]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/kprobes/core.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / kprobes / core.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
3f33ab1c 33 * Added function return probes functionality
d6be29b8 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
3f33ab1c 35 * kprobe-booster and kretprobe-booster for i386.
da07ab03 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
3f33ab1c 37 * and kretprobe-booster for x86-64
d6be29b8 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
3f33ab1c
MH
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4 41 */
1da177e4
LT
42#include <linux/kprobes.h>
43#include <linux/ptrace.h>
1da177e4
LT
44#include <linux/string.h>
45#include <linux/slab.h>
b506a9d0 46#include <linux/hardirq.h>
1da177e4 47#include <linux/preempt.h>
b17b0153 48#include <linux/sched/debug.h>
744c193e 49#include <linux/extable.h>
1eeb66a1 50#include <linux/kdebug.h>
b46b3d70 51#include <linux/kallsyms.h>
c0f7ac3a 52#include <linux/ftrace.h>
87aaff2a 53#include <linux/frame.h>
9f7d416c 54#include <linux/kasan.h>
c93f5cf5 55#include <linux/moduleloader.h>
9ec4b1f3 56
35de5b06 57#include <asm/text-patching.h>
8533bbe9
MH
58#include <asm/cacheflush.h>
59#include <asm/desc.h>
1da177e4 60#include <asm/pgtable.h>
7c0f6ba6 61#include <linux/uaccess.h>
19d36ccd 62#include <asm/alternative.h>
b46b3d70 63#include <asm/insn.h>
62edab90 64#include <asm/debugreg.h>
e6ccbff0 65#include <asm/set_memory.h>
1da177e4 66
f684199f 67#include "common.h"
3f33ab1c 68
1da177e4
LT
69void jprobe_return_end(void);
70
e7a510f9
AM
71DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
72DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 73
98272ed0 74#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
8533bbe9
MH
75
76#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
81 << (row % 32))
82 /*
83 * Undefined/reserved opcodes, conditional jump, Opcode Extension
84 * Groups, and some special opcodes can not boost.
7115e3fc
LT
85 * This is non-const and volatile to keep gcc from statically
86 * optimizing it out, as variable_test_bit makes gcc think only
f684199f 87 * *(unsigned long*) is used.
8533bbe9 88 */
7115e3fc 89static volatile u32 twobyte_is_boostable[256 / 32] = {
8533bbe9
MH
90 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
91 /* ---------------------------------------------- */
92 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
b7e37567 93 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
8533bbe9
MH
94 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
95 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
96 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
97 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
98 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
99 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
100 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
101 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
102 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
103 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
104 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
105 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
106 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
107 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
108 /* ----------------------------------------------- */
109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
110};
8533bbe9
MH
111#undef W
112
f438d914
MH
113struct kretprobe_blackpoint kretprobe_blacklist[] = {
114 {"__switch_to", }, /* This function switches only current task, but
115 doesn't switch kernel stack.*/
116 {NULL, NULL} /* Terminator */
117};
3f33ab1c 118
f438d914
MH
119const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
120
9326638c
MH
121static nokprobe_inline void
122__synthesize_relative_insn(void *from, void *to, u8 op)
aa470140 123{
c0f7ac3a
MH
124 struct __arch_relative_insn {
125 u8 op;
aa470140 126 s32 raddr;
f684199f 127 } __packed *insn;
c0f7ac3a
MH
128
129 insn = (struct __arch_relative_insn *)from;
130 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
131 insn->op = op;
132}
133
134/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
9326638c 135void synthesize_reljump(void *from, void *to)
c0f7ac3a
MH
136{
137 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
aa470140 138}
9326638c 139NOKPROBE_SYMBOL(synthesize_reljump);
aa470140 140
3f33ab1c 141/* Insert a call instruction at address 'from', which calls address 'to'.*/
9326638c 142void synthesize_relcall(void *from, void *to)
3f33ab1c
MH
143{
144 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
145}
9326638c 146NOKPROBE_SYMBOL(synthesize_relcall);
3f33ab1c 147
9930927f 148/*
567a9fd8 149 * Skip the prefixes of the instruction.
9930927f 150 */
9326638c 151static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
9930927f 152{
567a9fd8
MH
153 insn_attr_t attr;
154
155 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
156 while (inat_is_legacy_prefix(attr)) {
157 insn++;
158 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
159 }
9930927f 160#ifdef CONFIG_X86_64
567a9fd8
MH
161 if (inat_is_rex_prefix(attr))
162 insn++;
9930927f 163#endif
567a9fd8 164 return insn;
9930927f 165}
9326638c 166NOKPROBE_SYMBOL(skip_prefixes);
9930927f 167
aa470140 168/*
a8d11cd0 169 * Returns non-zero if INSN is boostable.
d6be29b8 170 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 171 */
a8d11cd0 172int can_boost(struct insn *insn, void *addr)
aa470140 173{
aa470140 174 kprobe_opcode_t opcode;
aa470140 175
75013fb1 176 if (search_exception_tables((unsigned long)addr))
30390880
MH
177 return 0; /* Page fault may occur on this address. */
178
aa470140 179 /* 2nd-byte opcode */
a8d11cd0
MH
180 if (insn->opcode.nbytes == 2)
181 return test_bit(insn->opcode.bytes[1],
8533bbe9 182 (unsigned long *)twobyte_is_boostable);
17880e4d 183
a8d11cd0 184 if (insn->opcode.nbytes != 1)
17880e4d
MH
185 return 0;
186
187 /* Can't boost Address-size override prefix */
a8d11cd0 188 if (unlikely(inat_is_address_size_prefix(insn->attr)))
17880e4d
MH
189 return 0;
190
a8d11cd0 191 opcode = insn->opcode.bytes[0];
aa470140
MH
192
193 switch (opcode & 0xf0) {
aa470140 194 case 0x60:
17880e4d
MH
195 /* can't boost "bound" */
196 return (opcode != 0x62);
aa470140
MH
197 case 0x70:
198 return 0; /* can't boost conditional jump */
bd0b9067
MH
199 case 0x90:
200 return opcode != 0x9a; /* can't boost call far */
aa470140
MH
201 case 0xc0:
202 /* can't boost software-interruptions */
203 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
204 case 0xd0:
205 /* can boost AA* and XLAT */
206 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
207 case 0xe0:
208 /* can boost in/out and absolute jmps */
209 return ((opcode & 0x04) || opcode == 0xea);
210 case 0xf0:
aa470140
MH
211 /* clear and set flags are boostable */
212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 default:
aa470140
MH
214 /* CS override prefix and call are not boostable */
215 return (opcode != 0x2e && opcode != 0x9a);
216 }
217}
218
3f33ab1c
MH
219static unsigned long
220__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
b46b3d70
MH
221{
222 struct kprobe *kp;
650b7b23 223 unsigned long faddr;
86b4ce31 224
b46b3d70 225 kp = get_kprobe((void *)addr);
650b7b23 226 faddr = ftrace_location(addr);
2a6730c8
PM
227 /*
228 * Addresses inside the ftrace location are refused by
229 * arch_check_ftrace_location(). Something went terribly wrong
230 * if such an address is checked here.
231 */
232 if (WARN_ON(faddr && faddr != addr))
233 return 0UL;
650b7b23
PM
234 /*
235 * Use the current code if it is not modified by Kprobe
236 * and it cannot be modified by ftrace.
237 */
238 if (!kp && !faddr)
86b4ce31 239 return addr;
b46b3d70
MH
240
241 /*
650b7b23
PM
242 * Basically, kp->ainsn.insn has an original instruction.
243 * However, RIP-relative instruction can not do single-stepping
244 * at different place, __copy_instruction() tweaks the displacement of
245 * that instruction. In that case, we can't recover the instruction
246 * from the kp->ainsn.insn.
247 *
248 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
249 * of the first byte of the probed instruction, which is overwritten
250 * by int3. And the instruction at kp->addr is not modified by kprobes
251 * except for the first byte, we can recover the original instruction
252 * from it and kp->opcode.
b46b3d70 253 *
650b7b23
PM
254 * In case of Kprobes using ftrace, we do not have a copy of
255 * the original instruction. In fact, the ftrace location might
256 * be modified at anytime and even could be in an inconsistent state.
257 * Fortunately, we know that the original code is the ideal 5-byte
258 * long NOP.
b46b3d70 259 */
ea1e34fc
MH
260 if (probe_kernel_read(buf, (void *)addr,
261 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
262 return 0UL;
263
650b7b23
PM
264 if (faddr)
265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
266 else
267 buf[0] = kp->opcode;
86b4ce31
MH
268 return (unsigned long)buf;
269}
270
86b4ce31
MH
271/*
272 * Recover the probed instruction at addr for further analysis.
273 * Caller must lock kprobes by kprobe_mutex, or disable preemption
274 * for preventing to release referencing kprobes.
ea1e34fc 275 * Returns zero if the instruction can not get recovered (or access failed).
86b4ce31 276 */
3f33ab1c 277unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
86b4ce31
MH
278{
279 unsigned long __addr;
280
281 __addr = __recover_optprobed_insn(buf, addr);
282 if (__addr != addr)
283 return __addr;
284
285 return __recover_probed_insn(buf, addr);
b46b3d70
MH
286}
287
b46b3d70 288/* Check if paddr is at an instruction boundary */
7ec8a97a 289static int can_probe(unsigned long paddr)
b46b3d70 290{
86b4ce31 291 unsigned long addr, __addr, offset = 0;
b46b3d70
MH
292 struct insn insn;
293 kprobe_opcode_t buf[MAX_INSN_SIZE];
294
6abded71 295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
296 return 0;
297
298 /* Decode instructions */
299 addr = paddr - offset;
300 while (addr < paddr) {
b46b3d70
MH
301 /*
302 * Check if the instruction has been modified by another
303 * kprobe, in which case we replace the breakpoint by the
304 * original instruction in our buffer.
86b4ce31
MH
305 * Also, jump optimization will change the breakpoint to
306 * relative-jump. Since the relative-jump itself is
307 * normally used, we just go through if there is no kprobe.
b46b3d70 308 */
86b4ce31 309 __addr = recover_probed_instruction(buf, addr);
2a6730c8
PM
310 if (!__addr)
311 return 0;
6ba48ff4 312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
b46b3d70 313 insn_get_length(&insn);
86b4ce31
MH
314
315 /*
316 * Another debugging subsystem might insert this breakpoint.
317 * In that case, we can't recover it.
318 */
319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
320 return 0;
b46b3d70
MH
321 addr += insn.length;
322 }
323
324 return (addr == paddr);
325}
326
1da177e4 327/*
d6be29b8 328 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 329 */
7ec8a97a 330static int is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 331{
567a9fd8
MH
332 /* Skip prefixes */
333 insn = skip_prefixes(insn);
334
1da177e4
LT
335 switch (*insn) {
336 case 0xfa: /* cli */
337 case 0xfb: /* sti */
338 case 0xcf: /* iret/iretd */
339 case 0x9d: /* popf/popfd */
340 return 1;
341 }
9930927f 342
1da177e4
LT
343 return 0;
344}
345
346/*
129d17e8
MH
347 * Copy an instruction with recovering modified instruction by kprobes
348 * and adjust the displacement if the instruction uses the %rip-relative
349 * addressing mode.
350 * This returns the length of copied instruction, or 0 if it has an error.
1da177e4 351 */
a8d11cd0 352int __copy_instruction(u8 *dest, u8 *src, struct insn *insn)
1da177e4 353{
c0f7ac3a 354 kprobe_opcode_t buf[MAX_INSN_SIZE];
6ba48ff4
DH
355 unsigned long recovered_insn =
356 recover_probed_instruction(buf, (unsigned long)src);
86b4ce31 357
a8d11cd0 358 if (!recovered_insn || !insn)
2a6730c8 359 return 0;
c80e5c0c 360
a8d11cd0
MH
361 /* This can access kernel text if given address is not recovered */
362 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
86b4ce31 363 return 0;
ea1e34fc 364
a8d11cd0
MH
365 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
366 insn_get_length(insn);
367
368 /* Another subsystem puts a breakpoint, failed to recover */
369 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
ea1e34fc 370 return 0;
c0f7ac3a
MH
371
372#ifdef CONFIG_X86_64
129d17e8 373 /* Only x86_64 has RIP relative instructions */
a8d11cd0 374 if (insn_rip_relative(insn)) {
89ae465b
MH
375 s64 newdisp;
376 u8 *disp;
89ae465b
MH
377 /*
378 * The copied instruction uses the %rip-relative addressing
379 * mode. Adjust the displacement for the difference between
380 * the original location of this instruction and the location
381 * of the copy that will actually be run. The tricky bit here
382 * is making sure that the sign extension happens correctly in
383 * this calculation, since we need a signed 32-bit result to
384 * be sign-extended to 64 bits when it's added to the %rip
385 * value and yield the same 64-bit result that the sign-
386 * extension of the original signed 32-bit displacement would
387 * have given.
388 */
a8d11cd0
MH
389 newdisp = (u8 *) src + (s64) insn->displacement.value
390 - (u8 *) dest;
8101376d
MH
391 if ((s64) (s32) newdisp != newdisp) {
392 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
a8d11cd0
MH
393 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n",
394 src, dest, insn->displacement.value);
8101376d
MH
395 return 0;
396 }
a8d11cd0 397 disp = (u8 *) dest + insn_offset_displacement(insn);
89ae465b 398 *(s32 *) disp = (s32) newdisp;
1da177e4 399 }
d6be29b8 400#endif
a8d11cd0 401 return insn->length;
31f80e45 402}
1da177e4 403
804dec5b 404/* Prepare reljump right after instruction to boost */
a8d11cd0 405static void prepare_boost(struct kprobe *p, struct insn *insn)
804dec5b 406{
a8d11cd0
MH
407 if (can_boost(insn, p->addr) &&
408 MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) {
804dec5b
MH
409 /*
410 * These instructions can be executed directly if it
411 * jumps back to correct address.
412 */
a8d11cd0
MH
413 synthesize_reljump(p->ainsn.insn + insn->length,
414 p->addr + insn->length);
490154bc 415 p->ainsn.boostable = true;
804dec5b 416 } else {
490154bc 417 p->ainsn.boostable = false;
804dec5b
MH
418 }
419}
420
c93f5cf5
MH
421/* Recover page to RW mode before releasing it */
422void free_insn_page(void *page)
423{
424 set_memory_nx((unsigned long)page & PAGE_MASK, 1);
425 set_memory_rw((unsigned long)page & PAGE_MASK, 1);
426 module_memfree(page);
427}
428
7ec8a97a 429static int arch_copy_kprobe(struct kprobe *p)
1da177e4 430{
a8d11cd0 431 struct insn insn;
804dec5b 432 int len;
003002e0 433
d0381c81
MH
434 set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
435
46484688 436 /* Copy an instruction with recovering if other optprobe modifies it.*/
a8d11cd0 437 len = __copy_instruction(p->ainsn.insn, p->addr, &insn);
804dec5b 438 if (!len)
003002e0 439 return -EINVAL;
46484688 440
c0f7ac3a 441 /*
46484688
MH
442 * __copy_instruction can modify the displacement of the instruction,
443 * but it doesn't affect boostable check.
c0f7ac3a 444 */
a8d11cd0 445 prepare_boost(p, &insn);
8533bbe9 446
d0381c81
MH
447 set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
448
9a556ab9
MH
449 /* Check whether the instruction modifies Interrupt Flag or not */
450 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
451
46484688
MH
452 /* Also, displacement change doesn't affect the first byte */
453 p->opcode = p->ainsn.insn[0];
003002e0
MH
454
455 return 0;
1da177e4
LT
456}
457
7ec8a97a 458int arch_prepare_kprobe(struct kprobe *p)
8533bbe9 459{
4554dbcb
MH
460 if (alternatives_text_reserved(p->addr, p->addr))
461 return -EINVAL;
462
b46b3d70
MH
463 if (!can_probe((unsigned long)p->addr))
464 return -EILSEQ;
8533bbe9
MH
465 /* insn: must be on special executable page on x86. */
466 p->ainsn.insn = get_insn_slot();
467 if (!p->ainsn.insn)
468 return -ENOMEM;
003002e0
MH
469
470 return arch_copy_kprobe(p);
8533bbe9
MH
471}
472
7ec8a97a 473void arch_arm_kprobe(struct kprobe *p)
1da177e4 474{
19d36ccd 475 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
476}
477
7ec8a97a 478void arch_disarm_kprobe(struct kprobe *p)
1da177e4 479{
19d36ccd 480 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
481}
482
7ec8a97a 483void arch_remove_kprobe(struct kprobe *p)
7e1048b1 484{
12941560 485 if (p->ainsn.insn) {
490154bc 486 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
12941560
MH
487 p->ainsn.insn = NULL;
488 }
1da177e4
LT
489}
490
9326638c
MH
491static nokprobe_inline void
492save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 493{
e7a510f9
AM
494 kcb->prev_kprobe.kp = kprobe_running();
495 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
496 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
497 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
498}
499
9326638c
MH
500static nokprobe_inline void
501restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 502{
b76834bc 503 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
e7a510f9 504 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
505 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
506 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
507}
508
9326638c
MH
509static nokprobe_inline void
510set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
511 struct kprobe_ctlblk *kcb)
aa3d7e3d 512{
b76834bc 513 __this_cpu_write(current_kprobe, p);
8533bbe9 514 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 515 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
9a556ab9 516 if (p->ainsn.if_modifier)
053de044 517 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
518}
519
9326638c 520static nokprobe_inline void clear_btf(void)
1ecc798c 521{
ea8e61b7
PZ
522 if (test_thread_flag(TIF_BLOCKSTEP)) {
523 unsigned long debugctl = get_debugctlmsr();
524
525 debugctl &= ~DEBUGCTLMSR_BTF;
526 update_debugctlmsr(debugctl);
527 }
1ecc798c
RM
528}
529
9326638c 530static nokprobe_inline void restore_btf(void)
1ecc798c 531{
ea8e61b7
PZ
532 if (test_thread_flag(TIF_BLOCKSTEP)) {
533 unsigned long debugctl = get_debugctlmsr();
534
535 debugctl |= DEBUGCTLMSR_BTF;
536 update_debugctlmsr(debugctl);
537 }
1ecc798c
RM
538}
539
9326638c 540void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
73649dab 541{
8533bbe9 542 unsigned long *sara = stack_addr(regs);
ba8af12f 543
4c4308cb 544 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 545
4c4308cb
CH
546 /* Replace the return addr with trampoline addr */
547 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 548}
9326638c 549NOKPROBE_SYMBOL(arch_prepare_kretprobe);
f315decb 550
9326638c
MH
551static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
552 struct kprobe_ctlblk *kcb, int reenter)
f315decb 553{
c0f7ac3a
MH
554 if (setup_detour_execution(p, regs, reenter))
555 return;
556
615d0ebb 557#if !defined(CONFIG_PREEMPT)
490154bc 558 if (p->ainsn.boostable && !p->post_handler) {
f315decb 559 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
560 if (!reenter)
561 reset_current_kprobe();
562 /*
563 * Reentering boosted probe doesn't reset current_kprobe,
564 * nor set current_kprobe, because it doesn't use single
565 * stepping.
566 */
f315decb
AS
567 regs->ip = (unsigned long)p->ainsn.insn;
568 preempt_enable_no_resched();
569 return;
570 }
571#endif
0f94eb63
MH
572 if (reenter) {
573 save_previous_kprobe(kcb);
574 set_current_kprobe(p, regs, kcb);
575 kcb->kprobe_status = KPROBE_REENTER;
576 } else
577 kcb->kprobe_status = KPROBE_HIT_SS;
578 /* Prepare real single stepping */
579 clear_btf();
580 regs->flags |= X86_EFLAGS_TF;
581 regs->flags &= ~X86_EFLAGS_IF;
582 /* single step inline if the instruction is an int3 */
583 if (p->opcode == BREAKPOINT_INSTRUCTION)
584 regs->ip = (unsigned long)p->addr;
585 else
586 regs->ip = (unsigned long)p->ainsn.insn;
f315decb 587}
9326638c 588NOKPROBE_SYMBOL(setup_singlestep);
f315decb 589
40102d4a
HH
590/*
591 * We have reentered the kprobe_handler(), since another probe was hit while
592 * within the handler. We save the original kprobes variables and just single
593 * step on the instruction of the new probe without calling any user handlers.
594 */
9326638c
MH
595static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
596 struct kprobe_ctlblk *kcb)
40102d4a 597{
f315decb
AS
598 switch (kcb->kprobe_status) {
599 case KPROBE_HIT_SSDONE:
f315decb 600 case KPROBE_HIT_ACTIVE:
6a5022a5 601 case KPROBE_HIT_SS:
fb8830e7 602 kprobes_inc_nmissed_count(p);
0f94eb63 603 setup_singlestep(p, regs, kcb, 1);
f315decb 604 break;
6a5022a5 605 case KPROBE_REENTER:
e9afe9e1
MH
606 /* A probe has been hit in the codepath leading up to, or just
607 * after, single-stepping of a probed instruction. This entire
608 * codepath should strictly reside in .kprobes.text section.
609 * Raise a BUG or we'll continue in an endless reentering loop
610 * and eventually a stack overflow.
611 */
612 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
613 p->addr);
614 dump_kprobe(p);
615 BUG();
f315decb
AS
616 default:
617 /* impossible cases */
618 WARN_ON(1);
fb8830e7 619 return 0;
59e87cdc 620 }
f315decb 621
59e87cdc 622 return 1;
40102d4a 623}
9326638c 624NOKPROBE_SYMBOL(reenter_kprobe);
73649dab 625
8533bbe9
MH
626/*
627 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 628 * remain disabled throughout this function.
8533bbe9 629 */
9326638c 630int kprobe_int3_handler(struct pt_regs *regs)
1da177e4 631{
8533bbe9 632 kprobe_opcode_t *addr;
f315decb 633 struct kprobe *p;
d217d545
AM
634 struct kprobe_ctlblk *kcb;
635
f39b6f0e 636 if (user_mode(regs))
0cdd192c
AL
637 return 0;
638
8533bbe9 639 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545
AM
640 /*
641 * We don't want to be preempted for the entire
f315decb
AS
642 * duration of kprobe processing. We conditionally
643 * re-enable preemption at the end of this function,
644 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
645 */
646 preempt_disable();
1da177e4 647
f315decb 648 kcb = get_kprobe_ctlblk();
b9760156 649 p = get_kprobe(addr);
f315decb 650
b9760156 651 if (p) {
b9760156 652 if (kprobe_running()) {
f315decb
AS
653 if (reenter_kprobe(p, regs, kcb))
654 return 1;
1da177e4 655 } else {
b9760156
HH
656 set_current_kprobe(p, regs, kcb);
657 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 658
1da177e4 659 /*
f315decb
AS
660 * If we have no pre-handler or it returned 0, we
661 * continue with normal processing. If we have a
662 * pre-handler and it returned non-zero, it prepped
663 * for calling the break_handler below on re-entry
664 * for jprobe processing, so get out doing nothing
665 * more here.
1da177e4 666 */
f315decb 667 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 668 setup_singlestep(p, regs, kcb, 0);
f315decb 669 return 1;
b9760156 670 }
829e9245
MH
671 } else if (*addr != BREAKPOINT_INSTRUCTION) {
672 /*
673 * The breakpoint instruction was removed right
674 * after we hit it. Another cpu has removed
675 * either a probepoint or a debugger breakpoint
676 * at this address. In either case, no further
677 * handling of this interrupt is appropriate.
678 * Back up over the (now missing) int3 and run
679 * the original instruction.
680 */
681 regs->ip = (unsigned long)addr;
682 preempt_enable_no_resched();
683 return 1;
f315decb 684 } else if (kprobe_running()) {
b76834bc 685 p = __this_cpu_read(current_kprobe);
f315decb 686 if (p->break_handler && p->break_handler(p, regs)) {
e7dbfe34
MH
687 if (!skip_singlestep(p, regs, kcb))
688 setup_singlestep(p, regs, kcb, 0);
f315decb 689 return 1;
1da177e4 690 }
f315decb 691 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 692
d217d545 693 preempt_enable_no_resched();
f315decb 694 return 0;
1da177e4 695}
9326638c 696NOKPROBE_SYMBOL(kprobe_int3_handler);
1da177e4 697
73649dab 698/*
da07ab03
MH
699 * When a retprobed function returns, this code saves registers and
700 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 701 */
c1c355ce
JP
702asm(
703 ".global kretprobe_trampoline\n"
704 ".type kretprobe_trampoline, @function\n"
705 "kretprobe_trampoline:\n"
d6be29b8 706#ifdef CONFIG_X86_64
c1c355ce
JP
707 /* We don't bother saving the ss register */
708 " pushq %rsp\n"
709 " pushfq\n"
710 SAVE_REGS_STRING
711 " movq %rsp, %rdi\n"
712 " call trampoline_handler\n"
713 /* Replace saved sp with true return address. */
714 " movq %rax, 152(%rsp)\n"
715 RESTORE_REGS_STRING
716 " popfq\n"
d6be29b8 717#else
c1c355ce
JP
718 " pushf\n"
719 SAVE_REGS_STRING
720 " movl %esp, %eax\n"
721 " call trampoline_handler\n"
722 /* Move flags to cs */
723 " movl 56(%esp), %edx\n"
724 " movl %edx, 52(%esp)\n"
725 /* Replace saved flags with true return address. */
726 " movl %eax, 56(%esp)\n"
727 RESTORE_REGS_STRING
728 " popf\n"
d6be29b8 729#endif
c1c355ce
JP
730 " ret\n"
731 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
732);
9326638c 733NOKPROBE_SYMBOL(kretprobe_trampoline);
87aaff2a 734STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
73649dab
RL
735
736/*
da07ab03 737 * Called from kretprobe_trampoline
73649dab 738 */
9326638c 739__visible __used void *trampoline_handler(struct pt_regs *regs)
73649dab 740{
62c27be0 741 struct kretprobe_instance *ri = NULL;
99219a3f 742 struct hlist_head *head, empty_rp;
b67bfe0d 743 struct hlist_node *tmp;
991a51d8 744 unsigned long flags, orig_ret_address = 0;
d6be29b8 745 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 746 kprobe_opcode_t *correct_ret_addr = NULL;
73649dab 747
99219a3f 748 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 749 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 750 /* fixup registers */
d6be29b8 751#ifdef CONFIG_X86_64
da07ab03 752 regs->cs = __KERNEL_CS;
d6be29b8
MH
753#else
754 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 755 regs->gs = 0;
d6be29b8 756#endif
da07ab03 757 regs->ip = trampoline_address;
8533bbe9 758 regs->orig_ax = ~0UL;
73649dab 759
ba8af12f
RL
760 /*
761 * It is possible to have multiple instances associated with a given
8533bbe9 762 * task either because multiple functions in the call path have
025dfdaf 763 * return probes installed on them, and/or more than one
ba8af12f
RL
764 * return probe was registered for a target function.
765 *
766 * We can handle this because:
8533bbe9 767 * - instances are always pushed into the head of the list
ba8af12f 768 * - when multiple return probes are registered for the same
8533bbe9
MH
769 * function, the (chronologically) first instance's ret_addr
770 * will be the real return address, and all the rest will
771 * point to kretprobe_trampoline.
ba8af12f 772 */
b6263178 773 hlist_for_each_entry(ri, head, hlist) {
62c27be0 774 if (ri->task != current)
ba8af12f 775 /* another task is sharing our hash bucket */
62c27be0 776 continue;
ba8af12f 777
737480a0
KS
778 orig_ret_address = (unsigned long)ri->ret_addr;
779
780 if (orig_ret_address != trampoline_address)
781 /*
782 * This is the real return address. Any other
783 * instances associated with this task are for
784 * other calls deeper on the call stack
785 */
786 break;
787 }
788
789 kretprobe_assert(ri, orig_ret_address, trampoline_address);
790
791 correct_ret_addr = ri->ret_addr;
b67bfe0d 792 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
737480a0
KS
793 if (ri->task != current)
794 /* another task is sharing our hash bucket */
795 continue;
796
797 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03 798 if (ri->rp && ri->rp->handler) {
b76834bc 799 __this_cpu_write(current_kprobe, &ri->rp->kp);
da07ab03 800 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737480a0 801 ri->ret_addr = correct_ret_addr;
ba8af12f 802 ri->rp->handler(ri, regs);
b76834bc 803 __this_cpu_write(current_kprobe, NULL);
da07ab03 804 }
ba8af12f 805
99219a3f 806 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
807
808 if (orig_ret_address != trampoline_address)
809 /*
810 * This is the real return address. Any other
811 * instances associated with this task are for
812 * other calls deeper on the call stack
813 */
814 break;
73649dab 815 }
ba8af12f 816
ef53d9c5 817 kretprobe_hash_unlock(current, &flags);
ba8af12f 818
b67bfe0d 819 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
99219a3f 820 hlist_del(&ri->hlist);
821 kfree(ri);
822 }
da07ab03 823 return (void *)orig_ret_address;
73649dab 824}
9326638c 825NOKPROBE_SYMBOL(trampoline_handler);
73649dab 826
1da177e4
LT
827/*
828 * Called after single-stepping. p->addr is the address of the
829 * instruction whose first byte has been replaced by the "int 3"
830 * instruction. To avoid the SMP problems that can occur when we
831 * temporarily put back the original opcode to single-step, we
832 * single-stepped a copy of the instruction. The address of this
833 * copy is p->ainsn.insn.
834 *
835 * This function prepares to return from the post-single-step
836 * interrupt. We have to fix up the stack as follows:
837 *
838 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 839 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
840 * it relative to the original instruction.
841 *
842 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 843 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
844 *
845 * 2) If the single-stepped instruction was a call, the return address
846 * that is atop the stack is the address following the copied instruction.
847 * We need to make it the address following the original instruction.
aa470140
MH
848 *
849 * If this is the first time we've single-stepped the instruction at
850 * this probepoint, and the instruction is boostable, boost it: add a
851 * jump instruction after the copied instruction, that jumps to the next
852 * instruction after the probepoint.
1da177e4 853 */
9326638c
MH
854static void resume_execution(struct kprobe *p, struct pt_regs *regs,
855 struct kprobe_ctlblk *kcb)
1da177e4 856{
8533bbe9
MH
857 unsigned long *tos = stack_addr(regs);
858 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
859 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
860 kprobe_opcode_t *insn = p->ainsn.insn;
861
567a9fd8
MH
862 /* Skip prefixes */
863 insn = skip_prefixes(insn);
1da177e4 864
053de044 865 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 866 switch (*insn) {
0b0122fa 867 case 0x9c: /* pushfl */
053de044 868 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 869 *tos |= kcb->kprobe_old_flags;
1da177e4 870 break;
0b0122fa
MH
871 case 0xc2: /* iret/ret/lret */
872 case 0xc3:
0b9e2cac 873 case 0xca:
0b0122fa
MH
874 case 0xcb:
875 case 0xcf:
876 case 0xea: /* jmp absolute -- ip is correct */
877 /* ip is already adjusted, no more changes required */
490154bc 878 p->ainsn.boostable = true;
0b0122fa
MH
879 goto no_change;
880 case 0xe8: /* call relative - Fix return addr */
8533bbe9 881 *tos = orig_ip + (*tos - copy_ip);
1da177e4 882 break;
e7b5e11e 883#ifdef CONFIG_X86_32
d6be29b8
MH
884 case 0x9a: /* call absolute -- same as call absolute, indirect */
885 *tos = orig_ip + (*tos - copy_ip);
886 goto no_change;
887#endif
1da177e4 888 case 0xff:
dc49e344 889 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
890 /*
891 * call absolute, indirect
892 * Fix return addr; ip is correct.
893 * But this is not boostable
894 */
895 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 896 goto no_change;
8533bbe9
MH
897 } else if (((insn[1] & 0x31) == 0x20) ||
898 ((insn[1] & 0x31) == 0x21)) {
899 /*
900 * jmp near and far, absolute indirect
901 * ip is correct. And this is boostable
902 */
490154bc 903 p->ainsn.boostable = true;
0b0122fa 904 goto no_change;
1da177e4 905 }
1da177e4
LT
906 default:
907 break;
908 }
909
8533bbe9 910 regs->ip += orig_ip - copy_ip;
65ea5b03 911
0b0122fa 912no_change:
1ecc798c 913 restore_btf();
1da177e4 914}
9326638c 915NOKPROBE_SYMBOL(resume_execution);
1da177e4 916
8533bbe9
MH
917/*
918 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 919 * remain disabled throughout this function.
8533bbe9 920 */
9326638c 921int kprobe_debug_handler(struct pt_regs *regs)
1da177e4 922{
e7a510f9
AM
923 struct kprobe *cur = kprobe_running();
924 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
925
926 if (!cur)
1da177e4
LT
927 return 0;
928
acb5b8a2
YL
929 resume_execution(cur, regs, kcb);
930 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 931
e7a510f9
AM
932 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
933 kcb->kprobe_status = KPROBE_HIT_SSDONE;
934 cur->post_handler(cur, regs, 0);
aa3d7e3d 935 }
1da177e4 936
8533bbe9 937 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
938 if (kcb->kprobe_status == KPROBE_REENTER) {
939 restore_previous_kprobe(kcb);
aa3d7e3d 940 goto out;
aa3d7e3d 941 }
e7a510f9 942 reset_current_kprobe();
aa3d7e3d 943out:
1da177e4
LT
944 preempt_enable_no_resched();
945
946 /*
65ea5b03 947 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
948 * will have TF set, in which case, continue the remaining processing
949 * of do_debug, as if this is not a probe hit.
950 */
053de044 951 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
952 return 0;
953
954 return 1;
955}
9326638c 956NOKPROBE_SYMBOL(kprobe_debug_handler);
1da177e4 957
9326638c 958int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 959{
e7a510f9
AM
960 struct kprobe *cur = kprobe_running();
961 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
962
6381c24c
MH
963 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
964 /* This must happen on single-stepping */
965 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
966 kcb->kprobe_status != KPROBE_REENTER);
c28f8966
PP
967 /*
968 * We are here because the instruction being single
969 * stepped caused a page fault. We reset the current
65ea5b03 970 * kprobe and the ip points back to the probe address
c28f8966
PP
971 * and allow the page fault handler to continue as a
972 * normal page fault.
973 */
65ea5b03 974 regs->ip = (unsigned long)cur->addr;
dcfc4724
MH
975 /*
976 * Trap flag (TF) has been set here because this fault
977 * happened where the single stepping will be done.
978 * So clear it by resetting the current kprobe:
979 */
980 regs->flags &= ~X86_EFLAGS_TF;
981
982 /*
983 * If the TF flag was set before the kprobe hit,
984 * don't touch it:
985 */
8533bbe9 986 regs->flags |= kcb->kprobe_old_flags;
dcfc4724 987
c28f8966
PP
988 if (kcb->kprobe_status == KPROBE_REENTER)
989 restore_previous_kprobe(kcb);
990 else
991 reset_current_kprobe();
1da177e4 992 preempt_enable_no_resched();
6381c24c
MH
993 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
994 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
c28f8966
PP
995 /*
996 * We increment the nmissed count for accounting,
8533bbe9 997 * we can also use npre/npostfault count for accounting
c28f8966
PP
998 * these specific fault cases.
999 */
1000 kprobes_inc_nmissed_count(cur);
1001
1002 /*
1003 * We come here because instructions in the pre/post
1004 * handler caused the page_fault, this could happen
1005 * if handler tries to access user space by
1006 * copy_from_user(), get_user() etc. Let the
1007 * user-specified handler try to fix it first.
1008 */
1009 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1010 return 1;
1011
1012 /*
1013 * In case the user-specified fault handler returned
1014 * zero, try to fix up.
1015 */
548acf19 1016 if (fixup_exception(regs, trapnr))
d6be29b8 1017 return 1;
6d48583b 1018
c28f8966 1019 /*
8533bbe9 1020 * fixup routine could not handle it,
c28f8966
PP
1021 * Let do_page_fault() fix it.
1022 */
1da177e4 1023 }
6381c24c 1024
1da177e4
LT
1025 return 0;
1026}
9326638c 1027NOKPROBE_SYMBOL(kprobe_fault_handler);
1da177e4
LT
1028
1029/*
1030 * Wrapper routine for handling exceptions.
1031 */
9326638c
MH
1032int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1033 void *data)
1da177e4 1034{
ade1af77 1035 struct die_args *args = data;
66ff2d06
AM
1036 int ret = NOTIFY_DONE;
1037
f39b6f0e 1038 if (args->regs && user_mode(args->regs))
2326c770 1039 return ret;
1040
6f6343f5 1041 if (val == DIE_GPF) {
b506a9d0
QB
1042 /*
1043 * To be potentially processing a kprobe fault and to
1044 * trust the result from kprobe_running(), we have
1045 * be non-preemptible.
1046 */
1047 if (!preemptible() && kprobe_running() &&
1da177e4 1048 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 1049 ret = NOTIFY_STOP;
1da177e4 1050 }
66ff2d06 1051 return ret;
1da177e4 1052}
9326638c 1053NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1da177e4 1054
9326638c 1055int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
1056{
1057 struct jprobe *jp = container_of(p, struct jprobe, kp);
1058 unsigned long addr;
e7a510f9 1059 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1060
e7a510f9 1061 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1062 kcb->jprobe_saved_sp = stack_addr(regs);
1063 addr = (unsigned long)(kcb->jprobe_saved_sp);
1064
1da177e4
LT
1065 /*
1066 * As Linus pointed out, gcc assumes that the callee
1067 * owns the argument space and could overwrite it, e.g.
1068 * tailcall optimization. So, to be absolutely safe
1069 * we also save and restore enough stack bytes to cover
1070 * the argument area.
9254139a
DV
1071 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1072 * raw stack chunk with redzones:
1da177e4 1073 */
9254139a 1074 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
053de044 1075 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1076 trace_hardirqs_off();
65ea5b03 1077 regs->ip = (unsigned long)(jp->entry);
237d28db
SRRH
1078
1079 /*
1080 * jprobes use jprobe_return() which skips the normal return
1081 * path of the function, and this messes up the accounting of the
1082 * function graph tracer to get messed up.
1083 *
1084 * Pause function graph tracing while performing the jprobe function.
1085 */
1086 pause_graph_tracing();
1da177e4
LT
1087 return 1;
1088}
9326638c 1089NOKPROBE_SYMBOL(setjmp_pre_handler);
1da177e4 1090
9326638c 1091void jprobe_return(void)
1da177e4 1092{
e7a510f9
AM
1093 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1094
9f7d416c
DV
1095 /* Unpoison stack redzones in the frames we are going to jump over. */
1096 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1097
d6be29b8
MH
1098 asm volatile (
1099#ifdef CONFIG_X86_64
1100 " xchg %%rbx,%%rsp \n"
1101#else
1102 " xchgl %%ebx,%%esp \n"
1103#endif
1104 " int3 \n"
1105 " .globl jprobe_return_end\n"
1106 " jprobe_return_end: \n"
1107 " nop \n"::"b"
1108 (kcb->jprobe_saved_sp):"memory");
1da177e4 1109}
9326638c
MH
1110NOKPROBE_SYMBOL(jprobe_return);
1111NOKPROBE_SYMBOL(jprobe_return_end);
1da177e4 1112
9326638c 1113int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1114{
e7a510f9 1115 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1116 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4 1117 struct jprobe *jp = container_of(p, struct jprobe, kp);
237d28db 1118 void *saved_sp = kcb->jprobe_saved_sp;
1da177e4 1119
d6be29b8
MH
1120 if ((addr > (u8 *) jprobe_return) &&
1121 (addr < (u8 *) jprobe_return_end)) {
237d28db 1122 if (stack_addr(regs) != saved_sp) {
29b6cd79 1123 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1124 printk(KERN_ERR
1125 "current sp %p does not match saved sp %p\n",
237d28db 1126 stack_addr(regs), saved_sp);
d6be29b8 1127 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
57da8b96 1128 show_regs(saved_regs);
d6be29b8 1129 printk(KERN_ERR "Current registers\n");
57da8b96 1130 show_regs(regs);
1da177e4
LT
1131 BUG();
1132 }
237d28db
SRRH
1133 /* It's OK to start function graph tracing again */
1134 unpause_graph_tracing();
e7a510f9 1135 *regs = kcb->jprobe_saved_regs;
9254139a 1136 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
d217d545 1137 preempt_enable_no_resched();
1da177e4
LT
1138 return 1;
1139 }
1140 return 0;
1141}
9326638c 1142NOKPROBE_SYMBOL(longjmp_break_handler);
ba8af12f 1143
be8f2743
MH
1144bool arch_within_kprobe_blacklist(unsigned long addr)
1145{
1146 return (addr >= (unsigned long)__kprobes_text_start &&
1147 addr < (unsigned long)__kprobes_text_end) ||
1148 (addr >= (unsigned long)__entry_text_start &&
1149 addr < (unsigned long)__entry_text_end);
1150}
1151
6772926b 1152int __init arch_init_kprobes(void)
ba8af12f 1153{
a7b0133e 1154 return 0;
ba8af12f 1155}
bf8f6e5b 1156
7ec8a97a 1157int arch_trampoline_kprobe(struct kprobe *p)
bf8f6e5b 1158{
bf8f6e5b
AM
1159 return 0;
1160}