]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - arch/x86/kernel/nmi.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-focal-kernel.git] / arch / x86 / kernel / nmi.c
CommitLineData
1d48922c
DZ
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
9c48f1c6 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
1d48922c
DZ
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * Handle hardware traps and faults.
12 */
13#include <linux/spinlock.h>
14#include <linux/kprobes.h>
15#include <linux/kdebug.h>
16#include <linux/nmi.h>
2ab00456 17#include <linux/debugfs.h>
c9126b2e
DZ
18#include <linux/delay.h>
19#include <linux/hardirq.h>
c361db5c 20#include <linux/ratelimit.h>
c9126b2e 21#include <linux/slab.h>
69c60c88 22#include <linux/export.h>
e6017571 23#include <linux/sched/clock.h>
1d48922c
DZ
24
25#if defined(CONFIG_EDAC)
26#include <linux/edac.h>
27#endif
28
29#include <linux/atomic.h>
30#include <asm/traps.h>
31#include <asm/mach_traps.h>
c9126b2e 32#include <asm/nmi.h>
6fd36ba0 33#include <asm/x86_init.h>
b279d67d 34#include <asm/reboot.h>
8e2a7f5b 35#include <asm/cache.h>
c9126b2e 36
0c4df02d
DH
37#define CREATE_TRACE_POINTS
38#include <trace/events/nmi.h>
39
c9126b2e
DZ
40struct nmi_desc {
41 spinlock_t lock;
42 struct list_head head;
43};
44
45static struct nmi_desc nmi_desc[NMI_MAX] =
46{
47 {
48 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
49 .head = LIST_HEAD_INIT(nmi_desc[0].head),
50 },
51 {
52 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
53 .head = LIST_HEAD_INIT(nmi_desc[1].head),
54 },
553222f3
DZ
55 {
56 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
57 .head = LIST_HEAD_INIT(nmi_desc[2].head),
58 },
59 {
60 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
61 .head = LIST_HEAD_INIT(nmi_desc[3].head),
62 },
c9126b2e
DZ
63
64};
1d48922c 65
efc3aac5
DZ
66struct nmi_stats {
67 unsigned int normal;
68 unsigned int unknown;
69 unsigned int external;
70 unsigned int swallow;
71};
72
73static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
74
8e2a7f5b 75static int ignore_nmis __read_mostly;
1d48922c
DZ
76
77int unknown_nmi_panic;
78/*
79 * Prevent NMI reason port (0x61) being accessed simultaneously, can
80 * only be used in NMI handler.
81 */
82static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
83
84static int __init setup_unknown_nmi_panic(char *str)
85{
86 unknown_nmi_panic = 1;
87 return 1;
88}
89__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
90
c9126b2e
DZ
91#define nmi_to_desc(type) (&nmi_desc[type])
92
2ab00456 93static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
e90c7853 94
2ab00456
DH
95static int __init nmi_warning_debugfs(void)
96{
97 debugfs_create_u64("nmi_longest_ns", 0644,
98 arch_debugfs_dir, &nmi_longest_ns);
99 return 0;
100}
101fs_initcall(nmi_warning_debugfs);
102
e90c7853
PZ
103static void nmi_max_handler(struct irq_work *w)
104{
105 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
106 int remainder_ns, decimal_msecs;
107 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
108
109 remainder_ns = do_div(whole_msecs, (1000 * 1000));
110 decimal_msecs = remainder_ns / 1000;
111
112 printk_ratelimited(KERN_INFO
113 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
114 a->handler, whole_msecs, decimal_msecs);
115}
116
bf9f2ee2 117static int nmi_handle(unsigned int type, struct pt_regs *regs)
c9126b2e
DZ
118{
119 struct nmi_desc *desc = nmi_to_desc(type);
120 struct nmiaction *a;
121 int handled=0;
122
123 rcu_read_lock();
124
125 /*
126 * NMIs are edge-triggered, which means if you have enough
127 * of them concurrently, you can lose some because only one
128 * can be latched at any given time. Walk the whole list
129 * to handle those situations.
130 */
2ab00456 131 list_for_each_entry_rcu(a, &desc->head, list) {
e90c7853
PZ
132 int thishandled;
133 u64 delta;
2ab00456 134
e90c7853 135 delta = sched_clock();
0c4df02d
DH
136 thishandled = a->handler(type, regs);
137 handled += thishandled;
e90c7853 138 delta = sched_clock() - delta;
0c4df02d 139 trace_nmi_handler(a->handler, (int)delta, thishandled);
2ab00456 140
e90c7853 141 if (delta < nmi_longest_ns || delta < a->max_duration)
2ab00456
DH
142 continue;
143
e90c7853
PZ
144 a->max_duration = delta;
145 irq_work_queue(&a->irq_work);
2ab00456 146 }
c9126b2e 147
c9126b2e
DZ
148 rcu_read_unlock();
149
150 /* return total number of NMI events handled */
151 return handled;
152}
9326638c 153NOKPROBE_SYMBOL(nmi_handle);
c9126b2e 154
72b3fb24 155int __register_nmi_handler(unsigned int type, struct nmiaction *action)
c9126b2e
DZ
156{
157 struct nmi_desc *desc = nmi_to_desc(type);
158 unsigned long flags;
159
72b3fb24
LZ
160 if (!action->handler)
161 return -EINVAL;
162
e90c7853
PZ
163 init_irq_work(&action->irq_work, nmi_max_handler);
164
c9126b2e
DZ
165 spin_lock_irqsave(&desc->lock, flags);
166
b227e233
DZ
167 /*
168 * most handlers of type NMI_UNKNOWN never return because
169 * they just assume the NMI is theirs. Just a sanity check
170 * to manage expectations
171 */
172 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
553222f3
DZ
173 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
174 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
b227e233 175
c9126b2e
DZ
176 /*
177 * some handlers need to be executed first otherwise a fake
178 * event confuses some handlers (kdump uses this flag)
179 */
180 if (action->flags & NMI_FLAG_FIRST)
181 list_add_rcu(&action->list, &desc->head);
182 else
183 list_add_tail_rcu(&action->list, &desc->head);
184
185 spin_unlock_irqrestore(&desc->lock, flags);
186 return 0;
187}
72b3fb24 188EXPORT_SYMBOL(__register_nmi_handler);
c9126b2e 189
72b3fb24 190void unregister_nmi_handler(unsigned int type, const char *name)
c9126b2e
DZ
191{
192 struct nmi_desc *desc = nmi_to_desc(type);
193 struct nmiaction *n;
194 unsigned long flags;
195
196 spin_lock_irqsave(&desc->lock, flags);
197
198 list_for_each_entry_rcu(n, &desc->head, list) {
199 /*
200 * the name passed in to describe the nmi handler
201 * is used as the lookup key
202 */
203 if (!strcmp(n->name, name)) {
204 WARN(in_nmi(),
205 "Trying to free NMI (%s) from NMI context!\n", n->name);
206 list_del_rcu(&n->list);
207 break;
208 }
209 }
210
211 spin_unlock_irqrestore(&desc->lock, flags);
212 synchronize_rcu();
c9126b2e 213}
c9126b2e
DZ
214EXPORT_SYMBOL_GPL(unregister_nmi_handler);
215
9326638c 216static void
1d48922c
DZ
217pci_serr_error(unsigned char reason, struct pt_regs *regs)
218{
553222f3 219 /* check to see if anyone registered against these types of errors */
bf9f2ee2 220 if (nmi_handle(NMI_SERR, regs))
553222f3
DZ
221 return;
222
1d48922c
DZ
223 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224 reason, smp_processor_id());
225
226 /*
227 * On some machines, PCI SERR line is used to report memory
228 * errors. EDAC makes use of it.
229 */
230#if defined(CONFIG_EDAC)
231 if (edac_handler_set()) {
232 edac_atomic_assert_error();
233 return;
234 }
235#endif
236
237 if (panic_on_unrecovered_nmi)
58c5661f 238 nmi_panic(regs, "NMI: Not continuing");
1d48922c
DZ
239
240 pr_emerg("Dazed and confused, but trying to continue\n");
241
242 /* Clear and disable the PCI SERR error line. */
243 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
244 outb(reason, NMI_REASON_PORT);
245}
9326638c 246NOKPROBE_SYMBOL(pci_serr_error);
1d48922c 247
9326638c 248static void
1d48922c
DZ
249io_check_error(unsigned char reason, struct pt_regs *regs)
250{
251 unsigned long i;
252
553222f3 253 /* check to see if anyone registered against these types of errors */
bf9f2ee2 254 if (nmi_handle(NMI_IO_CHECK, regs))
553222f3
DZ
255 return;
256
1d48922c
DZ
257 pr_emerg(
258 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
259 reason, smp_processor_id());
57da8b96 260 show_regs(regs);
1d48922c 261
1717f209 262 if (panic_on_io_nmi) {
58c5661f 263 nmi_panic(regs, "NMI IOCK error: Not continuing");
1717f209
HK
264
265 /*
266 * If we end up here, it means we have received an NMI while
267 * processing panic(). Simply return without delaying and
268 * re-enabling NMIs.
269 */
270 return;
271 }
1d48922c
DZ
272
273 /* Re-enable the IOCK line, wait for a few seconds */
274 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
275 outb(reason, NMI_REASON_PORT);
276
277 i = 20000;
278 while (--i) {
279 touch_nmi_watchdog();
280 udelay(100);
281 }
282
283 reason &= ~NMI_REASON_CLEAR_IOCHK;
284 outb(reason, NMI_REASON_PORT);
285}
9326638c 286NOKPROBE_SYMBOL(io_check_error);
1d48922c 287
9326638c 288static void
1d48922c
DZ
289unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
290{
9c48f1c6
DZ
291 int handled;
292
b227e233
DZ
293 /*
294 * Use 'false' as back-to-back NMIs are dealt with one level up.
295 * Of course this makes having multiple 'unknown' handlers useless
296 * as only the first one is ever run (unless it can actually determine
297 * if it caused the NMI)
298 */
bf9f2ee2 299 handled = nmi_handle(NMI_UNKNOWN, regs);
efc3aac5
DZ
300 if (handled) {
301 __this_cpu_add(nmi_stats.unknown, handled);
1d48922c 302 return;
efc3aac5
DZ
303 }
304
305 __this_cpu_add(nmi_stats.unknown, 1);
306
1d48922c
DZ
307 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
308 reason, smp_processor_id());
309
310 pr_emerg("Do you have a strange power saving mode enabled?\n");
311 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
58c5661f 312 nmi_panic(regs, "NMI: Not continuing");
1d48922c
DZ
313
314 pr_emerg("Dazed and confused, but trying to continue\n");
315}
9326638c 316NOKPROBE_SYMBOL(unknown_nmi_error);
1d48922c 317
b227e233
DZ
318static DEFINE_PER_CPU(bool, swallow_nmi);
319static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
320
9326638c 321static void default_do_nmi(struct pt_regs *regs)
1d48922c
DZ
322{
323 unsigned char reason = 0;
9c48f1c6 324 int handled;
b227e233 325 bool b2b = false;
1d48922c
DZ
326
327 /*
328 * CPU-specific NMI must be processed before non-CPU-specific
329 * NMI, otherwise we may lose it, because the CPU-specific
330 * NMI can not be detected/processed on other CPUs.
331 */
b227e233
DZ
332
333 /*
334 * Back-to-back NMIs are interesting because they can either
335 * be two NMI or more than two NMIs (any thing over two is dropped
336 * due to NMI being edge-triggered). If this is the second half
337 * of the back-to-back NMI, assume we dropped things and process
338 * more handlers. Otherwise reset the 'swallow' NMI behaviour
339 */
340 if (regs->ip == __this_cpu_read(last_nmi_rip))
341 b2b = true;
342 else
343 __this_cpu_write(swallow_nmi, false);
344
345 __this_cpu_write(last_nmi_rip, regs->ip);
346
bf9f2ee2 347 handled = nmi_handle(NMI_LOCAL, regs);
efc3aac5 348 __this_cpu_add(nmi_stats.normal, handled);
b227e233
DZ
349 if (handled) {
350 /*
351 * There are cases when a NMI handler handles multiple
352 * events in the current NMI. One of these events may
353 * be queued for in the next NMI. Because the event is
354 * already handled, the next NMI will result in an unknown
355 * NMI. Instead lets flag this for a potential NMI to
356 * swallow.
357 */
358 if (handled > 1)
359 __this_cpu_write(swallow_nmi, true);
1d48922c 360 return;
b227e233 361 }
1d48922c 362
b279d67d
HK
363 /*
364 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
365 *
366 * Another CPU may be processing panic routines while holding
367 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
368 * and if so, call its callback directly. If there is no CPU preparing
369 * crash dump, we simply loop here.
370 */
371 while (!raw_spin_trylock(&nmi_reason_lock)) {
372 run_crash_ipi_callback(regs);
373 cpu_relax();
374 }
375
064a59b6 376 reason = x86_platform.get_nmi_reason();
1d48922c
DZ
377
378 if (reason & NMI_REASON_MASK) {
379 if (reason & NMI_REASON_SERR)
380 pci_serr_error(reason, regs);
381 else if (reason & NMI_REASON_IOCHK)
382 io_check_error(reason, regs);
383#ifdef CONFIG_X86_32
384 /*
385 * Reassert NMI in case it became active
386 * meanwhile as it's edge-triggered:
387 */
388 reassert_nmi();
389#endif
efc3aac5 390 __this_cpu_add(nmi_stats.external, 1);
1d48922c
DZ
391 raw_spin_unlock(&nmi_reason_lock);
392 return;
393 }
394 raw_spin_unlock(&nmi_reason_lock);
395
b227e233
DZ
396 /*
397 * Only one NMI can be latched at a time. To handle
398 * this we may process multiple nmi handlers at once to
399 * cover the case where an NMI is dropped. The downside
400 * to this approach is we may process an NMI prematurely,
401 * while its real NMI is sitting latched. This will cause
402 * an unknown NMI on the next run of the NMI processing.
403 *
404 * We tried to flag that condition above, by setting the
405 * swallow_nmi flag when we process more than one event.
406 * This condition is also only present on the second half
407 * of a back-to-back NMI, so we flag that condition too.
408 *
409 * If both are true, we assume we already processed this
410 * NMI previously and we swallow it. Otherwise we reset
411 * the logic.
412 *
413 * There are scenarios where we may accidentally swallow
414 * a 'real' unknown NMI. For example, while processing
415 * a perf NMI another perf NMI comes in along with a
416 * 'real' unknown NMI. These two NMIs get combined into
417 * one (as descibed above). When the next NMI gets
418 * processed, it will be flagged by perf as handled, but
419 * noone will know that there was a 'real' unknown NMI sent
420 * also. As a result it gets swallowed. Or if the first
421 * perf NMI returns two events handled then the second
422 * NMI will get eaten by the logic below, again losing a
423 * 'real' unknown NMI. But this is the best we can do
424 * for now.
425 */
426 if (b2b && __this_cpu_read(swallow_nmi))
efc3aac5 427 __this_cpu_add(nmi_stats.swallow, 1);
b227e233
DZ
428 else
429 unknown_nmi_error(reason, regs);
1d48922c 430}
9326638c 431NOKPROBE_SYMBOL(default_do_nmi);
1d48922c 432
ccd49c23 433/*
0b22930e
AL
434 * NMIs can page fault or hit breakpoints which will cause it to lose
435 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
9d050416
AL
436 *
437 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
438 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
439 * if the outer NMI came from kernel mode, but we can still nest if the
440 * outer NMI came from user mode.
441 *
442 * To handle these nested NMIs, we have three states:
ccd49c23
SR
443 *
444 * 1) not running
445 * 2) executing
446 * 3) latched
447 *
448 * When no NMI is in progress, it is in the "not running" state.
449 * When an NMI comes in, it goes into the "executing" state.
450 * Normally, if another NMI is triggered, it does not interrupt
451 * the running NMI and the HW will simply latch it so that when
452 * the first NMI finishes, it will restart the second NMI.
453 * (Note, the latch is binary, thus multiple NMIs triggering,
454 * when one is running, are ignored. Only one NMI is restarted.)
455 *
9d050416
AL
456 * If an NMI executes an iret, another NMI can preempt it. We do not
457 * want to allow this new NMI to run, but we want to execute it when the
458 * first one finishes. We set the state to "latched", and the exit of
459 * the first NMI will perform a dec_return, if the result is zero
460 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
461 * dec_return would have set the state to NMI_EXECUTING (what we want it
462 * to be when we are running). In this case, we simply jump back to
463 * rerun the NMI handler again, and restart the 'latched' NMI.
c7d65a78
SR
464 *
465 * No trap (breakpoint or page fault) should be hit before nmi_restart,
466 * thus there is no race between the first check of state for NOT_RUNNING
467 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
468 * at this point.
70fb74a5
SR
469 *
470 * In case the NMI takes a page fault, we need to save off the CR2
471 * because the NMI could have preempted another page fault and corrupt
472 * the CR2 that is about to be read. As nested NMIs must be restarted
473 * and they can not take breakpoints or page faults, the update of the
474 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
475 * Otherwise, there would be a race of another nested NMI coming in
476 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
ccd49c23
SR
477 */
478enum nmi_states {
c7d65a78 479 NMI_NOT_RUNNING = 0,
ccd49c23
SR
480 NMI_EXECUTING,
481 NMI_LATCHED,
482};
483static DEFINE_PER_CPU(enum nmi_states, nmi_state);
70fb74a5 484static DEFINE_PER_CPU(unsigned long, nmi_cr2);
ccd49c23 485
9d050416 486#ifdef CONFIG_X86_64
ccd49c23 487/*
9d050416
AL
488 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
489 * some care, the inner breakpoint will clobber the outer breakpoint's
490 * stack.
ccd49c23 491 *
9d050416
AL
492 * If a breakpoint is being processed, and the debug stack is being
493 * used, if an NMI comes in and also hits a breakpoint, the stack
494 * pointer will be set to the same fixed address as the breakpoint that
495 * was interrupted, causing that stack to be corrupted. To handle this
496 * case, check if the stack that was interrupted is the debug stack, and
497 * if so, change the IDT so that new breakpoints will use the current
498 * stack and not switch to the fixed address. On return of the NMI,
499 * switch back to the original IDT.
ccd49c23
SR
500 */
501static DEFINE_PER_CPU(int, update_debug_stack);
9d050416 502#endif
228bdaa9 503
9d050416
AL
504dotraplinkage notrace void
505do_nmi(struct pt_regs *regs, long error_code)
ccd49c23 506{
9d050416
AL
507 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
508 this_cpu_write(nmi_state, NMI_LATCHED);
509 return;
510 }
511 this_cpu_write(nmi_state, NMI_EXECUTING);
512 this_cpu_write(nmi_cr2, read_cr2());
513nmi_restart:
514
515#ifdef CONFIG_X86_64
228bdaa9
SR
516 /*
517 * If we interrupted a breakpoint, it is possible that
518 * the nmi handler will have breakpoints too. We need to
519 * change the IDT such that breakpoints that happen here
520 * continue to use the NMI stack.
521 */
522 if (unlikely(is_debug_stack(regs->sp))) {
523 debug_stack_set_zero();
c0525a69 524 this_cpu_write(update_debug_stack, 1);
228bdaa9 525 }
ccd49c23
SR
526#endif
527
1d48922c
DZ
528 nmi_enter();
529
530 inc_irq_stat(__nmi_count);
531
532 if (!ignore_nmis)
533 default_do_nmi(regs);
534
535 nmi_exit();
228bdaa9 536
9d050416
AL
537#ifdef CONFIG_X86_64
538 if (unlikely(this_cpu_read(update_debug_stack))) {
539 debug_stack_reset();
540 this_cpu_write(update_debug_stack, 0);
541 }
542#endif
543
544 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
545 write_cr2(this_cpu_read(nmi_cr2));
546 if (this_cpu_dec_return(nmi_state))
547 goto nmi_restart;
1d48922c 548}
9326638c 549NOKPROBE_SYMBOL(do_nmi);
1d48922c
DZ
550
551void stop_nmi(void)
552{
553 ignore_nmis++;
554}
555
556void restart_nmi(void)
557{
558 ignore_nmis--;
559}
b227e233
DZ
560
561/* reset the back-to-back NMI logic */
562void local_touch_nmi(void)
563{
564 __this_cpu_write(last_nmi_rip, 0);
565}
29c6fb7b 566EXPORT_SYMBOL_GPL(local_touch_nmi);