]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/tsc.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533
AK
4#include <linux/sched.h>
5#include <linux/init.h>
186f4360 6#include <linux/export.h>
0ef95533 7#include <linux/timer.h>
bfc0f594 8#include <linux/acpi_pmtmr.h>
2dbe06fa 9#include <linux/cpufreq.h>
8fbbc4b4
AK
10#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
08604bd9 13#include <linux/timex.h>
10b033d4 14#include <linux/static_key.h>
bfc0f594
AK
15
16#include <asm/hpet.h>
8fbbc4b4
AK
17#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
88b094fb 21#include <asm/hypervisor.h>
08047c4f 22#include <asm/nmi.h>
2d826404 23#include <asm/x86_init.h>
03da3ff1 24#include <asm/geode.h>
6731b0d6 25#include <asm/apic.h>
655e52d2 26#include <asm/intel-family.h>
0ef95533 27
f24ade3a 28unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 29EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
30
31unsigned int __read_mostly tsc_khz;
0ef95533
AK
32EXPORT_SYMBOL(tsc_khz);
33
34/*
35 * TSC can be unstable due to cpufreq or due to unsynced TSCs
36 */
f24ade3a 37static int __read_mostly tsc_unstable;
0ef95533
AK
38
39/* native_sched_clock() is called before tsc_init(), so
40 we must start with the TSC soft disabled to prevent
59e21e3d 41 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
f24ade3a 42static int __read_mostly tsc_disabled = -1;
0ef95533 43
3bbfafb7 44static DEFINE_STATIC_KEY_FALSE(__use_tsc);
10b033d4 45
28a00184 46int tsc_clocksource_reliable;
57c67da2 47
f9677e0f
CH
48static u32 art_to_tsc_numerator;
49static u32 art_to_tsc_denominator;
50static u64 art_to_tsc_offset;
51struct clocksource *art_related_clocksource;
52
20d1c86a
PZ
53/*
54 * Use a ring-buffer like data structure, where a writer advances the head by
55 * writing a new data entry and a reader advances the tail when it observes a
56 * new entry.
57 *
58 * Writers are made to wait on readers until there's space to write a new
59 * entry.
60 *
61 * This means that we can always use an {offset, mul} pair to compute a ns
62 * value that is 'roughly' in the right direction, even if we're writing a new
63 * {offset, mul} pair during the clock read.
64 *
65 * The down-side is that we can no longer guarantee strict monotonicity anymore
66 * (assuming the TSC was that to begin with), because while we compute the
67 * intersection point of the two clock slopes and make sure the time is
68 * continuous at the point of switching; we can no longer guarantee a reader is
69 * strictly before or after the switch point.
70 *
71 * It does mean a reader no longer needs to disable IRQs in order to avoid
72 * CPU-Freq updates messing with his times, and similarly an NMI reader will
73 * no longer run the risk of hitting half-written state.
74 */
75
76struct cyc2ns {
77 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
78 struct cyc2ns_data *head; /* 48 + 8 = 56 */
79 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
80}; /* exactly fits one cacheline */
81
82static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
83
84struct cyc2ns_data *cyc2ns_read_begin(void)
85{
86 struct cyc2ns_data *head;
87
88 preempt_disable();
89
90 head = this_cpu_read(cyc2ns.head);
91 /*
92 * Ensure we observe the entry when we observe the pointer to it.
93 * matches the wmb from cyc2ns_write_end().
94 */
95 smp_read_barrier_depends();
96 head->__count++;
97 barrier();
98
99 return head;
100}
101
102void cyc2ns_read_end(struct cyc2ns_data *head)
103{
104 barrier();
105 /*
106 * If we're the outer most nested read; update the tail pointer
107 * when we're done. This notifies possible pending writers
108 * that we've observed the head pointer and that the other
109 * entry is now free.
110 */
111 if (!--head->__count) {
112 /*
113 * x86-TSO does not reorder writes with older reads;
114 * therefore once this write becomes visible to another
115 * cpu, we must be finished reading the cyc2ns_data.
116 *
117 * matches with cyc2ns_write_begin().
118 */
119 this_cpu_write(cyc2ns.tail, head);
120 }
121 preempt_enable();
122}
123
124/*
125 * Begin writing a new @data entry for @cpu.
126 *
127 * Assumes some sort of write side lock; currently 'provided' by the assumption
128 * that cpufreq will call its notifiers sequentially.
129 */
130static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
131{
132 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
133 struct cyc2ns_data *data = c2n->data;
134
135 if (data == c2n->head)
136 data++;
137
138 /* XXX send an IPI to @cpu in order to guarantee a read? */
139
140 /*
141 * When we observe the tail write from cyc2ns_read_end(),
142 * the cpu must be done with that entry and its safe
143 * to start writing to it.
144 */
145 while (c2n->tail == data)
146 cpu_relax();
147
148 return data;
149}
150
151static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
152{
153 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
154
155 /*
156 * Ensure the @data writes are visible before we publish the
157 * entry. Matches the data-depencency in cyc2ns_read_begin().
158 */
159 smp_wmb();
160
161 ACCESS_ONCE(c2n->head) = data;
162}
163
164/*
165 * Accelerators for sched_clock()
57c67da2
PZ
166 * convert from cycles(64bits) => nanoseconds (64bits)
167 * basic equation:
168 * ns = cycles / (freq / ns_per_sec)
169 * ns = cycles * (ns_per_sec / freq)
170 * ns = cycles * (10^9 / (cpu_khz * 10^3))
171 * ns = cycles * (10^6 / cpu_khz)
172 *
173 * Then we use scaling math (suggested by george@mvista.com) to get:
174 * ns = cycles * (10^6 * SC / cpu_khz) / SC
175 * ns = cycles * cyc2ns_scale / SC
176 *
177 * And since SC is a constant power of two, we can convert the div
b20112ed
AH
178 * into a shift. The larger SC is, the more accurate the conversion, but
179 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
180 * (64-bit result) can be used.
57c67da2 181 *
b20112ed 182 * We can use khz divisor instead of mhz to keep a better precision.
57c67da2
PZ
183 * (mathieu.desnoyers@polymtl.ca)
184 *
185 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
186 */
187
20d1c86a
PZ
188static void cyc2ns_data_init(struct cyc2ns_data *data)
189{
5e3c1afd 190 data->cyc2ns_mul = 0;
b20112ed 191 data->cyc2ns_shift = 0;
20d1c86a
PZ
192 data->cyc2ns_offset = 0;
193 data->__count = 0;
194}
195
196static void cyc2ns_init(int cpu)
197{
198 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
199
200 cyc2ns_data_init(&c2n->data[0]);
201 cyc2ns_data_init(&c2n->data[1]);
202
203 c2n->head = c2n->data;
204 c2n->tail = c2n->data;
205}
206
57c67da2
PZ
207static inline unsigned long long cycles_2_ns(unsigned long long cyc)
208{
20d1c86a
PZ
209 struct cyc2ns_data *data, *tail;
210 unsigned long long ns;
211
212 /*
213 * See cyc2ns_read_*() for details; replicated in order to avoid
214 * an extra few instructions that came with the abstraction.
215 * Notable, it allows us to only do the __count and tail update
216 * dance when its actually needed.
217 */
218
569d6557 219 preempt_disable_notrace();
20d1c86a
PZ
220 data = this_cpu_read(cyc2ns.head);
221 tail = this_cpu_read(cyc2ns.tail);
222
223 if (likely(data == tail)) {
224 ns = data->cyc2ns_offset;
b20112ed 225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
20d1c86a
PZ
226 } else {
227 data->__count++;
228
229 barrier();
230
231 ns = data->cyc2ns_offset;
b20112ed 232 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
20d1c86a
PZ
233
234 barrier();
235
236 if (!--data->__count)
237 this_cpu_write(cyc2ns.tail, data);
238 }
569d6557 239 preempt_enable_notrace();
20d1c86a 240
57c67da2
PZ
241 return ns;
242}
243
aa297292 244static void set_cyc2ns_scale(unsigned long khz, int cpu)
57c67da2 245{
20d1c86a
PZ
246 unsigned long long tsc_now, ns_now;
247 struct cyc2ns_data *data;
248 unsigned long flags;
57c67da2
PZ
249
250 local_irq_save(flags);
251 sched_clock_idle_sleep_event();
252
aa297292 253 if (!khz)
20d1c86a
PZ
254 goto done;
255
256 data = cyc2ns_write_begin(cpu);
57c67da2 257
4ea1636b 258 tsc_now = rdtsc();
57c67da2
PZ
259 ns_now = cycles_2_ns(tsc_now);
260
20d1c86a
PZ
261 /*
262 * Compute a new multiplier as per the above comment and ensure our
263 * time function is continuous; see the comment near struct
264 * cyc2ns_data.
265 */
aa297292 266 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
b20112ed
AH
267 NSEC_PER_MSEC, 0);
268
b9511cd7
AH
269 /*
270 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
271 * not expected to be greater than 31 due to the original published
272 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
273 * value) - refer perf_event_mmap_page documentation in perf_event.h.
274 */
275 if (data->cyc2ns_shift == 32) {
276 data->cyc2ns_shift = 31;
277 data->cyc2ns_mul >>= 1;
278 }
279
20d1c86a 280 data->cyc2ns_offset = ns_now -
b20112ed 281 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
20d1c86a
PZ
282
283 cyc2ns_write_end(cpu, data);
57c67da2 284
20d1c86a 285done:
57c67da2
PZ
286 sched_clock_idle_wakeup_event(0);
287 local_irq_restore(flags);
288}
0ef95533
AK
289/*
290 * Scheduler clock - returns current time in nanosec units.
291 */
292u64 native_sched_clock(void)
293{
3bbfafb7
PZ
294 if (static_branch_likely(&__use_tsc)) {
295 u64 tsc_now = rdtsc();
296
297 /* return the value in ns */
298 return cycles_2_ns(tsc_now);
299 }
0ef95533
AK
300
301 /*
302 * Fall back to jiffies if there's no TSC available:
303 * ( But note that we still use it if the TSC is marked
304 * unstable. We do this because unlike Time Of Day,
305 * the scheduler clock tolerates small errors and it's
306 * very important for it to be as fast as the platform
3ad2f3fb 307 * can achieve it. )
0ef95533 308 */
0ef95533 309
3bbfafb7
PZ
310 /* No locking but a rare wrong value is not a big deal: */
311 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
0ef95533
AK
312}
313
a94cab23
AK
314/*
315 * Generate a sched_clock if you already have a TSC value.
316 */
317u64 native_sched_clock_from_tsc(u64 tsc)
318{
319 return cycles_2_ns(tsc);
320}
321
0ef95533
AK
322/* We need to define a real function for sched_clock, to override the
323 weak default version */
324#ifdef CONFIG_PARAVIRT
325unsigned long long sched_clock(void)
326{
327 return paravirt_sched_clock();
328}
329#else
330unsigned long long
331sched_clock(void) __attribute__((alias("native_sched_clock")));
332#endif
333
334int check_tsc_unstable(void)
335{
336 return tsc_unstable;
337}
338EXPORT_SYMBOL_GPL(check_tsc_unstable);
339
340#ifdef CONFIG_X86_TSC
341int __init notsc_setup(char *str)
342{
c767a54b 343 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
344 tsc_disabled = 1;
345 return 1;
346}
347#else
348/*
349 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
350 * in cpu/common.c
351 */
352int __init notsc_setup(char *str)
353{
354 setup_clear_cpu_cap(X86_FEATURE_TSC);
355 return 1;
356}
357#endif
358
359__setup("notsc", notsc_setup);
bfc0f594 360
e82b8e4e
VP
361static int no_sched_irq_time;
362
395628ef
AK
363static int __init tsc_setup(char *str)
364{
365 if (!strcmp(str, "reliable"))
366 tsc_clocksource_reliable = 1;
e82b8e4e
VP
367 if (!strncmp(str, "noirqtime", 9))
368 no_sched_irq_time = 1;
395628ef
AK
369 return 1;
370}
371
372__setup("tsc=", tsc_setup);
373
bfc0f594
AK
374#define MAX_RETRIES 5
375#define SMI_TRESHOLD 50000
376
377/*
378 * Read TSC and the reference counters. Take care of SMI disturbance
379 */
827014be 380static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
381{
382 u64 t1, t2;
383 int i;
384
385 for (i = 0; i < MAX_RETRIES; i++) {
386 t1 = get_cycles();
387 if (hpet)
827014be 388 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 389 else
827014be 390 *p = acpi_pm_read_early();
bfc0f594
AK
391 t2 = get_cycles();
392 if ((t2 - t1) < SMI_TRESHOLD)
393 return t2;
394 }
395 return ULLONG_MAX;
396}
397
d683ef7a
TG
398/*
399 * Calculate the TSC frequency from HPET reference
bfc0f594 400 */
d683ef7a 401static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 402{
d683ef7a 403 u64 tmp;
bfc0f594 404
d683ef7a
TG
405 if (hpet2 < hpet1)
406 hpet2 += 0x100000000ULL;
407 hpet2 -= hpet1;
408 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
409 do_div(tmp, 1000000);
410 do_div(deltatsc, tmp);
411
412 return (unsigned long) deltatsc;
413}
414
415/*
416 * Calculate the TSC frequency from PMTimer reference
417 */
418static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
419{
420 u64 tmp;
bfc0f594 421
d683ef7a
TG
422 if (!pm1 && !pm2)
423 return ULONG_MAX;
424
425 if (pm2 < pm1)
426 pm2 += (u64)ACPI_PM_OVRRUN;
427 pm2 -= pm1;
428 tmp = pm2 * 1000000000LL;
429 do_div(tmp, PMTMR_TICKS_PER_SEC);
430 do_div(deltatsc, tmp);
431
432 return (unsigned long) deltatsc;
433}
434
a977c400 435#define CAL_MS 10
b7743970 436#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
437#define CAL_PIT_LOOPS 1000
438
439#define CAL2_MS 50
b7743970 440#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
441#define CAL2_PIT_LOOPS 5000
442
cce3e057 443
ec0c15af
LT
444/*
445 * Try to calibrate the TSC against the Programmable
446 * Interrupt Timer and return the frequency of the TSC
447 * in kHz.
448 *
449 * Return ULONG_MAX on failure to calibrate.
450 */
a977c400 451static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
452{
453 u64 tsc, t1, t2, delta;
454 unsigned long tscmin, tscmax;
455 int pitcnt;
456
457 /* Set the Gate high, disable speaker */
458 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
459
460 /*
461 * Setup CTC channel 2* for mode 0, (interrupt on terminal
462 * count mode), binary count. Set the latch register to 50ms
463 * (LSB then MSB) to begin countdown.
464 */
465 outb(0xb0, 0x43);
a977c400
TG
466 outb(latch & 0xff, 0x42);
467 outb(latch >> 8, 0x42);
ec0c15af
LT
468
469 tsc = t1 = t2 = get_cycles();
470
471 pitcnt = 0;
472 tscmax = 0;
473 tscmin = ULONG_MAX;
474 while ((inb(0x61) & 0x20) == 0) {
475 t2 = get_cycles();
476 delta = t2 - tsc;
477 tsc = t2;
478 if ((unsigned long) delta < tscmin)
479 tscmin = (unsigned int) delta;
480 if ((unsigned long) delta > tscmax)
481 tscmax = (unsigned int) delta;
482 pitcnt++;
483 }
484
485 /*
486 * Sanity checks:
487 *
a977c400 488 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
489 * times, then we have been hit by a massive SMI
490 *
491 * If the maximum is 10 times larger than the minimum,
492 * then we got hit by an SMI as well.
493 */
a977c400 494 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
495 return ULONG_MAX;
496
497 /* Calculate the PIT value */
498 delta = t2 - t1;
a977c400 499 do_div(delta, ms);
ec0c15af
LT
500 return delta;
501}
502
6ac40ed0
LT
503/*
504 * This reads the current MSB of the PIT counter, and
505 * checks if we are running on sufficiently fast and
506 * non-virtualized hardware.
507 *
508 * Our expectations are:
509 *
510 * - the PIT is running at roughly 1.19MHz
511 *
512 * - each IO is going to take about 1us on real hardware,
513 * but we allow it to be much faster (by a factor of 10) or
514 * _slightly_ slower (ie we allow up to a 2us read+counter
515 * update - anything else implies a unacceptably slow CPU
516 * or PIT for the fast calibration to work.
517 *
518 * - with 256 PIT ticks to read the value, we have 214us to
519 * see the same MSB (and overhead like doing a single TSC
520 * read per MSB value etc).
521 *
522 * - We're doing 2 reads per loop (LSB, MSB), and we expect
523 * them each to take about a microsecond on real hardware.
524 * So we expect a count value of around 100. But we'll be
525 * generous, and accept anything over 50.
526 *
527 * - if the PIT is stuck, and we see *many* more reads, we
528 * return early (and the next caller of pit_expect_msb()
529 * then consider it a failure when they don't see the
530 * next expected value).
531 *
532 * These expectations mean that we know that we have seen the
533 * transition from one expected value to another with a fairly
534 * high accuracy, and we didn't miss any events. We can thus
535 * use the TSC value at the transitions to calculate a pretty
536 * good value for the TSC frequencty.
537 */
b6e61eef
LT
538static inline int pit_verify_msb(unsigned char val)
539{
540 /* Ignore LSB */
541 inb(0x42);
542 return inb(0x42) == val;
543}
544
9e8912e0 545static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 546{
9e8912e0 547 int count;
68f30fbe 548 u64 tsc = 0, prev_tsc = 0;
bfc0f594 549
6ac40ed0 550 for (count = 0; count < 50000; count++) {
b6e61eef 551 if (!pit_verify_msb(val))
6ac40ed0 552 break;
68f30fbe 553 prev_tsc = tsc;
9e8912e0 554 tsc = get_cycles();
6ac40ed0 555 }
68f30fbe 556 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
557 *tscp = tsc;
558
559 /*
560 * We require _some_ success, but the quality control
561 * will be based on the error terms on the TSC values.
562 */
563 return count > 5;
6ac40ed0
LT
564}
565
566/*
9e8912e0
LT
567 * How many MSB values do we want to see? We aim for
568 * a maximum error rate of 500ppm (in practice the
569 * real error is much smaller), but refuse to spend
68f30fbe 570 * more than 50ms on it.
6ac40ed0 571 */
68f30fbe 572#define MAX_QUICK_PIT_MS 50
9e8912e0 573#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 574
6ac40ed0
LT
575static unsigned long quick_pit_calibrate(void)
576{
9e8912e0
LT
577 int i;
578 u64 tsc, delta;
579 unsigned long d1, d2;
580
6ac40ed0 581 /* Set the Gate high, disable speaker */
bfc0f594
AK
582 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
583
6ac40ed0
LT
584 /*
585 * Counter 2, mode 0 (one-shot), binary count
586 *
587 * NOTE! Mode 2 decrements by two (and then the
588 * output is flipped each time, giving the same
589 * final output frequency as a decrement-by-one),
590 * so mode 0 is much better when looking at the
591 * individual counts.
592 */
bfc0f594 593 outb(0xb0, 0x43);
bfc0f594 594
6ac40ed0
LT
595 /* Start at 0xffff */
596 outb(0xff, 0x42);
597 outb(0xff, 0x42);
598
a6a80e1d
LT
599 /*
600 * The PIT starts counting at the next edge, so we
601 * need to delay for a microsecond. The easiest way
602 * to do that is to just read back the 16-bit counter
603 * once from the PIT.
604 */
b6e61eef 605 pit_verify_msb(0);
a6a80e1d 606
9e8912e0
LT
607 if (pit_expect_msb(0xff, &tsc, &d1)) {
608 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
609 if (!pit_expect_msb(0xff-i, &delta, &d2))
610 break;
611
5aac644a
AH
612 delta -= tsc;
613
614 /*
615 * Extrapolate the error and fail fast if the error will
616 * never be below 500 ppm.
617 */
618 if (i == 1 &&
619 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
620 return 0;
621
9e8912e0
LT
622 /*
623 * Iterate until the error is less than 500 ppm
624 */
b6e61eef
LT
625 if (d1+d2 >= delta >> 11)
626 continue;
627
628 /*
629 * Check the PIT one more time to verify that
630 * all TSC reads were stable wrt the PIT.
631 *
632 * This also guarantees serialization of the
633 * last cycle read ('d2') in pit_expect_msb.
634 */
635 if (!pit_verify_msb(0xfe - i))
636 break;
637 goto success;
6ac40ed0 638 }
6ac40ed0 639 }
52045217 640 pr_info("Fast TSC calibration failed\n");
6ac40ed0 641 return 0;
9e8912e0
LT
642
643success:
644 /*
645 * Ok, if we get here, then we've seen the
646 * MSB of the PIT decrement 'i' times, and the
647 * error has shrunk to less than 500 ppm.
648 *
649 * As a result, we can depend on there not being
650 * any odd delays anywhere, and the TSC reads are
68f30fbe 651 * reliable (within the error).
9e8912e0
LT
652 *
653 * kHz = ticks / time-in-seconds / 1000;
654 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
655 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
656 */
9e8912e0
LT
657 delta *= PIT_TICK_RATE;
658 do_div(delta, i*256*1000);
c767a54b 659 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 660 return delta;
6ac40ed0 661}
ec0c15af 662
bfc0f594 663/**
aa297292
LB
664 * native_calibrate_tsc
665 * Determine TSC frequency via CPUID, else return 0.
bfc0f594 666 */
e93ef949 667unsigned long native_calibrate_tsc(void)
aa297292
LB
668{
669 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
670 unsigned int crystal_khz;
671
672 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
673 return 0;
674
675 if (boot_cpu_data.cpuid_level < 0x15)
676 return 0;
677
678 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
679
680 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
681 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
682
683 if (ebx_numerator == 0 || eax_denominator == 0)
684 return 0;
685
686 crystal_khz = ecx_hz / 1000;
687
688 if (crystal_khz == 0) {
689 switch (boot_cpu_data.x86_model) {
655e52d2
PB
690 case INTEL_FAM6_SKYLAKE_MOBILE:
691 case INTEL_FAM6_SKYLAKE_DESKTOP:
6baf3d61
PB
692 case INTEL_FAM6_KABYLAKE_MOBILE:
693 case INTEL_FAM6_KABYLAKE_DESKTOP:
ff4c8663
LB
694 crystal_khz = 24000; /* 24.0 MHz */
695 break;
6baf3d61
PB
696 case INTEL_FAM6_SKYLAKE_X:
697 crystal_khz = 25000; /* 25.0 MHz */
698 break;
655e52d2 699 case INTEL_FAM6_ATOM_GOLDMONT:
ff4c8663
LB
700 crystal_khz = 19200; /* 19.2 MHz */
701 break;
aa297292
LB
702 }
703 }
704
4ca4df0b
BG
705 /*
706 * TSC frequency determined by CPUID is a "hardware reported"
707 * frequency and is the most accurate one so far we have. This
708 * is considered a known frequency.
709 */
710 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
711
4635fdc6
BG
712 /*
713 * For Atom SoCs TSC is the only reliable clocksource.
714 * Mark TSC reliable so no watchdog on it.
715 */
716 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
717 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
718
aa297292
LB
719 return crystal_khz * ebx_numerator / eax_denominator;
720}
721
722static unsigned long cpu_khz_from_cpuid(void)
723{
724 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
725
726 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
727 return 0;
728
729 if (boot_cpu_data.cpuid_level < 0x16)
730 return 0;
731
732 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
733
734 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
735
736 return eax_base_mhz * 1000;
737}
738
739/**
740 * native_calibrate_cpu - calibrate the cpu on boot
741 */
742unsigned long native_calibrate_cpu(void)
bfc0f594 743{
827014be 744 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 745 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 746 unsigned long flags, latch, ms, fast_calibrate;
a977c400 747 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 748
aa297292
LB
749 fast_calibrate = cpu_khz_from_cpuid();
750 if (fast_calibrate)
751 return fast_calibrate;
752
02c0cd2d 753 fast_calibrate = cpu_khz_from_msr();
5f0e0309 754 if (fast_calibrate)
7da7c156 755 return fast_calibrate;
7da7c156 756
6ac40ed0
LT
757 local_irq_save(flags);
758 fast_calibrate = quick_pit_calibrate();
bfc0f594 759 local_irq_restore(flags);
6ac40ed0
LT
760 if (fast_calibrate)
761 return fast_calibrate;
bfc0f594 762
fbb16e24
TG
763 /*
764 * Run 5 calibration loops to get the lowest frequency value
765 * (the best estimate). We use two different calibration modes
766 * here:
767 *
768 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
769 * load a timeout of 50ms. We read the time right after we
770 * started the timer and wait until the PIT count down reaches
771 * zero. In each wait loop iteration we read the TSC and check
772 * the delta to the previous read. We keep track of the min
773 * and max values of that delta. The delta is mostly defined
774 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 775 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
776 * maximum time is significantly larger than the minimum time,
777 * then we discard the result and have another try.
778 *
779 * 2) Reference counter. If available we use the HPET or the
780 * PMTIMER as a reference to check the sanity of that value.
781 * We use separate TSC readouts and check inside of the
782 * reference read for a SMI/SMM disturbance. We dicard
783 * disturbed values here as well. We do that around the PIT
784 * calibration delay loop as we have to wait for a certain
785 * amount of time anyway.
786 */
a977c400
TG
787
788 /* Preset PIT loop values */
789 latch = CAL_LATCH;
790 ms = CAL_MS;
791 loopmin = CAL_PIT_LOOPS;
792
793 for (i = 0; i < 3; i++) {
ec0c15af 794 unsigned long tsc_pit_khz;
fbb16e24
TG
795
796 /*
797 * Read the start value and the reference count of
ec0c15af
LT
798 * hpet/pmtimer when available. Then do the PIT
799 * calibration, which will take at least 50ms, and
800 * read the end value.
fbb16e24 801 */
ec0c15af 802 local_irq_save(flags);
827014be 803 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 804 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 805 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
806 local_irq_restore(flags);
807
ec0c15af
LT
808 /* Pick the lowest PIT TSC calibration so far */
809 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
810
811 /* hpet or pmtimer available ? */
62627bec 812 if (ref1 == ref2)
fbb16e24
TG
813 continue;
814
815 /* Check, whether the sampling was disturbed by an SMI */
816 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
817 continue;
818
819 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 820 if (hpet)
827014be 821 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 822 else
827014be 823 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 824
fbb16e24 825 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
826
827 /* Check the reference deviation */
828 delta = ((u64) tsc_pit_min) * 100;
829 do_div(delta, tsc_ref_min);
830
831 /*
832 * If both calibration results are inside a 10% window
833 * then we can be sure, that the calibration
834 * succeeded. We break out of the loop right away. We
835 * use the reference value, as it is more precise.
836 */
837 if (delta >= 90 && delta <= 110) {
c767a54b
JP
838 pr_info("PIT calibration matches %s. %d loops\n",
839 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 840 return tsc_ref_min;
fbb16e24
TG
841 }
842
a977c400
TG
843 /*
844 * Check whether PIT failed more than once. This
845 * happens in virtualized environments. We need to
846 * give the virtual PC a slightly longer timeframe for
847 * the HPET/PMTIMER to make the result precise.
848 */
849 if (i == 1 && tsc_pit_min == ULONG_MAX) {
850 latch = CAL2_LATCH;
851 ms = CAL2_MS;
852 loopmin = CAL2_PIT_LOOPS;
853 }
fbb16e24 854 }
bfc0f594
AK
855
856 /*
fbb16e24 857 * Now check the results.
bfc0f594 858 */
fbb16e24
TG
859 if (tsc_pit_min == ULONG_MAX) {
860 /* PIT gave no useful value */
c767a54b 861 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
862
863 /* We don't have an alternative source, disable TSC */
827014be 864 if (!hpet && !ref1 && !ref2) {
c767a54b 865 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
866 return 0;
867 }
868
869 /* The alternative source failed as well, disable TSC */
870 if (tsc_ref_min == ULONG_MAX) {
c767a54b 871 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
872 return 0;
873 }
874
875 /* Use the alternative source */
c767a54b
JP
876 pr_info("using %s reference calibration\n",
877 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
878
879 return tsc_ref_min;
880 }
bfc0f594 881
fbb16e24 882 /* We don't have an alternative source, use the PIT calibration value */
827014be 883 if (!hpet && !ref1 && !ref2) {
c767a54b 884 pr_info("Using PIT calibration value\n");
fbb16e24 885 return tsc_pit_min;
bfc0f594
AK
886 }
887
fbb16e24
TG
888 /* The alternative source failed, use the PIT calibration value */
889 if (tsc_ref_min == ULONG_MAX) {
c767a54b 890 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 891 return tsc_pit_min;
bfc0f594
AK
892 }
893
fbb16e24
TG
894 /*
895 * The calibration values differ too much. In doubt, we use
896 * the PIT value as we know that there are PMTIMERs around
a977c400 897 * running at double speed. At least we let the user know:
fbb16e24 898 */
c767a54b
JP
899 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
900 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
901 pr_info("Using PIT calibration value\n");
fbb16e24 902 return tsc_pit_min;
bfc0f594
AK
903}
904
bfc0f594
AK
905int recalibrate_cpu_khz(void)
906{
907#ifndef CONFIG_SMP
908 unsigned long cpu_khz_old = cpu_khz;
909
eff4677e 910 if (!boot_cpu_has(X86_FEATURE_TSC))
bfc0f594 911 return -ENODEV;
eff4677e 912
aa297292 913 cpu_khz = x86_platform.calibrate_cpu();
eff4677e 914 tsc_khz = x86_platform.calibrate_tsc();
aa297292
LB
915 if (tsc_khz == 0)
916 tsc_khz = cpu_khz;
ff4c8663
LB
917 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
918 cpu_khz = tsc_khz;
eff4677e
BP
919 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
920 cpu_khz_old, cpu_khz);
921
922 return 0;
bfc0f594
AK
923#else
924 return -ENODEV;
925#endif
926}
927
928EXPORT_SYMBOL(recalibrate_cpu_khz);
929
2dbe06fa 930
cd7240c0
SS
931static unsigned long long cyc2ns_suspend;
932
b74f05d6 933void tsc_save_sched_clock_state(void)
cd7240c0 934{
35af99e6 935 if (!sched_clock_stable())
cd7240c0
SS
936 return;
937
938 cyc2ns_suspend = sched_clock();
939}
940
941/*
942 * Even on processors with invariant TSC, TSC gets reset in some the
943 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
944 * arbitrary value (still sync'd across cpu's) during resume from such sleep
945 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
946 * that sched_clock() continues from the point where it was left off during
947 * suspend.
948 */
b74f05d6 949void tsc_restore_sched_clock_state(void)
cd7240c0
SS
950{
951 unsigned long long offset;
952 unsigned long flags;
953 int cpu;
954
35af99e6 955 if (!sched_clock_stable())
cd7240c0
SS
956 return;
957
958 local_irq_save(flags);
959
20d1c86a 960 /*
6a6256f9 961 * We're coming out of suspend, there's no concurrency yet; don't
20d1c86a
PZ
962 * bother being nice about the RCU stuff, just write to both
963 * data fields.
964 */
965
966 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
967 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
968
cd7240c0
SS
969 offset = cyc2ns_suspend - sched_clock();
970
20d1c86a
PZ
971 for_each_possible_cpu(cpu) {
972 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
973 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
974 }
cd7240c0
SS
975
976 local_irq_restore(flags);
977}
978
2dbe06fa
AK
979#ifdef CONFIG_CPU_FREQ
980
981/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
982 * changes.
983 *
984 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
985 * not that important because current Opteron setups do not support
986 * scaling on SMP anyroads.
987 *
988 * Should fix up last_tsc too. Currently gettimeofday in the
989 * first tick after the change will be slightly wrong.
990 */
991
992static unsigned int ref_freq;
993static unsigned long loops_per_jiffy_ref;
994static unsigned long tsc_khz_ref;
995
996static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
997 void *data)
998{
999 struct cpufreq_freqs *freq = data;
931db6a3 1000 unsigned long *lpj;
2dbe06fa 1001
931db6a3 1002 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 1003#ifdef CONFIG_SMP
931db6a3 1004 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 1005 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
1006#endif
1007
1008 if (!ref_freq) {
1009 ref_freq = freq->old;
1010 loops_per_jiffy_ref = *lpj;
1011 tsc_khz_ref = tsc_khz;
1012 }
1013 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
0b443ead 1014 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
878f4f53 1015 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
1016
1017 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1018 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1019 mark_tsc_unstable("cpufreq changes");
2dbe06fa 1020
3896c329
PZ
1021 set_cyc2ns_scale(tsc_khz, freq->cpu);
1022 }
2dbe06fa
AK
1023
1024 return 0;
1025}
1026
1027static struct notifier_block time_cpufreq_notifier_block = {
1028 .notifier_call = time_cpufreq_notifier
1029};
1030
a841cca7 1031static int __init cpufreq_register_tsc_scaling(void)
2dbe06fa 1032{
59e21e3d 1033 if (!boot_cpu_has(X86_FEATURE_TSC))
060700b5
LT
1034 return 0;
1035 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1036 return 0;
2dbe06fa
AK
1037 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1038 CPUFREQ_TRANSITION_NOTIFIER);
1039 return 0;
1040}
1041
a841cca7 1042core_initcall(cpufreq_register_tsc_scaling);
2dbe06fa
AK
1043
1044#endif /* CONFIG_CPU_FREQ */
8fbbc4b4 1045
f9677e0f
CH
1046#define ART_CPUID_LEAF (0x15)
1047#define ART_MIN_DENOMINATOR (1)
1048
1049
1050/*
1051 * If ART is present detect the numerator:denominator to convert to TSC
1052 */
1053static void detect_art(void)
1054{
1055 unsigned int unused[2];
1056
1057 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1058 return;
1059
7b3d2f6e 1060 /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
f9677e0f
CH
1061 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1062 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
7b3d2f6e 1063 !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
f9677e0f
CH
1064 return;
1065
7b3d2f6e
TG
1066 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1067 &art_to_tsc_numerator, unused, unused+1);
1068
1069 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
f9677e0f
CH
1070 return;
1071
7b3d2f6e
TG
1072 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1073
f9677e0f
CH
1074 /* Make this sticky over multiple CPU init calls */
1075 setup_force_cpu_cap(X86_FEATURE_ART);
1076}
1077
1078
8fbbc4b4
AK
1079/* clocksource code */
1080
1081static struct clocksource clocksource_tsc;
1082
6a369583
TG
1083static void tsc_resume(struct clocksource *cs)
1084{
1085 tsc_verify_tsc_adjust(true);
1086}
1087
8fbbc4b4 1088/*
09ec5442 1089 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
1090 * structure to avoid a nasty time-warp. This can be observed in a
1091 * very small window right after one CPU updated cycle_last under
1092 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1093 * is smaller than the cycle_last reference value due to a TSC which
1094 * is slighty behind. This delta is nowhere else observable, but in
1095 * that case it results in a forward time jump in the range of hours
1096 * due to the unsigned delta calculation of the time keeping core
1097 * code, which is necessary to support wrapping clocksources like pm
1098 * timer.
09ec5442
TG
1099 *
1100 * This sanity check is now done in the core timekeeping code.
1101 * checking the result of read_tsc() - cycle_last for being negative.
1102 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 1103 */
8e19608e 1104static cycle_t read_tsc(struct clocksource *cs)
8fbbc4b4 1105{
27c63405 1106 return (cycle_t)rdtsc_ordered();
1be39679
MS
1107}
1108
09ec5442
TG
1109/*
1110 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1111 */
8fbbc4b4
AK
1112static struct clocksource clocksource_tsc = {
1113 .name = "tsc",
1114 .rating = 300,
1115 .read = read_tsc,
1116 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
1117 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1118 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 1119 .archdata = { .vclock_mode = VCLOCK_TSC },
6a369583 1120 .resume = tsc_resume,
8fbbc4b4
AK
1121};
1122
1123void mark_tsc_unstable(char *reason)
1124{
1125 if (!tsc_unstable) {
1126 tsc_unstable = 1;
35af99e6 1127 clear_sched_clock_stable();
e82b8e4e 1128 disable_sched_clock_irqtime();
c767a54b 1129 pr_info("Marking TSC unstable due to %s\n", reason);
8fbbc4b4
AK
1130 /* Change only the rating, when not registered */
1131 if (clocksource_tsc.mult)
7285dd7f
TG
1132 clocksource_mark_unstable(&clocksource_tsc);
1133 else {
1134 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
8fbbc4b4 1135 clocksource_tsc.rating = 0;
7285dd7f 1136 }
8fbbc4b4
AK
1137 }
1138}
1139
1140EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1141
395628ef
AK
1142static void __init check_system_tsc_reliable(void)
1143{
03da3ff1
DW
1144#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1145 if (is_geode_lx()) {
1146 /* RTSC counts during suspend */
8fbbc4b4 1147#define RTSC_SUSP 0x100
03da3ff1 1148 unsigned long res_low, res_high;
8fbbc4b4 1149
03da3ff1
DW
1150 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1151 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1152 if (res_low & RTSC_SUSP)
1153 tsc_clocksource_reliable = 1;
1154 }
8fbbc4b4 1155#endif
395628ef
AK
1156 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1157 tsc_clocksource_reliable = 1;
1158}
8fbbc4b4
AK
1159
1160/*
1161 * Make an educated guess if the TSC is trustworthy and synchronized
1162 * over all CPUs.
1163 */
148f9bb8 1164int unsynchronized_tsc(void)
8fbbc4b4 1165{
59e21e3d 1166 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
8fbbc4b4
AK
1167 return 1;
1168
3e5095d1 1169#ifdef CONFIG_SMP
8fbbc4b4
AK
1170 if (apic_is_clustered_box())
1171 return 1;
1172#endif
1173
1174 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1175 return 0;
d3b8f889
JS
1176
1177 if (tsc_clocksource_reliable)
1178 return 0;
8fbbc4b4
AK
1179 /*
1180 * Intel systems are normally all synchronized.
1181 * Exceptions must mark TSC as unstable:
1182 */
1183 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1184 /* assume multi socket systems are not synchronized: */
1185 if (num_possible_cpus() > 1)
d3b8f889 1186 return 1;
8fbbc4b4
AK
1187 }
1188
d3b8f889 1189 return 0;
8fbbc4b4
AK
1190}
1191
f9677e0f
CH
1192/*
1193 * Convert ART to TSC given numerator/denominator found in detect_art()
1194 */
1195struct system_counterval_t convert_art_to_tsc(cycle_t art)
1196{
1197 u64 tmp, res, rem;
1198
1199 rem = do_div(art, art_to_tsc_denominator);
1200
1201 res = art * art_to_tsc_numerator;
1202 tmp = rem * art_to_tsc_numerator;
1203
1204 do_div(tmp, art_to_tsc_denominator);
1205 res += tmp + art_to_tsc_offset;
1206
1207 return (struct system_counterval_t) {.cs = art_related_clocksource,
1208 .cycles = res};
1209}
1210EXPORT_SYMBOL(convert_art_to_tsc);
08ec0c58
JS
1211
1212static void tsc_refine_calibration_work(struct work_struct *work);
1213static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1214/**
1215 * tsc_refine_calibration_work - Further refine tsc freq calibration
1216 * @work - ignored.
1217 *
1218 * This functions uses delayed work over a period of a
1219 * second to further refine the TSC freq value. Since this is
1220 * timer based, instead of loop based, we don't block the boot
1221 * process while this longer calibration is done.
1222 *
0d2eb44f 1223 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1224 * or the refined calibration is off by 1% of the fast early
1225 * calibration, we throw out the new calibration and use the
1226 * early calibration.
1227 */
1228static void tsc_refine_calibration_work(struct work_struct *work)
1229{
1230 static u64 tsc_start = -1, ref_start;
1231 static int hpet;
1232 u64 tsc_stop, ref_stop, delta;
1233 unsigned long freq;
1234
1235 /* Don't bother refining TSC on unstable systems */
1236 if (check_tsc_unstable())
1237 goto out;
1238
1239 /*
1240 * Since the work is started early in boot, we may be
1241 * delayed the first time we expire. So set the workqueue
1242 * again once we know timers are working.
1243 */
1244 if (tsc_start == -1) {
1245 /*
1246 * Only set hpet once, to avoid mixing hardware
1247 * if the hpet becomes enabled later.
1248 */
1249 hpet = is_hpet_enabled();
1250 schedule_delayed_work(&tsc_irqwork, HZ);
1251 tsc_start = tsc_read_refs(&ref_start, hpet);
1252 return;
1253 }
1254
1255 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1256
1257 /* hpet or pmtimer available ? */
62627bec 1258 if (ref_start == ref_stop)
08ec0c58
JS
1259 goto out;
1260
1261 /* Check, whether the sampling was disturbed by an SMI */
1262 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1263 goto out;
1264
1265 delta = tsc_stop - tsc_start;
1266 delta *= 1000000LL;
1267 if (hpet)
1268 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1269 else
1270 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1271
1272 /* Make sure we're within 1% */
1273 if (abs(tsc_khz - freq) > tsc_khz/100)
1274 goto out;
1275
1276 tsc_khz = freq;
c767a54b
JP
1277 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1278 (unsigned long)tsc_khz / 1000,
1279 (unsigned long)tsc_khz % 1000);
08ec0c58 1280
6731b0d6
NS
1281 /* Inform the TSC deadline clockevent devices about the recalibration */
1282 lapic_update_tsc_freq();
1283
08ec0c58 1284out:
f9677e0f
CH
1285 if (boot_cpu_has(X86_FEATURE_ART))
1286 art_related_clocksource = &clocksource_tsc;
08ec0c58
JS
1287 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1288}
1289
1290
1291static int __init init_tsc_clocksource(void)
8fbbc4b4 1292{
59e21e3d 1293 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
1294 return 0;
1295
395628ef
AK
1296 if (tsc_clocksource_reliable)
1297 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
1298 /* lower the rating if we already know its unstable: */
1299 if (check_tsc_unstable()) {
1300 clocksource_tsc.rating = 0;
1301 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1302 }
57779dc2 1303
82f9c080
FT
1304 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1305 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1306
57779dc2 1307 /*
47c95a46
BG
1308 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1309 * the refined calibration and directly register it as a clocksource.
57779dc2 1310 */
984feceb 1311 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
57779dc2
AK
1312 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1313 return 0;
1314 }
1315
08ec0c58
JS
1316 schedule_delayed_work(&tsc_irqwork, 0);
1317 return 0;
8fbbc4b4 1318}
08ec0c58
JS
1319/*
1320 * We use device_initcall here, to ensure we run after the hpet
1321 * is fully initialized, which may occur at fs_initcall time.
1322 */
1323device_initcall(init_tsc_clocksource);
8fbbc4b4
AK
1324
1325void __init tsc_init(void)
1326{
1327 u64 lpj;
1328 int cpu;
1329
59e21e3d 1330 if (!boot_cpu_has(X86_FEATURE_TSC)) {
b47dcbdc 1331 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4 1332 return;
b47dcbdc 1333 }
8fbbc4b4 1334
aa297292 1335 cpu_khz = x86_platform.calibrate_cpu();
2d826404 1336 tsc_khz = x86_platform.calibrate_tsc();
ff4c8663
LB
1337
1338 /*
1339 * Trust non-zero tsc_khz as authorative,
1340 * and use it to sanity check cpu_khz,
1341 * which will be off if system timer is off.
1342 */
aa297292
LB
1343 if (tsc_khz == 0)
1344 tsc_khz = cpu_khz;
ff4c8663
LB
1345 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1346 cpu_khz = tsc_khz;
8fbbc4b4 1347
e93ef949 1348 if (!tsc_khz) {
8fbbc4b4 1349 mark_tsc_unstable("could not calculate TSC khz");
b47dcbdc 1350 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4
AK
1351 return;
1352 }
1353
c767a54b
JP
1354 pr_info("Detected %lu.%03lu MHz processor\n",
1355 (unsigned long)cpu_khz / 1000,
1356 (unsigned long)cpu_khz % 1000);
8fbbc4b4
AK
1357
1358 /*
1359 * Secondary CPUs do not run through tsc_init(), so set up
1360 * all the scale factors for all CPUs, assuming the same
1361 * speed as the bootup CPU. (cpufreq notifiers will fix this
1362 * up if their speed diverges)
1363 */
20d1c86a
PZ
1364 for_each_possible_cpu(cpu) {
1365 cyc2ns_init(cpu);
aa297292 1366 set_cyc2ns_scale(tsc_khz, cpu);
20d1c86a 1367 }
8fbbc4b4
AK
1368
1369 if (tsc_disabled > 0)
1370 return;
1371
1372 /* now allow native_sched_clock() to use rdtsc */
10b033d4 1373
8fbbc4b4 1374 tsc_disabled = 0;
3bbfafb7 1375 static_branch_enable(&__use_tsc);
8fbbc4b4 1376
e82b8e4e
VP
1377 if (!no_sched_irq_time)
1378 enable_sched_clock_irqtime();
1379
70de9a97
AK
1380 lpj = ((u64)tsc_khz * 1000);
1381 do_div(lpj, HZ);
1382 lpj_fine = lpj;
1383
8fbbc4b4 1384 use_tsc_delay();
8fbbc4b4
AK
1385
1386 if (unsynchronized_tsc())
1387 mark_tsc_unstable("TSCs unsynchronized");
8b223bc7 1388 else
5bae1562 1389 tsc_store_and_check_tsc_adjust(true);
8fbbc4b4 1390
395628ef 1391 check_system_tsc_reliable();
f9677e0f
CH
1392
1393 detect_art();
8fbbc4b4
AK
1394}
1395
b565201c
JS
1396#ifdef CONFIG_SMP
1397/*
1398 * If we have a constant TSC and are using the TSC for the delay loop,
1399 * we can skip clock calibration if another cpu in the same socket has already
1400 * been calibrated. This assumes that CONSTANT_TSC applies to all
1401 * cpus in the socket - this should be a safe assumption.
1402 */
148f9bb8 1403unsigned long calibrate_delay_is_known(void)
b565201c 1404{
c25323c0 1405 int sibling, cpu = smp_processor_id();
f508a5ba 1406 struct cpumask *mask = topology_core_cpumask(cpu);
b565201c
JS
1407
1408 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1409 return 0;
1410
f508a5ba
TG
1411 if (!mask)
1412 return 0;
1413
1414 sibling = cpumask_any_but(mask, cpu);
c25323c0
TG
1415 if (sibling < nr_cpu_ids)
1416 return cpu_data(sibling).loops_per_jiffy;
b565201c
JS
1417 return 0;
1418}
1419#endif