]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/kprobes/core.c
mm: introduce include/linux/pgtable.h
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / kprobes / core.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Kernel Probes (KProbes)
1da177e4 4 *
1da177e4
LT
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation ( includes contributions from
9 * Rusty Russell).
10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11 * interface to access function arguments.
d6be29b8
MH
12 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
14 * 2005-Mar Roland McGrath <roland@redhat.com>
15 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
3f33ab1c 20 * Added function return probes functionality
d6be29b8 21 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
3f33ab1c 22 * kprobe-booster and kretprobe-booster for i386.
da07ab03 23 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
3f33ab1c 24 * and kretprobe-booster for x86-64
d6be29b8 25 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
3f33ab1c
MH
26 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27 * unified x86 kprobes code.
1da177e4 28 */
1da177e4
LT
29#include <linux/kprobes.h>
30#include <linux/ptrace.h>
1da177e4
LT
31#include <linux/string.h>
32#include <linux/slab.h>
b506a9d0 33#include <linux/hardirq.h>
1da177e4 34#include <linux/preempt.h>
b17b0153 35#include <linux/sched/debug.h>
744c193e 36#include <linux/extable.h>
1eeb66a1 37#include <linux/kdebug.h>
b46b3d70 38#include <linux/kallsyms.h>
c0f7ac3a 39#include <linux/ftrace.h>
87aaff2a 40#include <linux/frame.h>
9f7d416c 41#include <linux/kasan.h>
c93f5cf5 42#include <linux/moduleloader.h>
6315ec92 43#include <linux/vmalloc.h>
9ec4b1f3 44
35de5b06 45#include <asm/text-patching.h>
8533bbe9
MH
46#include <asm/cacheflush.h>
47#include <asm/desc.h>
ca5999fd 48#include <linux/pgtable.h>
7c0f6ba6 49#include <linux/uaccess.h>
19d36ccd 50#include <asm/alternative.h>
b46b3d70 51#include <asm/insn.h>
62edab90 52#include <asm/debugreg.h>
e6ccbff0 53#include <asm/set_memory.h>
1da177e4 54
f684199f 55#include "common.h"
3f33ab1c 56
e7a510f9
AM
57DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
58DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 59
3c88c692 60#define stack_addr(regs) ((unsigned long *)regs->sp)
8533bbe9
MH
61
62#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
63 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
64 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
65 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
66 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
67 << (row % 32))
68 /*
69 * Undefined/reserved opcodes, conditional jump, Opcode Extension
70 * Groups, and some special opcodes can not boost.
7115e3fc
LT
71 * This is non-const and volatile to keep gcc from statically
72 * optimizing it out, as variable_test_bit makes gcc think only
f684199f 73 * *(unsigned long*) is used.
8533bbe9 74 */
7115e3fc 75static volatile u32 twobyte_is_boostable[256 / 32] = {
8533bbe9
MH
76 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
77 /* ---------------------------------------------- */
78 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
b7e37567 79 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
8533bbe9
MH
80 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
81 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
82 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
83 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
84 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
85 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
86 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
87 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
88 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
89 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
90 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
91 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
92 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
93 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
94 /* ----------------------------------------------- */
95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
96};
8533bbe9
MH
97#undef W
98
f438d914
MH
99struct kretprobe_blackpoint kretprobe_blacklist[] = {
100 {"__switch_to", }, /* This function switches only current task, but
101 doesn't switch kernel stack.*/
102 {NULL, NULL} /* Terminator */
103};
3f33ab1c 104
f438d914
MH
105const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
106
9326638c 107static nokprobe_inline void
63fef14f 108__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
aa470140 109{
c0f7ac3a
MH
110 struct __arch_relative_insn {
111 u8 op;
aa470140 112 s32 raddr;
f684199f 113 } __packed *insn;
c0f7ac3a 114
63fef14f 115 insn = (struct __arch_relative_insn *)dest;
c0f7ac3a
MH
116 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
117 insn->op = op;
118}
119
120/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
63fef14f 121void synthesize_reljump(void *dest, void *from, void *to)
c0f7ac3a 122{
ab09e95c 123 __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
aa470140 124}
9326638c 125NOKPROBE_SYMBOL(synthesize_reljump);
aa470140 126
3f33ab1c 127/* Insert a call instruction at address 'from', which calls address 'to'.*/
63fef14f 128void synthesize_relcall(void *dest, void *from, void *to)
3f33ab1c 129{
ab09e95c 130 __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
3f33ab1c 131}
9326638c 132NOKPROBE_SYMBOL(synthesize_relcall);
3f33ab1c 133
9930927f 134/*
567a9fd8 135 * Skip the prefixes of the instruction.
9930927f 136 */
9326638c 137static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
9930927f 138{
567a9fd8
MH
139 insn_attr_t attr;
140
141 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
142 while (inat_is_legacy_prefix(attr)) {
143 insn++;
144 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
145 }
9930927f 146#ifdef CONFIG_X86_64
567a9fd8
MH
147 if (inat_is_rex_prefix(attr))
148 insn++;
9930927f 149#endif
567a9fd8 150 return insn;
9930927f 151}
9326638c 152NOKPROBE_SYMBOL(skip_prefixes);
9930927f 153
aa470140 154/*
a8d11cd0 155 * Returns non-zero if INSN is boostable.
d6be29b8 156 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 157 */
a8d11cd0 158int can_boost(struct insn *insn, void *addr)
aa470140 159{
aa470140 160 kprobe_opcode_t opcode;
aa470140 161
75013fb1 162 if (search_exception_tables((unsigned long)addr))
30390880
MH
163 return 0; /* Page fault may occur on this address. */
164
aa470140 165 /* 2nd-byte opcode */
a8d11cd0
MH
166 if (insn->opcode.nbytes == 2)
167 return test_bit(insn->opcode.bytes[1],
8533bbe9 168 (unsigned long *)twobyte_is_boostable);
17880e4d 169
a8d11cd0 170 if (insn->opcode.nbytes != 1)
17880e4d
MH
171 return 0;
172
173 /* Can't boost Address-size override prefix */
a8d11cd0 174 if (unlikely(inat_is_address_size_prefix(insn->attr)))
17880e4d
MH
175 return 0;
176
a8d11cd0 177 opcode = insn->opcode.bytes[0];
aa470140
MH
178
179 switch (opcode & 0xf0) {
aa470140 180 case 0x60:
17880e4d
MH
181 /* can't boost "bound" */
182 return (opcode != 0x62);
aa470140
MH
183 case 0x70:
184 return 0; /* can't boost conditional jump */
bd0b9067
MH
185 case 0x90:
186 return opcode != 0x9a; /* can't boost call far */
aa470140
MH
187 case 0xc0:
188 /* can't boost software-interruptions */
189 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
190 case 0xd0:
191 /* can boost AA* and XLAT */
192 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
193 case 0xe0:
194 /* can boost in/out and absolute jmps */
195 return ((opcode & 0x04) || opcode == 0xea);
196 case 0xf0:
aa470140
MH
197 /* clear and set flags are boostable */
198 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
199 default:
aa470140
MH
200 /* CS override prefix and call are not boostable */
201 return (opcode != 0x2e && opcode != 0x9a);
202 }
203}
204
3f33ab1c
MH
205static unsigned long
206__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
b46b3d70
MH
207{
208 struct kprobe *kp;
650b7b23 209 unsigned long faddr;
86b4ce31 210
b46b3d70 211 kp = get_kprobe((void *)addr);
650b7b23 212 faddr = ftrace_location(addr);
2a6730c8
PM
213 /*
214 * Addresses inside the ftrace location are refused by
215 * arch_check_ftrace_location(). Something went terribly wrong
216 * if such an address is checked here.
217 */
218 if (WARN_ON(faddr && faddr != addr))
219 return 0UL;
650b7b23
PM
220 /*
221 * Use the current code if it is not modified by Kprobe
222 * and it cannot be modified by ftrace.
223 */
224 if (!kp && !faddr)
86b4ce31 225 return addr;
b46b3d70
MH
226
227 /*
650b7b23
PM
228 * Basically, kp->ainsn.insn has an original instruction.
229 * However, RIP-relative instruction can not do single-stepping
230 * at different place, __copy_instruction() tweaks the displacement of
231 * that instruction. In that case, we can't recover the instruction
232 * from the kp->ainsn.insn.
233 *
234 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
235 * of the first byte of the probed instruction, which is overwritten
236 * by int3. And the instruction at kp->addr is not modified by kprobes
237 * except for the first byte, we can recover the original instruction
238 * from it and kp->opcode.
b46b3d70 239 *
650b7b23
PM
240 * In case of Kprobes using ftrace, we do not have a copy of
241 * the original instruction. In fact, the ftrace location might
242 * be modified at anytime and even could be in an inconsistent state.
243 * Fortunately, we know that the original code is the ideal 5-byte
244 * long NOP.
b46b3d70 245 */
ea1e34fc
MH
246 if (probe_kernel_read(buf, (void *)addr,
247 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
248 return 0UL;
249
650b7b23
PM
250 if (faddr)
251 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
252 else
253 buf[0] = kp->opcode;
86b4ce31
MH
254 return (unsigned long)buf;
255}
256
86b4ce31
MH
257/*
258 * Recover the probed instruction at addr for further analysis.
259 * Caller must lock kprobes by kprobe_mutex, or disable preemption
260 * for preventing to release referencing kprobes.
ea1e34fc 261 * Returns zero if the instruction can not get recovered (or access failed).
86b4ce31 262 */
3f33ab1c 263unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
86b4ce31
MH
264{
265 unsigned long __addr;
266
267 __addr = __recover_optprobed_insn(buf, addr);
268 if (__addr != addr)
269 return __addr;
270
271 return __recover_probed_insn(buf, addr);
b46b3d70
MH
272}
273
b46b3d70 274/* Check if paddr is at an instruction boundary */
7ec8a97a 275static int can_probe(unsigned long paddr)
b46b3d70 276{
86b4ce31 277 unsigned long addr, __addr, offset = 0;
b46b3d70
MH
278 struct insn insn;
279 kprobe_opcode_t buf[MAX_INSN_SIZE];
280
6abded71 281 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
282 return 0;
283
284 /* Decode instructions */
285 addr = paddr - offset;
286 while (addr < paddr) {
b46b3d70
MH
287 /*
288 * Check if the instruction has been modified by another
289 * kprobe, in which case we replace the breakpoint by the
290 * original instruction in our buffer.
86b4ce31
MH
291 * Also, jump optimization will change the breakpoint to
292 * relative-jump. Since the relative-jump itself is
293 * normally used, we just go through if there is no kprobe.
b46b3d70 294 */
86b4ce31 295 __addr = recover_probed_instruction(buf, addr);
2a6730c8
PM
296 if (!__addr)
297 return 0;
6ba48ff4 298 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
b46b3d70 299 insn_get_length(&insn);
86b4ce31
MH
300
301 /*
302 * Another debugging subsystem might insert this breakpoint.
303 * In that case, we can't recover it.
304 */
ab09e95c 305 if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
86b4ce31 306 return 0;
b46b3d70
MH
307 addr += insn.length;
308 }
309
310 return (addr == paddr);
311}
312
1da177e4 313/*
d6be29b8 314 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 315 */
7ec8a97a 316static int is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 317{
567a9fd8
MH
318 /* Skip prefixes */
319 insn = skip_prefixes(insn);
320
1da177e4
LT
321 switch (*insn) {
322 case 0xfa: /* cli */
323 case 0xfb: /* sti */
324 case 0xcf: /* iret/iretd */
325 case 0x9d: /* popf/popfd */
326 return 1;
327 }
9930927f 328
1da177e4
LT
329 return 0;
330}
331
332/*
129d17e8
MH
333 * Copy an instruction with recovering modified instruction by kprobes
334 * and adjust the displacement if the instruction uses the %rip-relative
63fef14f
MH
335 * addressing mode. Note that since @real will be the final place of copied
336 * instruction, displacement must be adjust by @real, not @dest.
129d17e8 337 * This returns the length of copied instruction, or 0 if it has an error.
1da177e4 338 */
63fef14f 339int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
1da177e4 340{
c0f7ac3a 341 kprobe_opcode_t buf[MAX_INSN_SIZE];
6ba48ff4
DH
342 unsigned long recovered_insn =
343 recover_probed_instruction(buf, (unsigned long)src);
86b4ce31 344
a8d11cd0 345 if (!recovered_insn || !insn)
2a6730c8 346 return 0;
c80e5c0c 347
a8d11cd0
MH
348 /* This can access kernel text if given address is not recovered */
349 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
86b4ce31 350 return 0;
ea1e34fc 351
a8d11cd0
MH
352 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
353 insn_get_length(insn);
354
004e8dce
MH
355 /* We can not probe force emulate prefixed instruction */
356 if (insn_has_emulate_prefix(insn))
357 return 0;
358
a8d11cd0 359 /* Another subsystem puts a breakpoint, failed to recover */
ab09e95c 360 if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
ea1e34fc 361 return 0;
c0f7ac3a 362
ee6a7354
MH
363 /* We should not singlestep on the exception masking instructions */
364 if (insn_masking_exception(insn))
365 return 0;
366
c0f7ac3a 367#ifdef CONFIG_X86_64
129d17e8 368 /* Only x86_64 has RIP relative instructions */
a8d11cd0 369 if (insn_rip_relative(insn)) {
89ae465b
MH
370 s64 newdisp;
371 u8 *disp;
89ae465b
MH
372 /*
373 * The copied instruction uses the %rip-relative addressing
374 * mode. Adjust the displacement for the difference between
375 * the original location of this instruction and the location
376 * of the copy that will actually be run. The tricky bit here
377 * is making sure that the sign extension happens correctly in
378 * this calculation, since we need a signed 32-bit result to
379 * be sign-extended to 64 bits when it's added to the %rip
380 * value and yield the same 64-bit result that the sign-
381 * extension of the original signed 32-bit displacement would
382 * have given.
383 */
a8d11cd0 384 newdisp = (u8 *) src + (s64) insn->displacement.value
63fef14f 385 - (u8 *) real;
8101376d
MH
386 if ((s64) (s32) newdisp != newdisp) {
387 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
8101376d
MH
388 return 0;
389 }
a8d11cd0 390 disp = (u8 *) dest + insn_offset_displacement(insn);
89ae465b 391 *(s32 *) disp = (s32) newdisp;
1da177e4 392 }
d6be29b8 393#endif
a8d11cd0 394 return insn->length;
31f80e45 395}
1da177e4 396
804dec5b 397/* Prepare reljump right after instruction to boost */
63fef14f
MH
398static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
399 struct insn *insn)
804dec5b 400{
63fef14f
MH
401 int len = insn->length;
402
a8d11cd0 403 if (can_boost(insn, p->addr) &&
ab09e95c 404 MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
804dec5b
MH
405 /*
406 * These instructions can be executed directly if it
407 * jumps back to correct address.
408 */
63fef14f 409 synthesize_reljump(buf + len, p->ainsn.insn + len,
a8d11cd0 410 p->addr + insn->length);
ab09e95c 411 len += JMP32_INSN_SIZE;
490154bc 412 p->ainsn.boostable = true;
804dec5b 413 } else {
490154bc 414 p->ainsn.boostable = false;
804dec5b 415 }
63fef14f
MH
416
417 return len;
418}
419
420/* Make page to RO mode when allocate it */
421void *alloc_insn_page(void)
422{
423 void *page;
424
425 page = module_alloc(PAGE_SIZE);
7298e24f
NA
426 if (!page)
427 return NULL;
428
241a1f22 429 set_vm_flush_reset_perms(page);
7298e24f
NA
430 /*
431 * First make the page read-only, and only then make it executable to
432 * prevent it from being W+X in between.
433 */
434 set_memory_ro((unsigned long)page, 1);
435
436 /*
437 * TODO: Once additional kernel code protection mechanisms are set, ensure
438 * that the page was not maliciously altered and it is still zeroed.
439 */
440 set_memory_x((unsigned long)page, 1);
63fef14f
MH
441
442 return page;
804dec5b
MH
443}
444
c93f5cf5
MH
445/* Recover page to RW mode before releasing it */
446void free_insn_page(void *page)
447{
c93f5cf5
MH
448 module_memfree(page);
449}
450
7ec8a97a 451static int arch_copy_kprobe(struct kprobe *p)
1da177e4 452{
a8d11cd0 453 struct insn insn;
63fef14f 454 kprobe_opcode_t buf[MAX_INSN_SIZE];
804dec5b 455 int len;
003002e0 456
46484688 457 /* Copy an instruction with recovering if other optprobe modifies it.*/
63fef14f 458 len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
804dec5b 459 if (!len)
003002e0 460 return -EINVAL;
46484688 461
c0f7ac3a 462 /*
46484688
MH
463 * __copy_instruction can modify the displacement of the instruction,
464 * but it doesn't affect boostable check.
c0f7ac3a 465 */
63fef14f 466 len = prepare_boost(buf, p, &insn);
d0381c81 467
9a556ab9 468 /* Check whether the instruction modifies Interrupt Flag or not */
63fef14f 469 p->ainsn.if_modifier = is_IF_modifier(buf);
9a556ab9 470
46484688 471 /* Also, displacement change doesn't affect the first byte */
63fef14f
MH
472 p->opcode = buf[0];
473
474 /* OK, write back the instruction(s) into ROX insn buffer */
475 text_poke(p->ainsn.insn, buf, len);
003002e0
MH
476
477 return 0;
1da177e4
LT
478}
479
7ec8a97a 480int arch_prepare_kprobe(struct kprobe *p)
8533bbe9 481{
38115f2f
MH
482 int ret;
483
4554dbcb
MH
484 if (alternatives_text_reserved(p->addr, p->addr))
485 return -EINVAL;
486
b46b3d70
MH
487 if (!can_probe((unsigned long)p->addr))
488 return -EILSEQ;
8533bbe9
MH
489 /* insn: must be on special executable page on x86. */
490 p->ainsn.insn = get_insn_slot();
491 if (!p->ainsn.insn)
492 return -ENOMEM;
003002e0 493
38115f2f
MH
494 ret = arch_copy_kprobe(p);
495 if (ret) {
496 free_insn_slot(p->ainsn.insn, 0);
497 p->ainsn.insn = NULL;
498 }
499
500 return ret;
8533bbe9
MH
501}
502
7ec8a97a 503void arch_arm_kprobe(struct kprobe *p)
1da177e4 504{
ab09e95c 505 text_poke(p->addr, ((unsigned char []){INT3_INSN_OPCODE}), 1);
5c02ece8 506 text_poke_sync();
1da177e4
LT
507}
508
7ec8a97a 509void arch_disarm_kprobe(struct kprobe *p)
1da177e4 510{
19d36ccd 511 text_poke(p->addr, &p->opcode, 1);
5c02ece8 512 text_poke_sync();
7e1048b1
RL
513}
514
7ec8a97a 515void arch_remove_kprobe(struct kprobe *p)
7e1048b1 516{
12941560 517 if (p->ainsn.insn) {
490154bc 518 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
12941560
MH
519 p->ainsn.insn = NULL;
520 }
1da177e4
LT
521}
522
9326638c
MH
523static nokprobe_inline void
524save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 525{
e7a510f9
AM
526 kcb->prev_kprobe.kp = kprobe_running();
527 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
528 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
529 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
530}
531
9326638c
MH
532static nokprobe_inline void
533restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 534{
b76834bc 535 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
e7a510f9 536 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
537 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
538 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
539}
540
9326638c
MH
541static nokprobe_inline void
542set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
543 struct kprobe_ctlblk *kcb)
aa3d7e3d 544{
b76834bc 545 __this_cpu_write(current_kprobe, p);
8533bbe9 546 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 547 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
9a556ab9 548 if (p->ainsn.if_modifier)
053de044 549 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
550}
551
9326638c 552static nokprobe_inline void clear_btf(void)
1ecc798c 553{
ea8e61b7
PZ
554 if (test_thread_flag(TIF_BLOCKSTEP)) {
555 unsigned long debugctl = get_debugctlmsr();
556
557 debugctl &= ~DEBUGCTLMSR_BTF;
558 update_debugctlmsr(debugctl);
559 }
1ecc798c
RM
560}
561
9326638c 562static nokprobe_inline void restore_btf(void)
1ecc798c 563{
ea8e61b7
PZ
564 if (test_thread_flag(TIF_BLOCKSTEP)) {
565 unsigned long debugctl = get_debugctlmsr();
566
567 debugctl |= DEBUGCTLMSR_BTF;
568 update_debugctlmsr(debugctl);
569 }
1ecc798c
RM
570}
571
9326638c 572void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
73649dab 573{
8533bbe9 574 unsigned long *sara = stack_addr(regs);
ba8af12f 575
4c4308cb 576 ri->ret_addr = (kprobe_opcode_t *) *sara;
3ff9c075 577 ri->fp = sara;
8533bbe9 578
4c4308cb
CH
579 /* Replace the return addr with trampoline addr */
580 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 581}
9326638c 582NOKPROBE_SYMBOL(arch_prepare_kretprobe);
f315decb 583
9326638c
MH
584static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
585 struct kprobe_ctlblk *kcb, int reenter)
f315decb 586{
c0f7ac3a
MH
587 if (setup_detour_execution(p, regs, reenter))
588 return;
589
48593975 590#if !defined(CONFIG_PREEMPTION)
490154bc 591 if (p->ainsn.boostable && !p->post_handler) {
f315decb 592 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
593 if (!reenter)
594 reset_current_kprobe();
595 /*
596 * Reentering boosted probe doesn't reset current_kprobe,
597 * nor set current_kprobe, because it doesn't use single
598 * stepping.
599 */
f315decb 600 regs->ip = (unsigned long)p->ainsn.insn;
f315decb
AS
601 return;
602 }
603#endif
0f94eb63
MH
604 if (reenter) {
605 save_previous_kprobe(kcb);
606 set_current_kprobe(p, regs, kcb);
607 kcb->kprobe_status = KPROBE_REENTER;
608 } else
609 kcb->kprobe_status = KPROBE_HIT_SS;
610 /* Prepare real single stepping */
611 clear_btf();
612 regs->flags |= X86_EFLAGS_TF;
613 regs->flags &= ~X86_EFLAGS_IF;
614 /* single step inline if the instruction is an int3 */
ab09e95c 615 if (p->opcode == INT3_INSN_OPCODE)
0f94eb63
MH
616 regs->ip = (unsigned long)p->addr;
617 else
618 regs->ip = (unsigned long)p->ainsn.insn;
f315decb 619}
9326638c 620NOKPROBE_SYMBOL(setup_singlestep);
f315decb 621
40102d4a
HH
622/*
623 * We have reentered the kprobe_handler(), since another probe was hit while
624 * within the handler. We save the original kprobes variables and just single
625 * step on the instruction of the new probe without calling any user handlers.
626 */
9326638c
MH
627static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
628 struct kprobe_ctlblk *kcb)
40102d4a 629{
f315decb
AS
630 switch (kcb->kprobe_status) {
631 case KPROBE_HIT_SSDONE:
f315decb 632 case KPROBE_HIT_ACTIVE:
6a5022a5 633 case KPROBE_HIT_SS:
fb8830e7 634 kprobes_inc_nmissed_count(p);
0f94eb63 635 setup_singlestep(p, regs, kcb, 1);
f315decb 636 break;
6a5022a5 637 case KPROBE_REENTER:
e9afe9e1
MH
638 /* A probe has been hit in the codepath leading up to, or just
639 * after, single-stepping of a probed instruction. This entire
640 * codepath should strictly reside in .kprobes.text section.
641 * Raise a BUG or we'll continue in an endless reentering loop
642 * and eventually a stack overflow.
643 */
0ea06330 644 pr_err("Unrecoverable kprobe detected.\n");
e9afe9e1
MH
645 dump_kprobe(p);
646 BUG();
f315decb
AS
647 default:
648 /* impossible cases */
649 WARN_ON(1);
fb8830e7 650 return 0;
59e87cdc 651 }
f315decb 652
59e87cdc 653 return 1;
40102d4a 654}
9326638c 655NOKPROBE_SYMBOL(reenter_kprobe);
73649dab 656
8533bbe9
MH
657/*
658 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 659 * remain disabled throughout this function.
8533bbe9 660 */
9326638c 661int kprobe_int3_handler(struct pt_regs *regs)
1da177e4 662{
8533bbe9 663 kprobe_opcode_t *addr;
f315decb 664 struct kprobe *p;
d217d545
AM
665 struct kprobe_ctlblk *kcb;
666
f39b6f0e 667 if (user_mode(regs))
0cdd192c
AL
668 return 0;
669
8533bbe9 670 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545 671 /*
2bbda764
MH
672 * We don't want to be preempted for the entire duration of kprobe
673 * processing. Since int3 and debug trap disables irqs and we clear
674 * IF while singlestepping, it must be no preemptible.
d217d545 675 */
1da177e4 676
f315decb 677 kcb = get_kprobe_ctlblk();
b9760156 678 p = get_kprobe(addr);
f315decb 679
b9760156 680 if (p) {
b9760156 681 if (kprobe_running()) {
f315decb
AS
682 if (reenter_kprobe(p, regs, kcb))
683 return 1;
1da177e4 684 } else {
b9760156
HH
685 set_current_kprobe(p, regs, kcb);
686 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 687
1da177e4 688 /*
f315decb
AS
689 * If we have no pre-handler or it returned 0, we
690 * continue with normal processing. If we have a
80006dbe
MH
691 * pre-handler and it returned non-zero, that means
692 * user handler setup registers to exit to another
693 * instruction, we must skip the single stepping.
1da177e4 694 */
f315decb 695 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 696 setup_singlestep(p, regs, kcb, 0);
2bbda764 697 else
cce188bd 698 reset_current_kprobe();
f315decb 699 return 1;
b9760156 700 }
ab09e95c 701 } else if (*addr != INT3_INSN_OPCODE) {
829e9245
MH
702 /*
703 * The breakpoint instruction was removed right
704 * after we hit it. Another cpu has removed
705 * either a probepoint or a debugger breakpoint
706 * at this address. In either case, no further
707 * handling of this interrupt is appropriate.
708 * Back up over the (now missing) int3 and run
709 * the original instruction.
710 */
711 regs->ip = (unsigned long)addr;
829e9245 712 return 1;
f315decb 713 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 714
f315decb 715 return 0;
1da177e4 716}
9326638c 717NOKPROBE_SYMBOL(kprobe_int3_handler);
1da177e4 718
73649dab 719/*
da07ab03
MH
720 * When a retprobed function returns, this code saves registers and
721 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 722 */
c1c355ce 723asm(
c03e2750 724 ".text\n"
c1c355ce
JP
725 ".global kretprobe_trampoline\n"
726 ".type kretprobe_trampoline, @function\n"
727 "kretprobe_trampoline:\n"
c1c355ce 728 /* We don't bother saving the ss register */
3c88c692 729#ifdef CONFIG_X86_64
c1c355ce
JP
730 " pushq %rsp\n"
731 " pushfq\n"
732 SAVE_REGS_STRING
733 " movq %rsp, %rdi\n"
734 " call trampoline_handler\n"
735 /* Replace saved sp with true return address. */
3c88c692 736 " movq %rax, 19*8(%rsp)\n"
c1c355ce
JP
737 RESTORE_REGS_STRING
738 " popfq\n"
d6be29b8 739#else
3c88c692
PZ
740 " pushl %esp\n"
741 " pushfl\n"
c1c355ce
JP
742 SAVE_REGS_STRING
743 " movl %esp, %eax\n"
744 " call trampoline_handler\n"
3c88c692
PZ
745 /* Replace saved sp with true return address. */
746 " movl %eax, 15*4(%esp)\n"
c1c355ce 747 RESTORE_REGS_STRING
3c88c692 748 " popfl\n"
d6be29b8 749#endif
c1c355ce
JP
750 " ret\n"
751 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
752);
9326638c 753NOKPROBE_SYMBOL(kretprobe_trampoline);
87aaff2a 754STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
73649dab 755
b191fa96
MH
756static struct kprobe kretprobe_kprobe = {
757 .addr = (void *)kretprobe_trampoline,
758};
759
73649dab 760/*
da07ab03 761 * Called from kretprobe_trampoline
73649dab 762 */
0e72499c 763__used __visible void *trampoline_handler(struct pt_regs *regs)
73649dab 764{
b191fa96 765 struct kprobe_ctlblk *kcb;
62c27be0 766 struct kretprobe_instance *ri = NULL;
99219a3f 767 struct hlist_head *head, empty_rp;
b67bfe0d 768 struct hlist_node *tmp;
991a51d8 769 unsigned long flags, orig_ret_address = 0;
d6be29b8 770 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 771 kprobe_opcode_t *correct_ret_addr = NULL;
3ff9c075
MH
772 void *frame_pointer;
773 bool skipped = false;
73649dab 774
b191fa96
MH
775 preempt_disable();
776
777 /*
778 * Set a dummy kprobe for avoiding kretprobe recursion.
779 * Since kretprobe never run in kprobe handler, kprobe must not
780 * be running at this point.
781 */
782 kcb = get_kprobe_ctlblk();
783 __this_cpu_write(current_kprobe, &kretprobe_kprobe);
784 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
785
99219a3f 786 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 787 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 788 /* fixup registers */
da07ab03 789 regs->cs = __KERNEL_CS;
3c88c692
PZ
790#ifdef CONFIG_X86_32
791 regs->cs |= get_kernel_rpl();
fee039a1 792 regs->gs = 0;
d6be29b8 793#endif
3c88c692
PZ
794 /* We use pt_regs->sp for return address holder. */
795 frame_pointer = &regs->sp;
da07ab03 796 regs->ip = trampoline_address;
8533bbe9 797 regs->orig_ax = ~0UL;
73649dab 798
ba8af12f
RL
799 /*
800 * It is possible to have multiple instances associated with a given
8533bbe9 801 * task either because multiple functions in the call path have
025dfdaf 802 * return probes installed on them, and/or more than one
ba8af12f
RL
803 * return probe was registered for a target function.
804 *
805 * We can handle this because:
8533bbe9 806 * - instances are always pushed into the head of the list
ba8af12f 807 * - when multiple return probes are registered for the same
8533bbe9
MH
808 * function, the (chronologically) first instance's ret_addr
809 * will be the real return address, and all the rest will
810 * point to kretprobe_trampoline.
ba8af12f 811 */
b6263178 812 hlist_for_each_entry(ri, head, hlist) {
62c27be0 813 if (ri->task != current)
ba8af12f 814 /* another task is sharing our hash bucket */
62c27be0 815 continue;
3ff9c075
MH
816 /*
817 * Return probes must be pushed on this hash list correct
462e5a52 818 * order (same as return order) so that it can be popped
3ff9c075
MH
819 * correctly. However, if we find it is pushed it incorrect
820 * order, this means we find a function which should not be
821 * probed, because the wrong order entry is pushed on the
822 * path of processing other kretprobe itself.
823 */
824 if (ri->fp != frame_pointer) {
825 if (!skipped)
826 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
827 skipped = true;
828 continue;
829 }
ba8af12f 830
737480a0 831 orig_ret_address = (unsigned long)ri->ret_addr;
3ff9c075
MH
832 if (skipped)
833 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
834 ri->rp->kp.addr);
737480a0
KS
835
836 if (orig_ret_address != trampoline_address)
837 /*
838 * This is the real return address. Any other
839 * instances associated with this task are for
840 * other calls deeper on the call stack
841 */
842 break;
843 }
844
845 kretprobe_assert(ri, orig_ret_address, trampoline_address);
846
847 correct_ret_addr = ri->ret_addr;
b67bfe0d 848 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
737480a0
KS
849 if (ri->task != current)
850 /* another task is sharing our hash bucket */
851 continue;
3ff9c075
MH
852 if (ri->fp != frame_pointer)
853 continue;
737480a0
KS
854
855 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03 856 if (ri->rp && ri->rp->handler) {
b76834bc 857 __this_cpu_write(current_kprobe, &ri->rp->kp);
737480a0 858 ri->ret_addr = correct_ret_addr;
ba8af12f 859 ri->rp->handler(ri, regs);
b191fa96 860 __this_cpu_write(current_kprobe, &kretprobe_kprobe);
da07ab03 861 }
ba8af12f 862
99219a3f 863 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
864
865 if (orig_ret_address != trampoline_address)
866 /*
867 * This is the real return address. Any other
868 * instances associated with this task are for
869 * other calls deeper on the call stack
870 */
871 break;
73649dab 872 }
ba8af12f 873
ef53d9c5 874 kretprobe_hash_unlock(current, &flags);
ba8af12f 875
b191fa96
MH
876 __this_cpu_write(current_kprobe, NULL);
877 preempt_enable();
878
b67bfe0d 879 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
99219a3f 880 hlist_del(&ri->hlist);
881 kfree(ri);
882 }
da07ab03 883 return (void *)orig_ret_address;
73649dab 884}
9326638c 885NOKPROBE_SYMBOL(trampoline_handler);
73649dab 886
1da177e4
LT
887/*
888 * Called after single-stepping. p->addr is the address of the
889 * instruction whose first byte has been replaced by the "int 3"
890 * instruction. To avoid the SMP problems that can occur when we
891 * temporarily put back the original opcode to single-step, we
892 * single-stepped a copy of the instruction. The address of this
893 * copy is p->ainsn.insn.
894 *
895 * This function prepares to return from the post-single-step
896 * interrupt. We have to fix up the stack as follows:
897 *
898 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 899 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
900 * it relative to the original instruction.
901 *
902 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 903 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
904 *
905 * 2) If the single-stepped instruction was a call, the return address
906 * that is atop the stack is the address following the copied instruction.
907 * We need to make it the address following the original instruction.
aa470140
MH
908 *
909 * If this is the first time we've single-stepped the instruction at
910 * this probepoint, and the instruction is boostable, boost it: add a
911 * jump instruction after the copied instruction, that jumps to the next
912 * instruction after the probepoint.
1da177e4 913 */
9326638c
MH
914static void resume_execution(struct kprobe *p, struct pt_regs *regs,
915 struct kprobe_ctlblk *kcb)
1da177e4 916{
8533bbe9
MH
917 unsigned long *tos = stack_addr(regs);
918 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
919 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
920 kprobe_opcode_t *insn = p->ainsn.insn;
921
567a9fd8
MH
922 /* Skip prefixes */
923 insn = skip_prefixes(insn);
1da177e4 924
053de044 925 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 926 switch (*insn) {
0b0122fa 927 case 0x9c: /* pushfl */
053de044 928 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 929 *tos |= kcb->kprobe_old_flags;
1da177e4 930 break;
0b0122fa
MH
931 case 0xc2: /* iret/ret/lret */
932 case 0xc3:
0b9e2cac 933 case 0xca:
0b0122fa
MH
934 case 0xcb:
935 case 0xcf:
936 case 0xea: /* jmp absolute -- ip is correct */
937 /* ip is already adjusted, no more changes required */
490154bc 938 p->ainsn.boostable = true;
0b0122fa
MH
939 goto no_change;
940 case 0xe8: /* call relative - Fix return addr */
8533bbe9 941 *tos = orig_ip + (*tos - copy_ip);
1da177e4 942 break;
e7b5e11e 943#ifdef CONFIG_X86_32
d6be29b8
MH
944 case 0x9a: /* call absolute -- same as call absolute, indirect */
945 *tos = orig_ip + (*tos - copy_ip);
946 goto no_change;
947#endif
1da177e4 948 case 0xff:
dc49e344 949 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
950 /*
951 * call absolute, indirect
952 * Fix return addr; ip is correct.
953 * But this is not boostable
954 */
955 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 956 goto no_change;
8533bbe9
MH
957 } else if (((insn[1] & 0x31) == 0x20) ||
958 ((insn[1] & 0x31) == 0x21)) {
959 /*
960 * jmp near and far, absolute indirect
961 * ip is correct. And this is boostable
962 */
490154bc 963 p->ainsn.boostable = true;
0b0122fa 964 goto no_change;
1da177e4 965 }
1da177e4
LT
966 default:
967 break;
968 }
969
8533bbe9 970 regs->ip += orig_ip - copy_ip;
65ea5b03 971
0b0122fa 972no_change:
1ecc798c 973 restore_btf();
1da177e4 974}
9326638c 975NOKPROBE_SYMBOL(resume_execution);
1da177e4 976
8533bbe9
MH
977/*
978 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 979 * remain disabled throughout this function.
8533bbe9 980 */
9326638c 981int kprobe_debug_handler(struct pt_regs *regs)
1da177e4 982{
e7a510f9
AM
983 struct kprobe *cur = kprobe_running();
984 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
985
986 if (!cur)
1da177e4
LT
987 return 0;
988
acb5b8a2
YL
989 resume_execution(cur, regs, kcb);
990 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 991
e7a510f9
AM
992 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
993 kcb->kprobe_status = KPROBE_HIT_SSDONE;
994 cur->post_handler(cur, regs, 0);
aa3d7e3d 995 }
1da177e4 996
8533bbe9 997 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
998 if (kcb->kprobe_status == KPROBE_REENTER) {
999 restore_previous_kprobe(kcb);
aa3d7e3d 1000 goto out;
aa3d7e3d 1001 }
e7a510f9 1002 reset_current_kprobe();
aa3d7e3d 1003out:
1da177e4 1004 /*
65ea5b03 1005 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
1006 * will have TF set, in which case, continue the remaining processing
1007 * of do_debug, as if this is not a probe hit.
1008 */
053de044 1009 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
1010 return 0;
1011
1012 return 1;
1013}
9326638c 1014NOKPROBE_SYMBOL(kprobe_debug_handler);
1da177e4 1015
9326638c 1016int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 1017{
e7a510f9
AM
1018 struct kprobe *cur = kprobe_running();
1019 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1020
6381c24c
MH
1021 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1022 /* This must happen on single-stepping */
1023 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1024 kcb->kprobe_status != KPROBE_REENTER);
c28f8966
PP
1025 /*
1026 * We are here because the instruction being single
1027 * stepped caused a page fault. We reset the current
65ea5b03 1028 * kprobe and the ip points back to the probe address
c28f8966
PP
1029 * and allow the page fault handler to continue as a
1030 * normal page fault.
1031 */
65ea5b03 1032 regs->ip = (unsigned long)cur->addr;
dcfc4724
MH
1033 /*
1034 * Trap flag (TF) has been set here because this fault
1035 * happened where the single stepping will be done.
1036 * So clear it by resetting the current kprobe:
1037 */
1038 regs->flags &= ~X86_EFLAGS_TF;
1039
1040 /*
1041 * If the TF flag was set before the kprobe hit,
1042 * don't touch it:
1043 */
8533bbe9 1044 regs->flags |= kcb->kprobe_old_flags;
dcfc4724 1045
c28f8966
PP
1046 if (kcb->kprobe_status == KPROBE_REENTER)
1047 restore_previous_kprobe(kcb);
1048 else
1049 reset_current_kprobe();
6381c24c
MH
1050 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1051 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
c28f8966
PP
1052 /*
1053 * We increment the nmissed count for accounting,
8533bbe9 1054 * we can also use npre/npostfault count for accounting
c28f8966
PP
1055 * these specific fault cases.
1056 */
1057 kprobes_inc_nmissed_count(cur);
1058
1059 /*
1060 * We come here because instructions in the pre/post
1061 * handler caused the page_fault, this could happen
1062 * if handler tries to access user space by
1063 * copy_from_user(), get_user() etc. Let the
1064 * user-specified handler try to fix it first.
1065 */
1066 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1067 return 1;
1da177e4 1068 }
6381c24c 1069
1da177e4
LT
1070 return 0;
1071}
9326638c 1072NOKPROBE_SYMBOL(kprobe_fault_handler);
1da177e4 1073
fe6e6561
MH
1074int __init arch_populate_kprobe_blacklist(void)
1075{
0eae81dc
MH
1076 int ret;
1077
1078 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1079 (unsigned long)__irqentry_text_end);
1080 if (ret)
1081 return ret;
1082
fe6e6561
MH
1083 return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1084 (unsigned long)__entry_text_end);
1085}
1086
6772926b 1087int __init arch_init_kprobes(void)
ba8af12f 1088{
a7b0133e 1089 return 0;
ba8af12f 1090}
bf8f6e5b 1091
7ec8a97a 1092int arch_trampoline_kprobe(struct kprobe *p)
bf8f6e5b 1093{
bf8f6e5b
AM
1094 return 0;
1095}