]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/tsc.c
sched/clock: Initialize all per-CPU state before switching (back) to unstable
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533 4#include <linux/sched.h>
e6017571 5#include <linux/sched/clock.h>
0ef95533 6#include <linux/init.h>
186f4360 7#include <linux/export.h>
0ef95533 8#include <linux/timer.h>
bfc0f594 9#include <linux/acpi_pmtmr.h>
2dbe06fa 10#include <linux/cpufreq.h>
8fbbc4b4
AK
11#include <linux/delay.h>
12#include <linux/clocksource.h>
13#include <linux/percpu.h>
08604bd9 14#include <linux/timex.h>
10b033d4 15#include <linux/static_key.h>
bfc0f594
AK
16
17#include <asm/hpet.h>
8fbbc4b4
AK
18#include <asm/timer.h>
19#include <asm/vgtod.h>
20#include <asm/time.h>
21#include <asm/delay.h>
88b094fb 22#include <asm/hypervisor.h>
08047c4f 23#include <asm/nmi.h>
2d826404 24#include <asm/x86_init.h>
03da3ff1 25#include <asm/geode.h>
6731b0d6 26#include <asm/apic.h>
655e52d2 27#include <asm/intel-family.h>
0ef95533 28
f24ade3a 29unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 30EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
31
32unsigned int __read_mostly tsc_khz;
0ef95533
AK
33EXPORT_SYMBOL(tsc_khz);
34
35/*
36 * TSC can be unstable due to cpufreq or due to unsynced TSCs
37 */
f24ade3a 38static int __read_mostly tsc_unstable;
0ef95533
AK
39
40/* native_sched_clock() is called before tsc_init(), so
41 we must start with the TSC soft disabled to prevent
59e21e3d 42 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
f24ade3a 43static int __read_mostly tsc_disabled = -1;
0ef95533 44
3bbfafb7 45static DEFINE_STATIC_KEY_FALSE(__use_tsc);
10b033d4 46
28a00184 47int tsc_clocksource_reliable;
57c67da2 48
f9677e0f
CH
49static u32 art_to_tsc_numerator;
50static u32 art_to_tsc_denominator;
51static u64 art_to_tsc_offset;
52struct clocksource *art_related_clocksource;
53
20d1c86a 54struct cyc2ns {
59eaef78
PZ
55 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
56 seqcount_t seq; /* 32 + 4 = 36 */
20d1c86a 57
59eaef78 58}; /* fits one cacheline */
20d1c86a 59
59eaef78 60static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
20d1c86a 61
59eaef78 62void cyc2ns_read_begin(struct cyc2ns_data *data)
20d1c86a 63{
59eaef78 64 int seq, idx;
20d1c86a 65
59eaef78 66 preempt_disable_notrace();
20d1c86a 67
59eaef78
PZ
68 do {
69 seq = this_cpu_read(cyc2ns.seq.sequence);
70 idx = seq & 1;
20d1c86a 71
59eaef78
PZ
72 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
73 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
74 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
20d1c86a 75
59eaef78 76 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
20d1c86a
PZ
77}
78
59eaef78 79void cyc2ns_read_end(void)
20d1c86a 80{
59eaef78 81 preempt_enable_notrace();
20d1c86a
PZ
82}
83
84/*
85 * Accelerators for sched_clock()
57c67da2
PZ
86 * convert from cycles(64bits) => nanoseconds (64bits)
87 * basic equation:
88 * ns = cycles / (freq / ns_per_sec)
89 * ns = cycles * (ns_per_sec / freq)
90 * ns = cycles * (10^9 / (cpu_khz * 10^3))
91 * ns = cycles * (10^6 / cpu_khz)
92 *
93 * Then we use scaling math (suggested by george@mvista.com) to get:
94 * ns = cycles * (10^6 * SC / cpu_khz) / SC
95 * ns = cycles * cyc2ns_scale / SC
96 *
97 * And since SC is a constant power of two, we can convert the div
b20112ed
AH
98 * into a shift. The larger SC is, the more accurate the conversion, but
99 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
100 * (64-bit result) can be used.
57c67da2 101 *
b20112ed 102 * We can use khz divisor instead of mhz to keep a better precision.
57c67da2
PZ
103 * (mathieu.desnoyers@polymtl.ca)
104 *
105 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
106 */
107
20d1c86a
PZ
108static void cyc2ns_data_init(struct cyc2ns_data *data)
109{
5e3c1afd 110 data->cyc2ns_mul = 0;
b20112ed 111 data->cyc2ns_shift = 0;
20d1c86a 112 data->cyc2ns_offset = 0;
20d1c86a
PZ
113}
114
115static void cyc2ns_init(int cpu)
116{
117 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
118
119 cyc2ns_data_init(&c2n->data[0]);
120 cyc2ns_data_init(&c2n->data[1]);
121
59eaef78 122 seqcount_init(&c2n->seq);
20d1c86a
PZ
123}
124
57c67da2
PZ
125static inline unsigned long long cycles_2_ns(unsigned long long cyc)
126{
59eaef78 127 struct cyc2ns_data data;
20d1c86a
PZ
128 unsigned long long ns;
129
59eaef78 130 cyc2ns_read_begin(&data);
20d1c86a 131
59eaef78
PZ
132 ns = data.cyc2ns_offset;
133 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
20d1c86a 134
59eaef78 135 cyc2ns_read_end();
20d1c86a 136
57c67da2
PZ
137 return ns;
138}
139
615cd033 140static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
57c67da2 141{
615cd033 142 unsigned long long ns_now;
59eaef78
PZ
143 struct cyc2ns_data data;
144 struct cyc2ns *c2n;
20d1c86a 145 unsigned long flags;
57c67da2
PZ
146
147 local_irq_save(flags);
148 sched_clock_idle_sleep_event();
149
aa297292 150 if (!khz)
20d1c86a
PZ
151 goto done;
152
57c67da2
PZ
153 ns_now = cycles_2_ns(tsc_now);
154
20d1c86a
PZ
155 /*
156 * Compute a new multiplier as per the above comment and ensure our
157 * time function is continuous; see the comment near struct
158 * cyc2ns_data.
159 */
59eaef78 160 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
b20112ed
AH
161 NSEC_PER_MSEC, 0);
162
b9511cd7
AH
163 /*
164 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
165 * not expected to be greater than 31 due to the original published
166 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
167 * value) - refer perf_event_mmap_page documentation in perf_event.h.
168 */
59eaef78
PZ
169 if (data.cyc2ns_shift == 32) {
170 data.cyc2ns_shift = 31;
171 data.cyc2ns_mul >>= 1;
b9511cd7
AH
172 }
173
59eaef78
PZ
174 data.cyc2ns_offset = ns_now -
175 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
176
177 c2n = per_cpu_ptr(&cyc2ns, cpu);
20d1c86a 178
59eaef78
PZ
179 raw_write_seqcount_latch(&c2n->seq);
180 c2n->data[0] = data;
181 raw_write_seqcount_latch(&c2n->seq);
182 c2n->data[1] = data;
57c67da2 183
20d1c86a 184done:
57c67da2
PZ
185 sched_clock_idle_wakeup_event(0);
186 local_irq_restore(flags);
187}
615cd033
PZ
188
189static void set_cyc2ns_scale(unsigned long khz, int cpu)
190{
191 __set_cyc2ns_scale(khz, cpu, rdtsc());
192}
193
0ef95533
AK
194/*
195 * Scheduler clock - returns current time in nanosec units.
196 */
197u64 native_sched_clock(void)
198{
3bbfafb7
PZ
199 if (static_branch_likely(&__use_tsc)) {
200 u64 tsc_now = rdtsc();
201
202 /* return the value in ns */
203 return cycles_2_ns(tsc_now);
204 }
0ef95533
AK
205
206 /*
207 * Fall back to jiffies if there's no TSC available:
208 * ( But note that we still use it if the TSC is marked
209 * unstable. We do this because unlike Time Of Day,
210 * the scheduler clock tolerates small errors and it's
211 * very important for it to be as fast as the platform
3ad2f3fb 212 * can achieve it. )
0ef95533 213 */
0ef95533 214
3bbfafb7
PZ
215 /* No locking but a rare wrong value is not a big deal: */
216 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
0ef95533
AK
217}
218
a94cab23
AK
219/*
220 * Generate a sched_clock if you already have a TSC value.
221 */
222u64 native_sched_clock_from_tsc(u64 tsc)
223{
224 return cycles_2_ns(tsc);
225}
226
0ef95533
AK
227/* We need to define a real function for sched_clock, to override the
228 weak default version */
229#ifdef CONFIG_PARAVIRT
230unsigned long long sched_clock(void)
231{
232 return paravirt_sched_clock();
233}
f94c8d11 234
698eff63 235bool using_native_sched_clock(void)
f94c8d11
PZ
236{
237 return pv_time_ops.sched_clock == native_sched_clock;
238}
0ef95533
AK
239#else
240unsigned long long
241sched_clock(void) __attribute__((alias("native_sched_clock")));
f94c8d11 242
698eff63 243bool using_native_sched_clock(void) { return true; }
0ef95533
AK
244#endif
245
246int check_tsc_unstable(void)
247{
248 return tsc_unstable;
249}
250EXPORT_SYMBOL_GPL(check_tsc_unstable);
251
252#ifdef CONFIG_X86_TSC
253int __init notsc_setup(char *str)
254{
c767a54b 255 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
256 tsc_disabled = 1;
257 return 1;
258}
259#else
260/*
261 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
262 * in cpu/common.c
263 */
264int __init notsc_setup(char *str)
265{
266 setup_clear_cpu_cap(X86_FEATURE_TSC);
267 return 1;
268}
269#endif
270
271__setup("notsc", notsc_setup);
bfc0f594 272
e82b8e4e
VP
273static int no_sched_irq_time;
274
395628ef
AK
275static int __init tsc_setup(char *str)
276{
277 if (!strcmp(str, "reliable"))
278 tsc_clocksource_reliable = 1;
e82b8e4e
VP
279 if (!strncmp(str, "noirqtime", 9))
280 no_sched_irq_time = 1;
8309f86c
PZ
281 if (!strcmp(str, "unstable"))
282 mark_tsc_unstable("boot parameter");
395628ef
AK
283 return 1;
284}
285
286__setup("tsc=", tsc_setup);
287
bfc0f594
AK
288#define MAX_RETRIES 5
289#define SMI_TRESHOLD 50000
290
291/*
292 * Read TSC and the reference counters. Take care of SMI disturbance
293 */
827014be 294static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
295{
296 u64 t1, t2;
297 int i;
298
299 for (i = 0; i < MAX_RETRIES; i++) {
300 t1 = get_cycles();
301 if (hpet)
827014be 302 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 303 else
827014be 304 *p = acpi_pm_read_early();
bfc0f594
AK
305 t2 = get_cycles();
306 if ((t2 - t1) < SMI_TRESHOLD)
307 return t2;
308 }
309 return ULLONG_MAX;
310}
311
d683ef7a
TG
312/*
313 * Calculate the TSC frequency from HPET reference
bfc0f594 314 */
d683ef7a 315static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 316{
d683ef7a 317 u64 tmp;
bfc0f594 318
d683ef7a
TG
319 if (hpet2 < hpet1)
320 hpet2 += 0x100000000ULL;
321 hpet2 -= hpet1;
322 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
323 do_div(tmp, 1000000);
324 do_div(deltatsc, tmp);
325
326 return (unsigned long) deltatsc;
327}
328
329/*
330 * Calculate the TSC frequency from PMTimer reference
331 */
332static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
333{
334 u64 tmp;
bfc0f594 335
d683ef7a
TG
336 if (!pm1 && !pm2)
337 return ULONG_MAX;
338
339 if (pm2 < pm1)
340 pm2 += (u64)ACPI_PM_OVRRUN;
341 pm2 -= pm1;
342 tmp = pm2 * 1000000000LL;
343 do_div(tmp, PMTMR_TICKS_PER_SEC);
344 do_div(deltatsc, tmp);
345
346 return (unsigned long) deltatsc;
347}
348
a977c400 349#define CAL_MS 10
b7743970 350#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
351#define CAL_PIT_LOOPS 1000
352
353#define CAL2_MS 50
b7743970 354#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
355#define CAL2_PIT_LOOPS 5000
356
cce3e057 357
ec0c15af
LT
358/*
359 * Try to calibrate the TSC against the Programmable
360 * Interrupt Timer and return the frequency of the TSC
361 * in kHz.
362 *
363 * Return ULONG_MAX on failure to calibrate.
364 */
a977c400 365static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
366{
367 u64 tsc, t1, t2, delta;
368 unsigned long tscmin, tscmax;
369 int pitcnt;
370
371 /* Set the Gate high, disable speaker */
372 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
373
374 /*
375 * Setup CTC channel 2* for mode 0, (interrupt on terminal
376 * count mode), binary count. Set the latch register to 50ms
377 * (LSB then MSB) to begin countdown.
378 */
379 outb(0xb0, 0x43);
a977c400
TG
380 outb(latch & 0xff, 0x42);
381 outb(latch >> 8, 0x42);
ec0c15af
LT
382
383 tsc = t1 = t2 = get_cycles();
384
385 pitcnt = 0;
386 tscmax = 0;
387 tscmin = ULONG_MAX;
388 while ((inb(0x61) & 0x20) == 0) {
389 t2 = get_cycles();
390 delta = t2 - tsc;
391 tsc = t2;
392 if ((unsigned long) delta < tscmin)
393 tscmin = (unsigned int) delta;
394 if ((unsigned long) delta > tscmax)
395 tscmax = (unsigned int) delta;
396 pitcnt++;
397 }
398
399 /*
400 * Sanity checks:
401 *
a977c400 402 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
403 * times, then we have been hit by a massive SMI
404 *
405 * If the maximum is 10 times larger than the minimum,
406 * then we got hit by an SMI as well.
407 */
a977c400 408 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
409 return ULONG_MAX;
410
411 /* Calculate the PIT value */
412 delta = t2 - t1;
a977c400 413 do_div(delta, ms);
ec0c15af
LT
414 return delta;
415}
416
6ac40ed0
LT
417/*
418 * This reads the current MSB of the PIT counter, and
419 * checks if we are running on sufficiently fast and
420 * non-virtualized hardware.
421 *
422 * Our expectations are:
423 *
424 * - the PIT is running at roughly 1.19MHz
425 *
426 * - each IO is going to take about 1us on real hardware,
427 * but we allow it to be much faster (by a factor of 10) or
428 * _slightly_ slower (ie we allow up to a 2us read+counter
429 * update - anything else implies a unacceptably slow CPU
430 * or PIT for the fast calibration to work.
431 *
432 * - with 256 PIT ticks to read the value, we have 214us to
433 * see the same MSB (and overhead like doing a single TSC
434 * read per MSB value etc).
435 *
436 * - We're doing 2 reads per loop (LSB, MSB), and we expect
437 * them each to take about a microsecond on real hardware.
438 * So we expect a count value of around 100. But we'll be
439 * generous, and accept anything over 50.
440 *
441 * - if the PIT is stuck, and we see *many* more reads, we
442 * return early (and the next caller of pit_expect_msb()
443 * then consider it a failure when they don't see the
444 * next expected value).
445 *
446 * These expectations mean that we know that we have seen the
447 * transition from one expected value to another with a fairly
448 * high accuracy, and we didn't miss any events. We can thus
449 * use the TSC value at the transitions to calculate a pretty
450 * good value for the TSC frequencty.
451 */
b6e61eef
LT
452static inline int pit_verify_msb(unsigned char val)
453{
454 /* Ignore LSB */
455 inb(0x42);
456 return inb(0x42) == val;
457}
458
9e8912e0 459static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 460{
9e8912e0 461 int count;
68f30fbe 462 u64 tsc = 0, prev_tsc = 0;
bfc0f594 463
6ac40ed0 464 for (count = 0; count < 50000; count++) {
b6e61eef 465 if (!pit_verify_msb(val))
6ac40ed0 466 break;
68f30fbe 467 prev_tsc = tsc;
9e8912e0 468 tsc = get_cycles();
6ac40ed0 469 }
68f30fbe 470 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
471 *tscp = tsc;
472
473 /*
474 * We require _some_ success, but the quality control
475 * will be based on the error terms on the TSC values.
476 */
477 return count > 5;
6ac40ed0
LT
478}
479
480/*
9e8912e0
LT
481 * How many MSB values do we want to see? We aim for
482 * a maximum error rate of 500ppm (in practice the
483 * real error is much smaller), but refuse to spend
68f30fbe 484 * more than 50ms on it.
6ac40ed0 485 */
68f30fbe 486#define MAX_QUICK_PIT_MS 50
9e8912e0 487#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 488
6ac40ed0
LT
489static unsigned long quick_pit_calibrate(void)
490{
9e8912e0
LT
491 int i;
492 u64 tsc, delta;
493 unsigned long d1, d2;
494
6ac40ed0 495 /* Set the Gate high, disable speaker */
bfc0f594
AK
496 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
497
6ac40ed0
LT
498 /*
499 * Counter 2, mode 0 (one-shot), binary count
500 *
501 * NOTE! Mode 2 decrements by two (and then the
502 * output is flipped each time, giving the same
503 * final output frequency as a decrement-by-one),
504 * so mode 0 is much better when looking at the
505 * individual counts.
506 */
bfc0f594 507 outb(0xb0, 0x43);
bfc0f594 508
6ac40ed0
LT
509 /* Start at 0xffff */
510 outb(0xff, 0x42);
511 outb(0xff, 0x42);
512
a6a80e1d
LT
513 /*
514 * The PIT starts counting at the next edge, so we
515 * need to delay for a microsecond. The easiest way
516 * to do that is to just read back the 16-bit counter
517 * once from the PIT.
518 */
b6e61eef 519 pit_verify_msb(0);
a6a80e1d 520
9e8912e0
LT
521 if (pit_expect_msb(0xff, &tsc, &d1)) {
522 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
523 if (!pit_expect_msb(0xff-i, &delta, &d2))
524 break;
525
5aac644a
AH
526 delta -= tsc;
527
528 /*
529 * Extrapolate the error and fail fast if the error will
530 * never be below 500 ppm.
531 */
532 if (i == 1 &&
533 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
534 return 0;
535
9e8912e0
LT
536 /*
537 * Iterate until the error is less than 500 ppm
538 */
b6e61eef
LT
539 if (d1+d2 >= delta >> 11)
540 continue;
541
542 /*
543 * Check the PIT one more time to verify that
544 * all TSC reads were stable wrt the PIT.
545 *
546 * This also guarantees serialization of the
547 * last cycle read ('d2') in pit_expect_msb.
548 */
549 if (!pit_verify_msb(0xfe - i))
550 break;
551 goto success;
6ac40ed0 552 }
6ac40ed0 553 }
52045217 554 pr_info("Fast TSC calibration failed\n");
6ac40ed0 555 return 0;
9e8912e0
LT
556
557success:
558 /*
559 * Ok, if we get here, then we've seen the
560 * MSB of the PIT decrement 'i' times, and the
561 * error has shrunk to less than 500 ppm.
562 *
563 * As a result, we can depend on there not being
564 * any odd delays anywhere, and the TSC reads are
68f30fbe 565 * reliable (within the error).
9e8912e0
LT
566 *
567 * kHz = ticks / time-in-seconds / 1000;
568 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
569 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
570 */
9e8912e0
LT
571 delta *= PIT_TICK_RATE;
572 do_div(delta, i*256*1000);
c767a54b 573 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 574 return delta;
6ac40ed0 575}
ec0c15af 576
bfc0f594 577/**
aa297292
LB
578 * native_calibrate_tsc
579 * Determine TSC frequency via CPUID, else return 0.
bfc0f594 580 */
e93ef949 581unsigned long native_calibrate_tsc(void)
aa297292
LB
582{
583 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
584 unsigned int crystal_khz;
585
586 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
587 return 0;
588
589 if (boot_cpu_data.cpuid_level < 0x15)
590 return 0;
591
592 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
593
594 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
595 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
596
597 if (ebx_numerator == 0 || eax_denominator == 0)
598 return 0;
599
600 crystal_khz = ecx_hz / 1000;
601
602 if (crystal_khz == 0) {
603 switch (boot_cpu_data.x86_model) {
655e52d2
PB
604 case INTEL_FAM6_SKYLAKE_MOBILE:
605 case INTEL_FAM6_SKYLAKE_DESKTOP:
6baf3d61
PB
606 case INTEL_FAM6_KABYLAKE_MOBILE:
607 case INTEL_FAM6_KABYLAKE_DESKTOP:
ff4c8663
LB
608 crystal_khz = 24000; /* 24.0 MHz */
609 break;
6baf3d61 610 case INTEL_FAM6_SKYLAKE_X:
695085b4 611 case INTEL_FAM6_ATOM_DENVERTON:
6baf3d61
PB
612 crystal_khz = 25000; /* 25.0 MHz */
613 break;
655e52d2 614 case INTEL_FAM6_ATOM_GOLDMONT:
ff4c8663
LB
615 crystal_khz = 19200; /* 19.2 MHz */
616 break;
aa297292
LB
617 }
618 }
619
4ca4df0b
BG
620 /*
621 * TSC frequency determined by CPUID is a "hardware reported"
622 * frequency and is the most accurate one so far we have. This
623 * is considered a known frequency.
624 */
625 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
626
4635fdc6
BG
627 /*
628 * For Atom SoCs TSC is the only reliable clocksource.
629 * Mark TSC reliable so no watchdog on it.
630 */
631 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
632 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
633
aa297292
LB
634 return crystal_khz * ebx_numerator / eax_denominator;
635}
636
637static unsigned long cpu_khz_from_cpuid(void)
638{
639 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
640
641 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
642 return 0;
643
644 if (boot_cpu_data.cpuid_level < 0x16)
645 return 0;
646
647 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
648
649 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
650
651 return eax_base_mhz * 1000;
652}
653
654/**
655 * native_calibrate_cpu - calibrate the cpu on boot
656 */
657unsigned long native_calibrate_cpu(void)
bfc0f594 658{
827014be 659 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 660 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 661 unsigned long flags, latch, ms, fast_calibrate;
a977c400 662 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 663
aa297292
LB
664 fast_calibrate = cpu_khz_from_cpuid();
665 if (fast_calibrate)
666 return fast_calibrate;
667
02c0cd2d 668 fast_calibrate = cpu_khz_from_msr();
5f0e0309 669 if (fast_calibrate)
7da7c156 670 return fast_calibrate;
7da7c156 671
6ac40ed0
LT
672 local_irq_save(flags);
673 fast_calibrate = quick_pit_calibrate();
bfc0f594 674 local_irq_restore(flags);
6ac40ed0
LT
675 if (fast_calibrate)
676 return fast_calibrate;
bfc0f594 677
fbb16e24
TG
678 /*
679 * Run 5 calibration loops to get the lowest frequency value
680 * (the best estimate). We use two different calibration modes
681 * here:
682 *
683 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
684 * load a timeout of 50ms. We read the time right after we
685 * started the timer and wait until the PIT count down reaches
686 * zero. In each wait loop iteration we read the TSC and check
687 * the delta to the previous read. We keep track of the min
688 * and max values of that delta. The delta is mostly defined
689 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 690 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
691 * maximum time is significantly larger than the minimum time,
692 * then we discard the result and have another try.
693 *
694 * 2) Reference counter. If available we use the HPET or the
695 * PMTIMER as a reference to check the sanity of that value.
696 * We use separate TSC readouts and check inside of the
697 * reference read for a SMI/SMM disturbance. We dicard
698 * disturbed values here as well. We do that around the PIT
699 * calibration delay loop as we have to wait for a certain
700 * amount of time anyway.
701 */
a977c400
TG
702
703 /* Preset PIT loop values */
704 latch = CAL_LATCH;
705 ms = CAL_MS;
706 loopmin = CAL_PIT_LOOPS;
707
708 for (i = 0; i < 3; i++) {
ec0c15af 709 unsigned long tsc_pit_khz;
fbb16e24
TG
710
711 /*
712 * Read the start value and the reference count of
ec0c15af
LT
713 * hpet/pmtimer when available. Then do the PIT
714 * calibration, which will take at least 50ms, and
715 * read the end value.
fbb16e24 716 */
ec0c15af 717 local_irq_save(flags);
827014be 718 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 719 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 720 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
721 local_irq_restore(flags);
722
ec0c15af
LT
723 /* Pick the lowest PIT TSC calibration so far */
724 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
725
726 /* hpet or pmtimer available ? */
62627bec 727 if (ref1 == ref2)
fbb16e24
TG
728 continue;
729
730 /* Check, whether the sampling was disturbed by an SMI */
731 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
732 continue;
733
734 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 735 if (hpet)
827014be 736 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 737 else
827014be 738 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 739
fbb16e24 740 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
741
742 /* Check the reference deviation */
743 delta = ((u64) tsc_pit_min) * 100;
744 do_div(delta, tsc_ref_min);
745
746 /*
747 * If both calibration results are inside a 10% window
748 * then we can be sure, that the calibration
749 * succeeded. We break out of the loop right away. We
750 * use the reference value, as it is more precise.
751 */
752 if (delta >= 90 && delta <= 110) {
c767a54b
JP
753 pr_info("PIT calibration matches %s. %d loops\n",
754 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 755 return tsc_ref_min;
fbb16e24
TG
756 }
757
a977c400
TG
758 /*
759 * Check whether PIT failed more than once. This
760 * happens in virtualized environments. We need to
761 * give the virtual PC a slightly longer timeframe for
762 * the HPET/PMTIMER to make the result precise.
763 */
764 if (i == 1 && tsc_pit_min == ULONG_MAX) {
765 latch = CAL2_LATCH;
766 ms = CAL2_MS;
767 loopmin = CAL2_PIT_LOOPS;
768 }
fbb16e24 769 }
bfc0f594
AK
770
771 /*
fbb16e24 772 * Now check the results.
bfc0f594 773 */
fbb16e24
TG
774 if (tsc_pit_min == ULONG_MAX) {
775 /* PIT gave no useful value */
c767a54b 776 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
777
778 /* We don't have an alternative source, disable TSC */
827014be 779 if (!hpet && !ref1 && !ref2) {
c767a54b 780 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
781 return 0;
782 }
783
784 /* The alternative source failed as well, disable TSC */
785 if (tsc_ref_min == ULONG_MAX) {
c767a54b 786 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
787 return 0;
788 }
789
790 /* Use the alternative source */
c767a54b
JP
791 pr_info("using %s reference calibration\n",
792 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
793
794 return tsc_ref_min;
795 }
bfc0f594 796
fbb16e24 797 /* We don't have an alternative source, use the PIT calibration value */
827014be 798 if (!hpet && !ref1 && !ref2) {
c767a54b 799 pr_info("Using PIT calibration value\n");
fbb16e24 800 return tsc_pit_min;
bfc0f594
AK
801 }
802
fbb16e24
TG
803 /* The alternative source failed, use the PIT calibration value */
804 if (tsc_ref_min == ULONG_MAX) {
c767a54b 805 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 806 return tsc_pit_min;
bfc0f594
AK
807 }
808
fbb16e24
TG
809 /*
810 * The calibration values differ too much. In doubt, we use
811 * the PIT value as we know that there are PMTIMERs around
a977c400 812 * running at double speed. At least we let the user know:
fbb16e24 813 */
c767a54b
JP
814 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
815 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
816 pr_info("Using PIT calibration value\n");
fbb16e24 817 return tsc_pit_min;
bfc0f594
AK
818}
819
bfc0f594
AK
820int recalibrate_cpu_khz(void)
821{
822#ifndef CONFIG_SMP
823 unsigned long cpu_khz_old = cpu_khz;
824
eff4677e 825 if (!boot_cpu_has(X86_FEATURE_TSC))
bfc0f594 826 return -ENODEV;
eff4677e 827
aa297292 828 cpu_khz = x86_platform.calibrate_cpu();
eff4677e 829 tsc_khz = x86_platform.calibrate_tsc();
aa297292
LB
830 if (tsc_khz == 0)
831 tsc_khz = cpu_khz;
ff4c8663
LB
832 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
833 cpu_khz = tsc_khz;
eff4677e
BP
834 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
835 cpu_khz_old, cpu_khz);
836
837 return 0;
bfc0f594
AK
838#else
839 return -ENODEV;
840#endif
841}
842
843EXPORT_SYMBOL(recalibrate_cpu_khz);
844
2dbe06fa 845
cd7240c0
SS
846static unsigned long long cyc2ns_suspend;
847
b74f05d6 848void tsc_save_sched_clock_state(void)
cd7240c0 849{
35af99e6 850 if (!sched_clock_stable())
cd7240c0
SS
851 return;
852
853 cyc2ns_suspend = sched_clock();
854}
855
856/*
857 * Even on processors with invariant TSC, TSC gets reset in some the
858 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
859 * arbitrary value (still sync'd across cpu's) during resume from such sleep
860 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
861 * that sched_clock() continues from the point where it was left off during
862 * suspend.
863 */
b74f05d6 864void tsc_restore_sched_clock_state(void)
cd7240c0
SS
865{
866 unsigned long long offset;
867 unsigned long flags;
868 int cpu;
869
35af99e6 870 if (!sched_clock_stable())
cd7240c0
SS
871 return;
872
873 local_irq_save(flags);
874
20d1c86a 875 /*
6a6256f9 876 * We're coming out of suspend, there's no concurrency yet; don't
20d1c86a
PZ
877 * bother being nice about the RCU stuff, just write to both
878 * data fields.
879 */
880
881 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
882 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
883
cd7240c0
SS
884 offset = cyc2ns_suspend - sched_clock();
885
20d1c86a
PZ
886 for_each_possible_cpu(cpu) {
887 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
888 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
889 }
cd7240c0
SS
890
891 local_irq_restore(flags);
892}
893
2dbe06fa
AK
894#ifdef CONFIG_CPU_FREQ
895
896/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
897 * changes.
898 *
899 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
900 * not that important because current Opteron setups do not support
901 * scaling on SMP anyroads.
902 *
903 * Should fix up last_tsc too. Currently gettimeofday in the
904 * first tick after the change will be slightly wrong.
905 */
906
907static unsigned int ref_freq;
908static unsigned long loops_per_jiffy_ref;
909static unsigned long tsc_khz_ref;
910
911static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
912 void *data)
913{
914 struct cpufreq_freqs *freq = data;
931db6a3 915 unsigned long *lpj;
2dbe06fa 916
931db6a3 917 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 918#ifdef CONFIG_SMP
931db6a3 919 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 920 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
921#endif
922
923 if (!ref_freq) {
924 ref_freq = freq->old;
925 loops_per_jiffy_ref = *lpj;
926 tsc_khz_ref = tsc_khz;
927 }
928 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
0b443ead 929 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
878f4f53 930 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
931
932 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
933 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
934 mark_tsc_unstable("cpufreq changes");
2dbe06fa 935
3896c329
PZ
936 set_cyc2ns_scale(tsc_khz, freq->cpu);
937 }
2dbe06fa
AK
938
939 return 0;
940}
941
942static struct notifier_block time_cpufreq_notifier_block = {
943 .notifier_call = time_cpufreq_notifier
944};
945
a841cca7 946static int __init cpufreq_register_tsc_scaling(void)
2dbe06fa 947{
59e21e3d 948 if (!boot_cpu_has(X86_FEATURE_TSC))
060700b5
LT
949 return 0;
950 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
951 return 0;
2dbe06fa
AK
952 cpufreq_register_notifier(&time_cpufreq_notifier_block,
953 CPUFREQ_TRANSITION_NOTIFIER);
954 return 0;
955}
956
a841cca7 957core_initcall(cpufreq_register_tsc_scaling);
2dbe06fa
AK
958
959#endif /* CONFIG_CPU_FREQ */
8fbbc4b4 960
f9677e0f
CH
961#define ART_CPUID_LEAF (0x15)
962#define ART_MIN_DENOMINATOR (1)
963
964
965/*
966 * If ART is present detect the numerator:denominator to convert to TSC
967 */
968static void detect_art(void)
969{
970 unsigned int unused[2];
971
972 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
973 return;
974
7b3d2f6e 975 /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
f9677e0f
CH
976 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
977 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
7b3d2f6e 978 !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
f9677e0f
CH
979 return;
980
7b3d2f6e
TG
981 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
982 &art_to_tsc_numerator, unused, unused+1);
983
984 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
f9677e0f
CH
985 return;
986
7b3d2f6e
TG
987 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
988
f9677e0f
CH
989 /* Make this sticky over multiple CPU init calls */
990 setup_force_cpu_cap(X86_FEATURE_ART);
991}
992
993
8fbbc4b4
AK
994/* clocksource code */
995
996static struct clocksource clocksource_tsc;
997
6a369583
TG
998static void tsc_resume(struct clocksource *cs)
999{
1000 tsc_verify_tsc_adjust(true);
1001}
1002
8fbbc4b4 1003/*
09ec5442 1004 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
1005 * structure to avoid a nasty time-warp. This can be observed in a
1006 * very small window right after one CPU updated cycle_last under
1007 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1008 * is smaller than the cycle_last reference value due to a TSC which
1009 * is slighty behind. This delta is nowhere else observable, but in
1010 * that case it results in a forward time jump in the range of hours
1011 * due to the unsigned delta calculation of the time keeping core
1012 * code, which is necessary to support wrapping clocksources like pm
1013 * timer.
09ec5442
TG
1014 *
1015 * This sanity check is now done in the core timekeeping code.
1016 * checking the result of read_tsc() - cycle_last for being negative.
1017 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 1018 */
a5a1d1c2 1019static u64 read_tsc(struct clocksource *cs)
8fbbc4b4 1020{
a5a1d1c2 1021 return (u64)rdtsc_ordered();
1be39679
MS
1022}
1023
12907fbb
TG
1024static void tsc_cs_mark_unstable(struct clocksource *cs)
1025{
1026 if (tsc_unstable)
1027 return;
f94c8d11 1028
12907fbb 1029 tsc_unstable = 1;
f94c8d11
PZ
1030 if (using_native_sched_clock())
1031 clear_sched_clock_stable();
12907fbb
TG
1032 disable_sched_clock_irqtime();
1033 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1034}
1035
09ec5442
TG
1036/*
1037 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1038 */
8fbbc4b4
AK
1039static struct clocksource clocksource_tsc = {
1040 .name = "tsc",
1041 .rating = 300,
1042 .read = read_tsc,
1043 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
1044 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1045 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 1046 .archdata = { .vclock_mode = VCLOCK_TSC },
6a369583 1047 .resume = tsc_resume,
12907fbb 1048 .mark_unstable = tsc_cs_mark_unstable,
8fbbc4b4
AK
1049};
1050
1051void mark_tsc_unstable(char *reason)
1052{
f94c8d11
PZ
1053 if (tsc_unstable)
1054 return;
1055
1056 tsc_unstable = 1;
1057 if (using_native_sched_clock())
35af99e6 1058 clear_sched_clock_stable();
f94c8d11
PZ
1059 disable_sched_clock_irqtime();
1060 pr_info("Marking TSC unstable due to %s\n", reason);
1061 /* Change only the rating, when not registered */
1062 if (clocksource_tsc.mult) {
1063 clocksource_mark_unstable(&clocksource_tsc);
1064 } else {
1065 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1066 clocksource_tsc.rating = 0;
8fbbc4b4
AK
1067 }
1068}
1069
1070EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1071
395628ef
AK
1072static void __init check_system_tsc_reliable(void)
1073{
03da3ff1
DW
1074#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1075 if (is_geode_lx()) {
1076 /* RTSC counts during suspend */
8fbbc4b4 1077#define RTSC_SUSP 0x100
03da3ff1 1078 unsigned long res_low, res_high;
8fbbc4b4 1079
03da3ff1
DW
1080 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1081 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1082 if (res_low & RTSC_SUSP)
1083 tsc_clocksource_reliable = 1;
1084 }
8fbbc4b4 1085#endif
395628ef
AK
1086 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1087 tsc_clocksource_reliable = 1;
1088}
8fbbc4b4
AK
1089
1090/*
1091 * Make an educated guess if the TSC is trustworthy and synchronized
1092 * over all CPUs.
1093 */
148f9bb8 1094int unsynchronized_tsc(void)
8fbbc4b4 1095{
59e21e3d 1096 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
8fbbc4b4
AK
1097 return 1;
1098
3e5095d1 1099#ifdef CONFIG_SMP
8fbbc4b4
AK
1100 if (apic_is_clustered_box())
1101 return 1;
1102#endif
1103
1104 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1105 return 0;
d3b8f889
JS
1106
1107 if (tsc_clocksource_reliable)
1108 return 0;
8fbbc4b4
AK
1109 /*
1110 * Intel systems are normally all synchronized.
1111 * Exceptions must mark TSC as unstable:
1112 */
1113 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1114 /* assume multi socket systems are not synchronized: */
1115 if (num_possible_cpus() > 1)
d3b8f889 1116 return 1;
8fbbc4b4
AK
1117 }
1118
d3b8f889 1119 return 0;
8fbbc4b4
AK
1120}
1121
f9677e0f
CH
1122/*
1123 * Convert ART to TSC given numerator/denominator found in detect_art()
1124 */
a5a1d1c2 1125struct system_counterval_t convert_art_to_tsc(u64 art)
f9677e0f
CH
1126{
1127 u64 tmp, res, rem;
1128
1129 rem = do_div(art, art_to_tsc_denominator);
1130
1131 res = art * art_to_tsc_numerator;
1132 tmp = rem * art_to_tsc_numerator;
1133
1134 do_div(tmp, art_to_tsc_denominator);
1135 res += tmp + art_to_tsc_offset;
1136
1137 return (struct system_counterval_t) {.cs = art_related_clocksource,
1138 .cycles = res};
1139}
1140EXPORT_SYMBOL(convert_art_to_tsc);
08ec0c58
JS
1141
1142static void tsc_refine_calibration_work(struct work_struct *work);
1143static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1144/**
1145 * tsc_refine_calibration_work - Further refine tsc freq calibration
1146 * @work - ignored.
1147 *
1148 * This functions uses delayed work over a period of a
1149 * second to further refine the TSC freq value. Since this is
1150 * timer based, instead of loop based, we don't block the boot
1151 * process while this longer calibration is done.
1152 *
0d2eb44f 1153 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1154 * or the refined calibration is off by 1% of the fast early
1155 * calibration, we throw out the new calibration and use the
1156 * early calibration.
1157 */
1158static void tsc_refine_calibration_work(struct work_struct *work)
1159{
1160 static u64 tsc_start = -1, ref_start;
1161 static int hpet;
1162 u64 tsc_stop, ref_stop, delta;
1163 unsigned long freq;
aa7b630e 1164 int cpu;
08ec0c58
JS
1165
1166 /* Don't bother refining TSC on unstable systems */
1167 if (check_tsc_unstable())
1168 goto out;
1169
1170 /*
1171 * Since the work is started early in boot, we may be
1172 * delayed the first time we expire. So set the workqueue
1173 * again once we know timers are working.
1174 */
1175 if (tsc_start == -1) {
1176 /*
1177 * Only set hpet once, to avoid mixing hardware
1178 * if the hpet becomes enabled later.
1179 */
1180 hpet = is_hpet_enabled();
1181 schedule_delayed_work(&tsc_irqwork, HZ);
1182 tsc_start = tsc_read_refs(&ref_start, hpet);
1183 return;
1184 }
1185
1186 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1187
1188 /* hpet or pmtimer available ? */
62627bec 1189 if (ref_start == ref_stop)
08ec0c58
JS
1190 goto out;
1191
1192 /* Check, whether the sampling was disturbed by an SMI */
1193 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1194 goto out;
1195
1196 delta = tsc_stop - tsc_start;
1197 delta *= 1000000LL;
1198 if (hpet)
1199 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1200 else
1201 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1202
1203 /* Make sure we're within 1% */
1204 if (abs(tsc_khz - freq) > tsc_khz/100)
1205 goto out;
1206
1207 tsc_khz = freq;
c767a54b
JP
1208 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1209 (unsigned long)tsc_khz / 1000,
1210 (unsigned long)tsc_khz % 1000);
08ec0c58 1211
6731b0d6
NS
1212 /* Inform the TSC deadline clockevent devices about the recalibration */
1213 lapic_update_tsc_freq();
1214
aa7b630e
PZ
1215 /* Update the sched_clock() rate to match the clocksource one */
1216 for_each_possible_cpu(cpu)
1217 __set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1218
08ec0c58 1219out:
f9677e0f
CH
1220 if (boot_cpu_has(X86_FEATURE_ART))
1221 art_related_clocksource = &clocksource_tsc;
08ec0c58
JS
1222 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1223}
1224
1225
1226static int __init init_tsc_clocksource(void)
8fbbc4b4 1227{
59e21e3d 1228 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
1229 return 0;
1230
395628ef
AK
1231 if (tsc_clocksource_reliable)
1232 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
1233 /* lower the rating if we already know its unstable: */
1234 if (check_tsc_unstable()) {
1235 clocksource_tsc.rating = 0;
1236 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1237 }
57779dc2 1238
82f9c080
FT
1239 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1240 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1241
57779dc2 1242 /*
47c95a46
BG
1243 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1244 * the refined calibration and directly register it as a clocksource.
57779dc2 1245 */
984feceb 1246 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
44fee88c
PZ
1247 if (boot_cpu_has(X86_FEATURE_ART))
1248 art_related_clocksource = &clocksource_tsc;
57779dc2
AK
1249 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1250 return 0;
1251 }
1252
08ec0c58
JS
1253 schedule_delayed_work(&tsc_irqwork, 0);
1254 return 0;
8fbbc4b4 1255}
08ec0c58
JS
1256/*
1257 * We use device_initcall here, to ensure we run after the hpet
1258 * is fully initialized, which may occur at fs_initcall time.
1259 */
1260device_initcall(init_tsc_clocksource);
8fbbc4b4
AK
1261
1262void __init tsc_init(void)
1263{
615cd033 1264 u64 lpj, cyc;
8fbbc4b4
AK
1265 int cpu;
1266
59e21e3d 1267 if (!boot_cpu_has(X86_FEATURE_TSC)) {
b47dcbdc 1268 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4 1269 return;
b47dcbdc 1270 }
8fbbc4b4 1271
aa297292 1272 cpu_khz = x86_platform.calibrate_cpu();
2d826404 1273 tsc_khz = x86_platform.calibrate_tsc();
ff4c8663
LB
1274
1275 /*
1276 * Trust non-zero tsc_khz as authorative,
1277 * and use it to sanity check cpu_khz,
1278 * which will be off if system timer is off.
1279 */
aa297292
LB
1280 if (tsc_khz == 0)
1281 tsc_khz = cpu_khz;
ff4c8663
LB
1282 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1283 cpu_khz = tsc_khz;
8fbbc4b4 1284
e93ef949 1285 if (!tsc_khz) {
8fbbc4b4 1286 mark_tsc_unstable("could not calculate TSC khz");
b47dcbdc 1287 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4
AK
1288 return;
1289 }
1290
c767a54b
JP
1291 pr_info("Detected %lu.%03lu MHz processor\n",
1292 (unsigned long)cpu_khz / 1000,
1293 (unsigned long)cpu_khz % 1000);
8fbbc4b4 1294
f2e04214
TG
1295 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1296 tsc_store_and_check_tsc_adjust(true);
1297
8fbbc4b4
AK
1298 /*
1299 * Secondary CPUs do not run through tsc_init(), so set up
1300 * all the scale factors for all CPUs, assuming the same
1301 * speed as the bootup CPU. (cpufreq notifiers will fix this
1302 * up if their speed diverges)
1303 */
615cd033 1304 cyc = rdtsc();
20d1c86a
PZ
1305 for_each_possible_cpu(cpu) {
1306 cyc2ns_init(cpu);
615cd033 1307 __set_cyc2ns_scale(tsc_khz, cpu, cyc);
20d1c86a 1308 }
8fbbc4b4
AK
1309
1310 if (tsc_disabled > 0)
1311 return;
1312
1313 /* now allow native_sched_clock() to use rdtsc */
10b033d4 1314
8fbbc4b4 1315 tsc_disabled = 0;
3bbfafb7 1316 static_branch_enable(&__use_tsc);
8fbbc4b4 1317
e82b8e4e
VP
1318 if (!no_sched_irq_time)
1319 enable_sched_clock_irqtime();
1320
70de9a97
AK
1321 lpj = ((u64)tsc_khz * 1000);
1322 do_div(lpj, HZ);
1323 lpj_fine = lpj;
1324
8fbbc4b4 1325 use_tsc_delay();
8fbbc4b4
AK
1326
1327 if (unsynchronized_tsc())
1328 mark_tsc_unstable("TSCs unsynchronized");
1329
395628ef 1330 check_system_tsc_reliable();
f9677e0f
CH
1331
1332 detect_art();
8fbbc4b4
AK
1333}
1334
b565201c
JS
1335#ifdef CONFIG_SMP
1336/*
1337 * If we have a constant TSC and are using the TSC for the delay loop,
1338 * we can skip clock calibration if another cpu in the same socket has already
1339 * been calibrated. This assumes that CONSTANT_TSC applies to all
1340 * cpus in the socket - this should be a safe assumption.
1341 */
148f9bb8 1342unsigned long calibrate_delay_is_known(void)
b565201c 1343{
c25323c0 1344 int sibling, cpu = smp_processor_id();
f508a5ba 1345 struct cpumask *mask = topology_core_cpumask(cpu);
b565201c
JS
1346
1347 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1348 return 0;
1349
f508a5ba
TG
1350 if (!mask)
1351 return 0;
1352
1353 sibling = cpumask_any_but(mask, cpu);
c25323c0
TG
1354 if (sibling < nr_cpu_ids)
1355 return cpu_data(sibling).loops_per_jiffy;
b565201c
JS
1356 return 0;
1357}
1358#endif