]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kernel/smpboot.c
x86/apic: Get rid of apic:: Dest_logical
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / smpboot.c
CommitLineData
9ff554e9 1// SPDX-License-Identifier: GPL-2.0-or-later
c767a54b 2 /*
4cedb334
GOC
3 * x86 SMP booting functions
4 *
87c6fe26 5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
8f47e163 6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
4cedb334
GOC
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
4cedb334
GOC
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
c767a54b
JP
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
68a1c3f8
GC
42#include <linux/init.h>
43#include <linux/smp.h>
186f4360 44#include <linux/export.h>
70708a18 45#include <linux/sched.h>
105ab3d8 46#include <linux/sched/topology.h>
ef8bd77f 47#include <linux/sched/hotplug.h>
68db0cf1 48#include <linux/sched/task_stack.h>
69c18c15 49#include <linux/percpu.h>
57c8a661 50#include <linux/memblock.h>
cb3c8b90
GOC
51#include <linux/err.h>
52#include <linux/nmi.h>
69575d38 53#include <linux/tboot.h>
5a0e3ad6 54#include <linux/gfp.h>
1a022e3f 55#include <linux/cpuidle.h>
98fa15f3 56#include <linux/numa.h>
65fddcfc 57#include <linux/pgtable.h>
e2b0d619 58#include <linux/overflow.h>
69c18c15 59
8aef135c 60#include <asm/acpi.h>
cb3c8b90 61#include <asm/desc.h>
69c18c15
GC
62#include <asm/nmi.h>
63#include <asm/irq.h>
48927bbb 64#include <asm/realmode.h>
69c18c15
GC
65#include <asm/cpu.h>
66#include <asm/numa.h>
cb3c8b90
GOC
67#include <asm/tlbflush.h>
68#include <asm/mtrr.h>
ea530692 69#include <asm/mwait.h>
7b6aa335 70#include <asm/apic.h>
7167d08e 71#include <asm/io_apic.h>
78f7f1e5 72#include <asm/fpu/internal.h>
569712b2 73#include <asm/setup.h>
bdbcdd48 74#include <asm/uv/uv.h>
cb3c8b90 75#include <linux/mc146818rtc.h>
b81bb373 76#include <asm/i8259.h>
646e29a1 77#include <asm/misc.h>
9043442b 78#include <asm/qspinlock.h>
1340ccfa
AS
79#include <asm/intel-family.h>
80#include <asm/cpu_device_id.h>
1f50ddb4 81#include <asm/spec-ctrl.h>
447ae316 82#include <asm/hw_irq.h>
c9a1ff31 83#include <asm/stackprotector.h>
48927bbb 84
a355352b 85/* representing HT siblings of each logical CPU */
0816b0f0 86DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
a355352b
GC
87EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88
89/* representing HT and core siblings of each logical CPU */
0816b0f0 90DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
a355352b
GC
91EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92
2e4c54da
LB
93/* representing HT, core, and die siblings of each logical CPU */
94DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96
0816b0f0 97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
b3d7336d 98
a355352b 99/* Per CPU bogomips and other parameters */
2c773dd3 100DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
a355352b 101EXPORT_PER_CPU_SYMBOL(cpu_info);
768d9505 102
1f12e32f 103/* Logical package management. We might want to allocate that dynamically */
1f12e32f
TG
104unsigned int __max_logical_packages __read_mostly;
105EXPORT_SYMBOL(__max_logical_packages);
7b0501b1 106static unsigned int logical_packages __read_mostly;
212bf4fd 107static unsigned int logical_die __read_mostly;
1f12e32f 108
70b8301f 109/* Maximum number of SMT threads on any online core */
947134d9 110int __read_mostly __max_smt_threads = 1;
70b8301f 111
7d25127c
TC
112/* Flag to indicate if a complete sched domain rebuild is required */
113bool x86_topology_update;
114
115int arch_update_cpu_topology(void)
116{
117 int retval = x86_topology_update;
118
119 x86_topology_update = false;
120 return retval;
121}
122
f77aa308
TG
123static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&rtc_lock, flags);
128 CMOS_WRITE(0xa, 0xf);
129 spin_unlock_irqrestore(&rtc_lock, flags);
f77aa308
TG
130 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
131 start_eip >> 4;
f77aa308
TG
132 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
133 start_eip & 0xf;
f77aa308
TG
134}
135
136static inline void smpboot_restore_warm_reset_vector(void)
137{
138 unsigned long flags;
139
f77aa308
TG
140 /*
141 * Paranoid: Set warm reset code and vector here back
142 * to default values.
143 */
144 spin_lock_irqsave(&rtc_lock, flags);
145 CMOS_WRITE(0, 0xf);
146 spin_unlock_irqrestore(&rtc_lock, flags);
147
148 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
149}
150
b56e7d45 151static void init_freq_invariance(bool secondary);
1567c3e3 152
cb3c8b90 153/*
30106c17
FY
154 * Report back to the Boot Processor during boot time or to the caller processor
155 * during CPU online.
cb3c8b90 156 */
148f9bb8 157static void smp_callin(void)
cb3c8b90 158{
f91fecc0 159 int cpuid;
cb3c8b90
GOC
160
161 /*
162 * If waken up by an INIT in an 82489DX configuration
656bba30
LB
163 * cpu_callout_mask guarantees we don't get here before
164 * an INIT_deassert IPI reaches our local APIC, so it is
165 * now safe to touch our local APIC.
cb3c8b90 166 */
e1c467e6 167 cpuid = smp_processor_id();
cb3c8b90 168
cb3c8b90
GOC
169 /*
170 * the boot CPU has finished the init stage and is spinning
171 * on callin_map until we finish. We are free to set up this
172 * CPU, first the APIC. (this is probably redundant on most
173 * boards)
174 */
05f7e46d 175 apic_ap_setup();
cb3c8b90 176
b565201c
JS
177 /*
178 * Save our processor parameters. Note: this information
179 * is needed for clock calibration.
180 */
181 smp_store_cpu_info(cpuid);
182
76ce7cfe
PT
183 /*
184 * The topology information must be up to date before
185 * calibrate_delay() and notify_cpu_starting().
186 */
187 set_cpu_sibling_map(raw_smp_processor_id());
188
b56e7d45 189 init_freq_invariance(true);
1567c3e3 190
cb3c8b90
GOC
191 /*
192 * Get our bogomips.
b565201c
JS
193 * Update loops_per_jiffy in cpu_data. Previous call to
194 * smp_store_cpu_info() stored a value that is close but not as
195 * accurate as the value just calculated.
cb3c8b90 196 */
cb3c8b90 197 calibrate_delay();
b565201c 198 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
cfc1b9a6 199 pr_debug("Stack at about %p\n", &cpuid);
cb3c8b90 200
5ef428c4
AK
201 wmb();
202
85257024
PZ
203 notify_cpu_starting(cpuid);
204
cb3c8b90
GOC
205 /*
206 * Allow the master to continue.
207 */
c2d1cec1 208 cpumask_set_cpu(cpuid, cpu_callin_mask);
cb3c8b90
GOC
209}
210
e1c467e6
FY
211static int cpu0_logical_apicid;
212static int enable_start_cpu0;
bbc2ff6a
GOC
213/*
214 * Activate a secondary processor.
215 */
148f9bb8 216static void notrace start_secondary(void *unused)
bbc2ff6a
GOC
217{
218 /*
c7ad5ad2
AL
219 * Don't put *anything* except direct CPU state initialization
220 * before cpu_init(), SMP booting is too fragile that we want to
221 * limit the things done here to the most necessary things.
bbc2ff6a 222 */
7652ac92 223 cr4_init();
e1c467e6 224
fd89a137 225#ifdef CONFIG_X86_32
b40827fa 226 /* switch away from the initial page table */
fd89a137
JR
227 load_cr3(swapper_pg_dir);
228 __flush_tlb_all();
229#endif
520d0308 230 cpu_init_exception_handling();
4ba55e65
AL
231 cpu_init();
232 x86_cpuinit.early_percpu_clock_init();
233 preempt_disable();
234 smp_callin();
235
236 enable_start_cpu0 = 0;
237
bbc2ff6a
GOC
238 /* otherwise gcc will move up smp_processor_id before the cpu_init */
239 barrier();
240 /*
a1652bb8 241 * Check TSC synchronization with the boot CPU:
bbc2ff6a
GOC
242 */
243 check_tsc_sync_target();
244
1f50ddb4
TG
245 speculative_store_bypass_ht_init();
246
bbc2ff6a 247 /*
8ed4f3e6
TG
248 * Lock vector_lock, set CPU online and bring the vector
249 * allocator online. Online must be set with vector_lock held
250 * to prevent a concurrent irq setup/teardown from seeing a
251 * half valid vector space.
bbc2ff6a 252 */
d388e5fd 253 lock_vector_lock();
c2d1cec1 254 set_cpu_online(smp_processor_id(), true);
8ed4f3e6 255 lapic_online();
d388e5fd 256 unlock_vector_lock();
2a442c9c 257 cpu_set_state_online(smp_processor_id());
78c06176 258 x86_platform.nmi_init();
bbc2ff6a 259
0cefa5b9
MS
260 /* enable local interrupts */
261 local_irq_enable();
262
736decac 263 x86_cpuinit.setup_percpu_clockev();
bbc2ff6a
GOC
264
265 wmb();
fc6d73d6 266 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
bbc2ff6a
GOC
267}
268
6a4d2657
TG
269/**
270 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271 * @cpu: CPU to check
272 */
273bool topology_is_primary_thread(unsigned int cpu)
274{
275 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
276}
277
f048c399
TG
278/**
279 * topology_smt_supported - Check whether SMT is supported by the CPUs
280 */
281bool topology_smt_supported(void)
282{
283 return smp_num_siblings > 1;
284}
285
30bb9811
AK
286/**
287 * topology_phys_to_logical_pkg - Map a physical package id to a logical
288 *
289 * Returns logical package id or -1 if not found
290 */
291int topology_phys_to_logical_pkg(unsigned int phys_pkg)
292{
293 int cpu;
294
295 for_each_possible_cpu(cpu) {
296 struct cpuinfo_x86 *c = &cpu_data(cpu);
297
298 if (c->initialized && c->phys_proc_id == phys_pkg)
299 return c->logical_proc_id;
300 }
301 return -1;
302}
303EXPORT_SYMBOL(topology_phys_to_logical_pkg);
212bf4fd
LB
304/**
305 * topology_phys_to_logical_die - Map a physical die id to logical
306 *
307 * Returns logical die id or -1 if not found
308 */
309int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
310{
311 int cpu;
312 int proc_id = cpu_data(cur_cpu).phys_proc_id;
313
314 for_each_possible_cpu(cpu) {
315 struct cpuinfo_x86 *c = &cpu_data(cpu);
316
317 if (c->initialized && c->cpu_die_id == die_id &&
318 c->phys_proc_id == proc_id)
319 return c->logical_die_id;
320 }
321 return -1;
322}
323EXPORT_SYMBOL(topology_phys_to_logical_die);
30bb9811 324
9d85eb91
TG
325/**
326 * topology_update_package_map - Update the physical to logical package map
327 * @pkg: The physical package id as retrieved via CPUID
328 * @cpu: The cpu for which this is updated
329 */
330int topology_update_package_map(unsigned int pkg, unsigned int cpu)
1f12e32f 331{
30bb9811 332 int new;
1f12e32f 333
30bb9811
AK
334 /* Already available somewhere? */
335 new = topology_phys_to_logical_pkg(pkg);
336 if (new >= 0)
1f12e32f
TG
337 goto found;
338
7b0501b1 339 new = logical_packages++;
9d85eb91
TG
340 if (new != pkg) {
341 pr_info("CPU %u Converting physical %u to logical package %u\n",
342 cpu, pkg, new);
343 }
1f12e32f 344found:
30bb9811 345 cpu_data(cpu).logical_proc_id = new;
1f12e32f
TG
346 return 0;
347}
212bf4fd
LB
348/**
349 * topology_update_die_map - Update the physical to logical die map
350 * @die: The die id as retrieved via CPUID
351 * @cpu: The cpu for which this is updated
352 */
353int topology_update_die_map(unsigned int die, unsigned int cpu)
354{
355 int new;
356
357 /* Already available somewhere? */
358 new = topology_phys_to_logical_die(die, cpu);
359 if (new >= 0)
360 goto found;
361
362 new = logical_die++;
363 if (new != die) {
364 pr_info("CPU %u Converting physical %u to logical die %u\n",
365 cpu, die, new);
366 }
367found:
368 cpu_data(cpu).logical_die_id = new;
369 return 0;
370}
1f12e32f 371
30106c17
FY
372void __init smp_store_boot_cpu_info(void)
373{
374 int id = 0; /* CPU 0 */
375 struct cpuinfo_x86 *c = &cpu_data(id);
376
377 *c = boot_cpu_data;
378 c->cpu_index = id;
b4c0a732 379 topology_update_package_map(c->phys_proc_id, id);
212bf4fd 380 topology_update_die_map(c->cpu_die_id, id);
30bb9811 381 c->initialized = true;
30106c17
FY
382}
383
1d89a7f0
GOC
384/*
385 * The bootstrap kernel entry code has set these up. Save them for
386 * a given CPU
387 */
148f9bb8 388void smp_store_cpu_info(int id)
1d89a7f0
GOC
389{
390 struct cpuinfo_x86 *c = &cpu_data(id);
391
30bb9811
AK
392 /* Copy boot_cpu_data only on the first bringup */
393 if (!c->initialized)
394 *c = boot_cpu_data;
1d89a7f0 395 c->cpu_index = id;
30106c17
FY
396 /*
397 * During boot time, CPU0 has this setup already. Save the info when
398 * bringing up AP or offlined CPU0.
399 */
400 identify_secondary_cpu(c);
30bb9811 401 c->initialized = true;
1d89a7f0
GOC
402}
403
cebf15eb
DH
404static bool
405topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406{
407 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
408
409 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
410}
411
148f9bb8 412static bool
316ad248 413topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
d4fbe4f0 414{
316ad248
PZ
415 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
416
cebf15eb 417 return !WARN_ONCE(!topology_same_node(c, o),
316ad248
PZ
418 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
419 "[node: %d != %d]. Ignoring dependency.\n",
420 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
421}
422
7d79a7bd 423#define link_mask(mfunc, c1, c2) \
316ad248 424do { \
7d79a7bd
BG
425 cpumask_set_cpu((c1), mfunc(c2)); \
426 cpumask_set_cpu((c2), mfunc(c1)); \
316ad248
PZ
427} while (0)
428
148f9bb8 429static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248 430{
362f924b 431 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
316ad248
PZ
432 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433
434 if (c->phys_proc_id == o->phys_proc_id &&
7745f03e 435 c->cpu_die_id == o->cpu_die_id &&
79a8b9aa
BP
436 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
437 if (c->cpu_core_id == o->cpu_core_id)
438 return topology_sane(c, o, "smt");
439
440 if ((c->cu_id != 0xff) &&
441 (o->cu_id != 0xff) &&
442 (c->cu_id == o->cu_id))
443 return topology_sane(c, o, "smt");
444 }
316ad248
PZ
445
446 } else if (c->phys_proc_id == o->phys_proc_id &&
7745f03e 447 c->cpu_die_id == o->cpu_die_id &&
316ad248
PZ
448 c->cpu_core_id == o->cpu_core_id) {
449 return topology_sane(c, o, "smt");
450 }
451
452 return false;
453}
454
1340ccfa
AS
455/*
456 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
457 *
458 * These are Intel CPUs that enumerate an LLC that is shared by
459 * multiple NUMA nodes. The LLC on these systems is shared for
460 * off-package data access but private to the NUMA node (half
461 * of the package) for on-package access.
462 *
463 * CPUID (the source of the information about the LLC) can only
464 * enumerate the cache as being shared *or* unshared, but not
465 * this particular configuration. The CPU in this case enumerates
466 * the cache to be shared across the entire package (spanning both
467 * NUMA nodes).
468 */
469
470static const struct x86_cpu_id snc_cpu[] = {
adefe55e 471 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
1340ccfa
AS
472 {}
473};
474
148f9bb8 475static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248
PZ
476{
477 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
478
1340ccfa
AS
479 /* Do not match if we do not have a valid APICID for cpu: */
480 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
481 return false;
316ad248 482
1340ccfa
AS
483 /* Do not match if LLC id does not match: */
484 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
485 return false;
486
487 /*
488 * Allow the SNC topology without warning. Return of false
489 * means 'c' does not share the LLC of 'o'. This will be
490 * reflected to userspace.
491 */
492 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
493 return false;
494
495 return topology_sane(c, o, "llc");
d4fbe4f0
AH
496}
497
cebf15eb
DH
498/*
499 * Unlike the other levels, we do not enforce keeping a
500 * multicore group inside a NUMA node. If this happens, we will
501 * discard the MC level of the topology later.
502 */
169d0869 503static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248 504{
cebf15eb
DH
505 if (c->phys_proc_id == o->phys_proc_id)
506 return true;
316ad248
PZ
507 return false;
508}
1d89a7f0 509
2e4c54da
LB
510static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
511{
512 if ((c->phys_proc_id == o->phys_proc_id) &&
513 (c->cpu_die_id == o->cpu_die_id))
514 return true;
515 return false;
516}
517
518
d3d37d85
TC
519#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
520static inline int x86_sched_itmt_flags(void)
521{
522 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
523}
524
525#ifdef CONFIG_SCHED_MC
526static int x86_core_flags(void)
527{
528 return cpu_core_flags() | x86_sched_itmt_flags();
529}
530#endif
531#ifdef CONFIG_SCHED_SMT
532static int x86_smt_flags(void)
533{
534 return cpu_smt_flags() | x86_sched_itmt_flags();
535}
536#endif
537#endif
538
8f37961c 539static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
cebf15eb 540#ifdef CONFIG_SCHED_SMT
d3d37d85 541 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
cebf15eb
DH
542#endif
543#ifdef CONFIG_SCHED_MC
d3d37d85 544 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
cebf15eb
DH
545#endif
546 { NULL, },
547};
8f37961c
TC
548
549static struct sched_domain_topology_level x86_topology[] = {
550#ifdef CONFIG_SCHED_SMT
d3d37d85 551 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
8f37961c
TC
552#endif
553#ifdef CONFIG_SCHED_MC
d3d37d85 554 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
8f37961c
TC
555#endif
556 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
557 { NULL, },
558};
559
cebf15eb 560/*
8f37961c 561 * Set if a package/die has multiple NUMA nodes inside.
1340ccfa
AS
562 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
563 * Sub-NUMA Clustering have this.
cebf15eb 564 */
8f37961c 565static bool x86_has_numa_in_package;
cebf15eb 566
148f9bb8 567void set_cpu_sibling_map(int cpu)
768d9505 568{
316ad248 569 bool has_smt = smp_num_siblings > 1;
b0bc225d 570 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
768d9505 571 struct cpuinfo_x86 *c = &cpu_data(cpu);
316ad248 572 struct cpuinfo_x86 *o;
70b8301f 573 int i, threads;
768d9505 574
c2d1cec1 575 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
768d9505 576
b0bc225d 577 if (!has_mp) {
7d79a7bd 578 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
316ad248 579 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
7d79a7bd 580 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
2e4c54da 581 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
768d9505
GC
582 c->booted_cores = 1;
583 return;
584 }
585
c2d1cec1 586 for_each_cpu(i, cpu_sibling_setup_mask) {
316ad248
PZ
587 o = &cpu_data(i);
588
589 if ((i == cpu) || (has_smt && match_smt(c, o)))
7d79a7bd 590 link_mask(topology_sibling_cpumask, cpu, i);
316ad248 591
b0bc225d 592 if ((i == cpu) || (has_mp && match_llc(c, o)))
7d79a7bd 593 link_mask(cpu_llc_shared_mask, cpu, i);
316ad248 594
ceb1cbac
KB
595 }
596
597 /*
598 * This needs a separate iteration over the cpus because we rely on all
7d79a7bd 599 * topology_sibling_cpumask links to be set-up.
ceb1cbac
KB
600 */
601 for_each_cpu(i, cpu_sibling_setup_mask) {
602 o = &cpu_data(i);
603
169d0869 604 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
7d79a7bd 605 link_mask(topology_core_cpumask, cpu, i);
316ad248 606
768d9505
GC
607 /*
608 * Does this new cpu bringup a new core?
609 */
7d79a7bd
BG
610 if (cpumask_weight(
611 topology_sibling_cpumask(cpu)) == 1) {
768d9505
GC
612 /*
613 * for each core in package, increment
614 * the booted_cores for this new cpu
615 */
7d79a7bd
BG
616 if (cpumask_first(
617 topology_sibling_cpumask(i)) == i)
768d9505
GC
618 c->booted_cores++;
619 /*
620 * increment the core count for all
621 * the other cpus in this package
622 */
623 if (i != cpu)
624 cpu_data(i).booted_cores++;
625 } else if (i != cpu && !c->booted_cores)
626 c->booted_cores = cpu_data(i).booted_cores;
627 }
169d0869 628 if (match_pkg(c, o) && !topology_same_node(c, o))
8f37961c 629 x86_has_numa_in_package = true;
2e4c54da
LB
630
631 if ((i == cpu) || (has_mp && match_die(c, o)))
632 link_mask(topology_die_cpumask, cpu, i);
768d9505 633 }
70b8301f
AK
634
635 threads = cpumask_weight(topology_sibling_cpumask(cpu));
636 if (threads > __max_smt_threads)
637 __max_smt_threads = threads;
768d9505
GC
638}
639
70708a18 640/* maps the cpu to the sched domain representing multi-core */
030bb203 641const struct cpumask *cpu_coregroup_mask(int cpu)
70708a18 642{
9f646389 643 return cpu_llc_shared_mask(cpu);
030bb203
RR
644}
645
a4928cff 646static void impress_friends(void)
904541e2
GOC
647{
648 int cpu;
649 unsigned long bogosum = 0;
650 /*
651 * Allow the user to impress friends.
652 */
c767a54b 653 pr_debug("Before bogomips\n");
904541e2 654 for_each_possible_cpu(cpu)
c2d1cec1 655 if (cpumask_test_cpu(cpu, cpu_callout_mask))
904541e2 656 bogosum += cpu_data(cpu).loops_per_jiffy;
c767a54b 657 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
f68e00a3 658 num_online_cpus(),
904541e2
GOC
659 bogosum/(500000/HZ),
660 (bogosum/(5000/HZ))%100);
661
c767a54b 662 pr_debug("Before bogocount - setting activated=1\n");
904541e2
GOC
663}
664
569712b2 665void __inquire_remote_apic(int apicid)
cb3c8b90
GOC
666{
667 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
a6c23905 668 const char * const names[] = { "ID", "VERSION", "SPIV" };
cb3c8b90
GOC
669 int timeout;
670 u32 status;
671
c767a54b 672 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
cb3c8b90
GOC
673
674 for (i = 0; i < ARRAY_SIZE(regs); i++) {
c767a54b 675 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
cb3c8b90
GOC
676
677 /*
678 * Wait for idle.
679 */
680 status = safe_apic_wait_icr_idle();
681 if (status)
c767a54b 682 pr_cont("a previous APIC delivery may have failed\n");
cb3c8b90 683
1b374e4d 684 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
cb3c8b90
GOC
685
686 timeout = 0;
687 do {
688 udelay(100);
689 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
690 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
691
692 switch (status) {
693 case APIC_ICR_RR_VALID:
694 status = apic_read(APIC_RRR);
c767a54b 695 pr_cont("%08x\n", status);
cb3c8b90
GOC
696 break;
697 default:
c767a54b 698 pr_cont("failed\n");
cb3c8b90
GOC
699 }
700 }
701}
702
d68921f9
LB
703/*
704 * The Multiprocessor Specification 1.4 (1997) example code suggests
705 * that there should be a 10ms delay between the BSP asserting INIT
706 * and de-asserting INIT, when starting a remote processor.
707 * But that slows boot and resume on modern processors, which include
708 * many cores and don't require that delay.
709 *
710 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
1a744cb3 711 * Modern processor families are quirked to remove the delay entirely.
d68921f9
LB
712 */
713#define UDELAY_10MS_DEFAULT 10000
714
656279a1 715static unsigned int init_udelay = UINT_MAX;
d68921f9
LB
716
717static int __init cpu_init_udelay(char *str)
718{
719 get_option(&str, &init_udelay);
720
721 return 0;
722}
723early_param("cpu_init_udelay", cpu_init_udelay);
724
1a744cb3
LB
725static void __init smp_quirk_init_udelay(void)
726{
727 /* if cmdline changed it from default, leave it alone */
656279a1 728 if (init_udelay != UINT_MAX)
1a744cb3
LB
729 return;
730
731 /* if modern processor, use no delay */
732 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
0b13bec7 733 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
656279a1 734 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
1a744cb3 735 init_udelay = 0;
656279a1
LB
736 return;
737 }
f1ccd249
LB
738 /* else, use legacy delay */
739 init_udelay = UDELAY_10MS_DEFAULT;
1a744cb3
LB
740}
741
cb3c8b90
GOC
742/*
743 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
744 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
745 * won't ... remember to clear down the APIC, etc later.
746 */
148f9bb8 747int
e1c467e6 748wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
cb3c8b90 749{
e57d04e5 750 u32 dm = apic->irq_dest_mode ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
cb3c8b90
GOC
751 unsigned long send_status, accept_status = 0;
752 int maxlvt;
753
754 /* Target chip */
cb3c8b90
GOC
755 /* Boot on the stack */
756 /* Kick the second */
e57d04e5 757 apic_icr_write(APIC_DM_NMI | dm, apicid);
cb3c8b90 758
cfc1b9a6 759 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
760 send_status = safe_apic_wait_icr_idle();
761
762 /*
763 * Give the other CPU some time to accept the IPI.
764 */
765 udelay(200);
cff9ab2b 766 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
59ef48a5
CG
767 maxlvt = lapic_get_maxlvt();
768 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
769 apic_write(APIC_ESR, 0);
770 accept_status = (apic_read(APIC_ESR) & 0xEF);
771 }
c767a54b 772 pr_debug("NMI sent\n");
cb3c8b90
GOC
773
774 if (send_status)
c767a54b 775 pr_err("APIC never delivered???\n");
cb3c8b90 776 if (accept_status)
c767a54b 777 pr_err("APIC delivery error (%lx)\n", accept_status);
cb3c8b90
GOC
778
779 return (send_status | accept_status);
780}
cb3c8b90 781
148f9bb8 782static int
569712b2 783wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
cb3c8b90 784{
f5d6a52f 785 unsigned long send_status = 0, accept_status = 0;
cb3c8b90
GOC
786 int maxlvt, num_starts, j;
787
593f4a78
MR
788 maxlvt = lapic_get_maxlvt();
789
cb3c8b90
GOC
790 /*
791 * Be paranoid about clearing APIC errors.
792 */
cff9ab2b 793 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
593f4a78
MR
794 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
795 apic_write(APIC_ESR, 0);
cb3c8b90
GOC
796 apic_read(APIC_ESR);
797 }
798
c767a54b 799 pr_debug("Asserting INIT\n");
cb3c8b90
GOC
800
801 /*
802 * Turn INIT on target chip
803 */
cb3c8b90
GOC
804 /*
805 * Send IPI
806 */
1b374e4d
SS
807 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
808 phys_apicid);
cb3c8b90 809
cfc1b9a6 810 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
811 send_status = safe_apic_wait_icr_idle();
812
7cb68598 813 udelay(init_udelay);
cb3c8b90 814
c767a54b 815 pr_debug("Deasserting INIT\n");
cb3c8b90
GOC
816
817 /* Target chip */
cb3c8b90 818 /* Send IPI */
1b374e4d 819 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
cb3c8b90 820
cfc1b9a6 821 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
822 send_status = safe_apic_wait_icr_idle();
823
824 mb();
cb3c8b90
GOC
825
826 /*
827 * Should we send STARTUP IPIs ?
828 *
829 * Determine this based on the APIC version.
830 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
831 */
cff9ab2b 832 if (APIC_INTEGRATED(boot_cpu_apic_version))
cb3c8b90
GOC
833 num_starts = 2;
834 else
835 num_starts = 0;
836
cb3c8b90
GOC
837 /*
838 * Run STARTUP IPI loop.
839 */
c767a54b 840 pr_debug("#startup loops: %d\n", num_starts);
cb3c8b90 841
cb3c8b90 842 for (j = 1; j <= num_starts; j++) {
c767a54b 843 pr_debug("Sending STARTUP #%d\n", j);
593f4a78
MR
844 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
845 apic_write(APIC_ESR, 0);
cb3c8b90 846 apic_read(APIC_ESR);
c767a54b 847 pr_debug("After apic_write\n");
cb3c8b90
GOC
848
849 /*
850 * STARTUP IPI
851 */
852
853 /* Target chip */
cb3c8b90
GOC
854 /* Boot on the stack */
855 /* Kick the second */
1b374e4d
SS
856 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
857 phys_apicid);
cb3c8b90
GOC
858
859 /*
860 * Give the other CPU some time to accept the IPI.
861 */
fcafddec
LB
862 if (init_udelay == 0)
863 udelay(10);
864 else
a9bcaa02 865 udelay(300);
cb3c8b90 866
c767a54b 867 pr_debug("Startup point 1\n");
cb3c8b90 868
cfc1b9a6 869 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
870 send_status = safe_apic_wait_icr_idle();
871
872 /*
873 * Give the other CPU some time to accept the IPI.
874 */
fcafddec
LB
875 if (init_udelay == 0)
876 udelay(10);
877 else
a9bcaa02 878 udelay(200);
cb3c8b90 879
593f4a78 880 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
cb3c8b90 881 apic_write(APIC_ESR, 0);
cb3c8b90
GOC
882 accept_status = (apic_read(APIC_ESR) & 0xEF);
883 if (send_status || accept_status)
884 break;
885 }
c767a54b 886 pr_debug("After Startup\n");
cb3c8b90
GOC
887
888 if (send_status)
c767a54b 889 pr_err("APIC never delivered???\n");
cb3c8b90 890 if (accept_status)
c767a54b 891 pr_err("APIC delivery error (%lx)\n", accept_status);
cb3c8b90
GOC
892
893 return (send_status | accept_status);
894}
cb3c8b90 895
2eaad1fd 896/* reduce the number of lines printed when booting a large cpu count system */
148f9bb8 897static void announce_cpu(int cpu, int apicid)
2eaad1fd 898{
98fa15f3 899 static int current_node = NUMA_NO_NODE;
4adc8b71 900 int node = early_cpu_to_node(cpu);
a17bce4d 901 static int width, node_width;
646e29a1
BP
902
903 if (!width)
904 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
2eaad1fd 905
a17bce4d
BP
906 if (!node_width)
907 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
908
909 if (cpu == 1)
910 printk(KERN_INFO "x86: Booting SMP configuration:\n");
911
719b3680 912 if (system_state < SYSTEM_RUNNING) {
2eaad1fd
MT
913 if (node != current_node) {
914 if (current_node > (-1))
a17bce4d 915 pr_cont("\n");
2eaad1fd 916 current_node = node;
a17bce4d
BP
917
918 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
919 node_width - num_digits(node), " ", node);
2eaad1fd 920 }
646e29a1
BP
921
922 /* Add padding for the BSP */
923 if (cpu == 1)
924 pr_cont("%*s", width + 1, " ");
925
926 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
927
2eaad1fd
MT
928 } else
929 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
930 node, cpu, apicid);
931}
932
e1c467e6
FY
933static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
934{
935 int cpu;
936
937 cpu = smp_processor_id();
938 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
939 return NMI_HANDLED;
940
941 return NMI_DONE;
942}
943
944/*
945 * Wake up AP by INIT, INIT, STARTUP sequence.
946 *
947 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
948 * boot-strap code which is not a desired behavior for waking up BSP. To
949 * void the boot-strap code, wake up CPU0 by NMI instead.
950 *
951 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
952 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
953 * We'll change this code in the future to wake up hard offlined CPU0 if
954 * real platform and request are available.
955 */
148f9bb8 956static int
e1c467e6
FY
957wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
958 int *cpu0_nmi_registered)
959{
960 int id;
961 int boot_error;
962
ea7bdc65
JK
963 preempt_disable();
964
e1c467e6
FY
965 /*
966 * Wake up AP by INIT, INIT, STARTUP sequence.
967 */
ea7bdc65
JK
968 if (cpu) {
969 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
970 goto out;
971 }
e1c467e6
FY
972
973 /*
974 * Wake up BSP by nmi.
975 *
976 * Register a NMI handler to help wake up CPU0.
977 */
978 boot_error = register_nmi_handler(NMI_LOCAL,
979 wakeup_cpu0_nmi, 0, "wake_cpu0");
980
981 if (!boot_error) {
982 enable_start_cpu0 = 1;
983 *cpu0_nmi_registered = 1;
e57d04e5 984 if (apic->irq_dest_mode)
e1c467e6
FY
985 id = cpu0_logical_apicid;
986 else
987 id = apicid;
988 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
989 }
ea7bdc65
JK
990
991out:
992 preempt_enable();
e1c467e6
FY
993
994 return boot_error;
995}
996
66c7ceb4 997int common_cpu_up(unsigned int cpu, struct task_struct *idle)
3f85483b 998{
66c7ceb4
TG
999 int ret;
1000
3f85483b
BO
1001 /* Just in case we booted with a single CPU. */
1002 alternatives_enable_smp();
1003
1004 per_cpu(current_task, cpu) = idle;
c9a1ff31 1005 cpu_init_stack_canary(cpu, idle);
3f85483b 1006
66c7ceb4
TG
1007 /* Initialize the interrupt stack(s) */
1008 ret = irq_init_percpu_irqstack(cpu);
1009 if (ret)
1010 return ret;
1011
3f85483b
BO
1012#ifdef CONFIG_X86_32
1013 /* Stack for startup_32 can be just as for start_secondary onwards */
cd493a6d 1014 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
3f85483b 1015#else
3f85483b
BO
1016 initial_gs = per_cpu_offset(cpu);
1017#endif
66c7ceb4 1018 return 0;
3f85483b
BO
1019}
1020
cb3c8b90
GOC
1021/*
1022 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1023 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1f5bcabf
IM
1024 * Returns zero if CPU booted OK, else error code from
1025 * ->wakeup_secondary_cpu.
cb3c8b90 1026 */
10e66760
VK
1027static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1028 int *cpu0_nmi_registered)
cb3c8b90 1029{
48927bbb 1030 /* start_ip had better be page-aligned! */
f37240f1 1031 unsigned long start_ip = real_mode_header->trampoline_start;
48927bbb 1032
cb3c8b90 1033 unsigned long boot_error = 0;
ce4b1b16 1034 unsigned long timeout;
cb3c8b90 1035
b9b1a9c3 1036 idle->thread.sp = (unsigned long)task_pt_regs(idle);
69218e47 1037 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
3e970473 1038 initial_code = (unsigned long)start_secondary;
b32f96c7 1039 initial_stack = idle->thread.sp;
cb3c8b90 1040
613e396b 1041 /* Enable the espfix hack for this CPU */
20d5e4a9 1042 init_espfix_ap(cpu);
20d5e4a9 1043
2eaad1fd
MT
1044 /* So we see what's up */
1045 announce_cpu(cpu, apicid);
cb3c8b90
GOC
1046
1047 /*
1048 * This grunge runs the startup process for
1049 * the targeted processor.
1050 */
1051
e348caef 1052 if (x86_platform.legacy.warm_reset) {
cb3c8b90 1053
cfc1b9a6 1054 pr_debug("Setting warm reset code and vector.\n");
cb3c8b90 1055
34d05591
JS
1056 smpboot_setup_warm_reset_vector(start_ip);
1057 /*
1058 * Be paranoid about clearing APIC errors.
db96b0a0 1059 */
cff9ab2b 1060 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
db96b0a0
CG
1061 apic_write(APIC_ESR, 0);
1062 apic_read(APIC_ESR);
1063 }
34d05591 1064 }
cb3c8b90 1065
ce4b1b16
IM
1066 /*
1067 * AP might wait on cpu_callout_mask in cpu_init() with
1068 * cpu_initialized_mask set if previous attempt to online
1069 * it timed-out. Clear cpu_initialized_mask so that after
1070 * INIT/SIPI it could start with a clean state.
1071 */
1072 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1073 smp_mb();
1074
cb3c8b90 1075 /*
e1c467e6
FY
1076 * Wake up a CPU in difference cases:
1077 * - Use the method in the APIC driver if it's defined
1078 * Otherwise,
1079 * - Use an INIT boot APIC message for APs or NMI for BSP.
cb3c8b90 1080 */
1f5bcabf
IM
1081 if (apic->wakeup_secondary_cpu)
1082 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1083 else
e1c467e6 1084 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
10e66760 1085 cpu0_nmi_registered);
cb3c8b90
GOC
1086
1087 if (!boot_error) {
1088 /*
6e38f1e7 1089 * Wait 10s total for first sign of life from AP
cb3c8b90 1090 */
ce4b1b16
IM
1091 boot_error = -1;
1092 timeout = jiffies + 10*HZ;
1093 while (time_before(jiffies, timeout)) {
1094 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1095 /*
1096 * Tell AP to proceed with initialization
1097 */
1098 cpumask_set_cpu(cpu, cpu_callout_mask);
1099 boot_error = 0;
1100 break;
1101 }
ce4b1b16
IM
1102 schedule();
1103 }
1104 }
cb3c8b90 1105
ce4b1b16 1106 if (!boot_error) {
cb3c8b90 1107 /*
ce4b1b16 1108 * Wait till AP completes initial initialization
cb3c8b90 1109 */
ce4b1b16 1110 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
68f202e4
SS
1111 /*
1112 * Allow other tasks to run while we wait for the
1113 * AP to come online. This also gives a chance
1114 * for the MTRR work(triggered by the AP coming online)
1115 * to be completed in the stop machine context.
1116 */
1117 schedule();
cb3c8b90 1118 }
cb3c8b90
GOC
1119 }
1120
e348caef 1121 if (x86_platform.legacy.warm_reset) {
02421f98
YL
1122 /*
1123 * Cleanup possible dangling ends...
1124 */
1125 smpboot_restore_warm_reset_vector();
1126 }
e1c467e6 1127
cb3c8b90
GOC
1128 return boot_error;
1129}
1130
148f9bb8 1131int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
cb3c8b90 1132{
a21769a4 1133 int apicid = apic->cpu_present_to_apicid(cpu);
10e66760 1134 int cpu0_nmi_registered = 0;
cb3c8b90 1135 unsigned long flags;
10e66760 1136 int err, ret = 0;
cb3c8b90 1137
7a10e2a9 1138 lockdep_assert_irqs_enabled();
cb3c8b90 1139
cfc1b9a6 1140 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
cb3c8b90 1141
30106c17 1142 if (apicid == BAD_APICID ||
c284b42a 1143 !physid_isset(apicid, phys_cpu_present_map) ||
fa63030e 1144 !apic->apic_id_valid(apicid)) {
c767a54b 1145 pr_err("%s: bad cpu %d\n", __func__, cpu);
cb3c8b90
GOC
1146 return -EINVAL;
1147 }
1148
1149 /*
1150 * Already booted CPU?
1151 */
c2d1cec1 1152 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
cfc1b9a6 1153 pr_debug("do_boot_cpu %d Already started\n", cpu);
cb3c8b90
GOC
1154 return -ENOSYS;
1155 }
1156
1157 /*
1158 * Save current MTRR state in case it was changed since early boot
1159 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1160 */
1161 mtrr_save_state();
1162
2a442c9c
PM
1163 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1164 err = cpu_check_up_prepare(cpu);
1165 if (err && err != -EBUSY)
1166 return err;
cb3c8b90 1167
644c1541 1168 /* the FPU context is blank, nobody can own it */
317b622c 1169 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
644c1541 1170
66c7ceb4
TG
1171 err = common_cpu_up(cpu, tidle);
1172 if (err)
1173 return err;
3f85483b 1174
10e66760 1175 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
61165d7a 1176 if (err) {
feef1e8e 1177 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
10e66760
VK
1178 ret = -EIO;
1179 goto unreg_nmi;
cb3c8b90
GOC
1180 }
1181
1182 /*
1183 * Check TSC synchronization with the AP (keep irqs disabled
1184 * while doing so):
1185 */
1186 local_irq_save(flags);
1187 check_tsc_sync_source(cpu);
1188 local_irq_restore(flags);
1189
7c04e64a 1190 while (!cpu_online(cpu)) {
cb3c8b90
GOC
1191 cpu_relax();
1192 touch_nmi_watchdog();
1193 }
1194
10e66760
VK
1195unreg_nmi:
1196 /*
1197 * Clean up the nmi handler. Do this after the callin and callout sync
1198 * to avoid impact of possible long unregister time.
1199 */
1200 if (cpu0_nmi_registered)
1201 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1202
1203 return ret;
cb3c8b90
GOC
1204}
1205
7167d08e
HK
1206/**
1207 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1208 */
1209void arch_disable_smp_support(void)
1210{
1211 disable_ioapic_support();
1212}
1213
8aef135c
GOC
1214/*
1215 * Fall back to non SMP mode after errors.
1216 *
1217 * RED-PEN audit/test this more. I bet there is more state messed up here.
1218 */
1219static __init void disable_smp(void)
1220{
613c25ef
TG
1221 pr_info("SMP disabled\n");
1222
ef4c59a4
TG
1223 disable_ioapic_support();
1224
4f062896
RR
1225 init_cpu_present(cpumask_of(0));
1226 init_cpu_possible(cpumask_of(0));
0f385d1d 1227
8aef135c 1228 if (smp_found_config)
b6df1b8b 1229 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
8aef135c 1230 else
b6df1b8b 1231 physid_set_mask_of_physid(0, &phys_cpu_present_map);
7d79a7bd
BG
1232 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1233 cpumask_set_cpu(0, topology_core_cpumask(0));
2e4c54da 1234 cpumask_set_cpu(0, topology_die_cpumask(0));
8aef135c
GOC
1235}
1236
1237/*
1238 * Various sanity checks.
1239 */
4f45ed9f 1240static void __init smp_sanity_check(void)
8aef135c 1241{
ac23d4ee 1242 preempt_disable();
a58f03b0 1243
1ff2f20d 1244#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
a58f03b0
YL
1245 if (def_to_bigsmp && nr_cpu_ids > 8) {
1246 unsigned int cpu;
1247 unsigned nr;
1248
c767a54b
JP
1249 pr_warn("More than 8 CPUs detected - skipping them\n"
1250 "Use CONFIG_X86_BIGSMP\n");
a58f03b0
YL
1251
1252 nr = 0;
1253 for_each_present_cpu(cpu) {
1254 if (nr >= 8)
c2d1cec1 1255 set_cpu_present(cpu, false);
a58f03b0
YL
1256 nr++;
1257 }
1258
1259 nr = 0;
1260 for_each_possible_cpu(cpu) {
1261 if (nr >= 8)
c2d1cec1 1262 set_cpu_possible(cpu, false);
a58f03b0
YL
1263 nr++;
1264 }
1265
1266 nr_cpu_ids = 8;
1267 }
1268#endif
1269
8aef135c 1270 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
c767a54b 1271 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
55c395b4
MT
1272 hard_smp_processor_id());
1273
8aef135c
GOC
1274 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1275 }
1276
8aef135c
GOC
1277 /*
1278 * Should not be necessary because the MP table should list the boot
1279 * CPU too, but we do it for the sake of robustness anyway.
1280 */
a27a6210 1281 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
c767a54b
JP
1282 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1283 boot_cpu_physical_apicid);
8aef135c
GOC
1284 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1285 }
ac23d4ee 1286 preempt_enable();
8aef135c
GOC
1287}
1288
1289static void __init smp_cpu_index_default(void)
1290{
1291 int i;
1292 struct cpuinfo_x86 *c;
1293
7c04e64a 1294 for_each_possible_cpu(i) {
8aef135c
GOC
1295 c = &cpu_data(i);
1296 /* mark all to hotplug */
9628937d 1297 c->cpu_index = nr_cpu_ids;
8aef135c
GOC
1298 }
1299}
1300
4b1244b4
DL
1301static void __init smp_get_logical_apicid(void)
1302{
1303 if (x2apic_mode)
1304 cpu0_logical_apicid = apic_read(APIC_LDR);
1305 else
1306 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1307}
1308
8aef135c 1309/*
935356ce
DL
1310 * Prepare for SMP bootup.
1311 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1312 * for common interface support.
8aef135c
GOC
1313 */
1314void __init native_smp_prepare_cpus(unsigned int max_cpus)
1315{
7ad728f9
RR
1316 unsigned int i;
1317
8aef135c 1318 smp_cpu_index_default();
792363d2 1319
8aef135c
GOC
1320 /*
1321 * Setup boot CPU information
1322 */
30106c17 1323 smp_store_boot_cpu_info(); /* Final full version of the data */
792363d2
YL
1324 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1325 mb();
bd22a2f1 1326
7ad728f9 1327 for_each_possible_cpu(i) {
79f55997
LZ
1328 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1329 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
2e4c54da 1330 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
b3d7336d 1331 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
7ad728f9 1332 }
8f37961c
TC
1333
1334 /*
1335 * Set 'default' x86 topology, this matches default_topology() in that
1336 * it has NUMA nodes as a topology level. See also
1337 * native_smp_cpus_done().
1338 *
1339 * Must be done before set_cpus_sibling_map() is ran.
1340 */
1341 set_sched_topology(x86_topology);
1342
8aef135c 1343 set_cpu_sibling_map(0);
b56e7d45 1344 init_freq_invariance(false);
4f45ed9f
DL
1345 smp_sanity_check();
1346
1347 switch (apic_intr_mode) {
1348 case APIC_PIC:
1349 case APIC_VIRTUAL_WIRE_NO_CONFIG:
613c25ef
TG
1350 disable_smp();
1351 return;
4f45ed9f 1352 case APIC_SYMMETRIC_IO_NO_ROUTING:
613c25ef 1353 disable_smp();
a2510d15
DL
1354 /* Setup local timer */
1355 x86_init.timers.setup_percpu_clockev();
250a1ac6 1356 return;
4f45ed9f
DL
1357 case APIC_VIRTUAL_WIRE:
1358 case APIC_SYMMETRIC_IO:
613c25ef 1359 break;
8aef135c
GOC
1360 }
1361
a2510d15
DL
1362 /* Setup local timer */
1363 x86_init.timers.setup_percpu_clockev();
8aef135c 1364
4b1244b4 1365 smp_get_logical_apicid();
ef4c59a4 1366
d54ff31d 1367 pr_info("CPU0: ");
8aef135c 1368 print_cpu_info(&cpu_data(0));
c4bd1fda 1369
9ec808a0 1370 uv_system_init();
d0af9eed
SS
1371
1372 set_mtrr_aps_delayed_init();
1a744cb3
LB
1373
1374 smp_quirk_init_udelay();
1f50ddb4
TG
1375
1376 speculative_store_bypass_ht_init();
8aef135c 1377}
d0af9eed 1378
56555855 1379void arch_thaw_secondary_cpus_begin(void)
d0af9eed
SS
1380{
1381 set_mtrr_aps_delayed_init();
1382}
1383
56555855 1384void arch_thaw_secondary_cpus_end(void)
d0af9eed
SS
1385{
1386 mtrr_aps_init();
1387}
1388
a8db8453
GOC
1389/*
1390 * Early setup to make printk work.
1391 */
1392void __init native_smp_prepare_boot_cpu(void)
1393{
1394 int me = smp_processor_id();
552be871 1395 switch_to_new_gdt(me);
c2d1cec1
MT
1396 /* already set me in cpu_online_mask in boot_cpu_init() */
1397 cpumask_set_cpu(me, cpu_callout_mask);
2a442c9c 1398 cpu_set_state_online(me);
090d54bc 1399 native_pv_lock_init();
a8db8453
GOC
1400}
1401
63e708f8 1402void __init calculate_max_logical_packages(void)
83f7eb9c 1403{
b4c0a732
PB
1404 int ncpus;
1405
b4c0a732
PB
1406 /*
1407 * Today neither Intel nor AMD support heterogenous systems so
1408 * extrapolate the boot cpu's data to all packages.
1409 */
947134d9 1410 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
aa02ef09 1411 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
b4c0a732 1412 pr_info("Max logical packages: %u\n", __max_logical_packages);
63e708f8
PB
1413}
1414
1415void __init native_smp_cpus_done(unsigned int max_cpus)
1416{
1417 pr_debug("Boot done\n");
1418
1419 calculate_max_logical_packages();
83f7eb9c 1420
8f37961c
TC
1421 if (x86_has_numa_in_package)
1422 set_sched_topology(x86_numa_in_package_topology);
1423
99e8b9ca 1424 nmi_selftest();
83f7eb9c 1425 impress_friends();
d0af9eed 1426 mtrr_aps_init();
83f7eb9c
GOC
1427}
1428
3b11ce7f
MT
1429static int __initdata setup_possible_cpus = -1;
1430static int __init _setup_possible_cpus(char *str)
1431{
1432 get_option(&str, &setup_possible_cpus);
1433 return 0;
1434}
1435early_param("possible_cpus", _setup_possible_cpus);
1436
1437
68a1c3f8 1438/*
4f062896 1439 * cpu_possible_mask should be static, it cannot change as cpu's
68a1c3f8 1440 * are onlined, or offlined. The reason is per-cpu data-structures
4d1d0977 1441 * are allocated by some modules at init time, and don't expect to
68a1c3f8 1442 * do this dynamically on cpu arrival/departure.
4f062896 1443 * cpu_present_mask on the other hand can change dynamically.
68a1c3f8
GC
1444 * In case when cpu_hotplug is not compiled, then we resort to current
1445 * behaviour, which is cpu_possible == cpu_present.
1446 * - Ashok Raj
1447 *
1448 * Three ways to find out the number of additional hotplug CPUs:
1449 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
3b11ce7f 1450 * - The user can overwrite it with possible_cpus=NUM
68a1c3f8
GC
1451 * - Otherwise don't reserve additional CPUs.
1452 * We do this because additional CPUs waste a lot of memory.
1453 * -AK
1454 */
1455__init void prefill_possible_map(void)
1456{
cb48bb59 1457 int i, possible;
68a1c3f8 1458
2a51fe08
PB
1459 /* No boot processor was found in mptable or ACPI MADT */
1460 if (!num_processors) {
ff856051
VS
1461 if (boot_cpu_has(X86_FEATURE_APIC)) {
1462 int apicid = boot_cpu_physical_apicid;
1463 int cpu = hard_smp_processor_id();
2a51fe08 1464
ff856051 1465 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
2a51fe08 1466
ff856051
VS
1467 /* Make sure boot cpu is enumerated */
1468 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1469 apic->apic_id_valid(apicid))
1470 generic_processor_info(apicid, boot_cpu_apic_version);
1471 }
2a51fe08
PB
1472
1473 if (!num_processors)
1474 num_processors = 1;
1475 }
329513a3 1476
5f2eb550
JB
1477 i = setup_max_cpus ?: 1;
1478 if (setup_possible_cpus == -1) {
1479 possible = num_processors;
1480#ifdef CONFIG_HOTPLUG_CPU
1481 if (setup_max_cpus)
1482 possible += disabled_cpus;
1483#else
1484 if (possible > i)
1485 possible = i;
1486#endif
1487 } else
3b11ce7f
MT
1488 possible = setup_possible_cpus;
1489
730cf272
MT
1490 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1491
2b633e3f
YL
1492 /* nr_cpu_ids could be reduced via nr_cpus= */
1493 if (possible > nr_cpu_ids) {
9b130ad5 1494 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
2b633e3f
YL
1495 possible, nr_cpu_ids);
1496 possible = nr_cpu_ids;
3b11ce7f 1497 }
68a1c3f8 1498
5f2eb550
JB
1499#ifdef CONFIG_HOTPLUG_CPU
1500 if (!setup_max_cpus)
1501#endif
1502 if (possible > i) {
c767a54b 1503 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
5f2eb550
JB
1504 possible, setup_max_cpus);
1505 possible = i;
1506 }
1507
427d77a3
TG
1508 nr_cpu_ids = possible;
1509
c767a54b 1510 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
68a1c3f8
GC
1511 possible, max_t(int, possible - num_processors, 0));
1512
427d77a3
TG
1513 reset_cpu_possible_mask();
1514
68a1c3f8 1515 for (i = 0; i < possible; i++)
c2d1cec1 1516 set_cpu_possible(i, true);
68a1c3f8 1517}
69c18c15 1518
14adf855
CE
1519#ifdef CONFIG_HOTPLUG_CPU
1520
70b8301f
AK
1521/* Recompute SMT state for all CPUs on offline */
1522static void recompute_smt_state(void)
1523{
1524 int max_threads, cpu;
1525
1526 max_threads = 0;
1527 for_each_online_cpu (cpu) {
1528 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1529
1530 if (threads > max_threads)
1531 max_threads = threads;
1532 }
1533 __max_smt_threads = max_threads;
1534}
1535
14adf855
CE
1536static void remove_siblinginfo(int cpu)
1537{
1538 int sibling;
1539 struct cpuinfo_x86 *c = &cpu_data(cpu);
1540
7d79a7bd
BG
1541 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1542 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
14adf855
CE
1543 /*/
1544 * last thread sibling in this cpu core going down
1545 */
7d79a7bd 1546 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
14adf855
CE
1547 cpu_data(sibling).booted_cores--;
1548 }
1549
2e4c54da
LB
1550 for_each_cpu(sibling, topology_die_cpumask(cpu))
1551 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
7d79a7bd
BG
1552 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1553 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
03bd4e1f
WL
1554 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1555 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1556 cpumask_clear(cpu_llc_shared_mask(cpu));
7d79a7bd
BG
1557 cpumask_clear(topology_sibling_cpumask(cpu));
1558 cpumask_clear(topology_core_cpumask(cpu));
2e4c54da 1559 cpumask_clear(topology_die_cpumask(cpu));
14adf855 1560 c->cpu_core_id = 0;
45967493 1561 c->booted_cores = 0;
c2d1cec1 1562 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
70b8301f 1563 recompute_smt_state();
14adf855
CE
1564}
1565
4daa832d 1566static void remove_cpu_from_maps(int cpu)
69c18c15 1567{
c2d1cec1
MT
1568 set_cpu_online(cpu, false);
1569 cpumask_clear_cpu(cpu, cpu_callout_mask);
1570 cpumask_clear_cpu(cpu, cpu_callin_mask);
69c18c15 1571 /* was set by cpu_init() */
c2d1cec1 1572 cpumask_clear_cpu(cpu, cpu_initialized_mask);
23ca4bba 1573 numa_remove_cpu(cpu);
69c18c15
GC
1574}
1575
8227dce7 1576void cpu_disable_common(void)
69c18c15
GC
1577{
1578 int cpu = smp_processor_id();
69c18c15 1579
69c18c15
GC
1580 remove_siblinginfo(cpu);
1581
1582 /* It's now safe to remove this processor from the online map */
d388e5fd 1583 lock_vector_lock();
69c18c15 1584 remove_cpu_from_maps(cpu);
d388e5fd 1585 unlock_vector_lock();
d7b381bb 1586 fixup_irqs();
0fa115da 1587 lapic_offline();
8227dce7
AN
1588}
1589
1590int native_cpu_disable(void)
1591{
da6139e4
PB
1592 int ret;
1593
2cffad7b 1594 ret = lapic_can_unplug_cpu();
da6139e4
PB
1595 if (ret)
1596 return ret;
1597
8227dce7 1598 cpu_disable_common();
2ed53c0d 1599
52d6b926
AR
1600 /*
1601 * Disable the local APIC. Otherwise IPI broadcasts will reach
1602 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1603 * messages.
1604 *
1605 * Disabling the APIC must happen after cpu_disable_common()
1606 * which invokes fixup_irqs().
1607 *
1608 * Disabling the APIC preserves already set bits in IRR, but
1609 * an interrupt arriving after disabling the local APIC does not
1610 * set the corresponding IRR bit.
1611 *
1612 * fixup_irqs() scans IRR for set bits so it can raise a not
1613 * yet handled interrupt on the new destination CPU via an IPI
1614 * but obviously it can't do so for IRR bits which are not set.
1615 * IOW, interrupts arriving after disabling the local APIC will
1616 * be lost.
1617 */
1618 apic_soft_disable();
1619
69c18c15
GC
1620 return 0;
1621}
1622
2a442c9c 1623int common_cpu_die(unsigned int cpu)
54279552 1624{
2a442c9c 1625 int ret = 0;
54279552 1626
69c18c15 1627 /* We don't do anything here: idle task is faking death itself. */
54279552 1628
2ed53c0d 1629 /* They ack this in play_dead() by setting CPU_DEAD */
2a442c9c 1630 if (cpu_wait_death(cpu, 5)) {
2ed53c0d
LT
1631 if (system_state == SYSTEM_RUNNING)
1632 pr_info("CPU %u is now offline\n", cpu);
1633 } else {
1634 pr_err("CPU %u didn't die...\n", cpu);
2a442c9c 1635 ret = -1;
69c18c15 1636 }
2a442c9c
PM
1637
1638 return ret;
1639}
1640
1641void native_cpu_die(unsigned int cpu)
1642{
1643 common_cpu_die(cpu);
69c18c15 1644}
a21f5d88
AN
1645
1646void play_dead_common(void)
1647{
1648 idle_task_exit();
a21f5d88 1649
a21f5d88 1650 /* Ack it */
2a442c9c 1651 (void)cpu_report_death();
a21f5d88
AN
1652
1653 /*
1654 * With physical CPU hotplug, we should halt the cpu
1655 */
1656 local_irq_disable();
1657}
1658
e1c467e6
FY
1659static bool wakeup_cpu0(void)
1660{
1661 if (smp_processor_id() == 0 && enable_start_cpu0)
1662 return true;
1663
1664 return false;
1665}
1666
ea530692
PA
1667/*
1668 * We need to flush the caches before going to sleep, lest we have
1669 * dirty data in our caches when we come back up.
1670 */
1671static inline void mwait_play_dead(void)
1672{
1673 unsigned int eax, ebx, ecx, edx;
1674 unsigned int highest_cstate = 0;
1675 unsigned int highest_subcstate = 0;
ce5f6824 1676 void *mwait_ptr;
576cfb40 1677 int i;
ea530692 1678
0b13bec7
PW
1679 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1680 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
da6fa7ef 1681 return;
69fb3676 1682 if (!this_cpu_has(X86_FEATURE_MWAIT))
ea530692 1683 return;
840d2830 1684 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
ce5f6824 1685 return;
7b543a53 1686 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
ea530692
PA
1687 return;
1688
1689 eax = CPUID_MWAIT_LEAF;
1690 ecx = 0;
1691 native_cpuid(&eax, &ebx, &ecx, &edx);
1692
1693 /*
1694 * eax will be 0 if EDX enumeration is not valid.
1695 * Initialized below to cstate, sub_cstate value when EDX is valid.
1696 */
1697 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1698 eax = 0;
1699 } else {
1700 edx >>= MWAIT_SUBSTATE_SIZE;
1701 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1702 if (edx & MWAIT_SUBSTATE_MASK) {
1703 highest_cstate = i;
1704 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1705 }
1706 }
1707 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1708 (highest_subcstate - 1);
1709 }
1710
ce5f6824
PA
1711 /*
1712 * This should be a memory location in a cache line which is
1713 * unlikely to be touched by other processors. The actual
1714 * content is immaterial as it is not actually modified in any way.
1715 */
1716 mwait_ptr = &current_thread_info()->flags;
1717
a68e5c94
PA
1718 wbinvd();
1719
ea530692 1720 while (1) {
ce5f6824
PA
1721 /*
1722 * The CLFLUSH is a workaround for erratum AAI65 for
1723 * the Xeon 7400 series. It's not clear it is actually
1724 * needed, but it should be harmless in either case.
1725 * The WBINVD is insufficient due to the spurious-wakeup
1726 * case where we return around the loop.
1727 */
7d590cca 1728 mb();
ce5f6824 1729 clflush(mwait_ptr);
7d590cca 1730 mb();
ce5f6824 1731 __monitor(mwait_ptr, 0, 0);
ea530692
PA
1732 mb();
1733 __mwait(eax, 0);
e1c467e6
FY
1734 /*
1735 * If NMI wants to wake up CPU0, start CPU0.
1736 */
1737 if (wakeup_cpu0())
1738 start_cpu0();
ea530692
PA
1739 }
1740}
1741
406f992e 1742void hlt_play_dead(void)
ea530692 1743{
7b543a53 1744 if (__this_cpu_read(cpu_info.x86) >= 4)
a68e5c94
PA
1745 wbinvd();
1746
ea530692 1747 while (1) {
ea530692 1748 native_halt();
e1c467e6
FY
1749 /*
1750 * If NMI wants to wake up CPU0, start CPU0.
1751 */
1752 if (wakeup_cpu0())
1753 start_cpu0();
ea530692
PA
1754 }
1755}
1756
a21f5d88
AN
1757void native_play_dead(void)
1758{
1759 play_dead_common();
86886e55 1760 tboot_shutdown(TB_SHUTDOWN_WFS);
ea530692
PA
1761
1762 mwait_play_dead(); /* Only returns on failure */
1a022e3f
BO
1763 if (cpuidle_play_dead())
1764 hlt_play_dead();
a21f5d88
AN
1765}
1766
69c18c15 1767#else /* ... !CONFIG_HOTPLUG_CPU */
93be71b6 1768int native_cpu_disable(void)
69c18c15
GC
1769{
1770 return -ENOSYS;
1771}
1772
93be71b6 1773void native_cpu_die(unsigned int cpu)
69c18c15
GC
1774{
1775 /* We said "no" in __cpu_disable */
1776 BUG();
1777}
a21f5d88
AN
1778
1779void native_play_dead(void)
1780{
1781 BUG();
1782}
1783
68a1c3f8 1784#endif
1567c3e3 1785
e2b0d619 1786#ifdef CONFIG_X86_64
1567c3e3
GG
1787/*
1788 * APERF/MPERF frequency ratio computation.
1789 *
1790 * The scheduler wants to do frequency invariant accounting and needs a <1
1791 * ratio to account for the 'current' frequency, corresponding to
1792 * freq_curr / freq_max.
1793 *
1794 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1795 * our P-state setting is little more than a request/hint, we need to observe
1796 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1797 * interval after discarding idle time. This is given by:
1798 *
1799 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1800 *
1801 * where freq_base is the max non-turbo P-state.
1802 *
1803 * The freq_max term has to be set to a somewhat arbitrary value, because we
1804 * can't know which turbo states will be available at a given point in time:
1805 * it all depends on the thermal headroom of the entire package. We set it to
1806 * the turbo level with 4 cores active.
1807 *
1808 * Benchmarks show that's a good compromise between the 1C turbo ratio
1809 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1810 * which would ignore the entire turbo range (a conspicuous part, making
1811 * freq_curr/freq_max always maxed out).
1812 *
eacf0474
GG
1813 * An exception to the heuristic above is the Atom uarch, where we choose the
1814 * highest turbo level for freq_max since Atom's are generally oriented towards
1815 * power efficiency.
1816 *
1567c3e3
GG
1817 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1818 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1819 */
1820
1821DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1822
1823static DEFINE_PER_CPU(u64, arch_prev_aperf);
1824static DEFINE_PER_CPU(u64, arch_prev_mperf);
918229cd 1825static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1567c3e3
GG
1826static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1827
918229cd
GG
1828void arch_set_max_freq_ratio(bool turbo_disabled)
1829{
1830 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1831 arch_turbo_freq_ratio;
1832}
1833
1567c3e3
GG
1834static bool turbo_disabled(void)
1835{
1836 u64 misc_en;
1837 int err;
1838
1839 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1840 if (err)
1841 return false;
1842
1843 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1844}
1845
298c6f99
GG
1846static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1847{
1848 int err;
1849
1850 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1851 if (err)
1852 return false;
1853
1854 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1855 if (err)
1856 return false;
1857
1858 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1859 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1860
1861 return true;
1862}
1863
1567c3e3
GG
1864#include <asm/cpu_device_id.h>
1865#include <asm/intel-family.h>
1866
2fa9a3cf
BP
1867#define X86_MATCH(model) \
1868 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1869 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1567c3e3
GG
1870
1871static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
2fa9a3cf
BP
1872 X86_MATCH(XEON_PHI_KNL),
1873 X86_MATCH(XEON_PHI_KNM),
1567c3e3
GG
1874 {}
1875};
1876
1877static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
2fa9a3cf 1878 X86_MATCH(SKYLAKE_X),
1567c3e3
GG
1879 {}
1880};
1881
1882static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
2fa9a3cf
BP
1883 X86_MATCH(ATOM_GOLDMONT),
1884 X86_MATCH(ATOM_GOLDMONT_D),
1885 X86_MATCH(ATOM_GOLDMONT_PLUS),
1567c3e3
GG
1886 {}
1887};
1888
8bea0dfb
GG
1889static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1890 int num_delta_fratio)
1891{
1892 int fratio, delta_fratio, found;
1893 int err, i;
1894 u64 msr;
1895
8bea0dfb
GG
1896 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1897 if (err)
1898 return false;
1899
1900 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1901
1902 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1903 if (err)
1904 return false;
1905
1906 fratio = (msr >> 8) & 0xFF;
1907 i = 16;
1908 found = 0;
1909 do {
1910 if (found >= num_delta_fratio) {
1911 *turbo_freq = fratio;
1912 return true;
1913 }
1914
1915 delta_fratio = (msr >> (i + 5)) & 0x7;
1916
1917 if (delta_fratio) {
1918 found += 1;
1919 fratio -= delta_fratio;
1920 }
1921
1922 i += 8;
1923 } while (i < 64);
1924
1925 return true;
1926}
1927
2a0abc59
GG
1928static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1929{
1930 u64 ratios, counts;
1931 u32 group_size;
1932 int err, i;
1933
1934 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1935 if (err)
1936 return false;
1937
1938 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1939
1940 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1941 if (err)
1942 return false;
1943
1944 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1945 if (err)
1946 return false;
1947
1948 for (i = 0; i < 64; i += 8) {
1949 group_size = (counts >> i) & 0xFF;
1950 if (group_size >= size) {
1951 *turbo_freq = (ratios >> i) & 0xFF;
1952 return true;
1953 }
1954 }
1955
1956 return false;
1957}
1958
1959static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1567c3e3 1960{
23ccee22 1961 u64 msr;
1567c3e3
GG
1962 int err;
1963
2a0abc59 1964 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1567c3e3
GG
1965 if (err)
1966 return false;
1967
23ccee22 1968 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1567c3e3
GG
1969 if (err)
1970 return false;
1971
23ccee22
GG
1972 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1973 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1974
1975 /* The CPU may have less than 4 cores */
1976 if (!*turbo_freq)
1977 *turbo_freq = msr & 0xFF; /* 1C turbo */
1567c3e3 1978
1567c3e3
GG
1979 return true;
1980}
1981
1982static bool intel_set_max_freq_ratio(void)
1983{
918229cd 1984 u64 base_freq, turbo_freq;
f4291df1 1985 u64 turbo_ratio;
2a0abc59 1986
298c6f99
GG
1987 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1988 goto out;
1989
eacf0474
GG
1990 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1991 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1992 goto out;
1993
db441bd9
GG
1994 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1995 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
8bea0dfb
GG
1996 goto out;
1997
2a0abc59
GG
1998 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1999 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2000 goto out;
2001
2002 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2003 goto out;
1567c3e3
GG
2004
2005 return false;
2a0abc59
GG
2006
2007out:
9a6c2c3c
GG
2008 /*
2009 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2010 * but then fill all MSR's with zeroes.
51beea88
GG
2011 * Some CPUs have turbo boost but don't declare any turbo ratio
2012 * in MSR_TURBO_RATIO_LIMIT.
9a6c2c3c 2013 */
51beea88
GG
2014 if (!base_freq || !turbo_freq) {
2015 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
9a6c2c3c
GG
2016 return false;
2017 }
2018
f4291df1
GG
2019 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2020 if (!turbo_ratio) {
2021 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2022 return false;
2023 }
2024
2025 arch_turbo_freq_ratio = turbo_ratio;
918229cd 2026 arch_set_max_freq_ratio(turbo_disabled());
f4291df1 2027
2a0abc59 2028 return true;
1567c3e3
GG
2029}
2030
b56e7d45 2031static void init_counter_refs(void)
1567c3e3
GG
2032{
2033 u64 aperf, mperf;
2034
2035 rdmsrl(MSR_IA32_APERF, aperf);
2036 rdmsrl(MSR_IA32_MPERF, mperf);
2037
2038 this_cpu_write(arch_prev_aperf, aperf);
2039 this_cpu_write(arch_prev_mperf, mperf);
2040}
2041
b56e7d45 2042static void init_freq_invariance(bool secondary)
1567c3e3
GG
2043{
2044 bool ret = false;
2045
b56e7d45 2046 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
1567c3e3
GG
2047 return;
2048
b56e7d45
PZI
2049 if (secondary) {
2050 if (static_branch_likely(&arch_scale_freq_key)) {
2051 init_counter_refs();
2052 }
2053 return;
2054 }
2055
1567c3e3
GG
2056 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2057 ret = intel_set_max_freq_ratio();
2058
2059 if (ret) {
b56e7d45 2060 init_counter_refs();
1567c3e3
GG
2061 static_branch_enable(&arch_scale_freq_key);
2062 } else {
2063 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2064 }
2065}
2066
e2b0d619
GG
2067static void disable_freq_invariance_workfn(struct work_struct *work)
2068{
2069 static_branch_disable(&arch_scale_freq_key);
2070}
2071
2072static DECLARE_WORK(disable_freq_invariance_work,
2073 disable_freq_invariance_workfn);
2074
1567c3e3
GG
2075DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2076
2077void arch_scale_freq_tick(void)
2078{
e2b0d619 2079 u64 freq_scale = SCHED_CAPACITY_SCALE;
1567c3e3
GG
2080 u64 aperf, mperf;
2081 u64 acnt, mcnt;
2082
2083 if (!arch_scale_freq_invariant())
2084 return;
2085
2086 rdmsrl(MSR_IA32_APERF, aperf);
2087 rdmsrl(MSR_IA32_MPERF, mperf);
2088
2089 acnt = aperf - this_cpu_read(arch_prev_aperf);
2090 mcnt = mperf - this_cpu_read(arch_prev_mperf);
1567c3e3
GG
2091
2092 this_cpu_write(arch_prev_aperf, aperf);
2093 this_cpu_write(arch_prev_mperf, mperf);
2094
e2b0d619
GG
2095 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2096 goto error;
2097
2098 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2099 goto error;
1567c3e3
GG
2100
2101 freq_scale = div64_u64(acnt, mcnt);
e2b0d619
GG
2102 if (!freq_scale)
2103 goto error;
1567c3e3
GG
2104
2105 if (freq_scale > SCHED_CAPACITY_SCALE)
2106 freq_scale = SCHED_CAPACITY_SCALE;
2107
2108 this_cpu_write(arch_freq_scale, freq_scale);
e2b0d619
GG
2109 return;
2110
2111error:
2112 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2113 schedule_work(&disable_freq_invariance_work);
2114}
2115#else
2116static inline void init_freq_invariance(bool secondary)
2117{
1567c3e3 2118}
e2b0d619 2119#endif /* CONFIG_X86_64 */