 irq_handler = handler;
1148
1149 return 0;
1150}
1151EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1152
1153/*
1154 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1155 * and does cleanup.
1156 */
1157void hpet_unregister_irq_handler(rtc_irq_handler handler)
1158{
1159 if (!is_hpet_enabled())
1160 return;
1161
1162 irq_handler = NULL;
1163 hpet_rtc_flags = 0;
1164}
1165EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1166
e9e2cdb4
TG
1167/*
1168 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1169 * is not supported by all HPET implementations for timer 1.
1170 *
1171 * hpet_rtc_timer_init() is called when the rtc is initialized.
1172 */
1173int hpet_rtc_timer_init(void)
1174{
5946fa3d
JB
1175 unsigned int cfg, cnt, delta;
1176 unsigned long flags;
e9e2cdb4
TG
1177
1178 if (!is_hpet_enabled())
1179 return 0;
1180
1181 if (!hpet_default_delta) {
1182 uint64_t clc;
1183
1184 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1185 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
5946fa3d 1186 hpet_default_delta = clc;
e9e2cdb4
TG
1187 }
1188
1189 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1190 delta = hpet_default_delta;
1191 else
1192 delta = hpet_pie_delta;
1193
1194 local_irq_save(flags);
1195
1196 cnt = delta + hpet_readl(HPET_COUNTER);
1197 hpet_writel(cnt, HPET_T1_CMP);
1198 hpet_t1_cmp = cnt;
1199
1200 cfg = hpet_readl(HPET_T1_CFG);
1201 cfg &= ~HPET_TN_PERIODIC;
1202 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1203 hpet_writel(cfg, HPET_T1_CFG);
1204
1205 local_irq_restore(flags);
1206
1207 return 1;
1208}
1bdbdaac 1209EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4 1210
2ded6e6a
ML
1211static void hpet_disable_rtc_channel(void)
1212{
3d45ac4b 1213 u32 cfg = hpet_readl(HPET_T1_CFG);
2ded6e6a
ML
1214 cfg &= ~HPET_TN_ENABLE;
1215 hpet_writel(cfg, HPET_T1_CFG);
1216}
1217
e9e2cdb4
TG
1218/*
1219 * The functions below are called from rtc driver.
1220 * Return 0 if HPET is not being used.
1221 * Otherwise do the necessary changes and return 1.
1222 */
1223int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1224{
1225 if (!is_hpet_enabled())
1226 return 0;
1227
1228 hpet_rtc_flags &= ~bit_mask;
2ded6e6a
ML
1229 if (unlikely(!hpet_rtc_flags))
1230 hpet_disable_rtc_channel();
1231
e9e2cdb4
TG
1232 return 1;
1233}
1bdbdaac 1234EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1235
1236int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1237{
1238 unsigned long oldbits = hpet_rtc_flags;
1239
1240 if (!is_hpet_enabled())
1241 return 0;
1242
1243 hpet_rtc_flags |= bit_mask;
1244
7e2a31da
DB
1245 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1246 hpet_prev_update_sec = -1;
1247
e9e2cdb4
TG
1248 if (!oldbits)
1249 hpet_rtc_timer_init();
1250
1251 return 1;
1252}
1bdbdaac 1253EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1254
1255int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1256 unsigned char sec)
1257{
1258 if (!is_hpet_enabled())
1259 return 0;
1260
1261 hpet_alarm_time.tm_hour = hrs;
1262 hpet_alarm_time.tm_min = min;
1263 hpet_alarm_time.tm_sec = sec;
1264
1265 return 1;
1266}
1bdbdaac 1267EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1268
1269int hpet_set_periodic_freq(unsigned long freq)
1270{
1271 uint64_t clc;
1272
1273 if (!is_hpet_enabled())
1274 return 0;
1275
1276 if (freq <= DEFAULT_RTC_INT_FREQ)
1277 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1278 else {
1279 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1280 do_div(clc, freq);
1281 clc >>= hpet_clockevent.shift;
5946fa3d 1282 hpet_pie_delta = clc;
b4a5e8a1 1283 hpet_pie_limit = 0;
e9e2cdb4
TG
1284 }
1285 return 1;
1286}
1bdbdaac 1287EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1288
1289int hpet_rtc_dropped_irq(void)
1290{
1291 return is_hpet_enabled();
1292}
1bdbdaac 1293EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1294
1295static void hpet_rtc_timer_reinit(void)
1296{
2ded6e6a 1297 unsigned int delta;
e9e2cdb4
TG
1298 int lost_ints = -1;
1299
2ded6e6a
ML
1300 if (unlikely(!hpet_rtc_flags))
1301 hpet_disable_rtc_channel();
e9e2cdb4
TG
1302
1303 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1304 delta = hpet_default_delta;
1305 else
1306 delta = hpet_pie_delta;
1307
1308 /*
1309 * Increment the comparator value until we are ahead of the
1310 * current count.
1311 */
1312 do {
1313 hpet_t1_cmp += delta;
1314 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1315 lost_ints++;
ff08f76d 1316 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1317
1318 if (lost_ints) {
1319 if (hpet_rtc_flags & RTC_PIE)
1320 hpet_pie_count += lost_ints;
1321 if (printk_ratelimit())
7e2a31da 1322 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1323 lost_ints);
1324 }
1325}
1326
1327irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1328{
1329 struct rtc_time curr_time;
1330 unsigned long rtc_int_flag = 0;
1331
1332 hpet_rtc_timer_reinit();
1bdbdaac 1333 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1334
1335 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
22cc1ca3 1336 mc146818_get_time(&curr_time);
e9e2cdb4
TG
1337
1338 if (hpet_rtc_flags & RTC_UIE &&
1339 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1340 if (hpet_prev_update_sec >= 0)
1341 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1342 hpet_prev_update_sec = curr_time.tm_sec;
1343 }
1344
1345 if (hpet_rtc_flags & RTC_PIE &&
1346 ++hpet_pie_count >= hpet_pie_limit) {
1347 rtc_int_flag |= RTC_PF;
1348 hpet_pie_count = 0;
1349 }
1350
8ee291f8 1351 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1352 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1353 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1354 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1355 rtc_int_flag |= RTC_AF;
1356
1357 if (rtc_int_flag) {
1358 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1359 if (irq_handler)
1360 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1361 }
1362 return IRQ_HANDLED;
1363}
1bdbdaac 1364EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1365#endif