]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/vm86_32.c
x86/process: Allow runtime control of Speculative Store Bypass
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / vm86_32.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
624dffcb 5 * stack - Manfred Spraul <manfred@colorfullife.com>
1da177e4
LT
6 *
7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 * them correctly. Now the emulation will be in a
9 * consistent state after stackfaults - Kasper Dupont
10 * <kasperd@daimi.au.dk>
11 *
12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 * <kasperd@daimi.au.dk>
14 *
15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 * caused by Kasper Dupont's changes - Stas Sergeev
17 *
18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 * Kasper Dupont <kasperd@daimi.au.dk>
20 *
21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 * Kasper Dupont <kasperd@daimi.au.dk>
23 *
24 * 9 apr 2002 - Changed stack access macros to jump to a label
25 * instead of returning to userspace. This simplifies
26 * do_int, and is needed by handle_vm6_fault. Kasper
27 * Dupont <kasperd@daimi.au.dk>
28 *
29 */
30
c767a54b
JP
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
a9415644 33#include <linux/capability.h>
1da177e4
LT
34#include <linux/errno.h>
35#include <linux/interrupt.h>
5522ddb3 36#include <linux/syscalls.h>
1da177e4 37#include <linux/sched.h>
68db0cf1 38#include <linux/sched/task_stack.h>
1da177e4
LT
39#include <linux/kernel.h>
40#include <linux/signal.h>
41#include <linux/string.h>
42#include <linux/mm.h>
43#include <linux/smp.h>
1da177e4
LT
44#include <linux/highmem.h>
45#include <linux/ptrace.h>
7e7f8a03 46#include <linux/audit.h>
49d26b6e 47#include <linux/stddef.h>
9fda6a06 48#include <linux/slab.h>
76fc5e7b 49#include <linux/security.h>
1da177e4 50
7c0f6ba6 51#include <linux/uaccess.h>
1da177e4
LT
52#include <asm/io.h>
53#include <asm/tlbflush.h>
54#include <asm/irq.h>
5ed92a8a 55#include <asm/traps.h>
ba3e127e 56#include <asm/vm86.h>
779e32d0 57#include <asm/switch_to.h>
1da177e4
LT
58
59/*
60 * Known problems:
61 *
62 * Interrupt handling is not guaranteed:
63 * - a real x86 will disable all interrupts for one instruction
64 * after a "mov ss,xx" to make stack handling atomic even without
65 * the 'lss' instruction. We can't guarantee this in v86 mode,
66 * as the next instruction might result in a page fault or similar.
67 * - a real x86 will have interrupts disabled for one instruction
68 * past the 'sti' that enables them. We don't bother with all the
69 * details yet.
70 *
71 * Let's hope these problems do not actually matter for anything.
72 */
73
74
1da177e4
LT
75/*
76 * 8- and 16-bit register defines..
77 */
65ea5b03
PA
78#define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
79#define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
80#define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
81#define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
1da177e4
LT
82
83/*
84 * virtual flags (16 and 32-bit versions)
85 */
decd275e
BG
86#define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
87#define VEFLAGS (current->thread.vm86->veflags)
1da177e4 88
83e714e8 89#define set_flags(X, new, mask) \
1da177e4
LT
90((X) = ((X) & ~(mask)) | ((new) & (mask)))
91
92#define SAFE_MASK (0xDD5)
93#define RETURN_MASK (0xDFF)
94
5ed92a8a 95void save_v86_state(struct kernel_vm86_regs *regs, int retval)
1da177e4 96{
ed0b2edb
BG
97 struct task_struct *tsk = current;
98 struct vm86plus_struct __user *user;
9fda6a06 99 struct vm86 *vm86 = current->thread.vm86;
ed0b2edb 100 long err = 0;
1da177e4
LT
101
102 /*
103 * This gets called from entry.S with interrupts disabled, but
104 * from process context. Enable interrupts here, before trying
105 * to access user space.
106 */
107 local_irq_enable();
108
13426356
BG
109 if (!vm86 || !vm86->user_vm86) {
110 pr_alert("no user_vm86: BAD\n");
1da177e4
LT
111 do_exit(SIGSEGV);
112 }
decd275e 113 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
13426356 114 user = vm86->user_vm86;
ed0b2edb 115
d4ce0f26 116 if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
ed0b2edb
BG
117 sizeof(struct vm86plus_struct) :
118 sizeof(struct vm86_struct))) {
13426356 119 pr_alert("could not access userspace vm86 info\n");
ed0b2edb
BG
120 do_exit(SIGSEGV);
121 }
122
123 put_user_try {
124 put_user_ex(regs->pt.bx, &user->regs.ebx);
125 put_user_ex(regs->pt.cx, &user->regs.ecx);
126 put_user_ex(regs->pt.dx, &user->regs.edx);
127 put_user_ex(regs->pt.si, &user->regs.esi);
128 put_user_ex(regs->pt.di, &user->regs.edi);
129 put_user_ex(regs->pt.bp, &user->regs.ebp);
130 put_user_ex(regs->pt.ax, &user->regs.eax);
131 put_user_ex(regs->pt.ip, &user->regs.eip);
132 put_user_ex(regs->pt.cs, &user->regs.cs);
133 put_user_ex(regs->pt.flags, &user->regs.eflags);
134 put_user_ex(regs->pt.sp, &user->regs.esp);
135 put_user_ex(regs->pt.ss, &user->regs.ss);
136 put_user_ex(regs->es, &user->regs.es);
137 put_user_ex(regs->ds, &user->regs.ds);
138 put_user_ex(regs->fs, &user->regs.fs);
139 put_user_ex(regs->gs, &user->regs.gs);
140
9fda6a06 141 put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
ed0b2edb
BG
142 } put_user_catch(err);
143 if (err) {
13426356 144 pr_alert("could not access userspace vm86 info\n");
1da177e4
LT
145 do_exit(SIGSEGV);
146 }
147
41f6a89b 148 preempt_disable();
9fda6a06 149 tsk->thread.sp0 = vm86->saved_sp0;
ed0b2edb 150 tsk->thread.sysenter_cs = __KERNEL_CS;
cc87284c 151 update_sp0(tsk);
779e32d0 152 refresh_sysenter_cs(&tsk->thread);
9fda6a06 153 vm86->saved_sp0 = 0;
41f6a89b 154 preempt_enable();
1da177e4 155
5ed92a8a 156 memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
49d26b6e 157
5ed92a8a 158 lazy_load_gs(vm86->regs32.gs);
49d26b6e 159
5ed92a8a 160 regs->pt.ax = retval;
1da177e4
LT
161}
162
60ec5585 163static void mark_screen_rdonly(struct mm_struct *mm)
1da177e4 164{
3ba5b5ea
KS
165 struct vm_area_struct *vma;
166 spinlock_t *ptl;
1da177e4 167 pgd_t *pgd;
e0c4f675 168 p4d_t *p4d;
1da177e4
LT
169 pud_t *pud;
170 pmd_t *pmd;
60ec5585 171 pte_t *pte;
1da177e4
LT
172 int i;
173
1a5a9906 174 down_write(&mm->mmap_sem);
60ec5585 175 pgd = pgd_offset(mm, 0xA0000);
1da177e4
LT
176 if (pgd_none_or_clear_bad(pgd))
177 goto out;
e0c4f675
KS
178 p4d = p4d_offset(pgd, 0xA0000);
179 if (p4d_none_or_clear_bad(p4d))
180 goto out;
181 pud = pud_offset(p4d, 0xA0000);
1da177e4
LT
182 if (pud_none_or_clear_bad(pud))
183 goto out;
184 pmd = pmd_offset(pud, 0xA0000);
78ddc534
KS
185
186 if (pmd_trans_huge(*pmd)) {
3ba5b5ea 187 vma = find_vma(mm, 0xA0000);
78ddc534
KS
188 split_huge_pmd(vma, pmd, 0xA0000);
189 }
1da177e4
LT
190 if (pmd_none_or_clear_bad(pmd))
191 goto out;
60ec5585 192 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
1da177e4
LT
193 for (i = 0; i < 32; i++) {
194 if (pte_present(*pte))
195 set_pte(pte, pte_wrprotect(*pte));
196 pte++;
197 }
60ec5585 198 pte_unmap_unlock(pte, ptl);
1da177e4 199out:
1a5a9906 200 up_write(&mm->mmap_sem);
9ccee237 201 flush_tlb_mm_range(mm, 0xA0000, 0xA0000 + 32*PAGE_SIZE, 0UL);
1da177e4
LT
202}
203
204
205
206static int do_vm86_irq_handling(int subfunction, int irqnumber);
13426356 207static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
1da177e4 208
13426356 209SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
1da177e4 210{
13426356 211 return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
1da177e4
LT
212}
213
214
5522ddb3 215SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
1da177e4 216{
f1382f15 217 switch (cmd) {
83e714e8
PC
218 case VM86_REQUEST_IRQ:
219 case VM86_FREE_IRQ:
220 case VM86_GET_IRQ_BITS:
221 case VM86_GET_AND_RESET_IRQ:
5522ddb3 222 return do_vm86_irq_handling(cmd, (int)arg);
83e714e8
PC
223 case VM86_PLUS_INSTALL_CHECK:
224 /*
225 * NOTE: on old vm86 stuff this will return the error
226 * from access_ok(), because the subfunction is
227 * interpreted as (invalid) address to vm86_struct.
228 * So the installation check works.
229 */
5522ddb3 230 return 0;
1da177e4
LT
231 }
232
233 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
90c6085a 234 return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
1da177e4
LT
235}
236
237
13426356 238static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
1da177e4 239{
ed0b2edb 240 struct task_struct *tsk = current;
9fda6a06 241 struct vm86 *vm86 = tsk->thread.vm86;
90c6085a 242 struct kernel_vm86_regs vm86regs;
5ed92a8a 243 struct pt_regs *regs = current_pt_regs();
ed0b2edb
BG
244 unsigned long err = 0;
245
76fc5e7b
AL
246 err = security_mmap_addr(0);
247 if (err) {
248 /*
249 * vm86 cannot virtualize the address space, so vm86 users
250 * need to manage the low 1MB themselves using mmap. Given
251 * that BIOS places important data in the first page, vm86
252 * is essentially useless if mmap_min_addr != 0. DOSEMU,
253 * for example, won't even bother trying to use vm86 if it
254 * can't map a page at virtual address 0.
255 *
256 * To reduce the available kernel attack surface, simply
257 * disallow vm86(old) for users who cannot mmap at va 0.
258 *
259 * The implementation of security_mmap_addr will allow
260 * suitably privileged users to map va 0 even if
261 * vm.mmap_min_addr is set above 0, and we want this
262 * behavior for vm86 as well, as it ensures that legacy
263 * tools like vbetool will not fail just because of
264 * vm.mmap_min_addr.
265 */
266 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
267 current->comm, task_pid_nr(current),
268 from_kuid_munged(&init_user_ns, current_uid()));
269 return -EPERM;
270 }
271
9fda6a06
BG
272 if (!vm86) {
273 if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
274 return -ENOMEM;
275 tsk->thread.vm86 = vm86;
276 }
277 if (vm86->saved_sp0)
ed0b2edb
BG
278 return -EPERM;
279
13426356 280 if (!access_ok(VERIFY_READ, user_vm86, plus ?
ed0b2edb
BG
281 sizeof(struct vm86_struct) :
282 sizeof(struct vm86plus_struct)))
283 return -EFAULT;
284
90c6085a 285 memset(&vm86regs, 0, sizeof(vm86regs));
ed0b2edb
BG
286 get_user_try {
287 unsigned short seg;
13426356
BG
288 get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
289 get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
290 get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
291 get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
292 get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
293 get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
294 get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
295 get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
296 get_user_ex(seg, &user_vm86->regs.cs);
90c6085a 297 vm86regs.pt.cs = seg;
13426356
BG
298 get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
299 get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
300 get_user_ex(seg, &user_vm86->regs.ss);
90c6085a 301 vm86regs.pt.ss = seg;
13426356
BG
302 get_user_ex(vm86regs.es, &user_vm86->regs.es);
303 get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
304 get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
305 get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
306
307 get_user_ex(vm86->flags, &user_vm86->flags);
308 get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
309 get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
ed0b2edb
BG
310 } get_user_catch(err);
311 if (err)
312 return err;
313
13426356
BG
314 if (copy_from_user(&vm86->int_revectored,
315 &user_vm86->int_revectored,
ed0b2edb
BG
316 sizeof(struct revectored_struct)))
317 return -EFAULT;
13426356
BG
318 if (copy_from_user(&vm86->int21_revectored,
319 &user_vm86->int21_revectored,
ed0b2edb
BG
320 sizeof(struct revectored_struct)))
321 return -EFAULT;
322 if (plus) {
13426356 323 if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
ed0b2edb
BG
324 sizeof(struct vm86plus_info_struct)))
325 return -EFAULT;
d4ce0f26
BG
326 vm86->vm86plus.is_vm86pus = 1;
327 } else
328 memset(&vm86->vm86plus, 0,
329 sizeof(struct vm86plus_info_struct));
5ed92a8a
BG
330
331 memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
13426356 332 vm86->user_vm86 = user_vm86;
1da177e4
LT
333
334/*
65ea5b03 335 * The flags register is also special: we cannot trust that the user
1da177e4
LT
336 * has set it up safely, so this makes sure interrupt etc flags are
337 * inherited from protected mode.
338 */
90c6085a
BG
339 VEFLAGS = vm86regs.pt.flags;
340 vm86regs.pt.flags &= SAFE_MASK;
5ed92a8a 341 vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
90c6085a 342 vm86regs.pt.flags |= X86_VM_MASK;
1da177e4 343
5ed92a8a 344 vm86regs.pt.orig_ax = regs->orig_ax;
df1ae9a5 345
d4ce0f26 346 switch (vm86->cpu_type) {
83e714e8 347 case CPU_286:
decd275e 348 vm86->veflags_mask = 0;
83e714e8
PC
349 break;
350 case CPU_386:
decd275e 351 vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
83e714e8
PC
352 break;
353 case CPU_486:
decd275e 354 vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
83e714e8
PC
355 break;
356 default:
decd275e 357 vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
83e714e8 358 break;
1da177e4
LT
359 }
360
361/*
5ed92a8a 362 * Save old state
1da177e4 363 */
9fda6a06 364 vm86->saved_sp0 = tsk->thread.sp0;
5ed92a8a 365 lazy_save_gs(vm86->regs32.gs);
1da177e4 366
5ed92a8a 367 /* make room for real-mode segments */
41f6a89b 368 preempt_disable();
5ed92a8a 369 tsk->thread.sp0 += 16;
362f924b 370
779e32d0 371 if (static_cpu_has(X86_FEATURE_SEP)) {
1da177e4 372 tsk->thread.sysenter_cs = 0;
779e32d0
AL
373 refresh_sysenter_cs(&tsk->thread);
374 }
362f924b 375
cc87284c 376 update_sp0(tsk);
41f6a89b 377 preempt_enable();
1da177e4 378
d4ce0f26 379 if (vm86->flags & VM86_SCREEN_BITMAP)
60ec5585 380 mark_screen_rdonly(tsk->mm);
7e7f8a03 381
5ed92a8a
BG
382 memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
383 force_iret();
384 return regs->ax;
1da177e4
LT
385}
386
83e714e8 387static inline void set_IF(struct kernel_vm86_regs *regs)
1da177e4 388{
a5c15d41 389 VEFLAGS |= X86_EFLAGS_VIF;
1da177e4
LT
390}
391
83e714e8 392static inline void clear_IF(struct kernel_vm86_regs *regs)
1da177e4 393{
a5c15d41 394 VEFLAGS &= ~X86_EFLAGS_VIF;
1da177e4
LT
395}
396
83e714e8 397static inline void clear_TF(struct kernel_vm86_regs *regs)
1da177e4 398{
a5c15d41 399 regs->pt.flags &= ~X86_EFLAGS_TF;
1da177e4
LT
400}
401
83e714e8 402static inline void clear_AC(struct kernel_vm86_regs *regs)
1da177e4 403{
a5c15d41 404 regs->pt.flags &= ~X86_EFLAGS_AC;
1da177e4
LT
405}
406
83e714e8
PC
407/*
408 * It is correct to call set_IF(regs) from the set_vflags_*
1da177e4
LT
409 * functions. However someone forgot to call clear_IF(regs)
410 * in the opposite case.
411 * After the command sequence CLI PUSHF STI POPF you should
ab4a574e 412 * end up with interrupts disabled, but you ended up with
1da177e4
LT
413 * interrupts enabled.
414 * ( I was testing my own changes, but the only bug I
415 * could find was in a function I had not changed. )
416 * [KD]
417 */
418
83e714e8 419static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
1da177e4 420{
decd275e 421 set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
65ea5b03 422 set_flags(regs->pt.flags, flags, SAFE_MASK);
a5c15d41 423 if (flags & X86_EFLAGS_IF)
1da177e4
LT
424 set_IF(regs);
425 else
426 clear_IF(regs);
427}
428
83e714e8 429static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
1da177e4 430{
decd275e 431 set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
65ea5b03 432 set_flags(regs->pt.flags, flags, SAFE_MASK);
a5c15d41 433 if (flags & X86_EFLAGS_IF)
1da177e4
LT
434 set_IF(regs);
435 else
436 clear_IF(regs);
437}
438
83e714e8 439static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
1da177e4 440{
65ea5b03 441 unsigned long flags = regs->pt.flags & RETURN_MASK;
1da177e4 442
a5c15d41 443 if (VEFLAGS & X86_EFLAGS_VIF)
444 flags |= X86_EFLAGS_IF;
445 flags |= X86_EFLAGS_IOPL;
decd275e 446 return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
1da177e4
LT
447}
448
83e714e8 449static inline int is_revectored(int nr, struct revectored_struct *bitmap)
1da177e4 450{
2823d4da 451 return test_bit(nr, bitmap->__map);
1da177e4
LT
452}
453
454#define val_byte(val, n) (((__u8 *)&val)[n])
455
456#define pushb(base, ptr, val, err_label) \
457 do { \
458 __u8 __val = val; \
459 ptr--; \
460 if (put_user(__val, base + ptr) < 0) \
461 goto err_label; \
83e714e8 462 } while (0)
1da177e4
LT
463
464#define pushw(base, ptr, val, err_label) \
465 do { \
466 __u16 __val = val; \
467 ptr--; \
468 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
469 goto err_label; \
470 ptr--; \
471 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
472 goto err_label; \
83e714e8 473 } while (0)
1da177e4
LT
474
475#define pushl(base, ptr, val, err_label) \
476 do { \
477 __u32 __val = val; \
478 ptr--; \
479 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
480 goto err_label; \
481 ptr--; \
482 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
483 goto err_label; \
484 ptr--; \
485 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
486 goto err_label; \
487 ptr--; \
488 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
489 goto err_label; \
83e714e8 490 } while (0)
1da177e4
LT
491
492#define popb(base, ptr, err_label) \
493 ({ \
494 __u8 __res; \
495 if (get_user(__res, base + ptr) < 0) \
496 goto err_label; \
497 ptr++; \
498 __res; \
499 })
500
501#define popw(base, ptr, err_label) \
502 ({ \
503 __u16 __res; \
504 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
505 goto err_label; \
506 ptr++; \
507 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
508 goto err_label; \
509 ptr++; \
510 __res; \
511 })
512
513#define popl(base, ptr, err_label) \
514 ({ \
515 __u32 __res; \
516 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
517 goto err_label; \
518 ptr++; \
519 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
520 goto err_label; \
521 ptr++; \
522 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
523 goto err_label; \
524 ptr++; \
525 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
526 goto err_label; \
527 ptr++; \
528 __res; \
529 })
530
531/* There are so many possible reasons for this function to return
532 * VM86_INTx, so adding another doesn't bother me. We can expect
533 * userspace programs to be able to handle it. (Getting a problem
534 * in userspace is always better than an Oops anyway.) [KD]
535 */
536static void do_int(struct kernel_vm86_regs *regs, int i,
83e714e8 537 unsigned char __user *ssp, unsigned short sp)
1da177e4
LT
538{
539 unsigned long __user *intr_ptr;
540 unsigned long segoffs;
90c6085a 541 struct vm86 *vm86 = current->thread.vm86;
1da177e4 542
65ea5b03 543 if (regs->pt.cs == BIOSSEG)
1da177e4 544 goto cannot_handle;
d4ce0f26 545 if (is_revectored(i, &vm86->int_revectored))
1da177e4 546 goto cannot_handle;
d4ce0f26 547 if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
1da177e4
LT
548 goto cannot_handle;
549 intr_ptr = (unsigned long __user *) (i << 2);
550 if (get_user(segoffs, intr_ptr))
551 goto cannot_handle;
552 if ((segoffs >> 16) == BIOSSEG)
553 goto cannot_handle;
554 pushw(ssp, sp, get_vflags(regs), cannot_handle);
65ea5b03 555 pushw(ssp, sp, regs->pt.cs, cannot_handle);
1da177e4 556 pushw(ssp, sp, IP(regs), cannot_handle);
65ea5b03 557 regs->pt.cs = segoffs >> 16;
1da177e4
LT
558 SP(regs) -= 6;
559 IP(regs) = segoffs & 0xffff;
560 clear_TF(regs);
561 clear_IF(regs);
562 clear_AC(regs);
563 return;
564
565cannot_handle:
5ed92a8a 566 save_v86_state(regs, VM86_INTx + (i << 8));
1da177e4
LT
567}
568
83e714e8 569int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
1da177e4 570{
90c6085a
BG
571 struct vm86 *vm86 = current->thread.vm86;
572
573 if (vm86->vm86plus.is_vm86pus) {
6554287b 574 if ((trapno == 3) || (trapno == 1)) {
5ed92a8a 575 save_v86_state(regs, VM86_TRAP + (trapno << 8));
6554287b
BO
576 return 0;
577 }
65ea5b03 578 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
1da177e4
LT
579 return 0;
580 }
83e714e8 581 if (trapno != 1)
1da177e4 582 return 1; /* we let this handle by the calling routine */
51e7dc70 583 current->thread.trap_nr = trapno;
1da177e4 584 current->thread.error_code = error_code;
0f540910 585 force_sig(SIGTRAP, current);
1da177e4
LT
586 return 0;
587}
588
83e714e8 589void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
1da177e4
LT
590{
591 unsigned char opcode;
592 unsigned char __user *csp;
593 unsigned char __user *ssp;
5fd75ebb 594 unsigned short ip, sp, orig_flags;
1da177e4 595 int data32, pref_done;
d4ce0f26 596 struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
1da177e4
LT
597
598#define CHECK_IF_IN_TRAP \
d4ce0f26 599 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
a5c15d41 600 newflags |= X86_EFLAGS_TF
1da177e4 601
65ea5b03 602 orig_flags = *(unsigned short *)&regs->pt.flags;
5fd75ebb 603
65ea5b03
PA
604 csp = (unsigned char __user *) (regs->pt.cs << 4);
605 ssp = (unsigned char __user *) (regs->pt.ss << 4);
1da177e4
LT
606 sp = SP(regs);
607 ip = IP(regs);
608
609 data32 = 0;
610 pref_done = 0;
611 do {
612 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
83e714e8
PC
613 case 0x66: /* 32-bit data */ data32 = 1; break;
614 case 0x67: /* 32-bit address */ break;
615 case 0x2e: /* CS */ break;
616 case 0x3e: /* DS */ break;
617 case 0x26: /* ES */ break;
618 case 0x36: /* SS */ break;
619 case 0x65: /* GS */ break;
620 case 0x64: /* FS */ break;
621 case 0xf2: /* repnz */ break;
622 case 0xf3: /* rep */ break;
623 default: pref_done = 1;
1da177e4
LT
624 }
625 } while (!pref_done);
626
627 switch (opcode) {
628
629 /* pushf */
630 case 0x9c:
631 if (data32) {
632 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
633 SP(regs) -= 4;
634 } else {
635 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
636 SP(regs) -= 2;
637 }
638 IP(regs) = ip;
5ed92a8a 639 goto vm86_fault_return;
1da177e4
LT
640
641 /* popf */
642 case 0x9d:
643 {
644 unsigned long newflags;
645 if (data32) {
83e714e8 646 newflags = popl(ssp, sp, simulate_sigsegv);
1da177e4
LT
647 SP(regs) += 4;
648 } else {
649 newflags = popw(ssp, sp, simulate_sigsegv);
650 SP(regs) += 2;
651 }
652 IP(regs) = ip;
653 CHECK_IF_IN_TRAP;
83e714e8 654 if (data32)
1da177e4 655 set_vflags_long(newflags, regs);
83e714e8 656 else
1da177e4 657 set_vflags_short(newflags, regs);
83e714e8 658
5ed92a8a 659 goto check_vip;
1da177e4
LT
660 }
661
662 /* int xx */
663 case 0xcd: {
83e714e8 664 int intno = popb(csp, ip, simulate_sigsegv);
1da177e4 665 IP(regs) = ip;
d4ce0f26 666 if (vmpi->vm86dbg_active) {
5ed92a8a
BG
667 if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
668 save_v86_state(regs, VM86_INTx + (intno << 8));
669 return;
670 }
1da177e4
LT
671 }
672 do_int(regs, intno, ssp, sp);
673 return;
674 }
675
676 /* iret */
677 case 0xcf:
678 {
679 unsigned long newip;
680 unsigned long newcs;
681 unsigned long newflags;
682 if (data32) {
83e714e8
PC
683 newip = popl(ssp, sp, simulate_sigsegv);
684 newcs = popl(ssp, sp, simulate_sigsegv);
685 newflags = popl(ssp, sp, simulate_sigsegv);
1da177e4
LT
686 SP(regs) += 12;
687 } else {
688 newip = popw(ssp, sp, simulate_sigsegv);
689 newcs = popw(ssp, sp, simulate_sigsegv);
690 newflags = popw(ssp, sp, simulate_sigsegv);
691 SP(regs) += 6;
692 }
693 IP(regs) = newip;
65ea5b03 694 regs->pt.cs = newcs;
1da177e4
LT
695 CHECK_IF_IN_TRAP;
696 if (data32) {
697 set_vflags_long(newflags, regs);
698 } else {
699 set_vflags_short(newflags, regs);
700 }
5ed92a8a 701 goto check_vip;
1da177e4
LT
702 }
703
704 /* cli */
705 case 0xfa:
706 IP(regs) = ip;
707 clear_IF(regs);
5ed92a8a 708 goto vm86_fault_return;
1da177e4
LT
709
710 /* sti */
711 /*
712 * Damn. This is incorrect: the 'sti' instruction should actually
713 * enable interrupts after the /next/ instruction. Not good.
714 *
715 * Probably needs some horsing around with the TF flag. Aiee..
716 */
717 case 0xfb:
718 IP(regs) = ip;
719 set_IF(regs);
5ed92a8a 720 goto check_vip;
1da177e4
LT
721
722 default:
5ed92a8a 723 save_v86_state(regs, VM86_UNKNOWN);
1da177e4
LT
724 }
725
726 return;
727
5ed92a8a
BG
728check_vip:
729 if (VEFLAGS & X86_EFLAGS_VIP) {
730 save_v86_state(regs, VM86_STI);
731 return;
732 }
733
734vm86_fault_return:
735 if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
736 save_v86_state(regs, VM86_PICRETURN);
737 return;
738 }
739 if (orig_flags & X86_EFLAGS_TF)
740 handle_vm86_trap(regs, 0, X86_TRAP_DB);
741 return;
742
1da177e4
LT
743simulate_sigsegv:
744 /* FIXME: After a long discussion with Stas we finally
745 * agreed, that this is wrong. Here we should
746 * really send a SIGSEGV to the user program.
747 * But how do we create the correct context? We
748 * are inside a general protection fault handler
749 * and has just returned from a page fault handler.
750 * The correct context for the signal handler
751 * should be a mixture of the two, but how do we
752 * get the information? [KD]
753 */
5ed92a8a 754 save_v86_state(regs, VM86_UNKNOWN);
1da177e4
LT
755}
756
757/* ---------------- vm86 special IRQ passing stuff ----------------- */
758
759#define VM86_IRQNAME "vm86irq"
760
761static struct vm86_irqs {
762 struct task_struct *tsk;
763 int sig;
764} vm86_irqs[16];
765
766static DEFINE_SPINLOCK(irqbits_lock);
767static int irqbits;
768
83e714e8 769#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
1da177e4 770 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
83e714e8
PC
771 | (1 << SIGUNUSED))
772
7d12e780 773static irqreturn_t irq_handler(int intno, void *dev_id)
1da177e4
LT
774{
775 int irq_bit;
776 unsigned long flags;
777
83e714e8 778 spin_lock_irqsave(&irqbits_lock, flags);
1da177e4 779 irq_bit = 1 << intno;
83e714e8 780 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
1da177e4
LT
781 goto out;
782 irqbits |= irq_bit;
783 if (vm86_irqs[intno].sig)
784 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
1da177e4
LT
785 /*
786 * IRQ will be re-enabled when user asks for the irq (whether
787 * polling or as a result of the signal)
788 */
ad671423
PP
789 disable_irq_nosync(intno);
790 spin_unlock_irqrestore(&irqbits_lock, flags);
1da177e4
LT
791 return IRQ_HANDLED;
792
793out:
83e714e8 794 spin_unlock_irqrestore(&irqbits_lock, flags);
1da177e4
LT
795 return IRQ_NONE;
796}
797
798static inline void free_vm86_irq(int irqnumber)
799{
800 unsigned long flags;
801
802 free_irq(irqnumber, NULL);
803 vm86_irqs[irqnumber].tsk = NULL;
804
83e714e8 805 spin_lock_irqsave(&irqbits_lock, flags);
1da177e4 806 irqbits &= ~(1 << irqnumber);
83e714e8 807 spin_unlock_irqrestore(&irqbits_lock, flags);
1da177e4
LT
808}
809
810void release_vm86_irqs(struct task_struct *task)
811{
812 int i;
813 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
814 if (vm86_irqs[i].tsk == task)
815 free_vm86_irq(i);
816}
817
818static inline int get_and_reset_irq(int irqnumber)
819{
820 int bit;
821 unsigned long flags;
ad671423 822 int ret = 0;
83e714e8 823
1da177e4
LT
824 if (invalid_vm86_irq(irqnumber)) return 0;
825 if (vm86_irqs[irqnumber].tsk != current) return 0;
83e714e8 826 spin_lock_irqsave(&irqbits_lock, flags);
1da177e4
LT
827 bit = irqbits & (1 << irqnumber);
828 irqbits &= ~bit;
ad671423
PP
829 if (bit) {
830 enable_irq(irqnumber);
831 ret = 1;
832 }
833
83e714e8 834 spin_unlock_irqrestore(&irqbits_lock, flags);
ad671423 835 return ret;
1da177e4
LT
836}
837
838
839static int do_vm86_irq_handling(int subfunction, int irqnumber)
840{
841 int ret;
842 switch (subfunction) {
843 case VM86_GET_AND_RESET_IRQ: {
844 return get_and_reset_irq(irqnumber);
845 }
846 case VM86_GET_IRQ_BITS: {
847 return irqbits;
848 }
849 case VM86_REQUEST_IRQ: {
850 int sig = irqnumber >> 8;
851 int irq = irqnumber & 255;
852 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
853 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
854 if (invalid_vm86_irq(irq)) return -EPERM;
855 if (vm86_irqs[irq].tsk) return -EPERM;
856 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
857 if (ret) return ret;
858 vm86_irqs[irq].sig = sig;
859 vm86_irqs[irq].tsk = current;
860 return irq;
861 }
862 case VM86_FREE_IRQ: {
863 if (invalid_vm86_irq(irqnumber)) return -EPERM;
864 if (!vm86_irqs[irqnumber].tsk) return 0;
865 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
866 free_vm86_irq(irqnumber);
867 return 0;
868 }
869 }
870 return -EINVAL;
871}
872