]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: SVM: Replace hard-coded value with #define
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
13673a90 51#include <asm/vmx.h>
3d0c27ad 52#include <asm/kvm_page_track.h>
1261bfa3 53#include "trace.h"
6aa8b732 54
b8e8c830
PB
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
1aa9b957 62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 63#endif
b8e8c830
PB
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 67
d5d6c18d 68static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
d5d6c18d 73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
b8e8c830
PB
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 83
71fe7013
SC
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
18552672
JR
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
2f333bcb 94bool tdp_enabled = false;
18552672 95
1d92d2e8 96static int max_huge_page_level __read_mostly;
83013059 97static int max_tdp_level __read_mostly;
703c335d 98
8b1fe17c
XG
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
6903074c
XG
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
8b1fe17c 106};
37a7d8b0 107
37a7d8b0 108#ifdef MMU_DEBUG
5a9624af 109bool dbg = 0;
fa4a2c08 110module_param(dbg, bool, 0644);
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
6aa8b732
AK
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
d77c26fc 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 119
e04da980
JR
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
6aa8b732
AK
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
90bb6fc5
AK
135#include <trace/events/kvm.h>
136
220f773a
TY
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
53c07b18
XG
140struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
cd4a4e53
AK
143};
144
2d11123a
AK
145struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
2d11123a 148 u64 *sptep;
dd3bfd59 149 int level;
2d11123a
AK
150 unsigned index;
151};
152
7eb77e9f
JS
153#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
c2a2ac2b
XG
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
53c07b18 170static struct kmem_cache *pte_list_desc_cache;
02c00b3a 171struct kmem_cache *mmu_page_header_cache;
45221ab6 172static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 173
ce88decf 174static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
175static union kvm_mmu_page_role
176kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 177
335e192a
PB
178#define CREATE_TRACE_POINTS
179#include "mmutrace.h"
180
40ef75a7
LT
181
182static inline bool kvm_available_flush_tlb_with_range(void)
183{
afaf0b2f 184 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
185}
186
187static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189{
190 int ret = -ENOTSUPP;
191
afaf0b2f 192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
b3646477 193 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
40ef75a7
LT
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197}
198
2f2fad08 199void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
200 u64 start_gfn, u64 pages)
201{
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208}
209
5a9624af 210bool is_nx_huge_page_enabled(void)
b8e8c830
PB
211{
212 return READ_ONCE(nx_huge_pages);
213}
214
8f79b064
BG
215static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217{
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
8f79b064 219
bb18842e 220 trace_mark_mmio_spte(sptep, gfn, mask);
f2fd125d 221 mmu_spte_set(sptep, mask);
ce88decf
XG
222}
223
ce88decf
XG
224static gfn_t get_mmio_spte_gfn(u64 spte)
225{
daa07cbc 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac 227
8a967d65 228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
28a1f3ac
JS
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
ce88decf
XG
232}
233
234static unsigned get_mmio_spte_access(u64 spte)
235{
4af77151 236 return spte & shadow_mmio_access_mask;
ce88decf
XG
237}
238
54bf36aa 239static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 240 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
241{
242 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 243 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
244 return true;
245 }
246
247 return false;
248}
c7addb90 249
54bf36aa 250static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 251{
cae7ed3c 252 u64 kvm_gen, spte_gen, gen;
089504c0 253
cae7ed3c
SC
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
089504c0 257
cae7ed3c 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
f8f55942
XG
263}
264
cd313569
MG
265static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267{
ec7771ab 268 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
cd313569
MG
274 return gpa;
275}
276
6aa8b732
AK
277static int is_cpuid_PSE36(void)
278{
279 return 1;
280}
281
73b1087e
AK
282static int is_nx(struct kvm_vcpu *vcpu)
283{
f6801dff 284 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
285}
286
da928521
AK
287static gfn_t pse36_gfn_delta(u32 gpte)
288{
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292}
293
603e0651 294#ifdef CONFIG_X86_64
d555c333 295static void __set_spte(u64 *sptep, u64 spte)
e663ee64 296{
b19ee2ff 297 WRITE_ONCE(*sptep, spte);
e663ee64
AK
298}
299
603e0651 300static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 301{
b19ee2ff 302 WRITE_ONCE(*sptep, spte);
603e0651
XG
303}
304
305static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306{
307 return xchg(sptep, spte);
308}
c2a2ac2b
XG
309
310static u64 __get_spte_lockless(u64 *sptep)
311{
6aa7de05 312 return READ_ONCE(*sptep);
c2a2ac2b 313}
a9221dd5 314#else
603e0651
XG
315union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321};
a9221dd5 322
c2a2ac2b
XG
323static void count_spte_clear(u64 *sptep, u64 spte)
324{
57354682 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333}
334
603e0651
XG
335static void __set_spte(u64 *sptep, u64 spte)
336{
337 union split_spte *ssptep, sspte;
a9221dd5 338
603e0651
XG
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
352}
353
603e0651
XG
354static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355{
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
b19ee2ff 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 370 count_spte_clear(sptep, spte);
603e0651
XG
371}
372
373static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374{
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 384 count_spte_clear(sptep, spte);
603e0651
XG
385
386 return orig.spte;
387}
c2a2ac2b
XG
388
389/*
390 * The idea using the light way get the spte on x86_32 guest is from
39656e83 391 * gup_get_pte (mm/gup.c).
accaefe0
XG
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
57354682 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
603e0651
XG
429#endif
430
8672b721
XG
431static bool spte_has_volatile_bits(u64 spte)
432{
f160c7b7
JS
433 if (!is_shadow_present_pte(spte))
434 return false;
435
c7ba5b48 436 /*
6a6256f9 437 * Always atomically update spte if it can be updated
c7ba5b48
XG
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
f160c7b7
JS
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
c7ba5b48
XG
444 return true;
445
ac8d57e5 446 if (spte_ad_enabled(spte)) {
f160c7b7
JS
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
8672b721 451
f160c7b7 452 return false;
8672b721
XG
453}
454
1df9f2dc
XG
455/* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461static void mmu_spte_set(u64 *sptep, u64 new_spte)
462{
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465}
466
f39a058d
JS
467/*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
1df9f2dc 470 */
f39a058d 471static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 472{
c7ba5b48 473 u64 old_spte = *sptep;
4132779b 474
afd28fe1 475 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 476
6e7d0354
XG
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
f39a058d 479 return old_spte;
6e7d0354 480 }
4132779b 481
c7ba5b48 482 if (!spte_has_volatile_bits(old_spte))
603e0651 483 __update_clear_spte_fast(sptep, new_spte);
4132779b 484 else
603e0651 485 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 486
83ef6c81
JS
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
f39a058d
JS
489 return old_spte;
490}
491
492/* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504{
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
c7ba5b48
XG
511 /*
512 * For the spte updated out of mmu-lock is safe, since
6a6256f9 513 * we always atomically update it, see the comments in
c7ba5b48
XG
514 * spte_has_volatile_bits().
515 */
ea4114bc 516 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 517 !is_writable_pte(new_spte))
83ef6c81 518 flush = true;
4132779b 519
7e71a59b 520 /*
83ef6c81 521 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
522 * to guarantee consistency between TLB and page tables.
523 */
7e71a59b 524
83ef6c81
JS
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
4132779b 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
4132779b 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 533 }
6e7d0354 534
83ef6c81 535 return flush;
b79b93f9
AK
536}
537
1df9f2dc
XG
538/*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
83ef6c81 542 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
543 */
544static int mmu_spte_clear_track_bits(u64 *sptep)
545{
ba049e93 546 kvm_pfn_t pfn;
1df9f2dc
XG
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
603e0651 550 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 551 else
603e0651 552 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 553
afd28fe1 554 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
86fde74c
XG
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
bf4bea8e 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 565
83ef6c81 566 if (is_accessed_spte(old_spte))
1df9f2dc 567 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
568
569 if (is_dirty_spte(old_spte))
1df9f2dc 570 kvm_set_pfn_dirty(pfn);
83ef6c81 571
1df9f2dc
XG
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
d3e328f2
JS
590/* Restore an acc-track PTE back to a regular PTE */
591static u64 restore_acc_track_spte(u64 spte)
592{
593 u64 new_spte = spte;
8a967d65
PB
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
d3e328f2 596
ac8d57e5 597 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
8a967d65
PB
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
d3e328f2
JS
603 new_spte |= saved_bits;
604
605 return new_spte;
606}
607
f160c7b7
JS
608/* Returns the Accessed status of the PTE and resets it at the same time. */
609static bool mmu_spte_age(u64 *sptep)
610{
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
ac8d57e5 616 if (spte_ad_enabled(spte)) {
f160c7b7
JS
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632}
633
c2a2ac2b
XG
634static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635{
c142786c
AK
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
36ca7e0a 641
c142786c
AK
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
36ca7e0a 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
647}
648
649static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650{
c142786c
AK
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
36ca7e0a 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 657 local_irq_enable();
c2a2ac2b
XG
658}
659
378f5cd6 660static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 661{
e2dec939
AK
662 int r;
663
531281ad 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 667 if (r)
284aa868 668 return r;
94ce87ef
SC
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
d3d25b04 671 if (r)
171a90d7 672 return r;
378f5cd6 673 if (maybe_indirect) {
94ce87ef
SC
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
676 if (r)
677 return r;
678 }
94ce87ef
SC
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
94ce87ef
SC
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
689}
690
53c07b18 691static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 692{
94ce87ef 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
694}
695
53c07b18 696static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 697{
53c07b18 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
699}
700
2032a93d
LJ
701static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702{
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707}
708
709static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710{
e9f2a760 711 if (!sp->role.direct) {
2032a93d 712 sp->gfns[index] = gfn;
e9f2a760
PB
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
721}
722
05da4558 723/*
d4dbf470
TY
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
05da4558 726 */
d4dbf470
TY
727static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
05da4558
MT
730{
731 unsigned long idx;
732
fb03cb6f 733 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 734 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
735}
736
547ffaed
XG
737static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739{
740 struct kvm_lpage_info *linfo;
741 int i;
742
3bae0459 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748}
749
750void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751{
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753}
754
755void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756{
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758}
759
3ed1a478 760static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 761{
699023e2 762 struct kvm_memslots *slots;
d25797b2 763 struct kvm_memory_slot *slot;
3ed1a478 764 gfn_t gfn;
05da4558 765
56ca57f9 766 kvm->arch.indirect_shadow_pages++;
3ed1a478 767 gfn = sp->gfn;
699023e2
PB
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
770
771 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 772 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
547ffaed 776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
777}
778
29cf0f50 779void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
780{
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
787 sp->lpage_disallowed = true;
788}
789
3ed1a478 790static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 791{
699023e2 792 struct kvm_memslots *slots;
d25797b2 793 struct kvm_memory_slot *slot;
3ed1a478 794 gfn_t gfn;
05da4558 795
56ca57f9 796 kvm->arch.indirect_shadow_pages--;
3ed1a478 797 gfn = sp->gfn;
699023e2
PB
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
3bae0459 800 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
547ffaed 804 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
805}
806
29cf0f50 807void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
808{
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
1aa9b957 811 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
812}
813
5d163b1c
XG
814static struct kvm_memory_slot *
815gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
05da4558
MT
817{
818 struct kvm_memory_slot *slot;
5d163b1c 819
54bf36aa 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
044c59c4 823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
91b0d268 824 return NULL;
5d163b1c
XG
825
826 return slot;
827}
828
290fc38d 829/*
018aabb5 830 * About rmap_head encoding:
cd4a4e53 831 *
018aabb5
TY
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 834 * pte_list_desc containing more mappings.
018aabb5
TY
835 */
836
837/*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 839 */
53c07b18 840static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 841 struct kvm_rmap_head *rmap_head)
cd4a4e53 842{
53c07b18 843 struct pte_list_desc *desc;
53a27b39 844 int i, count = 0;
cd4a4e53 845
018aabb5 846 if (!rmap_head->val) {
53c07b18 847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 852 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 853 desc->sptes[1] = spte;
018aabb5 854 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 855 ++count;
cd4a4e53 856 } else {
53c07b18 857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
c6c4f961 859 while (desc->sptes[PTE_LIST_EXT-1]) {
53c07b18 860 count += PTE_LIST_EXT;
c6c4f961
LR
861
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
866 }
cd4a4e53
AK
867 desc = desc->more;
868 }
d555c333 869 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 870 ++count;
d555c333 871 desc->sptes[i] = spte;
cd4a4e53 872 }
53a27b39 873 return count;
cd4a4e53
AK
874}
875
53c07b18 876static void
018aabb5
TY
877pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
cd4a4e53
AK
880{
881 int j;
882
53c07b18 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 884 ;
d555c333
AK
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
cd4a4e53
AK
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
fe3c2b4c 890 rmap_head->val = 0;
cd4a4e53
AK
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
018aabb5 895 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 896 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
897}
898
8daf3462 899static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 900{
53c07b18
XG
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
cd4a4e53
AK
903 int i;
904
018aabb5 905 if (!rmap_head->val) {
8daf3462 906 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 907 BUG();
018aabb5 908 } else if (!(rmap_head->val & 1)) {
8daf3462 909 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 910 if ((u64 *)rmap_head->val != spte) {
8daf3462 911 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
912 BUG();
913 }
018aabb5 914 rmap_head->val = 0;
cd4a4e53 915 } else {
8daf3462 916 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
918 prev_desc = NULL;
919 while (desc) {
018aabb5 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 921 if (desc->sptes[i] == spte) {
018aabb5
TY
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
cd4a4e53
AK
924 return;
925 }
018aabb5 926 }
cd4a4e53
AK
927 prev_desc = desc;
928 desc = desc->more;
929 }
8daf3462 930 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
931 BUG();
932 }
933}
934
e7912386
WY
935static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936{
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
939}
940
018aabb5
TY
941static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
53c07b18 943{
77d11309 944 unsigned long idx;
53c07b18 945
77d11309 946 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
948}
949
018aabb5
TY
950static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
9b9b1492 952{
699023e2 953 struct kvm_memslots *slots;
9b9b1492
TY
954 struct kvm_memory_slot *slot;
955
699023e2
PB
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 958 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
959}
960
f759e2b4
XG
961static bool rmap_can_add(struct kvm_vcpu *vcpu)
962{
356ec69a 963 struct kvm_mmu_memory_cache *mc;
f759e2b4 964
356ec69a 965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 966 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
967}
968
53c07b18
XG
969static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970{
971 struct kvm_mmu_page *sp;
018aabb5 972 struct kvm_rmap_head *rmap_head;
53c07b18 973
57354682 974 sp = sptep_to_sp(spte);
53c07b18 975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
978}
979
53c07b18
XG
980static void rmap_remove(struct kvm *kvm, u64 *spte)
981{
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
018aabb5 984 struct kvm_rmap_head *rmap_head;
53c07b18 985
57354682 986 sp = sptep_to_sp(spte);
53c07b18 987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 989 __pte_list_remove(spte, rmap_head);
53c07b18
XG
990}
991
1e3f42f0
TY
992/*
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
995 */
996struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1000};
1001
1002/*
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1005 * information in the iterator may not be valid.
1e3f42f0
TY
1006 *
1007 * Returns sptep if found, NULL otherwise.
1008 */
018aabb5
TY
1009static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1e3f42f0 1011{
77fbbbd2
TY
1012 u64 *sptep;
1013
018aabb5 1014 if (!rmap_head->val)
1e3f42f0
TY
1015 return NULL;
1016
018aabb5 1017 if (!(rmap_head->val & 1)) {
1e3f42f0 1018 iter->desc = NULL;
77fbbbd2
TY
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1e3f42f0
TY
1021 }
1022
018aabb5 1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1024 iter->pos = 0;
77fbbbd2
TY
1025 sptep = iter->desc->sptes[iter->pos];
1026out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1e3f42f0
TY
1029}
1030
1031/*
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_next(struct rmap_iterator *iter)
1037{
77fbbbd2
TY
1038 u64 *sptep;
1039
1e3f42f0
TY
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
77fbbbd2 1045 goto out;
1e3f42f0
TY
1046 }
1047
1048 iter->desc = iter->desc->more;
1049
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1e3f42f0
TY
1055 }
1056 }
1057
1058 return NULL;
77fbbbd2
TY
1059out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1e3f42f0
TY
1062}
1063
018aabb5
TY
1064#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1066 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1067
c3707958 1068static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1069{
1df9f2dc 1070 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1071 rmap_remove(kvm, sptep);
be38d276
AK
1072}
1073
8e22f955
XG
1074
1075static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076{
1077 if (is_large_pte(*sptep)) {
57354682 1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1082 }
1083
1084 return false;
1085}
1086
1087static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088{
c3134ce2 1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1091
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1094 }
8e22f955
XG
1095}
1096
1097/*
49fde340 1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1099 * spte write-protection is caused by protecting shadow page table.
49fde340 1100 *
b4619660 1101 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
8e22f955 1107 *
c126d94f 1108 * Return true if tlb need be flushed.
8e22f955 1109 */
c4f138b4 1110static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1111{
1112 u64 spte = *sptep;
1113
49fde340 1114 if (!is_writable_pte(spte) &&
ea4114bc 1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1116 return false;
1117
1118 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119
49fde340
XG
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1122 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1123
c126d94f 1124 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1125}
1126
018aabb5
TY
1127static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
245c3912 1129 bool pt_protect)
98348e95 1130{
1e3f42f0
TY
1131 u64 *sptep;
1132 struct rmap_iterator iter;
d13bc5b5 1133 bool flush = false;
374cbac0 1134
018aabb5 1135 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1136 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1137
d13bc5b5 1138 return flush;
a0ed4607
TY
1139}
1140
c4f138b4 1141static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1142{
1143 u64 spte = *sptep;
1144
1145 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146
1f4e5fc8 1147 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1148 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1149 return mmu_spte_update(sptep, spte);
1150}
1151
1f4e5fc8 1152static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1153{
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1f4e5fc8 1156 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159 return was_writable;
1160}
1161
1162/*
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1167 */
018aabb5 1168static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1169{
1170 u64 *sptep;
1171 struct rmap_iterator iter;
1172 bool flush = false;
1173
018aabb5 1174 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1175 if (spte_ad_need_write_protect(*sptep))
1176 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1177 else
1f4e5fc8 1178 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1179
1180 return flush;
1181}
1182
c4f138b4 1183static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1184{
1185 u64 spte = *sptep;
1186
1187 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188
1f4e5fc8 1189 /*
afaf0b2f 1190 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1191 * do not bother adding back write access to pages marked
1192 * SPTE_AD_WRPROT_ONLY_MASK.
1193 */
f4b4b180
KH
1194 spte |= shadow_dirty_mask;
1195
1196 return mmu_spte_update(sptep, spte);
1197}
1198
018aabb5 1199static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1200{
1201 u64 *sptep;
1202 struct rmap_iterator iter;
1203 bool flush = false;
1204
018aabb5 1205 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1206 if (spte_ad_enabled(*sptep))
1207 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1208
1209 return flush;
1210}
1211
5dc99b23 1212/**
3b0f1d01 1213 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1214 * @kvm: kvm instance
1215 * @slot: slot to protect
1216 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217 * @mask: indicates which pages we should protect
1218 *
1219 * Used when we do not need to care about huge page mappings: e.g. during dirty
1220 * logging we do not have any such mappings.
1221 */
3b0f1d01 1222static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1223 struct kvm_memory_slot *slot,
1224 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1225{
018aabb5 1226 struct kvm_rmap_head *rmap_head;
a0ed4607 1227
a6a0b05d
BG
1228 if (kvm->arch.tdp_mmu_enabled)
1229 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 slot->base_gfn + gfn_offset, mask, true);
5dc99b23 1231 while (mask) {
018aabb5 1232 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1233 PG_LEVEL_4K, slot);
018aabb5 1234 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1235
5dc99b23
TY
1236 /* clear the first set bit */
1237 mask &= mask - 1;
1238 }
374cbac0
AK
1239}
1240
f4b4b180 1241/**
ac8d57e5
PF
1242 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1244 * @kvm: kvm instance
1245 * @slot: slot to clear D-bit
1246 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247 * @mask: indicates which pages we should clear D-bit
1248 *
1249 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250 */
1251void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 struct kvm_memory_slot *slot,
1253 gfn_t gfn_offset, unsigned long mask)
1254{
018aabb5 1255 struct kvm_rmap_head *rmap_head;
f4b4b180 1256
a6a0b05d
BG
1257 if (kvm->arch.tdp_mmu_enabled)
1258 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 slot->base_gfn + gfn_offset, mask, false);
f4b4b180 1260 while (mask) {
018aabb5 1261 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1262 PG_LEVEL_4K, slot);
018aabb5 1263 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1264
1265 /* clear the first set bit */
1266 mask &= mask - 1;
1267 }
1268}
1269EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270
3b0f1d01
KH
1271/**
1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273 * PT level pages.
1274 *
1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276 * enable dirty logging for them.
1277 *
1278 * Used when we do not need to care about huge page mappings: e.g. during dirty
1279 * logging we do not have any such mappings.
1280 */
1281void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 struct kvm_memory_slot *slot,
1283 gfn_t gfn_offset, unsigned long mask)
1284{
afaf0b2f 1285 if (kvm_x86_ops.enable_log_dirty_pt_masked)
b3646477
JB
1286 static_call(kvm_x86_enable_log_dirty_pt_masked)(kvm, slot,
1287 gfn_offset,
1288 mask);
88178fd4
KH
1289 else
1290 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1291}
1292
fb04a1ed
PX
1293int kvm_cpu_dirty_log_size(void)
1294{
1295 if (kvm_x86_ops.cpu_dirty_log_size)
b3646477 1296 return static_call(kvm_x86_cpu_dirty_log_size)();
fb04a1ed
PX
1297
1298 return 0;
1299}
1300
aeecee2e
XG
1301bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1302 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1303{
018aabb5 1304 struct kvm_rmap_head *rmap_head;
5dc99b23 1305 int i;
2f84569f 1306 bool write_protected = false;
95d4c16c 1307
3bae0459 1308 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1309 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1310 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1311 }
1312
46044f72
BG
1313 if (kvm->arch.tdp_mmu_enabled)
1314 write_protected |=
1315 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1316
5dc99b23 1317 return write_protected;
95d4c16c
TY
1318}
1319
aeecee2e
XG
1320static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1321{
1322 struct kvm_memory_slot *slot;
1323
1324 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1325 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1326}
1327
018aabb5 1328static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1329{
1e3f42f0
TY
1330 u64 *sptep;
1331 struct rmap_iterator iter;
6a49f85c 1332 bool flush = false;
e930bffe 1333
018aabb5 1334 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1335 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1336
e7912386 1337 pte_list_remove(rmap_head, sptep);
6a49f85c 1338 flush = true;
e930bffe 1339 }
1e3f42f0 1340
6a49f85c
XG
1341 return flush;
1342}
1343
018aabb5 1344static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1345 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1346 unsigned long data)
1347{
018aabb5 1348 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1349}
1350
018aabb5 1351static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1352 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1353 unsigned long data)
3da0dd43 1354{
1e3f42f0
TY
1355 u64 *sptep;
1356 struct rmap_iterator iter;
3da0dd43 1357 int need_flush = 0;
1e3f42f0 1358 u64 new_spte;
3da0dd43 1359 pte_t *ptep = (pte_t *)data;
ba049e93 1360 kvm_pfn_t new_pfn;
3da0dd43
IE
1361
1362 WARN_ON(pte_huge(*ptep));
1363 new_pfn = pte_pfn(*ptep);
1e3f42f0 1364
0d536790 1365restart:
018aabb5 1366 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1367 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1368 sptep, *sptep, gfn, level);
1e3f42f0 1369
3da0dd43 1370 need_flush = 1;
1e3f42f0 1371
3da0dd43 1372 if (pte_write(*ptep)) {
e7912386 1373 pte_list_remove(rmap_head, sptep);
0d536790 1374 goto restart;
3da0dd43 1375 } else {
cb3eedab
PB
1376 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1377 *sptep, new_pfn);
1e3f42f0
TY
1378
1379 mmu_spte_clear_track_bits(sptep);
1380 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1381 }
1382 }
1e3f42f0 1383
3cc5ea94
LT
1384 if (need_flush && kvm_available_flush_tlb_with_range()) {
1385 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1386 return 0;
1387 }
1388
0cf853c5 1389 return need_flush;
3da0dd43
IE
1390}
1391
6ce1f4e2
XG
1392struct slot_rmap_walk_iterator {
1393 /* input fields. */
1394 struct kvm_memory_slot *slot;
1395 gfn_t start_gfn;
1396 gfn_t end_gfn;
1397 int start_level;
1398 int end_level;
1399
1400 /* output fields. */
1401 gfn_t gfn;
018aabb5 1402 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1403 int level;
1404
1405 /* private field. */
018aabb5 1406 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1407};
1408
1409static void
1410rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1411{
1412 iterator->level = level;
1413 iterator->gfn = iterator->start_gfn;
1414 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1415 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1416 iterator->slot);
1417}
1418
1419static void
1420slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1421 struct kvm_memory_slot *slot, int start_level,
1422 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1423{
1424 iterator->slot = slot;
1425 iterator->start_level = start_level;
1426 iterator->end_level = end_level;
1427 iterator->start_gfn = start_gfn;
1428 iterator->end_gfn = end_gfn;
1429
1430 rmap_walk_init_level(iterator, iterator->start_level);
1431}
1432
1433static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1434{
1435 return !!iterator->rmap;
1436}
1437
1438static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1439{
1440 if (++iterator->rmap <= iterator->end_rmap) {
1441 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1442 return;
1443 }
1444
1445 if (++iterator->level > iterator->end_level) {
1446 iterator->rmap = NULL;
1447 return;
1448 }
1449
1450 rmap_walk_init_level(iterator, iterator->level);
1451}
1452
1453#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1454 _start_gfn, _end_gfn, _iter_) \
1455 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1456 _end_level_, _start_gfn, _end_gfn); \
1457 slot_rmap_walk_okay(_iter_); \
1458 slot_rmap_walk_next(_iter_))
1459
84504ef3
TY
1460static int kvm_handle_hva_range(struct kvm *kvm,
1461 unsigned long start,
1462 unsigned long end,
1463 unsigned long data,
1464 int (*handler)(struct kvm *kvm,
018aabb5 1465 struct kvm_rmap_head *rmap_head,
048212d0 1466 struct kvm_memory_slot *slot,
8a9522d2
ALC
1467 gfn_t gfn,
1468 int level,
84504ef3 1469 unsigned long data))
e930bffe 1470{
bc6678a3 1471 struct kvm_memslots *slots;
be6ba0f0 1472 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1473 struct slot_rmap_walk_iterator iterator;
1474 int ret = 0;
9da0e4d5 1475 int i;
bc6678a3 1476
9da0e4d5
PB
1477 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1478 slots = __kvm_memslots(kvm, i);
1479 kvm_for_each_memslot(memslot, slots) {
1480 unsigned long hva_start, hva_end;
1481 gfn_t gfn_start, gfn_end;
e930bffe 1482
9da0e4d5
PB
1483 hva_start = max(start, memslot->userspace_addr);
1484 hva_end = min(end, memslot->userspace_addr +
1485 (memslot->npages << PAGE_SHIFT));
1486 if (hva_start >= hva_end)
1487 continue;
1488 /*
1489 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1490 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1491 */
1492 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1493 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1494
3bae0459 1495 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1496 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1497 gfn_start, gfn_end - 1,
1498 &iterator)
1499 ret |= handler(kvm, iterator.rmap, memslot,
1500 iterator.gfn, iterator.level, data);
1501 }
e930bffe
AA
1502 }
1503
f395302e 1504 return ret;
e930bffe
AA
1505}
1506
84504ef3
TY
1507static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1508 unsigned long data,
018aabb5
TY
1509 int (*handler)(struct kvm *kvm,
1510 struct kvm_rmap_head *rmap_head,
048212d0 1511 struct kvm_memory_slot *slot,
8a9522d2 1512 gfn_t gfn, int level,
84504ef3
TY
1513 unsigned long data))
1514{
1515 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1516}
1517
fdfe7cbd
WD
1518int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1519 unsigned flags)
b3ae2096 1520{
063afacd
BG
1521 int r;
1522
1523 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1524
1525 if (kvm->arch.tdp_mmu_enabled)
1526 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1527
1528 return r;
b3ae2096
TY
1529}
1530
748c0e31 1531int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1532{
1d8dd6b3
BG
1533 int r;
1534
1535 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1536
1537 if (kvm->arch.tdp_mmu_enabled)
1538 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1539
1540 return r;
e930bffe
AA
1541}
1542
018aabb5 1543static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1544 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1545 unsigned long data)
e930bffe 1546{
1e3f42f0 1547 u64 *sptep;
3f649ab7 1548 struct rmap_iterator iter;
e930bffe
AA
1549 int young = 0;
1550
f160c7b7
JS
1551 for_each_rmap_spte(rmap_head, &iter, sptep)
1552 young |= mmu_spte_age(sptep);
0d536790 1553
8a9522d2 1554 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1555 return young;
1556}
1557
018aabb5 1558static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1559 struct kvm_memory_slot *slot, gfn_t gfn,
1560 int level, unsigned long data)
8ee53820 1561{
1e3f42f0
TY
1562 u64 *sptep;
1563 struct rmap_iterator iter;
8ee53820 1564
83ef6c81
JS
1565 for_each_rmap_spte(rmap_head, &iter, sptep)
1566 if (is_accessed_spte(*sptep))
1567 return 1;
83ef6c81 1568 return 0;
8ee53820
AA
1569}
1570
53a27b39
MT
1571#define RMAP_RECYCLE_THRESHOLD 1000
1572
852e3c19 1573static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1574{
018aabb5 1575 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1576 struct kvm_mmu_page *sp;
1577
57354682 1578 sp = sptep_to_sp(spte);
53a27b39 1579
018aabb5 1580 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1581
018aabb5 1582 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1583 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1584 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1585}
1586
57128468 1587int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1588{
f8e14497
BG
1589 int young = false;
1590
1591 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1592 if (kvm->arch.tdp_mmu_enabled)
1593 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1594
1595 return young;
e930bffe
AA
1596}
1597
8ee53820
AA
1598int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1599{
f8e14497
BG
1600 int young = false;
1601
1602 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1603 if (kvm->arch.tdp_mmu_enabled)
1604 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1605
1606 return young;
8ee53820
AA
1607}
1608
d6c69ee9 1609#ifdef MMU_DEBUG
47ad8e68 1610static int is_empty_shadow_page(u64 *spt)
6aa8b732 1611{
139bdb2d
AK
1612 u64 *pos;
1613 u64 *end;
1614
47ad8e68 1615 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1616 if (is_shadow_present_pte(*pos)) {
b8688d51 1617 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1618 pos, *pos);
6aa8b732 1619 return 0;
139bdb2d 1620 }
6aa8b732
AK
1621 return 1;
1622}
d6c69ee9 1623#endif
6aa8b732 1624
45221ab6
DH
1625/*
1626 * This value is the sum of all of the kvm instances's
1627 * kvm->arch.n_used_mmu_pages values. We need a global,
1628 * aggregate version in order to make the slab shrinker
1629 * faster
1630 */
bc8a3d89 1631static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1632{
1633 kvm->arch.n_used_mmu_pages += nr;
1634 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1635}
1636
834be0d8 1637static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1638{
fa4a2c08 1639 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1640 hlist_del(&sp->hash_link);
bd4c86ea
XG
1641 list_del(&sp->link);
1642 free_page((unsigned long)sp->spt);
834be0d8
GN
1643 if (!sp->role.direct)
1644 free_page((unsigned long)sp->gfns);
e8ad9a70 1645 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1646}
1647
cea0f0e7
AK
1648static unsigned kvm_page_table_hashfn(gfn_t gfn)
1649{
114df303 1650 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1651}
1652
714b93da 1653static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1654 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1655{
cea0f0e7
AK
1656 if (!parent_pte)
1657 return;
cea0f0e7 1658
67052b35 1659 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1660}
1661
4db35314 1662static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1663 u64 *parent_pte)
1664{
8daf3462 1665 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1666}
1667
bcdd9a93
XG
1668static void drop_parent_pte(struct kvm_mmu_page *sp,
1669 u64 *parent_pte)
1670{
1671 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1672 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1673}
1674
47005792 1675static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1676{
67052b35 1677 struct kvm_mmu_page *sp;
7ddca7e4 1678
94ce87ef
SC
1679 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1680 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1681 if (!direct)
94ce87ef 1682 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1683 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1684
1685 /*
1686 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1687 * depends on valid pages being added to the head of the list. See
1688 * comments in kvm_zap_obsolete_pages().
1689 */
ca333add 1690 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1691 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1692 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1693 return sp;
ad8cfbe3
MT
1694}
1695
67052b35 1696static void mark_unsync(u64 *spte);
1047df1f 1697static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1698{
74c4e63a
TY
1699 u64 *sptep;
1700 struct rmap_iterator iter;
1701
1702 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1703 mark_unsync(sptep);
1704 }
0074ff63
MT
1705}
1706
67052b35 1707static void mark_unsync(u64 *spte)
0074ff63 1708{
67052b35 1709 struct kvm_mmu_page *sp;
1047df1f 1710 unsigned int index;
0074ff63 1711
57354682 1712 sp = sptep_to_sp(spte);
1047df1f
XG
1713 index = spte - sp->spt;
1714 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1715 return;
1047df1f 1716 if (sp->unsync_children++)
0074ff63 1717 return;
1047df1f 1718 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1719}
1720
e8bc217a 1721static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1722 struct kvm_mmu_page *sp)
e8bc217a 1723{
1f50f1b3 1724 return 0;
e8bc217a
MT
1725}
1726
60c8aec6
MT
1727#define KVM_PAGE_ARRAY_NR 16
1728
1729struct kvm_mmu_pages {
1730 struct mmu_page_and_offset {
1731 struct kvm_mmu_page *sp;
1732 unsigned int idx;
1733 } page[KVM_PAGE_ARRAY_NR];
1734 unsigned int nr;
1735};
1736
cded19f3
HE
1737static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1738 int idx)
4731d4c7 1739{
60c8aec6 1740 int i;
4731d4c7 1741
60c8aec6
MT
1742 if (sp->unsync)
1743 for (i=0; i < pvec->nr; i++)
1744 if (pvec->page[i].sp == sp)
1745 return 0;
1746
1747 pvec->page[pvec->nr].sp = sp;
1748 pvec->page[pvec->nr].idx = idx;
1749 pvec->nr++;
1750 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1751}
1752
fd951457
TY
1753static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1754{
1755 --sp->unsync_children;
1756 WARN_ON((int)sp->unsync_children < 0);
1757 __clear_bit(idx, sp->unsync_child_bitmap);
1758}
1759
60c8aec6
MT
1760static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1761 struct kvm_mmu_pages *pvec)
1762{
1763 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1764
37178b8b 1765 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1766 struct kvm_mmu_page *child;
4731d4c7
MT
1767 u64 ent = sp->spt[i];
1768
fd951457
TY
1769 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1770 clear_unsync_child_bit(sp, i);
1771 continue;
1772 }
7a8f1a74 1773
e47c4aee 1774 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1775
1776 if (child->unsync_children) {
1777 if (mmu_pages_add(pvec, child, i))
1778 return -ENOSPC;
1779
1780 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1781 if (!ret) {
1782 clear_unsync_child_bit(sp, i);
1783 continue;
1784 } else if (ret > 0) {
7a8f1a74 1785 nr_unsync_leaf += ret;
fd951457 1786 } else
7a8f1a74
XG
1787 return ret;
1788 } else if (child->unsync) {
1789 nr_unsync_leaf++;
1790 if (mmu_pages_add(pvec, child, i))
1791 return -ENOSPC;
1792 } else
fd951457 1793 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1794 }
1795
60c8aec6
MT
1796 return nr_unsync_leaf;
1797}
1798
e23d3fef
XG
1799#define INVALID_INDEX (-1)
1800
60c8aec6
MT
1801static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1802 struct kvm_mmu_pages *pvec)
1803{
0a47cd85 1804 pvec->nr = 0;
60c8aec6
MT
1805 if (!sp->unsync_children)
1806 return 0;
1807
e23d3fef 1808 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1809 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1810}
1811
4731d4c7
MT
1812static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1813{
1814 WARN_ON(!sp->unsync);
5e1b3ddb 1815 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1816 sp->unsync = 0;
1817 --kvm->stat.mmu_unsync;
1818}
1819
83cdb568
SC
1820static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1821 struct list_head *invalid_list);
7775834a
XG
1822static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1823 struct list_head *invalid_list);
4731d4c7 1824
ac101b7c
SC
1825#define for_each_valid_sp(_kvm, _sp, _list) \
1826 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1827 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1828 } else
1044b030
TY
1829
1830#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1831 for_each_valid_sp(_kvm, _sp, \
1832 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1833 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1834
47c42e6b
SC
1835static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1836{
1837 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1838}
1839
f918b443 1840/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1841static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1842 struct list_head *invalid_list)
4731d4c7 1843{
47c42e6b
SC
1844 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1845 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1846 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1847 return false;
4731d4c7
MT
1848 }
1849
1f50f1b3 1850 return true;
4731d4c7
MT
1851}
1852
a2113634
SC
1853static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1854 struct list_head *invalid_list,
1855 bool remote_flush)
1856{
cfd32acf 1857 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1858 return false;
1859
1860 if (!list_empty(invalid_list))
1861 kvm_mmu_commit_zap_page(kvm, invalid_list);
1862 else
1863 kvm_flush_remote_tlbs(kvm);
1864 return true;
1865}
1866
35a70510
PB
1867static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1868 struct list_head *invalid_list,
1869 bool remote_flush, bool local_flush)
1d9dc7e0 1870{
a2113634 1871 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1872 return;
d98ba053 1873
a2113634 1874 if (local_flush)
8c8560b8 1875 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1876}
1877
e37fa785
XG
1878#ifdef CONFIG_KVM_MMU_AUDIT
1879#include "mmu_audit.c"
1880#else
1881static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1882static void mmu_audit_disable(void) { }
1883#endif
1884
002c5f73
SC
1885static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1886{
fac026da
SC
1887 return sp->role.invalid ||
1888 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1889}
1890
1f50f1b3 1891static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1892 struct list_head *invalid_list)
1d9dc7e0 1893{
9a43c5d9
PB
1894 kvm_unlink_unsync_page(vcpu->kvm, sp);
1895 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1896}
1897
9f1a122f 1898/* @gfn should be write-protected at the call site */
2a74003a
PB
1899static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1900 struct list_head *invalid_list)
9f1a122f 1901{
9f1a122f 1902 struct kvm_mmu_page *s;
2a74003a 1903 bool ret = false;
9f1a122f 1904
b67bfe0d 1905 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1906 if (!s->unsync)
9f1a122f
XG
1907 continue;
1908
3bae0459 1909 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1910 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1911 }
1912
2a74003a 1913 return ret;
9f1a122f
XG
1914}
1915
60c8aec6 1916struct mmu_page_path {
2a7266a8
YZ
1917 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1918 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1919};
1920
60c8aec6 1921#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1922 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1923 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1924 i = mmu_pages_next(&pvec, &parents, i))
1925
cded19f3
HE
1926static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1927 struct mmu_page_path *parents,
1928 int i)
60c8aec6
MT
1929{
1930 int n;
1931
1932 for (n = i+1; n < pvec->nr; n++) {
1933 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1934 unsigned idx = pvec->page[n].idx;
1935 int level = sp->role.level;
60c8aec6 1936
0a47cd85 1937 parents->idx[level-1] = idx;
3bae0459 1938 if (level == PG_LEVEL_4K)
0a47cd85 1939 break;
60c8aec6 1940
0a47cd85 1941 parents->parent[level-2] = sp;
60c8aec6
MT
1942 }
1943
1944 return n;
1945}
1946
0a47cd85
PB
1947static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1948 struct mmu_page_path *parents)
1949{
1950 struct kvm_mmu_page *sp;
1951 int level;
1952
1953 if (pvec->nr == 0)
1954 return 0;
1955
e23d3fef
XG
1956 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1957
0a47cd85
PB
1958 sp = pvec->page[0].sp;
1959 level = sp->role.level;
3bae0459 1960 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1961
1962 parents->parent[level-2] = sp;
1963
1964 /* Also set up a sentinel. Further entries in pvec are all
1965 * children of sp, so this element is never overwritten.
1966 */
1967 parents->parent[level-1] = NULL;
1968 return mmu_pages_next(pvec, parents, 0);
1969}
1970
cded19f3 1971static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1972{
60c8aec6
MT
1973 struct kvm_mmu_page *sp;
1974 unsigned int level = 0;
1975
1976 do {
1977 unsigned int idx = parents->idx[level];
60c8aec6
MT
1978 sp = parents->parent[level];
1979 if (!sp)
1980 return;
1981
e23d3fef 1982 WARN_ON(idx == INVALID_INDEX);
fd951457 1983 clear_unsync_child_bit(sp, idx);
60c8aec6 1984 level++;
0a47cd85 1985 } while (!sp->unsync_children);
60c8aec6 1986}
4731d4c7 1987
60c8aec6
MT
1988static void mmu_sync_children(struct kvm_vcpu *vcpu,
1989 struct kvm_mmu_page *parent)
1990{
1991 int i;
1992 struct kvm_mmu_page *sp;
1993 struct mmu_page_path parents;
1994 struct kvm_mmu_pages pages;
d98ba053 1995 LIST_HEAD(invalid_list);
50c9e6f3 1996 bool flush = false;
60c8aec6 1997
60c8aec6 1998 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1999 bool protected = false;
b1a36821
MT
2000
2001 for_each_sp(pages, sp, parents, i)
54bf36aa 2002 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2003
50c9e6f3 2004 if (protected) {
b1a36821 2005 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2006 flush = false;
2007 }
b1a36821 2008
60c8aec6 2009 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2010 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2011 mmu_pages_clear_parents(&parents);
2012 }
50c9e6f3
PB
2013 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2014 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2015 cond_resched_lock(&vcpu->kvm->mmu_lock);
2016 flush = false;
2017 }
60c8aec6 2018 }
50c9e6f3
PB
2019
2020 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2021}
2022
a30f47cb
XG
2023static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2024{
e5691a81 2025 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2026}
2027
2028static void clear_sp_write_flooding_count(u64 *spte)
2029{
57354682 2030 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2031}
2032
cea0f0e7
AK
2033static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2034 gfn_t gfn,
2035 gva_t gaddr,
2036 unsigned level,
f6e2c02b 2037 int direct,
0a2b64c5 2038 unsigned int access)
cea0f0e7 2039{
fb58a9c3 2040 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2041 union kvm_mmu_page_role role;
ac101b7c 2042 struct hlist_head *sp_list;
cea0f0e7 2043 unsigned quadrant;
9f1a122f 2044 struct kvm_mmu_page *sp;
9f1a122f 2045 bool need_sync = false;
2a74003a 2046 bool flush = false;
f3414bc7 2047 int collisions = 0;
2a74003a 2048 LIST_HEAD(invalid_list);
cea0f0e7 2049
36d9594d 2050 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2051 role.level = level;
f6e2c02b 2052 role.direct = direct;
84b0c8c6 2053 if (role.direct)
47c42e6b 2054 role.gpte_is_8_bytes = true;
41074d07 2055 role.access = access;
fb58a9c3 2056 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2057 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2058 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2059 role.quadrant = quadrant;
2060 }
ac101b7c
SC
2061
2062 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2063 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2064 if (sp->gfn != gfn) {
2065 collisions++;
2066 continue;
2067 }
2068
7ae680eb
XG
2069 if (!need_sync && sp->unsync)
2070 need_sync = true;
4731d4c7 2071
7ae680eb
XG
2072 if (sp->role.word != role.word)
2073 continue;
4731d4c7 2074
fb58a9c3
SC
2075 if (direct_mmu)
2076 goto trace_get_page;
2077
2a74003a
PB
2078 if (sp->unsync) {
2079 /* The page is good, but __kvm_sync_page might still end
2080 * up zapping it. If so, break in order to rebuild it.
2081 */
2082 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2083 break;
2084
2085 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2086 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2087 }
e02aa901 2088
98bba238 2089 if (sp->unsync_children)
f6f6195b 2090 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2091
a30f47cb 2092 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2093
2094trace_get_page:
7ae680eb 2095 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2096 goto out;
7ae680eb 2097 }
47005792 2098
dfc5aa00 2099 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2100
2101 sp = kvm_mmu_alloc_page(vcpu, direct);
2102
4db35314
AK
2103 sp->gfn = gfn;
2104 sp->role = role;
ac101b7c 2105 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2106 if (!direct) {
56ca57f9
XG
2107 /*
2108 * we should do write protection before syncing pages
2109 * otherwise the content of the synced shadow page may
2110 * be inconsistent with guest page table.
2111 */
2112 account_shadowed(vcpu->kvm, sp);
3bae0459 2113 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2114 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2115
3bae0459 2116 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2117 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2118 }
f691fe1d 2119 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2120
2121 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2122out:
2123 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2124 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2125 return sp;
cea0f0e7
AK
2126}
2127
7eb77e9f
JS
2128static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2129 struct kvm_vcpu *vcpu, hpa_t root,
2130 u64 addr)
2d11123a
AK
2131{
2132 iterator->addr = addr;
7eb77e9f 2133 iterator->shadow_addr = root;
44dd3ffa 2134 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2135
2a7266a8 2136 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2137 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2138 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2139 --iterator->level;
2140
2d11123a 2141 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2142 /*
2143 * prev_root is currently only used for 64-bit hosts. So only
2144 * the active root_hpa is valid here.
2145 */
44dd3ffa 2146 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2147
2d11123a 2148 iterator->shadow_addr
44dd3ffa 2149 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2150 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2151 --iterator->level;
2152 if (!iterator->shadow_addr)
2153 iterator->level = 0;
2154 }
2155}
2156
7eb77e9f
JS
2157static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2158 struct kvm_vcpu *vcpu, u64 addr)
2159{
44dd3ffa 2160 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2161 addr);
2162}
2163
2d11123a
AK
2164static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2165{
3bae0459 2166 if (iterator->level < PG_LEVEL_4K)
2d11123a 2167 return false;
4d88954d 2168
2d11123a
AK
2169 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2170 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2171 return true;
2172}
2173
c2a2ac2b
XG
2174static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2175 u64 spte)
2d11123a 2176{
c2a2ac2b 2177 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2178 iterator->level = 0;
2179 return;
2180 }
2181
c2a2ac2b 2182 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2183 --iterator->level;
2184}
2185
c2a2ac2b
XG
2186static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2187{
bb606a9b 2188 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2189}
2190
cc4674d0
BG
2191static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2192 struct kvm_mmu_page *sp)
2193{
2194 u64 spte;
2195
2196 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2197
2198 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2199
1df9f2dc 2200 mmu_spte_set(sptep, spte);
98bba238
TY
2201
2202 mmu_page_add_parent_pte(vcpu, sp, sptep);
2203
2204 if (sp->unsync_children || sp->unsync)
2205 mark_unsync(sptep);
32ef26a3
AK
2206}
2207
a357bd22
AK
2208static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2209 unsigned direct_access)
2210{
2211 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2212 struct kvm_mmu_page *child;
2213
2214 /*
2215 * For the direct sp, if the guest pte's dirty bit
2216 * changed form clean to dirty, it will corrupt the
2217 * sp's access: allow writable in the read-only sp,
2218 * so we should update the spte at this point to get
2219 * a new sp with the correct access.
2220 */
e47c4aee 2221 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2222 if (child->role.access == direct_access)
2223 return;
2224
bcdd9a93 2225 drop_parent_pte(child, sptep);
c3134ce2 2226 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2227 }
2228}
2229
2de4085c
BG
2230/* Returns the number of zapped non-leaf child shadow pages. */
2231static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2232 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2233{
2234 u64 pte;
2235 struct kvm_mmu_page *child;
2236
2237 pte = *spte;
2238 if (is_shadow_present_pte(pte)) {
505aef8f 2239 if (is_last_spte(pte, sp->role.level)) {
c3707958 2240 drop_spte(kvm, spte);
505aef8f
XG
2241 if (is_large_pte(pte))
2242 --kvm->stat.lpages;
2243 } else {
e47c4aee 2244 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2245 drop_parent_pte(child, spte);
2de4085c
BG
2246
2247 /*
2248 * Recursively zap nested TDP SPs, parentless SPs are
2249 * unlikely to be used again in the near future. This
2250 * avoids retaining a large number of stale nested SPs.
2251 */
2252 if (tdp_enabled && invalid_list &&
2253 child->role.guest_mode && !child->parent_ptes.val)
2254 return kvm_mmu_prepare_zap_page(kvm, child,
2255 invalid_list);
38e3b2b2 2256 }
ace569e0 2257 } else if (is_mmio_spte(pte)) {
ce88decf 2258 mmu_spte_clear_no_track(spte);
ace569e0 2259 }
2de4085c 2260 return 0;
38e3b2b2
XG
2261}
2262
2de4085c
BG
2263static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2264 struct kvm_mmu_page *sp,
2265 struct list_head *invalid_list)
a436036b 2266{
2de4085c 2267 int zapped = 0;
697fe2e2 2268 unsigned i;
697fe2e2 2269
38e3b2b2 2270 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2271 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2272
2273 return zapped;
a436036b
AK
2274}
2275
31aa2b44 2276static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2277{
1e3f42f0
TY
2278 u64 *sptep;
2279 struct rmap_iterator iter;
a436036b 2280
018aabb5 2281 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2282 drop_parent_pte(sp, sptep);
31aa2b44
AK
2283}
2284
60c8aec6 2285static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2286 struct kvm_mmu_page *parent,
2287 struct list_head *invalid_list)
4731d4c7 2288{
60c8aec6
MT
2289 int i, zapped = 0;
2290 struct mmu_page_path parents;
2291 struct kvm_mmu_pages pages;
4731d4c7 2292
3bae0459 2293 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2294 return 0;
60c8aec6 2295
60c8aec6
MT
2296 while (mmu_unsync_walk(parent, &pages)) {
2297 struct kvm_mmu_page *sp;
2298
2299 for_each_sp(pages, sp, parents, i) {
7775834a 2300 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2301 mmu_pages_clear_parents(&parents);
77662e00 2302 zapped++;
60c8aec6 2303 }
60c8aec6
MT
2304 }
2305
2306 return zapped;
4731d4c7
MT
2307}
2308
83cdb568
SC
2309static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2310 struct kvm_mmu_page *sp,
2311 struct list_head *invalid_list,
2312 int *nr_zapped)
31aa2b44 2313{
83cdb568 2314 bool list_unstable;
f691fe1d 2315
7775834a 2316 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2317 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2318 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2319 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2320 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2321
83cdb568
SC
2322 /* Zapping children means active_mmu_pages has become unstable. */
2323 list_unstable = *nr_zapped;
2324
f6e2c02b 2325 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2326 unaccount_shadowed(kvm, sp);
5304b8d3 2327
4731d4c7
MT
2328 if (sp->unsync)
2329 kvm_unlink_unsync_page(kvm, sp);
4db35314 2330 if (!sp->root_count) {
54a4f023 2331 /* Count self */
83cdb568 2332 (*nr_zapped)++;
f95eec9b
SC
2333
2334 /*
2335 * Already invalid pages (previously active roots) are not on
2336 * the active page list. See list_del() in the "else" case of
2337 * !sp->root_count.
2338 */
2339 if (sp->role.invalid)
2340 list_add(&sp->link, invalid_list);
2341 else
2342 list_move(&sp->link, invalid_list);
aa6bd187 2343 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2344 } else {
f95eec9b
SC
2345 /*
2346 * Remove the active root from the active page list, the root
2347 * will be explicitly freed when the root_count hits zero.
2348 */
2349 list_del(&sp->link);
05988d72 2350
10605204
SC
2351 /*
2352 * Obsolete pages cannot be used on any vCPUs, see the comment
2353 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2354 * treats invalid shadow pages as being obsolete.
2355 */
2356 if (!is_obsolete_sp(kvm, sp))
05988d72 2357 kvm_reload_remote_mmus(kvm);
2e53d63a 2358 }
7775834a 2359
b8e8c830
PB
2360 if (sp->lpage_disallowed)
2361 unaccount_huge_nx_page(kvm, sp);
2362
7775834a 2363 sp->role.invalid = 1;
83cdb568
SC
2364 return list_unstable;
2365}
2366
2367static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2368 struct list_head *invalid_list)
2369{
2370 int nr_zapped;
2371
2372 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2373 return nr_zapped;
a436036b
AK
2374}
2375
7775834a
XG
2376static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2377 struct list_head *invalid_list)
2378{
945315b9 2379 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2380
2381 if (list_empty(invalid_list))
2382 return;
2383
c142786c 2384 /*
9753f529
LT
2385 * We need to make sure everyone sees our modifications to
2386 * the page tables and see changes to vcpu->mode here. The barrier
2387 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2388 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2389 *
2390 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2391 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2392 */
2393 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2394
945315b9 2395 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2396 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2397 kvm_mmu_free_page(sp);
945315b9 2398 }
7775834a
XG
2399}
2400
6b82ef2c
SC
2401static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2402 unsigned long nr_to_zap)
5da59607 2403{
6b82ef2c
SC
2404 unsigned long total_zapped = 0;
2405 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2406 LIST_HEAD(invalid_list);
6b82ef2c
SC
2407 bool unstable;
2408 int nr_zapped;
5da59607
TY
2409
2410 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2411 return 0;
2412
6b82ef2c 2413restart:
8fc51726 2414 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
6b82ef2c
SC
2415 /*
2416 * Don't zap active root pages, the page itself can't be freed
2417 * and zapping it will just force vCPUs to realloc and reload.
2418 */
2419 if (sp->root_count)
2420 continue;
2421
2422 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2423 &nr_zapped);
2424 total_zapped += nr_zapped;
2425 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2426 break;
2427
6b82ef2c
SC
2428 if (unstable)
2429 goto restart;
ba7888dd 2430 }
5da59607 2431
6b82ef2c
SC
2432 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2433
2434 kvm->stat.mmu_recycled += total_zapped;
2435 return total_zapped;
2436}
2437
afe8d7e6
SC
2438static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2439{
2440 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2441 return kvm->arch.n_max_mmu_pages -
2442 kvm->arch.n_used_mmu_pages;
2443
2444 return 0;
5da59607
TY
2445}
2446
ba7888dd
SC
2447static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2448{
6b82ef2c 2449 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2450
6b82ef2c 2451 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2452 return 0;
2453
6b82ef2c 2454 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2455
2456 if (!kvm_mmu_available_pages(vcpu->kvm))
2457 return -ENOSPC;
2458 return 0;
2459}
2460
82ce2c96
IE
2461/*
2462 * Changing the number of mmu pages allocated to the vm
49d5ca26 2463 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2464 */
bc8a3d89 2465void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2466{
b34cb590
TY
2467 spin_lock(&kvm->mmu_lock);
2468
49d5ca26 2469 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2470 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2471 goal_nr_mmu_pages);
82ce2c96 2472
49d5ca26 2473 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2474 }
82ce2c96 2475
49d5ca26 2476 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2477
2478 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2479}
2480
1cb3f3ae 2481int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2482{
4db35314 2483 struct kvm_mmu_page *sp;
d98ba053 2484 LIST_HEAD(invalid_list);
a436036b
AK
2485 int r;
2486
9ad17b10 2487 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2488 r = 0;
1cb3f3ae 2489 spin_lock(&kvm->mmu_lock);
b67bfe0d 2490 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2491 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2492 sp->role.word);
2493 r = 1;
f41d335a 2494 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2495 }
d98ba053 2496 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2497 spin_unlock(&kvm->mmu_lock);
2498
a436036b 2499 return r;
cea0f0e7 2500}
1cb3f3ae 2501EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2502
5c520e90 2503static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2504{
2505 trace_kvm_mmu_unsync_page(sp);
2506 ++vcpu->kvm->stat.mmu_unsync;
2507 sp->unsync = 1;
2508
2509 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2510}
2511
5a9624af
PB
2512bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2513 bool can_unsync)
4731d4c7 2514{
5c520e90 2515 struct kvm_mmu_page *sp;
4731d4c7 2516
3d0c27ad
XG
2517 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2518 return true;
9cf5cf5a 2519
5c520e90 2520 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2521 if (!can_unsync)
3d0c27ad 2522 return true;
36a2e677 2523
5c520e90
XG
2524 if (sp->unsync)
2525 continue;
9cf5cf5a 2526
3bae0459 2527 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2528 kvm_unsync_page(vcpu, sp);
4731d4c7 2529 }
3d0c27ad 2530
578e1c4d
JS
2531 /*
2532 * We need to ensure that the marking of unsync pages is visible
2533 * before the SPTE is updated to allow writes because
2534 * kvm_mmu_sync_roots() checks the unsync flags without holding
2535 * the MMU lock and so can race with this. If the SPTE was updated
2536 * before the page had been marked as unsync-ed, something like the
2537 * following could happen:
2538 *
2539 * CPU 1 CPU 2
2540 * ---------------------------------------------------------------------
2541 * 1.2 Host updates SPTE
2542 * to be writable
2543 * 2.1 Guest writes a GPTE for GVA X.
2544 * (GPTE being in the guest page table shadowed
2545 * by the SP from CPU 1.)
2546 * This reads SPTE during the page table walk.
2547 * Since SPTE.W is read as 1, there is no
2548 * fault.
2549 *
2550 * 2.2 Guest issues TLB flush.
2551 * That causes a VM Exit.
2552 *
2553 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2554 * Since it is false, so it just returns.
2555 *
2556 * 2.4 Guest accesses GVA X.
2557 * Since the mapping in the SP was not updated,
2558 * so the old mapping for GVA X incorrectly
2559 * gets used.
2560 * 1.1 Host marks SP
2561 * as unsync
2562 * (sp->unsync = true)
2563 *
2564 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2565 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2566 * pairs with this write barrier.
2567 */
2568 smp_wmb();
2569
3d0c27ad 2570 return false;
4731d4c7
MT
2571}
2572
799a4190
BG
2573static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2574 unsigned int pte_access, int level,
2575 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2576 bool can_unsync, bool host_writable)
2577{
2578 u64 spte;
2579 struct kvm_mmu_page *sp;
2580 int ret;
2581
2582 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2583 return 0;
2584
2585 sp = sptep_to_sp(sptep);
2586
2587 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2588 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2589
2590 if (spte & PT_WRITABLE_MASK)
2591 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2592
12703759
SC
2593 if (*sptep == spte)
2594 ret |= SET_SPTE_SPURIOUS;
2595 else if (mmu_spte_update(sptep, spte))
5ce4786f 2596 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2597 return ret;
2598}
2599
0a2b64c5 2600static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2601 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2602 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2603 bool host_writable)
1e73f9dd
MT
2604{
2605 int was_rmapped = 0;
53a27b39 2606 int rmap_count;
5ce4786f 2607 int set_spte_ret;
c4371c2a 2608 int ret = RET_PF_FIXED;
c2a4eadf 2609 bool flush = false;
1e73f9dd 2610
f7616203
XG
2611 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2612 *sptep, write_fault, gfn);
1e73f9dd 2613
afd28fe1 2614 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2615 /*
2616 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2617 * the parent of the now unreachable PTE.
2618 */
3bae0459 2619 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2620 struct kvm_mmu_page *child;
d555c333 2621 u64 pte = *sptep;
1e73f9dd 2622
e47c4aee 2623 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2624 drop_parent_pte(child, sptep);
c2a4eadf 2625 flush = true;
d555c333 2626 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2627 pgprintk("hfn old %llx new %llx\n",
d555c333 2628 spte_to_pfn(*sptep), pfn);
c3707958 2629 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2630 flush = true;
6bed6b9e
JR
2631 } else
2632 was_rmapped = 1;
1e73f9dd 2633 }
852e3c19 2634
5ce4786f
JS
2635 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2636 speculative, true, host_writable);
2637 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2638 if (write_fault)
9b8ebbdb 2639 ret = RET_PF_EMULATE;
8c8560b8 2640 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2641 }
c3134ce2 2642
c2a4eadf 2643 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2644 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2645 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2646
029499b4 2647 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2648 ret = RET_PF_EMULATE;
ce88decf 2649
12703759
SC
2650 /*
2651 * The fault is fully spurious if and only if the new SPTE and old SPTE
2652 * are identical, and emulation is not required.
2653 */
2654 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2655 WARN_ON_ONCE(!was_rmapped);
2656 return RET_PF_SPURIOUS;
2657 }
2658
d555c333 2659 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2660 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2661 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2662 ++vcpu->kvm->stat.lpages;
2663
ffb61bb3 2664 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2665 if (!was_rmapped) {
2666 rmap_count = rmap_add(vcpu, sptep, gfn);
2667 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2668 rmap_recycle(vcpu, sptep, gfn);
2669 }
1c4f1fd6 2670 }
cb9aaa30 2671
9b8ebbdb 2672 return ret;
1c4f1fd6
AK
2673}
2674
ba049e93 2675static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2676 bool no_dirty_log)
2677{
2678 struct kvm_memory_slot *slot;
957ed9ef 2679
5d163b1c 2680 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2681 if (!slot)
6c8ee57b 2682 return KVM_PFN_ERR_FAULT;
957ed9ef 2683
037d92dc 2684 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2685}
2686
2687static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2688 struct kvm_mmu_page *sp,
2689 u64 *start, u64 *end)
2690{
2691 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2692 struct kvm_memory_slot *slot;
0a2b64c5 2693 unsigned int access = sp->role.access;
957ed9ef
XG
2694 int i, ret;
2695 gfn_t gfn;
2696
2697 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2698 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2699 if (!slot)
957ed9ef
XG
2700 return -1;
2701
d9ef13c2 2702 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2703 if (ret <= 0)
2704 return -1;
2705
43fdcda9 2706 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2707 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2708 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2709 put_page(pages[i]);
2710 }
957ed9ef
XG
2711
2712 return 0;
2713}
2714
2715static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2716 struct kvm_mmu_page *sp, u64 *sptep)
2717{
2718 u64 *spte, *start = NULL;
2719 int i;
2720
2721 WARN_ON(!sp->role.direct);
2722
2723 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2724 spte = sp->spt + i;
2725
2726 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2727 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2728 if (!start)
2729 continue;
2730 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2731 break;
2732 start = NULL;
2733 } else if (!start)
2734 start = spte;
2735 }
2736}
2737
2738static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2739{
2740 struct kvm_mmu_page *sp;
2741
57354682 2742 sp = sptep_to_sp(sptep);
ac8d57e5 2743
957ed9ef 2744 /*
ac8d57e5
PF
2745 * Without accessed bits, there's no way to distinguish between
2746 * actually accessed translations and prefetched, so disable pte
2747 * prefetch if accessed bits aren't available.
957ed9ef 2748 */
ac8d57e5 2749 if (sp_ad_disabled(sp))
957ed9ef
XG
2750 return;
2751
3bae0459 2752 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2753 return;
2754
2755 __direct_pte_prefetch(vcpu, sp, sptep);
2756}
2757
db543216 2758static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 2759 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 2760{
db543216
SC
2761 unsigned long hva;
2762 pte_t *pte;
2763 int level;
2764
e851265a 2765 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2766 return PG_LEVEL_4K;
db543216 2767
293e306e
SC
2768 /*
2769 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2770 * is not solely for performance, it's also necessary to avoid the
2771 * "writable" check in __gfn_to_hva_many(), which will always fail on
2772 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2773 * page fault steps have already verified the guest isn't writing a
2774 * read-only memslot.
2775 */
db543216
SC
2776 hva = __gfn_to_hva_memslot(slot, gfn);
2777
2778 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2779 if (unlikely(!pte))
3bae0459 2780 return PG_LEVEL_4K;
db543216
SC
2781
2782 return level;
2783}
2784
bb18842e
BG
2785int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2786 int max_level, kvm_pfn_t *pfnp,
2787 bool huge_page_disallowed, int *req_level)
0885904d 2788{
293e306e 2789 struct kvm_memory_slot *slot;
2c0629f4 2790 struct kvm_lpage_info *linfo;
0885904d 2791 kvm_pfn_t pfn = *pfnp;
17eff019 2792 kvm_pfn_t mask;
83f06fa7 2793 int level;
17eff019 2794
3cf06612
SC
2795 *req_level = PG_LEVEL_4K;
2796
3bae0459
SC
2797 if (unlikely(max_level == PG_LEVEL_4K))
2798 return PG_LEVEL_4K;
17eff019 2799
e851265a 2800 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2801 return PG_LEVEL_4K;
17eff019 2802
293e306e
SC
2803 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2804 if (!slot)
3bae0459 2805 return PG_LEVEL_4K;
293e306e 2806
1d92d2e8 2807 max_level = min(max_level, max_huge_page_level);
3bae0459 2808 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
2809 linfo = lpage_info_slot(gfn, slot, max_level);
2810 if (!linfo->disallow_lpage)
293e306e
SC
2811 break;
2812 }
2813
3bae0459
SC
2814 if (max_level == PG_LEVEL_4K)
2815 return PG_LEVEL_4K;
293e306e
SC
2816
2817 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 2818 if (level == PG_LEVEL_4K)
83f06fa7 2819 return level;
17eff019 2820
3cf06612
SC
2821 *req_level = level = min(level, max_level);
2822
2823 /*
2824 * Enforce the iTLB multihit workaround after capturing the requested
2825 * level, which will be used to do precise, accurate accounting.
2826 */
2827 if (huge_page_disallowed)
2828 return PG_LEVEL_4K;
0885904d
SC
2829
2830 /*
17eff019
SC
2831 * mmu_notifier_retry() was successful and mmu_lock is held, so
2832 * the pmd can't be split from under us.
0885904d 2833 */
17eff019
SC
2834 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2835 VM_BUG_ON((gfn & mask) != (pfn & mask));
2836 *pfnp = pfn & ~mask;
83f06fa7
SC
2837
2838 return level;
0885904d
SC
2839}
2840
bb18842e
BG
2841void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2842 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2843{
bb18842e 2844 int level = *goal_levelp;
b8e8c830 2845
7d945312 2846 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2847 is_shadow_present_pte(spte) &&
2848 !is_large_pte(spte)) {
2849 /*
2850 * A small SPTE exists for this pfn, but FNAME(fetch)
2851 * and __direct_map would like to create a large PTE
2852 * instead: just force them to go down another level,
2853 * patching back for them into pfn the next 9 bits of
2854 * the address.
2855 */
7d945312
BG
2856 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2857 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2858 *pfnp |= gfn & page_mask;
bb18842e 2859 (*goal_levelp)--;
b8e8c830
PB
2860 }
2861}
2862
6c2fd34f 2863static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2864 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2865 bool prefault, bool is_tdp)
140754bc 2866{
6c2fd34f
SC
2867 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2868 bool write = error_code & PFERR_WRITE_MASK;
2869 bool exec = error_code & PFERR_FETCH_MASK;
2870 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2871 struct kvm_shadow_walk_iterator it;
140754bc 2872 struct kvm_mmu_page *sp;
3cf06612 2873 int level, req_level, ret;
3fcf2d1b
PB
2874 gfn_t gfn = gpa >> PAGE_SHIFT;
2875 gfn_t base_gfn = gfn;
6aa8b732 2876
0c7a98e3 2877 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2878 return RET_PF_RETRY;
989c6b34 2879
3cf06612
SC
2880 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2881 huge_page_disallowed, &req_level);
4cd071d1 2882
335e192a 2883 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2884 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2885 /*
2886 * We cannot overwrite existing page tables with an NX
2887 * large page, as the leaf could be executable.
2888 */
dcc70651 2889 if (nx_huge_page_workaround_enabled)
7d945312
BG
2890 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2891 &pfn, &level);
b8e8c830 2892
3fcf2d1b
PB
2893 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2894 if (it.level == level)
9f652d21 2895 break;
6aa8b732 2896
3fcf2d1b
PB
2897 drop_large_spte(vcpu, it.sptep);
2898 if (!is_shadow_present_pte(*it.sptep)) {
2899 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2900 it.level - 1, true, ACC_ALL);
c9fa0b3b 2901
3fcf2d1b 2902 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2903 if (is_tdp && huge_page_disallowed &&
2904 req_level >= it.level)
b8e8c830 2905 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2906 }
2907 }
3fcf2d1b
PB
2908
2909 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2910 write, level, base_gfn, pfn, prefault,
2911 map_writable);
12703759
SC
2912 if (ret == RET_PF_SPURIOUS)
2913 return ret;
2914
3fcf2d1b
PB
2915 direct_pte_prefetch(vcpu, it.sptep);
2916 ++vcpu->stat.pf_fixed;
2917 return ret;
6aa8b732
AK
2918}
2919
77db5cbd 2920static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2921{
585a8b9b 2922 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2923}
2924
ba049e93 2925static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2926{
4d8b81ab
XG
2927 /*
2928 * Do not cache the mmio info caused by writing the readonly gfn
2929 * into the spte otherwise read access on readonly gfn also can
2930 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2931 */
2932 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2933 return RET_PF_EMULATE;
4d8b81ab 2934
e6c1502b 2935 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2936 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2937 return RET_PF_RETRY;
d7c55201 2938 }
edba23e5 2939
2c151b25 2940 return -EFAULT;
bf998156
HY
2941}
2942
d7c55201 2943static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2944 kvm_pfn_t pfn, unsigned int access,
2945 int *ret_val)
d7c55201 2946{
d7c55201 2947 /* The pfn is invalid, report the error! */
81c52c56 2948 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2949 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2950 return true;
d7c55201
XG
2951 }
2952
ce88decf 2953 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
2954 vcpu_cache_mmio_info(vcpu, gva, gfn,
2955 access & shadow_mmio_access_mask);
d7c55201 2956
798e88b3 2957 return false;
d7c55201
XG
2958}
2959
e5552fd2 2960static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2961{
1c118b82
XG
2962 /*
2963 * Do not fix the mmio spte with invalid generation number which
2964 * need to be updated by slow page fault path.
2965 */
2966 if (unlikely(error_code & PFERR_RSVD_MASK))
2967 return false;
2968
f160c7b7
JS
2969 /* See if the page fault is due to an NX violation */
2970 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2971 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2972 return false;
2973
c7ba5b48 2974 /*
f160c7b7
JS
2975 * #PF can be fast if:
2976 * 1. The shadow page table entry is not present, which could mean that
2977 * the fault is potentially caused by access tracking (if enabled).
2978 * 2. The shadow page table entry is present and the fault
2979 * is caused by write-protect, that means we just need change the W
2980 * bit of the spte which can be done out of mmu-lock.
2981 *
2982 * However, if access tracking is disabled we know that a non-present
2983 * page must be a genuine page fault where we have to create a new SPTE.
2984 * So, if access tracking is disabled, we return true only for write
2985 * accesses to a present page.
c7ba5b48 2986 */
c7ba5b48 2987
f160c7b7
JS
2988 return shadow_acc_track_mask != 0 ||
2989 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2990 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2991}
2992
97dceba2
JS
2993/*
2994 * Returns true if the SPTE was fixed successfully. Otherwise,
2995 * someone else modified the SPTE from its original value.
2996 */
c7ba5b48 2997static bool
92a476cb 2998fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 2999 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3000{
c7ba5b48
XG
3001 gfn_t gfn;
3002
3003 WARN_ON(!sp->role.direct);
3004
9b51a630
KH
3005 /*
3006 * Theoretically we could also set dirty bit (and flush TLB) here in
3007 * order to eliminate unnecessary PML logging. See comments in
3008 * set_spte. But fast_page_fault is very unlikely to happen with PML
3009 * enabled, so we do not do this. This might result in the same GPA
3010 * to be logged in PML buffer again when the write really happens, and
3011 * eventually to be called by mark_page_dirty twice. But it's also no
3012 * harm. This also avoids the TLB flush needed after setting dirty bit
3013 * so non-PML cases won't be impacted.
3014 *
3015 * Compare with set_spte where instead shadow_dirty_mask is set.
3016 */
f160c7b7 3017 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3018 return false;
3019
d3e328f2 3020 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3021 /*
3022 * The gfn of direct spte is stable since it is
3023 * calculated by sp->gfn.
3024 */
3025 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3026 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3027 }
c7ba5b48
XG
3028
3029 return true;
3030}
3031
d3e328f2
JS
3032static bool is_access_allowed(u32 fault_err_code, u64 spte)
3033{
3034 if (fault_err_code & PFERR_FETCH_MASK)
3035 return is_executable_pte(spte);
3036
3037 if (fault_err_code & PFERR_WRITE_MASK)
3038 return is_writable_pte(spte);
3039
3040 /* Fault was on Read access */
3041 return spte & PT_PRESENT_MASK;
3042}
3043
c7ba5b48 3044/*
c4371c2a 3045 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3046 */
c4371c2a
SC
3047static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3048 u32 error_code)
c7ba5b48
XG
3049{
3050 struct kvm_shadow_walk_iterator iterator;
92a476cb 3051 struct kvm_mmu_page *sp;
c4371c2a 3052 int ret = RET_PF_INVALID;
c7ba5b48 3053 u64 spte = 0ull;
97dceba2 3054 uint retry_count = 0;
c7ba5b48 3055
e5552fd2 3056 if (!page_fault_can_be_fast(error_code))
c4371c2a 3057 return ret;
c7ba5b48
XG
3058
3059 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3060
97dceba2 3061 do {
d3e328f2 3062 u64 new_spte;
c7ba5b48 3063
736c291c 3064 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3065 if (!is_shadow_present_pte(spte))
d162f30a
JS
3066 break;
3067
57354682 3068 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3069 if (!is_last_spte(spte, sp->role.level))
3070 break;
c7ba5b48 3071
97dceba2 3072 /*
f160c7b7
JS
3073 * Check whether the memory access that caused the fault would
3074 * still cause it if it were to be performed right now. If not,
3075 * then this is a spurious fault caused by TLB lazily flushed,
3076 * or some other CPU has already fixed the PTE after the
3077 * current CPU took the fault.
97dceba2
JS
3078 *
3079 * Need not check the access of upper level table entries since
3080 * they are always ACC_ALL.
3081 */
d3e328f2 3082 if (is_access_allowed(error_code, spte)) {
c4371c2a 3083 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3084 break;
3085 }
f160c7b7 3086
d3e328f2
JS
3087 new_spte = spte;
3088
3089 if (is_access_track_spte(spte))
3090 new_spte = restore_acc_track_spte(new_spte);
3091
3092 /*
3093 * Currently, to simplify the code, write-protection can
3094 * be removed in the fast path only if the SPTE was
3095 * write-protected for dirty-logging or access tracking.
3096 */
3097 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3098 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3099 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3100
3101 /*
d3e328f2
JS
3102 * Do not fix write-permission on the large spte. Since
3103 * we only dirty the first page into the dirty-bitmap in
3104 * fast_pf_fix_direct_spte(), other pages are missed
3105 * if its slot has dirty logging enabled.
3106 *
3107 * Instead, we let the slow page fault path create a
3108 * normal spte to fix the access.
3109 *
3110 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3111 */
3bae0459 3112 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3113 break;
97dceba2 3114 }
c7ba5b48 3115
f160c7b7 3116 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3117 if (new_spte == spte ||
3118 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3119 break;
3120
3121 /*
3122 * Currently, fast page fault only works for direct mapping
3123 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3124 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3125 */
c4371c2a
SC
3126 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3127 new_spte)) {
3128 ret = RET_PF_FIXED;
97dceba2 3129 break;
c4371c2a 3130 }
97dceba2
JS
3131
3132 if (++retry_count > 4) {
3133 printk_once(KERN_WARNING
3134 "kvm: Fast #PF retrying more than 4 times.\n");
3135 break;
3136 }
3137
97dceba2 3138 } while (true);
c126d94f 3139
736c291c 3140 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3141 spte, ret);
c7ba5b48
XG
3142 walk_shadow_page_lockless_end(vcpu);
3143
c4371c2a 3144 return ret;
c7ba5b48
XG
3145}
3146
74b566e6
JS
3147static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3148 struct list_head *invalid_list)
17ac10ad 3149{
4db35314 3150 struct kvm_mmu_page *sp;
17ac10ad 3151
74b566e6 3152 if (!VALID_PAGE(*root_hpa))
7b53aa56 3153 return;
35af577a 3154
e47c4aee 3155 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3156
3157 if (kvm_mmu_put_root(kvm, sp)) {
3158 if (sp->tdp_mmu_page)
3159 kvm_tdp_mmu_free_root(kvm, sp);
3160 else if (sp->role.invalid)
3161 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3162 }
17ac10ad 3163
74b566e6
JS
3164 *root_hpa = INVALID_PAGE;
3165}
3166
08fb59d8 3167/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3168void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3169 ulong roots_to_free)
74b566e6 3170{
4d710de9 3171 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3172 int i;
3173 LIST_HEAD(invalid_list);
08fb59d8 3174 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3175
b94742c9 3176 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3177
08fb59d8 3178 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3179 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3180 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3181 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3182 VALID_PAGE(mmu->prev_roots[i].hpa))
3183 break;
3184
3185 if (i == KVM_MMU_NUM_PREV_ROOTS)
3186 return;
3187 }
35af577a 3188
4d710de9 3189 spin_lock(&kvm->mmu_lock);
17ac10ad 3190
b94742c9
JS
3191 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3192 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3193 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3194 &invalid_list);
7c390d35 3195
08fb59d8
JS
3196 if (free_active_root) {
3197 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3198 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3199 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
08fb59d8
JS
3200 } else {
3201 for (i = 0; i < 4; ++i)
3202 if (mmu->pae_root[i] != 0)
4d710de9 3203 mmu_free_root_page(kvm,
08fb59d8
JS
3204 &mmu->pae_root[i],
3205 &invalid_list);
3206 mmu->root_hpa = INVALID_PAGE;
3207 }
be01e8e2 3208 mmu->root_pgd = 0;
17ac10ad 3209 }
74b566e6 3210
4d710de9
SC
3211 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3212 spin_unlock(&kvm->mmu_lock);
17ac10ad 3213}
74b566e6 3214EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3215
8986ecc0
MT
3216static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3217{
3218 int ret = 0;
3219
995decb6 3220 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3221 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3222 ret = 1;
3223 }
3224
3225 return ret;
3226}
3227
8123f265
SC
3228static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3229 u8 level, bool direct)
651dd37a
JR
3230{
3231 struct kvm_mmu_page *sp;
8123f265
SC
3232
3233 spin_lock(&vcpu->kvm->mmu_lock);
3234
3235 if (make_mmu_pages_available(vcpu)) {
3236 spin_unlock(&vcpu->kvm->mmu_lock);
3237 return INVALID_PAGE;
3238 }
3239 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3240 ++sp->root_count;
3241
3242 spin_unlock(&vcpu->kvm->mmu_lock);
3243 return __pa(sp->spt);
3244}
3245
3246static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3247{
3248 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3249 hpa_t root;
7ebaf15e 3250 unsigned i;
651dd37a 3251
02c00b3a
BG
3252 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3253 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3254
3255 if (!VALID_PAGE(root))
3256 return -ENOSPC;
3257 vcpu->arch.mmu->root_hpa = root;
3258 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3259 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3260 true);
3261
8123f265 3262 if (!VALID_PAGE(root))
ed52870f 3263 return -ENOSPC;
8123f265
SC
3264 vcpu->arch.mmu->root_hpa = root;
3265 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3266 for (i = 0; i < 4; ++i) {
8123f265 3267 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3268
8123f265
SC
3269 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3270 i << 30, PT32_ROOT_LEVEL, true);
3271 if (!VALID_PAGE(root))
ed52870f 3272 return -ENOSPC;
44dd3ffa 3273 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3274 }
44dd3ffa 3275 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3276 } else
3277 BUG();
3651c7fc 3278
be01e8e2
SC
3279 /* root_pgd is ignored for direct MMUs. */
3280 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3281
3282 return 0;
3283}
3284
3285static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3286{
81407ca5 3287 u64 pdptr, pm_mask;
be01e8e2 3288 gfn_t root_gfn, root_pgd;
8123f265 3289 hpa_t root;
81407ca5 3290 int i;
3bb65a22 3291
be01e8e2
SC
3292 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3293 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3294
651dd37a
JR
3295 if (mmu_check_root(vcpu, root_gfn))
3296 return 1;
3297
3298 /*
3299 * Do we shadow a long mode page table? If so we need to
3300 * write-protect the guests page table root.
3301 */
44dd3ffa 3302 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3303 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3304
8123f265
SC
3305 root = mmu_alloc_root(vcpu, root_gfn, 0,
3306 vcpu->arch.mmu->shadow_root_level, false);
3307 if (!VALID_PAGE(root))
ed52870f 3308 return -ENOSPC;
44dd3ffa 3309 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3310 goto set_root_pgd;
17ac10ad 3311 }
f87f9288 3312
651dd37a
JR
3313 /*
3314 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3315 * or a PAE 3-level page table. In either case we need to be aware that
3316 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3317 */
81407ca5 3318 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3319 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3320 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3321
17ac10ad 3322 for (i = 0; i < 4; ++i) {
8123f265 3323 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3324 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3325 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3326 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3327 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3328 continue;
3329 }
6de4f3ad 3330 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3331 if (mmu_check_root(vcpu, root_gfn))
3332 return 1;
5a7388c2 3333 }
8facbbff 3334
8123f265
SC
3335 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3336 PT32_ROOT_LEVEL, false);
3337 if (!VALID_PAGE(root))
3338 return -ENOSPC;
44dd3ffa 3339 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3340 }
44dd3ffa 3341 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3342
3343 /*
3344 * If we shadow a 32 bit page table with a long mode page
3345 * table we enter this path.
3346 */
44dd3ffa
VK
3347 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3348 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3349 /*
3350 * The additional page necessary for this is only
3351 * allocated on demand.
3352 */
3353
3354 u64 *lm_root;
3355
254272ce 3356 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3357 if (lm_root == NULL)
3358 return 1;
3359
44dd3ffa 3360 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3361
44dd3ffa 3362 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3363 }
3364
44dd3ffa 3365 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3366 }
3367
be01e8e2
SC
3368set_root_pgd:
3369 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3370
8986ecc0 3371 return 0;
17ac10ad
AK
3372}
3373
651dd37a
JR
3374static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3375{
44dd3ffa 3376 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3377 return mmu_alloc_direct_roots(vcpu);
3378 else
3379 return mmu_alloc_shadow_roots(vcpu);
3380}
3381
578e1c4d 3382void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3383{
3384 int i;
3385 struct kvm_mmu_page *sp;
3386
44dd3ffa 3387 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3388 return;
3389
44dd3ffa 3390 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3391 return;
6903074c 3392
56f17dd3 3393 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3394
44dd3ffa
VK
3395 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3396 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3397 sp = to_shadow_page(root);
578e1c4d
JS
3398
3399 /*
3400 * Even if another CPU was marking the SP as unsync-ed
3401 * simultaneously, any guest page table changes are not
3402 * guaranteed to be visible anyway until this VCPU issues a TLB
3403 * flush strictly after those changes are made. We only need to
3404 * ensure that the other CPU sets these flags before any actual
3405 * changes to the page tables are made. The comments in
3406 * mmu_need_write_protect() describe what could go wrong if this
3407 * requirement isn't satisfied.
3408 */
3409 if (!smp_load_acquire(&sp->unsync) &&
3410 !smp_load_acquire(&sp->unsync_children))
3411 return;
3412
3413 spin_lock(&vcpu->kvm->mmu_lock);
3414 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3415
0ba73cda 3416 mmu_sync_children(vcpu, sp);
578e1c4d 3417
0375f7fa 3418 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3419 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3420 return;
3421 }
578e1c4d
JS
3422
3423 spin_lock(&vcpu->kvm->mmu_lock);
3424 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3425
0ba73cda 3426 for (i = 0; i < 4; ++i) {
44dd3ffa 3427 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3428
8986ecc0 3429 if (root && VALID_PAGE(root)) {
0ba73cda 3430 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3431 sp = to_shadow_page(root);
0ba73cda
MT
3432 mmu_sync_children(vcpu, sp);
3433 }
3434 }
0ba73cda 3435
578e1c4d 3436 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3437 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3438}
bfd0a56b 3439EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3440
736c291c 3441static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3442 u32 access, struct x86_exception *exception)
6aa8b732 3443{
ab9ae313
AK
3444 if (exception)
3445 exception->error_code = 0;
6aa8b732
AK
3446 return vaddr;
3447}
3448
736c291c 3449static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3450 u32 access,
3451 struct x86_exception *exception)
6539e738 3452{
ab9ae313
AK
3453 if (exception)
3454 exception->error_code = 0;
54987b7a 3455 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3456}
3457
d625b155
XG
3458static bool
3459__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3460{
b5c3c1b3 3461 int bit7 = (pte >> 7) & 1;
d625b155 3462
b5c3c1b3 3463 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3464}
3465
b5c3c1b3 3466static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3467{
b5c3c1b3 3468 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3469}
3470
ded58749 3471static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3472{
9034e6e8
PB
3473 /*
3474 * A nested guest cannot use the MMIO cache if it is using nested
3475 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3476 */
3477 if (mmu_is_nested(vcpu))
3478 return false;
3479
ce88decf
XG
3480 if (direct)
3481 return vcpu_match_mmio_gpa(vcpu, addr);
3482
3483 return vcpu_match_mmio_gva(vcpu, addr);
3484}
3485
95fb5b02
BG
3486/*
3487 * Return the level of the lowest level SPTE added to sptes.
3488 * That SPTE may be non-present.
3489 */
39b4d43e 3490static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
ce88decf
XG
3491{
3492 struct kvm_shadow_walk_iterator iterator;
2aa07893 3493 int leaf = -1;
95fb5b02 3494 u64 spte;
ce88decf
XG
3495
3496 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3497
39b4d43e
SC
3498 for (shadow_walk_init(&iterator, vcpu, addr),
3499 *root_level = iterator.level;
47ab8751
XG
3500 shadow_walk_okay(&iterator);
3501 __shadow_walk_next(&iterator, spte)) {
95fb5b02 3502 leaf = iterator.level;
47ab8751
XG
3503 spte = mmu_spte_get_lockless(iterator.sptep);
3504
dde81f94 3505 sptes[leaf] = spte;
47ab8751 3506
ce88decf
XG
3507 if (!is_shadow_present_pte(spte))
3508 break;
95fb5b02
BG
3509 }
3510
3511 walk_shadow_page_lockless_end(vcpu);
3512
3513 return leaf;
3514}
3515
9aa41879 3516/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
95fb5b02
BG
3517static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3518{
dde81f94 3519 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
95fb5b02 3520 struct rsvd_bits_validate *rsvd_check;
39b4d43e 3521 int root, leaf, level;
95fb5b02
BG
3522 bool reserved = false;
3523
3524 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3525 *sptep = 0ull;
3526 return reserved;
3527 }
3528
3529 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
39b4d43e 3530 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
95fb5b02 3531 else
39b4d43e 3532 leaf = get_walk(vcpu, addr, sptes, &root);
95fb5b02 3533
2aa07893
SC
3534 if (unlikely(leaf < 0)) {
3535 *sptep = 0ull;
3536 return reserved;
3537 }
3538
9aa41879
SC
3539 *sptep = sptes[leaf];
3540
3541 /*
3542 * Skip reserved bits checks on the terminal leaf if it's not a valid
3543 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3544 * design, always have reserved bits set. The purpose of the checks is
3545 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3546 */
3547 if (!is_shadow_present_pte(sptes[leaf]))
3548 leaf++;
95fb5b02
BG
3549
3550 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3551
9aa41879 3552 for (level = root; level >= leaf; level--)
b5c3c1b3
SC
3553 /*
3554 * Use a bitwise-OR instead of a logical-OR to aggregate the
3555 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3556 * adding a Jcc in the loop.
3557 */
dde81f94
SC
3558 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3559 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
47ab8751 3560
47ab8751
XG
3561 if (reserved) {
3562 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3563 __func__, addr);
95fb5b02 3564 for (level = root; level >= leaf; level--)
47ab8751 3565 pr_err("------ spte 0x%llx level %d.\n",
dde81f94 3566 sptes[level], level);
47ab8751 3567 }
ddce6208 3568
47ab8751 3569 return reserved;
ce88decf
XG
3570}
3571
e08d26f0 3572static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3573{
3574 u64 spte;
47ab8751 3575 bool reserved;
ce88decf 3576
ded58749 3577 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3578 return RET_PF_EMULATE;
ce88decf 3579
95fb5b02 3580 reserved = get_mmio_spte(vcpu, addr, &spte);
450869d6 3581 if (WARN_ON(reserved))
9b8ebbdb 3582 return -EINVAL;
ce88decf
XG
3583
3584 if (is_mmio_spte(spte)) {
3585 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3586 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3587
54bf36aa 3588 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3589 return RET_PF_INVALID;
f8f55942 3590
ce88decf
XG
3591 if (direct)
3592 addr = 0;
4f022648
XG
3593
3594 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3595 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3596 return RET_PF_EMULATE;
ce88decf
XG
3597 }
3598
ce88decf
XG
3599 /*
3600 * If the page table is zapped by other cpus, let CPU fault again on
3601 * the address.
3602 */
9b8ebbdb 3603 return RET_PF_RETRY;
ce88decf 3604}
ce88decf 3605
3d0c27ad
XG
3606static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3607 u32 error_code, gfn_t gfn)
3608{
3609 if (unlikely(error_code & PFERR_RSVD_MASK))
3610 return false;
3611
3612 if (!(error_code & PFERR_PRESENT_MASK) ||
3613 !(error_code & PFERR_WRITE_MASK))
3614 return false;
3615
3616 /*
3617 * guest is writing the page which is write tracked which can
3618 * not be fixed by page fault handler.
3619 */
3620 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3621 return true;
3622
3623 return false;
3624}
3625
e5691a81
XG
3626static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3627{
3628 struct kvm_shadow_walk_iterator iterator;
3629 u64 spte;
3630
e5691a81
XG
3631 walk_shadow_page_lockless_begin(vcpu);
3632 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3633 clear_sp_write_flooding_count(iterator.sptep);
3634 if (!is_shadow_present_pte(spte))
3635 break;
3636 }
3637 walk_shadow_page_lockless_end(vcpu);
3638}
3639
e8c22266
VK
3640static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3641 gfn_t gfn)
af585b92
GN
3642{
3643 struct kvm_arch_async_pf arch;
fb67e14f 3644
7c90705b 3645 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3646 arch.gfn = gfn;
44dd3ffa 3647 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3648 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3649
9f1a8526
SC
3650 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3651 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3652}
3653
78b2c54a 3654static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
3655 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3656 bool *writable)
af585b92 3657{
c36b7150 3658 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3659 bool async;
3660
c36b7150
PB
3661 /* Don't expose private memslots to L2. */
3662 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3663 *pfn = KVM_PFN_NOSLOT;
c583eed6 3664 *writable = false;
3a2936de
JM
3665 return false;
3666 }
3667
3520469d
PB
3668 async = false;
3669 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3670 if (!async)
3671 return false; /* *pfn has correct page already */
3672
9bc1f09f 3673 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3674 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3675 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3676 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3677 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3678 return true;
9f1a8526 3679 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3680 return true;
3681 }
3682
3520469d 3683 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3684 return false;
3685}
3686
0f90e1c1
SC
3687static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3688 bool prefault, int max_level, bool is_tdp)
6aa8b732 3689{
367fd790 3690 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3691 bool map_writable;
6aa8b732 3692
0f90e1c1
SC
3693 gfn_t gfn = gpa >> PAGE_SHIFT;
3694 unsigned long mmu_seq;
3695 kvm_pfn_t pfn;
83f06fa7 3696 int r;
ce88decf 3697
3d0c27ad 3698 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3699 return RET_PF_EMULATE;
ce88decf 3700
bb18842e
BG
3701 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3702 r = fast_page_fault(vcpu, gpa, error_code);
3703 if (r != RET_PF_INVALID)
3704 return r;
3705 }
83291445 3706
378f5cd6 3707 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3708 if (r)
3709 return r;
714b93da 3710
367fd790
SC
3711 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3712 smp_rmb();
3713
3714 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3715 return RET_PF_RETRY;
3716
0f90e1c1 3717 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3718 return r;
6aa8b732 3719
367fd790
SC
3720 r = RET_PF_RETRY;
3721 spin_lock(&vcpu->kvm->mmu_lock);
3722 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3723 goto out_unlock;
7bd7ded6
SC
3724 r = make_mmu_pages_available(vcpu);
3725 if (r)
367fd790 3726 goto out_unlock;
bb18842e
BG
3727
3728 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3729 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3730 pfn, prefault);
3731 else
3732 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3733 prefault, is_tdp);
0f90e1c1 3734
367fd790
SC
3735out_unlock:
3736 spin_unlock(&vcpu->kvm->mmu_lock);
3737 kvm_release_pfn_clean(pfn);
3738 return r;
6aa8b732
AK
3739}
3740
0f90e1c1
SC
3741static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3742 u32 error_code, bool prefault)
3743{
3744 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3745
3746 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3747 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3748 PG_LEVEL_2M, false);
0f90e1c1
SC
3749}
3750
1261bfa3 3751int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3752 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3753{
3754 int r = 1;
9ce372b3 3755 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3756
736c291c
SC
3757#ifndef CONFIG_X86_64
3758 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3759 if (WARN_ON_ONCE(fault_address >> 32))
3760 return -EFAULT;
3761#endif
3762
c595ceee 3763 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3764 if (!flags) {
1261bfa3
WL
3765 trace_kvm_page_fault(fault_address, error_code);
3766
d0006530 3767 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3768 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3769 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3770 insn_len);
9ce372b3 3771 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3772 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3773 local_irq_disable();
6bca69ad 3774 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3775 local_irq_enable();
9ce372b3
VK
3776 } else {
3777 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3778 }
9ce372b3 3779
1261bfa3
WL
3780 return r;
3781}
3782EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3783
7a02674d
SC
3784int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3785 bool prefault)
fb72d167 3786{
cb9b88c6 3787 int max_level;
fb72d167 3788
e662ec3e 3789 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3790 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3791 max_level--) {
3792 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3793 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3794
cb9b88c6
SC
3795 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3796 break;
fd136902 3797 }
852e3c19 3798
0f90e1c1
SC
3799 return direct_page_fault(vcpu, gpa, error_code, prefault,
3800 max_level, true);
fb72d167
JR
3801}
3802
8a3c1a33
PB
3803static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3804 struct kvm_mmu *context)
6aa8b732 3805{
6aa8b732 3806 context->page_fault = nonpaging_page_fault;
6aa8b732 3807 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3808 context->sync_page = nonpaging_sync_page;
5efac074 3809 context->invlpg = NULL;
cea0f0e7 3810 context->root_level = 0;
6aa8b732 3811 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3812 context->direct_map = true;
2d48a985 3813 context->nx = false;
6aa8b732
AK
3814}
3815
be01e8e2 3816static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3817 union kvm_mmu_page_role role)
3818{
be01e8e2 3819 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3820 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3821 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3822}
3823
b94742c9 3824/*
be01e8e2 3825 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3826 * The current root is also inserted into the cache.
3827 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3828 * returned.
3829 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3830 * false is returned. This root should now be freed by the caller.
3831 */
be01e8e2 3832static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3833 union kvm_mmu_page_role new_role)
3834{
3835 uint i;
3836 struct kvm_mmu_root_info root;
44dd3ffa 3837 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3838
be01e8e2 3839 root.pgd = mmu->root_pgd;
b94742c9
JS
3840 root.hpa = mmu->root_hpa;
3841
be01e8e2 3842 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3843 return true;
3844
b94742c9
JS
3845 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3846 swap(root, mmu->prev_roots[i]);
3847
be01e8e2 3848 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3849 break;
3850 }
3851
3852 mmu->root_hpa = root.hpa;
be01e8e2 3853 mmu->root_pgd = root.pgd;
b94742c9
JS
3854
3855 return i < KVM_MMU_NUM_PREV_ROOTS;
3856}
3857
be01e8e2 3858static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3859 union kvm_mmu_page_role new_role)
6aa8b732 3860{
44dd3ffa 3861 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3862
3863 /*
3864 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3865 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3866 * later if necessary.
3867 */
3868 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3869 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3870 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3871
3872 return false;
6aa8b732
AK
3873}
3874
be01e8e2 3875static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3876 union kvm_mmu_page_role new_role,
4a632ac6 3877 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3878{
be01e8e2 3879 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3880 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3881 return;
3882 }
3883
3884 /*
3885 * It's possible that the cached previous root page is obsolete because
3886 * of a change in the MMU generation number. However, changing the
3887 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3888 * free the root set here and allocate a new one.
3889 */
3890 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3891
71fe7013 3892 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3894 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3895 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3896
3897 /*
3898 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3899 * switching to a new CR3, that GVA->GPA mapping may no longer be
3900 * valid. So clear any cached MMIO info even when we don't need to sync
3901 * the shadow page tables.
3902 */
3903 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3904
daa5b6c1
BG
3905 /*
3906 * If this is a direct root page, it doesn't have a write flooding
3907 * count. Otherwise, clear the write flooding count.
3908 */
3909 if (!new_role.direct)
3910 __clear_sp_write_flooding_count(
3911 to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3912}
3913
be01e8e2 3914void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3915 bool skip_mmu_sync)
0aab33e4 3916{
be01e8e2 3917 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3918 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3919}
be01e8e2 3920EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3921
5777ed34
JR
3922static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3923{
9f8fe504 3924 return kvm_read_cr3(vcpu);
5777ed34
JR
3925}
3926
54bf36aa 3927static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3928 unsigned int access, int *nr_present)
ce88decf
XG
3929{
3930 if (unlikely(is_mmio_spte(*sptep))) {
3931 if (gfn != get_mmio_spte_gfn(*sptep)) {
3932 mmu_spte_clear_no_track(sptep);
3933 return true;
3934 }
3935
3936 (*nr_present)++;
54bf36aa 3937 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3938 return true;
3939 }
3940
3941 return false;
3942}
3943
6bb69c9b
PB
3944static inline bool is_last_gpte(struct kvm_mmu *mmu,
3945 unsigned level, unsigned gpte)
6fd01b71 3946{
6bb69c9b
PB
3947 /*
3948 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3949 * If it is clear, there are no large pages at this level, so clear
3950 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3951 */
3952 gpte &= level - mmu->last_nonleaf_level;
3953
829ee279 3954 /*
3bae0459
SC
3955 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3956 * iff level <= PG_LEVEL_4K, which for our purpose means
3957 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3958 */
3bae0459 3959 gpte |= level - PG_LEVEL_4K - 1;
829ee279 3960
6bb69c9b 3961 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3962}
3963
37406aaa
NHE
3964#define PTTYPE_EPT 18 /* arbitrary */
3965#define PTTYPE PTTYPE_EPT
3966#include "paging_tmpl.h"
3967#undef PTTYPE
3968
6aa8b732
AK
3969#define PTTYPE 64
3970#include "paging_tmpl.h"
3971#undef PTTYPE
3972
3973#define PTTYPE 32
3974#include "paging_tmpl.h"
3975#undef PTTYPE
3976
6dc98b86
XG
3977static void
3978__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3979 struct rsvd_bits_validate *rsvd_check,
3980 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3981 bool pse, bool amd)
82725b20 3982{
82725b20 3983 u64 exb_bit_rsvd = 0;
5f7dde7b 3984 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3985 u64 nonleaf_bit8_rsvd = 0;
82725b20 3986
a0a64f50 3987 rsvd_check->bad_mt_xwr = 0;
25d92081 3988
6dc98b86 3989 if (!nx)
82725b20 3990 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3991 if (!gbpages)
5f7dde7b 3992 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3993
3994 /*
3995 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3996 * leaf entries) on AMD CPUs only.
3997 */
6fec2144 3998 if (amd)
a0c0feb5
PB
3999 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4000
6dc98b86 4001 switch (level) {
82725b20
DE
4002 case PT32_ROOT_LEVEL:
4003 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4004 rsvd_check->rsvd_bits_mask[0][1] = 0;
4005 rsvd_check->rsvd_bits_mask[0][0] = 0;
4006 rsvd_check->rsvd_bits_mask[1][0] =
4007 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4008
6dc98b86 4009 if (!pse) {
a0a64f50 4010 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4011 break;
4012 }
4013
82725b20
DE
4014 if (is_cpuid_PSE36())
4015 /* 36bits PSE 4MB page */
a0a64f50 4016 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4017 else
4018 /* 32 bits PSE 4MB page */
a0a64f50 4019 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4020 break;
4021 case PT32E_ROOT_LEVEL:
a0a64f50 4022 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4023 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4024 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4025 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4026 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4027 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4028 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4029 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4030 rsvd_bits(maxphyaddr, 62) |
4031 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4032 rsvd_check->rsvd_bits_mask[1][0] =
4033 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4034 break;
855feb67
YZ
4035 case PT64_ROOT_5LEVEL:
4036 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4037 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4038 rsvd_bits(maxphyaddr, 51);
4039 rsvd_check->rsvd_bits_mask[1][4] =
4040 rsvd_check->rsvd_bits_mask[0][4];
df561f66 4041 fallthrough;
2a7266a8 4042 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4043 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4044 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4045 rsvd_bits(maxphyaddr, 51);
a0a64f50 4046 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5ecad245 4047 gbpages_bit_rsvd |
82725b20 4048 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4049 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4050 rsvd_bits(maxphyaddr, 51);
4051 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4052 rsvd_bits(maxphyaddr, 51);
4053 rsvd_check->rsvd_bits_mask[1][3] =
4054 rsvd_check->rsvd_bits_mask[0][3];
4055 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4056 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4057 rsvd_bits(13, 29);
a0a64f50 4058 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4059 rsvd_bits(maxphyaddr, 51) |
4060 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4061 rsvd_check->rsvd_bits_mask[1][0] =
4062 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4063 break;
4064 }
4065}
4066
6dc98b86
XG
4067static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4068 struct kvm_mmu *context)
4069{
4070 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4071 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4072 context->nx,
4073 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4074 is_pse(vcpu),
4075 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4076}
4077
81b8eebb
XG
4078static void
4079__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4080 int maxphyaddr, bool execonly)
25d92081 4081{
951f9fd7 4082 u64 bad_mt_xwr;
25d92081 4083
855feb67
YZ
4084 rsvd_check->rsvd_bits_mask[0][4] =
4085 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4086 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4087 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4088 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4089 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4090 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4091 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4092 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4093
4094 /* large page */
855feb67 4095 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4096 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4097 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4098 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4099 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4100 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4101 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4102
951f9fd7
PB
4103 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4104 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4105 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4106 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4107 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4108 if (!execonly) {
4109 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4110 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4111 }
951f9fd7 4112 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4113}
4114
81b8eebb
XG
4115static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4116 struct kvm_mmu *context, bool execonly)
4117{
4118 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4119 cpuid_maxphyaddr(vcpu), execonly);
4120}
4121
c258b62b
XG
4122/*
4123 * the page table on host is the shadow page table for the page
4124 * table in guest or amd nested guest, its mmu features completely
4125 * follow the features in guest.
4126 */
4127void
4128reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4129{
36d9594d
VK
4130 bool uses_nx = context->nx ||
4131 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4132 struct rsvd_bits_validate *shadow_zero_check;
4133 int i;
5f0b8199 4134
6fec2144
PB
4135 /*
4136 * Passing "true" to the last argument is okay; it adds a check
4137 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4138 */
ea2800dd
BS
4139 shadow_zero_check = &context->shadow_zero_check;
4140 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4141 shadow_phys_bits,
5f0b8199 4142 context->shadow_root_level, uses_nx,
d6321d49
RK
4143 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4144 is_pse(vcpu), true);
ea2800dd
BS
4145
4146 if (!shadow_me_mask)
4147 return;
4148
4149 for (i = context->shadow_root_level; --i >= 0;) {
4150 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4151 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4152 }
4153
c258b62b
XG
4154}
4155EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4156
6fec2144
PB
4157static inline bool boot_cpu_is_amd(void)
4158{
4159 WARN_ON_ONCE(!tdp_enabled);
4160 return shadow_x_mask == 0;
4161}
4162
c258b62b
XG
4163/*
4164 * the direct page table on host, use as much mmu features as
4165 * possible, however, kvm currently does not do execution-protection.
4166 */
4167static void
4168reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4169 struct kvm_mmu *context)
4170{
ea2800dd
BS
4171 struct rsvd_bits_validate *shadow_zero_check;
4172 int i;
4173
4174 shadow_zero_check = &context->shadow_zero_check;
4175
6fec2144 4176 if (boot_cpu_is_amd())
ea2800dd 4177 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4178 shadow_phys_bits,
c258b62b 4179 context->shadow_root_level, false,
b8291adc
BP
4180 boot_cpu_has(X86_FEATURE_GBPAGES),
4181 true, true);
c258b62b 4182 else
ea2800dd 4183 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4184 shadow_phys_bits,
c258b62b
XG
4185 false);
4186
ea2800dd
BS
4187 if (!shadow_me_mask)
4188 return;
4189
4190 for (i = context->shadow_root_level; --i >= 0;) {
4191 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193 }
c258b62b
XG
4194}
4195
4196/*
4197 * as the comments in reset_shadow_zero_bits_mask() except it
4198 * is the shadow page table for intel nested guest.
4199 */
4200static void
4201reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4202 struct kvm_mmu *context, bool execonly)
4203{
4204 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4205 shadow_phys_bits, execonly);
c258b62b
XG
4206}
4207
09f037aa
PB
4208#define BYTE_MASK(access) \
4209 ((1 & (access) ? 2 : 0) | \
4210 (2 & (access) ? 4 : 0) | \
4211 (3 & (access) ? 8 : 0) | \
4212 (4 & (access) ? 16 : 0) | \
4213 (5 & (access) ? 32 : 0) | \
4214 (6 & (access) ? 64 : 0) | \
4215 (7 & (access) ? 128 : 0))
4216
4217
edc90b7d
XG
4218static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4219 struct kvm_mmu *mmu, bool ept)
97d64b78 4220{
09f037aa
PB
4221 unsigned byte;
4222
4223 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4224 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4225 const u8 u = BYTE_MASK(ACC_USER_MASK);
4226
4227 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4228 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4229 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4230
97d64b78 4231 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4232 unsigned pfec = byte << 1;
4233
97ec8c06 4234 /*
09f037aa
PB
4235 * Each "*f" variable has a 1 bit for each UWX value
4236 * that causes a fault with the given PFEC.
97ec8c06 4237 */
97d64b78 4238
09f037aa 4239 /* Faults from writes to non-writable pages */
a6a6d3b1 4240 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4241 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4242 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4243 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4244 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4245 /* Faults from kernel mode fetches of user pages */
4246 u8 smepf = 0;
4247 /* Faults from kernel mode accesses of user pages */
4248 u8 smapf = 0;
4249
4250 if (!ept) {
4251 /* Faults from kernel mode accesses to user pages */
4252 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4253
4254 /* Not really needed: !nx will cause pte.nx to fault */
4255 if (!mmu->nx)
4256 ff = 0;
4257
4258 /* Allow supervisor writes if !cr0.wp */
4259 if (!cr0_wp)
4260 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4261
4262 /* Disallow supervisor fetches of user code if cr4.smep */
4263 if (cr4_smep)
4264 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4265
4266 /*
4267 * SMAP:kernel-mode data accesses from user-mode
4268 * mappings should fault. A fault is considered
4269 * as a SMAP violation if all of the following
39337ad1 4270 * conditions are true:
09f037aa
PB
4271 * - X86_CR4_SMAP is set in CR4
4272 * - A user page is accessed
4273 * - The access is not a fetch
4274 * - Page fault in kernel mode
4275 * - if CPL = 3 or X86_EFLAGS_AC is clear
4276 *
4277 * Here, we cover the first three conditions.
4278 * The fourth is computed dynamically in permission_fault();
4279 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4280 * *not* subject to SMAP restrictions.
4281 */
4282 if (cr4_smap)
4283 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4284 }
09f037aa
PB
4285
4286 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4287 }
4288}
4289
2d344105
HH
4290/*
4291* PKU is an additional mechanism by which the paging controls access to
4292* user-mode addresses based on the value in the PKRU register. Protection
4293* key violations are reported through a bit in the page fault error code.
4294* Unlike other bits of the error code, the PK bit is not known at the
4295* call site of e.g. gva_to_gpa; it must be computed directly in
4296* permission_fault based on two bits of PKRU, on some machine state (CR4,
4297* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4298*
4299* In particular the following conditions come from the error code, the
4300* page tables and the machine state:
4301* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4302* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4303* - PK is always zero if U=0 in the page tables
4304* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4305*
4306* The PKRU bitmask caches the result of these four conditions. The error
4307* code (minus the P bit) and the page table's U bit form an index into the
4308* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4309* with the two bits of the PKRU register corresponding to the protection key.
4310* For the first three conditions above the bits will be 00, thus masking
4311* away both AD and WD. For all reads or if the last condition holds, WD
4312* only will be masked away.
4313*/
4314static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4315 bool ept)
4316{
4317 unsigned bit;
4318 bool wp;
4319
4320 if (ept) {
4321 mmu->pkru_mask = 0;
4322 return;
4323 }
4324
4325 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4326 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4327 mmu->pkru_mask = 0;
4328 return;
4329 }
4330
4331 wp = is_write_protection(vcpu);
4332
4333 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4334 unsigned pfec, pkey_bits;
4335 bool check_pkey, check_write, ff, uf, wf, pte_user;
4336
4337 pfec = bit << 1;
4338 ff = pfec & PFERR_FETCH_MASK;
4339 uf = pfec & PFERR_USER_MASK;
4340 wf = pfec & PFERR_WRITE_MASK;
4341
4342 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4343 pte_user = pfec & PFERR_RSVD_MASK;
4344
4345 /*
4346 * Only need to check the access which is not an
4347 * instruction fetch and is to a user page.
4348 */
4349 check_pkey = (!ff && pte_user);
4350 /*
4351 * write access is controlled by PKRU if it is a
4352 * user access or CR0.WP = 1.
4353 */
4354 check_write = check_pkey && wf && (uf || wp);
4355
4356 /* PKRU.AD stops both read and write access. */
4357 pkey_bits = !!check_pkey;
4358 /* PKRU.WD stops write access. */
4359 pkey_bits |= (!!check_write) << 1;
4360
4361 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4362 }
4363}
4364
6bb69c9b 4365static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4366{
6bb69c9b
PB
4367 unsigned root_level = mmu->root_level;
4368
4369 mmu->last_nonleaf_level = root_level;
4370 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4371 mmu->last_nonleaf_level++;
6fd01b71
AK
4372}
4373
8a3c1a33
PB
4374static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4375 struct kvm_mmu *context,
4376 int level)
6aa8b732 4377{
2d48a985 4378 context->nx = is_nx(vcpu);
4d6931c3 4379 context->root_level = level;
2d48a985 4380
4d6931c3 4381 reset_rsvds_bits_mask(vcpu, context);
25d92081 4382 update_permission_bitmask(vcpu, context, false);
2d344105 4383 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4384 update_last_nonleaf_level(vcpu, context);
6aa8b732 4385
fa4a2c08 4386 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4387 context->page_fault = paging64_page_fault;
6aa8b732 4388 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4389 context->sync_page = paging64_sync_page;
a7052897 4390 context->invlpg = paging64_invlpg;
17ac10ad 4391 context->shadow_root_level = level;
c5a78f2b 4392 context->direct_map = false;
6aa8b732
AK
4393}
4394
8a3c1a33
PB
4395static void paging64_init_context(struct kvm_vcpu *vcpu,
4396 struct kvm_mmu *context)
17ac10ad 4397{
855feb67
YZ
4398 int root_level = is_la57_mode(vcpu) ?
4399 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4400
4401 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4402}
4403
8a3c1a33
PB
4404static void paging32_init_context(struct kvm_vcpu *vcpu,
4405 struct kvm_mmu *context)
6aa8b732 4406{
2d48a985 4407 context->nx = false;
4d6931c3 4408 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4409
4d6931c3 4410 reset_rsvds_bits_mask(vcpu, context);
25d92081 4411 update_permission_bitmask(vcpu, context, false);
2d344105 4412 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4413 update_last_nonleaf_level(vcpu, context);
6aa8b732 4414
6aa8b732 4415 context->page_fault = paging32_page_fault;
6aa8b732 4416 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4417 context->sync_page = paging32_sync_page;
a7052897 4418 context->invlpg = paging32_invlpg;
6aa8b732 4419 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4420 context->direct_map = false;
6aa8b732
AK
4421}
4422
8a3c1a33
PB
4423static void paging32E_init_context(struct kvm_vcpu *vcpu,
4424 struct kvm_mmu *context)
6aa8b732 4425{
8a3c1a33 4426 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4427}
4428
a336282d
VK
4429static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4430{
4431 union kvm_mmu_extended_role ext = {0};
4432
7dcd5755 4433 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4434 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4435 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4436 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4437 ext.cr4_pse = !!is_pse(vcpu);
4438 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4439 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4440
4441 ext.valid = 1;
4442
4443 return ext;
4444}
4445
7dcd5755
VK
4446static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4447 bool base_only)
4448{
4449 union kvm_mmu_role role = {0};
4450
4451 role.base.access = ACC_ALL;
4452 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4453 role.base.cr0_wp = is_write_protection(vcpu);
4454 role.base.smm = is_smm(vcpu);
4455 role.base.guest_mode = is_guest_mode(vcpu);
4456
4457 if (base_only)
4458 return role;
4459
4460 role.ext = kvm_calc_mmu_role_ext(vcpu);
4461
4462 return role;
4463}
4464
d468d94b
SC
4465static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4466{
4467 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4468 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4469 return 4;
4470
83013059 4471 return max_tdp_level;
d468d94b
SC
4472}
4473
7dcd5755
VK
4474static union kvm_mmu_role
4475kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4476{
7dcd5755 4477 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4478
7dcd5755 4479 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4480 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4481 role.base.direct = true;
47c42e6b 4482 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4483
4484 return role;
4485}
4486
8a3c1a33 4487static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4488{
8c008659 4489 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4490 union kvm_mmu_role new_role =
4491 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4492
7dcd5755
VK
4493 if (new_role.as_u64 == context->mmu_role.as_u64)
4494 return;
4495
4496 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4497 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4498 context->sync_page = nonpaging_sync_page;
5efac074 4499 context->invlpg = NULL;
d468d94b 4500 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4501 context->direct_map = true;
d8dd54e0 4502 context->get_guest_pgd = get_cr3;
e4e517b4 4503 context->get_pdptr = kvm_pdptr_read;
cb659db8 4504 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4505
4506 if (!is_paging(vcpu)) {
2d48a985 4507 context->nx = false;
fb72d167
JR
4508 context->gva_to_gpa = nonpaging_gva_to_gpa;
4509 context->root_level = 0;
4510 } else if (is_long_mode(vcpu)) {
2d48a985 4511 context->nx = is_nx(vcpu);
855feb67
YZ
4512 context->root_level = is_la57_mode(vcpu) ?
4513 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4514 reset_rsvds_bits_mask(vcpu, context);
4515 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4516 } else if (is_pae(vcpu)) {
2d48a985 4517 context->nx = is_nx(vcpu);
fb72d167 4518 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4519 reset_rsvds_bits_mask(vcpu, context);
4520 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4521 } else {
2d48a985 4522 context->nx = false;
fb72d167 4523 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4524 reset_rsvds_bits_mask(vcpu, context);
4525 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4526 }
4527
25d92081 4528 update_permission_bitmask(vcpu, context, false);
2d344105 4529 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4530 update_last_nonleaf_level(vcpu, context);
c258b62b 4531 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4532}
4533
7dcd5755 4534static union kvm_mmu_role
59505b55 4535kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4536{
4537 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4538
4539 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4540 !is_write_protection(vcpu);
4541 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4542 !is_write_protection(vcpu);
47c42e6b 4543 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4544
59505b55
SC
4545 return role;
4546}
4547
4548static union kvm_mmu_role
4549kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4550{
4551 union kvm_mmu_role role =
4552 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4553
4554 role.base.direct = !is_paging(vcpu);
4555
9fa72119 4556 if (!is_long_mode(vcpu))
7dcd5755 4557 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4558 else if (is_la57_mode(vcpu))
7dcd5755 4559 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4560 else
7dcd5755 4561 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4562
4563 return role;
4564}
4565
8c008659
PB
4566static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4567 u32 cr0, u32 cr4, u32 efer,
4568 union kvm_mmu_role new_role)
9fa72119 4569{
929d1cfa 4570 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4571 nonpaging_init_context(vcpu, context);
929d1cfa 4572 else if (efer & EFER_LMA)
8a3c1a33 4573 paging64_init_context(vcpu, context);
929d1cfa 4574 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4575 paging32E_init_context(vcpu, context);
6aa8b732 4576 else
8a3c1a33 4577 paging32_init_context(vcpu, context);
a770f6f2 4578
7dcd5755 4579 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4580 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4581}
0f04a2ac
VK
4582
4583static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4584{
8c008659 4585 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4586 union kvm_mmu_role new_role =
4587 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4588
4589 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4590 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4591}
4592
59505b55
SC
4593static union kvm_mmu_role
4594kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4595{
4596 union kvm_mmu_role role =
4597 kvm_calc_shadow_root_page_role_common(vcpu, false);
4598
4599 role.base.direct = false;
d468d94b 4600 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4601
4602 return role;
4603}
4604
0f04a2ac
VK
4605void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4606 gpa_t nested_cr3)
4607{
8c008659 4608 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4609 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4610
096586fd
SC
4611 context->shadow_root_level = new_role.base.level;
4612
a506fdd2
VK
4613 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4614
0f04a2ac 4615 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4616 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4617}
4618EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4619
a336282d
VK
4620static union kvm_mmu_role
4621kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4622 bool execonly, u8 level)
9fa72119 4623{
552c69b1 4624 union kvm_mmu_role role = {0};
14c07ad8 4625
47c42e6b
SC
4626 /* SMM flag is inherited from root_mmu */
4627 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4628
bb1fcc70 4629 role.base.level = level;
47c42e6b 4630 role.base.gpte_is_8_bytes = true;
a336282d
VK
4631 role.base.direct = false;
4632 role.base.ad_disabled = !accessed_dirty;
4633 role.base.guest_mode = true;
4634 role.base.access = ACC_ALL;
9fa72119 4635
47c42e6b
SC
4636 /*
4637 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4638 * SMAP variation to denote shadow EPT entries.
4639 */
4640 role.base.cr0_wp = true;
4641 role.base.smap_andnot_wp = true;
4642
552c69b1 4643 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4644 role.ext.execonly = execonly;
9fa72119
JS
4645
4646 return role;
4647}
4648
ae1e2d10 4649void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4650 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4651{
8c008659 4652 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4653 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4654 union kvm_mmu_role new_role =
4655 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4656 execonly, level);
a336282d 4657
be01e8e2 4658 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4659
a336282d
VK
4660 if (new_role.as_u64 == context->mmu_role.as_u64)
4661 return;
ad896af0 4662
bb1fcc70 4663 context->shadow_root_level = level;
155a97a3
NHE
4664
4665 context->nx = true;
ae1e2d10 4666 context->ept_ad = accessed_dirty;
155a97a3
NHE
4667 context->page_fault = ept_page_fault;
4668 context->gva_to_gpa = ept_gva_to_gpa;
4669 context->sync_page = ept_sync_page;
4670 context->invlpg = ept_invlpg;
bb1fcc70 4671 context->root_level = level;
155a97a3 4672 context->direct_map = false;
a336282d 4673 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4674
155a97a3 4675 update_permission_bitmask(vcpu, context, true);
2d344105 4676 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4677 update_last_nonleaf_level(vcpu, context);
155a97a3 4678 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4679 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4680}
4681EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4682
8a3c1a33 4683static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4684{
8c008659 4685 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4686
929d1cfa
PB
4687 kvm_init_shadow_mmu(vcpu,
4688 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4689 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4690 vcpu->arch.efer);
4691
d8dd54e0 4692 context->get_guest_pgd = get_cr3;
ad896af0
PB
4693 context->get_pdptr = kvm_pdptr_read;
4694 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4695}
4696
8a3c1a33 4697static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4698{
bf627a92 4699 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4700 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4701
bf627a92
VK
4702 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4703 return;
4704
4705 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4706 g_context->get_guest_pgd = get_cr3;
e4e517b4 4707 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4708 g_context->inject_page_fault = kvm_inject_page_fault;
4709
5efac074
PB
4710 /*
4711 * L2 page tables are never shadowed, so there is no need to sync
4712 * SPTEs.
4713 */
4714 g_context->invlpg = NULL;
4715
02f59dc9 4716 /*
44dd3ffa 4717 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4718 * L1's nested page tables (e.g. EPT12). The nested translation
4719 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4720 * L2's page tables as the first level of translation and L1's
4721 * nested page tables as the second level of translation. Basically
4722 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4723 */
4724 if (!is_paging(vcpu)) {
2d48a985 4725 g_context->nx = false;
02f59dc9
JR
4726 g_context->root_level = 0;
4727 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4728 } else if (is_long_mode(vcpu)) {
2d48a985 4729 g_context->nx = is_nx(vcpu);
855feb67
YZ
4730 g_context->root_level = is_la57_mode(vcpu) ?
4731 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4732 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4733 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4734 } else if (is_pae(vcpu)) {
2d48a985 4735 g_context->nx = is_nx(vcpu);
02f59dc9 4736 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4737 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4738 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4739 } else {
2d48a985 4740 g_context->nx = false;
02f59dc9 4741 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4742 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4743 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4744 }
4745
25d92081 4746 update_permission_bitmask(vcpu, g_context, false);
2d344105 4747 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4748 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4749}
4750
1c53da3f 4751void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4752{
1c53da3f 4753 if (reset_roots) {
b94742c9
JS
4754 uint i;
4755
44dd3ffa 4756 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4757
4758 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4759 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4760 }
4761
02f59dc9 4762 if (mmu_is_nested(vcpu))
e0c6db3e 4763 init_kvm_nested_mmu(vcpu);
02f59dc9 4764 else if (tdp_enabled)
e0c6db3e 4765 init_kvm_tdp_mmu(vcpu);
fb72d167 4766 else
e0c6db3e 4767 init_kvm_softmmu(vcpu);
fb72d167 4768}
1c53da3f 4769EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4770
9fa72119
JS
4771static union kvm_mmu_page_role
4772kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4773{
7dcd5755
VK
4774 union kvm_mmu_role role;
4775
9fa72119 4776 if (tdp_enabled)
7dcd5755 4777 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4778 else
7dcd5755
VK
4779 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4780
4781 return role.base;
9fa72119 4782}
fb72d167 4783
8a3c1a33 4784void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4785{
95f93af4 4786 kvm_mmu_unload(vcpu);
1c53da3f 4787 kvm_init_mmu(vcpu, true);
17c3ba9d 4788}
8668a3c4 4789EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4790
4791int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4792{
714b93da
AK
4793 int r;
4794
378f5cd6 4795 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4796 if (r)
4797 goto out;
8986ecc0 4798 r = mmu_alloc_roots(vcpu);
e2858b4a 4799 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4800 if (r)
4801 goto out;
727a7e27 4802 kvm_mmu_load_pgd(vcpu);
b3646477 4803 static_call(kvm_x86_tlb_flush_current)(vcpu);
714b93da
AK
4804out:
4805 return r;
6aa8b732 4806}
17c3ba9d
AK
4807EXPORT_SYMBOL_GPL(kvm_mmu_load);
4808
4809void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4810{
14c07ad8
VK
4811 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4812 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4813 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4814 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4815}
4b16184c 4816EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4817
79539cec
AK
4818static bool need_remote_flush(u64 old, u64 new)
4819{
4820 if (!is_shadow_present_pte(old))
4821 return false;
4822 if (!is_shadow_present_pte(new))
4823 return true;
4824 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4825 return true;
53166229
GN
4826 old ^= shadow_nx_mask;
4827 new ^= shadow_nx_mask;
79539cec
AK
4828 return (old & ~new & PT64_PERM_MASK) != 0;
4829}
4830
889e5cbc 4831static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4832 int *bytes)
da4a00f0 4833{
0e0fee5c 4834 u64 gentry = 0;
889e5cbc 4835 int r;
72016f3a 4836
72016f3a
AK
4837 /*
4838 * Assume that the pte write on a page table of the same type
49b26e26
XG
4839 * as the current vcpu paging mode since we update the sptes only
4840 * when they have the same mode.
72016f3a 4841 */
889e5cbc 4842 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4843 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4844 *gpa &= ~(gpa_t)7;
4845 *bytes = 8;
08e850c6
AK
4846 }
4847
0e0fee5c
JS
4848 if (*bytes == 4 || *bytes == 8) {
4849 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4850 if (r)
4851 gentry = 0;
72016f3a
AK
4852 }
4853
889e5cbc
XG
4854 return gentry;
4855}
4856
4857/*
4858 * If we're seeing too many writes to a page, it may no longer be a page table,
4859 * or we may be forking, in which case it is better to unmap the page.
4860 */
a138fe75 4861static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4862{
a30f47cb
XG
4863 /*
4864 * Skip write-flooding detected for the sp whose level is 1, because
4865 * it can become unsync, then the guest page is not write-protected.
4866 */
3bae0459 4867 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4868 return false;
3246af0e 4869
e5691a81
XG
4870 atomic_inc(&sp->write_flooding_count);
4871 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4872}
4873
4874/*
4875 * Misaligned accesses are too much trouble to fix up; also, they usually
4876 * indicate a page is not used as a page table.
4877 */
4878static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4879 int bytes)
4880{
4881 unsigned offset, pte_size, misaligned;
4882
4883 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4884 gpa, bytes, sp->role.word);
4885
4886 offset = offset_in_page(gpa);
47c42e6b 4887 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4888
4889 /*
4890 * Sometimes, the OS only writes the last one bytes to update status
4891 * bits, for example, in linux, andb instruction is used in clear_bit().
4892 */
4893 if (!(offset & (pte_size - 1)) && bytes == 1)
4894 return false;
4895
889e5cbc
XG
4896 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4897 misaligned |= bytes < 4;
4898
4899 return misaligned;
4900}
4901
4902static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4903{
4904 unsigned page_offset, quadrant;
4905 u64 *spte;
4906 int level;
4907
4908 page_offset = offset_in_page(gpa);
4909 level = sp->role.level;
4910 *nspte = 1;
47c42e6b 4911 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4912 page_offset <<= 1; /* 32->64 */
4913 /*
4914 * A 32-bit pde maps 4MB while the shadow pdes map
4915 * only 2MB. So we need to double the offset again
4916 * and zap two pdes instead of one.
4917 */
4918 if (level == PT32_ROOT_LEVEL) {
4919 page_offset &= ~7; /* kill rounding error */
4920 page_offset <<= 1;
4921 *nspte = 2;
4922 }
4923 quadrant = page_offset >> PAGE_SHIFT;
4924 page_offset &= ~PAGE_MASK;
4925 if (quadrant != sp->role.quadrant)
4926 return NULL;
4927 }
4928
4929 spte = &sp->spt[page_offset / sizeof(*spte)];
4930 return spte;
4931}
4932
13d268ca 4933static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4934 const u8 *new, int bytes,
4935 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4936{
4937 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4938 struct kvm_mmu_page *sp;
889e5cbc
XG
4939 LIST_HEAD(invalid_list);
4940 u64 entry, gentry, *spte;
4941 int npte;
b8c67b7a 4942 bool remote_flush, local_flush;
889e5cbc
XG
4943
4944 /*
4945 * If we don't have indirect shadow pages, it means no page is
4946 * write-protected, so we can exit simply.
4947 */
6aa7de05 4948 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4949 return;
4950
b8c67b7a 4951 remote_flush = local_flush = false;
889e5cbc
XG
4952
4953 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4954
889e5cbc
XG
4955 /*
4956 * No need to care whether allocation memory is successful
4957 * or not since pte prefetch is skiped if it does not have
4958 * enough objects in the cache.
4959 */
378f5cd6 4960 mmu_topup_memory_caches(vcpu, true);
889e5cbc
XG
4961
4962 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
4963
4964 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4965
889e5cbc 4966 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4967 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4968
b67bfe0d 4969 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4970 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4971 detect_write_flooding(sp)) {
b8c67b7a 4972 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4973 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4974 continue;
4975 }
889e5cbc
XG
4976
4977 spte = get_written_sptes(sp, gpa, &npte);
4978 if (!spte)
4979 continue;
4980
0671a8e7 4981 local_flush = true;
ac1b714e 4982 while (npte--) {
79539cec 4983 entry = *spte;
2de4085c 4984 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
c5e2184d
SC
4985 if (gentry && sp->role.level != PG_LEVEL_4K)
4986 ++vcpu->kvm->stat.mmu_pde_zapped;
9bb4f6b1 4987 if (need_remote_flush(entry, *spte))
0671a8e7 4988 remote_flush = true;
ac1b714e 4989 ++spte;
9b7a0325 4990 }
9b7a0325 4991 }
b8c67b7a 4992 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4993 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4994 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4995}
4996
a436036b
AK
4997int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4998{
10589a46
MT
4999 gpa_t gpa;
5000 int r;
a436036b 5001
44dd3ffa 5002 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5003 return 0;
5004
1871c602 5005 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5006
10589a46 5007 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5008
10589a46 5009 return r;
a436036b 5010}
577bdc49 5011EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5012
736c291c 5013int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5014 void *insn, int insn_len)
3067714c 5015{
92daa48b 5016 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5017 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5018
6948199a 5019 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5020 return RET_PF_RETRY;
5021
9b8ebbdb 5022 r = RET_PF_INVALID;
e9ee956e 5023 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5024 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5025 if (r == RET_PF_EMULATE)
e9ee956e 5026 goto emulate;
e9ee956e 5027 }
3067714c 5028
9b8ebbdb 5029 if (r == RET_PF_INVALID) {
7a02674d
SC
5030 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5031 lower_32_bits(error_code), false);
7b367bc9
SC
5032 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5033 return -EIO;
9b8ebbdb
PB
5034 }
5035
3067714c 5036 if (r < 0)
e9ee956e 5037 return r;
83a2ba4c
SC
5038 if (r != RET_PF_EMULATE)
5039 return 1;
3067714c 5040
14727754
TL
5041 /*
5042 * Before emulating the instruction, check if the error code
5043 * was due to a RO violation while translating the guest page.
5044 * This can occur when using nested virtualization with nested
5045 * paging in both guests. If true, we simply unprotect the page
5046 * and resume the guest.
14727754 5047 */
44dd3ffa 5048 if (vcpu->arch.mmu->direct_map &&
eebed243 5049 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5050 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5051 return 1;
5052 }
5053
472faffa
SC
5054 /*
5055 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5056 * optimistically try to just unprotect the page and let the processor
5057 * re-execute the instruction that caused the page fault. Do not allow
5058 * retrying MMIO emulation, as it's not only pointless but could also
5059 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5060 * faulting on the non-existent MMIO address. Retrying an instruction
5061 * from a nested guest is also pointless and dangerous as we are only
5062 * explicitly shadowing L1's page tables, i.e. unprotecting something
5063 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5064 */
736c291c 5065 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5066 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5067emulate:
736c291c 5068 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5069 insn_len);
3067714c
AK
5070}
5071EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5072
5efac074
PB
5073void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5074 gva_t gva, hpa_t root_hpa)
a7052897 5075{
b94742c9 5076 int i;
7eb77e9f 5077
5efac074
PB
5078 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5079 if (mmu != &vcpu->arch.guest_mmu) {
5080 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5081 if (is_noncanonical_address(gva, vcpu))
5082 return;
5083
b3646477 5084 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5efac074
PB
5085 }
5086
5087 if (!mmu->invlpg)
faff8758
JS
5088 return;
5089
5efac074
PB
5090 if (root_hpa == INVALID_PAGE) {
5091 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5092
5efac074
PB
5093 /*
5094 * INVLPG is required to invalidate any global mappings for the VA,
5095 * irrespective of PCID. Since it would take us roughly similar amount
5096 * of work to determine whether any of the prev_root mappings of the VA
5097 * is marked global, or to just sync it blindly, so we might as well
5098 * just always sync it.
5099 *
5100 * Mappings not reachable via the current cr3 or the prev_roots will be
5101 * synced when switching to that cr3, so nothing needs to be done here
5102 * for them.
5103 */
5104 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5105 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5106 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5107 } else {
5108 mmu->invlpg(vcpu, gva, root_hpa);
5109 }
5110}
5111EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5112
5efac074
PB
5113void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5114{
5115 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5116 ++vcpu->stat.invlpg;
5117}
5118EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5119
5efac074 5120
eb4b248e
JS
5121void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5122{
44dd3ffa 5123 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5124 bool tlb_flush = false;
b94742c9 5125 uint i;
eb4b248e
JS
5126
5127 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5128 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5129 tlb_flush = true;
eb4b248e
JS
5130 }
5131
b94742c9
JS
5132 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5133 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5134 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5135 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5136 tlb_flush = true;
5137 }
956bf353 5138 }
ade61e28 5139
faff8758 5140 if (tlb_flush)
b3646477 5141 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
faff8758 5142
eb4b248e
JS
5143 ++vcpu->stat.invlpg;
5144
5145 /*
b94742c9
JS
5146 * Mappings not reachable via the current cr3 or the prev_roots will be
5147 * synced when switching to that cr3, so nothing needs to be done here
5148 * for them.
eb4b248e
JS
5149 */
5150}
5151EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5152
83013059
SC
5153void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5154 int tdp_huge_page_level)
18552672 5155{
bde77235 5156 tdp_enabled = enable_tdp;
83013059 5157 max_tdp_level = tdp_max_root_level;
703c335d
SC
5158
5159 /*
1d92d2e8 5160 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5161 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5162 * the kernel is not. But, KVM never creates a page size greater than
5163 * what is used by the kernel for any given HVA, i.e. the kernel's
5164 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5165 */
5166 if (tdp_enabled)
1d92d2e8 5167 max_huge_page_level = tdp_huge_page_level;
703c335d 5168 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5169 max_huge_page_level = PG_LEVEL_1G;
703c335d 5170 else
1d92d2e8 5171 max_huge_page_level = PG_LEVEL_2M;
18552672 5172}
bde77235 5173EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5174
5175/* The return value indicates if tlb flush on all vcpus is needed. */
5176typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5177
5178/* The caller should hold mmu-lock before calling this function. */
5179static __always_inline bool
5180slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5181 slot_level_handler fn, int start_level, int end_level,
5182 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5183{
5184 struct slot_rmap_walk_iterator iterator;
5185 bool flush = false;
5186
5187 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5188 end_gfn, &iterator) {
5189 if (iterator.rmap)
5190 flush |= fn(kvm, iterator.rmap);
5191
5192 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5193 if (flush && lock_flush_tlb) {
f285c633
BG
5194 kvm_flush_remote_tlbs_with_address(kvm,
5195 start_gfn,
5196 iterator.gfn - start_gfn + 1);
85875a13
SC
5197 flush = false;
5198 }
5199 cond_resched_lock(&kvm->mmu_lock);
5200 }
5201 }
5202
5203 if (flush && lock_flush_tlb) {
f285c633
BG
5204 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5205 end_gfn - start_gfn + 1);
85875a13
SC
5206 flush = false;
5207 }
5208
5209 return flush;
5210}
5211
5212static __always_inline bool
5213slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5214 slot_level_handler fn, int start_level, int end_level,
5215 bool lock_flush_tlb)
5216{
5217 return slot_handle_level_range(kvm, memslot, fn, start_level,
5218 end_level, memslot->base_gfn,
5219 memslot->base_gfn + memslot->npages - 1,
5220 lock_flush_tlb);
5221}
5222
5223static __always_inline bool
5224slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5225 slot_level_handler fn, bool lock_flush_tlb)
5226{
3bae0459 5227 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5228 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5229}
5230
5231static __always_inline bool
5232slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5233 slot_level_handler fn, bool lock_flush_tlb)
5234{
3bae0459 5235 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5236 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5237}
5238
5239static __always_inline bool
5240slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5241 slot_level_handler fn, bool lock_flush_tlb)
5242{
3bae0459
SC
5243 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5244 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5245}
5246
1cfff4d9 5247static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5248{
1cfff4d9
JP
5249 free_page((unsigned long)mmu->pae_root);
5250 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5251}
5252
04d28e37 5253static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5254{
17ac10ad 5255 struct page *page;
6aa8b732
AK
5256 int i;
5257
04d28e37
SC
5258 mmu->root_hpa = INVALID_PAGE;
5259 mmu->root_pgd = 0;
5260 mmu->translate_gpa = translate_gpa;
5261 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5262 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5263
17ac10ad 5264 /*
b6b80c78
SC
5265 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5266 * while the PDP table is a per-vCPU construct that's allocated at MMU
5267 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5268 * x86_64. Therefore we need to allocate the PDP table in the first
5269 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5270 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5271 * skip allocating the PDP table.
17ac10ad 5272 */
d468d94b 5273 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5274 return 0;
5275
254272ce 5276 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5277 if (!page)
d7fa6ab2
WY
5278 return -ENOMEM;
5279
1cfff4d9 5280 mmu->pae_root = page_address(page);
17ac10ad 5281 for (i = 0; i < 4; ++i)
1cfff4d9 5282 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5283
6aa8b732 5284 return 0;
6aa8b732
AK
5285}
5286
8018c27b 5287int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5288{
1cfff4d9 5289 int ret;
b94742c9 5290
5962bfb7 5291 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5292 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5293
5962bfb7 5294 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5295 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5296
96880883
SC
5297 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5298
44dd3ffa
VK
5299 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5300 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5301
14c07ad8 5302 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5303
04d28e37 5304 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5305 if (ret)
5306 return ret;
5307
04d28e37 5308 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5309 if (ret)
5310 goto fail_allocate_root;
5311
5312 return ret;
5313 fail_allocate_root:
5314 free_mmu_pages(&vcpu->arch.guest_mmu);
5315 return ret;
6aa8b732
AK
5316}
5317
fbb158cb 5318#define BATCH_ZAP_PAGES 10
002c5f73
SC
5319static void kvm_zap_obsolete_pages(struct kvm *kvm)
5320{
5321 struct kvm_mmu_page *sp, *node;
fbb158cb 5322 int nr_zapped, batch = 0;
002c5f73
SC
5323
5324restart:
5325 list_for_each_entry_safe_reverse(sp, node,
5326 &kvm->arch.active_mmu_pages, link) {
5327 /*
5328 * No obsolete valid page exists before a newly created page
5329 * since active_mmu_pages is a FIFO list.
5330 */
5331 if (!is_obsolete_sp(kvm, sp))
5332 break;
5333
5334 /*
f95eec9b
SC
5335 * Invalid pages should never land back on the list of active
5336 * pages. Skip the bogus page, otherwise we'll get stuck in an
5337 * infinite loop if the page gets put back on the list (again).
002c5f73 5338 */
f95eec9b 5339 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5340 continue;
5341
4506ecf4
SC
5342 /*
5343 * No need to flush the TLB since we're only zapping shadow
5344 * pages with an obsolete generation number and all vCPUS have
5345 * loaded a new root, i.e. the shadow pages being zapped cannot
5346 * be in active use by the guest.
5347 */
fbb158cb 5348 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5349 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5350 batch = 0;
002c5f73
SC
5351 goto restart;
5352 }
5353
10605204
SC
5354 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5355 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5356 batch += nr_zapped;
002c5f73 5357 goto restart;
fbb158cb 5358 }
002c5f73
SC
5359 }
5360
4506ecf4
SC
5361 /*
5362 * Trigger a remote TLB flush before freeing the page tables to ensure
5363 * KVM is not in the middle of a lockless shadow page table walk, which
5364 * may reference the pages.
5365 */
10605204 5366 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5367}
5368
5369/*
5370 * Fast invalidate all shadow pages and use lock-break technique
5371 * to zap obsolete pages.
5372 *
5373 * It's required when memslot is being deleted or VM is being
5374 * destroyed, in these cases, we should ensure that KVM MMU does
5375 * not use any resource of the being-deleted slot or all slots
5376 * after calling the function.
5377 */
5378static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5379{
ca333add
SC
5380 lockdep_assert_held(&kvm->slots_lock);
5381
002c5f73 5382 spin_lock(&kvm->mmu_lock);
14a3c4f4 5383 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5384
5385 /*
5386 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5387 * held for the entire duration of zapping obsolete pages, it's
5388 * impossible for there to be multiple invalid generations associated
5389 * with *valid* shadow pages at any given time, i.e. there is exactly
5390 * one valid generation and (at most) one invalid generation.
5391 */
5392 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5393
4506ecf4
SC
5394 /*
5395 * Notify all vcpus to reload its shadow page table and flush TLB.
5396 * Then all vcpus will switch to new shadow page table with the new
5397 * mmu_valid_gen.
5398 *
5399 * Note: we need to do this under the protection of mmu_lock,
5400 * otherwise, vcpu would purge shadow page but miss tlb flush.
5401 */
5402 kvm_reload_remote_mmus(kvm);
5403
002c5f73 5404 kvm_zap_obsolete_pages(kvm);
faaf05b0
BG
5405
5406 if (kvm->arch.tdp_mmu_enabled)
5407 kvm_tdp_mmu_zap_all(kvm);
5408
002c5f73
SC
5409 spin_unlock(&kvm->mmu_lock);
5410}
5411
10605204
SC
5412static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5413{
5414 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5415}
5416
b5f5fdca 5417static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5418 struct kvm_memory_slot *slot,
5419 struct kvm_page_track_notifier_node *node)
b5f5fdca 5420{
002c5f73 5421 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5422}
5423
13d268ca 5424void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5425{
13d268ca 5426 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5427
fe5db27d
BG
5428 kvm_mmu_init_tdp_mmu(kvm);
5429
13d268ca 5430 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5431 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5432 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5433}
5434
13d268ca 5435void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5436{
13d268ca 5437 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5438
13d268ca 5439 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5440
5441 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5442}
5443
efdfe536
XG
5444void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5445{
5446 struct kvm_memslots *slots;
5447 struct kvm_memory_slot *memslot;
9da0e4d5 5448 int i;
faaf05b0 5449 bool flush;
efdfe536
XG
5450
5451 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5452 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5453 slots = __kvm_memslots(kvm, i);
5454 kvm_for_each_memslot(memslot, slots) {
5455 gfn_t start, end;
5456
5457 start = max(gfn_start, memslot->base_gfn);
5458 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5459 if (start >= end)
5460 continue;
efdfe536 5461
92da008f 5462 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5463 PG_LEVEL_4K,
e662ec3e 5464 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5465 start, end - 1, true);
9da0e4d5 5466 }
efdfe536
XG
5467 }
5468
faaf05b0
BG
5469 if (kvm->arch.tdp_mmu_enabled) {
5470 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5471 if (flush)
5472 kvm_flush_remote_tlbs(kvm);
5473 }
5474
efdfe536
XG
5475 spin_unlock(&kvm->mmu_lock);
5476}
5477
018aabb5
TY
5478static bool slot_rmap_write_protect(struct kvm *kvm,
5479 struct kvm_rmap_head *rmap_head)
d77aa73c 5480{
018aabb5 5481 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5482}
5483
1c91cad4 5484void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5485 struct kvm_memory_slot *memslot,
5486 int start_level)
6aa8b732 5487{
d77aa73c 5488 bool flush;
6aa8b732 5489
9d1beefb 5490 spin_lock(&kvm->mmu_lock);
3c9bd400 5491 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5492 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
a6a0b05d
BG
5493 if (kvm->arch.tdp_mmu_enabled)
5494 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
9d1beefb 5495 spin_unlock(&kvm->mmu_lock);
198c74f4 5496
198c74f4
XG
5497 /*
5498 * We can flush all the TLBs out of the mmu lock without TLB
5499 * corruption since we just change the spte from writable to
5500 * readonly so that we only need to care the case of changing
5501 * spte from present to present (changing the spte from present
5502 * to nonpresent will flush all the TLBs immediately), in other
5503 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5504 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5505 * instead of PT_WRITABLE_MASK, that means it does not depend
5506 * on PT_WRITABLE_MASK anymore.
5507 */
d91ffee9 5508 if (flush)
7f42aa76 5509 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5510}
37a7d8b0 5511
3ea3b7fa 5512static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5513 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5514{
5515 u64 *sptep;
5516 struct rmap_iterator iter;
5517 int need_tlb_flush = 0;
ba049e93 5518 kvm_pfn_t pfn;
3ea3b7fa
WL
5519 struct kvm_mmu_page *sp;
5520
0d536790 5521restart:
018aabb5 5522 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5523 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5524 pfn = spte_to_pfn(*sptep);
5525
5526 /*
decf6333
XG
5527 * We cannot do huge page mapping for indirect shadow pages,
5528 * which are found on the last rmap (level = 1) when not using
5529 * tdp; such shadow pages are synced with the page table in
5530 * the guest, and the guest page table is using 4K page size
5531 * mapping if the indirect sp has level = 1.
3ea3b7fa 5532 */
a78986aa 5533 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5534 (kvm_is_zone_device_pfn(pfn) ||
5535 PageCompound(pfn_to_page(pfn)))) {
e7912386 5536 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5537
5538 if (kvm_available_flush_tlb_with_range())
5539 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5540 KVM_PAGES_PER_HPAGE(sp->role.level));
5541 else
5542 need_tlb_flush = 1;
5543
0d536790
XG
5544 goto restart;
5545 }
3ea3b7fa
WL
5546 }
5547
5548 return need_tlb_flush;
5549}
5550
5551void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5552 const struct kvm_memory_slot *memslot)
3ea3b7fa 5553{
f36f3f28 5554 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5555 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5556 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5557 kvm_mmu_zap_collapsible_spte, true);
14881998
BG
5558
5559 if (kvm->arch.tdp_mmu_enabled)
5560 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
3ea3b7fa
WL
5561 spin_unlock(&kvm->mmu_lock);
5562}
5563
b3594ffb
SC
5564void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5565 struct kvm_memory_slot *memslot)
5566{
5567 /*
7f42aa76
SC
5568 * All current use cases for flushing the TLBs for a specific memslot
5569 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5570 * The interaction between the various operations on memslot must be
5571 * serialized by slots_locks to ensure the TLB flush from one operation
5572 * is observed by any other operation on the same memslot.
b3594ffb
SC
5573 */
5574 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5575 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5576 memslot->npages);
b3594ffb
SC
5577}
5578
f4b4b180
KH
5579void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5580 struct kvm_memory_slot *memslot)
5581{
d77aa73c 5582 bool flush;
f4b4b180
KH
5583
5584 spin_lock(&kvm->mmu_lock);
d77aa73c 5585 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
a6a0b05d
BG
5586 if (kvm->arch.tdp_mmu_enabled)
5587 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
f4b4b180
KH
5588 spin_unlock(&kvm->mmu_lock);
5589
f4b4b180
KH
5590 /*
5591 * It's also safe to flush TLBs out of mmu lock here as currently this
5592 * function is only used for dirty logging, in which case flushing TLB
5593 * out of mmu lock also guarantees no dirty pages will be lost in
5594 * dirty_bitmap.
5595 */
5596 if (flush)
7f42aa76 5597 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5598}
5599EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5600
5601void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5602 struct kvm_memory_slot *memslot)
5603{
d77aa73c 5604 bool flush;
f4b4b180
KH
5605
5606 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5607 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5608 false);
a6a0b05d
BG
5609 if (kvm->arch.tdp_mmu_enabled)
5610 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
f4b4b180
KH
5611 spin_unlock(&kvm->mmu_lock);
5612
f4b4b180 5613 if (flush)
7f42aa76 5614 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5615}
5616EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5617
5618void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5619 struct kvm_memory_slot *memslot)
5620{
d77aa73c 5621 bool flush;
f4b4b180
KH
5622
5623 spin_lock(&kvm->mmu_lock);
d77aa73c 5624 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
a6a0b05d
BG
5625 if (kvm->arch.tdp_mmu_enabled)
5626 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
f4b4b180
KH
5627 spin_unlock(&kvm->mmu_lock);
5628
f4b4b180 5629 if (flush)
7f42aa76 5630 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5631}
5632EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5633
92f58b5c 5634void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5635{
5636 struct kvm_mmu_page *sp, *node;
7390de1e 5637 LIST_HEAD(invalid_list);
83cdb568 5638 int ign;
5304b8d3 5639
7390de1e 5640 spin_lock(&kvm->mmu_lock);
5304b8d3 5641restart:
8a674adc 5642 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5643 if (WARN_ON(sp->role.invalid))
4771450c 5644 continue;
92f58b5c 5645 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5646 goto restart;
24efe61f 5647 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5648 goto restart;
5649 }
5650
4771450c 5651 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0
BG
5652
5653 if (kvm->arch.tdp_mmu_enabled)
5654 kvm_tdp_mmu_zap_all(kvm);
5655
5304b8d3
XG
5656 spin_unlock(&kvm->mmu_lock);
5657}
5658
15248258 5659void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5660{
164bf7e5 5661 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5662
164bf7e5 5663 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5664
f8f55942 5665 /*
e1359e2b
SC
5666 * Generation numbers are incremented in multiples of the number of
5667 * address spaces in order to provide unique generations across all
5668 * address spaces. Strip what is effectively the address space
5669 * modifier prior to checking for a wrap of the MMIO generation so
5670 * that a wrap in any address space is detected.
5671 */
5672 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5673
f8f55942 5674 /*
e1359e2b 5675 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5676 * zap all shadow pages.
f8f55942 5677 */
e1359e2b 5678 if (unlikely(gen == 0)) {
ae0f5499 5679 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5680 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5681 }
f8f55942
XG
5682}
5683
70534a73
DC
5684static unsigned long
5685mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5686{
5687 struct kvm *kvm;
1495f230 5688 int nr_to_scan = sc->nr_to_scan;
70534a73 5689 unsigned long freed = 0;
3ee16c81 5690
0d9ce162 5691 mutex_lock(&kvm_lock);
3ee16c81
IE
5692
5693 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5694 int idx;
d98ba053 5695 LIST_HEAD(invalid_list);
3ee16c81 5696
35f2d16b
TY
5697 /*
5698 * Never scan more than sc->nr_to_scan VM instances.
5699 * Will not hit this condition practically since we do not try
5700 * to shrink more than one VM and it is very unlikely to see
5701 * !n_used_mmu_pages so many times.
5702 */
5703 if (!nr_to_scan--)
5704 break;
19526396
GN
5705 /*
5706 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5707 * here. We may skip a VM instance errorneosly, but we do not
5708 * want to shrink a VM that only started to populate its MMU
5709 * anyway.
5710 */
10605204
SC
5711 if (!kvm->arch.n_used_mmu_pages &&
5712 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5713 continue;
19526396 5714
f656ce01 5715 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5716 spin_lock(&kvm->mmu_lock);
3ee16c81 5717
10605204
SC
5718 if (kvm_has_zapped_obsolete_pages(kvm)) {
5719 kvm_mmu_commit_zap_page(kvm,
5720 &kvm->arch.zapped_obsolete_pages);
5721 goto unlock;
5722 }
5723
ebdb292d 5724 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5725
10605204 5726unlock:
3ee16c81 5727 spin_unlock(&kvm->mmu_lock);
f656ce01 5728 srcu_read_unlock(&kvm->srcu, idx);
19526396 5729
70534a73
DC
5730 /*
5731 * unfair on small ones
5732 * per-vm shrinkers cry out
5733 * sadness comes quickly
5734 */
19526396
GN
5735 list_move_tail(&kvm->vm_list, &vm_list);
5736 break;
3ee16c81 5737 }
3ee16c81 5738
0d9ce162 5739 mutex_unlock(&kvm_lock);
70534a73 5740 return freed;
70534a73
DC
5741}
5742
5743static unsigned long
5744mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5745{
45221ab6 5746 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5747}
5748
5749static struct shrinker mmu_shrinker = {
70534a73
DC
5750 .count_objects = mmu_shrink_count,
5751 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5752 .seeks = DEFAULT_SEEKS * 10,
5753};
5754
2ddfd20e 5755static void mmu_destroy_caches(void)
b5a33a75 5756{
c1bd743e
TH
5757 kmem_cache_destroy(pte_list_desc_cache);
5758 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5759}
5760
7b6f8a06
KH
5761static void kvm_set_mmio_spte_mask(void)
5762{
5763 u64 mask;
7b6f8a06
KH
5764
5765 /*
6129ed87
SC
5766 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5767 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5768 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5769 * 52-bit physical addresses then there are no reserved PA bits in the
5770 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 5771 */
6129ed87
SC
5772 if (shadow_phys_bits < 52)
5773 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5774 else
5775 mask = 0;
7b6f8a06 5776
e7581cac 5777 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
5778}
5779
b8e8c830
PB
5780static bool get_nx_auto_mode(void)
5781{
5782 /* Return true when CPU has the bug, and mitigations are ON */
5783 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5784}
5785
5786static void __set_nx_huge_pages(bool val)
5787{
5788 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5789}
5790
5791static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5792{
5793 bool old_val = nx_huge_pages;
5794 bool new_val;
5795
5796 /* In "auto" mode deploy workaround only if CPU has the bug. */
5797 if (sysfs_streq(val, "off"))
5798 new_val = 0;
5799 else if (sysfs_streq(val, "force"))
5800 new_val = 1;
5801 else if (sysfs_streq(val, "auto"))
5802 new_val = get_nx_auto_mode();
5803 else if (strtobool(val, &new_val) < 0)
5804 return -EINVAL;
5805
5806 __set_nx_huge_pages(new_val);
5807
5808 if (new_val != old_val) {
5809 struct kvm *kvm;
b8e8c830
PB
5810
5811 mutex_lock(&kvm_lock);
5812
5813 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5814 mutex_lock(&kvm->slots_lock);
b8e8c830 5815 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5816 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5817
5818 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5819 }
5820 mutex_unlock(&kvm_lock);
5821 }
5822
5823 return 0;
5824}
5825
b5a33a75
AK
5826int kvm_mmu_module_init(void)
5827{
ab271bd4
AB
5828 int ret = -ENOMEM;
5829
b8e8c830
PB
5830 if (nx_huge_pages == -1)
5831 __set_nx_huge_pages(get_nx_auto_mode());
5832
36d9594d
VK
5833 /*
5834 * MMU roles use union aliasing which is, generally speaking, an
5835 * undefined behavior. However, we supposedly know how compilers behave
5836 * and the current status quo is unlikely to change. Guardians below are
5837 * supposed to let us know if the assumption becomes false.
5838 */
5839 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5840 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5841 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5842
28a1f3ac 5843 kvm_mmu_reset_all_pte_masks();
f160c7b7 5844
7b6f8a06
KH
5845 kvm_set_mmio_spte_mask();
5846
53c07b18
XG
5847 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5848 sizeof(struct pte_list_desc),
46bea48a 5849 0, SLAB_ACCOUNT, NULL);
53c07b18 5850 if (!pte_list_desc_cache)
ab271bd4 5851 goto out;
b5a33a75 5852
d3d25b04
AK
5853 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5854 sizeof(struct kvm_mmu_page),
46bea48a 5855 0, SLAB_ACCOUNT, NULL);
d3d25b04 5856 if (!mmu_page_header_cache)
ab271bd4 5857 goto out;
d3d25b04 5858
908c7f19 5859 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5860 goto out;
45bf21a8 5861
ab271bd4
AB
5862 ret = register_shrinker(&mmu_shrinker);
5863 if (ret)
5864 goto out;
3ee16c81 5865
b5a33a75
AK
5866 return 0;
5867
ab271bd4 5868out:
3ee16c81 5869 mmu_destroy_caches();
ab271bd4 5870 return ret;
b5a33a75
AK
5871}
5872
3ad82a7e 5873/*
39337ad1 5874 * Calculate mmu pages needed for kvm.
3ad82a7e 5875 */
bc8a3d89 5876unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5877{
bc8a3d89
BG
5878 unsigned long nr_mmu_pages;
5879 unsigned long nr_pages = 0;
bc6678a3 5880 struct kvm_memslots *slots;
be6ba0f0 5881 struct kvm_memory_slot *memslot;
9da0e4d5 5882 int i;
3ad82a7e 5883
9da0e4d5
PB
5884 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5885 slots = __kvm_memslots(kvm, i);
90d83dc3 5886
9da0e4d5
PB
5887 kvm_for_each_memslot(memslot, slots)
5888 nr_pages += memslot->npages;
5889 }
3ad82a7e
ZX
5890
5891 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5892 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5893
5894 return nr_mmu_pages;
5895}
5896
c42fffe3
XG
5897void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5898{
95f93af4 5899 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5900 free_mmu_pages(&vcpu->arch.root_mmu);
5901 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5902 mmu_free_memory_caches(vcpu);
b034cf01
XG
5903}
5904
b034cf01
XG
5905void kvm_mmu_module_exit(void)
5906{
5907 mmu_destroy_caches();
5908 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5909 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5910 mmu_audit_disable();
5911}
1aa9b957
JS
5912
5913static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5914{
5915 unsigned int old_val;
5916 int err;
5917
5918 old_val = nx_huge_pages_recovery_ratio;
5919 err = param_set_uint(val, kp);
5920 if (err)
5921 return err;
5922
5923 if (READ_ONCE(nx_huge_pages) &&
5924 !old_val && nx_huge_pages_recovery_ratio) {
5925 struct kvm *kvm;
5926
5927 mutex_lock(&kvm_lock);
5928
5929 list_for_each_entry(kvm, &vm_list, vm_list)
5930 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5931
5932 mutex_unlock(&kvm_lock);
5933 }
5934
5935 return err;
5936}
5937
5938static void kvm_recover_nx_lpages(struct kvm *kvm)
5939{
5940 int rcu_idx;
5941 struct kvm_mmu_page *sp;
5942 unsigned int ratio;
5943 LIST_HEAD(invalid_list);
5944 ulong to_zap;
5945
5946 rcu_idx = srcu_read_lock(&kvm->srcu);
5947 spin_lock(&kvm->mmu_lock);
5948
5949 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5950 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5951 for ( ; to_zap; --to_zap) {
5952 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5953 break;
5954
1aa9b957
JS
5955 /*
5956 * We use a separate list instead of just using active_mmu_pages
5957 * because the number of lpage_disallowed pages is expected to
5958 * be relatively small compared to the total.
5959 */
5960 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5961 struct kvm_mmu_page,
5962 lpage_disallowed_link);
5963 WARN_ON_ONCE(!sp->lpage_disallowed);
29cf0f50
BG
5964 if (sp->tdp_mmu_page)
5965 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5966 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5967 else {
5968 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5969 WARN_ON_ONCE(sp->lpage_disallowed);
5970 }
1aa9b957 5971
7d919c7a 5972 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
1aa9b957 5973 kvm_mmu_commit_zap_page(kvm, &invalid_list);
7d919c7a 5974 cond_resched_lock(&kvm->mmu_lock);
1aa9b957
JS
5975 }
5976 }
e8950569 5977 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1aa9b957
JS
5978
5979 spin_unlock(&kvm->mmu_lock);
5980 srcu_read_unlock(&kvm->srcu, rcu_idx);
5981}
5982
5983static long get_nx_lpage_recovery_timeout(u64 start_time)
5984{
5985 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5986 ? start_time + 60 * HZ - get_jiffies_64()
5987 : MAX_SCHEDULE_TIMEOUT;
5988}
5989
5990static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5991{
5992 u64 start_time;
5993 long remaining_time;
5994
5995 while (true) {
5996 start_time = get_jiffies_64();
5997 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5998
5999 set_current_state(TASK_INTERRUPTIBLE);
6000 while (!kthread_should_stop() && remaining_time > 0) {
6001 schedule_timeout(remaining_time);
6002 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6003 set_current_state(TASK_INTERRUPTIBLE);
6004 }
6005
6006 set_current_state(TASK_RUNNING);
6007
6008 if (kthread_should_stop())
6009 return 0;
6010
6011 kvm_recover_nx_lpages(kvm);
6012 }
6013}
6014
6015int kvm_mmu_post_init_vm(struct kvm *kvm)
6016{
6017 int err;
6018
6019 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6020 "kvm-nx-lpage-recovery",
6021 &kvm->arch.nx_lpage_recovery_thread);
6022 if (!err)
6023 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6024
6025 return err;
6026}
6027
6028void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6029{
6030 if (kvm->arch.nx_lpage_recovery_thread)
6031 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6032}