]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/uprobes.c
uprobes/x86: Add is_64bit_mm(), kill validate_insn_bits()
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes) for x86
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
2b144498
SD
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
0326f5a9 27#include <linux/uaccess.h>
2b144498
SD
28
29#include <linux/kdebug.h>
0326f5a9 30#include <asm/processor.h>
2b144498
SD
31#include <asm/insn.h>
32
33/* Post-execution fixups. */
34
2b144498 35/* Adjust IP back to vicinity of actual insn */
900771a4 36#define UPROBE_FIX_IP 0x1
0326f5a9 37
2b144498 38/* Adjust the return address of a call insn */
900771a4 39#define UPROBE_FIX_CALL 0x2
2b144498 40
bdc1e472
SAS
41/* Instruction will modify TF, don't change it */
42#define UPROBE_FIX_SETF 0x4
43
900771a4
SD
44#define UPROBE_FIX_RIP_AX 0x8000
45#define UPROBE_FIX_RIP_CX 0x4000
2b144498 46
0326f5a9
SD
47#define UPROBE_TRAP_NR UINT_MAX
48
2b144498 49/* Adaptations for mhiramat x86 decoder v14. */
7b2d81d4
IM
50#define OPCODE1(insn) ((insn)->opcode.bytes[0])
51#define OPCODE2(insn) ((insn)->opcode.bytes[1])
52#define OPCODE3(insn) ((insn)->opcode.bytes[2])
ddb69f27 53#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
2b144498
SD
54
55#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
56 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
57 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
58 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
59 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
60 << (row % 32))
61
04a3d984
SD
62/*
63 * Good-instruction tables for 32-bit apps. This is non-const and volatile
64 * to keep gcc from statically optimizing it out, as variable_test_bit makes
65 * some versions of gcc to think only *(unsigned long*) is used.
66 */
67static volatile u32 good_insns_32[256 / 32] = {
2b144498
SD
68 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
69 /* ---------------------------------------------- */
70 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
71 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
72 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
73 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
74 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
75 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
76 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
77 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
78 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
79 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
80 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
81 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
82 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
83 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
84 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
85 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
86 /* ---------------------------------------------- */
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88};
89
90/* Using this for both 64-bit and 32-bit apps */
04a3d984 91static volatile u32 good_2byte_insns[256 / 32] = {
2b144498
SD
92 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
93 /* ---------------------------------------------- */
94 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
95 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
96 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
97 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
98 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
99 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
100 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
101 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
102 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
103 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
104 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
105 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
106 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
107 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
108 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
109 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
110 /* ---------------------------------------------- */
111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
112};
113
04a3d984
SD
114/* Good-instruction tables for 64-bit apps */
115static volatile u32 good_insns_64[256 / 32] = {
116 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
117 /* ---------------------------------------------- */
118 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
119 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
120 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
121 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
122 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
123 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
124 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
125 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
126 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
127 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
128 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
129 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
130 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
131 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
132 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
133 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
134 /* ---------------------------------------------- */
135 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
136};
2b144498
SD
137#undef W
138
139/*
140 * opcodes we'll probably never support:
7b2d81d4
IM
141 *
142 * 6c-6d, e4-e5, ec-ed - in
143 * 6e-6f, e6-e7, ee-ef - out
144 * cc, cd - int3, int
145 * cf - iret
146 * d6 - illegal instruction
147 * f1 - int1/icebp
148 * f4 - hlt
149 * fa, fb - cli, sti
150 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
2b144498
SD
151 *
152 * invalid opcodes in 64-bit mode:
2b144498 153 *
7b2d81d4
IM
154 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
155 * 63 - we support this opcode in x86_64 but not in i386.
2b144498
SD
156 *
157 * opcodes we may need to refine support for:
7b2d81d4
IM
158 *
159 * 0f - 2-byte instructions: For many of these instructions, the validity
160 * depends on the prefix and/or the reg field. On such instructions, we
161 * just consider the opcode combination valid if it corresponds to any
162 * valid instruction.
163 *
164 * 8f - Group 1 - only reg = 0 is OK
165 * c6-c7 - Group 11 - only reg = 0 is OK
166 * d9-df - fpu insns with some illegal encodings
167 * f2, f3 - repnz, repz prefixes. These are also the first byte for
168 * certain floating-point instructions, such as addsd.
169 *
170 * fe - Group 4 - only reg = 0 or 1 is OK
171 * ff - Group 5 - only reg = 0-6 is OK
2b144498
SD
172 *
173 * others -- Do we need to support these?
7b2d81d4
IM
174 *
175 * 0f - (floating-point?) prefetch instructions
176 * 07, 17, 1f - pop es, pop ss, pop ds
177 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
2b144498 178 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
7b2d81d4
IM
179 * 67 - addr16 prefix
180 * ce - into
181 * f0 - lock prefix
2b144498
SD
182 */
183
184/*
185 * TODO:
186 * - Where necessary, examine the modrm byte and allow only valid instructions
187 * in the different Groups and fpu instructions.
188 */
189
190static bool is_prefix_bad(struct insn *insn)
191{
192 int i;
193
194 for (i = 0; i < insn->prefixes.nbytes; i++) {
195 switch (insn->prefixes.bytes[i]) {
7b2d81d4
IM
196 case 0x26: /* INAT_PFX_ES */
197 case 0x2E: /* INAT_PFX_CS */
198 case 0x36: /* INAT_PFX_DS */
199 case 0x3E: /* INAT_PFX_SS */
200 case 0xF0: /* INAT_PFX_LOCK */
2b144498
SD
201 return true;
202 }
203 }
204 return false;
205}
206
73175d0d 207static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
2b144498 208{
73175d0d
ON
209 u32 volatile *good_insns;
210
211 insn_init(insn, auprobe->insn, x86_64);
2b144498 212
2b144498
SD
213 insn_get_opcode(insn);
214 if (is_prefix_bad(insn))
215 return -ENOTSUPP;
7b2d81d4 216
73175d0d
ON
217 if (x86_64)
218 good_insns = good_insns_64;
219 else
220 good_insns = good_insns_32;
221
222 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
2b144498 223 return 0;
7b2d81d4 224
2b144498
SD
225 if (insn->opcode.nbytes == 2) {
226 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
227 return 0;
228 }
7b2d81d4 229
2b144498
SD
230 return -ENOTSUPP;
231}
232
2b144498 233#ifdef CONFIG_X86_64
2ae1f49a
ON
234static inline bool is_64bit_mm(struct mm_struct *mm)
235{
236 return !config_enabled(CONFIG_IA32_EMULATION) ||
237 !mm->context.ia32_compat;
238}
2b144498 239/*
3ff54efd 240 * If arch_uprobe->insn doesn't use rip-relative addressing, return
2b144498
SD
241 * immediately. Otherwise, rewrite the instruction so that it accesses
242 * its memory operand indirectly through a scratch register. Set
3ff54efd 243 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
2b144498
SD
244 * accordingly. (The contents of the scratch register will be saved
245 * before we single-step the modified instruction, and restored
246 * afterward.)
247 *
248 * We do this because a rip-relative instruction can access only a
249 * relatively small area (+/- 2 GB from the instruction), and the XOL
250 * area typically lies beyond that area. At least for instructions
251 * that store to memory, we can't execute the original instruction
252 * and "fix things up" later, because the misdirected store could be
253 * disastrous.
254 *
255 * Some useful facts about rip-relative instructions:
7b2d81d4
IM
256 *
257 * - There's always a modrm byte.
258 * - There's never a SIB byte.
259 * - The displacement is always 4 bytes.
2b144498 260 */
e3343e6a 261static void
59078d4b 262handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498
SD
263{
264 u8 *cursor;
265 u8 reg;
266
2b144498
SD
267 if (!insn_rip_relative(insn))
268 return;
269
270 /*
271 * insn_rip_relative() would have decoded rex_prefix, modrm.
272 * Clear REX.b bit (extension of MODRM.rm field):
273 * we want to encode rax/rcx, not r8/r9.
274 */
275 if (insn->rex_prefix.nbytes) {
3ff54efd 276 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
2b144498
SD
277 *cursor &= 0xfe; /* Clearing REX.B bit */
278 }
279
280 /*
281 * Point cursor at the modrm byte. The next 4 bytes are the
282 * displacement. Beyond the displacement, for some instructions,
283 * is the immediate operand.
284 */
3ff54efd 285 cursor = auprobe->insn + insn_offset_modrm(insn);
2b144498
SD
286 insn_get_length(insn);
287
288 /*
289 * Convert from rip-relative addressing to indirect addressing
290 * via a scratch register. Change the r/m field from 0x5 (%rip)
291 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
292 */
293 reg = MODRM_REG(insn);
294 if (reg == 0) {
295 /*
296 * The register operand (if any) is either the A register
297 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
298 * REX prefix) %r8. In any case, we know the C register
299 * is NOT the register operand, so we use %rcx (register
300 * #1) for the scratch register.
301 */
900771a4 302 auprobe->fixups = UPROBE_FIX_RIP_CX;
2b144498
SD
303 /* Change modrm from 00 000 101 to 00 000 001. */
304 *cursor = 0x1;
305 } else {
306 /* Use %rax (register #0) for the scratch register. */
900771a4 307 auprobe->fixups = UPROBE_FIX_RIP_AX;
2b144498
SD
308 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
309 *cursor = (reg << 3);
310 }
311
312 /* Target address = address of next instruction + (signed) offset */
3ff54efd 313 auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
7b2d81d4 314
2b144498
SD
315 /* Displacement field is gone; slide immediate field (if any) over. */
316 if (insn->immediate.nbytes) {
317 cursor++;
7b2d81d4 318 memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
2b144498 319 }
2b144498
SD
320}
321
d20737c0
ON
322/*
323 * If we're emulating a rip-relative instruction, save the contents
324 * of the scratch register and store the target address in that register.
325 */
326static void
327pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
328 struct arch_uprobe_task *autask)
329{
330 if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
331 autask->saved_scratch_register = regs->ax;
332 regs->ax = current->utask->vaddr;
333 regs->ax += auprobe->rip_rela_target_address;
334 } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
335 autask->saved_scratch_register = regs->cx;
336 regs->cx = current->utask->vaddr;
337 regs->cx += auprobe->rip_rela_target_address;
338 }
339}
340
341static void
342handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
343{
344 if (auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
345 struct arch_uprobe_task *autask;
346
347 autask = &current->utask->autask;
348 if (auprobe->fixups & UPROBE_FIX_RIP_AX)
349 regs->ax = autask->saved_scratch_register;
350 else
351 regs->cx = autask->saved_scratch_register;
352
353 /*
354 * The original instruction includes a displacement, and so
355 * is 4 bytes longer than what we've just single-stepped.
356 * Caller may need to apply other fixups to handle stuff
357 * like "jmpq *...(%rip)" and "callq *...(%rip)".
358 */
359 if (correction)
360 *correction += 4;
361 }
362}
2ae1f49a
ON
363#else /* 32-bit: */
364static inline bool is_64bit_mm(struct mm_struct *mm)
2b144498 365{
2ae1f49a 366 return false;
2b144498 367}
d20737c0
ON
368/*
369 * No RIP-relative addressing on 32-bit
370 */
59078d4b 371static void handle_riprel_insn(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 372{
d20737c0
ON
373}
374static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
375 struct arch_uprobe_task *autask)
376{
377}
378static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
379 long *correction)
380{
2b144498 381}
2b144498
SD
382#endif /* CONFIG_X86_64 */
383
8ad8e9d3
ON
384struct uprobe_xol_ops {
385 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
386 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
387 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
388};
389
8faaed1b
ON
390static inline int sizeof_long(void)
391{
392 return is_ia32_task() ? 4 : 8;
393}
394
8ad8e9d3
ON
395static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
396{
397 pre_xol_rip_insn(auprobe, regs, &current->utask->autask);
398 return 0;
399}
400
401/*
402 * Adjust the return address pushed by a call insn executed out of line.
403 */
404static int adjust_ret_addr(unsigned long sp, long correction)
405{
8faaed1b
ON
406 int rasize = sizeof_long();
407 long ra;
8ad8e9d3 408
8faaed1b 409 if (copy_from_user(&ra, (void __user *)sp, rasize))
8ad8e9d3
ON
410 return -EFAULT;
411
412 ra += correction;
8faaed1b 413 if (copy_to_user((void __user *)sp, &ra, rasize))
8ad8e9d3
ON
414 return -EFAULT;
415
416 return 0;
417}
418
419static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
420{
421 struct uprobe_task *utask = current->utask;
422 long correction = (long)(utask->vaddr - utask->xol_vaddr);
8ad8e9d3
ON
423
424 handle_riprel_post_xol(auprobe, regs, &correction);
425 if (auprobe->fixups & UPROBE_FIX_IP)
426 regs->ip += correction;
427
75f9ef0b
ON
428 if (auprobe->fixups & UPROBE_FIX_CALL) {
429 if (adjust_ret_addr(regs->sp, correction)) {
8faaed1b 430 regs->sp += sizeof_long();
75f9ef0b
ON
431 return -ERESTART;
432 }
433 }
8ad8e9d3 434
75f9ef0b 435 return 0;
8ad8e9d3
ON
436}
437
438static struct uprobe_xol_ops default_xol_ops = {
439 .pre_xol = default_pre_xol_op,
440 .post_xol = default_post_xol_op,
441};
442
8e89c0be
ON
443static bool branch_is_call(struct arch_uprobe *auprobe)
444{
445 return auprobe->branch.opc1 == 0xe8;
446}
447
8f95505b
ON
448#define CASE_COND \
449 COND(70, 71, XF(OF)) \
450 COND(72, 73, XF(CF)) \
451 COND(74, 75, XF(ZF)) \
452 COND(78, 79, XF(SF)) \
453 COND(7a, 7b, XF(PF)) \
454 COND(76, 77, XF(CF) || XF(ZF)) \
455 COND(7c, 7d, XF(SF) != XF(OF)) \
456 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
457
458#define COND(op_y, op_n, expr) \
459 case 0x ## op_y: DO((expr) != 0) \
460 case 0x ## op_n: DO((expr) == 0)
461
462#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
463
464static bool is_cond_jmp_opcode(u8 opcode)
465{
466 switch (opcode) {
467 #define DO(expr) \
468 return true;
469 CASE_COND
470 #undef DO
471
472 default:
473 return false;
474 }
475}
476
477static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
478{
479 unsigned long flags = regs->flags;
480
481 switch (auprobe->branch.opc1) {
482 #define DO(expr) \
483 return expr;
484 CASE_COND
485 #undef DO
486
487 default: /* not a conditional jmp */
488 return true;
489 }
490}
491
492#undef XF
493#undef COND
494#undef CASE_COND
495
7ba6db2d
ON
496static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
497{
8e89c0be 498 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
8f95505b 499 unsigned long offs = (long)auprobe->branch.offs;
8e89c0be
ON
500
501 if (branch_is_call(auprobe)) {
502 unsigned long new_sp = regs->sp - sizeof_long();
503 /*
504 * If it fails we execute this (mangled, see the comment in
505 * branch_clear_offset) insn out-of-line. In the likely case
506 * this should trigger the trap, and the probed application
507 * should die or restart the same insn after it handles the
508 * signal, arch_uprobe_post_xol() won't be even called.
509 *
510 * But there is corner case, see the comment in ->post_xol().
511 */
512 if (copy_to_user((void __user *)new_sp, &new_ip, sizeof_long()))
513 return false;
514 regs->sp = new_sp;
8f95505b
ON
515 } else if (!check_jmp_cond(auprobe, regs)) {
516 offs = 0;
8e89c0be
ON
517 }
518
8f95505b 519 regs->ip = new_ip + offs;
7ba6db2d
ON
520 return true;
521}
522
8e89c0be
ON
523static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
524{
525 BUG_ON(!branch_is_call(auprobe));
526 /*
527 * We can only get here if branch_emulate_op() failed to push the ret
528 * address _and_ another thread expanded our stack before the (mangled)
529 * "call" insn was executed out-of-line. Just restore ->sp and restart.
530 * We could also restore ->ip and try to call branch_emulate_op() again.
531 */
532 regs->sp += sizeof_long();
533 return -ERESTART;
534}
535
536static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
537{
538 /*
539 * Turn this insn into "call 1f; 1:", this is what we will execute
540 * out-of-line if ->emulate() fails. We only need this to generate
541 * a trap, so that the probed task receives the correct signal with
542 * the properly filled siginfo.
543 *
544 * But see the comment in ->post_xol(), in the unlikely case it can
545 * succeed. So we need to ensure that the new ->ip can not fall into
546 * the non-canonical area and trigger #GP.
547 *
548 * We could turn it into (say) "pushf", but then we would need to
549 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
550 * of ->insn[] for set_orig_insn().
551 */
552 memset(auprobe->insn + insn_offset_immediate(insn),
553 0, insn->immediate.nbytes);
554}
555
7ba6db2d
ON
556static struct uprobe_xol_ops branch_xol_ops = {
557 .emulate = branch_emulate_op,
8e89c0be 558 .post_xol = branch_post_xol_op,
7ba6db2d
ON
559};
560
561/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
562static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
563{
8e89c0be 564 u8 opc1 = OPCODE1(insn);
250bbd12 565 int i;
8e89c0be
ON
566
567 /* has the side-effect of processing the entire instruction */
568 insn_get_length(insn);
569 if (WARN_ON_ONCE(!insn_complete(insn)))
570 return -ENOEXEC;
7ba6db2d 571
8e89c0be 572 switch (opc1) {
7ba6db2d
ON
573 case 0xeb: /* jmp 8 */
574 case 0xe9: /* jmp 32 */
d2410063 575 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
7ba6db2d 576 break;
8e89c0be
ON
577
578 case 0xe8: /* call relative */
579 branch_clear_offset(auprobe, insn);
580 break;
8f95505b 581
6cc5e7ff
ON
582 case 0x0f:
583 if (insn->opcode.nbytes != 2)
584 return -ENOSYS;
585 /*
586 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
587 * OPCODE1() of the "short" jmp which checks the same condition.
588 */
589 opc1 = OPCODE2(insn) - 0x10;
7ba6db2d 590 default:
8f95505b
ON
591 if (!is_cond_jmp_opcode(opc1))
592 return -ENOSYS;
7ba6db2d
ON
593 }
594
250bbd12
DV
595 /*
596 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
597 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
598 * No one uses these insns, reject any branch insns with such prefix.
599 */
600 for (i = 0; i < insn->prefixes.nbytes; i++) {
601 if (insn->prefixes.bytes[i] == 0x66)
602 return -ENOTSUPP;
603 }
604
8e89c0be 605 auprobe->branch.opc1 = opc1;
7ba6db2d
ON
606 auprobe->branch.ilen = insn->length;
607 auprobe->branch.offs = insn->immediate.value;
608
609 auprobe->ops = &branch_xol_ops;
610 return 0;
611}
612
2b144498 613/**
0326f5a9 614 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
2b144498 615 * @mm: the probed address space.
3ff54efd 616 * @arch_uprobe: the probepoint information.
7eb9ba5e 617 * @addr: virtual address at which to install the probepoint
2b144498
SD
618 * Return 0 on success or a -ve number on error.
619 */
7eb9ba5e 620int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
2b144498 621{
2b144498 622 struct insn insn;
ddb69f27
ON
623 bool fix_ip = true, fix_call = false;
624 int ret;
2b144498 625
2ae1f49a 626 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
ddb69f27 627 if (ret)
2b144498 628 return ret;
7b2d81d4 629
7ba6db2d
ON
630 ret = branch_setup_xol_ops(auprobe, &insn);
631 if (ret != -ENOSYS)
632 return ret;
633
ddb69f27
ON
634 /*
635 * Figure out which fixups arch_uprobe_post_xol() will need to perform,
636 * and annotate arch_uprobe->fixups accordingly. To start with, ->fixups
637 * is either zero or it reflects rip-related fixups.
638 */
ddb69f27
ON
639 switch (OPCODE1(&insn)) {
640 case 0x9d: /* popf */
641 auprobe->fixups |= UPROBE_FIX_SETF;
642 break;
643 case 0xc3: /* ret or lret -- ip is correct */
644 case 0xcb:
645 case 0xc2:
646 case 0xca:
647 fix_ip = false;
648 break;
ddb69f27
ON
649 case 0x9a: /* call absolute - Fix return addr, not ip */
650 fix_call = true;
651 fix_ip = false;
652 break;
653 case 0xea: /* jmp absolute -- ip is correct */
654 fix_ip = false;
655 break;
656 case 0xff:
657 insn_get_modrm(&insn);
658 switch (MODRM_REG(&insn)) {
659 case 2: case 3: /* call or lcall, indirect */
660 fix_call = true;
661 case 4: case 5: /* jmp or ljmp, indirect */
662 fix_ip = false;
663 }
e55848a4 664 /* fall through */
ddb69f27 665 default:
e55848a4 666 handle_riprel_insn(auprobe, &insn);
ddb69f27
ON
667 }
668
669 if (fix_ip)
670 auprobe->fixups |= UPROBE_FIX_IP;
671 if (fix_call)
672 auprobe->fixups |= UPROBE_FIX_CALL;
7b2d81d4 673
8ad8e9d3 674 auprobe->ops = &default_xol_ops;
2b144498
SD
675 return 0;
676}
0326f5a9 677
0326f5a9
SD
678/*
679 * arch_uprobe_pre_xol - prepare to execute out of line.
680 * @auprobe: the probepoint information.
681 * @regs: reflects the saved user state of current task.
682 */
683int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
684{
34e7317d 685 struct uprobe_task *utask = current->utask;
0326f5a9 686
34e7317d
ON
687 regs->ip = utask->xol_vaddr;
688 utask->autask.saved_trap_nr = current->thread.trap_nr;
0326f5a9 689 current->thread.trap_nr = UPROBE_TRAP_NR;
0326f5a9 690
34e7317d 691 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
4dc316c6
ON
692 regs->flags |= X86_EFLAGS_TF;
693 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
694 set_task_blockstep(current, false);
695
8ad8e9d3
ON
696 if (auprobe->ops->pre_xol)
697 return auprobe->ops->pre_xol(auprobe, regs);
0326f5a9
SD
698 return 0;
699}
700
0326f5a9
SD
701/*
702 * If xol insn itself traps and generates a signal(Say,
703 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
704 * instruction jumps back to its own address. It is assumed that anything
705 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
706 *
707 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
708 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
709 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
710 */
711bool arch_uprobe_xol_was_trapped(struct task_struct *t)
712{
713 if (t->thread.trap_nr != UPROBE_TRAP_NR)
714 return true;
715
716 return false;
717}
718
719/*
720 * Called after single-stepping. To avoid the SMP problems that can
721 * occur when we temporarily put back the original opcode to
722 * single-step, we single-stepped a copy of the instruction.
723 *
724 * This function prepares to resume execution after the single-step.
725 * We have to fix things up as follows:
726 *
727 * Typically, the new ip is relative to the copied instruction. We need
728 * to make it relative to the original instruction (FIX_IP). Exceptions
729 * are return instructions and absolute or indirect jump or call instructions.
730 *
731 * If the single-stepped instruction was a call, the return address that
732 * is atop the stack is the address following the copied instruction. We
733 * need to make it the address following the original instruction (FIX_CALL).
734 *
735 * If the original instruction was a rip-relative instruction such as
736 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
737 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
738 * We need to restore the contents of the scratch register and adjust
739 * the ip, keeping in mind that the instruction we executed is 4 bytes
740 * shorter than the original instruction (since we squeezed out the offset
741 * field). (FIX_RIP_AX or FIX_RIP_CX)
742 */
743int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
744{
34e7317d 745 struct uprobe_task *utask = current->utask;
0326f5a9
SD
746
747 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
014940ba
ON
748
749 if (auprobe->ops->post_xol) {
750 int err = auprobe->ops->post_xol(auprobe, regs);
751 if (err) {
752 arch_uprobe_abort_xol(auprobe, regs);
75f9ef0b
ON
753 /*
754 * Restart the probed insn. ->post_xol() must ensure
755 * this is really possible if it returns -ERESTART.
756 */
757 if (err == -ERESTART)
758 return 0;
014940ba
ON
759 return err;
760 }
761 }
762
0326f5a9 763 current->thread.trap_nr = utask->autask.saved_trap_nr;
4dc316c6
ON
764 /*
765 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
766 * so we can get an extra SIGTRAP if we do not clear TF. We need
767 * to examine the opcode to make it right.
768 */
769 if (utask->autask.saved_tf)
770 send_sig(SIGTRAP, current, 0);
771 else if (!(auprobe->fixups & UPROBE_FIX_SETF))
772 regs->flags &= ~X86_EFLAGS_TF;
773
8ad8e9d3 774 return 0;
0326f5a9
SD
775}
776
777/* callback routine for handling exceptions. */
778int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
779{
780 struct die_args *args = data;
781 struct pt_regs *regs = args->regs;
782 int ret = NOTIFY_DONE;
783
784 /* We are only interested in userspace traps */
785 if (regs && !user_mode_vm(regs))
786 return NOTIFY_DONE;
787
788 switch (val) {
789 case DIE_INT3:
790 if (uprobe_pre_sstep_notifier(regs))
791 ret = NOTIFY_STOP;
792
793 break;
794
795 case DIE_DEBUG:
796 if (uprobe_post_sstep_notifier(regs))
797 ret = NOTIFY_STOP;
798
799 default:
800 break;
801 }
802
803 return ret;
804}
805
806/*
807 * This function gets called when XOL instruction either gets trapped or
014940ba
ON
808 * the thread has a fatal signal, or if arch_uprobe_post_xol() failed.
809 * Reset the instruction pointer to its probed address for the potential
810 * restart or for post mortem analysis.
0326f5a9
SD
811 */
812void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
813{
814 struct uprobe_task *utask = current->utask;
815
816 current->thread.trap_nr = utask->autask.saved_trap_nr;
817 handle_riprel_post_xol(auprobe, regs, NULL);
818 instruction_pointer_set(regs, utask->vaddr);
4dc316c6
ON
819
820 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
821 if (!utask->autask.saved_tf)
822 regs->flags &= ~X86_EFLAGS_TF;
0326f5a9
SD
823}
824
3a4664aa 825static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
0326f5a9 826{
8ad8e9d3
ON
827 if (auprobe->ops->emulate)
828 return auprobe->ops->emulate(auprobe, regs);
0326f5a9
SD
829 return false;
830}
bdc1e472 831
3a4664aa
ON
832bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
833{
834 bool ret = __skip_sstep(auprobe, regs);
835 if (ret && (regs->flags & X86_EFLAGS_TF))
836 send_sig(SIGTRAP, current, 0);
837 return ret;
838}
791eca10
AA
839
840unsigned long
841arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
842{
8faaed1b 843 int rasize = sizeof_long(), nleft;
791eca10
AA
844 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
845
8faaed1b 846 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
791eca10
AA
847 return -1;
848
849 /* check whether address has been already hijacked */
850 if (orig_ret_vaddr == trampoline_vaddr)
851 return orig_ret_vaddr;
852
8faaed1b
ON
853 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
854 if (likely(!nleft))
791eca10
AA
855 return orig_ret_vaddr;
856
8faaed1b 857 if (nleft != rasize) {
791eca10
AA
858 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
859 "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
860
861 force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
862 }
863
864 return -1;
865}