]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/uprobes.c
uprobes, mm, x86: Add the ability to install and remove uprobes breakpoints
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / uprobes.c
CommitLineData
2b144498
SD
1/*
2 * Userspace Probes (UProbes) for x86
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2011
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 */
23
24#include <linux/kernel.h>
25#include <linux/sched.h>
26#include <linux/ptrace.h>
27#include <linux/uprobes.h>
28
29#include <linux/kdebug.h>
30#include <asm/insn.h>
31
32/* Post-execution fixups. */
33
34/* No fixup needed */
35#define UPROBES_FIX_NONE 0x0
36/* Adjust IP back to vicinity of actual insn */
37#define UPROBES_FIX_IP 0x1
38/* Adjust the return address of a call insn */
39#define UPROBES_FIX_CALL 0x2
40
41#define UPROBES_FIX_RIP_AX 0x8000
42#define UPROBES_FIX_RIP_CX 0x4000
43
44/* Adaptations for mhiramat x86 decoder v14. */
45#define OPCODE1(insn) ((insn)->opcode.bytes[0])
46#define OPCODE2(insn) ((insn)->opcode.bytes[1])
47#define OPCODE3(insn) ((insn)->opcode.bytes[2])
48#define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value)
49
50#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
51 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
52 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
53 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
54 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
55 << (row % 32))
56
57#ifdef CONFIG_X86_64
58static volatile u32 good_insns_64[256 / 32] = {
59 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
60 /* ---------------------------------------------- */
61 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
62 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
63 W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
64 W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
65 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
66 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
67 W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
68 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
69 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
70 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
71 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
72 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
73 W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
74 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
75 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
76 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
77 /* ---------------------------------------------- */
78 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
79};
80#endif
81
82/* Good-instruction tables for 32-bit apps */
83
84static volatile u32 good_insns_32[256 / 32] = {
85 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
86 /* ---------------------------------------------- */
87 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
88 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
89 W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
90 W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
91 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
92 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
93 W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
94 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
95 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
96 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
97 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
98 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
99 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
100 W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
101 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
102 W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
103 /* ---------------------------------------------- */
104 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
105};
106
107/* Using this for both 64-bit and 32-bit apps */
108static volatile u32 good_2byte_insns[256 / 32] = {
109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
110 /* ---------------------------------------------- */
111 W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
112 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
113 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
114 W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
115 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
116 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
117 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
118 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
119 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
120 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
121 W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
122 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
123 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
124 W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
125 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
126 W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
127 /* ---------------------------------------------- */
128 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
129};
130
131#undef W
132
133/*
134 * opcodes we'll probably never support:
135 * 6c-6d, e4-e5, ec-ed - in
136 * 6e-6f, e6-e7, ee-ef - out
137 * cc, cd - int3, int
138 * cf - iret
139 * d6 - illegal instruction
140 * f1 - int1/icebp
141 * f4 - hlt
142 * fa, fb - cli, sti
143 * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
144 *
145 * invalid opcodes in 64-bit mode:
146 * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
147 *
148 * 63 - we support this opcode in x86_64 but not in i386.
149 *
150 * opcodes we may need to refine support for:
151 * 0f - 2-byte instructions: For many of these instructions, the validity
152 * depends on the prefix and/or the reg field. On such instructions, we
153 * just consider the opcode combination valid if it corresponds to any
154 * valid instruction.
155 * 8f - Group 1 - only reg = 0 is OK
156 * c6-c7 - Group 11 - only reg = 0 is OK
157 * d9-df - fpu insns with some illegal encodings
158 * f2, f3 - repnz, repz prefixes. These are also the first byte for
159 * certain floating-point instructions, such as addsd.
160 * fe - Group 4 - only reg = 0 or 1 is OK
161 * ff - Group 5 - only reg = 0-6 is OK
162 *
163 * others -- Do we need to support these?
164 * 0f - (floating-point?) prefetch instructions
165 * 07, 17, 1f - pop es, pop ss, pop ds
166 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
167 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
168 * 67 - addr16 prefix
169 * ce - into
170 * f0 - lock prefix
171 */
172
173/*
174 * TODO:
175 * - Where necessary, examine the modrm byte and allow only valid instructions
176 * in the different Groups and fpu instructions.
177 */
178
179static bool is_prefix_bad(struct insn *insn)
180{
181 int i;
182
183 for (i = 0; i < insn->prefixes.nbytes; i++) {
184 switch (insn->prefixes.bytes[i]) {
185 case 0x26: /*INAT_PFX_ES */
186 case 0x2E: /*INAT_PFX_CS */
187 case 0x36: /*INAT_PFX_DS */
188 case 0x3E: /*INAT_PFX_SS */
189 case 0xF0: /*INAT_PFX_LOCK */
190 return true;
191 }
192 }
193 return false;
194}
195
196static int validate_insn_32bits(struct uprobe *uprobe, struct insn *insn)
197{
198 insn_init(insn, uprobe->insn, false);
199
200 /* Skip good instruction prefixes; reject "bad" ones. */
201 insn_get_opcode(insn);
202 if (is_prefix_bad(insn))
203 return -ENOTSUPP;
204 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
205 return 0;
206 if (insn->opcode.nbytes == 2) {
207 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
208 return 0;
209 }
210 return -ENOTSUPP;
211}
212
213/*
214 * Figure out which fixups post_xol() will need to perform, and annotate
215 * uprobe->arch_info.fixups accordingly. To start with,
216 * uprobe->arch_info.fixups is either zero or it reflects rip-related
217 * fixups.
218 */
219static void prepare_fixups(struct uprobe *uprobe, struct insn *insn)
220{
221 bool fix_ip = true, fix_call = false; /* defaults */
222 int reg;
223
224 insn_get_opcode(insn); /* should be a nop */
225
226 switch (OPCODE1(insn)) {
227 case 0xc3: /* ret/lret */
228 case 0xcb:
229 case 0xc2:
230 case 0xca:
231 /* ip is correct */
232 fix_ip = false;
233 break;
234 case 0xe8: /* call relative - Fix return addr */
235 fix_call = true;
236 break;
237 case 0x9a: /* call absolute - Fix return addr, not ip */
238 fix_call = true;
239 fix_ip = false;
240 break;
241 case 0xff:
242 insn_get_modrm(insn);
243 reg = MODRM_REG(insn);
244 if (reg == 2 || reg == 3) {
245 /* call or lcall, indirect */
246 /* Fix return addr; ip is correct. */
247 fix_call = true;
248 fix_ip = false;
249 } else if (reg == 4 || reg == 5) {
250 /* jmp or ljmp, indirect */
251 /* ip is correct. */
252 fix_ip = false;
253 }
254 break;
255 case 0xea: /* jmp absolute -- ip is correct */
256 fix_ip = false;
257 break;
258 default:
259 break;
260 }
261 if (fix_ip)
262 uprobe->arch_info.fixups |= UPROBES_FIX_IP;
263 if (fix_call)
264 uprobe->arch_info.fixups |= UPROBES_FIX_CALL;
265}
266
267#ifdef CONFIG_X86_64
268/*
269 * If uprobe->insn doesn't use rip-relative addressing, return
270 * immediately. Otherwise, rewrite the instruction so that it accesses
271 * its memory operand indirectly through a scratch register. Set
272 * uprobe->arch_info.fixups and uprobe->arch_info.rip_rela_target_address
273 * accordingly. (The contents of the scratch register will be saved
274 * before we single-step the modified instruction, and restored
275 * afterward.)
276 *
277 * We do this because a rip-relative instruction can access only a
278 * relatively small area (+/- 2 GB from the instruction), and the XOL
279 * area typically lies beyond that area. At least for instructions
280 * that store to memory, we can't execute the original instruction
281 * and "fix things up" later, because the misdirected store could be
282 * disastrous.
283 *
284 * Some useful facts about rip-relative instructions:
285 * - There's always a modrm byte.
286 * - There's never a SIB byte.
287 * - The displacement is always 4 bytes.
288 */
289static void handle_riprel_insn(struct mm_struct *mm, struct uprobe *uprobe,
290 struct insn *insn)
291{
292 u8 *cursor;
293 u8 reg;
294
295 if (mm->context.ia32_compat)
296 return;
297
298 uprobe->arch_info.rip_rela_target_address = 0x0;
299 if (!insn_rip_relative(insn))
300 return;
301
302 /*
303 * insn_rip_relative() would have decoded rex_prefix, modrm.
304 * Clear REX.b bit (extension of MODRM.rm field):
305 * we want to encode rax/rcx, not r8/r9.
306 */
307 if (insn->rex_prefix.nbytes) {
308 cursor = uprobe->insn + insn_offset_rex_prefix(insn);
309 *cursor &= 0xfe; /* Clearing REX.B bit */
310 }
311
312 /*
313 * Point cursor at the modrm byte. The next 4 bytes are the
314 * displacement. Beyond the displacement, for some instructions,
315 * is the immediate operand.
316 */
317 cursor = uprobe->insn + insn_offset_modrm(insn);
318 insn_get_length(insn);
319
320 /*
321 * Convert from rip-relative addressing to indirect addressing
322 * via a scratch register. Change the r/m field from 0x5 (%rip)
323 * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
324 */
325 reg = MODRM_REG(insn);
326 if (reg == 0) {
327 /*
328 * The register operand (if any) is either the A register
329 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
330 * REX prefix) %r8. In any case, we know the C register
331 * is NOT the register operand, so we use %rcx (register
332 * #1) for the scratch register.
333 */
334 uprobe->arch_info.fixups = UPROBES_FIX_RIP_CX;
335 /* Change modrm from 00 000 101 to 00 000 001. */
336 *cursor = 0x1;
337 } else {
338 /* Use %rax (register #0) for the scratch register. */
339 uprobe->arch_info.fixups = UPROBES_FIX_RIP_AX;
340 /* Change modrm from 00 xxx 101 to 00 xxx 000 */
341 *cursor = (reg << 3);
342 }
343
344 /* Target address = address of next instruction + (signed) offset */
345 uprobe->arch_info.rip_rela_target_address = (long)insn->length
346 + insn->displacement.value;
347 /* Displacement field is gone; slide immediate field (if any) over. */
348 if (insn->immediate.nbytes) {
349 cursor++;
350 memmove(cursor, cursor + insn->displacement.nbytes,
351 insn->immediate.nbytes);
352 }
353 return;
354}
355
356static int validate_insn_64bits(struct uprobe *uprobe, struct insn *insn)
357{
358 insn_init(insn, uprobe->insn, true);
359
360 /* Skip good instruction prefixes; reject "bad" ones. */
361 insn_get_opcode(insn);
362 if (is_prefix_bad(insn))
363 return -ENOTSUPP;
364 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
365 return 0;
366 if (insn->opcode.nbytes == 2) {
367 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
368 return 0;
369 }
370 return -ENOTSUPP;
371}
372
373static int validate_insn_bits(struct mm_struct *mm, struct uprobe *uprobe,
374 struct insn *insn)
375{
376 if (mm->context.ia32_compat)
377 return validate_insn_32bits(uprobe, insn);
378 return validate_insn_64bits(uprobe, insn);
379}
380#else
381static void handle_riprel_insn(struct mm_struct *mm, struct uprobe *uprobe,
382 struct insn *insn)
383{
384 return;
385}
386
387static int validate_insn_bits(struct mm_struct *mm, struct uprobe *uprobe,
388 struct insn *insn)
389{
390 return validate_insn_32bits(uprobe, insn);
391}
392#endif /* CONFIG_X86_64 */
393
394/**
395 * analyze_insn - instruction analysis including validity and fixups.
396 * @mm: the probed address space.
397 * @uprobe: the probepoint information.
398 * Return 0 on success or a -ve number on error.
399 */
400int analyze_insn(struct mm_struct *mm, struct uprobe *uprobe)
401{
402 int ret;
403 struct insn insn;
404
405 uprobe->arch_info.fixups = 0;
406 ret = validate_insn_bits(mm, uprobe, &insn);
407 if (ret != 0)
408 return ret;
409 handle_riprel_insn(mm, uprobe, &insn);
410 prepare_fixups(uprobe, &insn);
411 return 0;
412}