]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/nmi.c
panic, x86: Fix re-entrance problem due to panic on NMI
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / nmi.c
CommitLineData
1d48922c
DZ
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
9c48f1c6 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
1d48922c
DZ
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * Handle hardware traps and faults.
12 */
13#include <linux/spinlock.h>
14#include <linux/kprobes.h>
15#include <linux/kdebug.h>
16#include <linux/nmi.h>
2ab00456 17#include <linux/debugfs.h>
c9126b2e
DZ
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20#include <linux/slab.h>
69c60c88 21#include <linux/export.h>
1d48922c
DZ
22
23#if defined(CONFIG_EDAC)
24#include <linux/edac.h>
25#endif
26
27#include <linux/atomic.h>
28#include <asm/traps.h>
29#include <asm/mach_traps.h>
c9126b2e 30#include <asm/nmi.h>
6fd36ba0 31#include <asm/x86_init.h>
c9126b2e 32
0c4df02d
DH
33#define CREATE_TRACE_POINTS
34#include <trace/events/nmi.h>
35
c9126b2e
DZ
36struct nmi_desc {
37 spinlock_t lock;
38 struct list_head head;
39};
40
41static struct nmi_desc nmi_desc[NMI_MAX] =
42{
43 {
44 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
45 .head = LIST_HEAD_INIT(nmi_desc[0].head),
46 },
47 {
48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
49 .head = LIST_HEAD_INIT(nmi_desc[1].head),
50 },
553222f3
DZ
51 {
52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
53 .head = LIST_HEAD_INIT(nmi_desc[2].head),
54 },
55 {
56 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
57 .head = LIST_HEAD_INIT(nmi_desc[3].head),
58 },
c9126b2e
DZ
59
60};
1d48922c 61
efc3aac5
DZ
62struct nmi_stats {
63 unsigned int normal;
64 unsigned int unknown;
65 unsigned int external;
66 unsigned int swallow;
67};
68
69static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
70
1d48922c
DZ
71static int ignore_nmis;
72
73int unknown_nmi_panic;
74/*
75 * Prevent NMI reason port (0x61) being accessed simultaneously, can
76 * only be used in NMI handler.
77 */
78static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
79
80static int __init setup_unknown_nmi_panic(char *str)
81{
82 unknown_nmi_panic = 1;
83 return 1;
84}
85__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
86
c9126b2e
DZ
87#define nmi_to_desc(type) (&nmi_desc[type])
88
2ab00456 89static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
e90c7853 90
2ab00456
DH
91static int __init nmi_warning_debugfs(void)
92{
93 debugfs_create_u64("nmi_longest_ns", 0644,
94 arch_debugfs_dir, &nmi_longest_ns);
95 return 0;
96}
97fs_initcall(nmi_warning_debugfs);
98
e90c7853
PZ
99static void nmi_max_handler(struct irq_work *w)
100{
101 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
102 int remainder_ns, decimal_msecs;
103 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
104
105 remainder_ns = do_div(whole_msecs, (1000 * 1000));
106 decimal_msecs = remainder_ns / 1000;
107
108 printk_ratelimited(KERN_INFO
109 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
110 a->handler, whole_msecs, decimal_msecs);
111}
112
bf9f2ee2 113static int nmi_handle(unsigned int type, struct pt_regs *regs)
c9126b2e
DZ
114{
115 struct nmi_desc *desc = nmi_to_desc(type);
116 struct nmiaction *a;
117 int handled=0;
118
119 rcu_read_lock();
120
121 /*
122 * NMIs are edge-triggered, which means if you have enough
123 * of them concurrently, you can lose some because only one
124 * can be latched at any given time. Walk the whole list
125 * to handle those situations.
126 */
2ab00456 127 list_for_each_entry_rcu(a, &desc->head, list) {
e90c7853
PZ
128 int thishandled;
129 u64 delta;
2ab00456 130
e90c7853 131 delta = sched_clock();
0c4df02d
DH
132 thishandled = a->handler(type, regs);
133 handled += thishandled;
e90c7853 134 delta = sched_clock() - delta;
0c4df02d 135 trace_nmi_handler(a->handler, (int)delta, thishandled);
2ab00456 136
e90c7853 137 if (delta < nmi_longest_ns || delta < a->max_duration)
2ab00456
DH
138 continue;
139
e90c7853
PZ
140 a->max_duration = delta;
141 irq_work_queue(&a->irq_work);
2ab00456 142 }
c9126b2e 143
c9126b2e
DZ
144 rcu_read_unlock();
145
146 /* return total number of NMI events handled */
147 return handled;
148}
9326638c 149NOKPROBE_SYMBOL(nmi_handle);
c9126b2e 150
72b3fb24 151int __register_nmi_handler(unsigned int type, struct nmiaction *action)
c9126b2e
DZ
152{
153 struct nmi_desc *desc = nmi_to_desc(type);
154 unsigned long flags;
155
72b3fb24
LZ
156 if (!action->handler)
157 return -EINVAL;
158
e90c7853
PZ
159 init_irq_work(&action->irq_work, nmi_max_handler);
160
c9126b2e
DZ
161 spin_lock_irqsave(&desc->lock, flags);
162
b227e233
DZ
163 /*
164 * most handlers of type NMI_UNKNOWN never return because
165 * they just assume the NMI is theirs. Just a sanity check
166 * to manage expectations
167 */
168 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
553222f3
DZ
169 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
170 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
b227e233 171
c9126b2e
DZ
172 /*
173 * some handlers need to be executed first otherwise a fake
174 * event confuses some handlers (kdump uses this flag)
175 */
176 if (action->flags & NMI_FLAG_FIRST)
177 list_add_rcu(&action->list, &desc->head);
178 else
179 list_add_tail_rcu(&action->list, &desc->head);
180
181 spin_unlock_irqrestore(&desc->lock, flags);
182 return 0;
183}
72b3fb24 184EXPORT_SYMBOL(__register_nmi_handler);
c9126b2e 185
72b3fb24 186void unregister_nmi_handler(unsigned int type, const char *name)
c9126b2e
DZ
187{
188 struct nmi_desc *desc = nmi_to_desc(type);
189 struct nmiaction *n;
190 unsigned long flags;
191
192 spin_lock_irqsave(&desc->lock, flags);
193
194 list_for_each_entry_rcu(n, &desc->head, list) {
195 /*
196 * the name passed in to describe the nmi handler
197 * is used as the lookup key
198 */
199 if (!strcmp(n->name, name)) {
200 WARN(in_nmi(),
201 "Trying to free NMI (%s) from NMI context!\n", n->name);
202 list_del_rcu(&n->list);
203 break;
204 }
205 }
206
207 spin_unlock_irqrestore(&desc->lock, flags);
208 synchronize_rcu();
c9126b2e 209}
c9126b2e
DZ
210EXPORT_SYMBOL_GPL(unregister_nmi_handler);
211
9326638c 212static void
1d48922c
DZ
213pci_serr_error(unsigned char reason, struct pt_regs *regs)
214{
553222f3 215 /* check to see if anyone registered against these types of errors */
bf9f2ee2 216 if (nmi_handle(NMI_SERR, regs))
553222f3
DZ
217 return;
218
1d48922c
DZ
219 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
220 reason, smp_processor_id());
221
222 /*
223 * On some machines, PCI SERR line is used to report memory
224 * errors. EDAC makes use of it.
225 */
226#if defined(CONFIG_EDAC)
227 if (edac_handler_set()) {
228 edac_atomic_assert_error();
229 return;
230 }
231#endif
232
233 if (panic_on_unrecovered_nmi)
1717f209 234 nmi_panic("NMI: Not continuing");
1d48922c
DZ
235
236 pr_emerg("Dazed and confused, but trying to continue\n");
237
238 /* Clear and disable the PCI SERR error line. */
239 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
240 outb(reason, NMI_REASON_PORT);
241}
9326638c 242NOKPROBE_SYMBOL(pci_serr_error);
1d48922c 243
9326638c 244static void
1d48922c
DZ
245io_check_error(unsigned char reason, struct pt_regs *regs)
246{
247 unsigned long i;
248
553222f3 249 /* check to see if anyone registered against these types of errors */
bf9f2ee2 250 if (nmi_handle(NMI_IO_CHECK, regs))
553222f3
DZ
251 return;
252
1d48922c
DZ
253 pr_emerg(
254 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
255 reason, smp_processor_id());
57da8b96 256 show_regs(regs);
1d48922c 257
1717f209
HK
258 if (panic_on_io_nmi) {
259 nmi_panic("NMI IOCK error: Not continuing");
260
261 /*
262 * If we end up here, it means we have received an NMI while
263 * processing panic(). Simply return without delaying and
264 * re-enabling NMIs.
265 */
266 return;
267 }
1d48922c
DZ
268
269 /* Re-enable the IOCK line, wait for a few seconds */
270 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
271 outb(reason, NMI_REASON_PORT);
272
273 i = 20000;
274 while (--i) {
275 touch_nmi_watchdog();
276 udelay(100);
277 }
278
279 reason &= ~NMI_REASON_CLEAR_IOCHK;
280 outb(reason, NMI_REASON_PORT);
281}
9326638c 282NOKPROBE_SYMBOL(io_check_error);
1d48922c 283
9326638c 284static void
1d48922c
DZ
285unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
286{
9c48f1c6
DZ
287 int handled;
288
b227e233
DZ
289 /*
290 * Use 'false' as back-to-back NMIs are dealt with one level up.
291 * Of course this makes having multiple 'unknown' handlers useless
292 * as only the first one is ever run (unless it can actually determine
293 * if it caused the NMI)
294 */
bf9f2ee2 295 handled = nmi_handle(NMI_UNKNOWN, regs);
efc3aac5
DZ
296 if (handled) {
297 __this_cpu_add(nmi_stats.unknown, handled);
1d48922c 298 return;
efc3aac5
DZ
299 }
300
301 __this_cpu_add(nmi_stats.unknown, 1);
302
1d48922c
DZ
303 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
304 reason, smp_processor_id());
305
306 pr_emerg("Do you have a strange power saving mode enabled?\n");
307 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
1717f209 308 nmi_panic("NMI: Not continuing");
1d48922c
DZ
309
310 pr_emerg("Dazed and confused, but trying to continue\n");
311}
9326638c 312NOKPROBE_SYMBOL(unknown_nmi_error);
1d48922c 313
b227e233
DZ
314static DEFINE_PER_CPU(bool, swallow_nmi);
315static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
316
9326638c 317static void default_do_nmi(struct pt_regs *regs)
1d48922c
DZ
318{
319 unsigned char reason = 0;
9c48f1c6 320 int handled;
b227e233 321 bool b2b = false;
1d48922c
DZ
322
323 /*
324 * CPU-specific NMI must be processed before non-CPU-specific
325 * NMI, otherwise we may lose it, because the CPU-specific
326 * NMI can not be detected/processed on other CPUs.
327 */
b227e233
DZ
328
329 /*
330 * Back-to-back NMIs are interesting because they can either
331 * be two NMI or more than two NMIs (any thing over two is dropped
332 * due to NMI being edge-triggered). If this is the second half
333 * of the back-to-back NMI, assume we dropped things and process
334 * more handlers. Otherwise reset the 'swallow' NMI behaviour
335 */
336 if (regs->ip == __this_cpu_read(last_nmi_rip))
337 b2b = true;
338 else
339 __this_cpu_write(swallow_nmi, false);
340
341 __this_cpu_write(last_nmi_rip, regs->ip);
342
bf9f2ee2 343 handled = nmi_handle(NMI_LOCAL, regs);
efc3aac5 344 __this_cpu_add(nmi_stats.normal, handled);
b227e233
DZ
345 if (handled) {
346 /*
347 * There are cases when a NMI handler handles multiple
348 * events in the current NMI. One of these events may
349 * be queued for in the next NMI. Because the event is
350 * already handled, the next NMI will result in an unknown
351 * NMI. Instead lets flag this for a potential NMI to
352 * swallow.
353 */
354 if (handled > 1)
355 __this_cpu_write(swallow_nmi, true);
1d48922c 356 return;
b227e233 357 }
1d48922c
DZ
358
359 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
360 raw_spin_lock(&nmi_reason_lock);
064a59b6 361 reason = x86_platform.get_nmi_reason();
1d48922c
DZ
362
363 if (reason & NMI_REASON_MASK) {
364 if (reason & NMI_REASON_SERR)
365 pci_serr_error(reason, regs);
366 else if (reason & NMI_REASON_IOCHK)
367 io_check_error(reason, regs);
368#ifdef CONFIG_X86_32
369 /*
370 * Reassert NMI in case it became active
371 * meanwhile as it's edge-triggered:
372 */
373 reassert_nmi();
374#endif
efc3aac5 375 __this_cpu_add(nmi_stats.external, 1);
1d48922c
DZ
376 raw_spin_unlock(&nmi_reason_lock);
377 return;
378 }
379 raw_spin_unlock(&nmi_reason_lock);
380
b227e233
DZ
381 /*
382 * Only one NMI can be latched at a time. To handle
383 * this we may process multiple nmi handlers at once to
384 * cover the case where an NMI is dropped. The downside
385 * to this approach is we may process an NMI prematurely,
386 * while its real NMI is sitting latched. This will cause
387 * an unknown NMI on the next run of the NMI processing.
388 *
389 * We tried to flag that condition above, by setting the
390 * swallow_nmi flag when we process more than one event.
391 * This condition is also only present on the second half
392 * of a back-to-back NMI, so we flag that condition too.
393 *
394 * If both are true, we assume we already processed this
395 * NMI previously and we swallow it. Otherwise we reset
396 * the logic.
397 *
398 * There are scenarios where we may accidentally swallow
399 * a 'real' unknown NMI. For example, while processing
400 * a perf NMI another perf NMI comes in along with a
401 * 'real' unknown NMI. These two NMIs get combined into
402 * one (as descibed above). When the next NMI gets
403 * processed, it will be flagged by perf as handled, but
404 * noone will know that there was a 'real' unknown NMI sent
405 * also. As a result it gets swallowed. Or if the first
406 * perf NMI returns two events handled then the second
407 * NMI will get eaten by the logic below, again losing a
408 * 'real' unknown NMI. But this is the best we can do
409 * for now.
410 */
411 if (b2b && __this_cpu_read(swallow_nmi))
efc3aac5 412 __this_cpu_add(nmi_stats.swallow, 1);
b227e233
DZ
413 else
414 unknown_nmi_error(reason, regs);
1d48922c 415}
9326638c 416NOKPROBE_SYMBOL(default_do_nmi);
1d48922c 417
ccd49c23 418/*
0b22930e
AL
419 * NMIs can page fault or hit breakpoints which will cause it to lose
420 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
9d050416
AL
421 *
422 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
423 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
424 * if the outer NMI came from kernel mode, but we can still nest if the
425 * outer NMI came from user mode.
426 *
427 * To handle these nested NMIs, we have three states:
ccd49c23
SR
428 *
429 * 1) not running
430 * 2) executing
431 * 3) latched
432 *
433 * When no NMI is in progress, it is in the "not running" state.
434 * When an NMI comes in, it goes into the "executing" state.
435 * Normally, if another NMI is triggered, it does not interrupt
436 * the running NMI and the HW will simply latch it so that when
437 * the first NMI finishes, it will restart the second NMI.
438 * (Note, the latch is binary, thus multiple NMIs triggering,
439 * when one is running, are ignored. Only one NMI is restarted.)
440 *
9d050416
AL
441 * If an NMI executes an iret, another NMI can preempt it. We do not
442 * want to allow this new NMI to run, but we want to execute it when the
443 * first one finishes. We set the state to "latched", and the exit of
444 * the first NMI will perform a dec_return, if the result is zero
445 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
446 * dec_return would have set the state to NMI_EXECUTING (what we want it
447 * to be when we are running). In this case, we simply jump back to
448 * rerun the NMI handler again, and restart the 'latched' NMI.
c7d65a78
SR
449 *
450 * No trap (breakpoint or page fault) should be hit before nmi_restart,
451 * thus there is no race between the first check of state for NOT_RUNNING
452 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
453 * at this point.
70fb74a5
SR
454 *
455 * In case the NMI takes a page fault, we need to save off the CR2
456 * because the NMI could have preempted another page fault and corrupt
457 * the CR2 that is about to be read. As nested NMIs must be restarted
458 * and they can not take breakpoints or page faults, the update of the
459 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
460 * Otherwise, there would be a race of another nested NMI coming in
461 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
ccd49c23
SR
462 */
463enum nmi_states {
c7d65a78 464 NMI_NOT_RUNNING = 0,
ccd49c23
SR
465 NMI_EXECUTING,
466 NMI_LATCHED,
467};
468static DEFINE_PER_CPU(enum nmi_states, nmi_state);
70fb74a5 469static DEFINE_PER_CPU(unsigned long, nmi_cr2);
ccd49c23 470
9d050416 471#ifdef CONFIG_X86_64
ccd49c23 472/*
9d050416
AL
473 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
474 * some care, the inner breakpoint will clobber the outer breakpoint's
475 * stack.
ccd49c23 476 *
9d050416
AL
477 * If a breakpoint is being processed, and the debug stack is being
478 * used, if an NMI comes in and also hits a breakpoint, the stack
479 * pointer will be set to the same fixed address as the breakpoint that
480 * was interrupted, causing that stack to be corrupted. To handle this
481 * case, check if the stack that was interrupted is the debug stack, and
482 * if so, change the IDT so that new breakpoints will use the current
483 * stack and not switch to the fixed address. On return of the NMI,
484 * switch back to the original IDT.
ccd49c23
SR
485 */
486static DEFINE_PER_CPU(int, update_debug_stack);
9d050416 487#endif
228bdaa9 488
9d050416
AL
489dotraplinkage notrace void
490do_nmi(struct pt_regs *regs, long error_code)
ccd49c23 491{
9d050416
AL
492 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
493 this_cpu_write(nmi_state, NMI_LATCHED);
494 return;
495 }
496 this_cpu_write(nmi_state, NMI_EXECUTING);
497 this_cpu_write(nmi_cr2, read_cr2());
498nmi_restart:
499
500#ifdef CONFIG_X86_64
228bdaa9
SR
501 /*
502 * If we interrupted a breakpoint, it is possible that
503 * the nmi handler will have breakpoints too. We need to
504 * change the IDT such that breakpoints that happen here
505 * continue to use the NMI stack.
506 */
507 if (unlikely(is_debug_stack(regs->sp))) {
508 debug_stack_set_zero();
c0525a69 509 this_cpu_write(update_debug_stack, 1);
228bdaa9 510 }
ccd49c23
SR
511#endif
512
1d48922c
DZ
513 nmi_enter();
514
515 inc_irq_stat(__nmi_count);
516
517 if (!ignore_nmis)
518 default_do_nmi(regs);
519
520 nmi_exit();
228bdaa9 521
9d050416
AL
522#ifdef CONFIG_X86_64
523 if (unlikely(this_cpu_read(update_debug_stack))) {
524 debug_stack_reset();
525 this_cpu_write(update_debug_stack, 0);
526 }
527#endif
528
529 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
530 write_cr2(this_cpu_read(nmi_cr2));
531 if (this_cpu_dec_return(nmi_state))
532 goto nmi_restart;
1d48922c 533}
9326638c 534NOKPROBE_SYMBOL(do_nmi);
1d48922c
DZ
535
536void stop_nmi(void)
537{
538 ignore_nmis++;
539}
540
541void restart_nmi(void)
542{
543 ignore_nmis--;
544}
b227e233
DZ
545
546/* reset the back-to-back NMI logic */
547void local_touch_nmi(void)
548{
549 __this_cpu_write(last_nmi_rip, 0);
550}
29c6fb7b 551EXPORT_SYMBOL_GPL(local_touch_nmi);