]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/tlb_uv.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / tlb_uv.c
CommitLineData
1812924b
CW
1/*
2 * SGI UltraViolet TLB flush routines.
3 *
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
aef8f5b8 9#include <linux/seq_file.h>
1812924b
CW
10#include <linux/proc_fs.h>
11#include <linux/kernel.h>
5a0e3ad6 12#include <linux/slab.h>
1812924b 13
1812924b 14#include <asm/mmu_context.h>
bdbcdd48 15#include <asm/uv/uv.h>
1812924b 16#include <asm/uv/uv_mmrs.h>
b4c286e6 17#include <asm/uv/uv_hub.h>
1812924b 18#include <asm/uv/uv_bau.h>
7b6aa335 19#include <asm/apic.h>
b4c286e6 20#include <asm/idle.h>
b194b120 21#include <asm/tsc.h>
99dd8713 22#include <asm/irq_vectors.h>
1812924b 23
b4c286e6
IM
24static struct bau_control **uv_bau_table_bases __read_mostly;
25static int uv_bau_retry_limit __read_mostly;
26
94ca8e48
CW
27/* base pnode in this partition */
28static int uv_partition_base_pnode __read_mostly;
b4c286e6
IM
29
30static unsigned long uv_mmask __read_mostly;
1812924b 31
dc163a41
IM
32static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
33static DEFINE_PER_CPU(struct bau_control, bau_control);
1812924b 34
9674f35b
CW
35/*
36 * Determine the first node on a blade.
37 */
38static int __init blade_to_first_node(int blade)
39{
40 int node, b;
41
42 for_each_online_node(node) {
43 b = uv_node_to_blade_id(node);
44 if (blade == b)
45 return node;
46 }
94ca8e48 47 return -1; /* shouldn't happen */
9674f35b
CW
48}
49
50/*
51 * Determine the apicid of the first cpu on a blade.
52 */
53static int __init blade_to_first_apicid(int blade)
54{
55 int cpu;
56
57 for_each_present_cpu(cpu)
58 if (blade == uv_cpu_to_blade_id(cpu))
59 return per_cpu(x86_cpu_to_apicid, cpu);
60 return -1;
61}
62
1812924b
CW
63/*
64 * Free a software acknowledge hardware resource by clearing its Pending
65 * bit. This will return a reply to the sender.
66 * If the message has timed out, a reply has already been sent by the
67 * hardware but the resource has not been released. In that case our
68 * clear of the Timeout bit (as well) will free the resource. No reply will
69 * be sent (the hardware will only do one reply per message).
70 */
b194b120 71static void uv_reply_to_message(int resource,
b4c286e6
IM
72 struct bau_payload_queue_entry *msg,
73 struct bau_msg_status *msp)
1812924b 74{
b194b120 75 unsigned long dw;
1812924b 76
b194b120 77 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
1812924b
CW
78 msg->replied_to = 1;
79 msg->sw_ack_vector = 0;
80 if (msp)
81 msp->seen_by.bits = 0;
b194b120 82 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
1812924b
CW
83}
84
85/*
86 * Do all the things a cpu should do for a TLB shootdown message.
87 * Other cpu's may come here at the same time for this message.
88 */
b194b120 89static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
b4c286e6 90 int msg_slot, int sw_ack_slot)
1812924b 91{
1812924b
CW
92 unsigned long this_cpu_mask;
93 struct bau_msg_status *msp;
b4c286e6 94 int cpu;
1812924b
CW
95
96 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
97 cpu = uv_blade_processor_id();
98 msg->number_of_cpus =
9674f35b 99 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
dc163a41 100 this_cpu_mask = 1UL << cpu;
1812924b
CW
101 if (msp->seen_by.bits & this_cpu_mask)
102 return;
103 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
104
105 if (msg->replied_to == 1)
106 return;
107
108 if (msg->address == TLB_FLUSH_ALL) {
109 local_flush_tlb();
110 __get_cpu_var(ptcstats).alltlb++;
111 } else {
112 __flush_tlb_one(msg->address);
113 __get_cpu_var(ptcstats).onetlb++;
114 }
115
116 __get_cpu_var(ptcstats).requestee++;
117
118 atomic_inc_short(&msg->acknowledge_count);
119 if (msg->number_of_cpus == msg->acknowledge_count)
120 uv_reply_to_message(sw_ack_slot, msg, msp);
1812924b
CW
121}
122
123/*
dc163a41 124 * Examine the payload queue on one distribution node to see
1812924b
CW
125 * which messages have not been seen, and which cpu(s) have not seen them.
126 *
127 * Returns the number of cpu's that have not responded.
128 */
dc163a41 129static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
1812924b 130{
1812924b
CW
131 struct bau_payload_queue_entry *msg;
132 struct bau_msg_status *msp;
b4c286e6
IM
133 int count = 0;
134 int i;
135 int j;
1812924b 136
dc163a41
IM
137 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
138 msg++, i++) {
139 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
140 msp = bau_tablesp->msg_statuses + i;
141 printk(KERN_DEBUG
142 "blade %d: address:%#lx %d of %d, not cpu(s): ",
143 i, msg->address, msg->acknowledge_count,
144 msg->number_of_cpus);
145 for (j = 0; j < msg->number_of_cpus; j++) {
b4c286e6 146 if (!((1L << j) & msp->seen_by.bits)) {
dc163a41
IM
147 count++;
148 printk("%d ", j);
149 }
150 }
151 printk("\n");
152 }
153 }
154 return count;
155}
156
157/*
158 * Examine the payload queue on all the distribution nodes to see
159 * which messages have not been seen, and which cpu(s) have not seen them.
160 *
161 * Returns the number of cpu's that have not responded.
162 */
163static int uv_examine_destinations(struct bau_target_nodemask *distribution)
164{
165 int sender;
166 int i;
167 int count = 0;
168
1812924b 169 sender = smp_processor_id();
b4c286e6 170 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
b194b120
CW
171 if (!bau_node_isset(i, distribution))
172 continue;
dc163a41 173 count += uv_examine_destination(uv_bau_table_bases[i], sender);
1812924b
CW
174 }
175 return count;
176}
177
b194b120
CW
178/*
179 * wait for completion of a broadcast message
180 *
181 * return COMPLETE, RETRY or GIVEUP
182 */
dc163a41 183static int uv_wait_completion(struct bau_desc *bau_desc,
b194b120
CW
184 unsigned long mmr_offset, int right_shift)
185{
186 int exams = 0;
187 long destination_timeouts = 0;
188 long source_timeouts = 0;
189 unsigned long descriptor_status;
190
191 while ((descriptor_status = (((unsigned long)
192 uv_read_local_mmr(mmr_offset) >>
193 right_shift) & UV_ACT_STATUS_MASK)) !=
194 DESC_STATUS_IDLE) {
195 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
196 source_timeouts++;
197 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
198 source_timeouts = 0;
199 __get_cpu_var(ptcstats).s_retry++;
200 return FLUSH_RETRY;
201 }
202 /*
203 * spin here looking for progress at the destinations
204 */
205 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
206 destination_timeouts++;
207 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
208 /*
209 * returns number of cpus not responding
210 */
211 if (uv_examine_destinations
212 (&bau_desc->distribution) == 0) {
213 __get_cpu_var(ptcstats).d_retry++;
214 return FLUSH_RETRY;
215 }
216 exams++;
217 if (exams >= uv_bau_retry_limit) {
218 printk(KERN_DEBUG
219 "uv_flush_tlb_others");
220 printk("giving up on cpu %d\n",
221 smp_processor_id());
222 return FLUSH_GIVEUP;
223 }
224 /*
225 * delays can hang the simulator
226 udelay(1000);
227 */
228 destination_timeouts = 0;
229 }
230 }
18c07cf5 231 cpu_relax();
b194b120
CW
232 }
233 return FLUSH_COMPLETE;
234}
235
236/**
237 * uv_flush_send_and_wait
238 *
239 * Send a broadcast and wait for a broadcast message to complete.
240 *
bdbcdd48 241 * The flush_mask contains the cpus the broadcast was sent to.
b194b120 242 *
bdbcdd48
TH
243 * Returns NULL if all remote flushing was done. The mask is zeroed.
244 * Returns @flush_mask if some remote flushing remains to be done. The
245 * mask will have some bits still set.
b194b120 246 */
9674f35b 247const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
bdbcdd48
TH
248 struct bau_desc *bau_desc,
249 struct cpumask *flush_mask)
b194b120
CW
250{
251 int completion_status = 0;
252 int right_shift;
b194b120 253 int tries = 0;
9674f35b 254 int pnode;
b4c286e6 255 int bit;
b194b120 256 unsigned long mmr_offset;
b4c286e6 257 unsigned long index;
b194b120
CW
258 cycles_t time1;
259 cycles_t time2;
260
261 if (cpu < UV_CPUS_PER_ACT_STATUS) {
262 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
263 right_shift = cpu * UV_ACT_STATUS_SIZE;
264 } else {
265 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
266 right_shift =
267 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
268 }
269 time1 = get_cycles();
270 do {
271 tries++;
dc163a41
IM
272 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
273 cpu;
b194b120
CW
274 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
275 completion_status = uv_wait_completion(bau_desc, mmr_offset,
276 right_shift);
277 } while (completion_status == FLUSH_RETRY);
278 time2 = get_cycles();
279 __get_cpu_var(ptcstats).sflush += (time2 - time1);
280 if (tries > 1)
281 __get_cpu_var(ptcstats).retriesok++;
282
283 if (completion_status == FLUSH_GIVEUP) {
284 /*
285 * Cause the caller to do an IPI-style TLB shootdown on
286 * the cpu's, all of which are still in the mask.
287 */
288 __get_cpu_var(ptcstats).ptc_i++;
2749ebe3 289 return flush_mask;
b194b120
CW
290 }
291
292 /*
293 * Success, so clear the remote cpu's from the mask so we don't
294 * use the IPI method of shootdown on them.
295 */
bdbcdd48 296 for_each_cpu(bit, flush_mask) {
9674f35b
CW
297 pnode = uv_cpu_to_pnode(bit);
298 if (pnode == this_pnode)
b194b120 299 continue;
bdbcdd48 300 cpumask_clear_cpu(bit, flush_mask);
b194b120 301 }
bdbcdd48
TH
302 if (!cpumask_empty(flush_mask))
303 return flush_mask;
304 return NULL;
b194b120
CW
305}
306
76ba0ecd
RR
307static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
308
1812924b
CW
309/**
310 * uv_flush_tlb_others - globally purge translation cache of a virtual
311 * address or all TLB's
bdbcdd48 312 * @cpumask: mask of all cpu's in which the address is to be removed
1812924b
CW
313 * @mm: mm_struct containing virtual address range
314 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
bdbcdd48 315 * @cpu: the current cpu
1812924b
CW
316 *
317 * This is the entry point for initiating any UV global TLB shootdown.
318 *
319 * Purges the translation caches of all specified processors of the given
320 * virtual address, or purges all TLB's on specified processors.
321 *
bdbcdd48
TH
322 * The caller has derived the cpumask from the mm_struct. This function
323 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1812924b 324 *
bdbcdd48 325 * The cpumask is converted into a nodemask of the nodes containing
1812924b 326 * the cpus.
b194b120 327 *
bdbcdd48
TH
328 * Note that this function should be called with preemption disabled.
329 *
330 * Returns NULL if all remote flushing was done.
331 * Returns pointer to cpumask if some remote flushing remains to be
332 * done. The returned pointer is valid till preemption is re-enabled.
1812924b 333 */
bdbcdd48
TH
334const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
335 struct mm_struct *mm,
336 unsigned long va, unsigned int cpu)
1812924b 337{
76ba0ecd 338 struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
1812924b 339 int i;
b194b120 340 int bit;
9674f35b 341 int pnode;
bdbcdd48 342 int uv_cpu;
9674f35b 343 int this_pnode;
b194b120 344 int locals = 0;
dc163a41 345 struct bau_desc *bau_desc;
bdbcdd48
TH
346
347 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
348
349 uv_cpu = uv_blade_processor_id();
9674f35b 350 this_pnode = uv_hub_info->pnode;
1812924b 351 bau_desc = __get_cpu_var(bau_control).descriptor_base;
bdbcdd48 352 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
1812924b
CW
353
354 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
355
356 i = 0;
bdbcdd48 357 for_each_cpu(bit, flush_mask) {
9674f35b
CW
358 pnode = uv_cpu_to_pnode(bit);
359 BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
360 if (pnode == this_pnode) {
b194b120 361 locals++;
1812924b 362 continue;
b194b120 363 }
94ca8e48
CW
364 bau_node_set(pnode - uv_partition_base_pnode,
365 &bau_desc->distribution);
1812924b
CW
366 i++;
367 }
b194b120
CW
368 if (i == 0) {
369 /*
370 * no off_node flushing; return status for local node
371 */
372 if (locals)
bdbcdd48 373 return flush_mask;
b194b120 374 else
bdbcdd48 375 return NULL;
b194b120 376 }
1812924b
CW
377 __get_cpu_var(ptcstats).requestor++;
378 __get_cpu_var(ptcstats).ntargeted += i;
379
380 bau_desc->payload.address = va;
bdbcdd48 381 bau_desc->payload.sending_cpu = cpu;
1812924b 382
9674f35b 383 return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
1812924b
CW
384}
385
386/*
387 * The BAU message interrupt comes here. (registered by set_intr_gate)
388 * See entry_64.S
389 *
390 * We received a broadcast assist message.
391 *
392 * Interrupts may have been disabled; this interrupt could represent
393 * the receipt of several messages.
394 *
395 * All cores/threads on this node get this interrupt.
396 * The last one to see it does the s/w ack.
397 * (the resource will not be freed until noninterruptable cpus see this
398 * interrupt; hardware will timeout the s/w ack and reply ERROR)
399 */
b194b120 400void uv_bau_message_interrupt(struct pt_regs *regs)
1812924b 401{
dc163a41
IM
402 struct bau_payload_queue_entry *va_queue_first;
403 struct bau_payload_queue_entry *va_queue_last;
b4c286e6 404 struct bau_payload_queue_entry *msg;
1812924b 405 struct pt_regs *old_regs = set_irq_regs(regs);
b4c286e6
IM
406 cycles_t time1;
407 cycles_t time2;
1812924b
CW
408 int msg_slot;
409 int sw_ack_slot;
410 int fw;
411 int count = 0;
412 unsigned long local_pnode;
413
414 ack_APIC_irq();
415 exit_idle();
416 irq_enter();
417
b194b120 418 time1 = get_cycles();
1812924b
CW
419
420 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
421
b4c286e6 422 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
dc163a41 423 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
b4c286e6 424
1812924b
CW
425 msg = __get_cpu_var(bau_control).bau_msg_head;
426 while (msg->sw_ack_vector) {
427 count++;
428 fw = msg->sw_ack_vector;
b4c286e6 429 msg_slot = msg - va_queue_first;
1812924b
CW
430 sw_ack_slot = ffs(fw) - 1;
431
432 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
433
434 msg++;
dc163a41
IM
435 if (msg > va_queue_last)
436 msg = va_queue_first;
1812924b
CW
437 __get_cpu_var(bau_control).bau_msg_head = msg;
438 }
439 if (!count)
440 __get_cpu_var(ptcstats).nomsg++;
441 else if (count > 1)
442 __get_cpu_var(ptcstats).multmsg++;
443
b194b120
CW
444 time2 = get_cycles();
445 __get_cpu_var(ptcstats).dflush += (time2 - time1);
1812924b
CW
446
447 irq_exit();
448 set_irq_regs(old_regs);
1812924b
CW
449}
450
c4c4688f
CW
451/*
452 * uv_enable_timeouts
453 *
454 * Each target blade (i.e. blades that have cpu's) needs to have
455 * shootdown message timeouts enabled. The timeout does not cause
456 * an interrupt, but causes an error message to be returned to
457 * the sender.
458 */
b194b120 459static void uv_enable_timeouts(void)
1812924b 460{
1812924b 461 int blade;
c4c4688f 462 int nblades;
1812924b 463 int pnode;
c4c4688f 464 unsigned long mmr_image;
1812924b 465
c4c4688f 466 nblades = uv_num_possible_blades();
1812924b 467
c4c4688f
CW
468 for (blade = 0; blade < nblades; blade++) {
469 if (!uv_blade_nr_possible_cpus(blade))
1812924b 470 continue;
c4c4688f 471
1812924b 472 pnode = uv_blade_to_pnode(blade);
c4c4688f
CW
473 mmr_image =
474 uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
475 /*
476 * Set the timeout period and then lock it in, in three
477 * steps; captures and locks in the period.
478 *
479 * To program the period, the SOFT_ACK_MODE must be off.
480 */
481 mmr_image &= ~((unsigned long)1 <<
482 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
483 uv_write_global_mmr64
484 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
485 /*
486 * Set the 4-bit period.
487 */
488 mmr_image &= ~((unsigned long)0xf <<
489 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
490 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
491 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
492 uv_write_global_mmr64
493 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
494 /*
495 * Subsequent reversals of the timebase bit (3) cause an
496 * immediate timeout of one or all INTD resources as
497 * indicated in bits 2:0 (7 causes all of them to timeout).
498 */
499 mmr_image |= ((unsigned long)1 <<
500 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
501 uv_write_global_mmr64
502 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
1812924b 503 }
1812924b
CW
504}
505
b194b120 506static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
1812924b
CW
507{
508 if (*offset < num_possible_cpus())
509 return offset;
510 return NULL;
511}
512
b194b120 513static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1812924b
CW
514{
515 (*offset)++;
516 if (*offset < num_possible_cpus())
517 return offset;
518 return NULL;
519}
520
b194b120 521static void uv_ptc_seq_stop(struct seq_file *file, void *data)
1812924b
CW
522{
523}
524
525/*
526 * Display the statistics thru /proc
527 * data points to the cpu number
528 */
b194b120 529static int uv_ptc_seq_show(struct seq_file *file, void *data)
1812924b
CW
530{
531 struct ptc_stats *stat;
532 int cpu;
533
534 cpu = *(loff_t *)data;
535
536 if (!cpu) {
537 seq_printf(file,
538 "# cpu requestor requestee one all sretry dretry ptc_i ");
539 seq_printf(file,
b194b120 540 "sw_ack sflush dflush sok dnomsg dmult starget\n");
1812924b
CW
541 }
542 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
543 stat = &per_cpu(ptcstats, cpu);
544 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
545 cpu, stat->requestor,
546 stat->requestee, stat->onetlb, stat->alltlb,
547 stat->s_retry, stat->d_retry, stat->ptc_i);
548 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
9674f35b 549 uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
1812924b 550 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
b194b120 551 stat->sflush, stat->dflush,
1812924b
CW
552 stat->retriesok, stat->nomsg,
553 stat->multmsg, stat->ntargeted);
554 }
555
556 return 0;
557}
558
559/*
560 * 0: display meaning of the statistics
561 * >0: retry limit
562 */
b194b120 563static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
b4c286e6 564 size_t count, loff_t *data)
1812924b
CW
565{
566 long newmode;
567 char optstr[64];
568
e7eb8726 569 if (count == 0 || count > sizeof(optstr))
cef53278 570 return -EINVAL;
1812924b
CW
571 if (copy_from_user(optstr, user, count))
572 return -EFAULT;
573 optstr[count - 1] = '\0';
574 if (strict_strtoul(optstr, 10, &newmode) < 0) {
575 printk(KERN_DEBUG "%s is invalid\n", optstr);
576 return -EINVAL;
577 }
578
579 if (newmode == 0) {
580 printk(KERN_DEBUG "# cpu: cpu number\n");
581 printk(KERN_DEBUG
582 "requestor: times this cpu was the flush requestor\n");
583 printk(KERN_DEBUG
584 "requestee: times this cpu was requested to flush its TLBs\n");
585 printk(KERN_DEBUG
586 "one: times requested to flush a single address\n");
587 printk(KERN_DEBUG
588 "all: times requested to flush all TLB's\n");
589 printk(KERN_DEBUG
590 "sretry: number of retries of source-side timeouts\n");
591 printk(KERN_DEBUG
592 "dretry: number of retries of destination-side timeouts\n");
593 printk(KERN_DEBUG
594 "ptc_i: times UV fell through to IPI-style flushes\n");
595 printk(KERN_DEBUG
596 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
597 printk(KERN_DEBUG
b194b120 598 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
1812924b 599 printk(KERN_DEBUG
b194b120 600 "dflush_us: cycles spent in handling flush requests\n");
1812924b
CW
601 printk(KERN_DEBUG "sok: successes on retry\n");
602 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
603 printk(KERN_DEBUG
604 "dmult: interrupts with multiple messages\n");
605 printk(KERN_DEBUG "starget: nodes targeted\n");
606 } else {
607 uv_bau_retry_limit = newmode;
608 printk(KERN_DEBUG "timeout retry limit:%d\n",
609 uv_bau_retry_limit);
610 }
611
612 return count;
613}
614
615static const struct seq_operations uv_ptc_seq_ops = {
dc163a41
IM
616 .start = uv_ptc_seq_start,
617 .next = uv_ptc_seq_next,
618 .stop = uv_ptc_seq_stop,
619 .show = uv_ptc_seq_show
1812924b
CW
620};
621
b194b120 622static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1812924b
CW
623{
624 return seq_open(file, &uv_ptc_seq_ops);
625}
626
627static const struct file_operations proc_uv_ptc_operations = {
b194b120
CW
628 .open = uv_ptc_proc_open,
629 .read = seq_read,
630 .write = uv_ptc_proc_write,
631 .llseek = seq_lseek,
632 .release = seq_release,
1812924b
CW
633};
634
b194b120 635static int __init uv_ptc_init(void)
1812924b 636{
b194b120 637 struct proc_dir_entry *proc_uv_ptc;
1812924b
CW
638
639 if (!is_uv_system())
640 return 0;
641
10f02d11
AD
642 proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
643 &proc_uv_ptc_operations);
1812924b
CW
644 if (!proc_uv_ptc) {
645 printk(KERN_ERR "unable to create %s proc entry\n",
646 UV_PTC_BASENAME);
647 return -EINVAL;
648 }
1812924b
CW
649 return 0;
650}
651
b194b120
CW
652/*
653 * begin the initialization of the per-blade control structures
654 */
655static struct bau_control * __init uv_table_bases_init(int blade, int node)
1812924b 656{
b194b120 657 int i;
b194b120 658 struct bau_msg_status *msp;
dc163a41 659 struct bau_control *bau_tabp;
b194b120 660
dc163a41 661 bau_tabp =
b194b120 662 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
dc163a41 663 BUG_ON(!bau_tabp);
b4c286e6 664
dc163a41 665 bau_tabp->msg_statuses =
b194b120 666 kmalloc_node(sizeof(struct bau_msg_status) *
dc163a41
IM
667 DEST_Q_SIZE, GFP_KERNEL, node);
668 BUG_ON(!bau_tabp->msg_statuses);
b4c286e6 669
dc163a41 670 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
b194b120
CW
671 bau_cpubits_clear(&msp->seen_by, (int)
672 uv_blade_nr_possible_cpus(blade));
b4c286e6 673
dc163a41 674 uv_bau_table_bases[blade] = bau_tabp;
b4c286e6 675
d400524a 676 return bau_tabp;
1812924b
CW
677}
678
b194b120
CW
679/*
680 * finish the initialization of the per-blade control structures
681 */
b4c286e6 682static void __init
9674f35b 683uv_table_bases_finish(int blade,
b4c286e6
IM
684 struct bau_control *bau_tablesp,
685 struct bau_desc *adp)
b194b120 686{
b194b120 687 struct bau_control *bcp;
9674f35b 688 int cpu;
b194b120 689
9674f35b
CW
690 for_each_present_cpu(cpu) {
691 if (blade != uv_cpu_to_blade_id(cpu))
692 continue;
b4c286e6 693
9674f35b 694 bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
b4c286e6
IM
695 bcp->bau_msg_head = bau_tablesp->va_queue_first;
696 bcp->va_queue_first = bau_tablesp->va_queue_first;
697 bcp->va_queue_last = bau_tablesp->va_queue_last;
b4c286e6
IM
698 bcp->msg_statuses = bau_tablesp->msg_statuses;
699 bcp->descriptor_base = adp;
b194b120
CW
700 }
701}
1812924b
CW
702
703/*
b194b120 704 * initialize the sending side's sending buffers
1812924b 705 */
dc163a41 706static struct bau_desc * __init
b194b120 707uv_activation_descriptor_init(int node, int pnode)
1812924b
CW
708{
709 int i;
1812924b 710 unsigned long pa;
1812924b 711 unsigned long m;
b194b120 712 unsigned long n;
dc163a41
IM
713 struct bau_desc *adp;
714 struct bau_desc *ad2;
b194b120 715
0e2595cd
CW
716 /*
717 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
718 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
719 */
720 adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
721 UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
dc163a41 722 BUG_ON(!adp);
b4c286e6 723
4ea3c51d 724 pa = uv_gpa(adp); /* need the real nasid*/
1d21e6e3 725 n = uv_gpa_to_pnode(pa);
b194b120 726 m = pa & uv_mmask;
b4c286e6 727
9c26f52b
CW
728 uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
729 (n << UV_DESC_BASE_PNODE_SHIFT | m));
b4c286e6 730
0e2595cd
CW
731 /*
732 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
733 * cpu even though we only use the first one; one descriptor can
734 * describe a broadcast to 256 nodes.
735 */
736 for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
737 i++, ad2++) {
dc163a41 738 memset(ad2, 0, sizeof(struct bau_desc));
b194b120 739 ad2->header.sw_ack_flag = 1;
94ca8e48
CW
740 /*
741 * base_dest_nodeid is the first node in the partition, so
742 * the bit map will indicate partition-relative node numbers.
743 * note that base_dest_nodeid is actually a nasid.
744 */
745 ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
3ef12c3c 746 ad2->header.dest_subnodeid = 0x10; /* the LB */
b194b120
CW
747 ad2->header.command = UV_NET_ENDPOINT_INTD;
748 ad2->header.int_both = 1;
749 /*
750 * all others need to be set to zero:
751 * fairness chaining multilevel count replied_to
752 */
753 }
754 return adp;
755}
756
757/*
758 * initialize the destination side's receiving buffers
759 */
b4c286e6
IM
760static struct bau_payload_queue_entry * __init
761uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
b194b120 762{
1812924b 763 struct bau_payload_queue_entry *pqp;
4ea3c51d
CW
764 unsigned long pa;
765 int pn;
b4c286e6 766 char *cp;
1812924b 767
dc163a41
IM
768 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
769 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
770 GFP_KERNEL, node);
771 BUG_ON(!pqp);
b4c286e6 772
b194b120
CW
773 cp = (char *)pqp + 31;
774 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
775 bau_tablesp->va_queue_first = pqp;
4ea3c51d
CW
776 /*
777 * need the pnode of where the memory was really allocated
778 */
779 pa = uv_gpa(pqp);
1d21e6e3 780 pn = uv_gpa_to_pnode(pa);
b194b120
CW
781 uv_write_global_mmr64(pnode,
782 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
4ea3c51d 783 ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
b194b120
CW
784 uv_physnodeaddr(pqp));
785 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
786 uv_physnodeaddr(pqp));
dc163a41 787 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
b194b120
CW
788 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
789 (unsigned long)
790 uv_physnodeaddr(bau_tablesp->va_queue_last));
dc163a41 791 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
b4c286e6 792
b194b120
CW
793 return pqp;
794}
1812924b 795
b194b120
CW
796/*
797 * Initialization of each UV blade's structures
798 */
9674f35b 799static int __init uv_init_blade(int blade)
b194b120 800{
9674f35b 801 int node;
b194b120
CW
802 int pnode;
803 unsigned long pa;
804 unsigned long apicid;
dc163a41 805 struct bau_desc *adp;
b194b120
CW
806 struct bau_payload_queue_entry *pqp;
807 struct bau_control *bau_tablesp;
1812924b 808
9674f35b 809 node = blade_to_first_node(blade);
b194b120
CW
810 bau_tablesp = uv_table_bases_init(blade, node);
811 pnode = uv_blade_to_pnode(blade);
812 adp = uv_activation_descriptor_init(node, pnode);
813 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
9674f35b 814 uv_table_bases_finish(blade, bau_tablesp, adp);
b194b120
CW
815 /*
816 * the below initialization can't be in firmware because the
817 * messaging IRQ will be determined by the OS
818 */
9674f35b 819 apicid = blade_to_first_apicid(blade);
b194b120 820 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
e38e2af1 821 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
b194b120 822 ((apicid << 32) | UV_BAU_MESSAGE));
b194b120
CW
823 return 0;
824}
825
826/*
827 * Initialization of BAU-related structures
828 */
829static int __init uv_bau_init(void)
830{
831 int blade;
b194b120 832 int nblades;
2c74d666 833 int cur_cpu;
b194b120
CW
834
835 if (!is_uv_system())
836 return 0;
1812924b 837
76ba0ecd 838 for_each_possible_cpu(cur_cpu)
eaa95840 839 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
76ba0ecd
RR
840 GFP_KERNEL, cpu_to_node(cur_cpu));
841
b194b120 842 uv_bau_retry_limit = 1;
036ed8ba 843 uv_mmask = (1UL << uv_hub_info->m_val) - 1;
9674f35b
CW
844 nblades = uv_num_possible_blades();
845
1812924b
CW
846 uv_bau_table_bases = (struct bau_control **)
847 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
dc163a41 848 BUG_ON(!uv_bau_table_bases);
b4c286e6 849
94ca8e48
CW
850 uv_partition_base_pnode = 0x7fffffff;
851 for (blade = 0; blade < nblades; blade++)
852 if (uv_blade_nr_possible_cpus(blade) &&
853 (uv_blade_to_pnode(blade) < uv_partition_base_pnode))
854 uv_partition_base_pnode = uv_blade_to_pnode(blade);
9674f35b
CW
855 for (blade = 0; blade < nblades; blade++)
856 if (uv_blade_nr_possible_cpus(blade))
857 uv_init_blade(blade);
858
99dd8713 859 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
1812924b 860 uv_enable_timeouts();
b4c286e6 861
1812924b
CW
862 return 0;
863}
1812924b 864__initcall(uv_bau_init);
b194b120 865__initcall(uv_ptc_init);