]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kernel/uprobes.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / uprobes.c
CommitLineData
1a59d1b8 1// SPDX-License-Identifier: GPL-2.0-or-later
2b144498 2/*
7b2d81d4 3 * User-space Probes (UProbes) for x86
2b144498 4 *
2b144498
SD
5 * Copyright (C) IBM Corporation, 2008-2011
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 */
2b144498
SD
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/ptrace.h>
13#include <linux/uprobes.h>
0326f5a9 14#include <linux/uaccess.h>
2b144498
SD
15
16#include <linux/kdebug.h>
0326f5a9 17#include <asm/processor.h>
2b144498 18#include <asm/insn.h>
b0e9b09b 19#include <asm/mmu_context.h>
2b144498
SD
20
21/* Post-execution fixups. */
22
2b144498 23/* Adjust IP back to vicinity of actual insn */
78d9af4c 24#define UPROBE_FIX_IP 0x01
0326f5a9 25
2b144498 26/* Adjust the return address of a call insn */
78d9af4c 27#define UPROBE_FIX_CALL 0x02
2b144498 28
bdc1e472 29/* Instruction will modify TF, don't change it */
78d9af4c 30#define UPROBE_FIX_SETF 0x04
bdc1e472 31
1ea30fb6
DV
32#define UPROBE_FIX_RIP_SI 0x08
33#define UPROBE_FIX_RIP_DI 0x10
34#define UPROBE_FIX_RIP_BX 0x20
35#define UPROBE_FIX_RIP_MASK \
36 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
2b144498 37
0326f5a9
SD
38#define UPROBE_TRAP_NR UINT_MAX
39
2b144498 40/* Adaptations for mhiramat x86 decoder v14. */
7b2d81d4
IM
41#define OPCODE1(insn) ((insn)->opcode.bytes[0])
42#define OPCODE2(insn) ((insn)->opcode.bytes[1])
43#define OPCODE3(insn) ((insn)->opcode.bytes[2])
ddb69f27 44#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
2b144498
SD
45
46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
47 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
48 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
49 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
50 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
51 << (row % 32))
52
04a3d984
SD
53/*
54 * Good-instruction tables for 32-bit apps. This is non-const and volatile
55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
56 * some versions of gcc to think only *(unsigned long*) is used.
097f4e5e 57 *
097f4e5e
DV
58 * Opcodes we'll probably never support:
59 * 6c-6f - ins,outs. SEGVs if used in userspace
60 * e4-e7 - in,out imm. SEGVs if used in userspace
61 * ec-ef - in,out acc. SEGVs if used in userspace
62 * cc - int3. SIGTRAP if used in userspace
63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
64 * (why we support bound (62) then? it's similar, and similarly unused...)
65 * f1 - int1. SIGTRAP if used in userspace
66 * f4 - hlt. SEGVs if used in userspace
67 * fa - cli. SEGVs if used in userspace
68 * fb - sti. SEGVs if used in userspace
69 *
70 * Opcodes which need some work to be supported:
71 * 07,17,1f - pop es/ss/ds
72 * Normally not used in userspace, but would execute if used.
73 * Can cause GP or stack exception if tries to load wrong segment descriptor.
74 * We hesitate to run them under single step since kernel's handling
75 * of userspace single-stepping (TF flag) is fragile.
76 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
77 * on the same grounds that they are never used.
78 * cd - int N.
79 * Used by userspace for "int 80" syscall entry. (Other "int N"
80 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
81 * Not supported since kernel's handling of userspace single-stepping
82 * (TF flag) is fragile.
83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
04a3d984 84 */
8dbacad9 85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
04a3d984 86static volatile u32 good_insns_32[256 / 32] = {
2b144498
SD
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
67fc8092 89 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
2b144498 90 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
67fc8092
DV
91 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
92 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
2b144498
SD
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
67fc8092 95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
2b144498
SD
96 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
97 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
67fc8092 102 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
2b144498 103 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
67fc8092 104 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
2b144498
SD
105 /* ---------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107};
8dbacad9
ON
108#else
109#define good_insns_32 NULL
110#endif
2b144498 111
097f4e5e 112/* Good-instruction tables for 64-bit apps.
097f4e5e
DV
113 *
114 * Genuinely invalid opcodes:
115 * 06,07 - formerly push/pop es
116 * 0e - formerly push cs
117 * 16,17 - formerly push/pop ss
118 * 1e,1f - formerly push/pop ds
119 * 27,2f,37,3f - formerly daa/das/aaa/aas
120 * 60,61 - formerly pusha/popa
67fc8092 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
097f4e5e 122 * 82 - formerly redundant encoding of Group1
67fc8092 123 * 9a - formerly call seg:ofs
097f4e5e
DV
124 * ce - formerly into
125 * d4,d5 - formerly aam/aad
126 * d6 - formerly undocumented salc
67fc8092 127 * ea - formerly jmp seg:ofs
097f4e5e
DV
128 *
129 * Opcodes we'll probably never support:
130 * 6c-6f - ins,outs. SEGVs if used in userspace
131 * e4-e7 - in,out imm. SEGVs if used in userspace
132 * ec-ef - in,out acc. SEGVs if used in userspace
133 * cc - int3. SIGTRAP if used in userspace
134 * f1 - int1. SIGTRAP if used in userspace
135 * f4 - hlt. SEGVs if used in userspace
136 * fa - cli. SEGVs if used in userspace
137 * fb - sti. SEGVs if used in userspace
138 *
139 * Opcodes which need some work to be supported:
140 * cd - int N.
141 * Used by userspace for "int 80" syscall entry. (Other "int N"
142 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
143 * Not supported since kernel's handling of userspace single-stepping
144 * (TF flag) is fragile.
145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
146 */
8dbacad9 147#if defined(CONFIG_X86_64)
04a3d984
SD
148static volatile u32 good_insns_64[256 / 32] = {
149 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
150 /* ---------------------------------------------- */
67fc8092 151 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
04a3d984 152 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
67fc8092
DV
153 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
154 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
155 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
04a3d984 156 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
67fc8092 157 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
04a3d984
SD
158 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
159 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
67fc8092 160 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
04a3d984
SD
161 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
162 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
67fc8092 163 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
04a3d984 164 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
67fc8092
DV
165 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
166 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
04a3d984
SD
167 /* ---------------------------------------------- */
168 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
169};
8dbacad9
ON
170#else
171#define good_insns_64 NULL
172#endif
173
097f4e5e
DV
174/* Using this for both 64-bit and 32-bit apps.
175 * Opcodes we don't support:
176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
178 * Also encodes tons of other system insns if mod=11.
179 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
097f4e5e
DV
180 * 0f 05 - syscall
181 * 0f 06 - clts (CPL0 insn)
182 * 0f 07 - sysret
183 * 0f 08 - invd (CPL0 insn)
184 * 0f 09 - wbinvd (CPL0 insn)
097f4e5e 185 * 0f 0b - ud2
5154d4f2 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
097f4e5e
DV
187 * 0f 34 - sysenter
188 * 0f 35 - sysexit
097f4e5e 189 * 0f 37 - getsec
5154d4f2
DV
190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
192 * Note: with prefixes, these two opcodes are
193 * extrq/insertq/AVX512 convert vector ops.
194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
195 * {rd,wr}{fs,gs}base,{s,l,m}fence.
196 * Why? They are all user-executable.
097f4e5e 197 */
8dbacad9
ON
198static volatile u32 good_2byte_insns[256 / 32] = {
199 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
200 /* ---------------------------------------------- */
5154d4f2
DV
201 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
202 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
203 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
204 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
8dbacad9
ON
205 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
206 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
207 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
5154d4f2 208 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
8dbacad9
ON
209 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
210 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
5154d4f2
DV
211 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
212 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
8dbacad9 213 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
5154d4f2 214 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
8dbacad9 215 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
5154d4f2 216 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
8dbacad9
ON
217 /* ---------------------------------------------- */
218 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
219};
2b144498
SD
220#undef W
221
222/*
2b144498 223 * opcodes we may need to refine support for:
7b2d81d4
IM
224 *
225 * 0f - 2-byte instructions: For many of these instructions, the validity
226 * depends on the prefix and/or the reg field. On such instructions, we
227 * just consider the opcode combination valid if it corresponds to any
228 * valid instruction.
229 *
230 * 8f - Group 1 - only reg = 0 is OK
231 * c6-c7 - Group 11 - only reg = 0 is OK
232 * d9-df - fpu insns with some illegal encodings
233 * f2, f3 - repnz, repz prefixes. These are also the first byte for
234 * certain floating-point instructions, such as addsd.
235 *
236 * fe - Group 4 - only reg = 0 or 1 is OK
237 * ff - Group 5 - only reg = 0-6 is OK
2b144498
SD
238 *
239 * others -- Do we need to support these?
7b2d81d4
IM
240 *
241 * 0f - (floating-point?) prefetch instructions
242 * 07, 17, 1f - pop es, pop ss, pop ds
243 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
2b144498 244 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
7b2d81d4
IM
245 * 67 - addr16 prefix
246 * ce - into
247 * f0 - lock prefix
2b144498
SD
248 */
249
250/*
251 * TODO:
252 * - Where necessary, examine the modrm byte and allow only valid instructions
253 * in the different Groups and fpu instructions.
254 */
255
256static bool is_prefix_bad(struct insn *insn)
257{
258 int i;
259
260 for (i = 0; i < insn->prefixes.nbytes; i++) {
ed40a104
RN
261 insn_attr_t attr;
262
263 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
264 switch (attr) {
265 case INAT_MAKE_PREFIX(INAT_PFX_ES):
266 case INAT_MAKE_PREFIX(INAT_PFX_CS):
267 case INAT_MAKE_PREFIX(INAT_PFX_DS):
268 case INAT_MAKE_PREFIX(INAT_PFX_SS):
269 case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
2b144498
SD
270 return true;
271 }
272 }
273 return false;
274}
275
73175d0d 276static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
2b144498 277{
73175d0d
ON
278 u32 volatile *good_insns;
279
6ba48ff4 280 insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
ff261964
ON
281 /* has the side-effect of processing the entire instruction */
282 insn_get_length(insn);
90718e32 283 if (!insn_complete(insn))
ff261964 284 return -ENOEXEC;
2b144498 285
2b144498
SD
286 if (is_prefix_bad(insn))
287 return -ENOTSUPP;
7b2d81d4 288
13ebe18c
MH
289 /* We should not singlestep on the exception masking instructions */
290 if (insn_masking_exception(insn))
291 return -ENOTSUPP;
292
73175d0d
ON
293 if (x86_64)
294 good_insns = good_insns_64;
295 else
296 good_insns = good_insns_32;
297
298 if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
2b144498 299 return 0;
7b2d81d4 300
2b144498
SD
301 if (insn->opcode.nbytes == 2) {
302 if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
303 return 0;
304 }
7b2d81d4 305
2b144498
SD
306 return -ENOTSUPP;
307}
308
2b144498
SD
309#ifdef CONFIG_X86_64
310/*
3ff54efd 311 * If arch_uprobe->insn doesn't use rip-relative addressing, return
2b144498
SD
312 * immediately. Otherwise, rewrite the instruction so that it accesses
313 * its memory operand indirectly through a scratch register. Set
5cdb76d6 314 * defparam->fixups accordingly. (The contents of the scratch register
50204c6f
DV
315 * will be saved before we single-step the modified instruction,
316 * and restored afterward).
2b144498
SD
317 *
318 * We do this because a rip-relative instruction can access only a
319 * relatively small area (+/- 2 GB from the instruction), and the XOL
320 * area typically lies beyond that area. At least for instructions
321 * that store to memory, we can't execute the original instruction
322 * and "fix things up" later, because the misdirected store could be
323 * disastrous.
324 *
325 * Some useful facts about rip-relative instructions:
7b2d81d4 326 *
50204c6f 327 * - There's always a modrm byte with bit layout "00 reg 101".
7b2d81d4
IM
328 * - There's never a SIB byte.
329 * - The displacement is always 4 bytes.
50204c6f
DV
330 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
331 * has no effect on rip-relative mode. It doesn't make modrm byte
332 * with r/m=101 refer to register 1101 = R13.
2b144498 333 */
1475ee7f 334static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
2b144498
SD
335{
336 u8 *cursor;
337 u8 reg;
1ea30fb6 338 u8 reg2;
2b144498 339
2b144498
SD
340 if (!insn_rip_relative(insn))
341 return;
342
343 /*
1ea30fb6 344 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
2b144498 345 * Clear REX.b bit (extension of MODRM.rm field):
1ea30fb6 346 * we want to encode low numbered reg, not r8+.
2b144498
SD
347 */
348 if (insn->rex_prefix.nbytes) {
3ff54efd 349 cursor = auprobe->insn + insn_offset_rex_prefix(insn);
1ea30fb6
DV
350 /* REX byte has 0100wrxb layout, clearing REX.b bit */
351 *cursor &= 0xfe;
2b144498 352 }
1ea30fb6 353 /*
68187872
DV
354 * Similar treatment for VEX3/EVEX prefix.
355 * TODO: add XOP treatment when insn decoder supports them
1ea30fb6 356 */
68187872 357 if (insn->vex_prefix.nbytes >= 3) {
1ea30fb6
DV
358 /*
359 * vex2: c5 rvvvvLpp (has no b bit)
360 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
361 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
68187872
DV
362 * Setting VEX3.b (setting because it has inverted meaning).
363 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
364 * is the 4th bit of MODRM.rm, and needs the same treatment.
365 * For VEX3-encoded insns, VEX3.x value has no effect in
366 * non-SIB encoding, the change is superfluous but harmless.
1ea30fb6
DV
367 */
368 cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
68187872 369 *cursor |= 0x60;
1ea30fb6
DV
370 }
371
372 /*
373 * Convert from rip-relative addressing to register-relative addressing
374 * via a scratch register.
375 *
376 * This is tricky since there are insns with modrm byte
377 * which also use registers not encoded in modrm byte:
378 * [i]div/[i]mul: implicitly use dx:ax
379 * shift ops: implicitly use cx
380 * cmpxchg: implicitly uses ax
381 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
382 * Encoding: 0f c7/1 modrm
383 * The code below thinks that reg=1 (cx), chooses si as scratch.
384 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
385 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
386 * Example where none of bx,cx,dx can be used as scratch reg:
387 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
388 * [v]pcmpistri: implicitly uses cx, xmm0
389 * [v]pcmpistrm: implicitly uses xmm0
390 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
391 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
392 * Evil SSE4.2 string comparison ops from hell.
393 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
394 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
395 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
396 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
397 * and that it can have only register operands, not mem
398 * (its modrm byte must have mode=11).
399 * If these restrictions will ever be lifted,
400 * we'll need code to prevent selection of di as scratch reg!
401 *
402 * Summary: I don't know any insns with modrm byte which
403 * use SI register implicitly. DI register is used only
404 * by one insn (maskmovq) and BX register is used
405 * only by one too (cmpxchg8b).
406 * BP is stack-segment based (may be a problem?).
407 * AX, DX, CX are off-limits (many implicit users).
408 * SP is unusable (it's stack pointer - think about "pop mem";
409 * also, rsp+disp32 needs sib encoding -> insn length change).
410 */
2b144498 411
1ea30fb6
DV
412 reg = MODRM_REG(insn); /* Fetch modrm.reg */
413 reg2 = 0xff; /* Fetch vex.vvvv */
68187872 414 if (insn->vex_prefix.nbytes)
1ea30fb6
DV
415 reg2 = insn->vex_prefix.bytes[2];
416 /*
68187872 417 * TODO: add XOP vvvv reading.
1ea30fb6
DV
418 *
419 * vex.vvvv field is in bits 6-3, bits are inverted.
420 * But in 32-bit mode, high-order bit may be ignored.
421 * Therefore, let's consider only 3 low-order bits.
422 */
423 reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
424 /*
425 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
426 *
427 * Choose scratch reg. Order is important: must not select bx
428 * if we can use si (cmpxchg8b case!)
429 */
430 if (reg != 6 && reg2 != 6) {
431 reg2 = 6;
5cdb76d6 432 auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
1ea30fb6
DV
433 } else if (reg != 7 && reg2 != 7) {
434 reg2 = 7;
5cdb76d6 435 auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
1ea30fb6
DV
436 /* TODO (paranoia): force maskmovq to not use di */
437 } else {
438 reg2 = 3;
5cdb76d6 439 auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
1ea30fb6 440 }
2b144498
SD
441 /*
442 * Point cursor at the modrm byte. The next 4 bytes are the
443 * displacement. Beyond the displacement, for some instructions,
444 * is the immediate operand.
445 */
3ff54efd 446 cursor = auprobe->insn + insn_offset_modrm(insn);
2b144498 447 /*
1ea30fb6
DV
448 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
449 * 89 05 disp32 mov %eax,disp32(%rip) becomes
450 * 89 86 disp32 mov %eax,disp32(%rsi)
2b144498 451 */
1ea30fb6 452 *cursor = 0x80 | (reg << 3) | reg2;
2b144498
SD
453}
454
c90a6950
ON
455static inline unsigned long *
456scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
457{
5cdb76d6 458 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
1ea30fb6 459 return &regs->si;
5cdb76d6 460 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
1ea30fb6
DV
461 return &regs->di;
462 return &regs->bx;
c90a6950
ON
463}
464
d20737c0
ON
465/*
466 * If we're emulating a rip-relative instruction, save the contents
467 * of the scratch register and store the target address in that register.
468 */
7f55e82b 469static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 470{
5cdb76d6 471 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
c90a6950
ON
472 struct uprobe_task *utask = current->utask;
473 unsigned long *sr = scratch_reg(auprobe, regs);
474
475 utask->autask.saved_scratch_register = *sr;
5cdb76d6 476 *sr = utask->vaddr + auprobe->defparam.ilen;
d20737c0
ON
477 }
478}
479
50204c6f 480static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 481{
5cdb76d6 482 if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
c90a6950
ON
483 struct uprobe_task *utask = current->utask;
484 unsigned long *sr = scratch_reg(auprobe, regs);
d20737c0 485
c90a6950 486 *sr = utask->autask.saved_scratch_register;
d20737c0
ON
487 }
488}
2ae1f49a 489#else /* 32-bit: */
d20737c0
ON
490/*
491 * No RIP-relative addressing on 32-bit
492 */
1475ee7f 493static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
2b144498 494{
d20737c0 495}
7f55e82b 496static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0
ON
497{
498}
50204c6f 499static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
d20737c0 500{
2b144498 501}
2b144498
SD
502#endif /* CONFIG_X86_64 */
503
8ad8e9d3
ON
504struct uprobe_xol_ops {
505 bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
506 int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
507 int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
588fbd61 508 void (*abort)(struct arch_uprobe *, struct pt_regs *);
8ad8e9d3
ON
509};
510
8faaed1b
ON
511static inline int sizeof_long(void)
512{
abfb9498 513 return in_ia32_syscall() ? 4 : 8;
8faaed1b
ON
514}
515
8ad8e9d3
ON
516static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
517{
7f55e82b 518 riprel_pre_xol(auprobe, regs);
8ad8e9d3
ON
519 return 0;
520}
521
e7ed9d9b 522static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
2b82cadf
ON
523{
524 unsigned long new_sp = regs->sp - sizeof_long();
525
e7ed9d9b 526 if (copy_to_user((void __user *)new_sp, &val, sizeof_long()))
2b82cadf
ON
527 return -EFAULT;
528
529 regs->sp = new_sp;
530 return 0;
531}
532
1ea30fb6
DV
533/*
534 * We have to fix things up as follows:
535 *
536 * Typically, the new ip is relative to the copied instruction. We need
537 * to make it relative to the original instruction (FIX_IP). Exceptions
538 * are return instructions and absolute or indirect jump or call instructions.
539 *
540 * If the single-stepped instruction was a call, the return address that
541 * is atop the stack is the address following the copied instruction. We
542 * need to make it the address following the original instruction (FIX_CALL).
543 *
544 * If the original instruction was a rip-relative instruction such as
545 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
546 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
547 * We need to restore the contents of the scratch register
548 * (FIX_RIP_reg).
549 */
8ad8e9d3
ON
550static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
551{
552 struct uprobe_task *utask = current->utask;
8ad8e9d3 553
50204c6f 554 riprel_post_xol(auprobe, regs);
5cdb76d6 555 if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
50204c6f 556 long correction = utask->vaddr - utask->xol_vaddr;
8ad8e9d3 557 regs->ip += correction;
5cdb76d6
ON
558 } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
559 regs->sp += sizeof_long(); /* Pop incorrect return address */
e7ed9d9b 560 if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
75f9ef0b 561 return -ERESTART;
75f9ef0b 562 }
220ef8dc 563 /* popf; tell the caller to not touch TF */
5cdb76d6 564 if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
220ef8dc 565 utask->autask.saved_tf = true;
8ad8e9d3 566
75f9ef0b 567 return 0;
8ad8e9d3
ON
568}
569
588fbd61
ON
570static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
571{
50204c6f 572 riprel_post_xol(auprobe, regs);
588fbd61
ON
573}
574
dac42987 575static const struct uprobe_xol_ops default_xol_ops = {
8ad8e9d3
ON
576 .pre_xol = default_pre_xol_op,
577 .post_xol = default_post_xol_op,
588fbd61 578 .abort = default_abort_op,
8ad8e9d3
ON
579};
580
8e89c0be
ON
581static bool branch_is_call(struct arch_uprobe *auprobe)
582{
583 return auprobe->branch.opc1 == 0xe8;
584}
585
8f95505b
ON
586#define CASE_COND \
587 COND(70, 71, XF(OF)) \
588 COND(72, 73, XF(CF)) \
589 COND(74, 75, XF(ZF)) \
590 COND(78, 79, XF(SF)) \
591 COND(7a, 7b, XF(PF)) \
592 COND(76, 77, XF(CF) || XF(ZF)) \
593 COND(7c, 7d, XF(SF) != XF(OF)) \
594 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
595
596#define COND(op_y, op_n, expr) \
597 case 0x ## op_y: DO((expr) != 0) \
598 case 0x ## op_n: DO((expr) == 0)
599
600#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
601
602static bool is_cond_jmp_opcode(u8 opcode)
603{
604 switch (opcode) {
605 #define DO(expr) \
606 return true;
607 CASE_COND
608 #undef DO
609
610 default:
611 return false;
612 }
613}
614
615static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
616{
617 unsigned long flags = regs->flags;
618
619 switch (auprobe->branch.opc1) {
620 #define DO(expr) \
621 return expr;
622 CASE_COND
623 #undef DO
624
625 default: /* not a conditional jmp */
626 return true;
627 }
628}
629
630#undef XF
631#undef COND
632#undef CASE_COND
633
7ba6db2d
ON
634static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
635{
8e89c0be 636 unsigned long new_ip = regs->ip += auprobe->branch.ilen;
8f95505b 637 unsigned long offs = (long)auprobe->branch.offs;
8e89c0be
ON
638
639 if (branch_is_call(auprobe)) {
8e89c0be
ON
640 /*
641 * If it fails we execute this (mangled, see the comment in
642 * branch_clear_offset) insn out-of-line. In the likely case
643 * this should trigger the trap, and the probed application
644 * should die or restart the same insn after it handles the
645 * signal, arch_uprobe_post_xol() won't be even called.
646 *
647 * But there is corner case, see the comment in ->post_xol().
648 */
e7ed9d9b 649 if (emulate_push_stack(regs, new_ip))
8e89c0be 650 return false;
8f95505b
ON
651 } else if (!check_jmp_cond(auprobe, regs)) {
652 offs = 0;
8e89c0be
ON
653 }
654
8f95505b 655 regs->ip = new_ip + offs;
7ba6db2d
ON
656 return true;
657}
658
e7ed9d9b
YS
659static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
660{
661 unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
662
663 if (emulate_push_stack(regs, *src_ptr))
664 return false;
665 regs->ip += auprobe->push.ilen;
666 return true;
667}
668
8e89c0be
ON
669static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
670{
671 BUG_ON(!branch_is_call(auprobe));
672 /*
673 * We can only get here if branch_emulate_op() failed to push the ret
674 * address _and_ another thread expanded our stack before the (mangled)
675 * "call" insn was executed out-of-line. Just restore ->sp and restart.
676 * We could also restore ->ip and try to call branch_emulate_op() again.
677 */
678 regs->sp += sizeof_long();
679 return -ERESTART;
680}
681
682static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
683{
684 /*
685 * Turn this insn into "call 1f; 1:", this is what we will execute
686 * out-of-line if ->emulate() fails. We only need this to generate
687 * a trap, so that the probed task receives the correct signal with
688 * the properly filled siginfo.
689 *
690 * But see the comment in ->post_xol(), in the unlikely case it can
691 * succeed. So we need to ensure that the new ->ip can not fall into
692 * the non-canonical area and trigger #GP.
693 *
694 * We could turn it into (say) "pushf", but then we would need to
695 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
696 * of ->insn[] for set_orig_insn().
697 */
698 memset(auprobe->insn + insn_offset_immediate(insn),
699 0, insn->immediate.nbytes);
700}
701
dac42987 702static const struct uprobe_xol_ops branch_xol_ops = {
7ba6db2d 703 .emulate = branch_emulate_op,
8e89c0be 704 .post_xol = branch_post_xol_op,
7ba6db2d
ON
705};
706
e7ed9d9b
YS
707static const struct uprobe_xol_ops push_xol_ops = {
708 .emulate = push_emulate_op,
709};
710
7ba6db2d
ON
711/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
712static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
713{
8e89c0be 714 u8 opc1 = OPCODE1(insn);
250bbd12 715 int i;
8e89c0be 716
8e89c0be 717 switch (opc1) {
7ba6db2d
ON
718 case 0xeb: /* jmp 8 */
719 case 0xe9: /* jmp 32 */
d2410063 720 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
7ba6db2d 721 break;
8e89c0be
ON
722
723 case 0xe8: /* call relative */
724 branch_clear_offset(auprobe, insn);
725 break;
8f95505b 726
6cc5e7ff
ON
727 case 0x0f:
728 if (insn->opcode.nbytes != 2)
729 return -ENOSYS;
730 /*
731 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
732 * OPCODE1() of the "short" jmp which checks the same condition.
733 */
734 opc1 = OPCODE2(insn) - 0x10;
6fcebf13 735 /* fall through */
7ba6db2d 736 default:
8f95505b
ON
737 if (!is_cond_jmp_opcode(opc1))
738 return -ENOSYS;
7ba6db2d
ON
739 }
740
250bbd12
DV
741 /*
742 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
743 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
744 * No one uses these insns, reject any branch insns with such prefix.
745 */
746 for (i = 0; i < insn->prefixes.nbytes; i++) {
747 if (insn->prefixes.bytes[i] == 0x66)
748 return -ENOTSUPP;
749 }
750
8e89c0be 751 auprobe->branch.opc1 = opc1;
7ba6db2d
ON
752 auprobe->branch.ilen = insn->length;
753 auprobe->branch.offs = insn->immediate.value;
754
755 auprobe->ops = &branch_xol_ops;
756 return 0;
757}
758
e7ed9d9b
YS
759/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
760static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
761{
762 u8 opc1 = OPCODE1(insn), reg_offset = 0;
763
764 if (opc1 < 0x50 || opc1 > 0x57)
765 return -ENOSYS;
766
767 if (insn->length > 2)
768 return -ENOSYS;
769 if (insn->length == 2) {
770 /* only support rex_prefix 0x41 (x64 only) */
771#ifdef CONFIG_X86_64
772 if (insn->rex_prefix.nbytes != 1 ||
773 insn->rex_prefix.bytes[0] != 0x41)
774 return -ENOSYS;
775
776 switch (opc1) {
777 case 0x50:
778 reg_offset = offsetof(struct pt_regs, r8);
779 break;
780 case 0x51:
781 reg_offset = offsetof(struct pt_regs, r9);
782 break;
783 case 0x52:
784 reg_offset = offsetof(struct pt_regs, r10);
785 break;
786 case 0x53:
787 reg_offset = offsetof(struct pt_regs, r11);
788 break;
789 case 0x54:
790 reg_offset = offsetof(struct pt_regs, r12);
791 break;
792 case 0x55:
793 reg_offset = offsetof(struct pt_regs, r13);
794 break;
795 case 0x56:
796 reg_offset = offsetof(struct pt_regs, r14);
797 break;
798 case 0x57:
799 reg_offset = offsetof(struct pt_regs, r15);
800 break;
801 }
802#else
803 return -ENOSYS;
804#endif
805 } else {
806 switch (opc1) {
807 case 0x50:
808 reg_offset = offsetof(struct pt_regs, ax);
809 break;
810 case 0x51:
811 reg_offset = offsetof(struct pt_regs, cx);
812 break;
813 case 0x52:
814 reg_offset = offsetof(struct pt_regs, dx);
815 break;
816 case 0x53:
817 reg_offset = offsetof(struct pt_regs, bx);
818 break;
819 case 0x54:
820 reg_offset = offsetof(struct pt_regs, sp);
821 break;
822 case 0x55:
823 reg_offset = offsetof(struct pt_regs, bp);
824 break;
825 case 0x56:
826 reg_offset = offsetof(struct pt_regs, si);
827 break;
828 case 0x57:
829 reg_offset = offsetof(struct pt_regs, di);
830 break;
831 }
832 }
833
834 auprobe->push.reg_offset = reg_offset;
835 auprobe->push.ilen = insn->length;
836 auprobe->ops = &push_xol_ops;
837 return 0;
838}
839
2b144498 840/**
0326f5a9 841 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
2b144498 842 * @mm: the probed address space.
3ff54efd 843 * @arch_uprobe: the probepoint information.
7eb9ba5e 844 * @addr: virtual address at which to install the probepoint
2b144498
SD
845 * Return 0 on success or a -ve number on error.
846 */
7eb9ba5e 847int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
2b144498 848{
2b144498 849 struct insn insn;
83cd5914 850 u8 fix_ip_or_call = UPROBE_FIX_IP;
ddb69f27 851 int ret;
2b144498 852
2ae1f49a 853 ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
ddb69f27 854 if (ret)
2b144498 855 return ret;
7b2d81d4 856
7ba6db2d
ON
857 ret = branch_setup_xol_ops(auprobe, &insn);
858 if (ret != -ENOSYS)
859 return ret;
860
e7ed9d9b
YS
861 ret = push_setup_xol_ops(auprobe, &insn);
862 if (ret != -ENOSYS)
863 return ret;
864
ddb69f27 865 /*
97aa5cdd 866 * Figure out which fixups default_post_xol_op() will need to perform,
5cdb76d6 867 * and annotate defparam->fixups accordingly.
ddb69f27 868 */
ddb69f27
ON
869 switch (OPCODE1(&insn)) {
870 case 0x9d: /* popf */
5cdb76d6 871 auprobe->defparam.fixups |= UPROBE_FIX_SETF;
ddb69f27
ON
872 break;
873 case 0xc3: /* ret or lret -- ip is correct */
874 case 0xcb:
875 case 0xc2:
876 case 0xca:
83cd5914
ON
877 case 0xea: /* jmp absolute -- ip is correct */
878 fix_ip_or_call = 0;
ddb69f27 879 break;
ddb69f27 880 case 0x9a: /* call absolute - Fix return addr, not ip */
83cd5914 881 fix_ip_or_call = UPROBE_FIX_CALL;
ddb69f27
ON
882 break;
883 case 0xff:
ddb69f27
ON
884 switch (MODRM_REG(&insn)) {
885 case 2: case 3: /* call or lcall, indirect */
83cd5914
ON
886 fix_ip_or_call = UPROBE_FIX_CALL;
887 break;
ddb69f27 888 case 4: case 5: /* jmp or ljmp, indirect */
83cd5914
ON
889 fix_ip_or_call = 0;
890 break;
ddb69f27 891 }
e55848a4 892 /* fall through */
ddb69f27 893 default:
1475ee7f 894 riprel_analyze(auprobe, &insn);
ddb69f27
ON
895 }
896
5cdb76d6
ON
897 auprobe->defparam.ilen = insn.length;
898 auprobe->defparam.fixups |= fix_ip_or_call;
7b2d81d4 899
8ad8e9d3 900 auprobe->ops = &default_xol_ops;
2b144498
SD
901 return 0;
902}
0326f5a9 903
0326f5a9
SD
904/*
905 * arch_uprobe_pre_xol - prepare to execute out of line.
906 * @auprobe: the probepoint information.
907 * @regs: reflects the saved user state of current task.
908 */
909int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
910{
34e7317d 911 struct uprobe_task *utask = current->utask;
0326f5a9 912
dd91016d
ON
913 if (auprobe->ops->pre_xol) {
914 int err = auprobe->ops->pre_xol(auprobe, regs);
915 if (err)
916 return err;
917 }
918
34e7317d
ON
919 regs->ip = utask->xol_vaddr;
920 utask->autask.saved_trap_nr = current->thread.trap_nr;
0326f5a9 921 current->thread.trap_nr = UPROBE_TRAP_NR;
0326f5a9 922
34e7317d 923 utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
4dc316c6
ON
924 regs->flags |= X86_EFLAGS_TF;
925 if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
926 set_task_blockstep(current, false);
927
0326f5a9
SD
928 return 0;
929}
930
0326f5a9
SD
931/*
932 * If xol insn itself traps and generates a signal(Say,
933 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
934 * instruction jumps back to its own address. It is assumed that anything
935 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
936 *
937 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
938 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
939 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
940 */
941bool arch_uprobe_xol_was_trapped(struct task_struct *t)
942{
943 if (t->thread.trap_nr != UPROBE_TRAP_NR)
944 return true;
945
946 return false;
947}
948
949/*
950 * Called after single-stepping. To avoid the SMP problems that can
951 * occur when we temporarily put back the original opcode to
952 * single-step, we single-stepped a copy of the instruction.
953 *
954 * This function prepares to resume execution after the single-step.
0326f5a9
SD
955 */
956int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
957{
34e7317d 958 struct uprobe_task *utask = current->utask;
220ef8dc
ON
959 bool send_sigtrap = utask->autask.saved_tf;
960 int err = 0;
0326f5a9
SD
961
962 WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
6ded5f38 963 current->thread.trap_nr = utask->autask.saved_trap_nr;
014940ba
ON
964
965 if (auprobe->ops->post_xol) {
220ef8dc 966 err = auprobe->ops->post_xol(auprobe, regs);
014940ba 967 if (err) {
75f9ef0b 968 /*
6ded5f38
ON
969 * Restore ->ip for restart or post mortem analysis.
970 * ->post_xol() must not return -ERESTART unless this
971 * is really possible.
75f9ef0b 972 */
6ded5f38 973 regs->ip = utask->vaddr;
75f9ef0b 974 if (err == -ERESTART)
220ef8dc
ON
975 err = 0;
976 send_sigtrap = false;
014940ba
ON
977 }
978 }
4dc316c6
ON
979 /*
980 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
981 * so we can get an extra SIGTRAP if we do not clear TF. We need
982 * to examine the opcode to make it right.
983 */
220ef8dc 984 if (send_sigtrap)
4dc316c6 985 send_sig(SIGTRAP, current, 0);
220ef8dc
ON
986
987 if (!utask->autask.saved_tf)
4dc316c6
ON
988 regs->flags &= ~X86_EFLAGS_TF;
989
220ef8dc 990 return err;
0326f5a9
SD
991}
992
993/* callback routine for handling exceptions. */
994int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
995{
996 struct die_args *args = data;
997 struct pt_regs *regs = args->regs;
998 int ret = NOTIFY_DONE;
999
1000 /* We are only interested in userspace traps */
f39b6f0e 1001 if (regs && !user_mode(regs))
0326f5a9
SD
1002 return NOTIFY_DONE;
1003
1004 switch (val) {
1005 case DIE_INT3:
1006 if (uprobe_pre_sstep_notifier(regs))
1007 ret = NOTIFY_STOP;
1008
1009 break;
1010
1011 case DIE_DEBUG:
1012 if (uprobe_post_sstep_notifier(regs))
1013 ret = NOTIFY_STOP;
1014
1015 default:
1016 break;
1017 }
1018
1019 return ret;
1020}
1021
1022/*
1023 * This function gets called when XOL instruction either gets trapped or
6ded5f38
ON
1024 * the thread has a fatal signal. Reset the instruction pointer to its
1025 * probed address for the potential restart or for post mortem analysis.
0326f5a9
SD
1026 */
1027void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1028{
1029 struct uprobe_task *utask = current->utask;
1030
588fbd61
ON
1031 if (auprobe->ops->abort)
1032 auprobe->ops->abort(auprobe, regs);
4dc316c6 1033
588fbd61
ON
1034 current->thread.trap_nr = utask->autask.saved_trap_nr;
1035 regs->ip = utask->vaddr;
4dc316c6
ON
1036 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1037 if (!utask->autask.saved_tf)
1038 regs->flags &= ~X86_EFLAGS_TF;
0326f5a9
SD
1039}
1040
3a4664aa 1041static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
0326f5a9 1042{
8ad8e9d3
ON
1043 if (auprobe->ops->emulate)
1044 return auprobe->ops->emulate(auprobe, regs);
0326f5a9
SD
1045 return false;
1046}
bdc1e472 1047
3a4664aa
ON
1048bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1049{
1050 bool ret = __skip_sstep(auprobe, regs);
1051 if (ret && (regs->flags & X86_EFLAGS_TF))
1052 send_sig(SIGTRAP, current, 0);
1053 return ret;
1054}
791eca10
AA
1055
1056unsigned long
1057arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1058{
8faaed1b 1059 int rasize = sizeof_long(), nleft;
791eca10
AA
1060 unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1061
8faaed1b 1062 if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
791eca10
AA
1063 return -1;
1064
1065 /* check whether address has been already hijacked */
1066 if (orig_ret_vaddr == trampoline_vaddr)
1067 return orig_ret_vaddr;
1068
8faaed1b
ON
1069 nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1070 if (likely(!nleft))
791eca10
AA
1071 return orig_ret_vaddr;
1072
8faaed1b 1073 if (nleft != rasize) {
1de392f5
JP
1074 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1075 current->pid, regs->sp, regs->ip);
791eca10 1076
4a63c1ff 1077 force_sig(SIGSEGV, current);
791eca10
AA
1078 }
1079
1080 return -1;
1081}
7b868e48 1082
86dcb702
ON
1083bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1084 struct pt_regs *regs)
7b868e48 1085{
db087ef6
ON
1086 if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1087 return regs->sp < ret->stack;
1088 else
1089 return regs->sp <= ret->stack;
7b868e48 1090}