]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/nmi.c
Linux 5.6-rc1
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / nmi.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1d48922c
DZ
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
9c48f1c6 5 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
1d48922c
DZ
6 *
7 * Pentium III FXSR, SSE support
8 * Gareth Hughes <gareth@valinux.com>, May 2000
9 */
10
11/*
12 * Handle hardware traps and faults.
13 */
14#include <linux/spinlock.h>
15#include <linux/kprobes.h>
16#include <linux/kdebug.h>
b17b0153 17#include <linux/sched/debug.h>
1d48922c 18#include <linux/nmi.h>
2ab00456 19#include <linux/debugfs.h>
c9126b2e
DZ
20#include <linux/delay.h>
21#include <linux/hardirq.h>
c361db5c 22#include <linux/ratelimit.h>
c9126b2e 23#include <linux/slab.h>
69c60c88 24#include <linux/export.h>
2a594d4c 25#include <linux/atomic.h>
e6017571 26#include <linux/sched/clock.h>
1d48922c
DZ
27
28#if defined(CONFIG_EDAC)
29#include <linux/edac.h>
30#endif
31
2a594d4c 32#include <asm/cpu_entry_area.h>
1d48922c
DZ
33#include <asm/traps.h>
34#include <asm/mach_traps.h>
c9126b2e 35#include <asm/nmi.h>
6fd36ba0 36#include <asm/x86_init.h>
b279d67d 37#include <asm/reboot.h>
8e2a7f5b 38#include <asm/cache.h>
04dcbdb8 39#include <asm/nospec-branch.h>
c9126b2e 40
0c4df02d
DH
41#define CREATE_TRACE_POINTS
42#include <trace/events/nmi.h>
43
c9126b2e 44struct nmi_desc {
c455fd92 45 raw_spinlock_t lock;
c9126b2e
DZ
46 struct list_head head;
47};
48
49static struct nmi_desc nmi_desc[NMI_MAX] =
50{
51 {
c455fd92 52 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
c9126b2e
DZ
53 .head = LIST_HEAD_INIT(nmi_desc[0].head),
54 },
55 {
c455fd92 56 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
c9126b2e
DZ
57 .head = LIST_HEAD_INIT(nmi_desc[1].head),
58 },
553222f3 59 {
c455fd92 60 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
553222f3
DZ
61 .head = LIST_HEAD_INIT(nmi_desc[2].head),
62 },
63 {
c455fd92 64 .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
553222f3
DZ
65 .head = LIST_HEAD_INIT(nmi_desc[3].head),
66 },
c9126b2e
DZ
67
68};
1d48922c 69
efc3aac5
DZ
70struct nmi_stats {
71 unsigned int normal;
72 unsigned int unknown;
73 unsigned int external;
74 unsigned int swallow;
75};
76
77static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
78
8e2a7f5b 79static int ignore_nmis __read_mostly;
1d48922c
DZ
80
81int unknown_nmi_panic;
82/*
83 * Prevent NMI reason port (0x61) being accessed simultaneously, can
84 * only be used in NMI handler.
85 */
86static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
87
88static int __init setup_unknown_nmi_panic(char *str)
89{
90 unknown_nmi_panic = 1;
91 return 1;
92}
93__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
94
c9126b2e
DZ
95#define nmi_to_desc(type) (&nmi_desc[type])
96
2ab00456 97static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
e90c7853 98
2ab00456
DH
99static int __init nmi_warning_debugfs(void)
100{
101 debugfs_create_u64("nmi_longest_ns", 0644,
102 arch_debugfs_dir, &nmi_longest_ns);
103 return 0;
104}
105fs_initcall(nmi_warning_debugfs);
106
248ed510 107static void nmi_check_duration(struct nmiaction *action, u64 duration)
e90c7853 108{
248ed510 109 u64 whole_msecs = READ_ONCE(action->max_duration);
e90c7853 110 int remainder_ns, decimal_msecs;
248ed510
CD
111
112 if (duration < nmi_longest_ns || duration < action->max_duration)
113 return;
114
115 action->max_duration = duration;
e90c7853
PZ
116
117 remainder_ns = do_div(whole_msecs, (1000 * 1000));
118 decimal_msecs = remainder_ns / 1000;
119
120 printk_ratelimited(KERN_INFO
121 "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
248ed510 122 action->handler, whole_msecs, decimal_msecs);
e90c7853
PZ
123}
124
bf9f2ee2 125static int nmi_handle(unsigned int type, struct pt_regs *regs)
c9126b2e
DZ
126{
127 struct nmi_desc *desc = nmi_to_desc(type);
128 struct nmiaction *a;
129 int handled=0;
130
131 rcu_read_lock();
132
133 /*
134 * NMIs are edge-triggered, which means if you have enough
135 * of them concurrently, you can lose some because only one
136 * can be latched at any given time. Walk the whole list
137 * to handle those situations.
138 */
2ab00456 139 list_for_each_entry_rcu(a, &desc->head, list) {
e90c7853
PZ
140 int thishandled;
141 u64 delta;
2ab00456 142
e90c7853 143 delta = sched_clock();
0c4df02d
DH
144 thishandled = a->handler(type, regs);
145 handled += thishandled;
e90c7853 146 delta = sched_clock() - delta;
0c4df02d 147 trace_nmi_handler(a->handler, (int)delta, thishandled);
2ab00456 148
248ed510 149 nmi_check_duration(a, delta);
2ab00456 150 }
c9126b2e 151
c9126b2e
DZ
152 rcu_read_unlock();
153
154 /* return total number of NMI events handled */
155 return handled;
156}
9326638c 157NOKPROBE_SYMBOL(nmi_handle);
c9126b2e 158
72b3fb24 159int __register_nmi_handler(unsigned int type, struct nmiaction *action)
c9126b2e
DZ
160{
161 struct nmi_desc *desc = nmi_to_desc(type);
162 unsigned long flags;
163
72b3fb24
LZ
164 if (!action->handler)
165 return -EINVAL;
166
c455fd92 167 raw_spin_lock_irqsave(&desc->lock, flags);
c9126b2e 168
b227e233 169 /*
0d443b70
MT
170 * Indicate if there are multiple registrations on the
171 * internal NMI handler call chains (SERR and IO_CHECK).
b227e233 172 */
553222f3
DZ
173 WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
174 WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
b227e233 175
c9126b2e
DZ
176 /*
177 * some handlers need to be executed first otherwise a fake
178 * event confuses some handlers (kdump uses this flag)
179 */
180 if (action->flags & NMI_FLAG_FIRST)
181 list_add_rcu(&action->list, &desc->head);
182 else
183 list_add_tail_rcu(&action->list, &desc->head);
184
c455fd92 185 raw_spin_unlock_irqrestore(&desc->lock, flags);
c9126b2e
DZ
186 return 0;
187}
72b3fb24 188EXPORT_SYMBOL(__register_nmi_handler);
c9126b2e 189
72b3fb24 190void unregister_nmi_handler(unsigned int type, const char *name)
c9126b2e
DZ
191{
192 struct nmi_desc *desc = nmi_to_desc(type);
193 struct nmiaction *n;
194 unsigned long flags;
195
c455fd92 196 raw_spin_lock_irqsave(&desc->lock, flags);
c9126b2e
DZ
197
198 list_for_each_entry_rcu(n, &desc->head, list) {
199 /*
200 * the name passed in to describe the nmi handler
201 * is used as the lookup key
202 */
203 if (!strcmp(n->name, name)) {
204 WARN(in_nmi(),
205 "Trying to free NMI (%s) from NMI context!\n", n->name);
206 list_del_rcu(&n->list);
207 break;
208 }
209 }
210
c455fd92 211 raw_spin_unlock_irqrestore(&desc->lock, flags);
c9126b2e 212 synchronize_rcu();
c9126b2e 213}
c9126b2e
DZ
214EXPORT_SYMBOL_GPL(unregister_nmi_handler);
215
9326638c 216static void
1d48922c
DZ
217pci_serr_error(unsigned char reason, struct pt_regs *regs)
218{
553222f3 219 /* check to see if anyone registered against these types of errors */
bf9f2ee2 220 if (nmi_handle(NMI_SERR, regs))
553222f3
DZ
221 return;
222
1d48922c
DZ
223 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224 reason, smp_processor_id());
225
1d48922c 226 if (panic_on_unrecovered_nmi)
58c5661f 227 nmi_panic(regs, "NMI: Not continuing");
1d48922c
DZ
228
229 pr_emerg("Dazed and confused, but trying to continue\n");
230
231 /* Clear and disable the PCI SERR error line. */
232 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
233 outb(reason, NMI_REASON_PORT);
234}
9326638c 235NOKPROBE_SYMBOL(pci_serr_error);
1d48922c 236
9326638c 237static void
1d48922c
DZ
238io_check_error(unsigned char reason, struct pt_regs *regs)
239{
240 unsigned long i;
241
553222f3 242 /* check to see if anyone registered against these types of errors */
bf9f2ee2 243 if (nmi_handle(NMI_IO_CHECK, regs))
553222f3
DZ
244 return;
245
1d48922c
DZ
246 pr_emerg(
247 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
248 reason, smp_processor_id());
57da8b96 249 show_regs(regs);
1d48922c 250
1717f209 251 if (panic_on_io_nmi) {
58c5661f 252 nmi_panic(regs, "NMI IOCK error: Not continuing");
1717f209
HK
253
254 /*
255 * If we end up here, it means we have received an NMI while
256 * processing panic(). Simply return without delaying and
257 * re-enabling NMIs.
258 */
259 return;
260 }
1d48922c
DZ
261
262 /* Re-enable the IOCK line, wait for a few seconds */
263 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
264 outb(reason, NMI_REASON_PORT);
265
266 i = 20000;
267 while (--i) {
268 touch_nmi_watchdog();
269 udelay(100);
270 }
271
272 reason &= ~NMI_REASON_CLEAR_IOCHK;
273 outb(reason, NMI_REASON_PORT);
274}
9326638c 275NOKPROBE_SYMBOL(io_check_error);
1d48922c 276
9326638c 277static void
1d48922c
DZ
278unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
279{
9c48f1c6
DZ
280 int handled;
281
b227e233
DZ
282 /*
283 * Use 'false' as back-to-back NMIs are dealt with one level up.
284 * Of course this makes having multiple 'unknown' handlers useless
285 * as only the first one is ever run (unless it can actually determine
286 * if it caused the NMI)
287 */
bf9f2ee2 288 handled = nmi_handle(NMI_UNKNOWN, regs);
efc3aac5
DZ
289 if (handled) {
290 __this_cpu_add(nmi_stats.unknown, handled);
1d48922c 291 return;
efc3aac5
DZ
292 }
293
294 __this_cpu_add(nmi_stats.unknown, 1);
295
1d48922c
DZ
296 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
297 reason, smp_processor_id());
298
299 pr_emerg("Do you have a strange power saving mode enabled?\n");
300 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
58c5661f 301 nmi_panic(regs, "NMI: Not continuing");
1d48922c
DZ
302
303 pr_emerg("Dazed and confused, but trying to continue\n");
304}
9326638c 305NOKPROBE_SYMBOL(unknown_nmi_error);
1d48922c 306
b227e233
DZ
307static DEFINE_PER_CPU(bool, swallow_nmi);
308static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
309
9326638c 310static void default_do_nmi(struct pt_regs *regs)
1d48922c
DZ
311{
312 unsigned char reason = 0;
9c48f1c6 313 int handled;
b227e233 314 bool b2b = false;
1d48922c
DZ
315
316 /*
317 * CPU-specific NMI must be processed before non-CPU-specific
318 * NMI, otherwise we may lose it, because the CPU-specific
319 * NMI can not be detected/processed on other CPUs.
320 */
b227e233
DZ
321
322 /*
323 * Back-to-back NMIs are interesting because they can either
324 * be two NMI or more than two NMIs (any thing over two is dropped
325 * due to NMI being edge-triggered). If this is the second half
326 * of the back-to-back NMI, assume we dropped things and process
327 * more handlers. Otherwise reset the 'swallow' NMI behaviour
328 */
329 if (regs->ip == __this_cpu_read(last_nmi_rip))
330 b2b = true;
331 else
332 __this_cpu_write(swallow_nmi, false);
333
334 __this_cpu_write(last_nmi_rip, regs->ip);
335
bf9f2ee2 336 handled = nmi_handle(NMI_LOCAL, regs);
efc3aac5 337 __this_cpu_add(nmi_stats.normal, handled);
b227e233
DZ
338 if (handled) {
339 /*
340 * There are cases when a NMI handler handles multiple
341 * events in the current NMI. One of these events may
342 * be queued for in the next NMI. Because the event is
343 * already handled, the next NMI will result in an unknown
344 * NMI. Instead lets flag this for a potential NMI to
345 * swallow.
346 */
347 if (handled > 1)
348 __this_cpu_write(swallow_nmi, true);
1d48922c 349 return;
b227e233 350 }
1d48922c 351
b279d67d
HK
352 /*
353 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
354 *
355 * Another CPU may be processing panic routines while holding
356 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
357 * and if so, call its callback directly. If there is no CPU preparing
358 * crash dump, we simply loop here.
359 */
360 while (!raw_spin_trylock(&nmi_reason_lock)) {
361 run_crash_ipi_callback(regs);
362 cpu_relax();
363 }
364
064a59b6 365 reason = x86_platform.get_nmi_reason();
1d48922c
DZ
366
367 if (reason & NMI_REASON_MASK) {
368 if (reason & NMI_REASON_SERR)
369 pci_serr_error(reason, regs);
370 else if (reason & NMI_REASON_IOCHK)
371 io_check_error(reason, regs);
372#ifdef CONFIG_X86_32
373 /*
374 * Reassert NMI in case it became active
375 * meanwhile as it's edge-triggered:
376 */
377 reassert_nmi();
378#endif
efc3aac5 379 __this_cpu_add(nmi_stats.external, 1);
1d48922c
DZ
380 raw_spin_unlock(&nmi_reason_lock);
381 return;
382 }
383 raw_spin_unlock(&nmi_reason_lock);
384
b227e233
DZ
385 /*
386 * Only one NMI can be latched at a time. To handle
387 * this we may process multiple nmi handlers at once to
388 * cover the case where an NMI is dropped. The downside
389 * to this approach is we may process an NMI prematurely,
390 * while its real NMI is sitting latched. This will cause
391 * an unknown NMI on the next run of the NMI processing.
392 *
393 * We tried to flag that condition above, by setting the
394 * swallow_nmi flag when we process more than one event.
395 * This condition is also only present on the second half
396 * of a back-to-back NMI, so we flag that condition too.
397 *
398 * If both are true, we assume we already processed this
399 * NMI previously and we swallow it. Otherwise we reset
400 * the logic.
401 *
402 * There are scenarios where we may accidentally swallow
403 * a 'real' unknown NMI. For example, while processing
404 * a perf NMI another perf NMI comes in along with a
405 * 'real' unknown NMI. These two NMIs get combined into
406 * one (as descibed above). When the next NMI gets
407 * processed, it will be flagged by perf as handled, but
408 * noone will know that there was a 'real' unknown NMI sent
409 * also. As a result it gets swallowed. Or if the first
410 * perf NMI returns two events handled then the second
411 * NMI will get eaten by the logic below, again losing a
412 * 'real' unknown NMI. But this is the best we can do
413 * for now.
414 */
415 if (b2b && __this_cpu_read(swallow_nmi))
efc3aac5 416 __this_cpu_add(nmi_stats.swallow, 1);
b227e233
DZ
417 else
418 unknown_nmi_error(reason, regs);
1d48922c 419}
9326638c 420NOKPROBE_SYMBOL(default_do_nmi);
1d48922c 421
ccd49c23 422/*
0b22930e
AL
423 * NMIs can page fault or hit breakpoints which will cause it to lose
424 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
9d050416
AL
425 *
426 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
427 * NMI processing. On x86_64, the asm glue protects us from nested NMIs
428 * if the outer NMI came from kernel mode, but we can still nest if the
429 * outer NMI came from user mode.
430 *
431 * To handle these nested NMIs, we have three states:
ccd49c23
SR
432 *
433 * 1) not running
434 * 2) executing
435 * 3) latched
436 *
437 * When no NMI is in progress, it is in the "not running" state.
438 * When an NMI comes in, it goes into the "executing" state.
439 * Normally, if another NMI is triggered, it does not interrupt
440 * the running NMI and the HW will simply latch it so that when
441 * the first NMI finishes, it will restart the second NMI.
442 * (Note, the latch is binary, thus multiple NMIs triggering,
443 * when one is running, are ignored. Only one NMI is restarted.)
444 *
9d050416
AL
445 * If an NMI executes an iret, another NMI can preempt it. We do not
446 * want to allow this new NMI to run, but we want to execute it when the
447 * first one finishes. We set the state to "latched", and the exit of
448 * the first NMI will perform a dec_return, if the result is zero
449 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
450 * dec_return would have set the state to NMI_EXECUTING (what we want it
451 * to be when we are running). In this case, we simply jump back to
452 * rerun the NMI handler again, and restart the 'latched' NMI.
c7d65a78
SR
453 *
454 * No trap (breakpoint or page fault) should be hit before nmi_restart,
455 * thus there is no race between the first check of state for NOT_RUNNING
456 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
457 * at this point.
70fb74a5
SR
458 *
459 * In case the NMI takes a page fault, we need to save off the CR2
460 * because the NMI could have preempted another page fault and corrupt
461 * the CR2 that is about to be read. As nested NMIs must be restarted
462 * and they can not take breakpoints or page faults, the update of the
463 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
464 * Otherwise, there would be a race of another nested NMI coming in
465 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
ccd49c23
SR
466 */
467enum nmi_states {
c7d65a78 468 NMI_NOT_RUNNING = 0,
ccd49c23
SR
469 NMI_EXECUTING,
470 NMI_LATCHED,
471};
472static DEFINE_PER_CPU(enum nmi_states, nmi_state);
70fb74a5 473static DEFINE_PER_CPU(unsigned long, nmi_cr2);
ccd49c23 474
9d050416 475#ifdef CONFIG_X86_64
ccd49c23 476/*
9d050416
AL
477 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
478 * some care, the inner breakpoint will clobber the outer breakpoint's
479 * stack.
ccd49c23 480 *
9d050416
AL
481 * If a breakpoint is being processed, and the debug stack is being
482 * used, if an NMI comes in and also hits a breakpoint, the stack
483 * pointer will be set to the same fixed address as the breakpoint that
484 * was interrupted, causing that stack to be corrupted. To handle this
485 * case, check if the stack that was interrupted is the debug stack, and
486 * if so, change the IDT so that new breakpoints will use the current
487 * stack and not switch to the fixed address. On return of the NMI,
488 * switch back to the original IDT.
ccd49c23
SR
489 */
490static DEFINE_PER_CPU(int, update_debug_stack);
2a594d4c
TG
491
492static bool notrace is_debug_stack(unsigned long addr)
493{
494 struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
495 unsigned long top = CEA_ESTACK_TOP(cs, DB);
496 unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
497
498 if (__this_cpu_read(debug_stack_usage))
499 return true;
500 /*
501 * Note, this covers the guard page between DB and DB1 as well to
502 * avoid two checks. But by all means @addr can never point into
503 * the guard page.
504 */
505 return addr >= bot && addr < top;
506}
507NOKPROBE_SYMBOL(is_debug_stack);
9d050416 508#endif
228bdaa9 509
9d050416
AL
510dotraplinkage notrace void
511do_nmi(struct pt_regs *regs, long error_code)
ccd49c23 512{
60dcaad5
TG
513 if (IS_ENABLED(CONFIG_SMP) && cpu_is_offline(smp_processor_id()))
514 return;
515
9d050416
AL
516 if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
517 this_cpu_write(nmi_state, NMI_LATCHED);
518 return;
519 }
520 this_cpu_write(nmi_state, NMI_EXECUTING);
521 this_cpu_write(nmi_cr2, read_cr2());
522nmi_restart:
523
524#ifdef CONFIG_X86_64
228bdaa9
SR
525 /*
526 * If we interrupted a breakpoint, it is possible that
527 * the nmi handler will have breakpoints too. We need to
528 * change the IDT such that breakpoints that happen here
529 * continue to use the NMI stack.
530 */
531 if (unlikely(is_debug_stack(regs->sp))) {
532 debug_stack_set_zero();
c0525a69 533 this_cpu_write(update_debug_stack, 1);
228bdaa9 534 }
ccd49c23
SR
535#endif
536
1d48922c
DZ
537 nmi_enter();
538
539 inc_irq_stat(__nmi_count);
540
541 if (!ignore_nmis)
542 default_do_nmi(regs);
543
544 nmi_exit();
228bdaa9 545
9d050416
AL
546#ifdef CONFIG_X86_64
547 if (unlikely(this_cpu_read(update_debug_stack))) {
548 debug_stack_reset();
549 this_cpu_write(update_debug_stack, 0);
550 }
551#endif
552
553 if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
554 write_cr2(this_cpu_read(nmi_cr2));
555 if (this_cpu_dec_return(nmi_state))
556 goto nmi_restart;
04dcbdb8
TG
557
558 if (user_mode(regs))
559 mds_user_clear_cpu_buffers();
1d48922c 560}
9326638c 561NOKPROBE_SYMBOL(do_nmi);
1d48922c
DZ
562
563void stop_nmi(void)
564{
565 ignore_nmis++;
566}
567
568void restart_nmi(void)
569{
570 ignore_nmis--;
571}
b227e233
DZ
572
573/* reset the back-to-back NMI logic */
574void local_touch_nmi(void)
575{
576 __this_cpu_write(last_nmi_rip, 0);
577}
29c6fb7b 578EXPORT_SYMBOL_GPL(local_touch_nmi);