]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - arch/x86/kernel/smpboot.c
ACPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()
[mirror_ubuntu-hirsute-kernel.git] / arch / x86 / kernel / smpboot.c
CommitLineData
9ff554e9 1// SPDX-License-Identifier: GPL-2.0-or-later
c767a54b 2 /*
4cedb334
GOC
3 * x86 SMP booting functions
4 *
87c6fe26 5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
8f47e163 6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
4cedb334
GOC
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
4cedb334
GOC
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
c767a54b
JP
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
68a1c3f8
GC
42#include <linux/init.h>
43#include <linux/smp.h>
186f4360 44#include <linux/export.h>
70708a18 45#include <linux/sched.h>
105ab3d8 46#include <linux/sched/topology.h>
ef8bd77f 47#include <linux/sched/hotplug.h>
68db0cf1 48#include <linux/sched/task_stack.h>
69c18c15 49#include <linux/percpu.h>
57c8a661 50#include <linux/memblock.h>
cb3c8b90
GOC
51#include <linux/err.h>
52#include <linux/nmi.h>
69575d38 53#include <linux/tboot.h>
5a0e3ad6 54#include <linux/gfp.h>
1a022e3f 55#include <linux/cpuidle.h>
98fa15f3 56#include <linux/numa.h>
65fddcfc 57#include <linux/pgtable.h>
e2b0d619 58#include <linux/overflow.h>
9c7d9017 59#include <linux/syscore_ops.h>
69c18c15 60
8aef135c 61#include <asm/acpi.h>
cb3c8b90 62#include <asm/desc.h>
69c18c15
GC
63#include <asm/nmi.h>
64#include <asm/irq.h>
48927bbb 65#include <asm/realmode.h>
69c18c15
GC
66#include <asm/cpu.h>
67#include <asm/numa.h>
cb3c8b90
GOC
68#include <asm/tlbflush.h>
69#include <asm/mtrr.h>
ea530692 70#include <asm/mwait.h>
7b6aa335 71#include <asm/apic.h>
7167d08e 72#include <asm/io_apic.h>
78f7f1e5 73#include <asm/fpu/internal.h>
569712b2 74#include <asm/setup.h>
bdbcdd48 75#include <asm/uv/uv.h>
cb3c8b90 76#include <linux/mc146818rtc.h>
b81bb373 77#include <asm/i8259.h>
646e29a1 78#include <asm/misc.h>
9043442b 79#include <asm/qspinlock.h>
1340ccfa
AS
80#include <asm/intel-family.h>
81#include <asm/cpu_device_id.h>
1f50ddb4 82#include <asm/spec-ctrl.h>
447ae316 83#include <asm/hw_irq.h>
c9a1ff31 84#include <asm/stackprotector.h>
48927bbb 85
41ea6672
NF
86#ifdef CONFIG_ACPI_CPPC_LIB
87#include <acpi/cppc_acpi.h>
88#endif
89
a355352b 90/* representing HT siblings of each logical CPU */
0816b0f0 91DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
a355352b
GC
92EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93
94/* representing HT and core siblings of each logical CPU */
0816b0f0 95DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
a355352b
GC
96EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97
2e4c54da
LB
98/* representing HT, core, and die siblings of each logical CPU */
99DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101
0816b0f0 102DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
b3d7336d 103
a355352b 104/* Per CPU bogomips and other parameters */
2c773dd3 105DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
a355352b 106EXPORT_PER_CPU_SYMBOL(cpu_info);
768d9505 107
1f12e32f 108/* Logical package management. We might want to allocate that dynamically */
1f12e32f
TG
109unsigned int __max_logical_packages __read_mostly;
110EXPORT_SYMBOL(__max_logical_packages);
7b0501b1 111static unsigned int logical_packages __read_mostly;
212bf4fd 112static unsigned int logical_die __read_mostly;
1f12e32f 113
70b8301f 114/* Maximum number of SMT threads on any online core */
947134d9 115int __read_mostly __max_smt_threads = 1;
70b8301f 116
7d25127c
TC
117/* Flag to indicate if a complete sched domain rebuild is required */
118bool x86_topology_update;
119
120int arch_update_cpu_topology(void)
121{
122 int retval = x86_topology_update;
123
124 x86_topology_update = false;
125 return retval;
126}
127
f77aa308
TG
128static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
129{
130 unsigned long flags;
131
132 spin_lock_irqsave(&rtc_lock, flags);
133 CMOS_WRITE(0xa, 0xf);
134 spin_unlock_irqrestore(&rtc_lock, flags);
f77aa308
TG
135 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
136 start_eip >> 4;
f77aa308
TG
137 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
138 start_eip & 0xf;
f77aa308
TG
139}
140
141static inline void smpboot_restore_warm_reset_vector(void)
142{
143 unsigned long flags;
144
f77aa308
TG
145 /*
146 * Paranoid: Set warm reset code and vector here back
147 * to default values.
148 */
149 spin_lock_irqsave(&rtc_lock, flags);
150 CMOS_WRITE(0, 0xf);
151 spin_unlock_irqrestore(&rtc_lock, flags);
152
153 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
154}
155
41ea6672 156static void init_freq_invariance(bool secondary, bool cppc_ready);
1567c3e3 157
cb3c8b90 158/*
30106c17
FY
159 * Report back to the Boot Processor during boot time or to the caller processor
160 * during CPU online.
cb3c8b90 161 */
148f9bb8 162static void smp_callin(void)
cb3c8b90 163{
f91fecc0 164 int cpuid;
cb3c8b90
GOC
165
166 /*
167 * If waken up by an INIT in an 82489DX configuration
656bba30
LB
168 * cpu_callout_mask guarantees we don't get here before
169 * an INIT_deassert IPI reaches our local APIC, so it is
170 * now safe to touch our local APIC.
cb3c8b90 171 */
e1c467e6 172 cpuid = smp_processor_id();
cb3c8b90 173
cb3c8b90
GOC
174 /*
175 * the boot CPU has finished the init stage and is spinning
176 * on callin_map until we finish. We are free to set up this
177 * CPU, first the APIC. (this is probably redundant on most
178 * boards)
179 */
05f7e46d 180 apic_ap_setup();
cb3c8b90 181
b565201c
JS
182 /*
183 * Save our processor parameters. Note: this information
184 * is needed for clock calibration.
185 */
186 smp_store_cpu_info(cpuid);
187
76ce7cfe
PT
188 /*
189 * The topology information must be up to date before
190 * calibrate_delay() and notify_cpu_starting().
191 */
192 set_cpu_sibling_map(raw_smp_processor_id());
193
41ea6672 194 init_freq_invariance(true, false);
1567c3e3 195
cb3c8b90
GOC
196 /*
197 * Get our bogomips.
b565201c
JS
198 * Update loops_per_jiffy in cpu_data. Previous call to
199 * smp_store_cpu_info() stored a value that is close but not as
200 * accurate as the value just calculated.
cb3c8b90 201 */
cb3c8b90 202 calibrate_delay();
b565201c 203 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
cfc1b9a6 204 pr_debug("Stack at about %p\n", &cpuid);
cb3c8b90 205
5ef428c4
AK
206 wmb();
207
85257024
PZ
208 notify_cpu_starting(cpuid);
209
cb3c8b90
GOC
210 /*
211 * Allow the master to continue.
212 */
c2d1cec1 213 cpumask_set_cpu(cpuid, cpu_callin_mask);
cb3c8b90
GOC
214}
215
e1c467e6
FY
216static int cpu0_logical_apicid;
217static int enable_start_cpu0;
bbc2ff6a
GOC
218/*
219 * Activate a secondary processor.
220 */
148f9bb8 221static void notrace start_secondary(void *unused)
bbc2ff6a
GOC
222{
223 /*
c7ad5ad2
AL
224 * Don't put *anything* except direct CPU state initialization
225 * before cpu_init(), SMP booting is too fragile that we want to
226 * limit the things done here to the most necessary things.
bbc2ff6a 227 */
7652ac92 228 cr4_init();
e1c467e6 229
fd89a137 230#ifdef CONFIG_X86_32
b40827fa 231 /* switch away from the initial page table */
fd89a137
JR
232 load_cr3(swapper_pg_dir);
233 __flush_tlb_all();
234#endif
520d0308 235 cpu_init_exception_handling();
4ba55e65 236 cpu_init();
29368e09 237 rcu_cpu_starting(raw_smp_processor_id());
4ba55e65
AL
238 x86_cpuinit.early_percpu_clock_init();
239 preempt_disable();
240 smp_callin();
241
242 enable_start_cpu0 = 0;
243
bbc2ff6a
GOC
244 /* otherwise gcc will move up smp_processor_id before the cpu_init */
245 barrier();
246 /*
a1652bb8 247 * Check TSC synchronization with the boot CPU:
bbc2ff6a
GOC
248 */
249 check_tsc_sync_target();
250
1f50ddb4
TG
251 speculative_store_bypass_ht_init();
252
bbc2ff6a 253 /*
8ed4f3e6
TG
254 * Lock vector_lock, set CPU online and bring the vector
255 * allocator online. Online must be set with vector_lock held
256 * to prevent a concurrent irq setup/teardown from seeing a
257 * half valid vector space.
bbc2ff6a 258 */
d388e5fd 259 lock_vector_lock();
c2d1cec1 260 set_cpu_online(smp_processor_id(), true);
8ed4f3e6 261 lapic_online();
d388e5fd 262 unlock_vector_lock();
2a442c9c 263 cpu_set_state_online(smp_processor_id());
78c06176 264 x86_platform.nmi_init();
bbc2ff6a 265
0cefa5b9
MS
266 /* enable local interrupts */
267 local_irq_enable();
268
736decac 269 x86_cpuinit.setup_percpu_clockev();
bbc2ff6a
GOC
270
271 wmb();
fc6d73d6 272 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
bbc2ff6a
GOC
273}
274
6a4d2657
TG
275/**
276 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
277 * @cpu: CPU to check
278 */
279bool topology_is_primary_thread(unsigned int cpu)
280{
281 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
282}
283
f048c399
TG
284/**
285 * topology_smt_supported - Check whether SMT is supported by the CPUs
286 */
287bool topology_smt_supported(void)
288{
289 return smp_num_siblings > 1;
290}
291
30bb9811
AK
292/**
293 * topology_phys_to_logical_pkg - Map a physical package id to a logical
294 *
295 * Returns logical package id or -1 if not found
296 */
297int topology_phys_to_logical_pkg(unsigned int phys_pkg)
298{
299 int cpu;
300
301 for_each_possible_cpu(cpu) {
302 struct cpuinfo_x86 *c = &cpu_data(cpu);
303
304 if (c->initialized && c->phys_proc_id == phys_pkg)
305 return c->logical_proc_id;
306 }
307 return -1;
308}
309EXPORT_SYMBOL(topology_phys_to_logical_pkg);
212bf4fd
LB
310/**
311 * topology_phys_to_logical_die - Map a physical die id to logical
312 *
313 * Returns logical die id or -1 if not found
314 */
315int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
316{
317 int cpu;
318 int proc_id = cpu_data(cur_cpu).phys_proc_id;
319
320 for_each_possible_cpu(cpu) {
321 struct cpuinfo_x86 *c = &cpu_data(cpu);
322
323 if (c->initialized && c->cpu_die_id == die_id &&
324 c->phys_proc_id == proc_id)
325 return c->logical_die_id;
326 }
327 return -1;
328}
329EXPORT_SYMBOL(topology_phys_to_logical_die);
30bb9811 330
9d85eb91
TG
331/**
332 * topology_update_package_map - Update the physical to logical package map
333 * @pkg: The physical package id as retrieved via CPUID
334 * @cpu: The cpu for which this is updated
335 */
336int topology_update_package_map(unsigned int pkg, unsigned int cpu)
1f12e32f 337{
30bb9811 338 int new;
1f12e32f 339
30bb9811
AK
340 /* Already available somewhere? */
341 new = topology_phys_to_logical_pkg(pkg);
342 if (new >= 0)
1f12e32f
TG
343 goto found;
344
7b0501b1 345 new = logical_packages++;
9d85eb91
TG
346 if (new != pkg) {
347 pr_info("CPU %u Converting physical %u to logical package %u\n",
348 cpu, pkg, new);
349 }
1f12e32f 350found:
30bb9811 351 cpu_data(cpu).logical_proc_id = new;
1f12e32f
TG
352 return 0;
353}
212bf4fd
LB
354/**
355 * topology_update_die_map - Update the physical to logical die map
356 * @die: The die id as retrieved via CPUID
357 * @cpu: The cpu for which this is updated
358 */
359int topology_update_die_map(unsigned int die, unsigned int cpu)
360{
361 int new;
362
363 /* Already available somewhere? */
364 new = topology_phys_to_logical_die(die, cpu);
365 if (new >= 0)
366 goto found;
367
368 new = logical_die++;
369 if (new != die) {
370 pr_info("CPU %u Converting physical %u to logical die %u\n",
371 cpu, die, new);
372 }
373found:
374 cpu_data(cpu).logical_die_id = new;
375 return 0;
376}
1f12e32f 377
30106c17
FY
378void __init smp_store_boot_cpu_info(void)
379{
380 int id = 0; /* CPU 0 */
381 struct cpuinfo_x86 *c = &cpu_data(id);
382
383 *c = boot_cpu_data;
384 c->cpu_index = id;
b4c0a732 385 topology_update_package_map(c->phys_proc_id, id);
212bf4fd 386 topology_update_die_map(c->cpu_die_id, id);
30bb9811 387 c->initialized = true;
30106c17
FY
388}
389
1d89a7f0
GOC
390/*
391 * The bootstrap kernel entry code has set these up. Save them for
392 * a given CPU
393 */
148f9bb8 394void smp_store_cpu_info(int id)
1d89a7f0
GOC
395{
396 struct cpuinfo_x86 *c = &cpu_data(id);
397
30bb9811
AK
398 /* Copy boot_cpu_data only on the first bringup */
399 if (!c->initialized)
400 *c = boot_cpu_data;
1d89a7f0 401 c->cpu_index = id;
30106c17
FY
402 /*
403 * During boot time, CPU0 has this setup already. Save the info when
404 * bringing up AP or offlined CPU0.
405 */
406 identify_secondary_cpu(c);
30bb9811 407 c->initialized = true;
1d89a7f0
GOC
408}
409
cebf15eb
DH
410static bool
411topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
412{
413 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
414
415 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
416}
417
148f9bb8 418static bool
316ad248 419topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
d4fbe4f0 420{
316ad248
PZ
421 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
422
cebf15eb 423 return !WARN_ONCE(!topology_same_node(c, o),
316ad248
PZ
424 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
425 "[node: %d != %d]. Ignoring dependency.\n",
426 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
427}
428
7d79a7bd 429#define link_mask(mfunc, c1, c2) \
316ad248 430do { \
7d79a7bd
BG
431 cpumask_set_cpu((c1), mfunc(c2)); \
432 cpumask_set_cpu((c2), mfunc(c1)); \
316ad248
PZ
433} while (0)
434
148f9bb8 435static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248 436{
362f924b 437 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
316ad248
PZ
438 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
439
440 if (c->phys_proc_id == o->phys_proc_id &&
7745f03e 441 c->cpu_die_id == o->cpu_die_id &&
79a8b9aa
BP
442 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
443 if (c->cpu_core_id == o->cpu_core_id)
444 return topology_sane(c, o, "smt");
445
446 if ((c->cu_id != 0xff) &&
447 (o->cu_id != 0xff) &&
448 (c->cu_id == o->cu_id))
449 return topology_sane(c, o, "smt");
450 }
316ad248
PZ
451
452 } else if (c->phys_proc_id == o->phys_proc_id &&
7745f03e 453 c->cpu_die_id == o->cpu_die_id &&
316ad248
PZ
454 c->cpu_core_id == o->cpu_core_id) {
455 return topology_sane(c, o, "smt");
456 }
457
458 return false;
459}
460
1340ccfa
AS
461/*
462 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
463 *
464 * These are Intel CPUs that enumerate an LLC that is shared by
465 * multiple NUMA nodes. The LLC on these systems is shared for
466 * off-package data access but private to the NUMA node (half
467 * of the package) for on-package access.
468 *
469 * CPUID (the source of the information about the LLC) can only
470 * enumerate the cache as being shared *or* unshared, but not
471 * this particular configuration. The CPU in this case enumerates
472 * the cache to be shared across the entire package (spanning both
473 * NUMA nodes).
474 */
475
476static const struct x86_cpu_id snc_cpu[] = {
adefe55e 477 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
1340ccfa
AS
478 {}
479};
480
148f9bb8 481static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248
PZ
482{
483 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
484
1340ccfa
AS
485 /* Do not match if we do not have a valid APICID for cpu: */
486 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
487 return false;
316ad248 488
1340ccfa
AS
489 /* Do not match if LLC id does not match: */
490 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
491 return false;
492
493 /*
494 * Allow the SNC topology without warning. Return of false
495 * means 'c' does not share the LLC of 'o'. This will be
496 * reflected to userspace.
497 */
498 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
499 return false;
500
501 return topology_sane(c, o, "llc");
d4fbe4f0
AH
502}
503
cebf15eb
DH
504/*
505 * Unlike the other levels, we do not enforce keeping a
506 * multicore group inside a NUMA node. If this happens, we will
507 * discard the MC level of the topology later.
508 */
169d0869 509static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
316ad248 510{
cebf15eb
DH
511 if (c->phys_proc_id == o->phys_proc_id)
512 return true;
316ad248
PZ
513 return false;
514}
1d89a7f0 515
2e4c54da
LB
516static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
517{
518 if ((c->phys_proc_id == o->phys_proc_id) &&
519 (c->cpu_die_id == o->cpu_die_id))
520 return true;
521 return false;
522}
523
524
d3d37d85
TC
525#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
526static inline int x86_sched_itmt_flags(void)
527{
528 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
529}
530
531#ifdef CONFIG_SCHED_MC
532static int x86_core_flags(void)
533{
534 return cpu_core_flags() | x86_sched_itmt_flags();
535}
536#endif
537#ifdef CONFIG_SCHED_SMT
538static int x86_smt_flags(void)
539{
540 return cpu_smt_flags() | x86_sched_itmt_flags();
541}
542#endif
543#endif
544
8f37961c 545static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
cebf15eb 546#ifdef CONFIG_SCHED_SMT
d3d37d85 547 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
cebf15eb
DH
548#endif
549#ifdef CONFIG_SCHED_MC
d3d37d85 550 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
cebf15eb
DH
551#endif
552 { NULL, },
553};
8f37961c
TC
554
555static struct sched_domain_topology_level x86_topology[] = {
556#ifdef CONFIG_SCHED_SMT
d3d37d85 557 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
8f37961c
TC
558#endif
559#ifdef CONFIG_SCHED_MC
d3d37d85 560 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
8f37961c
TC
561#endif
562 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
563 { NULL, },
564};
565
cebf15eb 566/*
8f37961c 567 * Set if a package/die has multiple NUMA nodes inside.
1340ccfa
AS
568 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
569 * Sub-NUMA Clustering have this.
cebf15eb 570 */
8f37961c 571static bool x86_has_numa_in_package;
cebf15eb 572
148f9bb8 573void set_cpu_sibling_map(int cpu)
768d9505 574{
316ad248 575 bool has_smt = smp_num_siblings > 1;
b0bc225d 576 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
768d9505 577 struct cpuinfo_x86 *c = &cpu_data(cpu);
316ad248 578 struct cpuinfo_x86 *o;
70b8301f 579 int i, threads;
768d9505 580
c2d1cec1 581 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
768d9505 582
b0bc225d 583 if (!has_mp) {
7d79a7bd 584 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
316ad248 585 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
7d79a7bd 586 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
2e4c54da 587 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
768d9505
GC
588 c->booted_cores = 1;
589 return;
590 }
591
c2d1cec1 592 for_each_cpu(i, cpu_sibling_setup_mask) {
316ad248
PZ
593 o = &cpu_data(i);
594
595 if ((i == cpu) || (has_smt && match_smt(c, o)))
7d79a7bd 596 link_mask(topology_sibling_cpumask, cpu, i);
316ad248 597
b0bc225d 598 if ((i == cpu) || (has_mp && match_llc(c, o)))
7d79a7bd 599 link_mask(cpu_llc_shared_mask, cpu, i);
316ad248 600
ceb1cbac
KB
601 }
602
603 /*
604 * This needs a separate iteration over the cpus because we rely on all
7d79a7bd 605 * topology_sibling_cpumask links to be set-up.
ceb1cbac
KB
606 */
607 for_each_cpu(i, cpu_sibling_setup_mask) {
608 o = &cpu_data(i);
609
169d0869 610 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
7d79a7bd 611 link_mask(topology_core_cpumask, cpu, i);
316ad248 612
768d9505
GC
613 /*
614 * Does this new cpu bringup a new core?
615 */
7d79a7bd
BG
616 if (cpumask_weight(
617 topology_sibling_cpumask(cpu)) == 1) {
768d9505
GC
618 /*
619 * for each core in package, increment
620 * the booted_cores for this new cpu
621 */
7d79a7bd
BG
622 if (cpumask_first(
623 topology_sibling_cpumask(i)) == i)
768d9505
GC
624 c->booted_cores++;
625 /*
626 * increment the core count for all
627 * the other cpus in this package
628 */
629 if (i != cpu)
630 cpu_data(i).booted_cores++;
631 } else if (i != cpu && !c->booted_cores)
632 c->booted_cores = cpu_data(i).booted_cores;
633 }
169d0869 634 if (match_pkg(c, o) && !topology_same_node(c, o))
8f37961c 635 x86_has_numa_in_package = true;
2e4c54da
LB
636
637 if ((i == cpu) || (has_mp && match_die(c, o)))
638 link_mask(topology_die_cpumask, cpu, i);
768d9505 639 }
70b8301f
AK
640
641 threads = cpumask_weight(topology_sibling_cpumask(cpu));
642 if (threads > __max_smt_threads)
643 __max_smt_threads = threads;
768d9505
GC
644}
645
70708a18 646/* maps the cpu to the sched domain representing multi-core */
030bb203 647const struct cpumask *cpu_coregroup_mask(int cpu)
70708a18 648{
9f646389 649 return cpu_llc_shared_mask(cpu);
030bb203
RR
650}
651
a4928cff 652static void impress_friends(void)
904541e2
GOC
653{
654 int cpu;
655 unsigned long bogosum = 0;
656 /*
657 * Allow the user to impress friends.
658 */
c767a54b 659 pr_debug("Before bogomips\n");
904541e2 660 for_each_possible_cpu(cpu)
c2d1cec1 661 if (cpumask_test_cpu(cpu, cpu_callout_mask))
904541e2 662 bogosum += cpu_data(cpu).loops_per_jiffy;
c767a54b 663 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
f68e00a3 664 num_online_cpus(),
904541e2
GOC
665 bogosum/(500000/HZ),
666 (bogosum/(5000/HZ))%100);
667
c767a54b 668 pr_debug("Before bogocount - setting activated=1\n");
904541e2
GOC
669}
670
569712b2 671void __inquire_remote_apic(int apicid)
cb3c8b90
GOC
672{
673 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
a6c23905 674 const char * const names[] = { "ID", "VERSION", "SPIV" };
cb3c8b90
GOC
675 int timeout;
676 u32 status;
677
c767a54b 678 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
cb3c8b90
GOC
679
680 for (i = 0; i < ARRAY_SIZE(regs); i++) {
c767a54b 681 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
cb3c8b90
GOC
682
683 /*
684 * Wait for idle.
685 */
686 status = safe_apic_wait_icr_idle();
687 if (status)
c767a54b 688 pr_cont("a previous APIC delivery may have failed\n");
cb3c8b90 689
1b374e4d 690 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
cb3c8b90
GOC
691
692 timeout = 0;
693 do {
694 udelay(100);
695 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
696 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
697
698 switch (status) {
699 case APIC_ICR_RR_VALID:
700 status = apic_read(APIC_RRR);
c767a54b 701 pr_cont("%08x\n", status);
cb3c8b90
GOC
702 break;
703 default:
c767a54b 704 pr_cont("failed\n");
cb3c8b90
GOC
705 }
706 }
707}
708
d68921f9
LB
709/*
710 * The Multiprocessor Specification 1.4 (1997) example code suggests
711 * that there should be a 10ms delay between the BSP asserting INIT
712 * and de-asserting INIT, when starting a remote processor.
713 * But that slows boot and resume on modern processors, which include
714 * many cores and don't require that delay.
715 *
716 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
1a744cb3 717 * Modern processor families are quirked to remove the delay entirely.
d68921f9
LB
718 */
719#define UDELAY_10MS_DEFAULT 10000
720
656279a1 721static unsigned int init_udelay = UINT_MAX;
d68921f9
LB
722
723static int __init cpu_init_udelay(char *str)
724{
725 get_option(&str, &init_udelay);
726
727 return 0;
728}
729early_param("cpu_init_udelay", cpu_init_udelay);
730
1a744cb3
LB
731static void __init smp_quirk_init_udelay(void)
732{
733 /* if cmdline changed it from default, leave it alone */
656279a1 734 if (init_udelay != UINT_MAX)
1a744cb3
LB
735 return;
736
737 /* if modern processor, use no delay */
738 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
0b13bec7 739 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
656279a1 740 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
1a744cb3 741 init_udelay = 0;
656279a1
LB
742 return;
743 }
f1ccd249
LB
744 /* else, use legacy delay */
745 init_udelay = UDELAY_10MS_DEFAULT;
1a744cb3
LB
746}
747
cb3c8b90
GOC
748/*
749 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
750 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
751 * won't ... remember to clear down the APIC, etc later.
752 */
148f9bb8 753int
e1c467e6 754wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
cb3c8b90 755{
8c44963b 756 u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
cb3c8b90
GOC
757 unsigned long send_status, accept_status = 0;
758 int maxlvt;
759
760 /* Target chip */
cb3c8b90
GOC
761 /* Boot on the stack */
762 /* Kick the second */
e57d04e5 763 apic_icr_write(APIC_DM_NMI | dm, apicid);
cb3c8b90 764
cfc1b9a6 765 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
766 send_status = safe_apic_wait_icr_idle();
767
768 /*
769 * Give the other CPU some time to accept the IPI.
770 */
771 udelay(200);
cff9ab2b 772 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
59ef48a5
CG
773 maxlvt = lapic_get_maxlvt();
774 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
775 apic_write(APIC_ESR, 0);
776 accept_status = (apic_read(APIC_ESR) & 0xEF);
777 }
c767a54b 778 pr_debug("NMI sent\n");
cb3c8b90
GOC
779
780 if (send_status)
c767a54b 781 pr_err("APIC never delivered???\n");
cb3c8b90 782 if (accept_status)
c767a54b 783 pr_err("APIC delivery error (%lx)\n", accept_status);
cb3c8b90
GOC
784
785 return (send_status | accept_status);
786}
cb3c8b90 787
148f9bb8 788static int
569712b2 789wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
cb3c8b90 790{
f5d6a52f 791 unsigned long send_status = 0, accept_status = 0;
cb3c8b90
GOC
792 int maxlvt, num_starts, j;
793
593f4a78
MR
794 maxlvt = lapic_get_maxlvt();
795
cb3c8b90
GOC
796 /*
797 * Be paranoid about clearing APIC errors.
798 */
cff9ab2b 799 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
593f4a78
MR
800 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
801 apic_write(APIC_ESR, 0);
cb3c8b90
GOC
802 apic_read(APIC_ESR);
803 }
804
c767a54b 805 pr_debug("Asserting INIT\n");
cb3c8b90
GOC
806
807 /*
808 * Turn INIT on target chip
809 */
cb3c8b90
GOC
810 /*
811 * Send IPI
812 */
1b374e4d
SS
813 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
814 phys_apicid);
cb3c8b90 815
cfc1b9a6 816 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
817 send_status = safe_apic_wait_icr_idle();
818
7cb68598 819 udelay(init_udelay);
cb3c8b90 820
c767a54b 821 pr_debug("Deasserting INIT\n");
cb3c8b90
GOC
822
823 /* Target chip */
cb3c8b90 824 /* Send IPI */
1b374e4d 825 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
cb3c8b90 826
cfc1b9a6 827 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
828 send_status = safe_apic_wait_icr_idle();
829
830 mb();
cb3c8b90
GOC
831
832 /*
833 * Should we send STARTUP IPIs ?
834 *
835 * Determine this based on the APIC version.
836 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
837 */
cff9ab2b 838 if (APIC_INTEGRATED(boot_cpu_apic_version))
cb3c8b90
GOC
839 num_starts = 2;
840 else
841 num_starts = 0;
842
cb3c8b90
GOC
843 /*
844 * Run STARTUP IPI loop.
845 */
c767a54b 846 pr_debug("#startup loops: %d\n", num_starts);
cb3c8b90 847
cb3c8b90 848 for (j = 1; j <= num_starts; j++) {
c767a54b 849 pr_debug("Sending STARTUP #%d\n", j);
593f4a78
MR
850 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
851 apic_write(APIC_ESR, 0);
cb3c8b90 852 apic_read(APIC_ESR);
c767a54b 853 pr_debug("After apic_write\n");
cb3c8b90
GOC
854
855 /*
856 * STARTUP IPI
857 */
858
859 /* Target chip */
cb3c8b90
GOC
860 /* Boot on the stack */
861 /* Kick the second */
1b374e4d
SS
862 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
863 phys_apicid);
cb3c8b90
GOC
864
865 /*
866 * Give the other CPU some time to accept the IPI.
867 */
fcafddec
LB
868 if (init_udelay == 0)
869 udelay(10);
870 else
a9bcaa02 871 udelay(300);
cb3c8b90 872
c767a54b 873 pr_debug("Startup point 1\n");
cb3c8b90 874
cfc1b9a6 875 pr_debug("Waiting for send to finish...\n");
cb3c8b90
GOC
876 send_status = safe_apic_wait_icr_idle();
877
878 /*
879 * Give the other CPU some time to accept the IPI.
880 */
fcafddec
LB
881 if (init_udelay == 0)
882 udelay(10);
883 else
a9bcaa02 884 udelay(200);
cb3c8b90 885
593f4a78 886 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
cb3c8b90 887 apic_write(APIC_ESR, 0);
cb3c8b90
GOC
888 accept_status = (apic_read(APIC_ESR) & 0xEF);
889 if (send_status || accept_status)
890 break;
891 }
c767a54b 892 pr_debug("After Startup\n");
cb3c8b90
GOC
893
894 if (send_status)
c767a54b 895 pr_err("APIC never delivered???\n");
cb3c8b90 896 if (accept_status)
c767a54b 897 pr_err("APIC delivery error (%lx)\n", accept_status);
cb3c8b90
GOC
898
899 return (send_status | accept_status);
900}
cb3c8b90 901
2eaad1fd 902/* reduce the number of lines printed when booting a large cpu count system */
148f9bb8 903static void announce_cpu(int cpu, int apicid)
2eaad1fd 904{
98fa15f3 905 static int current_node = NUMA_NO_NODE;
4adc8b71 906 int node = early_cpu_to_node(cpu);
a17bce4d 907 static int width, node_width;
646e29a1
BP
908
909 if (!width)
910 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
2eaad1fd 911
a17bce4d
BP
912 if (!node_width)
913 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
914
915 if (cpu == 1)
916 printk(KERN_INFO "x86: Booting SMP configuration:\n");
917
719b3680 918 if (system_state < SYSTEM_RUNNING) {
2eaad1fd
MT
919 if (node != current_node) {
920 if (current_node > (-1))
a17bce4d 921 pr_cont("\n");
2eaad1fd 922 current_node = node;
a17bce4d
BP
923
924 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
925 node_width - num_digits(node), " ", node);
2eaad1fd 926 }
646e29a1
BP
927
928 /* Add padding for the BSP */
929 if (cpu == 1)
930 pr_cont("%*s", width + 1, " ");
931
932 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
933
2eaad1fd
MT
934 } else
935 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
936 node, cpu, apicid);
937}
938
e1c467e6
FY
939static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
940{
941 int cpu;
942
943 cpu = smp_processor_id();
944 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
945 return NMI_HANDLED;
946
947 return NMI_DONE;
948}
949
950/*
951 * Wake up AP by INIT, INIT, STARTUP sequence.
952 *
953 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
954 * boot-strap code which is not a desired behavior for waking up BSP. To
955 * void the boot-strap code, wake up CPU0 by NMI instead.
956 *
957 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
958 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
959 * We'll change this code in the future to wake up hard offlined CPU0 if
960 * real platform and request are available.
961 */
148f9bb8 962static int
e1c467e6
FY
963wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
964 int *cpu0_nmi_registered)
965{
966 int id;
967 int boot_error;
968
ea7bdc65
JK
969 preempt_disable();
970
e1c467e6
FY
971 /*
972 * Wake up AP by INIT, INIT, STARTUP sequence.
973 */
ea7bdc65
JK
974 if (cpu) {
975 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
976 goto out;
977 }
e1c467e6
FY
978
979 /*
980 * Wake up BSP by nmi.
981 *
982 * Register a NMI handler to help wake up CPU0.
983 */
984 boot_error = register_nmi_handler(NMI_LOCAL,
985 wakeup_cpu0_nmi, 0, "wake_cpu0");
986
987 if (!boot_error) {
988 enable_start_cpu0 = 1;
989 *cpu0_nmi_registered = 1;
8c44963b 990 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
e1c467e6
FY
991 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
992 }
ea7bdc65
JK
993
994out:
995 preempt_enable();
e1c467e6
FY
996
997 return boot_error;
998}
999
66c7ceb4 1000int common_cpu_up(unsigned int cpu, struct task_struct *idle)
3f85483b 1001{
66c7ceb4
TG
1002 int ret;
1003
3f85483b
BO
1004 /* Just in case we booted with a single CPU. */
1005 alternatives_enable_smp();
1006
1007 per_cpu(current_task, cpu) = idle;
c9a1ff31 1008 cpu_init_stack_canary(cpu, idle);
3f85483b 1009
66c7ceb4
TG
1010 /* Initialize the interrupt stack(s) */
1011 ret = irq_init_percpu_irqstack(cpu);
1012 if (ret)
1013 return ret;
1014
3f85483b
BO
1015#ifdef CONFIG_X86_32
1016 /* Stack for startup_32 can be just as for start_secondary onwards */
cd493a6d 1017 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
3f85483b 1018#else
3f85483b
BO
1019 initial_gs = per_cpu_offset(cpu);
1020#endif
66c7ceb4 1021 return 0;
3f85483b
BO
1022}
1023
cb3c8b90
GOC
1024/*
1025 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1026 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1f5bcabf
IM
1027 * Returns zero if CPU booted OK, else error code from
1028 * ->wakeup_secondary_cpu.
cb3c8b90 1029 */
10e66760
VK
1030static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1031 int *cpu0_nmi_registered)
cb3c8b90 1032{
48927bbb 1033 /* start_ip had better be page-aligned! */
f37240f1 1034 unsigned long start_ip = real_mode_header->trampoline_start;
48927bbb 1035
cb3c8b90 1036 unsigned long boot_error = 0;
ce4b1b16 1037 unsigned long timeout;
cb3c8b90 1038
b9b1a9c3 1039 idle->thread.sp = (unsigned long)task_pt_regs(idle);
69218e47 1040 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
3e970473 1041 initial_code = (unsigned long)start_secondary;
b32f96c7 1042 initial_stack = idle->thread.sp;
cb3c8b90 1043
613e396b 1044 /* Enable the espfix hack for this CPU */
20d5e4a9 1045 init_espfix_ap(cpu);
20d5e4a9 1046
2eaad1fd
MT
1047 /* So we see what's up */
1048 announce_cpu(cpu, apicid);
cb3c8b90
GOC
1049
1050 /*
1051 * This grunge runs the startup process for
1052 * the targeted processor.
1053 */
1054
e348caef 1055 if (x86_platform.legacy.warm_reset) {
cb3c8b90 1056
cfc1b9a6 1057 pr_debug("Setting warm reset code and vector.\n");
cb3c8b90 1058
34d05591
JS
1059 smpboot_setup_warm_reset_vector(start_ip);
1060 /*
1061 * Be paranoid about clearing APIC errors.
db96b0a0 1062 */
cff9ab2b 1063 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
db96b0a0
CG
1064 apic_write(APIC_ESR, 0);
1065 apic_read(APIC_ESR);
1066 }
34d05591 1067 }
cb3c8b90 1068
ce4b1b16
IM
1069 /*
1070 * AP might wait on cpu_callout_mask in cpu_init() with
1071 * cpu_initialized_mask set if previous attempt to online
1072 * it timed-out. Clear cpu_initialized_mask so that after
1073 * INIT/SIPI it could start with a clean state.
1074 */
1075 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1076 smp_mb();
1077
cb3c8b90 1078 /*
e1c467e6
FY
1079 * Wake up a CPU in difference cases:
1080 * - Use the method in the APIC driver if it's defined
1081 * Otherwise,
1082 * - Use an INIT boot APIC message for APs or NMI for BSP.
cb3c8b90 1083 */
1f5bcabf
IM
1084 if (apic->wakeup_secondary_cpu)
1085 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1086 else
e1c467e6 1087 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
10e66760 1088 cpu0_nmi_registered);
cb3c8b90
GOC
1089
1090 if (!boot_error) {
1091 /*
6e38f1e7 1092 * Wait 10s total for first sign of life from AP
cb3c8b90 1093 */
ce4b1b16
IM
1094 boot_error = -1;
1095 timeout = jiffies + 10*HZ;
1096 while (time_before(jiffies, timeout)) {
1097 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1098 /*
1099 * Tell AP to proceed with initialization
1100 */
1101 cpumask_set_cpu(cpu, cpu_callout_mask);
1102 boot_error = 0;
1103 break;
1104 }
ce4b1b16
IM
1105 schedule();
1106 }
1107 }
cb3c8b90 1108
ce4b1b16 1109 if (!boot_error) {
cb3c8b90 1110 /*
ce4b1b16 1111 * Wait till AP completes initial initialization
cb3c8b90 1112 */
ce4b1b16 1113 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
68f202e4
SS
1114 /*
1115 * Allow other tasks to run while we wait for the
1116 * AP to come online. This also gives a chance
1117 * for the MTRR work(triggered by the AP coming online)
1118 * to be completed in the stop machine context.
1119 */
1120 schedule();
cb3c8b90 1121 }
cb3c8b90
GOC
1122 }
1123
e348caef 1124 if (x86_platform.legacy.warm_reset) {
02421f98
YL
1125 /*
1126 * Cleanup possible dangling ends...
1127 */
1128 smpboot_restore_warm_reset_vector();
1129 }
e1c467e6 1130
cb3c8b90
GOC
1131 return boot_error;
1132}
1133
148f9bb8 1134int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
cb3c8b90 1135{
a21769a4 1136 int apicid = apic->cpu_present_to_apicid(cpu);
10e66760 1137 int cpu0_nmi_registered = 0;
cb3c8b90 1138 unsigned long flags;
10e66760 1139 int err, ret = 0;
cb3c8b90 1140
7a10e2a9 1141 lockdep_assert_irqs_enabled();
cb3c8b90 1142
cfc1b9a6 1143 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
cb3c8b90 1144
30106c17 1145 if (apicid == BAD_APICID ||
c284b42a 1146 !physid_isset(apicid, phys_cpu_present_map) ||
fa63030e 1147 !apic->apic_id_valid(apicid)) {
c767a54b 1148 pr_err("%s: bad cpu %d\n", __func__, cpu);
cb3c8b90
GOC
1149 return -EINVAL;
1150 }
1151
1152 /*
1153 * Already booted CPU?
1154 */
c2d1cec1 1155 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
cfc1b9a6 1156 pr_debug("do_boot_cpu %d Already started\n", cpu);
cb3c8b90
GOC
1157 return -ENOSYS;
1158 }
1159
1160 /*
1161 * Save current MTRR state in case it was changed since early boot
1162 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1163 */
1164 mtrr_save_state();
1165
2a442c9c
PM
1166 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1167 err = cpu_check_up_prepare(cpu);
1168 if (err && err != -EBUSY)
1169 return err;
cb3c8b90 1170
644c1541 1171 /* the FPU context is blank, nobody can own it */
317b622c 1172 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
644c1541 1173
66c7ceb4
TG
1174 err = common_cpu_up(cpu, tidle);
1175 if (err)
1176 return err;
3f85483b 1177
10e66760 1178 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
61165d7a 1179 if (err) {
feef1e8e 1180 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
10e66760
VK
1181 ret = -EIO;
1182 goto unreg_nmi;
cb3c8b90
GOC
1183 }
1184
1185 /*
1186 * Check TSC synchronization with the AP (keep irqs disabled
1187 * while doing so):
1188 */
1189 local_irq_save(flags);
1190 check_tsc_sync_source(cpu);
1191 local_irq_restore(flags);
1192
7c04e64a 1193 while (!cpu_online(cpu)) {
cb3c8b90
GOC
1194 cpu_relax();
1195 touch_nmi_watchdog();
1196 }
1197
10e66760
VK
1198unreg_nmi:
1199 /*
1200 * Clean up the nmi handler. Do this after the callin and callout sync
1201 * to avoid impact of possible long unregister time.
1202 */
1203 if (cpu0_nmi_registered)
1204 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1205
1206 return ret;
cb3c8b90
GOC
1207}
1208
7167d08e
HK
1209/**
1210 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1211 */
1212void arch_disable_smp_support(void)
1213{
1214 disable_ioapic_support();
1215}
1216
8aef135c
GOC
1217/*
1218 * Fall back to non SMP mode after errors.
1219 *
1220 * RED-PEN audit/test this more. I bet there is more state messed up here.
1221 */
1222static __init void disable_smp(void)
1223{
613c25ef
TG
1224 pr_info("SMP disabled\n");
1225
ef4c59a4
TG
1226 disable_ioapic_support();
1227
4f062896
RR
1228 init_cpu_present(cpumask_of(0));
1229 init_cpu_possible(cpumask_of(0));
0f385d1d 1230
8aef135c 1231 if (smp_found_config)
b6df1b8b 1232 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
8aef135c 1233 else
b6df1b8b 1234 physid_set_mask_of_physid(0, &phys_cpu_present_map);
7d79a7bd
BG
1235 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1236 cpumask_set_cpu(0, topology_core_cpumask(0));
2e4c54da 1237 cpumask_set_cpu(0, topology_die_cpumask(0));
8aef135c
GOC
1238}
1239
1240/*
1241 * Various sanity checks.
1242 */
4f45ed9f 1243static void __init smp_sanity_check(void)
8aef135c 1244{
ac23d4ee 1245 preempt_disable();
a58f03b0 1246
1ff2f20d 1247#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
a58f03b0
YL
1248 if (def_to_bigsmp && nr_cpu_ids > 8) {
1249 unsigned int cpu;
1250 unsigned nr;
1251
c767a54b
JP
1252 pr_warn("More than 8 CPUs detected - skipping them\n"
1253 "Use CONFIG_X86_BIGSMP\n");
a58f03b0
YL
1254
1255 nr = 0;
1256 for_each_present_cpu(cpu) {
1257 if (nr >= 8)
c2d1cec1 1258 set_cpu_present(cpu, false);
a58f03b0
YL
1259 nr++;
1260 }
1261
1262 nr = 0;
1263 for_each_possible_cpu(cpu) {
1264 if (nr >= 8)
c2d1cec1 1265 set_cpu_possible(cpu, false);
a58f03b0
YL
1266 nr++;
1267 }
1268
1269 nr_cpu_ids = 8;
1270 }
1271#endif
1272
8aef135c 1273 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
c767a54b 1274 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
55c395b4
MT
1275 hard_smp_processor_id());
1276
8aef135c
GOC
1277 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1278 }
1279
8aef135c
GOC
1280 /*
1281 * Should not be necessary because the MP table should list the boot
1282 * CPU too, but we do it for the sake of robustness anyway.
1283 */
a27a6210 1284 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
c767a54b
JP
1285 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1286 boot_cpu_physical_apicid);
8aef135c
GOC
1287 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1288 }
ac23d4ee 1289 preempt_enable();
8aef135c
GOC
1290}
1291
1292static void __init smp_cpu_index_default(void)
1293{
1294 int i;
1295 struct cpuinfo_x86 *c;
1296
7c04e64a 1297 for_each_possible_cpu(i) {
8aef135c
GOC
1298 c = &cpu_data(i);
1299 /* mark all to hotplug */
9628937d 1300 c->cpu_index = nr_cpu_ids;
8aef135c
GOC
1301 }
1302}
1303
4b1244b4
DL
1304static void __init smp_get_logical_apicid(void)
1305{
1306 if (x2apic_mode)
1307 cpu0_logical_apicid = apic_read(APIC_LDR);
1308 else
1309 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1310}
1311
8aef135c 1312/*
935356ce
DL
1313 * Prepare for SMP bootup.
1314 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1315 * for common interface support.
8aef135c
GOC
1316 */
1317void __init native_smp_prepare_cpus(unsigned int max_cpus)
1318{
7ad728f9
RR
1319 unsigned int i;
1320
8aef135c 1321 smp_cpu_index_default();
792363d2 1322
8aef135c
GOC
1323 /*
1324 * Setup boot CPU information
1325 */
30106c17 1326 smp_store_boot_cpu_info(); /* Final full version of the data */
792363d2
YL
1327 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1328 mb();
bd22a2f1 1329
7ad728f9 1330 for_each_possible_cpu(i) {
79f55997
LZ
1331 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1332 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
2e4c54da 1333 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
b3d7336d 1334 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
7ad728f9 1335 }
8f37961c
TC
1336
1337 /*
1338 * Set 'default' x86 topology, this matches default_topology() in that
1339 * it has NUMA nodes as a topology level. See also
1340 * native_smp_cpus_done().
1341 *
1342 * Must be done before set_cpus_sibling_map() is ran.
1343 */
1344 set_sched_topology(x86_topology);
1345
8aef135c 1346 set_cpu_sibling_map(0);
41ea6672 1347 init_freq_invariance(false, false);
4f45ed9f
DL
1348 smp_sanity_check();
1349
1350 switch (apic_intr_mode) {
1351 case APIC_PIC:
1352 case APIC_VIRTUAL_WIRE_NO_CONFIG:
613c25ef
TG
1353 disable_smp();
1354 return;
4f45ed9f 1355 case APIC_SYMMETRIC_IO_NO_ROUTING:
613c25ef 1356 disable_smp();
a2510d15
DL
1357 /* Setup local timer */
1358 x86_init.timers.setup_percpu_clockev();
250a1ac6 1359 return;
4f45ed9f
DL
1360 case APIC_VIRTUAL_WIRE:
1361 case APIC_SYMMETRIC_IO:
613c25ef 1362 break;
8aef135c
GOC
1363 }
1364
a2510d15
DL
1365 /* Setup local timer */
1366 x86_init.timers.setup_percpu_clockev();
8aef135c 1367
4b1244b4 1368 smp_get_logical_apicid();
ef4c59a4 1369
d54ff31d 1370 pr_info("CPU0: ");
8aef135c 1371 print_cpu_info(&cpu_data(0));
c4bd1fda 1372
9ec808a0 1373 uv_system_init();
d0af9eed
SS
1374
1375 set_mtrr_aps_delayed_init();
1a744cb3
LB
1376
1377 smp_quirk_init_udelay();
1f50ddb4
TG
1378
1379 speculative_store_bypass_ht_init();
8aef135c 1380}
d0af9eed 1381
56555855 1382void arch_thaw_secondary_cpus_begin(void)
d0af9eed
SS
1383{
1384 set_mtrr_aps_delayed_init();
1385}
1386
56555855 1387void arch_thaw_secondary_cpus_end(void)
d0af9eed
SS
1388{
1389 mtrr_aps_init();
1390}
1391
a8db8453
GOC
1392/*
1393 * Early setup to make printk work.
1394 */
1395void __init native_smp_prepare_boot_cpu(void)
1396{
1397 int me = smp_processor_id();
552be871 1398 switch_to_new_gdt(me);
c2d1cec1
MT
1399 /* already set me in cpu_online_mask in boot_cpu_init() */
1400 cpumask_set_cpu(me, cpu_callout_mask);
2a442c9c 1401 cpu_set_state_online(me);
090d54bc 1402 native_pv_lock_init();
a8db8453
GOC
1403}
1404
63e708f8 1405void __init calculate_max_logical_packages(void)
83f7eb9c 1406{
b4c0a732
PB
1407 int ncpus;
1408
b4c0a732
PB
1409 /*
1410 * Today neither Intel nor AMD support heterogenous systems so
1411 * extrapolate the boot cpu's data to all packages.
1412 */
947134d9 1413 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
aa02ef09 1414 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
b4c0a732 1415 pr_info("Max logical packages: %u\n", __max_logical_packages);
63e708f8
PB
1416}
1417
1418void __init native_smp_cpus_done(unsigned int max_cpus)
1419{
1420 pr_debug("Boot done\n");
1421
1422 calculate_max_logical_packages();
83f7eb9c 1423
8f37961c
TC
1424 if (x86_has_numa_in_package)
1425 set_sched_topology(x86_numa_in_package_topology);
1426
99e8b9ca 1427 nmi_selftest();
83f7eb9c 1428 impress_friends();
d0af9eed 1429 mtrr_aps_init();
83f7eb9c
GOC
1430}
1431
3b11ce7f
MT
1432static int __initdata setup_possible_cpus = -1;
1433static int __init _setup_possible_cpus(char *str)
1434{
1435 get_option(&str, &setup_possible_cpus);
1436 return 0;
1437}
1438early_param("possible_cpus", _setup_possible_cpus);
1439
1440
68a1c3f8 1441/*
4f062896 1442 * cpu_possible_mask should be static, it cannot change as cpu's
68a1c3f8 1443 * are onlined, or offlined. The reason is per-cpu data-structures
4d1d0977 1444 * are allocated by some modules at init time, and don't expect to
68a1c3f8 1445 * do this dynamically on cpu arrival/departure.
4f062896 1446 * cpu_present_mask on the other hand can change dynamically.
68a1c3f8
GC
1447 * In case when cpu_hotplug is not compiled, then we resort to current
1448 * behaviour, which is cpu_possible == cpu_present.
1449 * - Ashok Raj
1450 *
1451 * Three ways to find out the number of additional hotplug CPUs:
1452 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
3b11ce7f 1453 * - The user can overwrite it with possible_cpus=NUM
68a1c3f8
GC
1454 * - Otherwise don't reserve additional CPUs.
1455 * We do this because additional CPUs waste a lot of memory.
1456 * -AK
1457 */
1458__init void prefill_possible_map(void)
1459{
cb48bb59 1460 int i, possible;
68a1c3f8 1461
2a51fe08
PB
1462 /* No boot processor was found in mptable or ACPI MADT */
1463 if (!num_processors) {
ff856051
VS
1464 if (boot_cpu_has(X86_FEATURE_APIC)) {
1465 int apicid = boot_cpu_physical_apicid;
1466 int cpu = hard_smp_processor_id();
2a51fe08 1467
ff856051 1468 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
2a51fe08 1469
ff856051
VS
1470 /* Make sure boot cpu is enumerated */
1471 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1472 apic->apic_id_valid(apicid))
1473 generic_processor_info(apicid, boot_cpu_apic_version);
1474 }
2a51fe08
PB
1475
1476 if (!num_processors)
1477 num_processors = 1;
1478 }
329513a3 1479
5f2eb550
JB
1480 i = setup_max_cpus ?: 1;
1481 if (setup_possible_cpus == -1) {
1482 possible = num_processors;
1483#ifdef CONFIG_HOTPLUG_CPU
1484 if (setup_max_cpus)
1485 possible += disabled_cpus;
1486#else
1487 if (possible > i)
1488 possible = i;
1489#endif
1490 } else
3b11ce7f
MT
1491 possible = setup_possible_cpus;
1492
730cf272
MT
1493 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1494
2b633e3f
YL
1495 /* nr_cpu_ids could be reduced via nr_cpus= */
1496 if (possible > nr_cpu_ids) {
9b130ad5 1497 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
2b633e3f
YL
1498 possible, nr_cpu_ids);
1499 possible = nr_cpu_ids;
3b11ce7f 1500 }
68a1c3f8 1501
5f2eb550
JB
1502#ifdef CONFIG_HOTPLUG_CPU
1503 if (!setup_max_cpus)
1504#endif
1505 if (possible > i) {
c767a54b 1506 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
5f2eb550
JB
1507 possible, setup_max_cpus);
1508 possible = i;
1509 }
1510
427d77a3
TG
1511 nr_cpu_ids = possible;
1512
c767a54b 1513 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
68a1c3f8
GC
1514 possible, max_t(int, possible - num_processors, 0));
1515
427d77a3
TG
1516 reset_cpu_possible_mask();
1517
68a1c3f8 1518 for (i = 0; i < possible; i++)
c2d1cec1 1519 set_cpu_possible(i, true);
68a1c3f8 1520}
69c18c15 1521
14adf855
CE
1522#ifdef CONFIG_HOTPLUG_CPU
1523
70b8301f
AK
1524/* Recompute SMT state for all CPUs on offline */
1525static void recompute_smt_state(void)
1526{
1527 int max_threads, cpu;
1528
1529 max_threads = 0;
1530 for_each_online_cpu (cpu) {
1531 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1532
1533 if (threads > max_threads)
1534 max_threads = threads;
1535 }
1536 __max_smt_threads = max_threads;
1537}
1538
14adf855
CE
1539static void remove_siblinginfo(int cpu)
1540{
1541 int sibling;
1542 struct cpuinfo_x86 *c = &cpu_data(cpu);
1543
7d79a7bd
BG
1544 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1545 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
14adf855
CE
1546 /*/
1547 * last thread sibling in this cpu core going down
1548 */
7d79a7bd 1549 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
14adf855
CE
1550 cpu_data(sibling).booted_cores--;
1551 }
1552
2e4c54da
LB
1553 for_each_cpu(sibling, topology_die_cpumask(cpu))
1554 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
7d79a7bd
BG
1555 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1556 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
03bd4e1f
WL
1557 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1558 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1559 cpumask_clear(cpu_llc_shared_mask(cpu));
7d79a7bd
BG
1560 cpumask_clear(topology_sibling_cpumask(cpu));
1561 cpumask_clear(topology_core_cpumask(cpu));
2e4c54da 1562 cpumask_clear(topology_die_cpumask(cpu));
14adf855 1563 c->cpu_core_id = 0;
45967493 1564 c->booted_cores = 0;
c2d1cec1 1565 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
70b8301f 1566 recompute_smt_state();
14adf855
CE
1567}
1568
4daa832d 1569static void remove_cpu_from_maps(int cpu)
69c18c15 1570{
c2d1cec1
MT
1571 set_cpu_online(cpu, false);
1572 cpumask_clear_cpu(cpu, cpu_callout_mask);
1573 cpumask_clear_cpu(cpu, cpu_callin_mask);
69c18c15 1574 /* was set by cpu_init() */
c2d1cec1 1575 cpumask_clear_cpu(cpu, cpu_initialized_mask);
23ca4bba 1576 numa_remove_cpu(cpu);
69c18c15
GC
1577}
1578
8227dce7 1579void cpu_disable_common(void)
69c18c15
GC
1580{
1581 int cpu = smp_processor_id();
69c18c15 1582
69c18c15
GC
1583 remove_siblinginfo(cpu);
1584
1585 /* It's now safe to remove this processor from the online map */
d388e5fd 1586 lock_vector_lock();
69c18c15 1587 remove_cpu_from_maps(cpu);
d388e5fd 1588 unlock_vector_lock();
d7b381bb 1589 fixup_irqs();
0fa115da 1590 lapic_offline();
8227dce7
AN
1591}
1592
1593int native_cpu_disable(void)
1594{
da6139e4
PB
1595 int ret;
1596
2cffad7b 1597 ret = lapic_can_unplug_cpu();
da6139e4
PB
1598 if (ret)
1599 return ret;
1600
8227dce7 1601 cpu_disable_common();
2ed53c0d 1602
52d6b926
AR
1603 /*
1604 * Disable the local APIC. Otherwise IPI broadcasts will reach
1605 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1606 * messages.
1607 *
1608 * Disabling the APIC must happen after cpu_disable_common()
1609 * which invokes fixup_irqs().
1610 *
1611 * Disabling the APIC preserves already set bits in IRR, but
1612 * an interrupt arriving after disabling the local APIC does not
1613 * set the corresponding IRR bit.
1614 *
1615 * fixup_irqs() scans IRR for set bits so it can raise a not
1616 * yet handled interrupt on the new destination CPU via an IPI
1617 * but obviously it can't do so for IRR bits which are not set.
1618 * IOW, interrupts arriving after disabling the local APIC will
1619 * be lost.
1620 */
1621 apic_soft_disable();
1622
69c18c15
GC
1623 return 0;
1624}
1625
2a442c9c 1626int common_cpu_die(unsigned int cpu)
54279552 1627{
2a442c9c 1628 int ret = 0;
54279552 1629
69c18c15 1630 /* We don't do anything here: idle task is faking death itself. */
54279552 1631
2ed53c0d 1632 /* They ack this in play_dead() by setting CPU_DEAD */
2a442c9c 1633 if (cpu_wait_death(cpu, 5)) {
2ed53c0d
LT
1634 if (system_state == SYSTEM_RUNNING)
1635 pr_info("CPU %u is now offline\n", cpu);
1636 } else {
1637 pr_err("CPU %u didn't die...\n", cpu);
2a442c9c 1638 ret = -1;
69c18c15 1639 }
2a442c9c
PM
1640
1641 return ret;
1642}
1643
1644void native_cpu_die(unsigned int cpu)
1645{
1646 common_cpu_die(cpu);
69c18c15 1647}
a21f5d88
AN
1648
1649void play_dead_common(void)
1650{
1651 idle_task_exit();
a21f5d88 1652
a21f5d88 1653 /* Ack it */
2a442c9c 1654 (void)cpu_report_death();
a21f5d88
AN
1655
1656 /*
1657 * With physical CPU hotplug, we should halt the cpu
1658 */
1659 local_irq_disable();
1660}
1661
fae1cb57 1662bool wakeup_cpu0(void)
e1c467e6
FY
1663{
1664 if (smp_processor_id() == 0 && enable_start_cpu0)
1665 return true;
1666
1667 return false;
1668}
1669
ea530692
PA
1670/*
1671 * We need to flush the caches before going to sleep, lest we have
1672 * dirty data in our caches when we come back up.
1673 */
1674static inline void mwait_play_dead(void)
1675{
1676 unsigned int eax, ebx, ecx, edx;
1677 unsigned int highest_cstate = 0;
1678 unsigned int highest_subcstate = 0;
ce5f6824 1679 void *mwait_ptr;
576cfb40 1680 int i;
ea530692 1681
0b13bec7
PW
1682 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1683 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
da6fa7ef 1684 return;
69fb3676 1685 if (!this_cpu_has(X86_FEATURE_MWAIT))
ea530692 1686 return;
840d2830 1687 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
ce5f6824 1688 return;
7b543a53 1689 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
ea530692
PA
1690 return;
1691
1692 eax = CPUID_MWAIT_LEAF;
1693 ecx = 0;
1694 native_cpuid(&eax, &ebx, &ecx, &edx);
1695
1696 /*
1697 * eax will be 0 if EDX enumeration is not valid.
1698 * Initialized below to cstate, sub_cstate value when EDX is valid.
1699 */
1700 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1701 eax = 0;
1702 } else {
1703 edx >>= MWAIT_SUBSTATE_SIZE;
1704 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1705 if (edx & MWAIT_SUBSTATE_MASK) {
1706 highest_cstate = i;
1707 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1708 }
1709 }
1710 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1711 (highest_subcstate - 1);
1712 }
1713
ce5f6824
PA
1714 /*
1715 * This should be a memory location in a cache line which is
1716 * unlikely to be touched by other processors. The actual
1717 * content is immaterial as it is not actually modified in any way.
1718 */
1719 mwait_ptr = &current_thread_info()->flags;
1720
a68e5c94
PA
1721 wbinvd();
1722
ea530692 1723 while (1) {
ce5f6824
PA
1724 /*
1725 * The CLFLUSH is a workaround for erratum AAI65 for
1726 * the Xeon 7400 series. It's not clear it is actually
1727 * needed, but it should be harmless in either case.
1728 * The WBINVD is insufficient due to the spurious-wakeup
1729 * case where we return around the loop.
1730 */
7d590cca 1731 mb();
ce5f6824 1732 clflush(mwait_ptr);
7d590cca 1733 mb();
ce5f6824 1734 __monitor(mwait_ptr, 0, 0);
ea530692
PA
1735 mb();
1736 __mwait(eax, 0);
e1c467e6
FY
1737 /*
1738 * If NMI wants to wake up CPU0, start CPU0.
1739 */
1740 if (wakeup_cpu0())
1741 start_cpu0();
ea530692
PA
1742 }
1743}
1744
406f992e 1745void hlt_play_dead(void)
ea530692 1746{
7b543a53 1747 if (__this_cpu_read(cpu_info.x86) >= 4)
a68e5c94
PA
1748 wbinvd();
1749
ea530692 1750 while (1) {
ea530692 1751 native_halt();
e1c467e6
FY
1752 /*
1753 * If NMI wants to wake up CPU0, start CPU0.
1754 */
1755 if (wakeup_cpu0())
1756 start_cpu0();
ea530692
PA
1757 }
1758}
1759
a21f5d88
AN
1760void native_play_dead(void)
1761{
1762 play_dead_common();
86886e55 1763 tboot_shutdown(TB_SHUTDOWN_WFS);
ea530692
PA
1764
1765 mwait_play_dead(); /* Only returns on failure */
1a022e3f
BO
1766 if (cpuidle_play_dead())
1767 hlt_play_dead();
a21f5d88
AN
1768}
1769
69c18c15 1770#else /* ... !CONFIG_HOTPLUG_CPU */
93be71b6 1771int native_cpu_disable(void)
69c18c15
GC
1772{
1773 return -ENOSYS;
1774}
1775
93be71b6 1776void native_cpu_die(unsigned int cpu)
69c18c15
GC
1777{
1778 /* We said "no" in __cpu_disable */
1779 BUG();
1780}
a21f5d88
AN
1781
1782void native_play_dead(void)
1783{
1784 BUG();
1785}
1786
68a1c3f8 1787#endif
1567c3e3 1788
e2b0d619 1789#ifdef CONFIG_X86_64
1567c3e3
GG
1790/*
1791 * APERF/MPERF frequency ratio computation.
1792 *
1793 * The scheduler wants to do frequency invariant accounting and needs a <1
1794 * ratio to account for the 'current' frequency, corresponding to
1795 * freq_curr / freq_max.
1796 *
1797 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1798 * our P-state setting is little more than a request/hint, we need to observe
1799 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1800 * interval after discarding idle time. This is given by:
1801 *
1802 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1803 *
1804 * where freq_base is the max non-turbo P-state.
1805 *
1806 * The freq_max term has to be set to a somewhat arbitrary value, because we
1807 * can't know which turbo states will be available at a given point in time:
1808 * it all depends on the thermal headroom of the entire package. We set it to
1809 * the turbo level with 4 cores active.
1810 *
1811 * Benchmarks show that's a good compromise between the 1C turbo ratio
1812 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1813 * which would ignore the entire turbo range (a conspicuous part, making
1814 * freq_curr/freq_max always maxed out).
1815 *
eacf0474
GG
1816 * An exception to the heuristic above is the Atom uarch, where we choose the
1817 * highest turbo level for freq_max since Atom's are generally oriented towards
1818 * power efficiency.
1819 *
1567c3e3
GG
1820 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1821 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1822 */
1823
1824DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1825
1826static DEFINE_PER_CPU(u64, arch_prev_aperf);
1827static DEFINE_PER_CPU(u64, arch_prev_mperf);
918229cd 1828static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1567c3e3
GG
1829static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1830
918229cd
GG
1831void arch_set_max_freq_ratio(bool turbo_disabled)
1832{
1833 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1834 arch_turbo_freq_ratio;
1835}
d11a1d08 1836EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
918229cd 1837
1567c3e3
GG
1838static bool turbo_disabled(void)
1839{
1840 u64 misc_en;
1841 int err;
1842
1843 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1844 if (err)
1845 return false;
1846
1847 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1848}
1849
298c6f99
GG
1850static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1851{
1852 int err;
1853
1854 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1855 if (err)
1856 return false;
1857
1858 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1859 if (err)
1860 return false;
1861
1862 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1863 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1864
1865 return true;
1866}
1867
1567c3e3
GG
1868#include <asm/cpu_device_id.h>
1869#include <asm/intel-family.h>
1870
2fa9a3cf
BP
1871#define X86_MATCH(model) \
1872 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1873 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1567c3e3
GG
1874
1875static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
2fa9a3cf
BP
1876 X86_MATCH(XEON_PHI_KNL),
1877 X86_MATCH(XEON_PHI_KNM),
1567c3e3
GG
1878 {}
1879};
1880
1881static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
2fa9a3cf 1882 X86_MATCH(SKYLAKE_X),
1567c3e3
GG
1883 {}
1884};
1885
1886static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
2fa9a3cf
BP
1887 X86_MATCH(ATOM_GOLDMONT),
1888 X86_MATCH(ATOM_GOLDMONT_D),
1889 X86_MATCH(ATOM_GOLDMONT_PLUS),
1567c3e3
GG
1890 {}
1891};
1892
8bea0dfb
GG
1893static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1894 int num_delta_fratio)
1895{
1896 int fratio, delta_fratio, found;
1897 int err, i;
1898 u64 msr;
1899
8bea0dfb
GG
1900 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1901 if (err)
1902 return false;
1903
1904 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1905
1906 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1907 if (err)
1908 return false;
1909
1910 fratio = (msr >> 8) & 0xFF;
1911 i = 16;
1912 found = 0;
1913 do {
1914 if (found >= num_delta_fratio) {
1915 *turbo_freq = fratio;
1916 return true;
1917 }
1918
1919 delta_fratio = (msr >> (i + 5)) & 0x7;
1920
1921 if (delta_fratio) {
1922 found += 1;
1923 fratio -= delta_fratio;
1924 }
1925
1926 i += 8;
1927 } while (i < 64);
1928
1929 return true;
1930}
1931
2a0abc59
GG
1932static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1933{
1934 u64 ratios, counts;
1935 u32 group_size;
1936 int err, i;
1937
1938 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1939 if (err)
1940 return false;
1941
1942 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1943
1944 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1945 if (err)
1946 return false;
1947
1948 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1949 if (err)
1950 return false;
1951
1952 for (i = 0; i < 64; i += 8) {
1953 group_size = (counts >> i) & 0xFF;
1954 if (group_size >= size) {
1955 *turbo_freq = (ratios >> i) & 0xFF;
1956 return true;
1957 }
1958 }
1959
1960 return false;
1961}
1962
1963static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1567c3e3 1964{
23ccee22 1965 u64 msr;
1567c3e3
GG
1966 int err;
1967
2a0abc59 1968 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1567c3e3
GG
1969 if (err)
1970 return false;
1971
23ccee22 1972 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1567c3e3
GG
1973 if (err)
1974 return false;
1975
23ccee22
GG
1976 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1977 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1978
1979 /* The CPU may have less than 4 cores */
1980 if (!*turbo_freq)
1981 *turbo_freq = msr & 0xFF; /* 1C turbo */
1567c3e3 1982
1567c3e3
GG
1983 return true;
1984}
1985
1986static bool intel_set_max_freq_ratio(void)
1987{
918229cd 1988 u64 base_freq, turbo_freq;
f4291df1 1989 u64 turbo_ratio;
2a0abc59 1990
298c6f99
GG
1991 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1992 goto out;
1993
eacf0474
GG
1994 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1995 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1996 goto out;
1997
db441bd9
GG
1998 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1999 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
8bea0dfb
GG
2000 goto out;
2001
2a0abc59
GG
2002 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2003 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2004 goto out;
2005
2006 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2007 goto out;
1567c3e3
GG
2008
2009 return false;
2a0abc59
GG
2010
2011out:
9a6c2c3c
GG
2012 /*
2013 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2014 * but then fill all MSR's with zeroes.
51beea88
GG
2015 * Some CPUs have turbo boost but don't declare any turbo ratio
2016 * in MSR_TURBO_RATIO_LIMIT.
9a6c2c3c 2017 */
51beea88
GG
2018 if (!base_freq || !turbo_freq) {
2019 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
9a6c2c3c
GG
2020 return false;
2021 }
2022
f4291df1
GG
2023 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2024 if (!turbo_ratio) {
2025 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2026 return false;
2027 }
2028
2029 arch_turbo_freq_ratio = turbo_ratio;
918229cd 2030 arch_set_max_freq_ratio(turbo_disabled());
f4291df1 2031
2a0abc59 2032 return true;
1567c3e3
GG
2033}
2034
41ea6672
NF
2035#ifdef CONFIG_ACPI_CPPC_LIB
2036static bool amd_set_max_freq_ratio(void)
2037{
2038 struct cppc_perf_caps perf_caps;
2039 u64 highest_perf, nominal_perf;
2040 u64 perf_ratio;
2041 int rc;
2042
2043 rc = cppc_get_perf_caps(0, &perf_caps);
2044 if (rc) {
2045 pr_debug("Could not retrieve perf counters (%d)\n", rc);
2046 return false;
2047 }
2048
2049 highest_perf = perf_caps.highest_perf;
2050 nominal_perf = perf_caps.nominal_perf;
2051
2052 if (!highest_perf || !nominal_perf) {
2053 pr_debug("Could not retrieve highest or nominal performance\n");
2054 return false;
2055 }
2056
2057 perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
976df7e5
GG
2058 /* midpoint between max_boost and max_P */
2059 perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
41ea6672
NF
2060 if (!perf_ratio) {
2061 pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2062 return false;
2063 }
2064
2065 arch_turbo_freq_ratio = perf_ratio;
2066 arch_set_max_freq_ratio(false);
2067
2068 return true;
2069}
2070#else
2071static bool amd_set_max_freq_ratio(void)
2072{
2073 return false;
2074}
2075#endif
2076
b56e7d45 2077static void init_counter_refs(void)
1567c3e3
GG
2078{
2079 u64 aperf, mperf;
2080
2081 rdmsrl(MSR_IA32_APERF, aperf);
2082 rdmsrl(MSR_IA32_MPERF, mperf);
2083
2084 this_cpu_write(arch_prev_aperf, aperf);
2085 this_cpu_write(arch_prev_mperf, mperf);
2086}
2087
9c7d9017
RW
2088#ifdef CONFIG_PM_SLEEP
2089static struct syscore_ops freq_invariance_syscore_ops = {
2090 .resume = init_counter_refs,
2091};
2092
2093static void register_freq_invariance_syscore_ops(void)
2094{
2095 /* Bail out if registered already. */
2096 if (freq_invariance_syscore_ops.node.prev)
2097 return;
2098
2099 register_syscore_ops(&freq_invariance_syscore_ops);
2100}
2101#else
2102static inline void register_freq_invariance_syscore_ops(void) {}
2103#endif
2104
41ea6672 2105static void init_freq_invariance(bool secondary, bool cppc_ready)
1567c3e3
GG
2106{
2107 bool ret = false;
2108
b56e7d45 2109 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
1567c3e3
GG
2110 return;
2111
b56e7d45
PZI
2112 if (secondary) {
2113 if (static_branch_likely(&arch_scale_freq_key)) {
2114 init_counter_refs();
2115 }
2116 return;
2117 }
2118
1567c3e3
GG
2119 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2120 ret = intel_set_max_freq_ratio();
41ea6672
NF
2121 else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2122 if (!cppc_ready) {
2123 return;
2124 }
2125 ret = amd_set_max_freq_ratio();
2126 }
1567c3e3
GG
2127
2128 if (ret) {
b56e7d45 2129 init_counter_refs();
1567c3e3 2130 static_branch_enable(&arch_scale_freq_key);
9c7d9017 2131 register_freq_invariance_syscore_ops();
3149cd55 2132 pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
1567c3e3
GG
2133 } else {
2134 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2135 }
2136}
2137
41ea6672
NF
2138#ifdef CONFIG_ACPI_CPPC_LIB
2139static DEFINE_MUTEX(freq_invariance_lock);
2140
2141void init_freq_invariance_cppc(void)
2142{
2143 static bool secondary;
2144
2145 mutex_lock(&freq_invariance_lock);
2146
2147 init_freq_invariance(secondary, true);
2148 secondary = true;
2149
2150 mutex_unlock(&freq_invariance_lock);
2151}
2152#endif
2153
e2b0d619
GG
2154static void disable_freq_invariance_workfn(struct work_struct *work)
2155{
2156 static_branch_disable(&arch_scale_freq_key);
2157}
2158
2159static DECLARE_WORK(disable_freq_invariance_work,
2160 disable_freq_invariance_workfn);
2161
1567c3e3
GG
2162DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2163
2164void arch_scale_freq_tick(void)
2165{
e2b0d619 2166 u64 freq_scale = SCHED_CAPACITY_SCALE;
1567c3e3
GG
2167 u64 aperf, mperf;
2168 u64 acnt, mcnt;
2169
2170 if (!arch_scale_freq_invariant())
2171 return;
2172
2173 rdmsrl(MSR_IA32_APERF, aperf);
2174 rdmsrl(MSR_IA32_MPERF, mperf);
2175
2176 acnt = aperf - this_cpu_read(arch_prev_aperf);
2177 mcnt = mperf - this_cpu_read(arch_prev_mperf);
1567c3e3
GG
2178
2179 this_cpu_write(arch_prev_aperf, aperf);
2180 this_cpu_write(arch_prev_mperf, mperf);
2181
e2b0d619
GG
2182 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2183 goto error;
2184
2185 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2186 goto error;
1567c3e3
GG
2187
2188 freq_scale = div64_u64(acnt, mcnt);
e2b0d619
GG
2189 if (!freq_scale)
2190 goto error;
1567c3e3
GG
2191
2192 if (freq_scale > SCHED_CAPACITY_SCALE)
2193 freq_scale = SCHED_CAPACITY_SCALE;
2194
2195 this_cpu_write(arch_freq_scale, freq_scale);
e2b0d619
GG
2196 return;
2197
2198error:
2199 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2200 schedule_work(&disable_freq_invariance_work);
2201}
2202#else
41ea6672 2203static inline void init_freq_invariance(bool secondary, bool cppc_ready)
e2b0d619 2204{
1567c3e3 2205}
e2b0d619 2206#endif /* CONFIG_X86_64 */