]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/kprobes/core.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / kprobes / core.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
3f33ab1c 33 * Added function return probes functionality
d6be29b8 34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
3f33ab1c 35 * kprobe-booster and kretprobe-booster for i386.
da07ab03 36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
3f33ab1c 37 * and kretprobe-booster for x86-64
d6be29b8 38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
3f33ab1c
MH
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4 41 */
1da177e4
LT
42#include <linux/kprobes.h>
43#include <linux/ptrace.h>
1da177e4
LT
44#include <linux/string.h>
45#include <linux/slab.h>
b506a9d0 46#include <linux/hardirq.h>
1da177e4 47#include <linux/preempt.h>
b17b0153 48#include <linux/sched/debug.h>
744c193e 49#include <linux/extable.h>
1eeb66a1 50#include <linux/kdebug.h>
b46b3d70 51#include <linux/kallsyms.h>
c0f7ac3a 52#include <linux/ftrace.h>
87aaff2a 53#include <linux/frame.h>
9f7d416c 54#include <linux/kasan.h>
9ec4b1f3 55
35de5b06 56#include <asm/text-patching.h>
8533bbe9
MH
57#include <asm/cacheflush.h>
58#include <asm/desc.h>
1da177e4 59#include <asm/pgtable.h>
7c0f6ba6 60#include <linux/uaccess.h>
19d36ccd 61#include <asm/alternative.h>
b46b3d70 62#include <asm/insn.h>
62edab90 63#include <asm/debugreg.h>
1da177e4 64
f684199f 65#include "common.h"
3f33ab1c 66
1da177e4
LT
67void jprobe_return_end(void);
68
e7a510f9
AM
69DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
70DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 71
98272ed0 72#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
8533bbe9
MH
73
74#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
75 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
76 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
77 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
78 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
79 << (row % 32))
80 /*
81 * Undefined/reserved opcodes, conditional jump, Opcode Extension
82 * Groups, and some special opcodes can not boost.
7115e3fc
LT
83 * This is non-const and volatile to keep gcc from statically
84 * optimizing it out, as variable_test_bit makes gcc think only
f684199f 85 * *(unsigned long*) is used.
8533bbe9 86 */
7115e3fc 87static volatile u32 twobyte_is_boostable[256 / 32] = {
8533bbe9
MH
88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
89 /* ---------------------------------------------- */
90 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
b7e37567 91 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
8533bbe9
MH
92 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
93 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
97 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
98 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
102 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
103 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
104 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
105 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
106 /* ----------------------------------------------- */
107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
108};
8533bbe9
MH
109#undef W
110
f438d914
MH
111struct kretprobe_blackpoint kretprobe_blacklist[] = {
112 {"__switch_to", }, /* This function switches only current task, but
113 doesn't switch kernel stack.*/
114 {NULL, NULL} /* Terminator */
115};
3f33ab1c 116
f438d914
MH
117const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
118
9326638c
MH
119static nokprobe_inline void
120__synthesize_relative_insn(void *from, void *to, u8 op)
aa470140 121{
c0f7ac3a
MH
122 struct __arch_relative_insn {
123 u8 op;
aa470140 124 s32 raddr;
f684199f 125 } __packed *insn;
c0f7ac3a
MH
126
127 insn = (struct __arch_relative_insn *)from;
128 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
129 insn->op = op;
130}
131
132/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
9326638c 133void synthesize_reljump(void *from, void *to)
c0f7ac3a
MH
134{
135 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
aa470140 136}
9326638c 137NOKPROBE_SYMBOL(synthesize_reljump);
aa470140 138
3f33ab1c 139/* Insert a call instruction at address 'from', which calls address 'to'.*/
9326638c 140void synthesize_relcall(void *from, void *to)
3f33ab1c
MH
141{
142 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
143}
9326638c 144NOKPROBE_SYMBOL(synthesize_relcall);
3f33ab1c 145
9930927f 146/*
567a9fd8 147 * Skip the prefixes of the instruction.
9930927f 148 */
9326638c 149static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
9930927f 150{
567a9fd8
MH
151 insn_attr_t attr;
152
153 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
154 while (inat_is_legacy_prefix(attr)) {
155 insn++;
156 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
157 }
9930927f 158#ifdef CONFIG_X86_64
567a9fd8
MH
159 if (inat_is_rex_prefix(attr))
160 insn++;
9930927f 161#endif
567a9fd8 162 return insn;
9930927f 163}
9326638c 164NOKPROBE_SYMBOL(skip_prefixes);
9930927f 165
aa470140 166/*
d6be29b8
MH
167 * Returns non-zero if opcode is boostable.
168 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 169 */
75013fb1 170int can_boost(kprobe_opcode_t *opcodes, void *addr)
aa470140 171{
aa470140
MH
172 kprobe_opcode_t opcode;
173 kprobe_opcode_t *orig_opcodes = opcodes;
174
75013fb1 175 if (search_exception_tables((unsigned long)addr))
30390880
MH
176 return 0; /* Page fault may occur on this address. */
177
aa470140
MH
178retry:
179 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
180 return 0;
181 opcode = *(opcodes++);
182
183 /* 2nd-byte opcode */
184 if (opcode == 0x0f) {
185 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
186 return 0;
8533bbe9
MH
187 return test_bit(*opcodes,
188 (unsigned long *)twobyte_is_boostable);
aa470140
MH
189 }
190
191 switch (opcode & 0xf0) {
d6be29b8 192#ifdef CONFIG_X86_64
aa470140
MH
193 case 0x40:
194 goto retry; /* REX prefix is boostable */
d6be29b8 195#endif
aa470140
MH
196 case 0x60:
197 if (0x63 < opcode && opcode < 0x67)
198 goto retry; /* prefixes */
199 /* can't boost Address-size override and bound */
200 return (opcode != 0x62 && opcode != 0x67);
201 case 0x70:
202 return 0; /* can't boost conditional jump */
203 case 0xc0:
204 /* can't boost software-interruptions */
205 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
206 case 0xd0:
207 /* can boost AA* and XLAT */
208 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
209 case 0xe0:
210 /* can boost in/out and absolute jmps */
211 return ((opcode & 0x04) || opcode == 0xea);
212 case 0xf0:
213 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
214 goto retry; /* lock/rep(ne) prefix */
215 /* clear and set flags are boostable */
216 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
217 default:
218 /* segment override prefixes are boostable */
219 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
220 goto retry; /* prefixes */
221 /* CS override prefix and call are not boostable */
222 return (opcode != 0x2e && opcode != 0x9a);
223 }
224}
225
3f33ab1c
MH
226static unsigned long
227__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
b46b3d70
MH
228{
229 struct kprobe *kp;
650b7b23 230 unsigned long faddr;
86b4ce31 231
b46b3d70 232 kp = get_kprobe((void *)addr);
650b7b23 233 faddr = ftrace_location(addr);
2a6730c8
PM
234 /*
235 * Addresses inside the ftrace location are refused by
236 * arch_check_ftrace_location(). Something went terribly wrong
237 * if such an address is checked here.
238 */
239 if (WARN_ON(faddr && faddr != addr))
240 return 0UL;
650b7b23
PM
241 /*
242 * Use the current code if it is not modified by Kprobe
243 * and it cannot be modified by ftrace.
244 */
245 if (!kp && !faddr)
86b4ce31 246 return addr;
b46b3d70
MH
247
248 /*
650b7b23
PM
249 * Basically, kp->ainsn.insn has an original instruction.
250 * However, RIP-relative instruction can not do single-stepping
251 * at different place, __copy_instruction() tweaks the displacement of
252 * that instruction. In that case, we can't recover the instruction
253 * from the kp->ainsn.insn.
254 *
255 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
256 * of the first byte of the probed instruction, which is overwritten
257 * by int3. And the instruction at kp->addr is not modified by kprobes
258 * except for the first byte, we can recover the original instruction
259 * from it and kp->opcode.
b46b3d70 260 *
650b7b23
PM
261 * In case of Kprobes using ftrace, we do not have a copy of
262 * the original instruction. In fact, the ftrace location might
263 * be modified at anytime and even could be in an inconsistent state.
264 * Fortunately, we know that the original code is the ideal 5-byte
265 * long NOP.
b46b3d70 266 */
650b7b23
PM
267 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
268 if (faddr)
269 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
270 else
271 buf[0] = kp->opcode;
86b4ce31
MH
272 return (unsigned long)buf;
273}
274
86b4ce31
MH
275/*
276 * Recover the probed instruction at addr for further analysis.
277 * Caller must lock kprobes by kprobe_mutex, or disable preemption
278 * for preventing to release referencing kprobes.
2a6730c8 279 * Returns zero if the instruction can not get recovered.
86b4ce31 280 */
3f33ab1c 281unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
86b4ce31
MH
282{
283 unsigned long __addr;
284
285 __addr = __recover_optprobed_insn(buf, addr);
286 if (__addr != addr)
287 return __addr;
288
289 return __recover_probed_insn(buf, addr);
b46b3d70
MH
290}
291
b46b3d70 292/* Check if paddr is at an instruction boundary */
7ec8a97a 293static int can_probe(unsigned long paddr)
b46b3d70 294{
86b4ce31 295 unsigned long addr, __addr, offset = 0;
b46b3d70
MH
296 struct insn insn;
297 kprobe_opcode_t buf[MAX_INSN_SIZE];
298
6abded71 299 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
b46b3d70
MH
300 return 0;
301
302 /* Decode instructions */
303 addr = paddr - offset;
304 while (addr < paddr) {
b46b3d70
MH
305 /*
306 * Check if the instruction has been modified by another
307 * kprobe, in which case we replace the breakpoint by the
308 * original instruction in our buffer.
86b4ce31
MH
309 * Also, jump optimization will change the breakpoint to
310 * relative-jump. Since the relative-jump itself is
311 * normally used, we just go through if there is no kprobe.
b46b3d70 312 */
86b4ce31 313 __addr = recover_probed_instruction(buf, addr);
2a6730c8
PM
314 if (!__addr)
315 return 0;
6ba48ff4 316 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
b46b3d70 317 insn_get_length(&insn);
86b4ce31
MH
318
319 /*
320 * Another debugging subsystem might insert this breakpoint.
321 * In that case, we can't recover it.
322 */
323 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
324 return 0;
b46b3d70
MH
325 addr += insn.length;
326 }
327
328 return (addr == paddr);
329}
330
1da177e4 331/*
d6be29b8 332 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 333 */
7ec8a97a 334static int is_IF_modifier(kprobe_opcode_t *insn)
1da177e4 335{
567a9fd8
MH
336 /* Skip prefixes */
337 insn = skip_prefixes(insn);
338
1da177e4
LT
339 switch (*insn) {
340 case 0xfa: /* cli */
341 case 0xfb: /* sti */
342 case 0xcf: /* iret/iretd */
343 case 0x9d: /* popf/popfd */
344 return 1;
345 }
9930927f 346
1da177e4
LT
347 return 0;
348}
349
350/*
c0f7ac3a
MH
351 * Copy an instruction and adjust the displacement if the instruction
352 * uses the %rip-relative addressing mode.
aa470140 353 * If it does, Return the address of the 32-bit displacement word.
1da177e4 354 * If not, return null.
31f80e45 355 * Only applicable to 64-bit x86.
1da177e4 356 */
7ec8a97a 357int __copy_instruction(u8 *dest, u8 *src)
1da177e4 358{
89ae465b 359 struct insn insn;
c0f7ac3a 360 kprobe_opcode_t buf[MAX_INSN_SIZE];
c80e5c0c 361 int length;
6ba48ff4
DH
362 unsigned long recovered_insn =
363 recover_probed_instruction(buf, (unsigned long)src);
86b4ce31 364
2a6730c8
PM
365 if (!recovered_insn)
366 return 0;
6ba48ff4 367 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
c0f7ac3a 368 insn_get_length(&insn);
c80e5c0c
ES
369 length = insn.length;
370
86b4ce31 371 /* Another subsystem puts a breakpoint, failed to recover */
46484688 372 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
86b4ce31 373 return 0;
c80e5c0c 374 memcpy(dest, insn.kaddr, length);
c0f7ac3a
MH
375
376#ifdef CONFIG_X86_64
89ae465b
MH
377 if (insn_rip_relative(&insn)) {
378 s64 newdisp;
379 u8 *disp;
c80e5c0c 380 kernel_insn_init(&insn, dest, length);
89ae465b
MH
381 insn_get_displacement(&insn);
382 /*
383 * The copied instruction uses the %rip-relative addressing
384 * mode. Adjust the displacement for the difference between
385 * the original location of this instruction and the location
386 * of the copy that will actually be run. The tricky bit here
387 * is making sure that the sign extension happens correctly in
388 * this calculation, since we need a signed 32-bit result to
389 * be sign-extended to 64 bits when it's added to the %rip
390 * value and yield the same 64-bit result that the sign-
391 * extension of the original signed 32-bit displacement would
392 * have given.
393 */
46484688 394 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
8101376d
MH
395 if ((s64) (s32) newdisp != newdisp) {
396 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
397 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
398 return 0;
399 }
c0f7ac3a 400 disp = (u8 *) dest + insn_offset_displacement(&insn);
89ae465b 401 *(s32 *) disp = (s32) newdisp;
1da177e4 402 }
d6be29b8 403#endif
c80e5c0c 404 return length;
31f80e45 405}
1da177e4 406
7ec8a97a 407static int arch_copy_kprobe(struct kprobe *p)
1da177e4 408{
003002e0
MH
409 int ret;
410
46484688 411 /* Copy an instruction with recovering if other optprobe modifies it.*/
003002e0
MH
412 ret = __copy_instruction(p->ainsn.insn, p->addr);
413 if (!ret)
414 return -EINVAL;
46484688 415
c0f7ac3a 416 /*
46484688
MH
417 * __copy_instruction can modify the displacement of the instruction,
418 * but it doesn't affect boostable check.
c0f7ac3a 419 */
75013fb1 420 if (can_boost(p->ainsn.insn, p->addr))
aa470140 421 p->ainsn.boostable = 0;
8533bbe9 422 else
aa470140 423 p->ainsn.boostable = -1;
8533bbe9 424
9a556ab9
MH
425 /* Check whether the instruction modifies Interrupt Flag or not */
426 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
427
46484688
MH
428 /* Also, displacement change doesn't affect the first byte */
429 p->opcode = p->ainsn.insn[0];
003002e0
MH
430
431 return 0;
1da177e4
LT
432}
433
7ec8a97a 434int arch_prepare_kprobe(struct kprobe *p)
8533bbe9 435{
4554dbcb
MH
436 if (alternatives_text_reserved(p->addr, p->addr))
437 return -EINVAL;
438
b46b3d70
MH
439 if (!can_probe((unsigned long)p->addr))
440 return -EILSEQ;
8533bbe9
MH
441 /* insn: must be on special executable page on x86. */
442 p->ainsn.insn = get_insn_slot();
443 if (!p->ainsn.insn)
444 return -ENOMEM;
003002e0
MH
445
446 return arch_copy_kprobe(p);
8533bbe9
MH
447}
448
7ec8a97a 449void arch_arm_kprobe(struct kprobe *p)
1da177e4 450{
19d36ccd 451 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
452}
453
7ec8a97a 454void arch_disarm_kprobe(struct kprobe *p)
1da177e4 455{
19d36ccd 456 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
457}
458
7ec8a97a 459void arch_remove_kprobe(struct kprobe *p)
7e1048b1 460{
12941560
MH
461 if (p->ainsn.insn) {
462 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
463 p->ainsn.insn = NULL;
464 }
1da177e4
LT
465}
466
9326638c
MH
467static nokprobe_inline void
468save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 469{
e7a510f9
AM
470 kcb->prev_kprobe.kp = kprobe_running();
471 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
472 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
473 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
474}
475
9326638c
MH
476static nokprobe_inline void
477restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 478{
b76834bc 479 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
e7a510f9 480 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
481 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
482 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
483}
484
9326638c
MH
485static nokprobe_inline void
486set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
487 struct kprobe_ctlblk *kcb)
aa3d7e3d 488{
b76834bc 489 __this_cpu_write(current_kprobe, p);
8533bbe9 490 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 491 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
9a556ab9 492 if (p->ainsn.if_modifier)
053de044 493 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
494}
495
9326638c 496static nokprobe_inline void clear_btf(void)
1ecc798c 497{
ea8e61b7
PZ
498 if (test_thread_flag(TIF_BLOCKSTEP)) {
499 unsigned long debugctl = get_debugctlmsr();
500
501 debugctl &= ~DEBUGCTLMSR_BTF;
502 update_debugctlmsr(debugctl);
503 }
1ecc798c
RM
504}
505
9326638c 506static nokprobe_inline void restore_btf(void)
1ecc798c 507{
ea8e61b7
PZ
508 if (test_thread_flag(TIF_BLOCKSTEP)) {
509 unsigned long debugctl = get_debugctlmsr();
510
511 debugctl |= DEBUGCTLMSR_BTF;
512 update_debugctlmsr(debugctl);
513 }
1ecc798c
RM
514}
515
9326638c 516void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
73649dab 517{
8533bbe9 518 unsigned long *sara = stack_addr(regs);
ba8af12f 519
4c4308cb 520 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 521
4c4308cb
CH
522 /* Replace the return addr with trampoline addr */
523 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 524}
9326638c 525NOKPROBE_SYMBOL(arch_prepare_kretprobe);
f315decb 526
9326638c
MH
527static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
528 struct kprobe_ctlblk *kcb, int reenter)
f315decb 529{
c0f7ac3a
MH
530 if (setup_detour_execution(p, regs, reenter))
531 return;
532
615d0ebb 533#if !defined(CONFIG_PREEMPT)
f315decb
AS
534 if (p->ainsn.boostable == 1 && !p->post_handler) {
535 /* Boost up -- we can execute copied instructions directly */
0f94eb63
MH
536 if (!reenter)
537 reset_current_kprobe();
538 /*
539 * Reentering boosted probe doesn't reset current_kprobe,
540 * nor set current_kprobe, because it doesn't use single
541 * stepping.
542 */
f315decb
AS
543 regs->ip = (unsigned long)p->ainsn.insn;
544 preempt_enable_no_resched();
545 return;
546 }
547#endif
0f94eb63
MH
548 if (reenter) {
549 save_previous_kprobe(kcb);
550 set_current_kprobe(p, regs, kcb);
551 kcb->kprobe_status = KPROBE_REENTER;
552 } else
553 kcb->kprobe_status = KPROBE_HIT_SS;
554 /* Prepare real single stepping */
555 clear_btf();
556 regs->flags |= X86_EFLAGS_TF;
557 regs->flags &= ~X86_EFLAGS_IF;
558 /* single step inline if the instruction is an int3 */
559 if (p->opcode == BREAKPOINT_INSTRUCTION)
560 regs->ip = (unsigned long)p->addr;
561 else
562 regs->ip = (unsigned long)p->ainsn.insn;
f315decb 563}
9326638c 564NOKPROBE_SYMBOL(setup_singlestep);
f315decb 565
40102d4a
HH
566/*
567 * We have reentered the kprobe_handler(), since another probe was hit while
568 * within the handler. We save the original kprobes variables and just single
569 * step on the instruction of the new probe without calling any user handlers.
570 */
9326638c
MH
571static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
572 struct kprobe_ctlblk *kcb)
40102d4a 573{
f315decb
AS
574 switch (kcb->kprobe_status) {
575 case KPROBE_HIT_SSDONE:
f315decb 576 case KPROBE_HIT_ACTIVE:
6a5022a5 577 case KPROBE_HIT_SS:
fb8830e7 578 kprobes_inc_nmissed_count(p);
0f94eb63 579 setup_singlestep(p, regs, kcb, 1);
f315decb 580 break;
6a5022a5 581 case KPROBE_REENTER:
e9afe9e1
MH
582 /* A probe has been hit in the codepath leading up to, or just
583 * after, single-stepping of a probed instruction. This entire
584 * codepath should strictly reside in .kprobes.text section.
585 * Raise a BUG or we'll continue in an endless reentering loop
586 * and eventually a stack overflow.
587 */
588 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
589 p->addr);
590 dump_kprobe(p);
591 BUG();
f315decb
AS
592 default:
593 /* impossible cases */
594 WARN_ON(1);
fb8830e7 595 return 0;
59e87cdc 596 }
f315decb 597
59e87cdc 598 return 1;
40102d4a 599}
9326638c 600NOKPROBE_SYMBOL(reenter_kprobe);
73649dab 601
8533bbe9
MH
602/*
603 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
af901ca1 604 * remain disabled throughout this function.
8533bbe9 605 */
9326638c 606int kprobe_int3_handler(struct pt_regs *regs)
1da177e4 607{
8533bbe9 608 kprobe_opcode_t *addr;
f315decb 609 struct kprobe *p;
d217d545
AM
610 struct kprobe_ctlblk *kcb;
611
f39b6f0e 612 if (user_mode(regs))
0cdd192c
AL
613 return 0;
614
8533bbe9 615 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
d217d545
AM
616 /*
617 * We don't want to be preempted for the entire
f315decb
AS
618 * duration of kprobe processing. We conditionally
619 * re-enable preemption at the end of this function,
620 * and also in reenter_kprobe() and setup_singlestep().
d217d545
AM
621 */
622 preempt_disable();
1da177e4 623
f315decb 624 kcb = get_kprobe_ctlblk();
b9760156 625 p = get_kprobe(addr);
f315decb 626
b9760156 627 if (p) {
b9760156 628 if (kprobe_running()) {
f315decb
AS
629 if (reenter_kprobe(p, regs, kcb))
630 return 1;
1da177e4 631 } else {
b9760156
HH
632 set_current_kprobe(p, regs, kcb);
633 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
f315decb 634
1da177e4 635 /*
f315decb
AS
636 * If we have no pre-handler or it returned 0, we
637 * continue with normal processing. If we have a
638 * pre-handler and it returned non-zero, it prepped
639 * for calling the break_handler below on re-entry
640 * for jprobe processing, so get out doing nothing
641 * more here.
1da177e4 642 */
f315decb 643 if (!p->pre_handler || !p->pre_handler(p, regs))
0f94eb63 644 setup_singlestep(p, regs, kcb, 0);
f315decb 645 return 1;
b9760156 646 }
829e9245
MH
647 } else if (*addr != BREAKPOINT_INSTRUCTION) {
648 /*
649 * The breakpoint instruction was removed right
650 * after we hit it. Another cpu has removed
651 * either a probepoint or a debugger breakpoint
652 * at this address. In either case, no further
653 * handling of this interrupt is appropriate.
654 * Back up over the (now missing) int3 and run
655 * the original instruction.
656 */
657 regs->ip = (unsigned long)addr;
658 preempt_enable_no_resched();
659 return 1;
f315decb 660 } else if (kprobe_running()) {
b76834bc 661 p = __this_cpu_read(current_kprobe);
f315decb 662 if (p->break_handler && p->break_handler(p, regs)) {
e7dbfe34
MH
663 if (!skip_singlestep(p, regs, kcb))
664 setup_singlestep(p, regs, kcb, 0);
f315decb 665 return 1;
1da177e4 666 }
f315decb 667 } /* else: not a kprobe fault; let the kernel handle it */
1da177e4 668
d217d545 669 preempt_enable_no_resched();
f315decb 670 return 0;
1da177e4 671}
9326638c 672NOKPROBE_SYMBOL(kprobe_int3_handler);
1da177e4 673
73649dab 674/*
da07ab03
MH
675 * When a retprobed function returns, this code saves registers and
676 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 677 */
c1c355ce
JP
678asm(
679 ".global kretprobe_trampoline\n"
680 ".type kretprobe_trampoline, @function\n"
681 "kretprobe_trampoline:\n"
d6be29b8 682#ifdef CONFIG_X86_64
c1c355ce
JP
683 /* We don't bother saving the ss register */
684 " pushq %rsp\n"
685 " pushfq\n"
686 SAVE_REGS_STRING
687 " movq %rsp, %rdi\n"
688 " call trampoline_handler\n"
689 /* Replace saved sp with true return address. */
690 " movq %rax, 152(%rsp)\n"
691 RESTORE_REGS_STRING
692 " popfq\n"
d6be29b8 693#else
c1c355ce
JP
694 " pushf\n"
695 SAVE_REGS_STRING
696 " movl %esp, %eax\n"
697 " call trampoline_handler\n"
698 /* Move flags to cs */
699 " movl 56(%esp), %edx\n"
700 " movl %edx, 52(%esp)\n"
701 /* Replace saved flags with true return address. */
702 " movl %eax, 56(%esp)\n"
703 RESTORE_REGS_STRING
704 " popf\n"
d6be29b8 705#endif
c1c355ce
JP
706 " ret\n"
707 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
708);
9326638c 709NOKPROBE_SYMBOL(kretprobe_trampoline);
87aaff2a 710STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
73649dab
RL
711
712/*
da07ab03 713 * Called from kretprobe_trampoline
73649dab 714 */
9326638c 715__visible __used void *trampoline_handler(struct pt_regs *regs)
73649dab 716{
62c27be0 717 struct kretprobe_instance *ri = NULL;
99219a3f 718 struct hlist_head *head, empty_rp;
b67bfe0d 719 struct hlist_node *tmp;
991a51d8 720 unsigned long flags, orig_ret_address = 0;
d6be29b8 721 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
737480a0 722 kprobe_opcode_t *correct_ret_addr = NULL;
73649dab 723
99219a3f 724 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 725 kretprobe_hash_lock(current, &head, &flags);
8533bbe9 726 /* fixup registers */
d6be29b8 727#ifdef CONFIG_X86_64
da07ab03 728 regs->cs = __KERNEL_CS;
d6be29b8
MH
729#else
730 regs->cs = __KERNEL_CS | get_kernel_rpl();
fee039a1 731 regs->gs = 0;
d6be29b8 732#endif
da07ab03 733 regs->ip = trampoline_address;
8533bbe9 734 regs->orig_ax = ~0UL;
73649dab 735
ba8af12f
RL
736 /*
737 * It is possible to have multiple instances associated with a given
8533bbe9 738 * task either because multiple functions in the call path have
025dfdaf 739 * return probes installed on them, and/or more than one
ba8af12f
RL
740 * return probe was registered for a target function.
741 *
742 * We can handle this because:
8533bbe9 743 * - instances are always pushed into the head of the list
ba8af12f 744 * - when multiple return probes are registered for the same
8533bbe9
MH
745 * function, the (chronologically) first instance's ret_addr
746 * will be the real return address, and all the rest will
747 * point to kretprobe_trampoline.
ba8af12f 748 */
b6263178 749 hlist_for_each_entry(ri, head, hlist) {
62c27be0 750 if (ri->task != current)
ba8af12f 751 /* another task is sharing our hash bucket */
62c27be0 752 continue;
ba8af12f 753
737480a0
KS
754 orig_ret_address = (unsigned long)ri->ret_addr;
755
756 if (orig_ret_address != trampoline_address)
757 /*
758 * This is the real return address. Any other
759 * instances associated with this task are for
760 * other calls deeper on the call stack
761 */
762 break;
763 }
764
765 kretprobe_assert(ri, orig_ret_address, trampoline_address);
766
767 correct_ret_addr = ri->ret_addr;
b67bfe0d 768 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
737480a0
KS
769 if (ri->task != current)
770 /* another task is sharing our hash bucket */
771 continue;
772
773 orig_ret_address = (unsigned long)ri->ret_addr;
da07ab03 774 if (ri->rp && ri->rp->handler) {
b76834bc 775 __this_cpu_write(current_kprobe, &ri->rp->kp);
da07ab03 776 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
737480a0 777 ri->ret_addr = correct_ret_addr;
ba8af12f 778 ri->rp->handler(ri, regs);
b76834bc 779 __this_cpu_write(current_kprobe, NULL);
da07ab03 780 }
ba8af12f 781
99219a3f 782 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
783
784 if (orig_ret_address != trampoline_address)
785 /*
786 * This is the real return address. Any other
787 * instances associated with this task are for
788 * other calls deeper on the call stack
789 */
790 break;
73649dab 791 }
ba8af12f 792
ef53d9c5 793 kretprobe_hash_unlock(current, &flags);
ba8af12f 794
b67bfe0d 795 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
99219a3f 796 hlist_del(&ri->hlist);
797 kfree(ri);
798 }
da07ab03 799 return (void *)orig_ret_address;
73649dab 800}
9326638c 801NOKPROBE_SYMBOL(trampoline_handler);
73649dab 802
1da177e4
LT
803/*
804 * Called after single-stepping. p->addr is the address of the
805 * instruction whose first byte has been replaced by the "int 3"
806 * instruction. To avoid the SMP problems that can occur when we
807 * temporarily put back the original opcode to single-step, we
808 * single-stepped a copy of the instruction. The address of this
809 * copy is p->ainsn.insn.
810 *
811 * This function prepares to return from the post-single-step
812 * interrupt. We have to fix up the stack as follows:
813 *
814 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 815 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
816 * it relative to the original instruction.
817 *
818 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 819 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
820 *
821 * 2) If the single-stepped instruction was a call, the return address
822 * that is atop the stack is the address following the copied instruction.
823 * We need to make it the address following the original instruction.
aa470140
MH
824 *
825 * If this is the first time we've single-stepped the instruction at
826 * this probepoint, and the instruction is boostable, boost it: add a
827 * jump instruction after the copied instruction, that jumps to the next
828 * instruction after the probepoint.
1da177e4 829 */
9326638c
MH
830static void resume_execution(struct kprobe *p, struct pt_regs *regs,
831 struct kprobe_ctlblk *kcb)
1da177e4 832{
8533bbe9
MH
833 unsigned long *tos = stack_addr(regs);
834 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
835 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
836 kprobe_opcode_t *insn = p->ainsn.insn;
837
567a9fd8
MH
838 /* Skip prefixes */
839 insn = skip_prefixes(insn);
1da177e4 840
053de044 841 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 842 switch (*insn) {
0b0122fa 843 case 0x9c: /* pushfl */
053de044 844 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 845 *tos |= kcb->kprobe_old_flags;
1da177e4 846 break;
0b0122fa
MH
847 case 0xc2: /* iret/ret/lret */
848 case 0xc3:
0b9e2cac 849 case 0xca:
0b0122fa
MH
850 case 0xcb:
851 case 0xcf:
852 case 0xea: /* jmp absolute -- ip is correct */
853 /* ip is already adjusted, no more changes required */
aa470140 854 p->ainsn.boostable = 1;
0b0122fa
MH
855 goto no_change;
856 case 0xe8: /* call relative - Fix return addr */
8533bbe9 857 *tos = orig_ip + (*tos - copy_ip);
1da177e4 858 break;
e7b5e11e 859#ifdef CONFIG_X86_32
d6be29b8
MH
860 case 0x9a: /* call absolute -- same as call absolute, indirect */
861 *tos = orig_ip + (*tos - copy_ip);
862 goto no_change;
863#endif
1da177e4 864 case 0xff:
dc49e344 865 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
866 /*
867 * call absolute, indirect
868 * Fix return addr; ip is correct.
869 * But this is not boostable
870 */
871 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 872 goto no_change;
8533bbe9
MH
873 } else if (((insn[1] & 0x31) == 0x20) ||
874 ((insn[1] & 0x31) == 0x21)) {
875 /*
876 * jmp near and far, absolute indirect
877 * ip is correct. And this is boostable
878 */
aa470140 879 p->ainsn.boostable = 1;
0b0122fa 880 goto no_change;
1da177e4 881 }
1da177e4
LT
882 default:
883 break;
884 }
885
aa470140 886 if (p->ainsn.boostable == 0) {
8533bbe9
MH
887 if ((regs->ip > copy_ip) &&
888 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
889 /*
890 * These instructions can be executed directly if it
891 * jumps back to correct address.
892 */
c0f7ac3a
MH
893 synthesize_reljump((void *)regs->ip,
894 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
895 p->ainsn.boostable = 1;
896 } else {
897 p->ainsn.boostable = -1;
898 }
899 }
900
8533bbe9 901 regs->ip += orig_ip - copy_ip;
65ea5b03 902
0b0122fa 903no_change:
1ecc798c 904 restore_btf();
1da177e4 905}
9326638c 906NOKPROBE_SYMBOL(resume_execution);
1da177e4 907
8533bbe9
MH
908/*
909 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
af901ca1 910 * remain disabled throughout this function.
8533bbe9 911 */
9326638c 912int kprobe_debug_handler(struct pt_regs *regs)
1da177e4 913{
e7a510f9
AM
914 struct kprobe *cur = kprobe_running();
915 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
916
917 if (!cur)
1da177e4
LT
918 return 0;
919
acb5b8a2
YL
920 resume_execution(cur, regs, kcb);
921 regs->flags |= kcb->kprobe_saved_flags;
acb5b8a2 922
e7a510f9
AM
923 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
924 kcb->kprobe_status = KPROBE_HIT_SSDONE;
925 cur->post_handler(cur, regs, 0);
aa3d7e3d 926 }
1da177e4 927
8533bbe9 928 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
929 if (kcb->kprobe_status == KPROBE_REENTER) {
930 restore_previous_kprobe(kcb);
aa3d7e3d 931 goto out;
aa3d7e3d 932 }
e7a510f9 933 reset_current_kprobe();
aa3d7e3d 934out:
1da177e4
LT
935 preempt_enable_no_resched();
936
937 /*
65ea5b03 938 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
939 * will have TF set, in which case, continue the remaining processing
940 * of do_debug, as if this is not a probe hit.
941 */
053de044 942 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
943 return 0;
944
945 return 1;
946}
9326638c 947NOKPROBE_SYMBOL(kprobe_debug_handler);
1da177e4 948
9326638c 949int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 950{
e7a510f9
AM
951 struct kprobe *cur = kprobe_running();
952 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
953
6381c24c
MH
954 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
955 /* This must happen on single-stepping */
956 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
957 kcb->kprobe_status != KPROBE_REENTER);
c28f8966
PP
958 /*
959 * We are here because the instruction being single
960 * stepped caused a page fault. We reset the current
65ea5b03 961 * kprobe and the ip points back to the probe address
c28f8966
PP
962 * and allow the page fault handler to continue as a
963 * normal page fault.
964 */
65ea5b03 965 regs->ip = (unsigned long)cur->addr;
dcfc4724
MH
966 /*
967 * Trap flag (TF) has been set here because this fault
968 * happened where the single stepping will be done.
969 * So clear it by resetting the current kprobe:
970 */
971 regs->flags &= ~X86_EFLAGS_TF;
972
973 /*
974 * If the TF flag was set before the kprobe hit,
975 * don't touch it:
976 */
8533bbe9 977 regs->flags |= kcb->kprobe_old_flags;
dcfc4724 978
c28f8966
PP
979 if (kcb->kprobe_status == KPROBE_REENTER)
980 restore_previous_kprobe(kcb);
981 else
982 reset_current_kprobe();
1da177e4 983 preempt_enable_no_resched();
6381c24c
MH
984 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
985 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
c28f8966
PP
986 /*
987 * We increment the nmissed count for accounting,
8533bbe9 988 * we can also use npre/npostfault count for accounting
c28f8966
PP
989 * these specific fault cases.
990 */
991 kprobes_inc_nmissed_count(cur);
992
993 /*
994 * We come here because instructions in the pre/post
995 * handler caused the page_fault, this could happen
996 * if handler tries to access user space by
997 * copy_from_user(), get_user() etc. Let the
998 * user-specified handler try to fix it first.
999 */
1000 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1001 return 1;
1002
1003 /*
1004 * In case the user-specified fault handler returned
1005 * zero, try to fix up.
1006 */
548acf19 1007 if (fixup_exception(regs, trapnr))
d6be29b8 1008 return 1;
6d48583b 1009
c28f8966 1010 /*
8533bbe9 1011 * fixup routine could not handle it,
c28f8966
PP
1012 * Let do_page_fault() fix it.
1013 */
1da177e4 1014 }
6381c24c 1015
1da177e4
LT
1016 return 0;
1017}
9326638c 1018NOKPROBE_SYMBOL(kprobe_fault_handler);
1da177e4
LT
1019
1020/*
1021 * Wrapper routine for handling exceptions.
1022 */
9326638c
MH
1023int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1024 void *data)
1da177e4 1025{
ade1af77 1026 struct die_args *args = data;
66ff2d06
AM
1027 int ret = NOTIFY_DONE;
1028
f39b6f0e 1029 if (args->regs && user_mode(args->regs))
2326c770 1030 return ret;
1031
6f6343f5 1032 if (val == DIE_GPF) {
b506a9d0
QB
1033 /*
1034 * To be potentially processing a kprobe fault and to
1035 * trust the result from kprobe_running(), we have
1036 * be non-preemptible.
1037 */
1038 if (!preemptible() && kprobe_running() &&
1da177e4 1039 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 1040 ret = NOTIFY_STOP;
1da177e4 1041 }
66ff2d06 1042 return ret;
1da177e4 1043}
9326638c 1044NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1da177e4 1045
9326638c 1046int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
1047{
1048 struct jprobe *jp = container_of(p, struct jprobe, kp);
1049 unsigned long addr;
e7a510f9 1050 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 1051
e7a510f9 1052 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
1053 kcb->jprobe_saved_sp = stack_addr(regs);
1054 addr = (unsigned long)(kcb->jprobe_saved_sp);
1055
1da177e4
LT
1056 /*
1057 * As Linus pointed out, gcc assumes that the callee
1058 * owns the argument space and could overwrite it, e.g.
1059 * tailcall optimization. So, to be absolutely safe
1060 * we also save and restore enough stack bytes to cover
1061 * the argument area.
9254139a
DV
1062 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1063 * raw stack chunk with redzones:
1da177e4 1064 */
9254139a 1065 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
053de044 1066 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 1067 trace_hardirqs_off();
65ea5b03 1068 regs->ip = (unsigned long)(jp->entry);
237d28db
SRRH
1069
1070 /*
1071 * jprobes use jprobe_return() which skips the normal return
1072 * path of the function, and this messes up the accounting of the
1073 * function graph tracer to get messed up.
1074 *
1075 * Pause function graph tracing while performing the jprobe function.
1076 */
1077 pause_graph_tracing();
1da177e4
LT
1078 return 1;
1079}
9326638c 1080NOKPROBE_SYMBOL(setjmp_pre_handler);
1da177e4 1081
9326638c 1082void jprobe_return(void)
1da177e4 1083{
e7a510f9
AM
1084 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1085
9f7d416c
DV
1086 /* Unpoison stack redzones in the frames we are going to jump over. */
1087 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1088
d6be29b8
MH
1089 asm volatile (
1090#ifdef CONFIG_X86_64
1091 " xchg %%rbx,%%rsp \n"
1092#else
1093 " xchgl %%ebx,%%esp \n"
1094#endif
1095 " int3 \n"
1096 " .globl jprobe_return_end\n"
1097 " jprobe_return_end: \n"
1098 " nop \n"::"b"
1099 (kcb->jprobe_saved_sp):"memory");
1da177e4 1100}
9326638c
MH
1101NOKPROBE_SYMBOL(jprobe_return);
1102NOKPROBE_SYMBOL(jprobe_return_end);
1da177e4 1103
9326638c 1104int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1105{
e7a510f9 1106 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1107 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4 1108 struct jprobe *jp = container_of(p, struct jprobe, kp);
237d28db 1109 void *saved_sp = kcb->jprobe_saved_sp;
1da177e4 1110
d6be29b8
MH
1111 if ((addr > (u8 *) jprobe_return) &&
1112 (addr < (u8 *) jprobe_return_end)) {
237d28db 1113 if (stack_addr(regs) != saved_sp) {
29b6cd79 1114 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1115 printk(KERN_ERR
1116 "current sp %p does not match saved sp %p\n",
237d28db 1117 stack_addr(regs), saved_sp);
d6be29b8 1118 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
57da8b96 1119 show_regs(saved_regs);
d6be29b8 1120 printk(KERN_ERR "Current registers\n");
57da8b96 1121 show_regs(regs);
1da177e4
LT
1122 BUG();
1123 }
237d28db
SRRH
1124 /* It's OK to start function graph tracing again */
1125 unpause_graph_tracing();
e7a510f9 1126 *regs = kcb->jprobe_saved_regs;
9254139a 1127 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
d217d545 1128 preempt_enable_no_resched();
1da177e4
LT
1129 return 1;
1130 }
1131 return 0;
1132}
9326638c 1133NOKPROBE_SYMBOL(longjmp_break_handler);
ba8af12f 1134
be8f2743
MH
1135bool arch_within_kprobe_blacklist(unsigned long addr)
1136{
1137 return (addr >= (unsigned long)__kprobes_text_start &&
1138 addr < (unsigned long)__kprobes_text_end) ||
1139 (addr >= (unsigned long)__entry_text_start &&
1140 addr < (unsigned long)__entry_text_end);
1141}
1142
6772926b 1143int __init arch_init_kprobes(void)
ba8af12f 1144{
a7b0133e 1145 return 0;
ba8af12f 1146}
bf8f6e5b 1147
7ec8a97a 1148int arch_trampoline_kprobe(struct kprobe *p)
bf8f6e5b 1149{
bf8f6e5b
AM
1150 return 0;
1151}