]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/nmi.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / nmi.c
CommitLineData
1d48922c
DZ
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
9c48f1c6 4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
1d48922c
DZ
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10/*
11 * Handle hardware traps and faults.
12 */
13#include <linux/spinlock.h>
14#include <linux/kprobes.h>
15#include <linux/kdebug.h>
b17b0153 16#include <linux/sched/debug.h>
1d48922c 17#include <linux/nmi.h>
2ab00456 18#include <linux/debugfs.h>
c9126b2e
DZ
19#include <linux/delay.h>
20#include <linux/hardirq.h>
c361db5c 21#include <linux/ratelimit.h>
c9126b2e 22#include <linux/slab.h>
69c60c88 23#include <linux/export.h>
e6017571 24#include <linux/sched/clock.h>
1d48922c
DZ
25
26#if defined(CONFIG_EDAC)
27#include <linux/edac.h>
28#endif
29
30#include <linux/atomic.h>
31#include <asm/traps.h>
32#include <asm/mach_traps.h>
c9126b2e 33#include <asm/nmi.h>
6fd36ba0 34#include <asm/x86_init.h>
b279d67d 35#include <asm/reboot.h>
8e2a7f5b 36#include <asm/cache.h>
c9126b2e 37
0c4df02d
DH
38#define CREATE_TRACE_POINTS
39#include <trace/events/nmi.h>
40
c9126b2e
DZ
41struct nmi_desc {
42 spinlock_t lock;
43 struct list_head head;
44};
45
46static struct nmi_desc nmi_desc[NMI_MAX] =
47{
48 {
49 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[0].head),
51 },
52 {
53 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[1].head),
55 },
553222f3
DZ
56 {
57 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
58 .head = LIST_HEAD_INIT(nmi_desc[2].head),
59 },
60 {
61 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
62 .head = LIST_HEAD_INIT(nmi_desc[3].head),
63 },
c9126b2e
DZ
64
65};
1d48922c 66
efc3aac5
DZ
67struct nmi_stats {
68 unsigned int normal;
69 unsigned int unknown;
70 unsigned int external;
71 unsigned int swallow;
72};
73
74static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
75
8e2a7f5b 76static int ignore_nmis __read_mostly;
1d48922c
DZ
77
78int unknown_nmi_panic;
79/*
80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
81 * only be used in NMI handler.
82 */
83static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
84
85static int __init setup_unknown_nmi_panic(char *str)
86{
87 unknown_nmi_panic = 1;
88 return 1;
89}
90__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
91
c9126b2e
DZ
92#define nmi_to_desc(type) (&nmi_desc[type])
93
2ab00456 94static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
e90c7853 95
2ab00456
DH
96static int __init nmi_warning_debugfs(void)
97{
98 debugfs_create_u64("nmi_longest_ns", 0644,
99 arch_debugfs_dir, &nmi_longest_ns);
100 return 0;
101}
102fs_initcall(nmi_warning_debugfs);
103
e90c7853
PZ
104static void nmi_max_handler(struct irq_work *w)
105{
106 struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
107 int remainder_ns, decimal_msecs;
108 u64 whole_msecs = ACCESS_ONCE(a->max_duration);
109
110 remainder_ns = do_div(whole_msecs, (1000 * 1000));
111 decimal_msecs = remainder_ns / 1000;
112
113 printk_ratelimited(KERN_INFO
114 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
115 a->handler, whole_msecs, decimal_msecs);
116}
117
bf9f2ee2 118static int nmi_handle(unsigned int type, struct pt_regs *regs)
c9126b2e
DZ
119{
120 struct nmi_desc *desc = nmi_to_desc(type);
121 struct nmiaction *a;
122 int handled=0;
123
124 rcu_read_lock();
125
126 /*
127 * NMIs are edge-triggered, which means if you have enough
128 * of them concurrently, you can lose some because only one
129 * can be latched at any given time. Walk the whole list
130 * to handle those situations.
131 */
2ab00456 132 list_for_each_entry_rcu(a, &desc->head, list) {
e90c7853
PZ
133 int thishandled;
134 u64 delta;
2ab00456 135
e90c7853 136 delta = sched_clock();
0c4df02d
DH
137 thishandled = a->handler(type, regs);
138 handled += thishandled;
e90c7853 139 delta = sched_clock() - delta;
0c4df02d 140 trace_nmi_handler(a->handler, (int)delta, thishandled);
2ab00456 141
e90c7853 142 if (delta < nmi_longest_ns || delta < a->max_duration)
2ab00456
DH
143 continue;
144
e90c7853
PZ
145 a->max_duration = delta;
146 irq_work_queue(&a->irq_work);
2ab00456 147 }
c9126b2e 148
c9126b2e
DZ
149 rcu_read_unlock();
150
151 /* return total number of NMI events handled */
152 return handled;
153}
9326638c 154NOKPROBE_SYMBOL(nmi_handle);
c9126b2e 155
72b3fb24 156int __register_nmi_handler(unsigned int type, struct nmiaction *action)
c9126b2e
DZ
157{
158 struct nmi_desc *desc = nmi_to_desc(type);
159 unsigned long flags;
160
72b3fb24
LZ
161 if (!action->handler)
162 return -EINVAL;
163
e90c7853
PZ
164 init_irq_work(&action->irq_work, nmi_max_handler);
165
c9126b2e
DZ
166 spin_lock_irqsave(&desc->lock, flags);
167
b227e233 168 /*
0d443b70
MT
169 * Indicate if there are multiple registrations on the
170 * internal NMI handler call chains (SERR and IO_CHECK).
b227e233 171 */
553222f3
DZ
172 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
173 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
b227e233 174
c9126b2e
DZ
175 /*
176 * some handlers need to be executed first otherwise a fake
177 * event confuses some handlers (kdump uses this flag)
178 */
179 if (action->flags & NMI_FLAG_FIRST)
180 list_add_rcu(&action->list, &desc->head);
181 else
182 list_add_tail_rcu(&action->list, &desc->head);
183
184 spin_unlock_irqrestore(&desc->lock, flags);
185 return 0;
186}
72b3fb24 187EXPORT_SYMBOL(__register_nmi_handler);
c9126b2e 188
72b3fb24 189void unregister_nmi_handler(unsigned int type, const char *name)
c9126b2e
DZ
190{
191 struct nmi_desc *desc = nmi_to_desc(type);
192 struct nmiaction *n;
193 unsigned long flags;
194
195 spin_lock_irqsave(&desc->lock, flags);
196
197 list_for_each_entry_rcu(n, &desc->head, list) {
198 /*
199 * the name passed in to describe the nmi handler
200 * is used as the lookup key
201 */
202 if (!strcmp(n->name, name)) {
203 WARN(in_nmi(),
204 "Trying to free NMI (%s) from NMI context!\n", n->name);
205 list_del_rcu(&n->list);
206 break;
207 }
208 }
209
210 spin_unlock_irqrestore(&desc->lock, flags);
211 synchronize_rcu();
c9126b2e 212}
c9126b2e
DZ
213EXPORT_SYMBOL_GPL(unregister_nmi_handler);
214
9326638c 215static void
1d48922c
DZ
216pci_serr_error(unsigned char reason, struct pt_regs *regs)
217{
553222f3 218 /* check to see if anyone registered against these types of errors */
bf9f2ee2 219 if (nmi_handle(NMI_SERR, regs))
553222f3
DZ
220 return;
221
1d48922c
DZ
222 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
223 reason, smp_processor_id());
224
225 /*
226 * On some machines, PCI SERR line is used to report memory
227 * errors. EDAC makes use of it.
228 */
229#if defined(CONFIG_EDAC)
230 if (edac_handler_set()) {
231 edac_atomic_assert_error();
232 return;
233 }
234#endif
235
236 if (panic_on_unrecovered_nmi)
58c5661f 237 nmi_panic(regs, "NMI: Not continuing");
1d48922c
DZ
238
239 pr_emerg("Dazed and confused, but trying to continue\n");
240
241 /* Clear and disable the PCI SERR error line. */
242 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
243 outb(reason, NMI_REASON_PORT);
244}
9326638c 245NOKPROBE_SYMBOL(pci_serr_error);
1d48922c 246
9326638c 247static void
1d48922c
DZ
248io_check_error(unsigned char reason, struct pt_regs *regs)
249{
250 unsigned long i;
251
553222f3 252 /* check to see if anyone registered against these types of errors */
bf9f2ee2 253 if (nmi_handle(NMI_IO_CHECK, regs))
553222f3
DZ
254 return;
255
1d48922c
DZ
256 pr_emerg(
257 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
258 reason, smp_processor_id());
57da8b96 259 show_regs(regs);
1d48922c 260
1717f209 261 if (panic_on_io_nmi) {
58c5661f 262 nmi_panic(regs, "NMI IOCK error: Not continuing");
1717f209
HK
263
264 /*
265 * If we end up here, it means we have received an NMI while
266 * processing panic(). Simply return without delaying and
267 * re-enabling NMIs.
268 */
269 return;
270 }
1d48922c
DZ
271
272 /* Re-enable the IOCK line, wait for a few seconds */
273 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
274 outb(reason, NMI_REASON_PORT);
275
276 i = 20000;
277 while (--i) {
278 touch_nmi_watchdog();
279 udelay(100);
280 }
281
282 reason &= ~NMI_REASON_CLEAR_IOCHK;
283 outb(reason, NMI_REASON_PORT);
284}
9326638c 285NOKPROBE_SYMBOL(io_check_error);
1d48922c 286
9326638c 287static void
1d48922c
DZ
288unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
289{
9c48f1c6
DZ
290 int handled;
291
b227e233
DZ
292 /*
293 * Use 'false' as back-to-back NMIs are dealt with one level up.
294 * Of course this makes having multiple 'unknown' handlers useless
295 * as only the first one is ever run (unless it can actually determine
296 * if it caused the NMI)
297 */
bf9f2ee2 298 handled = nmi_handle(NMI_UNKNOWN, regs);
efc3aac5
DZ
299 if (handled) {
300 __this_cpu_add(nmi_stats.unknown, handled);
1d48922c 301 return;
efc3aac5
DZ
302 }
303
304 __this_cpu_add(nmi_stats.unknown, 1);
305
1d48922c
DZ
306 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
307 reason, smp_processor_id());
308
309 pr_emerg("Do you have a strange power saving mode enabled?\n");
310 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
58c5661f 311 nmi_panic(regs, "NMI: Not continuing");
1d48922c
DZ
312
313 pr_emerg("Dazed and confused, but trying to continue\n");
314}
9326638c 315NOKPROBE_SYMBOL(unknown_nmi_error);
1d48922c 316
b227e233
DZ
317static DEFINE_PER_CPU(bool, swallow_nmi);
318static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
319
9326638c 320static void default_do_nmi(struct pt_regs *regs)
1d48922c
DZ
321{
322 unsigned char reason = 0;
9c48f1c6 323 int handled;
b227e233 324 bool b2b = false;
1d48922c
DZ
325
326 /*
327 * CPU-specific NMI must be processed before non-CPU-specific
328 * NMI, otherwise we may lose it, because the CPU-specific
329 * NMI can not be detected/processed on other CPUs.
330 */
b227e233
DZ
331
332 /*
333 * Back-to-back NMIs are interesting because they can either
334 * be two NMI or more than two NMIs (any thing over two is dropped
335 * due to NMI being edge-triggered). If this is the second half
336 * of the back-to-back NMI, assume we dropped things and process
337 * more handlers. Otherwise reset the 'swallow' NMI behaviour
338 */
339 if (regs->ip == __this_cpu_read(last_nmi_rip))
340 b2b = true;
341 else
342 __this_cpu_write(swallow_nmi, false);
343
344 __this_cpu_write(last_nmi_rip, regs->ip);
345
bf9f2ee2 346 handled = nmi_handle(NMI_LOCAL, regs);
efc3aac5 347 __this_cpu_add(nmi_stats.normal, handled);
b227e233
DZ
348 if (handled) {
349 /*
350 * There are cases when a NMI handler handles multiple
351 * events in the current NMI. One of these events may
352 * be queued for in the next NMI. Because the event is
353 * already handled, the next NMI will result in an unknown
354 * NMI. Instead lets flag this for a potential NMI to
355 * swallow.
356 */
357 if (handled > 1)
358 __this_cpu_write(swallow_nmi, true);
1d48922c 359 return;
b227e233 360 }
1d48922c 361
b279d67d
HK
362 /*
363 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
364 *
365 * Another CPU may be processing panic routines while holding
366 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
367 * and if so, call its callback directly. If there is no CPU preparing
368 * crash dump, we simply loop here.
369 */
370 while (!raw_spin_trylock(&nmi_reason_lock)) {
371 run_crash_ipi_callback(regs);
372 cpu_relax();
373 }
374
064a59b6 375 reason = x86_platform.get_nmi_reason();
1d48922c
DZ
376
377 if (reason & NMI_REASON_MASK) {
378 if (reason & NMI_REASON_SERR)
379 pci_serr_error(reason, regs);
380 else if (reason & NMI_REASON_IOCHK)
381 io_check_error(reason, regs);
382#ifdef CONFIG_X86_32
383 /*
384 * Reassert NMI in case it became active
385 * meanwhile as it's edge-triggered:
386 */
387 reassert_nmi();
388#endif
efc3aac5 389 __this_cpu_add(nmi_stats.external, 1);
1d48922c
DZ
390 raw_spin_unlock(&nmi_reason_lock);
391 return;
392 }
393 raw_spin_unlock(&nmi_reason_lock);
394
b227e233
DZ
395 /*
396 * Only one NMI can be latched at a time. To handle
397 * this we may process multiple nmi handlers at once to
398 * cover the case where an NMI is dropped. The downside
399 * to this approach is we may process an NMI prematurely,
400 * while its real NMI is sitting latched. This will cause
401 * an unknown NMI on the next run of the NMI processing.
402 *
403 * We tried to flag that condition above, by setting the
404 * swallow_nmi flag when we process more than one event.
405 * This condition is also only present on the second half
406 * of a back-to-back NMI, so we flag that condition too.
407 *
408 * If both are true, we assume we already processed this
409 * NMI previously and we swallow it. Otherwise we reset
410 * the logic.
411 *
412 * There are scenarios where we may accidentally swallow
413 * a 'real' unknown NMI. For example, while processing
414 * a perf NMI another perf NMI comes in along with a
415 * 'real' unknown NMI. These two NMIs get combined into
416 * one (as descibed above). When the next NMI gets
417 * processed, it will be flagged by perf as handled, but
418 * noone will know that there was a 'real' unknown NMI sent
419 * also. As a result it gets swallowed. Or if the first
420 * perf NMI returns two events handled then the second
421 * NMI will get eaten by the logic below, again losing a
422 * 'real' unknown NMI. But this is the best we can do
423 * for now.
424 */
425 if (b2b && __this_cpu_read(swallow_nmi))
efc3aac5 426 __this_cpu_add(nmi_stats.swallow, 1);
b227e233
DZ
427 else
428 unknown_nmi_error(reason, regs);
1d48922c 429}
9326638c 430NOKPROBE_SYMBOL(default_do_nmi);
1d48922c 431
ccd49c23 432/*
0b22930e
AL
433 * NMIs can page fault or hit breakpoints which will cause it to lose
434 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
9d050416
AL
435 *
436 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
437 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
438 * if the outer NMI came from kernel mode, but we can still nest if the
439 * outer NMI came from user mode.
440 *
441 * To handle these nested NMIs, we have three states:
ccd49c23
SR
442 *
443 * 1) not running
444 * 2) executing
445 * 3) latched
446 *
447 * When no NMI is in progress, it is in the "not running" state.
448 * When an NMI comes in, it goes into the "executing" state.
449 * Normally, if another NMI is triggered, it does not interrupt
450 * the running NMI and the HW will simply latch it so that when
451 * the first NMI finishes, it will restart the second NMI.
452 * (Note, the latch is binary, thus multiple NMIs triggering,
453 * when one is running, are ignored. Only one NMI is restarted.)
454 *
9d050416
AL
455 * If an NMI executes an iret, another NMI can preempt it. We do not
456 * want to allow this new NMI to run, but we want to execute it when the
457 * first one finishes. We set the state to "latched", and the exit of
458 * the first NMI will perform a dec_return, if the result is zero
459 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
460 * dec_return would have set the state to NMI_EXECUTING (what we want it
461 * to be when we are running). In this case, we simply jump back to
462 * rerun the NMI handler again, and restart the 'latched' NMI.
c7d65a78
SR
463 *
464 * No trap (breakpoint or page fault) should be hit before nmi_restart,
465 * thus there is no race between the first check of state for NOT_RUNNING
466 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
467 * at this point.
70fb74a5
SR
468 *
469 * In case the NMI takes a page fault, we need to save off the CR2
470 * because the NMI could have preempted another page fault and corrupt
471 * the CR2 that is about to be read. As nested NMIs must be restarted
472 * and they can not take breakpoints or page faults, the update of the
473 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
474 * Otherwise, there would be a race of another nested NMI coming in
475 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
ccd49c23
SR
476 */
477enum nmi_states {
c7d65a78 478 NMI_NOT_RUNNING = 0,
ccd49c23
SR
479 NMI_EXECUTING,
480 NMI_LATCHED,
481};
482static DEFINE_PER_CPU(enum nmi_states, nmi_state);
70fb74a5 483static DEFINE_PER_CPU(unsigned long, nmi_cr2);
ccd49c23 484
9d050416 485#ifdef CONFIG_X86_64
ccd49c23 486/*
9d050416
AL
487 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
488 * some care, the inner breakpoint will clobber the outer breakpoint's
489 * stack.
ccd49c23 490 *
9d050416
AL
491 * If a breakpoint is being processed, and the debug stack is being
492 * used, if an NMI comes in and also hits a breakpoint, the stack
493 * pointer will be set to the same fixed address as the breakpoint that
494 * was interrupted, causing that stack to be corrupted. To handle this
495 * case, check if the stack that was interrupted is the debug stack, and
496 * if so, change the IDT so that new breakpoints will use the current
497 * stack and not switch to the fixed address. On return of the NMI,
498 * switch back to the original IDT.
ccd49c23
SR
499 */
500static DEFINE_PER_CPU(int, update_debug_stack);
9d050416 501#endif
228bdaa9 502
9d050416
AL
503dotraplinkage notrace void
504do_nmi(struct pt_regs *regs, long error_code)
ccd49c23 505{
9d050416
AL
506 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
507 this_cpu_write(nmi_state, NMI_LATCHED);
508 return;
509 }
510 this_cpu_write(nmi_state, NMI_EXECUTING);
511 this_cpu_write(nmi_cr2, read_cr2());
512nmi_restart:
513
514#ifdef CONFIG_X86_64
228bdaa9
SR
515 /*
516 * If we interrupted a breakpoint, it is possible that
517 * the nmi handler will have breakpoints too. We need to
518 * change the IDT such that breakpoints that happen here
519 * continue to use the NMI stack.
520 */
521 if (unlikely(is_debug_stack(regs->sp))) {
522 debug_stack_set_zero();
c0525a69 523 this_cpu_write(update_debug_stack, 1);
228bdaa9 524 }
ccd49c23
SR
525#endif
526
1d48922c
DZ
527 nmi_enter();
528
529 inc_irq_stat(__nmi_count);
530
531 if (!ignore_nmis)
532 default_do_nmi(regs);
533
534 nmi_exit();
228bdaa9 535
9d050416
AL
536#ifdef CONFIG_X86_64
537 if (unlikely(this_cpu_read(update_debug_stack))) {
538 debug_stack_reset();
539 this_cpu_write(update_debug_stack, 0);
540 }
541#endif
542
543 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
544 write_cr2(this_cpu_read(nmi_cr2));
545 if (this_cpu_dec_return(nmi_state))
546 goto nmi_restart;
1d48922c 547}
9326638c 548NOKPROBE_SYMBOL(do_nmi);
1d48922c
DZ
549
550void stop_nmi(void)
551{
552 ignore_nmis++;
553}
554
555void restart_nmi(void)
556{
557 ignore_nmis--;
558}
b227e233
DZ
559
560/* reset the back-to-back NMI logic */
561void local_touch_nmi(void)
562{
563 __this_cpu_write(last_nmi_rip, 0);
564}
29c6fb7b 565EXPORT_SYMBOL_GPL(local_touch_nmi);