]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
13673a90 51#include <asm/vmx.h>
3d0c27ad 52#include <asm/kvm_page_track.h>
1261bfa3 53#include "trace.h"
6aa8b732 54
b8e8c830
PB
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
1aa9b957 62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 63#endif
b8e8c830
PB
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 67
d5d6c18d 68static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
d5d6c18d 73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
b8e8c830
PB
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 83
71fe7013
SC
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
18552672
JR
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
2f333bcb 94bool tdp_enabled = false;
18552672 95
1d92d2e8 96static int max_huge_page_level __read_mostly;
83013059 97static int max_tdp_level __read_mostly;
703c335d 98
8b1fe17c
XG
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
6903074c
XG
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
8b1fe17c 106};
37a7d8b0 107
37a7d8b0 108#ifdef MMU_DEBUG
5a9624af 109bool dbg = 0;
fa4a2c08 110module_param(dbg, bool, 0644);
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
6aa8b732
AK
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
d77c26fc 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 119
e04da980
JR
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
6aa8b732
AK
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
90bb6fc5
AK
135#include <trace/events/kvm.h>
136
220f773a
TY
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
53c07b18
XG
140struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
cd4a4e53
AK
143};
144
2d11123a
AK
145struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
2d11123a 148 u64 *sptep;
dd3bfd59 149 int level;
2d11123a
AK
150 unsigned index;
151};
152
7eb77e9f
JS
153#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
c2a2ac2b
XG
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
53c07b18 170static struct kmem_cache *pte_list_desc_cache;
02c00b3a 171struct kmem_cache *mmu_page_header_cache;
45221ab6 172static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 173
ce88decf 174static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
175static union kvm_mmu_page_role
176kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 177
335e192a
PB
178#define CREATE_TRACE_POINTS
179#include "mmutrace.h"
180
40ef75a7
LT
181
182static inline bool kvm_available_flush_tlb_with_range(void)
183{
afaf0b2f 184 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
185}
186
187static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189{
190 int ret = -ENOTSUPP;
191
afaf0b2f
SC
192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197}
198
2f2fad08 199void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
200 u64 start_gfn, u64 pages)
201{
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208}
209
5a9624af 210bool is_nx_huge_page_enabled(void)
b8e8c830
PB
211{
212 return READ_ONCE(nx_huge_pages);
213}
214
8f79b064
BG
215static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217{
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
8f79b064 219
bb18842e 220 trace_mark_mmio_spte(sptep, gfn, mask);
f2fd125d 221 mmu_spte_set(sptep, mask);
ce88decf
XG
222}
223
ce88decf
XG
224static gfn_t get_mmio_spte_gfn(u64 spte)
225{
daa07cbc 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
227
228 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
ce88decf
XG
232}
233
234static unsigned get_mmio_spte_access(u64 spte)
235{
4af77151 236 return spte & shadow_mmio_access_mask;
ce88decf
XG
237}
238
54bf36aa 239static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 240 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
241{
242 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 243 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
244 return true;
245 }
246
247 return false;
248}
c7addb90 249
54bf36aa 250static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 251{
cae7ed3c 252 u64 kvm_gen, spte_gen, gen;
089504c0 253
cae7ed3c
SC
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
089504c0 257
cae7ed3c 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
f8f55942
XG
263}
264
cd313569
MG
265static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267{
ec7771ab 268 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
cd313569
MG
274 return gpa;
275}
276
6aa8b732
AK
277static int is_cpuid_PSE36(void)
278{
279 return 1;
280}
281
73b1087e
AK
282static int is_nx(struct kvm_vcpu *vcpu)
283{
f6801dff 284 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
285}
286
da928521
AK
287static gfn_t pse36_gfn_delta(u32 gpte)
288{
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292}
293
603e0651 294#ifdef CONFIG_X86_64
d555c333 295static void __set_spte(u64 *sptep, u64 spte)
e663ee64 296{
b19ee2ff 297 WRITE_ONCE(*sptep, spte);
e663ee64
AK
298}
299
603e0651 300static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 301{
b19ee2ff 302 WRITE_ONCE(*sptep, spte);
603e0651
XG
303}
304
305static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306{
307 return xchg(sptep, spte);
308}
c2a2ac2b
XG
309
310static u64 __get_spte_lockless(u64 *sptep)
311{
6aa7de05 312 return READ_ONCE(*sptep);
c2a2ac2b 313}
a9221dd5 314#else
603e0651
XG
315union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321};
a9221dd5 322
c2a2ac2b
XG
323static void count_spte_clear(u64 *sptep, u64 spte)
324{
57354682 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333}
334
603e0651
XG
335static void __set_spte(u64 *sptep, u64 spte)
336{
337 union split_spte *ssptep, sspte;
a9221dd5 338
603e0651
XG
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
352}
353
603e0651
XG
354static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355{
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
b19ee2ff 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 370 count_spte_clear(sptep, spte);
603e0651
XG
371}
372
373static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374{
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 384 count_spte_clear(sptep, spte);
603e0651
XG
385
386 return orig.spte;
387}
c2a2ac2b
XG
388
389/*
390 * The idea using the light way get the spte on x86_32 guest is from
39656e83 391 * gup_get_pte (mm/gup.c).
accaefe0
XG
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
57354682 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
603e0651
XG
429#endif
430
8672b721
XG
431static bool spte_has_volatile_bits(u64 spte)
432{
f160c7b7
JS
433 if (!is_shadow_present_pte(spte))
434 return false;
435
c7ba5b48 436 /*
6a6256f9 437 * Always atomically update spte if it can be updated
c7ba5b48
XG
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
f160c7b7
JS
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
c7ba5b48
XG
444 return true;
445
ac8d57e5 446 if (spte_ad_enabled(spte)) {
f160c7b7
JS
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
8672b721 451
f160c7b7 452 return false;
8672b721
XG
453}
454
1df9f2dc
XG
455/* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461static void mmu_spte_set(u64 *sptep, u64 new_spte)
462{
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465}
466
f39a058d
JS
467/*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
1df9f2dc 470 */
f39a058d 471static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 472{
c7ba5b48 473 u64 old_spte = *sptep;
4132779b 474
afd28fe1 475 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 476
6e7d0354
XG
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
f39a058d 479 return old_spte;
6e7d0354 480 }
4132779b 481
c7ba5b48 482 if (!spte_has_volatile_bits(old_spte))
603e0651 483 __update_clear_spte_fast(sptep, new_spte);
4132779b 484 else
603e0651 485 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 486
83ef6c81
JS
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
f39a058d
JS
489 return old_spte;
490}
491
492/* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504{
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
c7ba5b48
XG
511 /*
512 * For the spte updated out of mmu-lock is safe, since
6a6256f9 513 * we always atomically update it, see the comments in
c7ba5b48
XG
514 * spte_has_volatile_bits().
515 */
ea4114bc 516 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 517 !is_writable_pte(new_spte))
83ef6c81 518 flush = true;
4132779b 519
7e71a59b 520 /*
83ef6c81 521 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
522 * to guarantee consistency between TLB and page tables.
523 */
7e71a59b 524
83ef6c81
JS
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
4132779b 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
4132779b 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 533 }
6e7d0354 534
83ef6c81 535 return flush;
b79b93f9
AK
536}
537
1df9f2dc
XG
538/*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
83ef6c81 542 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
543 */
544static int mmu_spte_clear_track_bits(u64 *sptep)
545{
ba049e93 546 kvm_pfn_t pfn;
1df9f2dc
XG
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
603e0651 550 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 551 else
603e0651 552 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 553
afd28fe1 554 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
86fde74c
XG
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
bf4bea8e 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 565
83ef6c81 566 if (is_accessed_spte(old_spte))
1df9f2dc 567 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
568
569 if (is_dirty_spte(old_spte))
1df9f2dc 570 kvm_set_pfn_dirty(pfn);
83ef6c81 571
1df9f2dc
XG
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
d3e328f2
JS
590/* Restore an acc-track PTE back to a regular PTE */
591static u64 restore_acc_track_spte(u64 spte)
592{
593 u64 new_spte = spte;
594 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
595 & shadow_acc_track_saved_bits_mask;
596
ac8d57e5 597 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
601 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
602 shadow_acc_track_saved_bits_shift);
603 new_spte |= saved_bits;
604
605 return new_spte;
606}
607
f160c7b7
JS
608/* Returns the Accessed status of the PTE and resets it at the same time. */
609static bool mmu_spte_age(u64 *sptep)
610{
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
ac8d57e5 616 if (spte_ad_enabled(spte)) {
f160c7b7
JS
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632}
633
c2a2ac2b
XG
634static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635{
c142786c
AK
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
36ca7e0a 641
c142786c
AK
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
36ca7e0a 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
647}
648
649static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650{
c142786c
AK
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
36ca7e0a 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 657 local_irq_enable();
c2a2ac2b
XG
658}
659
378f5cd6 660static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 661{
e2dec939
AK
662 int r;
663
531281ad 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 667 if (r)
284aa868 668 return r;
94ce87ef
SC
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
d3d25b04 671 if (r)
171a90d7 672 return r;
378f5cd6 673 if (maybe_indirect) {
94ce87ef
SC
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
676 if (r)
677 return r;
678 }
94ce87ef
SC
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
94ce87ef
SC
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
689}
690
53c07b18 691static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 692{
94ce87ef 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
694}
695
53c07b18 696static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 697{
53c07b18 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
699}
700
2032a93d
LJ
701static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702{
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707}
708
709static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710{
e9f2a760 711 if (!sp->role.direct) {
2032a93d 712 sp->gfns[index] = gfn;
e9f2a760
PB
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
721}
722
05da4558 723/*
d4dbf470
TY
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
05da4558 726 */
d4dbf470
TY
727static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
05da4558
MT
730{
731 unsigned long idx;
732
fb03cb6f 733 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 734 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
735}
736
547ffaed
XG
737static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739{
740 struct kvm_lpage_info *linfo;
741 int i;
742
3bae0459 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748}
749
750void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751{
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753}
754
755void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756{
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758}
759
3ed1a478 760static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 761{
699023e2 762 struct kvm_memslots *slots;
d25797b2 763 struct kvm_memory_slot *slot;
3ed1a478 764 gfn_t gfn;
05da4558 765
56ca57f9 766 kvm->arch.indirect_shadow_pages++;
3ed1a478 767 gfn = sp->gfn;
699023e2
PB
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
770
771 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 772 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
547ffaed 776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
777}
778
b8e8c830
PB
779static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780{
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
787 sp->lpage_disallowed = true;
788}
789
3ed1a478 790static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 791{
699023e2 792 struct kvm_memslots *slots;
d25797b2 793 struct kvm_memory_slot *slot;
3ed1a478 794 gfn_t gfn;
05da4558 795
56ca57f9 796 kvm->arch.indirect_shadow_pages--;
3ed1a478 797 gfn = sp->gfn;
699023e2
PB
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
3bae0459 800 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
547ffaed 804 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
805}
806
b8e8c830
PB
807static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808{
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
1aa9b957 811 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
812}
813
5d163b1c
XG
814static struct kvm_memory_slot *
815gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
05da4558
MT
817{
818 struct kvm_memory_slot *slot;
5d163b1c 819
54bf36aa 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
823 if (no_dirty_log && slot->dirty_bitmap)
824 return NULL;
5d163b1c
XG
825
826 return slot;
827}
828
290fc38d 829/*
018aabb5 830 * About rmap_head encoding:
cd4a4e53 831 *
018aabb5
TY
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 834 * pte_list_desc containing more mappings.
018aabb5
TY
835 */
836
837/*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 839 */
53c07b18 840static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 841 struct kvm_rmap_head *rmap_head)
cd4a4e53 842{
53c07b18 843 struct pte_list_desc *desc;
53a27b39 844 int i, count = 0;
cd4a4e53 845
018aabb5 846 if (!rmap_head->val) {
53c07b18 847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 852 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 853 desc->sptes[1] = spte;
018aabb5 854 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 855 ++count;
cd4a4e53 856 } else {
53c07b18 857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 859 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 860 desc = desc->more;
53c07b18 861 count += PTE_LIST_EXT;
53a27b39 862 }
53c07b18
XG
863 if (desc->sptes[PTE_LIST_EXT-1]) {
864 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
865 desc = desc->more;
866 }
d555c333 867 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 868 ++count;
d555c333 869 desc->sptes[i] = spte;
cd4a4e53 870 }
53a27b39 871 return count;
cd4a4e53
AK
872}
873
53c07b18 874static void
018aabb5
TY
875pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
876 struct pte_list_desc *desc, int i,
877 struct pte_list_desc *prev_desc)
cd4a4e53
AK
878{
879 int j;
880
53c07b18 881 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 882 ;
d555c333
AK
883 desc->sptes[i] = desc->sptes[j];
884 desc->sptes[j] = NULL;
cd4a4e53
AK
885 if (j != 0)
886 return;
887 if (!prev_desc && !desc->more)
fe3c2b4c 888 rmap_head->val = 0;
cd4a4e53
AK
889 else
890 if (prev_desc)
891 prev_desc->more = desc->more;
892 else
018aabb5 893 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 894 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
895}
896
8daf3462 897static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 898{
53c07b18
XG
899 struct pte_list_desc *desc;
900 struct pte_list_desc *prev_desc;
cd4a4e53
AK
901 int i;
902
018aabb5 903 if (!rmap_head->val) {
8daf3462 904 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 905 BUG();
018aabb5 906 } else if (!(rmap_head->val & 1)) {
8daf3462 907 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 908 if ((u64 *)rmap_head->val != spte) {
8daf3462 909 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
910 BUG();
911 }
018aabb5 912 rmap_head->val = 0;
cd4a4e53 913 } else {
8daf3462 914 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 915 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
916 prev_desc = NULL;
917 while (desc) {
018aabb5 918 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 919 if (desc->sptes[i] == spte) {
018aabb5
TY
920 pte_list_desc_remove_entry(rmap_head,
921 desc, i, prev_desc);
cd4a4e53
AK
922 return;
923 }
018aabb5 924 }
cd4a4e53
AK
925 prev_desc = desc;
926 desc = desc->more;
927 }
8daf3462 928 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
929 BUG();
930 }
931}
932
e7912386
WY
933static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
934{
935 mmu_spte_clear_track_bits(sptep);
936 __pte_list_remove(sptep, rmap_head);
937}
938
018aabb5
TY
939static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
940 struct kvm_memory_slot *slot)
53c07b18 941{
77d11309 942 unsigned long idx;
53c07b18 943
77d11309 944 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 945 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
946}
947
018aabb5
TY
948static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
949 struct kvm_mmu_page *sp)
9b9b1492 950{
699023e2 951 struct kvm_memslots *slots;
9b9b1492
TY
952 struct kvm_memory_slot *slot;
953
699023e2
PB
954 slots = kvm_memslots_for_spte_role(kvm, sp->role);
955 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 956 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
957}
958
f759e2b4
XG
959static bool rmap_can_add(struct kvm_vcpu *vcpu)
960{
356ec69a 961 struct kvm_mmu_memory_cache *mc;
f759e2b4 962
356ec69a 963 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 964 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
965}
966
53c07b18
XG
967static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
968{
969 struct kvm_mmu_page *sp;
018aabb5 970 struct kvm_rmap_head *rmap_head;
53c07b18 971
57354682 972 sp = sptep_to_sp(spte);
53c07b18 973 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
974 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
975 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
976}
977
53c07b18
XG
978static void rmap_remove(struct kvm *kvm, u64 *spte)
979{
980 struct kvm_mmu_page *sp;
981 gfn_t gfn;
018aabb5 982 struct kvm_rmap_head *rmap_head;
53c07b18 983
57354682 984 sp = sptep_to_sp(spte);
53c07b18 985 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 986 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 987 __pte_list_remove(spte, rmap_head);
53c07b18
XG
988}
989
1e3f42f0
TY
990/*
991 * Used by the following functions to iterate through the sptes linked by a
992 * rmap. All fields are private and not assumed to be used outside.
993 */
994struct rmap_iterator {
995 /* private fields */
996 struct pte_list_desc *desc; /* holds the sptep if not NULL */
997 int pos; /* index of the sptep */
998};
999
1000/*
1001 * Iteration must be started by this function. This should also be used after
1002 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1003 * information in the iterator may not be valid.
1e3f42f0
TY
1004 *
1005 * Returns sptep if found, NULL otherwise.
1006 */
018aabb5
TY
1007static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1008 struct rmap_iterator *iter)
1e3f42f0 1009{
77fbbbd2
TY
1010 u64 *sptep;
1011
018aabb5 1012 if (!rmap_head->val)
1e3f42f0
TY
1013 return NULL;
1014
018aabb5 1015 if (!(rmap_head->val & 1)) {
1e3f42f0 1016 iter->desc = NULL;
77fbbbd2
TY
1017 sptep = (u64 *)rmap_head->val;
1018 goto out;
1e3f42f0
TY
1019 }
1020
018aabb5 1021 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1022 iter->pos = 0;
77fbbbd2
TY
1023 sptep = iter->desc->sptes[iter->pos];
1024out:
1025 BUG_ON(!is_shadow_present_pte(*sptep));
1026 return sptep;
1e3f42f0
TY
1027}
1028
1029/*
1030 * Must be used with a valid iterator: e.g. after rmap_get_first().
1031 *
1032 * Returns sptep if found, NULL otherwise.
1033 */
1034static u64 *rmap_get_next(struct rmap_iterator *iter)
1035{
77fbbbd2
TY
1036 u64 *sptep;
1037
1e3f42f0
TY
1038 if (iter->desc) {
1039 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1040 ++iter->pos;
1041 sptep = iter->desc->sptes[iter->pos];
1042 if (sptep)
77fbbbd2 1043 goto out;
1e3f42f0
TY
1044 }
1045
1046 iter->desc = iter->desc->more;
1047
1048 if (iter->desc) {
1049 iter->pos = 0;
1050 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1051 sptep = iter->desc->sptes[iter->pos];
1052 goto out;
1e3f42f0
TY
1053 }
1054 }
1055
1056 return NULL;
77fbbbd2
TY
1057out:
1058 BUG_ON(!is_shadow_present_pte(*sptep));
1059 return sptep;
1e3f42f0
TY
1060}
1061
018aabb5
TY
1062#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1063 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1064 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1065
c3707958 1066static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1067{
1df9f2dc 1068 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1069 rmap_remove(kvm, sptep);
be38d276
AK
1070}
1071
8e22f955
XG
1072
1073static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1074{
1075 if (is_large_pte(*sptep)) {
57354682 1076 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1077 drop_spte(kvm, sptep);
1078 --kvm->stat.lpages;
1079 return true;
1080 }
1081
1082 return false;
1083}
1084
1085static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1086{
c3134ce2 1087 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1088 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1089
1090 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1091 KVM_PAGES_PER_HPAGE(sp->role.level));
1092 }
8e22f955
XG
1093}
1094
1095/*
49fde340 1096 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1097 * spte write-protection is caused by protecting shadow page table.
49fde340 1098 *
b4619660 1099 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1100 * protection:
1101 * - for dirty logging, the spte can be set to writable at anytime if
1102 * its dirty bitmap is properly set.
1103 * - for spte protection, the spte can be writable only after unsync-ing
1104 * shadow page.
8e22f955 1105 *
c126d94f 1106 * Return true if tlb need be flushed.
8e22f955 1107 */
c4f138b4 1108static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1109{
1110 u64 spte = *sptep;
1111
49fde340 1112 if (!is_writable_pte(spte) &&
ea4114bc 1113 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1114 return false;
1115
1116 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1117
49fde340
XG
1118 if (pt_protect)
1119 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1120 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1121
c126d94f 1122 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1123}
1124
018aabb5
TY
1125static bool __rmap_write_protect(struct kvm *kvm,
1126 struct kvm_rmap_head *rmap_head,
245c3912 1127 bool pt_protect)
98348e95 1128{
1e3f42f0
TY
1129 u64 *sptep;
1130 struct rmap_iterator iter;
d13bc5b5 1131 bool flush = false;
374cbac0 1132
018aabb5 1133 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1134 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1135
d13bc5b5 1136 return flush;
a0ed4607
TY
1137}
1138
c4f138b4 1139static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1140{
1141 u64 spte = *sptep;
1142
1143 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1144
1f4e5fc8 1145 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1146 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1147 return mmu_spte_update(sptep, spte);
1148}
1149
1f4e5fc8 1150static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1151{
1152 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1153 (unsigned long *)sptep);
1f4e5fc8 1154 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1155 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1156
1157 return was_writable;
1158}
1159
1160/*
1161 * Gets the GFN ready for another round of dirty logging by clearing the
1162 * - D bit on ad-enabled SPTEs, and
1163 * - W bit on ad-disabled SPTEs.
1164 * Returns true iff any D or W bits were cleared.
1165 */
018aabb5 1166static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1167{
1168 u64 *sptep;
1169 struct rmap_iterator iter;
1170 bool flush = false;
1171
018aabb5 1172 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1173 if (spte_ad_need_write_protect(*sptep))
1174 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1175 else
1f4e5fc8 1176 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1177
1178 return flush;
1179}
1180
c4f138b4 1181static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1182{
1183 u64 spte = *sptep;
1184
1185 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1186
1f4e5fc8 1187 /*
afaf0b2f 1188 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1189 * do not bother adding back write access to pages marked
1190 * SPTE_AD_WRPROT_ONLY_MASK.
1191 */
f4b4b180
KH
1192 spte |= shadow_dirty_mask;
1193
1194 return mmu_spte_update(sptep, spte);
1195}
1196
018aabb5 1197static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1198{
1199 u64 *sptep;
1200 struct rmap_iterator iter;
1201 bool flush = false;
1202
018aabb5 1203 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1204 if (spte_ad_enabled(*sptep))
1205 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1206
1207 return flush;
1208}
1209
5dc99b23 1210/**
3b0f1d01 1211 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1212 * @kvm: kvm instance
1213 * @slot: slot to protect
1214 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1215 * @mask: indicates which pages we should protect
1216 *
1217 * Used when we do not need to care about huge page mappings: e.g. during dirty
1218 * logging we do not have any such mappings.
1219 */
3b0f1d01 1220static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1221 struct kvm_memory_slot *slot,
1222 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1223{
018aabb5 1224 struct kvm_rmap_head *rmap_head;
a0ed4607 1225
5dc99b23 1226 while (mask) {
018aabb5 1227 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1228 PG_LEVEL_4K, slot);
018aabb5 1229 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1230
5dc99b23
TY
1231 /* clear the first set bit */
1232 mask &= mask - 1;
1233 }
374cbac0
AK
1234}
1235
f4b4b180 1236/**
ac8d57e5
PF
1237 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1238 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1239 * @kvm: kvm instance
1240 * @slot: slot to clear D-bit
1241 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1242 * @mask: indicates which pages we should clear D-bit
1243 *
1244 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1245 */
1246void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1247 struct kvm_memory_slot *slot,
1248 gfn_t gfn_offset, unsigned long mask)
1249{
018aabb5 1250 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1251
1252 while (mask) {
018aabb5 1253 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1254 PG_LEVEL_4K, slot);
018aabb5 1255 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1256
1257 /* clear the first set bit */
1258 mask &= mask - 1;
1259 }
1260}
1261EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1262
3b0f1d01
KH
1263/**
1264 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1265 * PT level pages.
1266 *
1267 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1268 * enable dirty logging for them.
1269 *
1270 * Used when we do not need to care about huge page mappings: e.g. during dirty
1271 * logging we do not have any such mappings.
1272 */
1273void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1274 struct kvm_memory_slot *slot,
1275 gfn_t gfn_offset, unsigned long mask)
1276{
afaf0b2f
SC
1277 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1278 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1279 mask);
1280 else
1281 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1282}
1283
aeecee2e
XG
1284bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1285 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1286{
018aabb5 1287 struct kvm_rmap_head *rmap_head;
5dc99b23 1288 int i;
2f84569f 1289 bool write_protected = false;
95d4c16c 1290
3bae0459 1291 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1292 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1293 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1294 }
1295
1296 return write_protected;
95d4c16c
TY
1297}
1298
aeecee2e
XG
1299static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1300{
1301 struct kvm_memory_slot *slot;
1302
1303 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1304 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1305}
1306
018aabb5 1307static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1308{
1e3f42f0
TY
1309 u64 *sptep;
1310 struct rmap_iterator iter;
6a49f85c 1311 bool flush = false;
e930bffe 1312
018aabb5 1313 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1314 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1315
e7912386 1316 pte_list_remove(rmap_head, sptep);
6a49f85c 1317 flush = true;
e930bffe 1318 }
1e3f42f0 1319
6a49f85c
XG
1320 return flush;
1321}
1322
018aabb5 1323static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1324 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1325 unsigned long data)
1326{
018aabb5 1327 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1328}
1329
018aabb5 1330static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1331 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1332 unsigned long data)
3da0dd43 1333{
1e3f42f0
TY
1334 u64 *sptep;
1335 struct rmap_iterator iter;
3da0dd43 1336 int need_flush = 0;
1e3f42f0 1337 u64 new_spte;
3da0dd43 1338 pte_t *ptep = (pte_t *)data;
ba049e93 1339 kvm_pfn_t new_pfn;
3da0dd43
IE
1340
1341 WARN_ON(pte_huge(*ptep));
1342 new_pfn = pte_pfn(*ptep);
1e3f42f0 1343
0d536790 1344restart:
018aabb5 1345 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1346 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1347 sptep, *sptep, gfn, level);
1e3f42f0 1348
3da0dd43 1349 need_flush = 1;
1e3f42f0 1350
3da0dd43 1351 if (pte_write(*ptep)) {
e7912386 1352 pte_list_remove(rmap_head, sptep);
0d536790 1353 goto restart;
3da0dd43 1354 } else {
cb3eedab
PB
1355 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1356 *sptep, new_pfn);
1e3f42f0
TY
1357
1358 mmu_spte_clear_track_bits(sptep);
1359 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1360 }
1361 }
1e3f42f0 1362
3cc5ea94
LT
1363 if (need_flush && kvm_available_flush_tlb_with_range()) {
1364 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1365 return 0;
1366 }
1367
0cf853c5 1368 return need_flush;
3da0dd43
IE
1369}
1370
6ce1f4e2
XG
1371struct slot_rmap_walk_iterator {
1372 /* input fields. */
1373 struct kvm_memory_slot *slot;
1374 gfn_t start_gfn;
1375 gfn_t end_gfn;
1376 int start_level;
1377 int end_level;
1378
1379 /* output fields. */
1380 gfn_t gfn;
018aabb5 1381 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1382 int level;
1383
1384 /* private field. */
018aabb5 1385 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1386};
1387
1388static void
1389rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1390{
1391 iterator->level = level;
1392 iterator->gfn = iterator->start_gfn;
1393 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1394 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1395 iterator->slot);
1396}
1397
1398static void
1399slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1400 struct kvm_memory_slot *slot, int start_level,
1401 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1402{
1403 iterator->slot = slot;
1404 iterator->start_level = start_level;
1405 iterator->end_level = end_level;
1406 iterator->start_gfn = start_gfn;
1407 iterator->end_gfn = end_gfn;
1408
1409 rmap_walk_init_level(iterator, iterator->start_level);
1410}
1411
1412static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1413{
1414 return !!iterator->rmap;
1415}
1416
1417static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1418{
1419 if (++iterator->rmap <= iterator->end_rmap) {
1420 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1421 return;
1422 }
1423
1424 if (++iterator->level > iterator->end_level) {
1425 iterator->rmap = NULL;
1426 return;
1427 }
1428
1429 rmap_walk_init_level(iterator, iterator->level);
1430}
1431
1432#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1433 _start_gfn, _end_gfn, _iter_) \
1434 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1435 _end_level_, _start_gfn, _end_gfn); \
1436 slot_rmap_walk_okay(_iter_); \
1437 slot_rmap_walk_next(_iter_))
1438
84504ef3
TY
1439static int kvm_handle_hva_range(struct kvm *kvm,
1440 unsigned long start,
1441 unsigned long end,
1442 unsigned long data,
1443 int (*handler)(struct kvm *kvm,
018aabb5 1444 struct kvm_rmap_head *rmap_head,
048212d0 1445 struct kvm_memory_slot *slot,
8a9522d2
ALC
1446 gfn_t gfn,
1447 int level,
84504ef3 1448 unsigned long data))
e930bffe 1449{
bc6678a3 1450 struct kvm_memslots *slots;
be6ba0f0 1451 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1452 struct slot_rmap_walk_iterator iterator;
1453 int ret = 0;
9da0e4d5 1454 int i;
bc6678a3 1455
9da0e4d5
PB
1456 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1457 slots = __kvm_memslots(kvm, i);
1458 kvm_for_each_memslot(memslot, slots) {
1459 unsigned long hva_start, hva_end;
1460 gfn_t gfn_start, gfn_end;
e930bffe 1461
9da0e4d5
PB
1462 hva_start = max(start, memslot->userspace_addr);
1463 hva_end = min(end, memslot->userspace_addr +
1464 (memslot->npages << PAGE_SHIFT));
1465 if (hva_start >= hva_end)
1466 continue;
1467 /*
1468 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1469 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1470 */
1471 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1472 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1473
3bae0459 1474 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1475 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1476 gfn_start, gfn_end - 1,
1477 &iterator)
1478 ret |= handler(kvm, iterator.rmap, memslot,
1479 iterator.gfn, iterator.level, data);
1480 }
e930bffe
AA
1481 }
1482
f395302e 1483 return ret;
e930bffe
AA
1484}
1485
84504ef3
TY
1486static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1487 unsigned long data,
018aabb5
TY
1488 int (*handler)(struct kvm *kvm,
1489 struct kvm_rmap_head *rmap_head,
048212d0 1490 struct kvm_memory_slot *slot,
8a9522d2 1491 gfn_t gfn, int level,
84504ef3
TY
1492 unsigned long data))
1493{
1494 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1495}
1496
fdfe7cbd
WD
1497int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1498 unsigned flags)
b3ae2096 1499{
063afacd
BG
1500 int r;
1501
1502 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1503
1504 if (kvm->arch.tdp_mmu_enabled)
1505 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1506
1507 return r;
b3ae2096
TY
1508}
1509
748c0e31 1510int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1511{
0cf853c5 1512 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1513}
1514
018aabb5 1515static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1516 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1517 unsigned long data)
e930bffe 1518{
1e3f42f0 1519 u64 *sptep;
3f649ab7 1520 struct rmap_iterator iter;
e930bffe
AA
1521 int young = 0;
1522
f160c7b7
JS
1523 for_each_rmap_spte(rmap_head, &iter, sptep)
1524 young |= mmu_spte_age(sptep);
0d536790 1525
8a9522d2 1526 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1527 return young;
1528}
1529
018aabb5 1530static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1531 struct kvm_memory_slot *slot, gfn_t gfn,
1532 int level, unsigned long data)
8ee53820 1533{
1e3f42f0
TY
1534 u64 *sptep;
1535 struct rmap_iterator iter;
8ee53820 1536
83ef6c81
JS
1537 for_each_rmap_spte(rmap_head, &iter, sptep)
1538 if (is_accessed_spte(*sptep))
1539 return 1;
83ef6c81 1540 return 0;
8ee53820
AA
1541}
1542
53a27b39
MT
1543#define RMAP_RECYCLE_THRESHOLD 1000
1544
852e3c19 1545static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1546{
018aabb5 1547 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1548 struct kvm_mmu_page *sp;
1549
57354682 1550 sp = sptep_to_sp(spte);
53a27b39 1551
018aabb5 1552 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1553
018aabb5 1554 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1555 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1556 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1557}
1558
57128468 1559int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1560{
57128468 1561 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1562}
1563
8ee53820
AA
1564int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1565{
1566 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1567}
1568
d6c69ee9 1569#ifdef MMU_DEBUG
47ad8e68 1570static int is_empty_shadow_page(u64 *spt)
6aa8b732 1571{
139bdb2d
AK
1572 u64 *pos;
1573 u64 *end;
1574
47ad8e68 1575 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1576 if (is_shadow_present_pte(*pos)) {
b8688d51 1577 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1578 pos, *pos);
6aa8b732 1579 return 0;
139bdb2d 1580 }
6aa8b732
AK
1581 return 1;
1582}
d6c69ee9 1583#endif
6aa8b732 1584
45221ab6
DH
1585/*
1586 * This value is the sum of all of the kvm instances's
1587 * kvm->arch.n_used_mmu_pages values. We need a global,
1588 * aggregate version in order to make the slab shrinker
1589 * faster
1590 */
bc8a3d89 1591static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1592{
1593 kvm->arch.n_used_mmu_pages += nr;
1594 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1595}
1596
834be0d8 1597static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1598{
fa4a2c08 1599 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1600 hlist_del(&sp->hash_link);
bd4c86ea
XG
1601 list_del(&sp->link);
1602 free_page((unsigned long)sp->spt);
834be0d8
GN
1603 if (!sp->role.direct)
1604 free_page((unsigned long)sp->gfns);
e8ad9a70 1605 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1606}
1607
cea0f0e7
AK
1608static unsigned kvm_page_table_hashfn(gfn_t gfn)
1609{
114df303 1610 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1611}
1612
714b93da 1613static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1614 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1615{
cea0f0e7
AK
1616 if (!parent_pte)
1617 return;
cea0f0e7 1618
67052b35 1619 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1620}
1621
4db35314 1622static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1623 u64 *parent_pte)
1624{
8daf3462 1625 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1626}
1627
bcdd9a93
XG
1628static void drop_parent_pte(struct kvm_mmu_page *sp,
1629 u64 *parent_pte)
1630{
1631 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1632 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1633}
1634
47005792 1635static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1636{
67052b35 1637 struct kvm_mmu_page *sp;
7ddca7e4 1638
94ce87ef
SC
1639 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1640 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1641 if (!direct)
94ce87ef 1642 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1643 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1644
1645 /*
1646 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1647 * depends on valid pages being added to the head of the list. See
1648 * comments in kvm_zap_obsolete_pages().
1649 */
ca333add 1650 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1651 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1652 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1653 return sp;
ad8cfbe3
MT
1654}
1655
67052b35 1656static void mark_unsync(u64 *spte);
1047df1f 1657static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1658{
74c4e63a
TY
1659 u64 *sptep;
1660 struct rmap_iterator iter;
1661
1662 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1663 mark_unsync(sptep);
1664 }
0074ff63
MT
1665}
1666
67052b35 1667static void mark_unsync(u64 *spte)
0074ff63 1668{
67052b35 1669 struct kvm_mmu_page *sp;
1047df1f 1670 unsigned int index;
0074ff63 1671
57354682 1672 sp = sptep_to_sp(spte);
1047df1f
XG
1673 index = spte - sp->spt;
1674 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1675 return;
1047df1f 1676 if (sp->unsync_children++)
0074ff63 1677 return;
1047df1f 1678 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1679}
1680
e8bc217a 1681static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1682 struct kvm_mmu_page *sp)
e8bc217a 1683{
1f50f1b3 1684 return 0;
e8bc217a
MT
1685}
1686
0f53b5b1
XG
1687static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1688 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1689 const void *pte)
0f53b5b1
XG
1690{
1691 WARN_ON(1);
1692}
1693
60c8aec6
MT
1694#define KVM_PAGE_ARRAY_NR 16
1695
1696struct kvm_mmu_pages {
1697 struct mmu_page_and_offset {
1698 struct kvm_mmu_page *sp;
1699 unsigned int idx;
1700 } page[KVM_PAGE_ARRAY_NR];
1701 unsigned int nr;
1702};
1703
cded19f3
HE
1704static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1705 int idx)
4731d4c7 1706{
60c8aec6 1707 int i;
4731d4c7 1708
60c8aec6
MT
1709 if (sp->unsync)
1710 for (i=0; i < pvec->nr; i++)
1711 if (pvec->page[i].sp == sp)
1712 return 0;
1713
1714 pvec->page[pvec->nr].sp = sp;
1715 pvec->page[pvec->nr].idx = idx;
1716 pvec->nr++;
1717 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1718}
1719
fd951457
TY
1720static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1721{
1722 --sp->unsync_children;
1723 WARN_ON((int)sp->unsync_children < 0);
1724 __clear_bit(idx, sp->unsync_child_bitmap);
1725}
1726
60c8aec6
MT
1727static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1728 struct kvm_mmu_pages *pvec)
1729{
1730 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1731
37178b8b 1732 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1733 struct kvm_mmu_page *child;
4731d4c7
MT
1734 u64 ent = sp->spt[i];
1735
fd951457
TY
1736 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1737 clear_unsync_child_bit(sp, i);
1738 continue;
1739 }
7a8f1a74 1740
e47c4aee 1741 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1742
1743 if (child->unsync_children) {
1744 if (mmu_pages_add(pvec, child, i))
1745 return -ENOSPC;
1746
1747 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1748 if (!ret) {
1749 clear_unsync_child_bit(sp, i);
1750 continue;
1751 } else if (ret > 0) {
7a8f1a74 1752 nr_unsync_leaf += ret;
fd951457 1753 } else
7a8f1a74
XG
1754 return ret;
1755 } else if (child->unsync) {
1756 nr_unsync_leaf++;
1757 if (mmu_pages_add(pvec, child, i))
1758 return -ENOSPC;
1759 } else
fd951457 1760 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1761 }
1762
60c8aec6
MT
1763 return nr_unsync_leaf;
1764}
1765
e23d3fef
XG
1766#define INVALID_INDEX (-1)
1767
60c8aec6
MT
1768static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1769 struct kvm_mmu_pages *pvec)
1770{
0a47cd85 1771 pvec->nr = 0;
60c8aec6
MT
1772 if (!sp->unsync_children)
1773 return 0;
1774
e23d3fef 1775 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1776 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1777}
1778
4731d4c7
MT
1779static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1780{
1781 WARN_ON(!sp->unsync);
5e1b3ddb 1782 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1783 sp->unsync = 0;
1784 --kvm->stat.mmu_unsync;
1785}
1786
83cdb568
SC
1787static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1788 struct list_head *invalid_list);
7775834a
XG
1789static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1790 struct list_head *invalid_list);
4731d4c7 1791
ac101b7c
SC
1792#define for_each_valid_sp(_kvm, _sp, _list) \
1793 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1794 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1795 } else
1044b030
TY
1796
1797#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1798 for_each_valid_sp(_kvm, _sp, \
1799 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1800 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1801
47c42e6b
SC
1802static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1803{
1804 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1805}
1806
f918b443 1807/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1808static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1809 struct list_head *invalid_list)
4731d4c7 1810{
47c42e6b
SC
1811 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1812 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1813 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1814 return false;
4731d4c7
MT
1815 }
1816
1f50f1b3 1817 return true;
4731d4c7
MT
1818}
1819
a2113634
SC
1820static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1821 struct list_head *invalid_list,
1822 bool remote_flush)
1823{
cfd32acf 1824 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1825 return false;
1826
1827 if (!list_empty(invalid_list))
1828 kvm_mmu_commit_zap_page(kvm, invalid_list);
1829 else
1830 kvm_flush_remote_tlbs(kvm);
1831 return true;
1832}
1833
35a70510
PB
1834static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1835 struct list_head *invalid_list,
1836 bool remote_flush, bool local_flush)
1d9dc7e0 1837{
a2113634 1838 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1839 return;
d98ba053 1840
a2113634 1841 if (local_flush)
8c8560b8 1842 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1843}
1844
e37fa785
XG
1845#ifdef CONFIG_KVM_MMU_AUDIT
1846#include "mmu_audit.c"
1847#else
1848static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1849static void mmu_audit_disable(void) { }
1850#endif
1851
002c5f73
SC
1852static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1853{
fac026da
SC
1854 return sp->role.invalid ||
1855 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1856}
1857
1f50f1b3 1858static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1859 struct list_head *invalid_list)
1d9dc7e0 1860{
9a43c5d9
PB
1861 kvm_unlink_unsync_page(vcpu->kvm, sp);
1862 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1863}
1864
9f1a122f 1865/* @gfn should be write-protected at the call site */
2a74003a
PB
1866static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1867 struct list_head *invalid_list)
9f1a122f 1868{
9f1a122f 1869 struct kvm_mmu_page *s;
2a74003a 1870 bool ret = false;
9f1a122f 1871
b67bfe0d 1872 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1873 if (!s->unsync)
9f1a122f
XG
1874 continue;
1875
3bae0459 1876 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1877 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1878 }
1879
2a74003a 1880 return ret;
9f1a122f
XG
1881}
1882
60c8aec6 1883struct mmu_page_path {
2a7266a8
YZ
1884 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1885 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1886};
1887
60c8aec6 1888#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1889 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1890 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1891 i = mmu_pages_next(&pvec, &parents, i))
1892
cded19f3
HE
1893static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1894 struct mmu_page_path *parents,
1895 int i)
60c8aec6
MT
1896{
1897 int n;
1898
1899 for (n = i+1; n < pvec->nr; n++) {
1900 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1901 unsigned idx = pvec->page[n].idx;
1902 int level = sp->role.level;
60c8aec6 1903
0a47cd85 1904 parents->idx[level-1] = idx;
3bae0459 1905 if (level == PG_LEVEL_4K)
0a47cd85 1906 break;
60c8aec6 1907
0a47cd85 1908 parents->parent[level-2] = sp;
60c8aec6
MT
1909 }
1910
1911 return n;
1912}
1913
0a47cd85
PB
1914static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1915 struct mmu_page_path *parents)
1916{
1917 struct kvm_mmu_page *sp;
1918 int level;
1919
1920 if (pvec->nr == 0)
1921 return 0;
1922
e23d3fef
XG
1923 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1924
0a47cd85
PB
1925 sp = pvec->page[0].sp;
1926 level = sp->role.level;
3bae0459 1927 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1928
1929 parents->parent[level-2] = sp;
1930
1931 /* Also set up a sentinel. Further entries in pvec are all
1932 * children of sp, so this element is never overwritten.
1933 */
1934 parents->parent[level-1] = NULL;
1935 return mmu_pages_next(pvec, parents, 0);
1936}
1937
cded19f3 1938static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1939{
60c8aec6
MT
1940 struct kvm_mmu_page *sp;
1941 unsigned int level = 0;
1942
1943 do {
1944 unsigned int idx = parents->idx[level];
60c8aec6
MT
1945 sp = parents->parent[level];
1946 if (!sp)
1947 return;
1948
e23d3fef 1949 WARN_ON(idx == INVALID_INDEX);
fd951457 1950 clear_unsync_child_bit(sp, idx);
60c8aec6 1951 level++;
0a47cd85 1952 } while (!sp->unsync_children);
60c8aec6 1953}
4731d4c7 1954
60c8aec6
MT
1955static void mmu_sync_children(struct kvm_vcpu *vcpu,
1956 struct kvm_mmu_page *parent)
1957{
1958 int i;
1959 struct kvm_mmu_page *sp;
1960 struct mmu_page_path parents;
1961 struct kvm_mmu_pages pages;
d98ba053 1962 LIST_HEAD(invalid_list);
50c9e6f3 1963 bool flush = false;
60c8aec6 1964
60c8aec6 1965 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1966 bool protected = false;
b1a36821
MT
1967
1968 for_each_sp(pages, sp, parents, i)
54bf36aa 1969 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 1970
50c9e6f3 1971 if (protected) {
b1a36821 1972 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
1973 flush = false;
1974 }
b1a36821 1975
60c8aec6 1976 for_each_sp(pages, sp, parents, i) {
1f50f1b3 1977 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1978 mmu_pages_clear_parents(&parents);
1979 }
50c9e6f3
PB
1980 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
1981 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1982 cond_resched_lock(&vcpu->kvm->mmu_lock);
1983 flush = false;
1984 }
60c8aec6 1985 }
50c9e6f3
PB
1986
1987 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
1988}
1989
a30f47cb
XG
1990static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1991{
e5691a81 1992 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
1993}
1994
1995static void clear_sp_write_flooding_count(u64 *spte)
1996{
57354682 1997 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
1998}
1999
cea0f0e7
AK
2000static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2001 gfn_t gfn,
2002 gva_t gaddr,
2003 unsigned level,
f6e2c02b 2004 int direct,
0a2b64c5 2005 unsigned int access)
cea0f0e7 2006{
fb58a9c3 2007 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2008 union kvm_mmu_page_role role;
ac101b7c 2009 struct hlist_head *sp_list;
cea0f0e7 2010 unsigned quadrant;
9f1a122f 2011 struct kvm_mmu_page *sp;
9f1a122f 2012 bool need_sync = false;
2a74003a 2013 bool flush = false;
f3414bc7 2014 int collisions = 0;
2a74003a 2015 LIST_HEAD(invalid_list);
cea0f0e7 2016
36d9594d 2017 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2018 role.level = level;
f6e2c02b 2019 role.direct = direct;
84b0c8c6 2020 if (role.direct)
47c42e6b 2021 role.gpte_is_8_bytes = true;
41074d07 2022 role.access = access;
fb58a9c3 2023 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2024 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2025 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2026 role.quadrant = quadrant;
2027 }
ac101b7c
SC
2028
2029 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2030 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2031 if (sp->gfn != gfn) {
2032 collisions++;
2033 continue;
2034 }
2035
7ae680eb
XG
2036 if (!need_sync && sp->unsync)
2037 need_sync = true;
4731d4c7 2038
7ae680eb
XG
2039 if (sp->role.word != role.word)
2040 continue;
4731d4c7 2041
fb58a9c3
SC
2042 if (direct_mmu)
2043 goto trace_get_page;
2044
2a74003a
PB
2045 if (sp->unsync) {
2046 /* The page is good, but __kvm_sync_page might still end
2047 * up zapping it. If so, break in order to rebuild it.
2048 */
2049 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2050 break;
2051
2052 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2053 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2054 }
e02aa901 2055
98bba238 2056 if (sp->unsync_children)
f6f6195b 2057 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2058
a30f47cb 2059 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2060
2061trace_get_page:
7ae680eb 2062 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2063 goto out;
7ae680eb 2064 }
47005792 2065
dfc5aa00 2066 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2067
2068 sp = kvm_mmu_alloc_page(vcpu, direct);
2069
4db35314
AK
2070 sp->gfn = gfn;
2071 sp->role = role;
ac101b7c 2072 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2073 if (!direct) {
56ca57f9
XG
2074 /*
2075 * we should do write protection before syncing pages
2076 * otherwise the content of the synced shadow page may
2077 * be inconsistent with guest page table.
2078 */
2079 account_shadowed(vcpu->kvm, sp);
3bae0459 2080 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2081 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2082
3bae0459 2083 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2084 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2085 }
f691fe1d 2086 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2087
2088 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2089out:
2090 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2091 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2092 return sp;
cea0f0e7
AK
2093}
2094
7eb77e9f
JS
2095static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2096 struct kvm_vcpu *vcpu, hpa_t root,
2097 u64 addr)
2d11123a
AK
2098{
2099 iterator->addr = addr;
7eb77e9f 2100 iterator->shadow_addr = root;
44dd3ffa 2101 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2102
2a7266a8 2103 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2104 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2105 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2106 --iterator->level;
2107
2d11123a 2108 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2109 /*
2110 * prev_root is currently only used for 64-bit hosts. So only
2111 * the active root_hpa is valid here.
2112 */
44dd3ffa 2113 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2114
2d11123a 2115 iterator->shadow_addr
44dd3ffa 2116 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2117 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2118 --iterator->level;
2119 if (!iterator->shadow_addr)
2120 iterator->level = 0;
2121 }
2122}
2123
7eb77e9f
JS
2124static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2125 struct kvm_vcpu *vcpu, u64 addr)
2126{
44dd3ffa 2127 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2128 addr);
2129}
2130
2d11123a
AK
2131static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2132{
3bae0459 2133 if (iterator->level < PG_LEVEL_4K)
2d11123a 2134 return false;
4d88954d 2135
2d11123a
AK
2136 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2137 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2138 return true;
2139}
2140
c2a2ac2b
XG
2141static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2142 u64 spte)
2d11123a 2143{
c2a2ac2b 2144 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2145 iterator->level = 0;
2146 return;
2147 }
2148
c2a2ac2b 2149 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2150 --iterator->level;
2151}
2152
c2a2ac2b
XG
2153static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2154{
bb606a9b 2155 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2156}
2157
cc4674d0
BG
2158static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2159 struct kvm_mmu_page *sp)
2160{
2161 u64 spte;
2162
2163 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2164
2165 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2166
1df9f2dc 2167 mmu_spte_set(sptep, spte);
98bba238
TY
2168
2169 mmu_page_add_parent_pte(vcpu, sp, sptep);
2170
2171 if (sp->unsync_children || sp->unsync)
2172 mark_unsync(sptep);
32ef26a3
AK
2173}
2174
a357bd22
AK
2175static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2176 unsigned direct_access)
2177{
2178 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2179 struct kvm_mmu_page *child;
2180
2181 /*
2182 * For the direct sp, if the guest pte's dirty bit
2183 * changed form clean to dirty, it will corrupt the
2184 * sp's access: allow writable in the read-only sp,
2185 * so we should update the spte at this point to get
2186 * a new sp with the correct access.
2187 */
e47c4aee 2188 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2189 if (child->role.access == direct_access)
2190 return;
2191
bcdd9a93 2192 drop_parent_pte(child, sptep);
c3134ce2 2193 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2194 }
2195}
2196
2de4085c
BG
2197/* Returns the number of zapped non-leaf child shadow pages. */
2198static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2199 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2200{
2201 u64 pte;
2202 struct kvm_mmu_page *child;
2203
2204 pte = *spte;
2205 if (is_shadow_present_pte(pte)) {
505aef8f 2206 if (is_last_spte(pte, sp->role.level)) {
c3707958 2207 drop_spte(kvm, spte);
505aef8f
XG
2208 if (is_large_pte(pte))
2209 --kvm->stat.lpages;
2210 } else {
e47c4aee 2211 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2212 drop_parent_pte(child, spte);
2de4085c
BG
2213
2214 /*
2215 * Recursively zap nested TDP SPs, parentless SPs are
2216 * unlikely to be used again in the near future. This
2217 * avoids retaining a large number of stale nested SPs.
2218 */
2219 if (tdp_enabled && invalid_list &&
2220 child->role.guest_mode && !child->parent_ptes.val)
2221 return kvm_mmu_prepare_zap_page(kvm, child,
2222 invalid_list);
38e3b2b2 2223 }
ace569e0 2224 } else if (is_mmio_spte(pte)) {
ce88decf 2225 mmu_spte_clear_no_track(spte);
ace569e0 2226 }
2de4085c 2227 return 0;
38e3b2b2
XG
2228}
2229
2de4085c
BG
2230static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2231 struct kvm_mmu_page *sp,
2232 struct list_head *invalid_list)
a436036b 2233{
2de4085c 2234 int zapped = 0;
697fe2e2 2235 unsigned i;
697fe2e2 2236
38e3b2b2 2237 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2238 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2239
2240 return zapped;
a436036b
AK
2241}
2242
31aa2b44 2243static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2244{
1e3f42f0
TY
2245 u64 *sptep;
2246 struct rmap_iterator iter;
a436036b 2247
018aabb5 2248 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2249 drop_parent_pte(sp, sptep);
31aa2b44
AK
2250}
2251
60c8aec6 2252static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2253 struct kvm_mmu_page *parent,
2254 struct list_head *invalid_list)
4731d4c7 2255{
60c8aec6
MT
2256 int i, zapped = 0;
2257 struct mmu_page_path parents;
2258 struct kvm_mmu_pages pages;
4731d4c7 2259
3bae0459 2260 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2261 return 0;
60c8aec6 2262
60c8aec6
MT
2263 while (mmu_unsync_walk(parent, &pages)) {
2264 struct kvm_mmu_page *sp;
2265
2266 for_each_sp(pages, sp, parents, i) {
7775834a 2267 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2268 mmu_pages_clear_parents(&parents);
77662e00 2269 zapped++;
60c8aec6 2270 }
60c8aec6
MT
2271 }
2272
2273 return zapped;
4731d4c7
MT
2274}
2275
83cdb568
SC
2276static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2277 struct kvm_mmu_page *sp,
2278 struct list_head *invalid_list,
2279 int *nr_zapped)
31aa2b44 2280{
83cdb568 2281 bool list_unstable;
f691fe1d 2282
7775834a 2283 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2284 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2285 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2286 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2287 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2288
83cdb568
SC
2289 /* Zapping children means active_mmu_pages has become unstable. */
2290 list_unstable = *nr_zapped;
2291
f6e2c02b 2292 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2293 unaccount_shadowed(kvm, sp);
5304b8d3 2294
4731d4c7
MT
2295 if (sp->unsync)
2296 kvm_unlink_unsync_page(kvm, sp);
4db35314 2297 if (!sp->root_count) {
54a4f023 2298 /* Count self */
83cdb568 2299 (*nr_zapped)++;
f95eec9b
SC
2300
2301 /*
2302 * Already invalid pages (previously active roots) are not on
2303 * the active page list. See list_del() in the "else" case of
2304 * !sp->root_count.
2305 */
2306 if (sp->role.invalid)
2307 list_add(&sp->link, invalid_list);
2308 else
2309 list_move(&sp->link, invalid_list);
aa6bd187 2310 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2311 } else {
f95eec9b
SC
2312 /*
2313 * Remove the active root from the active page list, the root
2314 * will be explicitly freed when the root_count hits zero.
2315 */
2316 list_del(&sp->link);
05988d72 2317
10605204
SC
2318 /*
2319 * Obsolete pages cannot be used on any vCPUs, see the comment
2320 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2321 * treats invalid shadow pages as being obsolete.
2322 */
2323 if (!is_obsolete_sp(kvm, sp))
05988d72 2324 kvm_reload_remote_mmus(kvm);
2e53d63a 2325 }
7775834a 2326
b8e8c830
PB
2327 if (sp->lpage_disallowed)
2328 unaccount_huge_nx_page(kvm, sp);
2329
7775834a 2330 sp->role.invalid = 1;
83cdb568
SC
2331 return list_unstable;
2332}
2333
2334static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2335 struct list_head *invalid_list)
2336{
2337 int nr_zapped;
2338
2339 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2340 return nr_zapped;
a436036b
AK
2341}
2342
7775834a
XG
2343static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2344 struct list_head *invalid_list)
2345{
945315b9 2346 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2347
2348 if (list_empty(invalid_list))
2349 return;
2350
c142786c 2351 /*
9753f529
LT
2352 * We need to make sure everyone sees our modifications to
2353 * the page tables and see changes to vcpu->mode here. The barrier
2354 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2355 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2356 *
2357 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2358 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2359 */
2360 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2361
945315b9 2362 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2363 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2364 kvm_mmu_free_page(sp);
945315b9 2365 }
7775834a
XG
2366}
2367
6b82ef2c
SC
2368static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2369 unsigned long nr_to_zap)
5da59607 2370{
6b82ef2c
SC
2371 unsigned long total_zapped = 0;
2372 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2373 LIST_HEAD(invalid_list);
6b82ef2c
SC
2374 bool unstable;
2375 int nr_zapped;
5da59607
TY
2376
2377 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2378 return 0;
2379
6b82ef2c
SC
2380restart:
2381 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2382 /*
2383 * Don't zap active root pages, the page itself can't be freed
2384 * and zapping it will just force vCPUs to realloc and reload.
2385 */
2386 if (sp->root_count)
2387 continue;
2388
2389 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2390 &nr_zapped);
2391 total_zapped += nr_zapped;
2392 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2393 break;
2394
6b82ef2c
SC
2395 if (unstable)
2396 goto restart;
ba7888dd 2397 }
5da59607 2398
6b82ef2c
SC
2399 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2400
2401 kvm->stat.mmu_recycled += total_zapped;
2402 return total_zapped;
2403}
2404
afe8d7e6
SC
2405static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2406{
2407 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2408 return kvm->arch.n_max_mmu_pages -
2409 kvm->arch.n_used_mmu_pages;
2410
2411 return 0;
5da59607
TY
2412}
2413
ba7888dd
SC
2414static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2415{
6b82ef2c 2416 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2417
6b82ef2c 2418 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2419 return 0;
2420
6b82ef2c 2421 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2422
2423 if (!kvm_mmu_available_pages(vcpu->kvm))
2424 return -ENOSPC;
2425 return 0;
2426}
2427
82ce2c96
IE
2428/*
2429 * Changing the number of mmu pages allocated to the vm
49d5ca26 2430 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2431 */
bc8a3d89 2432void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2433{
b34cb590
TY
2434 spin_lock(&kvm->mmu_lock);
2435
49d5ca26 2436 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2437 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2438 goal_nr_mmu_pages);
82ce2c96 2439
49d5ca26 2440 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2441 }
82ce2c96 2442
49d5ca26 2443 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2444
2445 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2446}
2447
1cb3f3ae 2448int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2449{
4db35314 2450 struct kvm_mmu_page *sp;
d98ba053 2451 LIST_HEAD(invalid_list);
a436036b
AK
2452 int r;
2453
9ad17b10 2454 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2455 r = 0;
1cb3f3ae 2456 spin_lock(&kvm->mmu_lock);
b67bfe0d 2457 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2458 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2459 sp->role.word);
2460 r = 1;
f41d335a 2461 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2462 }
d98ba053 2463 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2464 spin_unlock(&kvm->mmu_lock);
2465
a436036b 2466 return r;
cea0f0e7 2467}
1cb3f3ae 2468EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2469
5c520e90 2470static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2471{
2472 trace_kvm_mmu_unsync_page(sp);
2473 ++vcpu->kvm->stat.mmu_unsync;
2474 sp->unsync = 1;
2475
2476 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2477}
2478
5a9624af
PB
2479bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2480 bool can_unsync)
4731d4c7 2481{
5c520e90 2482 struct kvm_mmu_page *sp;
4731d4c7 2483
3d0c27ad
XG
2484 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2485 return true;
9cf5cf5a 2486
5c520e90 2487 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2488 if (!can_unsync)
3d0c27ad 2489 return true;
36a2e677 2490
5c520e90
XG
2491 if (sp->unsync)
2492 continue;
9cf5cf5a 2493
3bae0459 2494 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2495 kvm_unsync_page(vcpu, sp);
4731d4c7 2496 }
3d0c27ad 2497
578e1c4d
JS
2498 /*
2499 * We need to ensure that the marking of unsync pages is visible
2500 * before the SPTE is updated to allow writes because
2501 * kvm_mmu_sync_roots() checks the unsync flags without holding
2502 * the MMU lock and so can race with this. If the SPTE was updated
2503 * before the page had been marked as unsync-ed, something like the
2504 * following could happen:
2505 *
2506 * CPU 1 CPU 2
2507 * ---------------------------------------------------------------------
2508 * 1.2 Host updates SPTE
2509 * to be writable
2510 * 2.1 Guest writes a GPTE for GVA X.
2511 * (GPTE being in the guest page table shadowed
2512 * by the SP from CPU 1.)
2513 * This reads SPTE during the page table walk.
2514 * Since SPTE.W is read as 1, there is no
2515 * fault.
2516 *
2517 * 2.2 Guest issues TLB flush.
2518 * That causes a VM Exit.
2519 *
2520 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2521 * Since it is false, so it just returns.
2522 *
2523 * 2.4 Guest accesses GVA X.
2524 * Since the mapping in the SP was not updated,
2525 * so the old mapping for GVA X incorrectly
2526 * gets used.
2527 * 1.1 Host marks SP
2528 * as unsync
2529 * (sp->unsync = true)
2530 *
2531 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2532 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2533 * pairs with this write barrier.
2534 */
2535 smp_wmb();
2536
3d0c27ad 2537 return false;
4731d4c7
MT
2538}
2539
799a4190
BG
2540static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2541 unsigned int pte_access, int level,
2542 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2543 bool can_unsync, bool host_writable)
2544{
2545 u64 spte;
2546 struct kvm_mmu_page *sp;
2547 int ret;
2548
2549 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2550 return 0;
2551
2552 sp = sptep_to_sp(sptep);
2553
2554 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2555 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2556
2557 if (spte & PT_WRITABLE_MASK)
2558 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2559
12703759
SC
2560 if (*sptep == spte)
2561 ret |= SET_SPTE_SPURIOUS;
2562 else if (mmu_spte_update(sptep, spte))
5ce4786f 2563 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2564 return ret;
2565}
2566
0a2b64c5 2567static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2568 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2569 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2570 bool host_writable)
1e73f9dd
MT
2571{
2572 int was_rmapped = 0;
53a27b39 2573 int rmap_count;
5ce4786f 2574 int set_spte_ret;
c4371c2a 2575 int ret = RET_PF_FIXED;
c2a4eadf 2576 bool flush = false;
1e73f9dd 2577
f7616203
XG
2578 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2579 *sptep, write_fault, gfn);
1e73f9dd 2580
afd28fe1 2581 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2582 /*
2583 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2584 * the parent of the now unreachable PTE.
2585 */
3bae0459 2586 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2587 struct kvm_mmu_page *child;
d555c333 2588 u64 pte = *sptep;
1e73f9dd 2589
e47c4aee 2590 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2591 drop_parent_pte(child, sptep);
c2a4eadf 2592 flush = true;
d555c333 2593 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2594 pgprintk("hfn old %llx new %llx\n",
d555c333 2595 spte_to_pfn(*sptep), pfn);
c3707958 2596 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2597 flush = true;
6bed6b9e
JR
2598 } else
2599 was_rmapped = 1;
1e73f9dd 2600 }
852e3c19 2601
5ce4786f
JS
2602 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2603 speculative, true, host_writable);
2604 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2605 if (write_fault)
9b8ebbdb 2606 ret = RET_PF_EMULATE;
8c8560b8 2607 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2608 }
c3134ce2 2609
c2a4eadf 2610 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2611 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2612 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2613
029499b4 2614 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2615 ret = RET_PF_EMULATE;
ce88decf 2616
12703759
SC
2617 /*
2618 * The fault is fully spurious if and only if the new SPTE and old SPTE
2619 * are identical, and emulation is not required.
2620 */
2621 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2622 WARN_ON_ONCE(!was_rmapped);
2623 return RET_PF_SPURIOUS;
2624 }
2625
d555c333 2626 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2627 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2628 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2629 ++vcpu->kvm->stat.lpages;
2630
ffb61bb3 2631 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2632 if (!was_rmapped) {
2633 rmap_count = rmap_add(vcpu, sptep, gfn);
2634 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2635 rmap_recycle(vcpu, sptep, gfn);
2636 }
1c4f1fd6 2637 }
cb9aaa30 2638
9b8ebbdb 2639 return ret;
1c4f1fd6
AK
2640}
2641
ba049e93 2642static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2643 bool no_dirty_log)
2644{
2645 struct kvm_memory_slot *slot;
957ed9ef 2646
5d163b1c 2647 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2648 if (!slot)
6c8ee57b 2649 return KVM_PFN_ERR_FAULT;
957ed9ef 2650
037d92dc 2651 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2652}
2653
2654static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2655 struct kvm_mmu_page *sp,
2656 u64 *start, u64 *end)
2657{
2658 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2659 struct kvm_memory_slot *slot;
0a2b64c5 2660 unsigned int access = sp->role.access;
957ed9ef
XG
2661 int i, ret;
2662 gfn_t gfn;
2663
2664 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2665 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2666 if (!slot)
957ed9ef
XG
2667 return -1;
2668
d9ef13c2 2669 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2670 if (ret <= 0)
2671 return -1;
2672
43fdcda9 2673 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2674 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2675 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2676 put_page(pages[i]);
2677 }
957ed9ef
XG
2678
2679 return 0;
2680}
2681
2682static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2683 struct kvm_mmu_page *sp, u64 *sptep)
2684{
2685 u64 *spte, *start = NULL;
2686 int i;
2687
2688 WARN_ON(!sp->role.direct);
2689
2690 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2691 spte = sp->spt + i;
2692
2693 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2694 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2695 if (!start)
2696 continue;
2697 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2698 break;
2699 start = NULL;
2700 } else if (!start)
2701 start = spte;
2702 }
2703}
2704
2705static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2706{
2707 struct kvm_mmu_page *sp;
2708
57354682 2709 sp = sptep_to_sp(sptep);
ac8d57e5 2710
957ed9ef 2711 /*
ac8d57e5
PF
2712 * Without accessed bits, there's no way to distinguish between
2713 * actually accessed translations and prefetched, so disable pte
2714 * prefetch if accessed bits aren't available.
957ed9ef 2715 */
ac8d57e5 2716 if (sp_ad_disabled(sp))
957ed9ef
XG
2717 return;
2718
3bae0459 2719 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2720 return;
2721
2722 __direct_pte_prefetch(vcpu, sp, sptep);
2723}
2724
db543216 2725static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 2726 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 2727{
db543216
SC
2728 unsigned long hva;
2729 pte_t *pte;
2730 int level;
2731
e851265a 2732 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2733 return PG_LEVEL_4K;
db543216 2734
293e306e
SC
2735 /*
2736 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2737 * is not solely for performance, it's also necessary to avoid the
2738 * "writable" check in __gfn_to_hva_many(), which will always fail on
2739 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2740 * page fault steps have already verified the guest isn't writing a
2741 * read-only memslot.
2742 */
db543216
SC
2743 hva = __gfn_to_hva_memslot(slot, gfn);
2744
2745 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2746 if (unlikely(!pte))
3bae0459 2747 return PG_LEVEL_4K;
db543216
SC
2748
2749 return level;
2750}
2751
bb18842e
BG
2752int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2753 int max_level, kvm_pfn_t *pfnp,
2754 bool huge_page_disallowed, int *req_level)
0885904d 2755{
293e306e 2756 struct kvm_memory_slot *slot;
2c0629f4 2757 struct kvm_lpage_info *linfo;
0885904d 2758 kvm_pfn_t pfn = *pfnp;
17eff019 2759 kvm_pfn_t mask;
83f06fa7 2760 int level;
17eff019 2761
3cf06612
SC
2762 *req_level = PG_LEVEL_4K;
2763
3bae0459
SC
2764 if (unlikely(max_level == PG_LEVEL_4K))
2765 return PG_LEVEL_4K;
17eff019 2766
e851265a 2767 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2768 return PG_LEVEL_4K;
17eff019 2769
293e306e
SC
2770 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2771 if (!slot)
3bae0459 2772 return PG_LEVEL_4K;
293e306e 2773
1d92d2e8 2774 max_level = min(max_level, max_huge_page_level);
3bae0459 2775 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
2776 linfo = lpage_info_slot(gfn, slot, max_level);
2777 if (!linfo->disallow_lpage)
293e306e
SC
2778 break;
2779 }
2780
3bae0459
SC
2781 if (max_level == PG_LEVEL_4K)
2782 return PG_LEVEL_4K;
293e306e
SC
2783
2784 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 2785 if (level == PG_LEVEL_4K)
83f06fa7 2786 return level;
17eff019 2787
3cf06612
SC
2788 *req_level = level = min(level, max_level);
2789
2790 /*
2791 * Enforce the iTLB multihit workaround after capturing the requested
2792 * level, which will be used to do precise, accurate accounting.
2793 */
2794 if (huge_page_disallowed)
2795 return PG_LEVEL_4K;
0885904d
SC
2796
2797 /*
17eff019
SC
2798 * mmu_notifier_retry() was successful and mmu_lock is held, so
2799 * the pmd can't be split from under us.
0885904d 2800 */
17eff019
SC
2801 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2802 VM_BUG_ON((gfn & mask) != (pfn & mask));
2803 *pfnp = pfn & ~mask;
83f06fa7
SC
2804
2805 return level;
0885904d
SC
2806}
2807
bb18842e
BG
2808void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2809 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2810{
bb18842e 2811 int level = *goal_levelp;
b8e8c830 2812
7d945312 2813 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2814 is_shadow_present_pte(spte) &&
2815 !is_large_pte(spte)) {
2816 /*
2817 * A small SPTE exists for this pfn, but FNAME(fetch)
2818 * and __direct_map would like to create a large PTE
2819 * instead: just force them to go down another level,
2820 * patching back for them into pfn the next 9 bits of
2821 * the address.
2822 */
7d945312
BG
2823 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2824 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2825 *pfnp |= gfn & page_mask;
bb18842e 2826 (*goal_levelp)--;
b8e8c830
PB
2827 }
2828}
2829
6c2fd34f 2830static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2831 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2832 bool prefault, bool is_tdp)
140754bc 2833{
6c2fd34f
SC
2834 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2835 bool write = error_code & PFERR_WRITE_MASK;
2836 bool exec = error_code & PFERR_FETCH_MASK;
2837 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2838 struct kvm_shadow_walk_iterator it;
140754bc 2839 struct kvm_mmu_page *sp;
3cf06612 2840 int level, req_level, ret;
3fcf2d1b
PB
2841 gfn_t gfn = gpa >> PAGE_SHIFT;
2842 gfn_t base_gfn = gfn;
6aa8b732 2843
0c7a98e3 2844 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2845 return RET_PF_RETRY;
989c6b34 2846
3cf06612
SC
2847 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2848 huge_page_disallowed, &req_level);
4cd071d1 2849
335e192a 2850 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2851 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2852 /*
2853 * We cannot overwrite existing page tables with an NX
2854 * large page, as the leaf could be executable.
2855 */
dcc70651 2856 if (nx_huge_page_workaround_enabled)
7d945312
BG
2857 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2858 &pfn, &level);
b8e8c830 2859
3fcf2d1b
PB
2860 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2861 if (it.level == level)
9f652d21 2862 break;
6aa8b732 2863
3fcf2d1b
PB
2864 drop_large_spte(vcpu, it.sptep);
2865 if (!is_shadow_present_pte(*it.sptep)) {
2866 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2867 it.level - 1, true, ACC_ALL);
c9fa0b3b 2868
3fcf2d1b 2869 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2870 if (is_tdp && huge_page_disallowed &&
2871 req_level >= it.level)
b8e8c830 2872 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2873 }
2874 }
3fcf2d1b
PB
2875
2876 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2877 write, level, base_gfn, pfn, prefault,
2878 map_writable);
12703759
SC
2879 if (ret == RET_PF_SPURIOUS)
2880 return ret;
2881
3fcf2d1b
PB
2882 direct_pte_prefetch(vcpu, it.sptep);
2883 ++vcpu->stat.pf_fixed;
2884 return ret;
6aa8b732
AK
2885}
2886
77db5cbd 2887static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2888{
585a8b9b 2889 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2890}
2891
ba049e93 2892static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2893{
4d8b81ab
XG
2894 /*
2895 * Do not cache the mmio info caused by writing the readonly gfn
2896 * into the spte otherwise read access on readonly gfn also can
2897 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2898 */
2899 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2900 return RET_PF_EMULATE;
4d8b81ab 2901
e6c1502b 2902 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2903 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2904 return RET_PF_RETRY;
d7c55201 2905 }
edba23e5 2906
2c151b25 2907 return -EFAULT;
bf998156
HY
2908}
2909
d7c55201 2910static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2911 kvm_pfn_t pfn, unsigned int access,
2912 int *ret_val)
d7c55201 2913{
d7c55201 2914 /* The pfn is invalid, report the error! */
81c52c56 2915 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2916 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2917 return true;
d7c55201
XG
2918 }
2919
ce88decf 2920 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
2921 vcpu_cache_mmio_info(vcpu, gva, gfn,
2922 access & shadow_mmio_access_mask);
d7c55201 2923
798e88b3 2924 return false;
d7c55201
XG
2925}
2926
e5552fd2 2927static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2928{
1c118b82
XG
2929 /*
2930 * Do not fix the mmio spte with invalid generation number which
2931 * need to be updated by slow page fault path.
2932 */
2933 if (unlikely(error_code & PFERR_RSVD_MASK))
2934 return false;
2935
f160c7b7
JS
2936 /* See if the page fault is due to an NX violation */
2937 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2938 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2939 return false;
2940
c7ba5b48 2941 /*
f160c7b7
JS
2942 * #PF can be fast if:
2943 * 1. The shadow page table entry is not present, which could mean that
2944 * the fault is potentially caused by access tracking (if enabled).
2945 * 2. The shadow page table entry is present and the fault
2946 * is caused by write-protect, that means we just need change the W
2947 * bit of the spte which can be done out of mmu-lock.
2948 *
2949 * However, if access tracking is disabled we know that a non-present
2950 * page must be a genuine page fault where we have to create a new SPTE.
2951 * So, if access tracking is disabled, we return true only for write
2952 * accesses to a present page.
c7ba5b48 2953 */
c7ba5b48 2954
f160c7b7
JS
2955 return shadow_acc_track_mask != 0 ||
2956 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2957 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2958}
2959
97dceba2
JS
2960/*
2961 * Returns true if the SPTE was fixed successfully. Otherwise,
2962 * someone else modified the SPTE from its original value.
2963 */
c7ba5b48 2964static bool
92a476cb 2965fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 2966 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 2967{
c7ba5b48
XG
2968 gfn_t gfn;
2969
2970 WARN_ON(!sp->role.direct);
2971
9b51a630
KH
2972 /*
2973 * Theoretically we could also set dirty bit (and flush TLB) here in
2974 * order to eliminate unnecessary PML logging. See comments in
2975 * set_spte. But fast_page_fault is very unlikely to happen with PML
2976 * enabled, so we do not do this. This might result in the same GPA
2977 * to be logged in PML buffer again when the write really happens, and
2978 * eventually to be called by mark_page_dirty twice. But it's also no
2979 * harm. This also avoids the TLB flush needed after setting dirty bit
2980 * so non-PML cases won't be impacted.
2981 *
2982 * Compare with set_spte where instead shadow_dirty_mask is set.
2983 */
f160c7b7 2984 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
2985 return false;
2986
d3e328f2 2987 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
2988 /*
2989 * The gfn of direct spte is stable since it is
2990 * calculated by sp->gfn.
2991 */
2992 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2993 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2994 }
c7ba5b48
XG
2995
2996 return true;
2997}
2998
d3e328f2
JS
2999static bool is_access_allowed(u32 fault_err_code, u64 spte)
3000{
3001 if (fault_err_code & PFERR_FETCH_MASK)
3002 return is_executable_pte(spte);
3003
3004 if (fault_err_code & PFERR_WRITE_MASK)
3005 return is_writable_pte(spte);
3006
3007 /* Fault was on Read access */
3008 return spte & PT_PRESENT_MASK;
3009}
3010
c7ba5b48 3011/*
c4371c2a 3012 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3013 */
c4371c2a
SC
3014static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3015 u32 error_code)
c7ba5b48
XG
3016{
3017 struct kvm_shadow_walk_iterator iterator;
92a476cb 3018 struct kvm_mmu_page *sp;
c4371c2a 3019 int ret = RET_PF_INVALID;
c7ba5b48 3020 u64 spte = 0ull;
97dceba2 3021 uint retry_count = 0;
c7ba5b48 3022
e5552fd2 3023 if (!page_fault_can_be_fast(error_code))
c4371c2a 3024 return ret;
c7ba5b48
XG
3025
3026 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3027
97dceba2 3028 do {
d3e328f2 3029 u64 new_spte;
c7ba5b48 3030
736c291c 3031 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3032 if (!is_shadow_present_pte(spte))
d162f30a
JS
3033 break;
3034
57354682 3035 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3036 if (!is_last_spte(spte, sp->role.level))
3037 break;
c7ba5b48 3038
97dceba2 3039 /*
f160c7b7
JS
3040 * Check whether the memory access that caused the fault would
3041 * still cause it if it were to be performed right now. If not,
3042 * then this is a spurious fault caused by TLB lazily flushed,
3043 * or some other CPU has already fixed the PTE after the
3044 * current CPU took the fault.
97dceba2
JS
3045 *
3046 * Need not check the access of upper level table entries since
3047 * they are always ACC_ALL.
3048 */
d3e328f2 3049 if (is_access_allowed(error_code, spte)) {
c4371c2a 3050 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3051 break;
3052 }
f160c7b7 3053
d3e328f2
JS
3054 new_spte = spte;
3055
3056 if (is_access_track_spte(spte))
3057 new_spte = restore_acc_track_spte(new_spte);
3058
3059 /*
3060 * Currently, to simplify the code, write-protection can
3061 * be removed in the fast path only if the SPTE was
3062 * write-protected for dirty-logging or access tracking.
3063 */
3064 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3065 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3066 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3067
3068 /*
d3e328f2
JS
3069 * Do not fix write-permission on the large spte. Since
3070 * we only dirty the first page into the dirty-bitmap in
3071 * fast_pf_fix_direct_spte(), other pages are missed
3072 * if its slot has dirty logging enabled.
3073 *
3074 * Instead, we let the slow page fault path create a
3075 * normal spte to fix the access.
3076 *
3077 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3078 */
3bae0459 3079 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3080 break;
97dceba2 3081 }
c7ba5b48 3082
f160c7b7 3083 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3084 if (new_spte == spte ||
3085 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3086 break;
3087
3088 /*
3089 * Currently, fast page fault only works for direct mapping
3090 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3091 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3092 */
c4371c2a
SC
3093 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3094 new_spte)) {
3095 ret = RET_PF_FIXED;
97dceba2 3096 break;
c4371c2a 3097 }
97dceba2
JS
3098
3099 if (++retry_count > 4) {
3100 printk_once(KERN_WARNING
3101 "kvm: Fast #PF retrying more than 4 times.\n");
3102 break;
3103 }
3104
97dceba2 3105 } while (true);
c126d94f 3106
736c291c 3107 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3108 spte, ret);
c7ba5b48
XG
3109 walk_shadow_page_lockless_end(vcpu);
3110
c4371c2a 3111 return ret;
c7ba5b48
XG
3112}
3113
74b566e6
JS
3114static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3115 struct list_head *invalid_list)
17ac10ad 3116{
4db35314 3117 struct kvm_mmu_page *sp;
17ac10ad 3118
74b566e6 3119 if (!VALID_PAGE(*root_hpa))
7b53aa56 3120 return;
35af577a 3121
e47c4aee 3122 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3123
3124 if (kvm_mmu_put_root(kvm, sp)) {
3125 if (sp->tdp_mmu_page)
3126 kvm_tdp_mmu_free_root(kvm, sp);
3127 else if (sp->role.invalid)
3128 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3129 }
17ac10ad 3130
74b566e6
JS
3131 *root_hpa = INVALID_PAGE;
3132}
3133
08fb59d8 3134/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3135void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3136 ulong roots_to_free)
74b566e6 3137{
4d710de9 3138 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3139 int i;
3140 LIST_HEAD(invalid_list);
08fb59d8 3141 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3142
b94742c9 3143 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3144
08fb59d8 3145 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3146 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3147 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3148 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3149 VALID_PAGE(mmu->prev_roots[i].hpa))
3150 break;
3151
3152 if (i == KVM_MMU_NUM_PREV_ROOTS)
3153 return;
3154 }
35af577a 3155
4d710de9 3156 spin_lock(&kvm->mmu_lock);
17ac10ad 3157
b94742c9
JS
3158 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3159 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3160 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3161 &invalid_list);
7c390d35 3162
08fb59d8
JS
3163 if (free_active_root) {
3164 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3165 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3166 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
08fb59d8
JS
3167 } else {
3168 for (i = 0; i < 4; ++i)
3169 if (mmu->pae_root[i] != 0)
4d710de9 3170 mmu_free_root_page(kvm,
08fb59d8
JS
3171 &mmu->pae_root[i],
3172 &invalid_list);
3173 mmu->root_hpa = INVALID_PAGE;
3174 }
be01e8e2 3175 mmu->root_pgd = 0;
17ac10ad 3176 }
74b566e6 3177
4d710de9
SC
3178 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3179 spin_unlock(&kvm->mmu_lock);
17ac10ad 3180}
74b566e6 3181EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3182
8986ecc0
MT
3183static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3184{
3185 int ret = 0;
3186
995decb6 3187 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3188 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3189 ret = 1;
3190 }
3191
3192 return ret;
3193}
3194
8123f265
SC
3195static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3196 u8 level, bool direct)
651dd37a
JR
3197{
3198 struct kvm_mmu_page *sp;
8123f265
SC
3199
3200 spin_lock(&vcpu->kvm->mmu_lock);
3201
3202 if (make_mmu_pages_available(vcpu)) {
3203 spin_unlock(&vcpu->kvm->mmu_lock);
3204 return INVALID_PAGE;
3205 }
3206 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3207 ++sp->root_count;
3208
3209 spin_unlock(&vcpu->kvm->mmu_lock);
3210 return __pa(sp->spt);
3211}
3212
3213static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3214{
3215 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3216 hpa_t root;
7ebaf15e 3217 unsigned i;
651dd37a 3218
02c00b3a
BG
3219 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3220 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3221
3222 if (!VALID_PAGE(root))
3223 return -ENOSPC;
3224 vcpu->arch.mmu->root_hpa = root;
3225 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3226 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3227 true);
3228
8123f265 3229 if (!VALID_PAGE(root))
ed52870f 3230 return -ENOSPC;
8123f265
SC
3231 vcpu->arch.mmu->root_hpa = root;
3232 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3233 for (i = 0; i < 4; ++i) {
8123f265 3234 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3235
8123f265
SC
3236 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3237 i << 30, PT32_ROOT_LEVEL, true);
3238 if (!VALID_PAGE(root))
ed52870f 3239 return -ENOSPC;
44dd3ffa 3240 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3241 }
44dd3ffa 3242 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3243 } else
3244 BUG();
3651c7fc 3245
be01e8e2
SC
3246 /* root_pgd is ignored for direct MMUs. */
3247 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3248
3249 return 0;
3250}
3251
3252static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3253{
81407ca5 3254 u64 pdptr, pm_mask;
be01e8e2 3255 gfn_t root_gfn, root_pgd;
8123f265 3256 hpa_t root;
81407ca5 3257 int i;
3bb65a22 3258
be01e8e2
SC
3259 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3260 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3261
651dd37a
JR
3262 if (mmu_check_root(vcpu, root_gfn))
3263 return 1;
3264
3265 /*
3266 * Do we shadow a long mode page table? If so we need to
3267 * write-protect the guests page table root.
3268 */
44dd3ffa 3269 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3270 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3271
8123f265
SC
3272 root = mmu_alloc_root(vcpu, root_gfn, 0,
3273 vcpu->arch.mmu->shadow_root_level, false);
3274 if (!VALID_PAGE(root))
ed52870f 3275 return -ENOSPC;
44dd3ffa 3276 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3277 goto set_root_pgd;
17ac10ad 3278 }
f87f9288 3279
651dd37a
JR
3280 /*
3281 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3282 * or a PAE 3-level page table. In either case we need to be aware that
3283 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3284 */
81407ca5 3285 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3286 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3287 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3288
17ac10ad 3289 for (i = 0; i < 4; ++i) {
8123f265 3290 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3291 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3292 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3293 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3294 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3295 continue;
3296 }
6de4f3ad 3297 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3298 if (mmu_check_root(vcpu, root_gfn))
3299 return 1;
5a7388c2 3300 }
8facbbff 3301
8123f265
SC
3302 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3303 PT32_ROOT_LEVEL, false);
3304 if (!VALID_PAGE(root))
3305 return -ENOSPC;
44dd3ffa 3306 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3307 }
44dd3ffa 3308 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3309
3310 /*
3311 * If we shadow a 32 bit page table with a long mode page
3312 * table we enter this path.
3313 */
44dd3ffa
VK
3314 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3315 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3316 /*
3317 * The additional page necessary for this is only
3318 * allocated on demand.
3319 */
3320
3321 u64 *lm_root;
3322
254272ce 3323 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3324 if (lm_root == NULL)
3325 return 1;
3326
44dd3ffa 3327 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3328
44dd3ffa 3329 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3330 }
3331
44dd3ffa 3332 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3333 }
3334
be01e8e2
SC
3335set_root_pgd:
3336 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3337
8986ecc0 3338 return 0;
17ac10ad
AK
3339}
3340
651dd37a
JR
3341static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3342{
44dd3ffa 3343 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3344 return mmu_alloc_direct_roots(vcpu);
3345 else
3346 return mmu_alloc_shadow_roots(vcpu);
3347}
3348
578e1c4d 3349void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3350{
3351 int i;
3352 struct kvm_mmu_page *sp;
3353
44dd3ffa 3354 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3355 return;
3356
44dd3ffa 3357 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3358 return;
6903074c 3359
56f17dd3 3360 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3361
44dd3ffa
VK
3362 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3363 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3364 sp = to_shadow_page(root);
578e1c4d
JS
3365
3366 /*
3367 * Even if another CPU was marking the SP as unsync-ed
3368 * simultaneously, any guest page table changes are not
3369 * guaranteed to be visible anyway until this VCPU issues a TLB
3370 * flush strictly after those changes are made. We only need to
3371 * ensure that the other CPU sets these flags before any actual
3372 * changes to the page tables are made. The comments in
3373 * mmu_need_write_protect() describe what could go wrong if this
3374 * requirement isn't satisfied.
3375 */
3376 if (!smp_load_acquire(&sp->unsync) &&
3377 !smp_load_acquire(&sp->unsync_children))
3378 return;
3379
3380 spin_lock(&vcpu->kvm->mmu_lock);
3381 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3382
0ba73cda 3383 mmu_sync_children(vcpu, sp);
578e1c4d 3384
0375f7fa 3385 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3386 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3387 return;
3388 }
578e1c4d
JS
3389
3390 spin_lock(&vcpu->kvm->mmu_lock);
3391 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3392
0ba73cda 3393 for (i = 0; i < 4; ++i) {
44dd3ffa 3394 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3395
8986ecc0 3396 if (root && VALID_PAGE(root)) {
0ba73cda 3397 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3398 sp = to_shadow_page(root);
0ba73cda
MT
3399 mmu_sync_children(vcpu, sp);
3400 }
3401 }
0ba73cda 3402
578e1c4d 3403 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3404 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3405}
bfd0a56b 3406EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3407
736c291c 3408static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3409 u32 access, struct x86_exception *exception)
6aa8b732 3410{
ab9ae313
AK
3411 if (exception)
3412 exception->error_code = 0;
6aa8b732
AK
3413 return vaddr;
3414}
3415
736c291c 3416static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3417 u32 access,
3418 struct x86_exception *exception)
6539e738 3419{
ab9ae313
AK
3420 if (exception)
3421 exception->error_code = 0;
54987b7a 3422 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3423}
3424
d625b155
XG
3425static bool
3426__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3427{
b5c3c1b3 3428 int bit7 = (pte >> 7) & 1;
d625b155 3429
b5c3c1b3 3430 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3431}
3432
b5c3c1b3 3433static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3434{
b5c3c1b3 3435 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3436}
3437
ded58749 3438static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3439{
9034e6e8
PB
3440 /*
3441 * A nested guest cannot use the MMIO cache if it is using nested
3442 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3443 */
3444 if (mmu_is_nested(vcpu))
3445 return false;
3446
ce88decf
XG
3447 if (direct)
3448 return vcpu_match_mmio_gpa(vcpu, addr);
3449
3450 return vcpu_match_mmio_gva(vcpu, addr);
3451}
3452
47ab8751
XG
3453/* return true if reserved bit is detected on spte. */
3454static bool
3455walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3456{
3457 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3458 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3459 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3460 int root, leaf;
3461 bool reserved = false;
ce88decf 3462
b5c3c1b3 3463 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3464
ce88decf 3465 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3466
29ecd660
PB
3467 for (shadow_walk_init(&iterator, vcpu, addr),
3468 leaf = root = iterator.level;
47ab8751
XG
3469 shadow_walk_okay(&iterator);
3470 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3471 spte = mmu_spte_get_lockless(iterator.sptep);
3472
3473 sptes[leaf - 1] = spte;
29ecd660 3474 leaf--;
47ab8751 3475
ce88decf
XG
3476 if (!is_shadow_present_pte(spte))
3477 break;
47ab8751 3478
b5c3c1b3
SC
3479 /*
3480 * Use a bitwise-OR instead of a logical-OR to aggregate the
3481 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3482 * adding a Jcc in the loop.
3483 */
3484 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3485 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3486 }
3487
ce88decf
XG
3488 walk_shadow_page_lockless_end(vcpu);
3489
47ab8751
XG
3490 if (reserved) {
3491 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3492 __func__, addr);
29ecd660 3493 while (root > leaf) {
47ab8751
XG
3494 pr_err("------ spte 0x%llx level %d.\n",
3495 sptes[root - 1], root);
3496 root--;
3497 }
3498 }
ddce6208 3499
47ab8751
XG
3500 *sptep = spte;
3501 return reserved;
ce88decf
XG
3502}
3503
e08d26f0 3504static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3505{
3506 u64 spte;
47ab8751 3507 bool reserved;
ce88decf 3508
ded58749 3509 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3510 return RET_PF_EMULATE;
ce88decf 3511
47ab8751 3512 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3513 if (WARN_ON(reserved))
9b8ebbdb 3514 return -EINVAL;
ce88decf
XG
3515
3516 if (is_mmio_spte(spte)) {
3517 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3518 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3519
54bf36aa 3520 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3521 return RET_PF_INVALID;
f8f55942 3522
ce88decf
XG
3523 if (direct)
3524 addr = 0;
4f022648
XG
3525
3526 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3527 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3528 return RET_PF_EMULATE;
ce88decf
XG
3529 }
3530
ce88decf
XG
3531 /*
3532 * If the page table is zapped by other cpus, let CPU fault again on
3533 * the address.
3534 */
9b8ebbdb 3535 return RET_PF_RETRY;
ce88decf 3536}
ce88decf 3537
3d0c27ad
XG
3538static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3539 u32 error_code, gfn_t gfn)
3540{
3541 if (unlikely(error_code & PFERR_RSVD_MASK))
3542 return false;
3543
3544 if (!(error_code & PFERR_PRESENT_MASK) ||
3545 !(error_code & PFERR_WRITE_MASK))
3546 return false;
3547
3548 /*
3549 * guest is writing the page which is write tracked which can
3550 * not be fixed by page fault handler.
3551 */
3552 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3553 return true;
3554
3555 return false;
3556}
3557
e5691a81
XG
3558static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3559{
3560 struct kvm_shadow_walk_iterator iterator;
3561 u64 spte;
3562
e5691a81
XG
3563 walk_shadow_page_lockless_begin(vcpu);
3564 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3565 clear_sp_write_flooding_count(iterator.sptep);
3566 if (!is_shadow_present_pte(spte))
3567 break;
3568 }
3569 walk_shadow_page_lockless_end(vcpu);
3570}
3571
e8c22266
VK
3572static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3573 gfn_t gfn)
af585b92
GN
3574{
3575 struct kvm_arch_async_pf arch;
fb67e14f 3576
7c90705b 3577 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3578 arch.gfn = gfn;
44dd3ffa 3579 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3580 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3581
9f1a8526
SC
3582 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3583 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3584}
3585
78b2c54a 3586static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
3587 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3588 bool *writable)
af585b92 3589{
c36b7150 3590 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3591 bool async;
3592
c36b7150
PB
3593 /* Don't expose private memslots to L2. */
3594 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3595 *pfn = KVM_PFN_NOSLOT;
c583eed6 3596 *writable = false;
3a2936de
JM
3597 return false;
3598 }
3599
3520469d
PB
3600 async = false;
3601 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3602 if (!async)
3603 return false; /* *pfn has correct page already */
3604
9bc1f09f 3605 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3606 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3607 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3608 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3609 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3610 return true;
9f1a8526 3611 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3612 return true;
3613 }
3614
3520469d 3615 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3616 return false;
3617}
3618
0f90e1c1
SC
3619static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3620 bool prefault, int max_level, bool is_tdp)
6aa8b732 3621{
367fd790 3622 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3623 bool map_writable;
6aa8b732 3624
0f90e1c1
SC
3625 gfn_t gfn = gpa >> PAGE_SHIFT;
3626 unsigned long mmu_seq;
3627 kvm_pfn_t pfn;
83f06fa7 3628 int r;
ce88decf 3629
3d0c27ad 3630 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3631 return RET_PF_EMULATE;
ce88decf 3632
bb18842e
BG
3633 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3634 r = fast_page_fault(vcpu, gpa, error_code);
3635 if (r != RET_PF_INVALID)
3636 return r;
3637 }
83291445 3638
378f5cd6 3639 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3640 if (r)
3641 return r;
714b93da 3642
367fd790
SC
3643 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3644 smp_rmb();
3645
3646 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3647 return RET_PF_RETRY;
3648
0f90e1c1 3649 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3650 return r;
6aa8b732 3651
367fd790
SC
3652 r = RET_PF_RETRY;
3653 spin_lock(&vcpu->kvm->mmu_lock);
3654 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3655 goto out_unlock;
7bd7ded6
SC
3656 r = make_mmu_pages_available(vcpu);
3657 if (r)
367fd790 3658 goto out_unlock;
bb18842e
BG
3659
3660 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3661 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3662 pfn, prefault);
3663 else
3664 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3665 prefault, is_tdp);
0f90e1c1 3666
367fd790
SC
3667out_unlock:
3668 spin_unlock(&vcpu->kvm->mmu_lock);
3669 kvm_release_pfn_clean(pfn);
3670 return r;
6aa8b732
AK
3671}
3672
0f90e1c1
SC
3673static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3674 u32 error_code, bool prefault)
3675{
3676 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3677
3678 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3679 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3680 PG_LEVEL_2M, false);
0f90e1c1
SC
3681}
3682
1261bfa3 3683int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3684 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3685{
3686 int r = 1;
9ce372b3 3687 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3688
736c291c
SC
3689#ifndef CONFIG_X86_64
3690 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3691 if (WARN_ON_ONCE(fault_address >> 32))
3692 return -EFAULT;
3693#endif
3694
c595ceee 3695 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3696 if (!flags) {
1261bfa3
WL
3697 trace_kvm_page_fault(fault_address, error_code);
3698
d0006530 3699 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3700 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3701 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3702 insn_len);
9ce372b3 3703 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3704 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3705 local_irq_disable();
6bca69ad 3706 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3707 local_irq_enable();
9ce372b3
VK
3708 } else {
3709 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3710 }
9ce372b3 3711
1261bfa3
WL
3712 return r;
3713}
3714EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3715
7a02674d
SC
3716int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3717 bool prefault)
fb72d167 3718{
cb9b88c6 3719 int max_level;
fb72d167 3720
e662ec3e 3721 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3722 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3723 max_level--) {
3724 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3725 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3726
cb9b88c6
SC
3727 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3728 break;
fd136902 3729 }
852e3c19 3730
0f90e1c1
SC
3731 return direct_page_fault(vcpu, gpa, error_code, prefault,
3732 max_level, true);
fb72d167
JR
3733}
3734
8a3c1a33
PB
3735static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3736 struct kvm_mmu *context)
6aa8b732 3737{
6aa8b732 3738 context->page_fault = nonpaging_page_fault;
6aa8b732 3739 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3740 context->sync_page = nonpaging_sync_page;
5efac074 3741 context->invlpg = NULL;
0f53b5b1 3742 context->update_pte = nonpaging_update_pte;
cea0f0e7 3743 context->root_level = 0;
6aa8b732 3744 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3745 context->direct_map = true;
2d48a985 3746 context->nx = false;
6aa8b732
AK
3747}
3748
be01e8e2 3749static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3750 union kvm_mmu_page_role role)
3751{
be01e8e2 3752 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3753 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3754 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3755}
3756
b94742c9 3757/*
be01e8e2 3758 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3759 * The current root is also inserted into the cache.
3760 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3761 * returned.
3762 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3763 * false is returned. This root should now be freed by the caller.
3764 */
be01e8e2 3765static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3766 union kvm_mmu_page_role new_role)
3767{
3768 uint i;
3769 struct kvm_mmu_root_info root;
44dd3ffa 3770 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3771
be01e8e2 3772 root.pgd = mmu->root_pgd;
b94742c9
JS
3773 root.hpa = mmu->root_hpa;
3774
be01e8e2 3775 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3776 return true;
3777
b94742c9
JS
3778 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3779 swap(root, mmu->prev_roots[i]);
3780
be01e8e2 3781 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3782 break;
3783 }
3784
3785 mmu->root_hpa = root.hpa;
be01e8e2 3786 mmu->root_pgd = root.pgd;
b94742c9
JS
3787
3788 return i < KVM_MMU_NUM_PREV_ROOTS;
3789}
3790
be01e8e2 3791static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3792 union kvm_mmu_page_role new_role)
6aa8b732 3793{
44dd3ffa 3794 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3795
3796 /*
3797 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3798 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3799 * later if necessary.
3800 */
3801 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3802 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3803 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3804
3805 return false;
6aa8b732
AK
3806}
3807
be01e8e2 3808static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3809 union kvm_mmu_page_role new_role,
4a632ac6 3810 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3811{
be01e8e2 3812 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3813 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3814 return;
3815 }
3816
3817 /*
3818 * It's possible that the cached previous root page is obsolete because
3819 * of a change in the MMU generation number. However, changing the
3820 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3821 * free the root set here and allocate a new one.
3822 */
3823 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3824
71fe7013 3825 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3826 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3827 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3828 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3829
3830 /*
3831 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3832 * switching to a new CR3, that GVA->GPA mapping may no longer be
3833 * valid. So clear any cached MMIO info even when we don't need to sync
3834 * the shadow page tables.
3835 */
3836 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3837
e47c4aee 3838 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3839}
3840
be01e8e2 3841void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3842 bool skip_mmu_sync)
0aab33e4 3843{
be01e8e2 3844 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3845 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3846}
be01e8e2 3847EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3848
5777ed34
JR
3849static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3850{
9f8fe504 3851 return kvm_read_cr3(vcpu);
5777ed34
JR
3852}
3853
54bf36aa 3854static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3855 unsigned int access, int *nr_present)
ce88decf
XG
3856{
3857 if (unlikely(is_mmio_spte(*sptep))) {
3858 if (gfn != get_mmio_spte_gfn(*sptep)) {
3859 mmu_spte_clear_no_track(sptep);
3860 return true;
3861 }
3862
3863 (*nr_present)++;
54bf36aa 3864 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3865 return true;
3866 }
3867
3868 return false;
3869}
3870
6bb69c9b
PB
3871static inline bool is_last_gpte(struct kvm_mmu *mmu,
3872 unsigned level, unsigned gpte)
6fd01b71 3873{
6bb69c9b
PB
3874 /*
3875 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3876 * If it is clear, there are no large pages at this level, so clear
3877 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3878 */
3879 gpte &= level - mmu->last_nonleaf_level;
3880
829ee279 3881 /*
3bae0459
SC
3882 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3883 * iff level <= PG_LEVEL_4K, which for our purpose means
3884 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3885 */
3bae0459 3886 gpte |= level - PG_LEVEL_4K - 1;
829ee279 3887
6bb69c9b 3888 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3889}
3890
37406aaa
NHE
3891#define PTTYPE_EPT 18 /* arbitrary */
3892#define PTTYPE PTTYPE_EPT
3893#include "paging_tmpl.h"
3894#undef PTTYPE
3895
6aa8b732
AK
3896#define PTTYPE 64
3897#include "paging_tmpl.h"
3898#undef PTTYPE
3899
3900#define PTTYPE 32
3901#include "paging_tmpl.h"
3902#undef PTTYPE
3903
6dc98b86
XG
3904static void
3905__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3906 struct rsvd_bits_validate *rsvd_check,
3907 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3908 bool pse, bool amd)
82725b20 3909{
82725b20 3910 u64 exb_bit_rsvd = 0;
5f7dde7b 3911 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3912 u64 nonleaf_bit8_rsvd = 0;
82725b20 3913
a0a64f50 3914 rsvd_check->bad_mt_xwr = 0;
25d92081 3915
6dc98b86 3916 if (!nx)
82725b20 3917 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3918 if (!gbpages)
5f7dde7b 3919 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3920
3921 /*
3922 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3923 * leaf entries) on AMD CPUs only.
3924 */
6fec2144 3925 if (amd)
a0c0feb5
PB
3926 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3927
6dc98b86 3928 switch (level) {
82725b20
DE
3929 case PT32_ROOT_LEVEL:
3930 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3931 rsvd_check->rsvd_bits_mask[0][1] = 0;
3932 rsvd_check->rsvd_bits_mask[0][0] = 0;
3933 rsvd_check->rsvd_bits_mask[1][0] =
3934 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3935
6dc98b86 3936 if (!pse) {
a0a64f50 3937 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3938 break;
3939 }
3940
82725b20
DE
3941 if (is_cpuid_PSE36())
3942 /* 36bits PSE 4MB page */
a0a64f50 3943 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3944 else
3945 /* 32 bits PSE 4MB page */
a0a64f50 3946 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3947 break;
3948 case PT32E_ROOT_LEVEL:
a0a64f50 3949 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3950 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3951 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3952 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3953 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3954 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3955 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3956 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3957 rsvd_bits(maxphyaddr, 62) |
3958 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3959 rsvd_check->rsvd_bits_mask[1][0] =
3960 rsvd_check->rsvd_bits_mask[0][0];
82725b20 3961 break;
855feb67
YZ
3962 case PT64_ROOT_5LEVEL:
3963 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
3964 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3965 rsvd_bits(maxphyaddr, 51);
3966 rsvd_check->rsvd_bits_mask[1][4] =
3967 rsvd_check->rsvd_bits_mask[0][4];
df561f66 3968 fallthrough;
2a7266a8 3969 case PT64_ROOT_4LEVEL:
a0a64f50
XG
3970 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3971 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3972 rsvd_bits(maxphyaddr, 51);
a0a64f50 3973 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5ecad245 3974 gbpages_bit_rsvd |
82725b20 3975 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3976 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3977 rsvd_bits(maxphyaddr, 51);
3978 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3979 rsvd_bits(maxphyaddr, 51);
3980 rsvd_check->rsvd_bits_mask[1][3] =
3981 rsvd_check->rsvd_bits_mask[0][3];
3982 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3983 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3984 rsvd_bits(13, 29);
a0a64f50 3985 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3986 rsvd_bits(maxphyaddr, 51) |
3987 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3988 rsvd_check->rsvd_bits_mask[1][0] =
3989 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3990 break;
3991 }
3992}
3993
6dc98b86
XG
3994static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3995 struct kvm_mmu *context)
3996{
3997 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3998 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
3999 context->nx,
4000 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4001 is_pse(vcpu),
4002 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4003}
4004
81b8eebb
XG
4005static void
4006__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4007 int maxphyaddr, bool execonly)
25d92081 4008{
951f9fd7 4009 u64 bad_mt_xwr;
25d92081 4010
855feb67
YZ
4011 rsvd_check->rsvd_bits_mask[0][4] =
4012 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4013 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4014 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4015 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4016 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4017 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4018 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4019 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4020
4021 /* large page */
855feb67 4022 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4023 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4024 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4025 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4026 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4027 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4028 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4029
951f9fd7
PB
4030 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4031 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4032 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4033 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4034 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4035 if (!execonly) {
4036 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4037 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4038 }
951f9fd7 4039 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4040}
4041
81b8eebb
XG
4042static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4043 struct kvm_mmu *context, bool execonly)
4044{
4045 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4046 cpuid_maxphyaddr(vcpu), execonly);
4047}
4048
c258b62b
XG
4049/*
4050 * the page table on host is the shadow page table for the page
4051 * table in guest or amd nested guest, its mmu features completely
4052 * follow the features in guest.
4053 */
4054void
4055reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4056{
36d9594d
VK
4057 bool uses_nx = context->nx ||
4058 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4059 struct rsvd_bits_validate *shadow_zero_check;
4060 int i;
5f0b8199 4061
6fec2144
PB
4062 /*
4063 * Passing "true" to the last argument is okay; it adds a check
4064 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4065 */
ea2800dd
BS
4066 shadow_zero_check = &context->shadow_zero_check;
4067 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4068 shadow_phys_bits,
5f0b8199 4069 context->shadow_root_level, uses_nx,
d6321d49
RK
4070 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4071 is_pse(vcpu), true);
ea2800dd
BS
4072
4073 if (!shadow_me_mask)
4074 return;
4075
4076 for (i = context->shadow_root_level; --i >= 0;) {
4077 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4078 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4079 }
4080
c258b62b
XG
4081}
4082EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4083
6fec2144
PB
4084static inline bool boot_cpu_is_amd(void)
4085{
4086 WARN_ON_ONCE(!tdp_enabled);
4087 return shadow_x_mask == 0;
4088}
4089
c258b62b
XG
4090/*
4091 * the direct page table on host, use as much mmu features as
4092 * possible, however, kvm currently does not do execution-protection.
4093 */
4094static void
4095reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4096 struct kvm_mmu *context)
4097{
ea2800dd
BS
4098 struct rsvd_bits_validate *shadow_zero_check;
4099 int i;
4100
4101 shadow_zero_check = &context->shadow_zero_check;
4102
6fec2144 4103 if (boot_cpu_is_amd())
ea2800dd 4104 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4105 shadow_phys_bits,
c258b62b 4106 context->shadow_root_level, false,
b8291adc
BP
4107 boot_cpu_has(X86_FEATURE_GBPAGES),
4108 true, true);
c258b62b 4109 else
ea2800dd 4110 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4111 shadow_phys_bits,
c258b62b
XG
4112 false);
4113
ea2800dd
BS
4114 if (!shadow_me_mask)
4115 return;
4116
4117 for (i = context->shadow_root_level; --i >= 0;) {
4118 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4119 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4120 }
c258b62b
XG
4121}
4122
4123/*
4124 * as the comments in reset_shadow_zero_bits_mask() except it
4125 * is the shadow page table for intel nested guest.
4126 */
4127static void
4128reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4129 struct kvm_mmu *context, bool execonly)
4130{
4131 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4132 shadow_phys_bits, execonly);
c258b62b
XG
4133}
4134
09f037aa
PB
4135#define BYTE_MASK(access) \
4136 ((1 & (access) ? 2 : 0) | \
4137 (2 & (access) ? 4 : 0) | \
4138 (3 & (access) ? 8 : 0) | \
4139 (4 & (access) ? 16 : 0) | \
4140 (5 & (access) ? 32 : 0) | \
4141 (6 & (access) ? 64 : 0) | \
4142 (7 & (access) ? 128 : 0))
4143
4144
edc90b7d
XG
4145static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4146 struct kvm_mmu *mmu, bool ept)
97d64b78 4147{
09f037aa
PB
4148 unsigned byte;
4149
4150 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4151 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4152 const u8 u = BYTE_MASK(ACC_USER_MASK);
4153
4154 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4155 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4156 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4157
97d64b78 4158 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4159 unsigned pfec = byte << 1;
4160
97ec8c06 4161 /*
09f037aa
PB
4162 * Each "*f" variable has a 1 bit for each UWX value
4163 * that causes a fault with the given PFEC.
97ec8c06 4164 */
97d64b78 4165
09f037aa 4166 /* Faults from writes to non-writable pages */
a6a6d3b1 4167 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4168 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4169 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4170 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4171 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4172 /* Faults from kernel mode fetches of user pages */
4173 u8 smepf = 0;
4174 /* Faults from kernel mode accesses of user pages */
4175 u8 smapf = 0;
4176
4177 if (!ept) {
4178 /* Faults from kernel mode accesses to user pages */
4179 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4180
4181 /* Not really needed: !nx will cause pte.nx to fault */
4182 if (!mmu->nx)
4183 ff = 0;
4184
4185 /* Allow supervisor writes if !cr0.wp */
4186 if (!cr0_wp)
4187 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4188
4189 /* Disallow supervisor fetches of user code if cr4.smep */
4190 if (cr4_smep)
4191 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4192
4193 /*
4194 * SMAP:kernel-mode data accesses from user-mode
4195 * mappings should fault. A fault is considered
4196 * as a SMAP violation if all of the following
39337ad1 4197 * conditions are true:
09f037aa
PB
4198 * - X86_CR4_SMAP is set in CR4
4199 * - A user page is accessed
4200 * - The access is not a fetch
4201 * - Page fault in kernel mode
4202 * - if CPL = 3 or X86_EFLAGS_AC is clear
4203 *
4204 * Here, we cover the first three conditions.
4205 * The fourth is computed dynamically in permission_fault();
4206 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4207 * *not* subject to SMAP restrictions.
4208 */
4209 if (cr4_smap)
4210 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4211 }
09f037aa
PB
4212
4213 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4214 }
4215}
4216
2d344105
HH
4217/*
4218* PKU is an additional mechanism by which the paging controls access to
4219* user-mode addresses based on the value in the PKRU register. Protection
4220* key violations are reported through a bit in the page fault error code.
4221* Unlike other bits of the error code, the PK bit is not known at the
4222* call site of e.g. gva_to_gpa; it must be computed directly in
4223* permission_fault based on two bits of PKRU, on some machine state (CR4,
4224* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4225*
4226* In particular the following conditions come from the error code, the
4227* page tables and the machine state:
4228* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4229* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4230* - PK is always zero if U=0 in the page tables
4231* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4232*
4233* The PKRU bitmask caches the result of these four conditions. The error
4234* code (minus the P bit) and the page table's U bit form an index into the
4235* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4236* with the two bits of the PKRU register corresponding to the protection key.
4237* For the first three conditions above the bits will be 00, thus masking
4238* away both AD and WD. For all reads or if the last condition holds, WD
4239* only will be masked away.
4240*/
4241static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4242 bool ept)
4243{
4244 unsigned bit;
4245 bool wp;
4246
4247 if (ept) {
4248 mmu->pkru_mask = 0;
4249 return;
4250 }
4251
4252 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4253 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4254 mmu->pkru_mask = 0;
4255 return;
4256 }
4257
4258 wp = is_write_protection(vcpu);
4259
4260 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4261 unsigned pfec, pkey_bits;
4262 bool check_pkey, check_write, ff, uf, wf, pte_user;
4263
4264 pfec = bit << 1;
4265 ff = pfec & PFERR_FETCH_MASK;
4266 uf = pfec & PFERR_USER_MASK;
4267 wf = pfec & PFERR_WRITE_MASK;
4268
4269 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4270 pte_user = pfec & PFERR_RSVD_MASK;
4271
4272 /*
4273 * Only need to check the access which is not an
4274 * instruction fetch and is to a user page.
4275 */
4276 check_pkey = (!ff && pte_user);
4277 /*
4278 * write access is controlled by PKRU if it is a
4279 * user access or CR0.WP = 1.
4280 */
4281 check_write = check_pkey && wf && (uf || wp);
4282
4283 /* PKRU.AD stops both read and write access. */
4284 pkey_bits = !!check_pkey;
4285 /* PKRU.WD stops write access. */
4286 pkey_bits |= (!!check_write) << 1;
4287
4288 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4289 }
4290}
4291
6bb69c9b 4292static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4293{
6bb69c9b
PB
4294 unsigned root_level = mmu->root_level;
4295
4296 mmu->last_nonleaf_level = root_level;
4297 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4298 mmu->last_nonleaf_level++;
6fd01b71
AK
4299}
4300
8a3c1a33
PB
4301static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4302 struct kvm_mmu *context,
4303 int level)
6aa8b732 4304{
2d48a985 4305 context->nx = is_nx(vcpu);
4d6931c3 4306 context->root_level = level;
2d48a985 4307
4d6931c3 4308 reset_rsvds_bits_mask(vcpu, context);
25d92081 4309 update_permission_bitmask(vcpu, context, false);
2d344105 4310 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4311 update_last_nonleaf_level(vcpu, context);
6aa8b732 4312
fa4a2c08 4313 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4314 context->page_fault = paging64_page_fault;
6aa8b732 4315 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4316 context->sync_page = paging64_sync_page;
a7052897 4317 context->invlpg = paging64_invlpg;
0f53b5b1 4318 context->update_pte = paging64_update_pte;
17ac10ad 4319 context->shadow_root_level = level;
c5a78f2b 4320 context->direct_map = false;
6aa8b732
AK
4321}
4322
8a3c1a33
PB
4323static void paging64_init_context(struct kvm_vcpu *vcpu,
4324 struct kvm_mmu *context)
17ac10ad 4325{
855feb67
YZ
4326 int root_level = is_la57_mode(vcpu) ?
4327 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4328
4329 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4330}
4331
8a3c1a33
PB
4332static void paging32_init_context(struct kvm_vcpu *vcpu,
4333 struct kvm_mmu *context)
6aa8b732 4334{
2d48a985 4335 context->nx = false;
4d6931c3 4336 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4337
4d6931c3 4338 reset_rsvds_bits_mask(vcpu, context);
25d92081 4339 update_permission_bitmask(vcpu, context, false);
2d344105 4340 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4341 update_last_nonleaf_level(vcpu, context);
6aa8b732 4342
6aa8b732 4343 context->page_fault = paging32_page_fault;
6aa8b732 4344 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4345 context->sync_page = paging32_sync_page;
a7052897 4346 context->invlpg = paging32_invlpg;
0f53b5b1 4347 context->update_pte = paging32_update_pte;
6aa8b732 4348 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4349 context->direct_map = false;
6aa8b732
AK
4350}
4351
8a3c1a33
PB
4352static void paging32E_init_context(struct kvm_vcpu *vcpu,
4353 struct kvm_mmu *context)
6aa8b732 4354{
8a3c1a33 4355 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4356}
4357
a336282d
VK
4358static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4359{
4360 union kvm_mmu_extended_role ext = {0};
4361
7dcd5755 4362 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4363 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4364 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4365 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4366 ext.cr4_pse = !!is_pse(vcpu);
4367 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4368 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4369
4370 ext.valid = 1;
4371
4372 return ext;
4373}
4374
7dcd5755
VK
4375static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4376 bool base_only)
4377{
4378 union kvm_mmu_role role = {0};
4379
4380 role.base.access = ACC_ALL;
4381 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4382 role.base.cr0_wp = is_write_protection(vcpu);
4383 role.base.smm = is_smm(vcpu);
4384 role.base.guest_mode = is_guest_mode(vcpu);
4385
4386 if (base_only)
4387 return role;
4388
4389 role.ext = kvm_calc_mmu_role_ext(vcpu);
4390
4391 return role;
4392}
4393
d468d94b
SC
4394static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4395{
4396 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4397 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4398 return 4;
4399
83013059 4400 return max_tdp_level;
d468d94b
SC
4401}
4402
7dcd5755
VK
4403static union kvm_mmu_role
4404kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4405{
7dcd5755 4406 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4407
7dcd5755 4408 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4409 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4410 role.base.direct = true;
47c42e6b 4411 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4412
4413 return role;
4414}
4415
8a3c1a33 4416static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4417{
8c008659 4418 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4419 union kvm_mmu_role new_role =
4420 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4421
7dcd5755
VK
4422 if (new_role.as_u64 == context->mmu_role.as_u64)
4423 return;
4424
4425 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4426 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4427 context->sync_page = nonpaging_sync_page;
5efac074 4428 context->invlpg = NULL;
0f53b5b1 4429 context->update_pte = nonpaging_update_pte;
d468d94b 4430 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4431 context->direct_map = true;
d8dd54e0 4432 context->get_guest_pgd = get_cr3;
e4e517b4 4433 context->get_pdptr = kvm_pdptr_read;
cb659db8 4434 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4435
4436 if (!is_paging(vcpu)) {
2d48a985 4437 context->nx = false;
fb72d167
JR
4438 context->gva_to_gpa = nonpaging_gva_to_gpa;
4439 context->root_level = 0;
4440 } else if (is_long_mode(vcpu)) {
2d48a985 4441 context->nx = is_nx(vcpu);
855feb67
YZ
4442 context->root_level = is_la57_mode(vcpu) ?
4443 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4444 reset_rsvds_bits_mask(vcpu, context);
4445 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4446 } else if (is_pae(vcpu)) {
2d48a985 4447 context->nx = is_nx(vcpu);
fb72d167 4448 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4449 reset_rsvds_bits_mask(vcpu, context);
4450 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4451 } else {
2d48a985 4452 context->nx = false;
fb72d167 4453 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4454 reset_rsvds_bits_mask(vcpu, context);
4455 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4456 }
4457
25d92081 4458 update_permission_bitmask(vcpu, context, false);
2d344105 4459 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4460 update_last_nonleaf_level(vcpu, context);
c258b62b 4461 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4462}
4463
7dcd5755 4464static union kvm_mmu_role
59505b55 4465kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4466{
4467 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4468
4469 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4470 !is_write_protection(vcpu);
4471 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4472 !is_write_protection(vcpu);
47c42e6b 4473 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4474
59505b55
SC
4475 return role;
4476}
4477
4478static union kvm_mmu_role
4479kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4480{
4481 union kvm_mmu_role role =
4482 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4483
4484 role.base.direct = !is_paging(vcpu);
4485
9fa72119 4486 if (!is_long_mode(vcpu))
7dcd5755 4487 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4488 else if (is_la57_mode(vcpu))
7dcd5755 4489 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4490 else
7dcd5755 4491 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4492
4493 return role;
4494}
4495
8c008659
PB
4496static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4497 u32 cr0, u32 cr4, u32 efer,
4498 union kvm_mmu_role new_role)
9fa72119 4499{
929d1cfa 4500 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4501 nonpaging_init_context(vcpu, context);
929d1cfa 4502 else if (efer & EFER_LMA)
8a3c1a33 4503 paging64_init_context(vcpu, context);
929d1cfa 4504 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4505 paging32E_init_context(vcpu, context);
6aa8b732 4506 else
8a3c1a33 4507 paging32_init_context(vcpu, context);
a770f6f2 4508
7dcd5755 4509 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4510 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4511}
0f04a2ac
VK
4512
4513static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4514{
8c008659 4515 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4516 union kvm_mmu_role new_role =
4517 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4518
4519 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4520 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4521}
4522
59505b55
SC
4523static union kvm_mmu_role
4524kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4525{
4526 union kvm_mmu_role role =
4527 kvm_calc_shadow_root_page_role_common(vcpu, false);
4528
4529 role.base.direct = false;
d468d94b 4530 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4531
4532 return role;
4533}
4534
0f04a2ac
VK
4535void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4536 gpa_t nested_cr3)
4537{
8c008659 4538 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4539 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4540
096586fd
SC
4541 context->shadow_root_level = new_role.base.level;
4542
a506fdd2
VK
4543 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4544
0f04a2ac 4545 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4546 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4547}
4548EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4549
a336282d
VK
4550static union kvm_mmu_role
4551kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4552 bool execonly, u8 level)
9fa72119 4553{
552c69b1 4554 union kvm_mmu_role role = {0};
14c07ad8 4555
47c42e6b
SC
4556 /* SMM flag is inherited from root_mmu */
4557 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4558
bb1fcc70 4559 role.base.level = level;
47c42e6b 4560 role.base.gpte_is_8_bytes = true;
a336282d
VK
4561 role.base.direct = false;
4562 role.base.ad_disabled = !accessed_dirty;
4563 role.base.guest_mode = true;
4564 role.base.access = ACC_ALL;
9fa72119 4565
47c42e6b
SC
4566 /*
4567 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4568 * SMAP variation to denote shadow EPT entries.
4569 */
4570 role.base.cr0_wp = true;
4571 role.base.smap_andnot_wp = true;
4572
552c69b1 4573 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4574 role.ext.execonly = execonly;
9fa72119
JS
4575
4576 return role;
4577}
4578
ae1e2d10 4579void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4580 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4581{
8c008659 4582 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4583 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4584 union kvm_mmu_role new_role =
4585 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4586 execonly, level);
a336282d 4587
be01e8e2 4588 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4589
a336282d
VK
4590 if (new_role.as_u64 == context->mmu_role.as_u64)
4591 return;
ad896af0 4592
bb1fcc70 4593 context->shadow_root_level = level;
155a97a3
NHE
4594
4595 context->nx = true;
ae1e2d10 4596 context->ept_ad = accessed_dirty;
155a97a3
NHE
4597 context->page_fault = ept_page_fault;
4598 context->gva_to_gpa = ept_gva_to_gpa;
4599 context->sync_page = ept_sync_page;
4600 context->invlpg = ept_invlpg;
4601 context->update_pte = ept_update_pte;
bb1fcc70 4602 context->root_level = level;
155a97a3 4603 context->direct_map = false;
a336282d 4604 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4605
155a97a3 4606 update_permission_bitmask(vcpu, context, true);
2d344105 4607 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4608 update_last_nonleaf_level(vcpu, context);
155a97a3 4609 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4610 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4611}
4612EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4613
8a3c1a33 4614static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4615{
8c008659 4616 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4617
929d1cfa
PB
4618 kvm_init_shadow_mmu(vcpu,
4619 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4620 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4621 vcpu->arch.efer);
4622
d8dd54e0 4623 context->get_guest_pgd = get_cr3;
ad896af0
PB
4624 context->get_pdptr = kvm_pdptr_read;
4625 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4626}
4627
8a3c1a33 4628static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4629{
bf627a92 4630 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4631 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4632
bf627a92
VK
4633 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4634 return;
4635
4636 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4637 g_context->get_guest_pgd = get_cr3;
e4e517b4 4638 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4639 g_context->inject_page_fault = kvm_inject_page_fault;
4640
5efac074
PB
4641 /*
4642 * L2 page tables are never shadowed, so there is no need to sync
4643 * SPTEs.
4644 */
4645 g_context->invlpg = NULL;
4646
02f59dc9 4647 /*
44dd3ffa 4648 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4649 * L1's nested page tables (e.g. EPT12). The nested translation
4650 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4651 * L2's page tables as the first level of translation and L1's
4652 * nested page tables as the second level of translation. Basically
4653 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4654 */
4655 if (!is_paging(vcpu)) {
2d48a985 4656 g_context->nx = false;
02f59dc9
JR
4657 g_context->root_level = 0;
4658 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4659 } else if (is_long_mode(vcpu)) {
2d48a985 4660 g_context->nx = is_nx(vcpu);
855feb67
YZ
4661 g_context->root_level = is_la57_mode(vcpu) ?
4662 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4663 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4664 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4665 } else if (is_pae(vcpu)) {
2d48a985 4666 g_context->nx = is_nx(vcpu);
02f59dc9 4667 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4668 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4669 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4670 } else {
2d48a985 4671 g_context->nx = false;
02f59dc9 4672 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4673 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4674 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4675 }
4676
25d92081 4677 update_permission_bitmask(vcpu, g_context, false);
2d344105 4678 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4679 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4680}
4681
1c53da3f 4682void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4683{
1c53da3f 4684 if (reset_roots) {
b94742c9
JS
4685 uint i;
4686
44dd3ffa 4687 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4688
4689 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4690 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4691 }
4692
02f59dc9 4693 if (mmu_is_nested(vcpu))
e0c6db3e 4694 init_kvm_nested_mmu(vcpu);
02f59dc9 4695 else if (tdp_enabled)
e0c6db3e 4696 init_kvm_tdp_mmu(vcpu);
fb72d167 4697 else
e0c6db3e 4698 init_kvm_softmmu(vcpu);
fb72d167 4699}
1c53da3f 4700EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4701
9fa72119
JS
4702static union kvm_mmu_page_role
4703kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4704{
7dcd5755
VK
4705 union kvm_mmu_role role;
4706
9fa72119 4707 if (tdp_enabled)
7dcd5755 4708 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4709 else
7dcd5755
VK
4710 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4711
4712 return role.base;
9fa72119 4713}
fb72d167 4714
8a3c1a33 4715void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4716{
95f93af4 4717 kvm_mmu_unload(vcpu);
1c53da3f 4718 kvm_init_mmu(vcpu, true);
17c3ba9d 4719}
8668a3c4 4720EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4721
4722int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4723{
714b93da
AK
4724 int r;
4725
378f5cd6 4726 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4727 if (r)
4728 goto out;
8986ecc0 4729 r = mmu_alloc_roots(vcpu);
e2858b4a 4730 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4731 if (r)
4732 goto out;
727a7e27 4733 kvm_mmu_load_pgd(vcpu);
8c8560b8 4734 kvm_x86_ops.tlb_flush_current(vcpu);
714b93da
AK
4735out:
4736 return r;
6aa8b732 4737}
17c3ba9d
AK
4738EXPORT_SYMBOL_GPL(kvm_mmu_load);
4739
4740void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4741{
14c07ad8
VK
4742 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4743 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4744 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4745 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4746}
4b16184c 4747EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4748
0028425f 4749static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4750 struct kvm_mmu_page *sp, u64 *spte,
4751 const void *new)
0028425f 4752{
3bae0459 4753 if (sp->role.level != PG_LEVEL_4K) {
7e4e4056
JR
4754 ++vcpu->kvm->stat.mmu_pde_zapped;
4755 return;
30945387 4756 }
0028425f 4757
4cee5764 4758 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 4759 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
4760}
4761
79539cec
AK
4762static bool need_remote_flush(u64 old, u64 new)
4763{
4764 if (!is_shadow_present_pte(old))
4765 return false;
4766 if (!is_shadow_present_pte(new))
4767 return true;
4768 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4769 return true;
53166229
GN
4770 old ^= shadow_nx_mask;
4771 new ^= shadow_nx_mask;
79539cec
AK
4772 return (old & ~new & PT64_PERM_MASK) != 0;
4773}
4774
889e5cbc 4775static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4776 int *bytes)
da4a00f0 4777{
0e0fee5c 4778 u64 gentry = 0;
889e5cbc 4779 int r;
72016f3a 4780
72016f3a
AK
4781 /*
4782 * Assume that the pte write on a page table of the same type
49b26e26
XG
4783 * as the current vcpu paging mode since we update the sptes only
4784 * when they have the same mode.
72016f3a 4785 */
889e5cbc 4786 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4787 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4788 *gpa &= ~(gpa_t)7;
4789 *bytes = 8;
08e850c6
AK
4790 }
4791
0e0fee5c
JS
4792 if (*bytes == 4 || *bytes == 8) {
4793 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4794 if (r)
4795 gentry = 0;
72016f3a
AK
4796 }
4797
889e5cbc
XG
4798 return gentry;
4799}
4800
4801/*
4802 * If we're seeing too many writes to a page, it may no longer be a page table,
4803 * or we may be forking, in which case it is better to unmap the page.
4804 */
a138fe75 4805static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4806{
a30f47cb
XG
4807 /*
4808 * Skip write-flooding detected for the sp whose level is 1, because
4809 * it can become unsync, then the guest page is not write-protected.
4810 */
3bae0459 4811 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4812 return false;
3246af0e 4813
e5691a81
XG
4814 atomic_inc(&sp->write_flooding_count);
4815 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4816}
4817
4818/*
4819 * Misaligned accesses are too much trouble to fix up; also, they usually
4820 * indicate a page is not used as a page table.
4821 */
4822static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4823 int bytes)
4824{
4825 unsigned offset, pte_size, misaligned;
4826
4827 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4828 gpa, bytes, sp->role.word);
4829
4830 offset = offset_in_page(gpa);
47c42e6b 4831 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4832
4833 /*
4834 * Sometimes, the OS only writes the last one bytes to update status
4835 * bits, for example, in linux, andb instruction is used in clear_bit().
4836 */
4837 if (!(offset & (pte_size - 1)) && bytes == 1)
4838 return false;
4839
889e5cbc
XG
4840 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4841 misaligned |= bytes < 4;
4842
4843 return misaligned;
4844}
4845
4846static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4847{
4848 unsigned page_offset, quadrant;
4849 u64 *spte;
4850 int level;
4851
4852 page_offset = offset_in_page(gpa);
4853 level = sp->role.level;
4854 *nspte = 1;
47c42e6b 4855 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4856 page_offset <<= 1; /* 32->64 */
4857 /*
4858 * A 32-bit pde maps 4MB while the shadow pdes map
4859 * only 2MB. So we need to double the offset again
4860 * and zap two pdes instead of one.
4861 */
4862 if (level == PT32_ROOT_LEVEL) {
4863 page_offset &= ~7; /* kill rounding error */
4864 page_offset <<= 1;
4865 *nspte = 2;
4866 }
4867 quadrant = page_offset >> PAGE_SHIFT;
4868 page_offset &= ~PAGE_MASK;
4869 if (quadrant != sp->role.quadrant)
4870 return NULL;
4871 }
4872
4873 spte = &sp->spt[page_offset / sizeof(*spte)];
4874 return spte;
4875}
4876
a102a674
SC
4877/*
4878 * Ignore various flags when determining if a SPTE can be immediately
4879 * overwritten for the current MMU.
4880 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4881 * match the current MMU role, as MMU's level tracks the root level.
4882 * - access: updated based on the new guest PTE
4883 * - quadrant: handled by get_written_sptes()
4884 * - invalid: always false (loop only walks valid shadow pages)
4885 */
4886static const union kvm_mmu_page_role role_ign = {
4887 .level = 0xf,
4888 .access = 0x7,
4889 .quadrant = 0x3,
4890 .invalid = 0x1,
4891};
4892
13d268ca 4893static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4894 const u8 *new, int bytes,
4895 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4896{
4897 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4898 struct kvm_mmu_page *sp;
889e5cbc
XG
4899 LIST_HEAD(invalid_list);
4900 u64 entry, gentry, *spte;
4901 int npte;
b8c67b7a 4902 bool remote_flush, local_flush;
889e5cbc
XG
4903
4904 /*
4905 * If we don't have indirect shadow pages, it means no page is
4906 * write-protected, so we can exit simply.
4907 */
6aa7de05 4908 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4909 return;
4910
b8c67b7a 4911 remote_flush = local_flush = false;
889e5cbc
XG
4912
4913 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4914
889e5cbc
XG
4915 /*
4916 * No need to care whether allocation memory is successful
4917 * or not since pte prefetch is skiped if it does not have
4918 * enough objects in the cache.
4919 */
378f5cd6 4920 mmu_topup_memory_caches(vcpu, true);
889e5cbc
XG
4921
4922 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
4923
4924 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4925
889e5cbc 4926 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4927 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4928
b67bfe0d 4929 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4930 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4931 detect_write_flooding(sp)) {
b8c67b7a 4932 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4933 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4934 continue;
4935 }
889e5cbc
XG
4936
4937 spte = get_written_sptes(sp, gpa, &npte);
4938 if (!spte)
4939 continue;
4940
0671a8e7 4941 local_flush = true;
ac1b714e 4942 while (npte--) {
36d9594d
VK
4943 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
4944
79539cec 4945 entry = *spte;
2de4085c 4946 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
fa1de2bf 4947 if (gentry &&
a102a674
SC
4948 !((sp->role.word ^ base_role) & ~role_ign.word) &&
4949 rmap_can_add(vcpu))
7c562522 4950 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4951 if (need_remote_flush(entry, *spte))
0671a8e7 4952 remote_flush = true;
ac1b714e 4953 ++spte;
9b7a0325 4954 }
9b7a0325 4955 }
b8c67b7a 4956 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4957 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4958 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4959}
4960
a436036b
AK
4961int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4962{
10589a46
MT
4963 gpa_t gpa;
4964 int r;
a436036b 4965
44dd3ffa 4966 if (vcpu->arch.mmu->direct_map)
60f24784
AK
4967 return 0;
4968
1871c602 4969 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4970
10589a46 4971 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4972
10589a46 4973 return r;
a436036b 4974}
577bdc49 4975EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4976
736c291c 4977int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 4978 void *insn, int insn_len)
3067714c 4979{
92daa48b 4980 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 4981 bool direct = vcpu->arch.mmu->direct_map;
3067714c 4982
6948199a 4983 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
4984 return RET_PF_RETRY;
4985
9b8ebbdb 4986 r = RET_PF_INVALID;
e9ee956e 4987 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 4988 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 4989 if (r == RET_PF_EMULATE)
e9ee956e 4990 goto emulate;
e9ee956e 4991 }
3067714c 4992
9b8ebbdb 4993 if (r == RET_PF_INVALID) {
7a02674d
SC
4994 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
4995 lower_32_bits(error_code), false);
7b367bc9
SC
4996 if (WARN_ON_ONCE(r == RET_PF_INVALID))
4997 return -EIO;
9b8ebbdb
PB
4998 }
4999
3067714c 5000 if (r < 0)
e9ee956e 5001 return r;
83a2ba4c
SC
5002 if (r != RET_PF_EMULATE)
5003 return 1;
3067714c 5004
14727754
TL
5005 /*
5006 * Before emulating the instruction, check if the error code
5007 * was due to a RO violation while translating the guest page.
5008 * This can occur when using nested virtualization with nested
5009 * paging in both guests. If true, we simply unprotect the page
5010 * and resume the guest.
14727754 5011 */
44dd3ffa 5012 if (vcpu->arch.mmu->direct_map &&
eebed243 5013 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5014 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5015 return 1;
5016 }
5017
472faffa
SC
5018 /*
5019 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5020 * optimistically try to just unprotect the page and let the processor
5021 * re-execute the instruction that caused the page fault. Do not allow
5022 * retrying MMIO emulation, as it's not only pointless but could also
5023 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5024 * faulting on the non-existent MMIO address. Retrying an instruction
5025 * from a nested guest is also pointless and dangerous as we are only
5026 * explicitly shadowing L1's page tables, i.e. unprotecting something
5027 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5028 */
736c291c 5029 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5030 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5031emulate:
736c291c 5032 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5033 insn_len);
3067714c
AK
5034}
5035EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5036
5efac074
PB
5037void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5038 gva_t gva, hpa_t root_hpa)
a7052897 5039{
b94742c9 5040 int i;
7eb77e9f 5041
5efac074
PB
5042 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5043 if (mmu != &vcpu->arch.guest_mmu) {
5044 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5045 if (is_noncanonical_address(gva, vcpu))
5046 return;
5047
5048 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5049 }
5050
5051 if (!mmu->invlpg)
faff8758
JS
5052 return;
5053
5efac074
PB
5054 if (root_hpa == INVALID_PAGE) {
5055 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5056
5efac074
PB
5057 /*
5058 * INVLPG is required to invalidate any global mappings for the VA,
5059 * irrespective of PCID. Since it would take us roughly similar amount
5060 * of work to determine whether any of the prev_root mappings of the VA
5061 * is marked global, or to just sync it blindly, so we might as well
5062 * just always sync it.
5063 *
5064 * Mappings not reachable via the current cr3 or the prev_roots will be
5065 * synced when switching to that cr3, so nothing needs to be done here
5066 * for them.
5067 */
5068 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5069 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5070 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5071 } else {
5072 mmu->invlpg(vcpu, gva, root_hpa);
5073 }
5074}
5075EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5076
5efac074
PB
5077void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5078{
5079 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5080 ++vcpu->stat.invlpg;
5081}
5082EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5083
5efac074 5084
eb4b248e
JS
5085void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5086{
44dd3ffa 5087 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5088 bool tlb_flush = false;
b94742c9 5089 uint i;
eb4b248e
JS
5090
5091 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5092 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5093 tlb_flush = true;
eb4b248e
JS
5094 }
5095
b94742c9
JS
5096 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5097 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5098 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5099 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5100 tlb_flush = true;
5101 }
956bf353 5102 }
ade61e28 5103
faff8758 5104 if (tlb_flush)
afaf0b2f 5105 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5106
eb4b248e
JS
5107 ++vcpu->stat.invlpg;
5108
5109 /*
b94742c9
JS
5110 * Mappings not reachable via the current cr3 or the prev_roots will be
5111 * synced when switching to that cr3, so nothing needs to be done here
5112 * for them.
eb4b248e
JS
5113 */
5114}
5115EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5116
83013059
SC
5117void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5118 int tdp_huge_page_level)
18552672 5119{
bde77235 5120 tdp_enabled = enable_tdp;
83013059 5121 max_tdp_level = tdp_max_root_level;
703c335d
SC
5122
5123 /*
1d92d2e8 5124 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5125 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5126 * the kernel is not. But, KVM never creates a page size greater than
5127 * what is used by the kernel for any given HVA, i.e. the kernel's
5128 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5129 */
5130 if (tdp_enabled)
1d92d2e8 5131 max_huge_page_level = tdp_huge_page_level;
703c335d 5132 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5133 max_huge_page_level = PG_LEVEL_1G;
703c335d 5134 else
1d92d2e8 5135 max_huge_page_level = PG_LEVEL_2M;
18552672 5136}
bde77235 5137EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5138
5139/* The return value indicates if tlb flush on all vcpus is needed. */
5140typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5141
5142/* The caller should hold mmu-lock before calling this function. */
5143static __always_inline bool
5144slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5145 slot_level_handler fn, int start_level, int end_level,
5146 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5147{
5148 struct slot_rmap_walk_iterator iterator;
5149 bool flush = false;
5150
5151 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5152 end_gfn, &iterator) {
5153 if (iterator.rmap)
5154 flush |= fn(kvm, iterator.rmap);
5155
5156 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5157 if (flush && lock_flush_tlb) {
f285c633
BG
5158 kvm_flush_remote_tlbs_with_address(kvm,
5159 start_gfn,
5160 iterator.gfn - start_gfn + 1);
85875a13
SC
5161 flush = false;
5162 }
5163 cond_resched_lock(&kvm->mmu_lock);
5164 }
5165 }
5166
5167 if (flush && lock_flush_tlb) {
f285c633
BG
5168 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5169 end_gfn - start_gfn + 1);
85875a13
SC
5170 flush = false;
5171 }
5172
5173 return flush;
5174}
5175
5176static __always_inline bool
5177slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5178 slot_level_handler fn, int start_level, int end_level,
5179 bool lock_flush_tlb)
5180{
5181 return slot_handle_level_range(kvm, memslot, fn, start_level,
5182 end_level, memslot->base_gfn,
5183 memslot->base_gfn + memslot->npages - 1,
5184 lock_flush_tlb);
5185}
5186
5187static __always_inline bool
5188slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5189 slot_level_handler fn, bool lock_flush_tlb)
5190{
3bae0459 5191 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5192 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5193}
5194
5195static __always_inline bool
5196slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5197 slot_level_handler fn, bool lock_flush_tlb)
5198{
3bae0459 5199 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5200 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5201}
5202
5203static __always_inline bool
5204slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5205 slot_level_handler fn, bool lock_flush_tlb)
5206{
3bae0459
SC
5207 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5208 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5209}
5210
1cfff4d9 5211static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5212{
1cfff4d9
JP
5213 free_page((unsigned long)mmu->pae_root);
5214 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5215}
5216
04d28e37 5217static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5218{
17ac10ad 5219 struct page *page;
6aa8b732
AK
5220 int i;
5221
04d28e37
SC
5222 mmu->root_hpa = INVALID_PAGE;
5223 mmu->root_pgd = 0;
5224 mmu->translate_gpa = translate_gpa;
5225 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5226 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5227
17ac10ad 5228 /*
b6b80c78
SC
5229 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5230 * while the PDP table is a per-vCPU construct that's allocated at MMU
5231 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5232 * x86_64. Therefore we need to allocate the PDP table in the first
5233 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5234 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5235 * skip allocating the PDP table.
17ac10ad 5236 */
d468d94b 5237 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5238 return 0;
5239
254272ce 5240 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5241 if (!page)
d7fa6ab2
WY
5242 return -ENOMEM;
5243
1cfff4d9 5244 mmu->pae_root = page_address(page);
17ac10ad 5245 for (i = 0; i < 4; ++i)
1cfff4d9 5246 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5247
6aa8b732 5248 return 0;
6aa8b732
AK
5249}
5250
8018c27b 5251int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5252{
1cfff4d9 5253 int ret;
b94742c9 5254
5962bfb7 5255 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5256 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5257
5962bfb7 5258 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5259 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5260
96880883
SC
5261 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5262
44dd3ffa
VK
5263 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5264 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5265
14c07ad8 5266 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5267
04d28e37 5268 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5269 if (ret)
5270 return ret;
5271
04d28e37 5272 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5273 if (ret)
5274 goto fail_allocate_root;
5275
5276 return ret;
5277 fail_allocate_root:
5278 free_mmu_pages(&vcpu->arch.guest_mmu);
5279 return ret;
6aa8b732
AK
5280}
5281
fbb158cb 5282#define BATCH_ZAP_PAGES 10
002c5f73
SC
5283static void kvm_zap_obsolete_pages(struct kvm *kvm)
5284{
5285 struct kvm_mmu_page *sp, *node;
fbb158cb 5286 int nr_zapped, batch = 0;
002c5f73
SC
5287
5288restart:
5289 list_for_each_entry_safe_reverse(sp, node,
5290 &kvm->arch.active_mmu_pages, link) {
5291 /*
5292 * No obsolete valid page exists before a newly created page
5293 * since active_mmu_pages is a FIFO list.
5294 */
5295 if (!is_obsolete_sp(kvm, sp))
5296 break;
5297
5298 /*
f95eec9b
SC
5299 * Invalid pages should never land back on the list of active
5300 * pages. Skip the bogus page, otherwise we'll get stuck in an
5301 * infinite loop if the page gets put back on the list (again).
002c5f73 5302 */
f95eec9b 5303 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5304 continue;
5305
4506ecf4
SC
5306 /*
5307 * No need to flush the TLB since we're only zapping shadow
5308 * pages with an obsolete generation number and all vCPUS have
5309 * loaded a new root, i.e. the shadow pages being zapped cannot
5310 * be in active use by the guest.
5311 */
fbb158cb 5312 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5313 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5314 batch = 0;
002c5f73
SC
5315 goto restart;
5316 }
5317
10605204
SC
5318 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5319 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5320 batch += nr_zapped;
002c5f73 5321 goto restart;
fbb158cb 5322 }
002c5f73
SC
5323 }
5324
4506ecf4
SC
5325 /*
5326 * Trigger a remote TLB flush before freeing the page tables to ensure
5327 * KVM is not in the middle of a lockless shadow page table walk, which
5328 * may reference the pages.
5329 */
10605204 5330 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5331}
5332
5333/*
5334 * Fast invalidate all shadow pages and use lock-break technique
5335 * to zap obsolete pages.
5336 *
5337 * It's required when memslot is being deleted or VM is being
5338 * destroyed, in these cases, we should ensure that KVM MMU does
5339 * not use any resource of the being-deleted slot or all slots
5340 * after calling the function.
5341 */
5342static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5343{
ca333add
SC
5344 lockdep_assert_held(&kvm->slots_lock);
5345
002c5f73 5346 spin_lock(&kvm->mmu_lock);
14a3c4f4 5347 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5348
5349 /*
5350 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5351 * held for the entire duration of zapping obsolete pages, it's
5352 * impossible for there to be multiple invalid generations associated
5353 * with *valid* shadow pages at any given time, i.e. there is exactly
5354 * one valid generation and (at most) one invalid generation.
5355 */
5356 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5357
4506ecf4
SC
5358 /*
5359 * Notify all vcpus to reload its shadow page table and flush TLB.
5360 * Then all vcpus will switch to new shadow page table with the new
5361 * mmu_valid_gen.
5362 *
5363 * Note: we need to do this under the protection of mmu_lock,
5364 * otherwise, vcpu would purge shadow page but miss tlb flush.
5365 */
5366 kvm_reload_remote_mmus(kvm);
5367
002c5f73 5368 kvm_zap_obsolete_pages(kvm);
faaf05b0
BG
5369
5370 if (kvm->arch.tdp_mmu_enabled)
5371 kvm_tdp_mmu_zap_all(kvm);
5372
002c5f73
SC
5373 spin_unlock(&kvm->mmu_lock);
5374}
5375
10605204
SC
5376static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5377{
5378 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5379}
5380
b5f5fdca 5381static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5382 struct kvm_memory_slot *slot,
5383 struct kvm_page_track_notifier_node *node)
b5f5fdca 5384{
002c5f73 5385 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5386}
5387
13d268ca 5388void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5389{
13d268ca 5390 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5391
fe5db27d
BG
5392 kvm_mmu_init_tdp_mmu(kvm);
5393
13d268ca 5394 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5395 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5396 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5397}
5398
13d268ca 5399void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5400{
13d268ca 5401 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5402
13d268ca 5403 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5404
5405 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5406}
5407
efdfe536
XG
5408void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5409{
5410 struct kvm_memslots *slots;
5411 struct kvm_memory_slot *memslot;
9da0e4d5 5412 int i;
faaf05b0 5413 bool flush;
efdfe536
XG
5414
5415 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5416 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5417 slots = __kvm_memslots(kvm, i);
5418 kvm_for_each_memslot(memslot, slots) {
5419 gfn_t start, end;
5420
5421 start = max(gfn_start, memslot->base_gfn);
5422 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5423 if (start >= end)
5424 continue;
efdfe536 5425
92da008f 5426 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5427 PG_LEVEL_4K,
e662ec3e 5428 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5429 start, end - 1, true);
9da0e4d5 5430 }
efdfe536
XG
5431 }
5432
faaf05b0
BG
5433 if (kvm->arch.tdp_mmu_enabled) {
5434 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5435 if (flush)
5436 kvm_flush_remote_tlbs(kvm);
5437 }
5438
efdfe536
XG
5439 spin_unlock(&kvm->mmu_lock);
5440}
5441
018aabb5
TY
5442static bool slot_rmap_write_protect(struct kvm *kvm,
5443 struct kvm_rmap_head *rmap_head)
d77aa73c 5444{
018aabb5 5445 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5446}
5447
1c91cad4 5448void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5449 struct kvm_memory_slot *memslot,
5450 int start_level)
6aa8b732 5451{
d77aa73c 5452 bool flush;
6aa8b732 5453
9d1beefb 5454 spin_lock(&kvm->mmu_lock);
3c9bd400 5455 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5456 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
9d1beefb 5457 spin_unlock(&kvm->mmu_lock);
198c74f4 5458
198c74f4
XG
5459 /*
5460 * We can flush all the TLBs out of the mmu lock without TLB
5461 * corruption since we just change the spte from writable to
5462 * readonly so that we only need to care the case of changing
5463 * spte from present to present (changing the spte from present
5464 * to nonpresent will flush all the TLBs immediately), in other
5465 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5466 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5467 * instead of PT_WRITABLE_MASK, that means it does not depend
5468 * on PT_WRITABLE_MASK anymore.
5469 */
d91ffee9 5470 if (flush)
7f42aa76 5471 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5472}
37a7d8b0 5473
3ea3b7fa 5474static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5475 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5476{
5477 u64 *sptep;
5478 struct rmap_iterator iter;
5479 int need_tlb_flush = 0;
ba049e93 5480 kvm_pfn_t pfn;
3ea3b7fa
WL
5481 struct kvm_mmu_page *sp;
5482
0d536790 5483restart:
018aabb5 5484 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5485 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5486 pfn = spte_to_pfn(*sptep);
5487
5488 /*
decf6333
XG
5489 * We cannot do huge page mapping for indirect shadow pages,
5490 * which are found on the last rmap (level = 1) when not using
5491 * tdp; such shadow pages are synced with the page table in
5492 * the guest, and the guest page table is using 4K page size
5493 * mapping if the indirect sp has level = 1.
3ea3b7fa 5494 */
a78986aa 5495 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5496 (kvm_is_zone_device_pfn(pfn) ||
5497 PageCompound(pfn_to_page(pfn)))) {
e7912386 5498 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5499
5500 if (kvm_available_flush_tlb_with_range())
5501 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5502 KVM_PAGES_PER_HPAGE(sp->role.level));
5503 else
5504 need_tlb_flush = 1;
5505
0d536790
XG
5506 goto restart;
5507 }
3ea3b7fa
WL
5508 }
5509
5510 return need_tlb_flush;
5511}
5512
5513void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5514 const struct kvm_memory_slot *memslot)
3ea3b7fa 5515{
f36f3f28 5516 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5517 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5518 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5519 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5520 spin_unlock(&kvm->mmu_lock);
5521}
5522
b3594ffb
SC
5523void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5524 struct kvm_memory_slot *memslot)
5525{
5526 /*
7f42aa76
SC
5527 * All current use cases for flushing the TLBs for a specific memslot
5528 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5529 * The interaction between the various operations on memslot must be
5530 * serialized by slots_locks to ensure the TLB flush from one operation
5531 * is observed by any other operation on the same memslot.
b3594ffb
SC
5532 */
5533 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5534 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5535 memslot->npages);
b3594ffb
SC
5536}
5537
f4b4b180
KH
5538void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5539 struct kvm_memory_slot *memslot)
5540{
d77aa73c 5541 bool flush;
f4b4b180
KH
5542
5543 spin_lock(&kvm->mmu_lock);
d77aa73c 5544 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5545 spin_unlock(&kvm->mmu_lock);
5546
f4b4b180
KH
5547 /*
5548 * It's also safe to flush TLBs out of mmu lock here as currently this
5549 * function is only used for dirty logging, in which case flushing TLB
5550 * out of mmu lock also guarantees no dirty pages will be lost in
5551 * dirty_bitmap.
5552 */
5553 if (flush)
7f42aa76 5554 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5555}
5556EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5557
5558void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5559 struct kvm_memory_slot *memslot)
5560{
d77aa73c 5561 bool flush;
f4b4b180
KH
5562
5563 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5564 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5565 false);
f4b4b180
KH
5566 spin_unlock(&kvm->mmu_lock);
5567
f4b4b180 5568 if (flush)
7f42aa76 5569 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5570}
5571EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5572
5573void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5574 struct kvm_memory_slot *memslot)
5575{
d77aa73c 5576 bool flush;
f4b4b180
KH
5577
5578 spin_lock(&kvm->mmu_lock);
d77aa73c 5579 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5580 spin_unlock(&kvm->mmu_lock);
5581
f4b4b180 5582 if (flush)
7f42aa76 5583 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5584}
5585EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5586
92f58b5c 5587void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5588{
5589 struct kvm_mmu_page *sp, *node;
7390de1e 5590 LIST_HEAD(invalid_list);
83cdb568 5591 int ign;
5304b8d3 5592
7390de1e 5593 spin_lock(&kvm->mmu_lock);
5304b8d3 5594restart:
8a674adc 5595 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5596 if (WARN_ON(sp->role.invalid))
4771450c 5597 continue;
92f58b5c 5598 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5599 goto restart;
24efe61f 5600 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5601 goto restart;
5602 }
5603
4771450c 5604 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0
BG
5605
5606 if (kvm->arch.tdp_mmu_enabled)
5607 kvm_tdp_mmu_zap_all(kvm);
5608
5304b8d3
XG
5609 spin_unlock(&kvm->mmu_lock);
5610}
5611
15248258 5612void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5613{
164bf7e5 5614 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5615
164bf7e5 5616 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5617
f8f55942 5618 /*
e1359e2b
SC
5619 * Generation numbers are incremented in multiples of the number of
5620 * address spaces in order to provide unique generations across all
5621 * address spaces. Strip what is effectively the address space
5622 * modifier prior to checking for a wrap of the MMIO generation so
5623 * that a wrap in any address space is detected.
5624 */
5625 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5626
f8f55942 5627 /*
e1359e2b 5628 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5629 * zap all shadow pages.
f8f55942 5630 */
e1359e2b 5631 if (unlikely(gen == 0)) {
ae0f5499 5632 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5633 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5634 }
f8f55942
XG
5635}
5636
70534a73
DC
5637static unsigned long
5638mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5639{
5640 struct kvm *kvm;
1495f230 5641 int nr_to_scan = sc->nr_to_scan;
70534a73 5642 unsigned long freed = 0;
3ee16c81 5643
0d9ce162 5644 mutex_lock(&kvm_lock);
3ee16c81
IE
5645
5646 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5647 int idx;
d98ba053 5648 LIST_HEAD(invalid_list);
3ee16c81 5649
35f2d16b
TY
5650 /*
5651 * Never scan more than sc->nr_to_scan VM instances.
5652 * Will not hit this condition practically since we do not try
5653 * to shrink more than one VM and it is very unlikely to see
5654 * !n_used_mmu_pages so many times.
5655 */
5656 if (!nr_to_scan--)
5657 break;
19526396
GN
5658 /*
5659 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5660 * here. We may skip a VM instance errorneosly, but we do not
5661 * want to shrink a VM that only started to populate its MMU
5662 * anyway.
5663 */
10605204
SC
5664 if (!kvm->arch.n_used_mmu_pages &&
5665 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5666 continue;
19526396 5667
f656ce01 5668 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5669 spin_lock(&kvm->mmu_lock);
3ee16c81 5670
10605204
SC
5671 if (kvm_has_zapped_obsolete_pages(kvm)) {
5672 kvm_mmu_commit_zap_page(kvm,
5673 &kvm->arch.zapped_obsolete_pages);
5674 goto unlock;
5675 }
5676
ebdb292d 5677 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5678
10605204 5679unlock:
3ee16c81 5680 spin_unlock(&kvm->mmu_lock);
f656ce01 5681 srcu_read_unlock(&kvm->srcu, idx);
19526396 5682
70534a73
DC
5683 /*
5684 * unfair on small ones
5685 * per-vm shrinkers cry out
5686 * sadness comes quickly
5687 */
19526396
GN
5688 list_move_tail(&kvm->vm_list, &vm_list);
5689 break;
3ee16c81 5690 }
3ee16c81 5691
0d9ce162 5692 mutex_unlock(&kvm_lock);
70534a73 5693 return freed;
70534a73
DC
5694}
5695
5696static unsigned long
5697mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5698{
45221ab6 5699 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5700}
5701
5702static struct shrinker mmu_shrinker = {
70534a73
DC
5703 .count_objects = mmu_shrink_count,
5704 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5705 .seeks = DEFAULT_SEEKS * 10,
5706};
5707
2ddfd20e 5708static void mmu_destroy_caches(void)
b5a33a75 5709{
c1bd743e
TH
5710 kmem_cache_destroy(pte_list_desc_cache);
5711 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5712}
5713
7b6f8a06
KH
5714static void kvm_set_mmio_spte_mask(void)
5715{
5716 u64 mask;
7b6f8a06
KH
5717
5718 /*
6129ed87
SC
5719 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5720 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5721 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5722 * 52-bit physical addresses then there are no reserved PA bits in the
5723 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 5724 */
6129ed87
SC
5725 if (shadow_phys_bits < 52)
5726 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5727 else
5728 mask = 0;
7b6f8a06 5729
e7581cac 5730 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
5731}
5732
b8e8c830
PB
5733static bool get_nx_auto_mode(void)
5734{
5735 /* Return true when CPU has the bug, and mitigations are ON */
5736 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5737}
5738
5739static void __set_nx_huge_pages(bool val)
5740{
5741 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5742}
5743
5744static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5745{
5746 bool old_val = nx_huge_pages;
5747 bool new_val;
5748
5749 /* In "auto" mode deploy workaround only if CPU has the bug. */
5750 if (sysfs_streq(val, "off"))
5751 new_val = 0;
5752 else if (sysfs_streq(val, "force"))
5753 new_val = 1;
5754 else if (sysfs_streq(val, "auto"))
5755 new_val = get_nx_auto_mode();
5756 else if (strtobool(val, &new_val) < 0)
5757 return -EINVAL;
5758
5759 __set_nx_huge_pages(new_val);
5760
5761 if (new_val != old_val) {
5762 struct kvm *kvm;
b8e8c830
PB
5763
5764 mutex_lock(&kvm_lock);
5765
5766 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5767 mutex_lock(&kvm->slots_lock);
b8e8c830 5768 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5769 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5770
5771 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5772 }
5773 mutex_unlock(&kvm_lock);
5774 }
5775
5776 return 0;
5777}
5778
b5a33a75
AK
5779int kvm_mmu_module_init(void)
5780{
ab271bd4
AB
5781 int ret = -ENOMEM;
5782
b8e8c830
PB
5783 if (nx_huge_pages == -1)
5784 __set_nx_huge_pages(get_nx_auto_mode());
5785
36d9594d
VK
5786 /*
5787 * MMU roles use union aliasing which is, generally speaking, an
5788 * undefined behavior. However, we supposedly know how compilers behave
5789 * and the current status quo is unlikely to change. Guardians below are
5790 * supposed to let us know if the assumption becomes false.
5791 */
5792 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5793 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5794 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5795
28a1f3ac 5796 kvm_mmu_reset_all_pte_masks();
f160c7b7 5797
7b6f8a06
KH
5798 kvm_set_mmio_spte_mask();
5799
53c07b18
XG
5800 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5801 sizeof(struct pte_list_desc),
46bea48a 5802 0, SLAB_ACCOUNT, NULL);
53c07b18 5803 if (!pte_list_desc_cache)
ab271bd4 5804 goto out;
b5a33a75 5805
d3d25b04
AK
5806 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5807 sizeof(struct kvm_mmu_page),
46bea48a 5808 0, SLAB_ACCOUNT, NULL);
d3d25b04 5809 if (!mmu_page_header_cache)
ab271bd4 5810 goto out;
d3d25b04 5811
908c7f19 5812 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5813 goto out;
45bf21a8 5814
ab271bd4
AB
5815 ret = register_shrinker(&mmu_shrinker);
5816 if (ret)
5817 goto out;
3ee16c81 5818
b5a33a75
AK
5819 return 0;
5820
ab271bd4 5821out:
3ee16c81 5822 mmu_destroy_caches();
ab271bd4 5823 return ret;
b5a33a75
AK
5824}
5825
3ad82a7e 5826/*
39337ad1 5827 * Calculate mmu pages needed for kvm.
3ad82a7e 5828 */
bc8a3d89 5829unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5830{
bc8a3d89
BG
5831 unsigned long nr_mmu_pages;
5832 unsigned long nr_pages = 0;
bc6678a3 5833 struct kvm_memslots *slots;
be6ba0f0 5834 struct kvm_memory_slot *memslot;
9da0e4d5 5835 int i;
3ad82a7e 5836
9da0e4d5
PB
5837 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5838 slots = __kvm_memslots(kvm, i);
90d83dc3 5839
9da0e4d5
PB
5840 kvm_for_each_memslot(memslot, slots)
5841 nr_pages += memslot->npages;
5842 }
3ad82a7e
ZX
5843
5844 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5845 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5846
5847 return nr_mmu_pages;
5848}
5849
c42fffe3
XG
5850void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5851{
95f93af4 5852 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5853 free_mmu_pages(&vcpu->arch.root_mmu);
5854 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5855 mmu_free_memory_caches(vcpu);
b034cf01
XG
5856}
5857
b034cf01
XG
5858void kvm_mmu_module_exit(void)
5859{
5860 mmu_destroy_caches();
5861 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5862 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5863 mmu_audit_disable();
5864}
1aa9b957
JS
5865
5866static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5867{
5868 unsigned int old_val;
5869 int err;
5870
5871 old_val = nx_huge_pages_recovery_ratio;
5872 err = param_set_uint(val, kp);
5873 if (err)
5874 return err;
5875
5876 if (READ_ONCE(nx_huge_pages) &&
5877 !old_val && nx_huge_pages_recovery_ratio) {
5878 struct kvm *kvm;
5879
5880 mutex_lock(&kvm_lock);
5881
5882 list_for_each_entry(kvm, &vm_list, vm_list)
5883 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5884
5885 mutex_unlock(&kvm_lock);
5886 }
5887
5888 return err;
5889}
5890
5891static void kvm_recover_nx_lpages(struct kvm *kvm)
5892{
5893 int rcu_idx;
5894 struct kvm_mmu_page *sp;
5895 unsigned int ratio;
5896 LIST_HEAD(invalid_list);
5897 ulong to_zap;
5898
5899 rcu_idx = srcu_read_lock(&kvm->srcu);
5900 spin_lock(&kvm->mmu_lock);
5901
5902 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5903 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5904 for ( ; to_zap; --to_zap) {
5905 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5906 break;
5907
1aa9b957
JS
5908 /*
5909 * We use a separate list instead of just using active_mmu_pages
5910 * because the number of lpage_disallowed pages is expected to
5911 * be relatively small compared to the total.
5912 */
5913 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5914 struct kvm_mmu_page,
5915 lpage_disallowed_link);
5916 WARN_ON_ONCE(!sp->lpage_disallowed);
5917 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5918 WARN_ON_ONCE(sp->lpage_disallowed);
5919
7d919c7a 5920 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
1aa9b957 5921 kvm_mmu_commit_zap_page(kvm, &invalid_list);
7d919c7a 5922 cond_resched_lock(&kvm->mmu_lock);
1aa9b957
JS
5923 }
5924 }
e8950569 5925 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1aa9b957
JS
5926
5927 spin_unlock(&kvm->mmu_lock);
5928 srcu_read_unlock(&kvm->srcu, rcu_idx);
5929}
5930
5931static long get_nx_lpage_recovery_timeout(u64 start_time)
5932{
5933 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5934 ? start_time + 60 * HZ - get_jiffies_64()
5935 : MAX_SCHEDULE_TIMEOUT;
5936}
5937
5938static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5939{
5940 u64 start_time;
5941 long remaining_time;
5942
5943 while (true) {
5944 start_time = get_jiffies_64();
5945 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5946
5947 set_current_state(TASK_INTERRUPTIBLE);
5948 while (!kthread_should_stop() && remaining_time > 0) {
5949 schedule_timeout(remaining_time);
5950 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5951 set_current_state(TASK_INTERRUPTIBLE);
5952 }
5953
5954 set_current_state(TASK_RUNNING);
5955
5956 if (kthread_should_stop())
5957 return 0;
5958
5959 kvm_recover_nx_lpages(kvm);
5960 }
5961}
5962
5963int kvm_mmu_post_init_vm(struct kvm *kvm)
5964{
5965 int err;
5966
5967 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5968 "kvm-nx-lpage-recovery",
5969 &kvm->arch.nx_lpage_recovery_thread);
5970 if (!err)
5971 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5972
5973 return err;
5974}
5975
5976void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5977{
5978 if (kvm->arch.nx_lpage_recovery_thread)
5979 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5980}