]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: WARN on an invalid root_hpa
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
1d737c8a 19#include "mmu.h"
836a1b3c 20#include "x86.h"
6de4f3ad 21#include "kvm_cache_regs.h"
5f7dde7b 22#include "cpuid.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732
AK
25#include <linux/types.h>
26#include <linux/string.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
1767e931
PG
29#include <linux/moduleparam.h>
30#include <linux/export.h>
448353ca 31#include <linux/swap.h>
05da4558 32#include <linux/hugetlb.h>
2f333bcb 33#include <linux/compiler.h>
bc6678a3 34#include <linux/srcu.h>
5a0e3ad6 35#include <linux/slab.h>
3f07c014 36#include <linux/sched/signal.h>
bf998156 37#include <linux/uaccess.h>
114df303 38#include <linux/hash.h>
f160c7b7 39#include <linux/kern_levels.h>
1aa9b957 40#include <linux/kthread.h>
6aa8b732 41
e495606d 42#include <asm/page.h>
aa2e063a 43#include <asm/pat.h>
e495606d 44#include <asm/cmpxchg.h>
0c55671f 45#include <asm/e820/api.h>
4e542370 46#include <asm/io.h>
13673a90 47#include <asm/vmx.h>
3d0c27ad 48#include <asm/kvm_page_track.h>
1261bfa3 49#include "trace.h"
6aa8b732 50
b8e8c830
PB
51extern bool itlb_multihit_kvm_mitigation;
52
53static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
54#ifdef CONFIG_PREEMPT_RT
55/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
56static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57#else
1aa9b957 58static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 59#endif
b8e8c830
PB
60
61static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 62static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830
PB
63
64static struct kernel_param_ops nx_huge_pages_ops = {
65 .set = set_nx_huge_pages,
66 .get = param_get_bool,
67};
68
1aa9b957
JS
69static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70 .set = set_nx_huge_pages_recovery_ratio,
71 .get = param_get_uint,
72};
73
b8e8c830
PB
74module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
76module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77 &nx_huge_pages_recovery_ratio, 0644);
78__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 79
18552672
JR
80/*
81 * When setting this variable to true it enables Two-Dimensional-Paging
82 * where the hardware walks 2 page tables:
83 * 1. the guest-virtual to guest-physical
84 * 2. while doing 1. it walks guest-physical to host-physical
85 * If the hardware supports that we don't need to do shadow paging.
86 */
2f333bcb 87bool tdp_enabled = false;
18552672 88
8b1fe17c
XG
89enum {
90 AUDIT_PRE_PAGE_FAULT,
91 AUDIT_POST_PAGE_FAULT,
92 AUDIT_PRE_PTE_WRITE,
6903074c
XG
93 AUDIT_POST_PTE_WRITE,
94 AUDIT_PRE_SYNC,
95 AUDIT_POST_SYNC
8b1fe17c 96};
37a7d8b0 97
8b1fe17c 98#undef MMU_DEBUG
37a7d8b0
AK
99
100#ifdef MMU_DEBUG
fa4a2c08
PB
101static bool dbg = 0;
102module_param(dbg, bool, 0644);
37a7d8b0
AK
103
104#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 106#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 107#else
37a7d8b0
AK
108#define pgprintk(x...) do { } while (0)
109#define rmap_printk(x...) do { } while (0)
fa4a2c08 110#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
00763e41 115#define PT_FIRST_AVAIL_BITS_SHIFT 10
6eeb4ef0
PB
116#define PT64_SECOND_AVAIL_BITS_SHIFT 54
117
118/*
119 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120 * Access Tracking SPTEs.
121 */
122#define SPTE_SPECIAL_MASK (3ULL << 52)
123#define SPTE_AD_ENABLED_MASK (0ULL << 52)
124#define SPTE_AD_DISABLED_MASK (1ULL << 52)
1f4e5fc8 125#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
6eeb4ef0 126#define SPTE_MMIO_MASK (3ULL << 52)
6aa8b732 127
6aa8b732
AK
128#define PT64_LEVEL_BITS 9
129
130#define PT64_LEVEL_SHIFT(level) \
d77c26fc 131 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 132
6aa8b732
AK
133#define PT64_INDEX(address, level)\
134 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135
136
137#define PT32_LEVEL_BITS 10
138
139#define PT32_LEVEL_SHIFT(level) \
d77c26fc 140 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 141
e04da980
JR
142#define PT32_LVL_OFFSET_MASK(level) \
143 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
145
146#define PT32_INDEX(address, level)\
147 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148
149
8acc0993
KH
150#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152#else
153#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154#endif
e04da980
JR
155#define PT64_LVL_ADDR_MASK(level) \
156 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157 * PT64_LEVEL_BITS))) - 1))
158#define PT64_LVL_OFFSET_MASK(level) \
159 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
161
162#define PT32_BASE_ADDR_MASK PAGE_MASK
163#define PT32_DIR_BASE_ADDR_MASK \
164 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
165#define PT32_LVL_ADDR_MASK(level) \
166 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167 * PT32_LEVEL_BITS))) - 1))
6aa8b732 168
53166229 169#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 170 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 171
fe135d2c
AK
172#define ACC_EXEC_MASK 1
173#define ACC_WRITE_MASK PT_WRITABLE_MASK
174#define ACC_USER_MASK PT_USER_MASK
175#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176
f160c7b7
JS
177/* The mask for the R/X bits in EPT PTEs */
178#define PT64_EPT_READABLE_MASK 0x1ull
179#define PT64_EPT_EXECUTABLE_MASK 0x4ull
180
90bb6fc5
AK
181#include <trace/events/kvm.h>
182
49fde340
XG
183#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 185
135f8c2b
AK
186#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187
220f773a
TY
188/* make pte_list_desc fit well in cache line */
189#define PTE_LIST_EXT 3
190
9b8ebbdb
PB
191/*
192 * Return values of handle_mmio_page_fault and mmu.page_fault:
193 * RET_PF_RETRY: let CPU fault again on the address.
194 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195 *
196 * For handle_mmio_page_fault only:
197 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198 */
199enum {
200 RET_PF_RETRY = 0,
201 RET_PF_EMULATE = 1,
202 RET_PF_INVALID = 2,
203};
204
53c07b18
XG
205struct pte_list_desc {
206 u64 *sptes[PTE_LIST_EXT];
207 struct pte_list_desc *more;
cd4a4e53
AK
208};
209
2d11123a
AK
210struct kvm_shadow_walk_iterator {
211 u64 addr;
212 hpa_t shadow_addr;
2d11123a 213 u64 *sptep;
dd3bfd59 214 int level;
2d11123a
AK
215 unsigned index;
216};
217
9fa72119
JS
218static const union kvm_mmu_page_role mmu_base_role_mask = {
219 .cr0_wp = 1,
47c42e6b 220 .gpte_is_8_bytes = 1,
9fa72119
JS
221 .nxe = 1,
222 .smep_andnot_wp = 1,
223 .smap_andnot_wp = 1,
224 .smm = 1,
225 .guest_mode = 1,
226 .ad_disabled = 1,
227};
228
7eb77e9f
JS
229#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
230 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
231 (_root), (_addr)); \
232 shadow_walk_okay(&(_walker)); \
233 shadow_walk_next(&(_walker)))
234
235#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
236 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
237 shadow_walk_okay(&(_walker)); \
238 shadow_walk_next(&(_walker)))
239
c2a2ac2b
XG
240#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
241 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
242 shadow_walk_okay(&(_walker)) && \
243 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
244 __shadow_walk_next(&(_walker), spte))
245
53c07b18 246static struct kmem_cache *pte_list_desc_cache;
d3d25b04 247static struct kmem_cache *mmu_page_header_cache;
45221ab6 248static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 249
7b52345e
SY
250static u64 __read_mostly shadow_nx_mask;
251static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
252static u64 __read_mostly shadow_user_mask;
253static u64 __read_mostly shadow_accessed_mask;
254static u64 __read_mostly shadow_dirty_mask;
ce88decf 255static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 256static u64 __read_mostly shadow_mmio_value;
4af77151 257static u64 __read_mostly shadow_mmio_access_mask;
ffb128c8 258static u64 __read_mostly shadow_present_mask;
d0ec49d4 259static u64 __read_mostly shadow_me_mask;
ce88decf 260
f160c7b7 261/*
6eeb4ef0
PB
262 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264 * pages.
f160c7b7
JS
265 */
266static u64 __read_mostly shadow_acc_track_mask;
f160c7b7
JS
267
268/*
269 * The mask/shift to use for saving the original R/X bits when marking the PTE
270 * as not-present for access tracking purposes. We do not save the W bit as the
271 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272 * restored only when a write is attempted to the page.
273 */
274static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275 PT64_EPT_EXECUTABLE_MASK;
276static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
277
28a1f3ac
JS
278/*
279 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280 * to guard against L1TF attacks.
281 */
282static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
283
284/*
285 * The number of high-order 1 bits to use in the mask above.
286 */
287static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
288
daa07cbc
SC
289/*
290 * In some cases, we need to preserve the GFN of a non-present or reserved
291 * SPTE when we usurp the upper five bits of the physical address space to
292 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
293 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295 * high and low parts. This mask covers the lower bits of the GFN.
296 */
297static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
298
f3ecb59d
KH
299/*
300 * The number of non-reserved physical address bits irrespective of features
301 * that repurpose legal bits, e.g. MKTME.
302 */
303static u8 __read_mostly shadow_phys_bits;
daa07cbc 304
ce88decf 305static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 306static bool is_executable_pte(u64 spte);
9fa72119
JS
307static union kvm_mmu_page_role
308kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 309
335e192a
PB
310#define CREATE_TRACE_POINTS
311#include "mmutrace.h"
312
40ef75a7
LT
313
314static inline bool kvm_available_flush_tlb_with_range(void)
315{
316 return kvm_x86_ops->tlb_remote_flush_with_range;
317}
318
319static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320 struct kvm_tlb_range *range)
321{
322 int ret = -ENOTSUPP;
323
324 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
326
327 if (ret)
328 kvm_flush_remote_tlbs(kvm);
329}
330
331static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332 u64 start_gfn, u64 pages)
333{
334 struct kvm_tlb_range range;
335
336 range.start_gfn = start_gfn;
337 range.pages = pages;
338
339 kvm_flush_remote_tlbs_with_range(kvm, &range);
340}
341
4af77151 342void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
ce88decf 343{
4af77151 344 BUG_ON((u64)(unsigned)access_mask != access_mask);
dcdca5fe 345 BUG_ON((mmio_mask & mmio_value) != mmio_value);
6eeb4ef0 346 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
312b616b 347 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
4af77151 348 shadow_mmio_access_mask = access_mask;
ce88decf
XG
349}
350EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
351
26c44a63
SC
352static bool is_mmio_spte(u64 spte)
353{
354 return (spte & shadow_mmio_mask) == shadow_mmio_value;
355}
356
ac8d57e5
PF
357static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
358{
359 return sp->role.ad_disabled;
360}
361
1f4e5fc8
PB
362static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
363{
364 /*
365 * When using the EPT page-modification log, the GPAs in the log
366 * would come from L2 rather than L1. Therefore, we need to rely
367 * on write protection to record dirty pages. This also bypasses
368 * PML, since writes now result in a vmexit.
369 */
370 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
371}
372
ac8d57e5
PF
373static inline bool spte_ad_enabled(u64 spte)
374{
26c44a63 375 MMU_WARN_ON(is_mmio_spte(spte));
1f4e5fc8
PB
376 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
377}
378
379static inline bool spte_ad_need_write_protect(u64 spte)
380{
381 MMU_WARN_ON(is_mmio_spte(spte));
382 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
ac8d57e5
PF
383}
384
b8e8c830
PB
385static bool is_nx_huge_page_enabled(void)
386{
387 return READ_ONCE(nx_huge_pages);
388}
389
ac8d57e5
PF
390static inline u64 spte_shadow_accessed_mask(u64 spte)
391{
26c44a63 392 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
393 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
394}
395
396static inline u64 spte_shadow_dirty_mask(u64 spte)
397{
26c44a63 398 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
399 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
400}
401
f160c7b7
JS
402static inline bool is_access_track_spte(u64 spte)
403{
ac8d57e5 404 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
405}
406
f2fd125d 407/*
cae7ed3c
SC
408 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
409 * the memslots generation and is derived as follows:
ee3d1570 410 *
164bf7e5
SC
411 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
412 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 413 *
164bf7e5
SC
414 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
415 * the MMIO generation number, as doing so would require stealing a bit from
416 * the "real" generation number and thus effectively halve the maximum number
417 * of MMIO generations that can be handled before encountering a wrap (which
418 * requires a full MMU zap). The flag is instead explicitly queried when
419 * checking for MMIO spte cache hits.
f2fd125d 420 */
164bf7e5 421#define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0)
f2fd125d 422
cae7ed3c
SC
423#define MMIO_SPTE_GEN_LOW_START 3
424#define MMIO_SPTE_GEN_LOW_END 11
425#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
426 MMIO_SPTE_GEN_LOW_START)
f2fd125d 427
cae7ed3c
SC
428#define MMIO_SPTE_GEN_HIGH_START 52
429#define MMIO_SPTE_GEN_HIGH_END 61
430#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
431 MMIO_SPTE_GEN_HIGH_START)
5192f9b9 432static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
433{
434 u64 mask;
435
cae7ed3c 436 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
f2fd125d 437
cae7ed3c
SC
438 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
439 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
440 return mask;
441}
442
5192f9b9 443static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 444{
5192f9b9 445 u64 gen;
f2fd125d
XG
446
447 spte &= ~shadow_mmio_mask;
448
cae7ed3c
SC
449 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
450 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
451 return gen;
452}
453
54bf36aa 454static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 455 unsigned access)
ce88decf 456{
cae7ed3c 457 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 458 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 459 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 460
4af77151 461 access &= shadow_mmio_access_mask;
28a1f3ac
JS
462 mask |= shadow_mmio_value | access;
463 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
464 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
465 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 466
f8f55942 467 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 468 mmu_spte_set(sptep, mask);
ce88decf
XG
469}
470
ce88decf
XG
471static gfn_t get_mmio_spte_gfn(u64 spte)
472{
daa07cbc 473 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
474
475 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476 & shadow_nonpresent_or_rsvd_mask;
477
478 return gpa >> PAGE_SHIFT;
ce88decf
XG
479}
480
481static unsigned get_mmio_spte_access(u64 spte)
482{
4af77151 483 return spte & shadow_mmio_access_mask;
ce88decf
XG
484}
485
54bf36aa 486static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 487 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
488{
489 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 490 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
491 return true;
492 }
493
494 return false;
495}
c7addb90 496
54bf36aa 497static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 498{
cae7ed3c 499 u64 kvm_gen, spte_gen, gen;
089504c0 500
cae7ed3c
SC
501 gen = kvm_vcpu_memslots(vcpu)->generation;
502 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503 return false;
089504c0 504
cae7ed3c 505 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
506 spte_gen = get_mmio_spte_generation(spte);
507
508 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509 return likely(kvm_gen == spte_gen);
f8f55942
XG
510}
511
ce00053b
PF
512/*
513 * Sets the shadow PTE masks used by the MMU.
514 *
515 * Assumptions:
516 * - Setting either @accessed_mask or @dirty_mask requires setting both
517 * - At least one of @accessed_mask or @acc_track_mask must be set
518 */
7b52345e 519void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 520 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 521 u64 acc_track_mask, u64 me_mask)
7b52345e 522{
ce00053b
PF
523 BUG_ON(!dirty_mask != !accessed_mask);
524 BUG_ON(!accessed_mask && !acc_track_mask);
6eeb4ef0 525 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
312b616b 526
7b52345e
SY
527 shadow_user_mask = user_mask;
528 shadow_accessed_mask = accessed_mask;
529 shadow_dirty_mask = dirty_mask;
530 shadow_nx_mask = nx_mask;
531 shadow_x_mask = x_mask;
ffb128c8 532 shadow_present_mask = p_mask;
f160c7b7 533 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 534 shadow_me_mask = me_mask;
7b52345e
SY
535}
536EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
537
f3ecb59d
KH
538static u8 kvm_get_shadow_phys_bits(void)
539{
540 /*
7adacf5e
PB
541 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
542 * in CPU detection code, but the processor treats those reduced bits as
543 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
544 * the physical address bits reported by CPUID.
f3ecb59d 545 */
7adacf5e
PB
546 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
547 return cpuid_eax(0x80000008) & 0xff;
f3ecb59d 548
7adacf5e
PB
549 /*
550 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
551 * custom CPUID. Proceed with whatever the kernel found since these features
552 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
553 */
554 return boot_cpu_data.x86_phys_bits;
f3ecb59d
KH
555}
556
28a1f3ac 557static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 558{
daa07cbc
SC
559 u8 low_phys_bits;
560
f160c7b7
JS
561 shadow_user_mask = 0;
562 shadow_accessed_mask = 0;
563 shadow_dirty_mask = 0;
564 shadow_nx_mask = 0;
565 shadow_x_mask = 0;
566 shadow_mmio_mask = 0;
567 shadow_present_mask = 0;
568 shadow_acc_track_mask = 0;
28a1f3ac 569
f3ecb59d
KH
570 shadow_phys_bits = kvm_get_shadow_phys_bits();
571
28a1f3ac
JS
572 /*
573 * If the CPU has 46 or less physical address bits, then set an
574 * appropriate mask to guard against L1TF attacks. Otherwise, it is
575 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
576 *
577 * Some Intel CPUs address the L1 cache using more PA bits than are
578 * reported by CPUID. Use the PA width of the L1 cache when possible
579 * to achieve more effective mitigation, e.g. if system RAM overlaps
580 * the most significant bits of legal physical address space.
28a1f3ac 581 */
61455bf2
KH
582 shadow_nonpresent_or_rsvd_mask = 0;
583 low_phys_bits = boot_cpu_data.x86_cache_bits;
584 if (boot_cpu_data.x86_cache_bits <
daa07cbc 585 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac 586 shadow_nonpresent_or_rsvd_mask =
61455bf2 587 rsvd_bits(boot_cpu_data.x86_cache_bits -
28a1f3ac 588 shadow_nonpresent_or_rsvd_mask_len,
61455bf2 589 boot_cpu_data.x86_cache_bits - 1);
daa07cbc 590 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
61455bf2
KH
591 } else
592 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
593
daa07cbc
SC
594 shadow_nonpresent_or_rsvd_lower_gfn_mask =
595 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
596}
597
6aa8b732
AK
598static int is_cpuid_PSE36(void)
599{
600 return 1;
601}
602
73b1087e
AK
603static int is_nx(struct kvm_vcpu *vcpu)
604{
f6801dff 605 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
606}
607
c7addb90
AK
608static int is_shadow_present_pte(u64 pte)
609{
f160c7b7 610 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
611}
612
05da4558
MT
613static int is_large_pte(u64 pte)
614{
615 return pte & PT_PAGE_SIZE_MASK;
616}
617
776e6633
MT
618static int is_last_spte(u64 pte, int level)
619{
620 if (level == PT_PAGE_TABLE_LEVEL)
621 return 1;
852e3c19 622 if (is_large_pte(pte))
776e6633
MT
623 return 1;
624 return 0;
625}
626
d3e328f2
JS
627static bool is_executable_pte(u64 spte)
628{
629 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
630}
631
ba049e93 632static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 633{
35149e21 634 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
635}
636
da928521
AK
637static gfn_t pse36_gfn_delta(u32 gpte)
638{
639 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
640
641 return (gpte & PT32_DIR_PSE36_MASK) << shift;
642}
643
603e0651 644#ifdef CONFIG_X86_64
d555c333 645static void __set_spte(u64 *sptep, u64 spte)
e663ee64 646{
b19ee2ff 647 WRITE_ONCE(*sptep, spte);
e663ee64
AK
648}
649
603e0651 650static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 651{
b19ee2ff 652 WRITE_ONCE(*sptep, spte);
603e0651
XG
653}
654
655static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
656{
657 return xchg(sptep, spte);
658}
c2a2ac2b
XG
659
660static u64 __get_spte_lockless(u64 *sptep)
661{
6aa7de05 662 return READ_ONCE(*sptep);
c2a2ac2b 663}
a9221dd5 664#else
603e0651
XG
665union split_spte {
666 struct {
667 u32 spte_low;
668 u32 spte_high;
669 };
670 u64 spte;
671};
a9221dd5 672
c2a2ac2b
XG
673static void count_spte_clear(u64 *sptep, u64 spte)
674{
675 struct kvm_mmu_page *sp = page_header(__pa(sptep));
676
677 if (is_shadow_present_pte(spte))
678 return;
679
680 /* Ensure the spte is completely set before we increase the count */
681 smp_wmb();
682 sp->clear_spte_count++;
683}
684
603e0651
XG
685static void __set_spte(u64 *sptep, u64 spte)
686{
687 union split_spte *ssptep, sspte;
a9221dd5 688
603e0651
XG
689 ssptep = (union split_spte *)sptep;
690 sspte = (union split_spte)spte;
691
692 ssptep->spte_high = sspte.spte_high;
693
694 /*
695 * If we map the spte from nonpresent to present, We should store
696 * the high bits firstly, then set present bit, so cpu can not
697 * fetch this spte while we are setting the spte.
698 */
699 smp_wmb();
700
b19ee2ff 701 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
702}
703
603e0651
XG
704static void __update_clear_spte_fast(u64 *sptep, u64 spte)
705{
706 union split_spte *ssptep, sspte;
707
708 ssptep = (union split_spte *)sptep;
709 sspte = (union split_spte)spte;
710
b19ee2ff 711 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
712
713 /*
714 * If we map the spte from present to nonpresent, we should clear
715 * present bit firstly to avoid vcpu fetch the old high bits.
716 */
717 smp_wmb();
718
719 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 720 count_spte_clear(sptep, spte);
603e0651
XG
721}
722
723static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
724{
725 union split_spte *ssptep, sspte, orig;
726
727 ssptep = (union split_spte *)sptep;
728 sspte = (union split_spte)spte;
729
730 /* xchg acts as a barrier before the setting of the high bits */
731 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
732 orig.spte_high = ssptep->spte_high;
733 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 734 count_spte_clear(sptep, spte);
603e0651
XG
735
736 return orig.spte;
737}
c2a2ac2b
XG
738
739/*
740 * The idea using the light way get the spte on x86_32 guest is from
39656e83 741 * gup_get_pte (mm/gup.c).
accaefe0
XG
742 *
743 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
744 * coalesces them and we are running out of the MMU lock. Therefore
745 * we need to protect against in-progress updates of the spte.
746 *
747 * Reading the spte while an update is in progress may get the old value
748 * for the high part of the spte. The race is fine for a present->non-present
749 * change (because the high part of the spte is ignored for non-present spte),
750 * but for a present->present change we must reread the spte.
751 *
752 * All such changes are done in two steps (present->non-present and
753 * non-present->present), hence it is enough to count the number of
754 * present->non-present updates: if it changed while reading the spte,
755 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
756 */
757static u64 __get_spte_lockless(u64 *sptep)
758{
759 struct kvm_mmu_page *sp = page_header(__pa(sptep));
760 union split_spte spte, *orig = (union split_spte *)sptep;
761 int count;
762
763retry:
764 count = sp->clear_spte_count;
765 smp_rmb();
766
767 spte.spte_low = orig->spte_low;
768 smp_rmb();
769
770 spte.spte_high = orig->spte_high;
771 smp_rmb();
772
773 if (unlikely(spte.spte_low != orig->spte_low ||
774 count != sp->clear_spte_count))
775 goto retry;
776
777 return spte.spte;
778}
603e0651
XG
779#endif
780
ea4114bc 781static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 782{
feb3eb70
GN
783 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
784 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
785}
786
8672b721
XG
787static bool spte_has_volatile_bits(u64 spte)
788{
f160c7b7
JS
789 if (!is_shadow_present_pte(spte))
790 return false;
791
c7ba5b48 792 /*
6a6256f9 793 * Always atomically update spte if it can be updated
c7ba5b48
XG
794 * out of mmu-lock, it can ensure dirty bit is not lost,
795 * also, it can help us to get a stable is_writable_pte()
796 * to ensure tlb flush is not missed.
797 */
f160c7b7
JS
798 if (spte_can_locklessly_be_made_writable(spte) ||
799 is_access_track_spte(spte))
c7ba5b48
XG
800 return true;
801
ac8d57e5 802 if (spte_ad_enabled(spte)) {
f160c7b7
JS
803 if ((spte & shadow_accessed_mask) == 0 ||
804 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
805 return true;
806 }
8672b721 807
f160c7b7 808 return false;
8672b721
XG
809}
810
83ef6c81 811static bool is_accessed_spte(u64 spte)
4132779b 812{
ac8d57e5
PF
813 u64 accessed_mask = spte_shadow_accessed_mask(spte);
814
815 return accessed_mask ? spte & accessed_mask
816 : !is_access_track_spte(spte);
4132779b
XG
817}
818
83ef6c81 819static bool is_dirty_spte(u64 spte)
7e71a59b 820{
ac8d57e5
PF
821 u64 dirty_mask = spte_shadow_dirty_mask(spte);
822
823 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
824}
825
1df9f2dc
XG
826/* Rules for using mmu_spte_set:
827 * Set the sptep from nonpresent to present.
828 * Note: the sptep being assigned *must* be either not present
829 * or in a state where the hardware will not attempt to update
830 * the spte.
831 */
832static void mmu_spte_set(u64 *sptep, u64 new_spte)
833{
834 WARN_ON(is_shadow_present_pte(*sptep));
835 __set_spte(sptep, new_spte);
836}
837
f39a058d
JS
838/*
839 * Update the SPTE (excluding the PFN), but do not track changes in its
840 * accessed/dirty status.
1df9f2dc 841 */
f39a058d 842static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 843{
c7ba5b48 844 u64 old_spte = *sptep;
4132779b 845
afd28fe1 846 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 847
6e7d0354
XG
848 if (!is_shadow_present_pte(old_spte)) {
849 mmu_spte_set(sptep, new_spte);
f39a058d 850 return old_spte;
6e7d0354 851 }
4132779b 852
c7ba5b48 853 if (!spte_has_volatile_bits(old_spte))
603e0651 854 __update_clear_spte_fast(sptep, new_spte);
4132779b 855 else
603e0651 856 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 857
83ef6c81
JS
858 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
859
f39a058d
JS
860 return old_spte;
861}
862
863/* Rules for using mmu_spte_update:
864 * Update the state bits, it means the mapped pfn is not changed.
865 *
866 * Whenever we overwrite a writable spte with a read-only one we
867 * should flush remote TLBs. Otherwise rmap_write_protect
868 * will find a read-only spte, even though the writable spte
869 * might be cached on a CPU's TLB, the return value indicates this
870 * case.
871 *
872 * Returns true if the TLB needs to be flushed
873 */
874static bool mmu_spte_update(u64 *sptep, u64 new_spte)
875{
876 bool flush = false;
877 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
878
879 if (!is_shadow_present_pte(old_spte))
880 return false;
881
c7ba5b48
XG
882 /*
883 * For the spte updated out of mmu-lock is safe, since
6a6256f9 884 * we always atomically update it, see the comments in
c7ba5b48
XG
885 * spte_has_volatile_bits().
886 */
ea4114bc 887 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 888 !is_writable_pte(new_spte))
83ef6c81 889 flush = true;
4132779b 890
7e71a59b 891 /*
83ef6c81 892 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
893 * to guarantee consistency between TLB and page tables.
894 */
7e71a59b 895
83ef6c81
JS
896 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
897 flush = true;
4132779b 898 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
899 }
900
901 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
902 flush = true;
4132779b 903 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 904 }
6e7d0354 905
83ef6c81 906 return flush;
b79b93f9
AK
907}
908
1df9f2dc
XG
909/*
910 * Rules for using mmu_spte_clear_track_bits:
911 * It sets the sptep from present to nonpresent, and track the
912 * state bits, it is used to clear the last level sptep.
83ef6c81 913 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
914 */
915static int mmu_spte_clear_track_bits(u64 *sptep)
916{
ba049e93 917 kvm_pfn_t pfn;
1df9f2dc
XG
918 u64 old_spte = *sptep;
919
920 if (!spte_has_volatile_bits(old_spte))
603e0651 921 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 922 else
603e0651 923 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 924
afd28fe1 925 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
926 return 0;
927
928 pfn = spte_to_pfn(old_spte);
86fde74c
XG
929
930 /*
931 * KVM does not hold the refcount of the page used by
932 * kvm mmu, before reclaiming the page, we should
933 * unmap it from mmu first.
934 */
bf4bea8e 935 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 936
83ef6c81 937 if (is_accessed_spte(old_spte))
1df9f2dc 938 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
939
940 if (is_dirty_spte(old_spte))
1df9f2dc 941 kvm_set_pfn_dirty(pfn);
83ef6c81 942
1df9f2dc
XG
943 return 1;
944}
945
946/*
947 * Rules for using mmu_spte_clear_no_track:
948 * Directly clear spte without caring the state bits of sptep,
949 * it is used to set the upper level spte.
950 */
951static void mmu_spte_clear_no_track(u64 *sptep)
952{
603e0651 953 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
954}
955
c2a2ac2b
XG
956static u64 mmu_spte_get_lockless(u64 *sptep)
957{
958 return __get_spte_lockless(sptep);
959}
960
f160c7b7
JS
961static u64 mark_spte_for_access_track(u64 spte)
962{
ac8d57e5 963 if (spte_ad_enabled(spte))
f160c7b7
JS
964 return spte & ~shadow_accessed_mask;
965
ac8d57e5 966 if (is_access_track_spte(spte))
f160c7b7
JS
967 return spte;
968
969 /*
20d65236
JS
970 * Making an Access Tracking PTE will result in removal of write access
971 * from the PTE. So, verify that we will be able to restore the write
972 * access in the fast page fault path later on.
f160c7b7
JS
973 */
974 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
975 !spte_can_locklessly_be_made_writable(spte),
976 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
977
978 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
979 shadow_acc_track_saved_bits_shift),
980 "kvm: Access Tracking saved bit locations are not zero\n");
981
982 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
983 shadow_acc_track_saved_bits_shift;
984 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
985
986 return spte;
987}
988
d3e328f2
JS
989/* Restore an acc-track PTE back to a regular PTE */
990static u64 restore_acc_track_spte(u64 spte)
991{
992 u64 new_spte = spte;
993 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
994 & shadow_acc_track_saved_bits_mask;
995
ac8d57e5 996 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
997 WARN_ON_ONCE(!is_access_track_spte(spte));
998
999 new_spte &= ~shadow_acc_track_mask;
1000 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1001 shadow_acc_track_saved_bits_shift);
1002 new_spte |= saved_bits;
1003
1004 return new_spte;
1005}
1006
f160c7b7
JS
1007/* Returns the Accessed status of the PTE and resets it at the same time. */
1008static bool mmu_spte_age(u64 *sptep)
1009{
1010 u64 spte = mmu_spte_get_lockless(sptep);
1011
1012 if (!is_accessed_spte(spte))
1013 return false;
1014
ac8d57e5 1015 if (spte_ad_enabled(spte)) {
f160c7b7
JS
1016 clear_bit((ffs(shadow_accessed_mask) - 1),
1017 (unsigned long *)sptep);
1018 } else {
1019 /*
1020 * Capture the dirty status of the page, so that it doesn't get
1021 * lost when the SPTE is marked for access tracking.
1022 */
1023 if (is_writable_pte(spte))
1024 kvm_set_pfn_dirty(spte_to_pfn(spte));
1025
1026 spte = mark_spte_for_access_track(spte);
1027 mmu_spte_update_no_track(sptep, spte);
1028 }
1029
1030 return true;
1031}
1032
c2a2ac2b
XG
1033static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1034{
c142786c
AK
1035 /*
1036 * Prevent page table teardown by making any free-er wait during
1037 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1038 */
1039 local_irq_disable();
36ca7e0a 1040
c142786c
AK
1041 /*
1042 * Make sure a following spte read is not reordered ahead of the write
1043 * to vcpu->mode.
1044 */
36ca7e0a 1045 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
1046}
1047
1048static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1049{
c142786c
AK
1050 /*
1051 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 1052 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
1053 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1054 */
36ca7e0a 1055 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 1056 local_irq_enable();
c2a2ac2b
XG
1057}
1058
e2dec939 1059static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 1060 struct kmem_cache *base_cache, int min)
714b93da
AK
1061{
1062 void *obj;
1063
1064 if (cache->nobjs >= min)
e2dec939 1065 return 0;
714b93da 1066 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 1067 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 1068 if (!obj)
daefb794 1069 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
1070 cache->objects[cache->nobjs++] = obj;
1071 }
e2dec939 1072 return 0;
714b93da
AK
1073}
1074
f759e2b4
XG
1075static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1076{
1077 return cache->nobjs;
1078}
1079
e8ad9a70
XG
1080static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1081 struct kmem_cache *cache)
714b93da
AK
1082{
1083 while (mc->nobjs)
e8ad9a70 1084 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1085}
1086
c1158e63 1087static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1088 int min)
c1158e63 1089{
842f22ed 1090 void *page;
c1158e63
AK
1091
1092 if (cache->nobjs >= min)
1093 return 0;
1094 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1095 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1096 if (!page)
daefb794 1097 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1098 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1099 }
1100 return 0;
1101}
1102
1103static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1104{
1105 while (mc->nobjs)
c4d198d5 1106 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1107}
1108
2e3e5882 1109static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1110{
e2dec939
AK
1111 int r;
1112
53c07b18 1113 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1114 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1115 if (r)
1116 goto out;
ad312c7c 1117 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1118 if (r)
1119 goto out;
ad312c7c 1120 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1121 mmu_page_header_cache, 4);
e2dec939
AK
1122out:
1123 return r;
714b93da
AK
1124}
1125
1126static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1127{
53c07b18
XG
1128 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1129 pte_list_desc_cache);
ad312c7c 1130 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1131 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1132 mmu_page_header_cache);
714b93da
AK
1133}
1134
80feb89a 1135static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1136{
1137 void *p;
1138
1139 BUG_ON(!mc->nobjs);
1140 p = mc->objects[--mc->nobjs];
714b93da
AK
1141 return p;
1142}
1143
53c07b18 1144static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1145{
80feb89a 1146 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1147}
1148
53c07b18 1149static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1150{
53c07b18 1151 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1152}
1153
2032a93d
LJ
1154static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1155{
1156 if (!sp->role.direct)
1157 return sp->gfns[index];
1158
1159 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1160}
1161
1162static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1163{
e9f2a760 1164 if (!sp->role.direct) {
2032a93d 1165 sp->gfns[index] = gfn;
e9f2a760
PB
1166 return;
1167 }
1168
1169 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1170 pr_err_ratelimited("gfn mismatch under direct page %llx "
1171 "(expected %llx, got %llx)\n",
1172 sp->gfn,
1173 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1174}
1175
05da4558 1176/*
d4dbf470
TY
1177 * Return the pointer to the large page information for a given gfn,
1178 * handling slots that are not large page aligned.
05da4558 1179 */
d4dbf470
TY
1180static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1181 struct kvm_memory_slot *slot,
1182 int level)
05da4558
MT
1183{
1184 unsigned long idx;
1185
fb03cb6f 1186 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1187 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1188}
1189
547ffaed
XG
1190static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1191 gfn_t gfn, int count)
1192{
1193 struct kvm_lpage_info *linfo;
1194 int i;
1195
1196 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1197 linfo = lpage_info_slot(gfn, slot, i);
1198 linfo->disallow_lpage += count;
1199 WARN_ON(linfo->disallow_lpage < 0);
1200 }
1201}
1202
1203void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1204{
1205 update_gfn_disallow_lpage_count(slot, gfn, 1);
1206}
1207
1208void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1209{
1210 update_gfn_disallow_lpage_count(slot, gfn, -1);
1211}
1212
3ed1a478 1213static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1214{
699023e2 1215 struct kvm_memslots *slots;
d25797b2 1216 struct kvm_memory_slot *slot;
3ed1a478 1217 gfn_t gfn;
05da4558 1218
56ca57f9 1219 kvm->arch.indirect_shadow_pages++;
3ed1a478 1220 gfn = sp->gfn;
699023e2
PB
1221 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1222 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1223
1224 /* the non-leaf shadow pages are keeping readonly. */
1225 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1226 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1227 KVM_PAGE_TRACK_WRITE);
1228
547ffaed 1229 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1230}
1231
b8e8c830
PB
1232static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1233{
1234 if (sp->lpage_disallowed)
1235 return;
1236
1237 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
1238 list_add_tail(&sp->lpage_disallowed_link,
1239 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
1240 sp->lpage_disallowed = true;
1241}
1242
3ed1a478 1243static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1244{
699023e2 1245 struct kvm_memslots *slots;
d25797b2 1246 struct kvm_memory_slot *slot;
3ed1a478 1247 gfn_t gfn;
05da4558 1248
56ca57f9 1249 kvm->arch.indirect_shadow_pages--;
3ed1a478 1250 gfn = sp->gfn;
699023e2
PB
1251 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1253 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1254 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1255 KVM_PAGE_TRACK_WRITE);
1256
547ffaed 1257 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1258}
1259
b8e8c830
PB
1260static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1261{
1262 --kvm->stat.nx_lpage_splits;
1263 sp->lpage_disallowed = false;
1aa9b957 1264 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
1265}
1266
92f94f1e
XG
1267static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1268 struct kvm_memory_slot *slot)
05da4558 1269{
d4dbf470 1270 struct kvm_lpage_info *linfo;
05da4558
MT
1271
1272 if (slot) {
d4dbf470 1273 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1274 return !!linfo->disallow_lpage;
05da4558
MT
1275 }
1276
92f94f1e 1277 return true;
05da4558
MT
1278}
1279
92f94f1e
XG
1280static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1281 int level)
5225fdf8
TY
1282{
1283 struct kvm_memory_slot *slot;
1284
1285 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1286 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1287}
1288
d25797b2 1289static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1290{
8f0b1ab6 1291 unsigned long page_size;
d25797b2 1292 int i, ret = 0;
05da4558 1293
8f0b1ab6 1294 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1295
8a3d08f1 1296 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1297 if (page_size >= KVM_HPAGE_SIZE(i))
1298 ret = i;
1299 else
1300 break;
1301 }
1302
4c2155ce 1303 return ret;
05da4558
MT
1304}
1305
d8aacf5d
TY
1306static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1307 bool no_dirty_log)
1308{
1309 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1310 return false;
1311 if (no_dirty_log && slot->dirty_bitmap)
1312 return false;
1313
1314 return true;
1315}
1316
5d163b1c
XG
1317static struct kvm_memory_slot *
1318gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1319 bool no_dirty_log)
05da4558
MT
1320{
1321 struct kvm_memory_slot *slot;
5d163b1c 1322
54bf36aa 1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1324 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1325 slot = NULL;
1326
1327 return slot;
1328}
1329
fd136902 1330static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
39ca1ecb 1331 int *max_levelp)
936a5fe6 1332{
2f57b705 1333 int max_level = *max_levelp;
d8aacf5d
TY
1334 struct kvm_memory_slot *slot;
1335
39ca1ecb 1336 if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
8c85ac1c 1337 return PT_PAGE_TABLE_LEVEL;
05da4558 1338
8c85ac1c 1339 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
39ca1ecb
SC
1340 if (!memslot_valid_for_gpte(slot, true)) {
1341 *max_levelp = PT_PAGE_TABLE_LEVEL;
fd136902 1342 return PT_PAGE_TABLE_LEVEL;
39ca1ecb 1343 }
fd136902 1344
2f57b705 1345 max_level = min(max_level, kvm_x86_ops->get_lpage_level());
f0f37e22
SC
1346 for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
1347 if (!__mmu_gfn_lpage_is_disallowed(large_gfn, max_level, slot))
d25797b2 1348 break;
f0f37e22 1349 }
d25797b2 1350
2f57b705
SC
1351 *max_levelp = max_level;
1352
1353 if (max_level == PT_PAGE_TABLE_LEVEL)
1354 return PT_PAGE_TABLE_LEVEL;
1355
1356 /*
1357 * Note, host_mapping_level() does *not* handle transparent huge pages.
1358 * As suggested by "mapping", it reflects the page size established by
1359 * the associated vma, if there is one, i.e. host_mapping_level() will
1360 * return a huge page level if and only if a vma exists and the backing
1361 * implementation for the vma uses huge pages, e.g. hugetlbfs and dax.
1362 * So, do not propagate host_mapping_level() to max_level as KVM can
1363 * still promote the guest mapping to a huge page in the THP case.
1364 */
1365 return host_mapping_level(vcpu->kvm, large_gfn);
05da4558
MT
1366}
1367
290fc38d 1368/*
018aabb5 1369 * About rmap_head encoding:
cd4a4e53 1370 *
018aabb5
TY
1371 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1372 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1373 * pte_list_desc containing more mappings.
018aabb5
TY
1374 */
1375
1376/*
1377 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1378 */
53c07b18 1379static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1380 struct kvm_rmap_head *rmap_head)
cd4a4e53 1381{
53c07b18 1382 struct pte_list_desc *desc;
53a27b39 1383 int i, count = 0;
cd4a4e53 1384
018aabb5 1385 if (!rmap_head->val) {
53c07b18 1386 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1387 rmap_head->val = (unsigned long)spte;
1388 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1389 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1390 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1391 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1392 desc->sptes[1] = spte;
018aabb5 1393 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1394 ++count;
cd4a4e53 1395 } else {
53c07b18 1396 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1397 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1398 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1399 desc = desc->more;
53c07b18 1400 count += PTE_LIST_EXT;
53a27b39 1401 }
53c07b18
XG
1402 if (desc->sptes[PTE_LIST_EXT-1]) {
1403 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1404 desc = desc->more;
1405 }
d555c333 1406 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1407 ++count;
d555c333 1408 desc->sptes[i] = spte;
cd4a4e53 1409 }
53a27b39 1410 return count;
cd4a4e53
AK
1411}
1412
53c07b18 1413static void
018aabb5
TY
1414pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1415 struct pte_list_desc *desc, int i,
1416 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1417{
1418 int j;
1419
53c07b18 1420 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1421 ;
d555c333
AK
1422 desc->sptes[i] = desc->sptes[j];
1423 desc->sptes[j] = NULL;
cd4a4e53
AK
1424 if (j != 0)
1425 return;
1426 if (!prev_desc && !desc->more)
fe3c2b4c 1427 rmap_head->val = 0;
cd4a4e53
AK
1428 else
1429 if (prev_desc)
1430 prev_desc->more = desc->more;
1431 else
018aabb5 1432 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1433 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1434}
1435
8daf3462 1436static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1437{
53c07b18
XG
1438 struct pte_list_desc *desc;
1439 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1440 int i;
1441
018aabb5 1442 if (!rmap_head->val) {
8daf3462 1443 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1444 BUG();
018aabb5 1445 } else if (!(rmap_head->val & 1)) {
8daf3462 1446 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1447 if ((u64 *)rmap_head->val != spte) {
8daf3462 1448 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1449 BUG();
1450 }
018aabb5 1451 rmap_head->val = 0;
cd4a4e53 1452 } else {
8daf3462 1453 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1454 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1455 prev_desc = NULL;
1456 while (desc) {
018aabb5 1457 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1458 if (desc->sptes[i] == spte) {
018aabb5
TY
1459 pte_list_desc_remove_entry(rmap_head,
1460 desc, i, prev_desc);
cd4a4e53
AK
1461 return;
1462 }
018aabb5 1463 }
cd4a4e53
AK
1464 prev_desc = desc;
1465 desc = desc->more;
1466 }
8daf3462 1467 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1468 BUG();
1469 }
1470}
1471
e7912386
WY
1472static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1473{
1474 mmu_spte_clear_track_bits(sptep);
1475 __pte_list_remove(sptep, rmap_head);
1476}
1477
018aabb5
TY
1478static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1479 struct kvm_memory_slot *slot)
53c07b18 1480{
77d11309 1481 unsigned long idx;
53c07b18 1482
77d11309 1483 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1484 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1485}
1486
018aabb5
TY
1487static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1488 struct kvm_mmu_page *sp)
9b9b1492 1489{
699023e2 1490 struct kvm_memslots *slots;
9b9b1492
TY
1491 struct kvm_memory_slot *slot;
1492
699023e2
PB
1493 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1494 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1495 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1496}
1497
f759e2b4
XG
1498static bool rmap_can_add(struct kvm_vcpu *vcpu)
1499{
1500 struct kvm_mmu_memory_cache *cache;
1501
1502 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1503 return mmu_memory_cache_free_objects(cache);
1504}
1505
53c07b18
XG
1506static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1507{
1508 struct kvm_mmu_page *sp;
018aabb5 1509 struct kvm_rmap_head *rmap_head;
53c07b18 1510
53c07b18
XG
1511 sp = page_header(__pa(spte));
1512 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1513 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1514 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1515}
1516
53c07b18
XG
1517static void rmap_remove(struct kvm *kvm, u64 *spte)
1518{
1519 struct kvm_mmu_page *sp;
1520 gfn_t gfn;
018aabb5 1521 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1522
1523 sp = page_header(__pa(spte));
1524 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1525 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1526 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1527}
1528
1e3f42f0
TY
1529/*
1530 * Used by the following functions to iterate through the sptes linked by a
1531 * rmap. All fields are private and not assumed to be used outside.
1532 */
1533struct rmap_iterator {
1534 /* private fields */
1535 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1536 int pos; /* index of the sptep */
1537};
1538
1539/*
1540 * Iteration must be started by this function. This should also be used after
1541 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1542 * information in the iterator may not be valid.
1e3f42f0
TY
1543 *
1544 * Returns sptep if found, NULL otherwise.
1545 */
018aabb5
TY
1546static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1547 struct rmap_iterator *iter)
1e3f42f0 1548{
77fbbbd2
TY
1549 u64 *sptep;
1550
018aabb5 1551 if (!rmap_head->val)
1e3f42f0
TY
1552 return NULL;
1553
018aabb5 1554 if (!(rmap_head->val & 1)) {
1e3f42f0 1555 iter->desc = NULL;
77fbbbd2
TY
1556 sptep = (u64 *)rmap_head->val;
1557 goto out;
1e3f42f0
TY
1558 }
1559
018aabb5 1560 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1561 iter->pos = 0;
77fbbbd2
TY
1562 sptep = iter->desc->sptes[iter->pos];
1563out:
1564 BUG_ON(!is_shadow_present_pte(*sptep));
1565 return sptep;
1e3f42f0
TY
1566}
1567
1568/*
1569 * Must be used with a valid iterator: e.g. after rmap_get_first().
1570 *
1571 * Returns sptep if found, NULL otherwise.
1572 */
1573static u64 *rmap_get_next(struct rmap_iterator *iter)
1574{
77fbbbd2
TY
1575 u64 *sptep;
1576
1e3f42f0
TY
1577 if (iter->desc) {
1578 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1579 ++iter->pos;
1580 sptep = iter->desc->sptes[iter->pos];
1581 if (sptep)
77fbbbd2 1582 goto out;
1e3f42f0
TY
1583 }
1584
1585 iter->desc = iter->desc->more;
1586
1587 if (iter->desc) {
1588 iter->pos = 0;
1589 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1590 sptep = iter->desc->sptes[iter->pos];
1591 goto out;
1e3f42f0
TY
1592 }
1593 }
1594
1595 return NULL;
77fbbbd2
TY
1596out:
1597 BUG_ON(!is_shadow_present_pte(*sptep));
1598 return sptep;
1e3f42f0
TY
1599}
1600
018aabb5
TY
1601#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1602 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1603 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1604
c3707958 1605static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1606{
1df9f2dc 1607 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1608 rmap_remove(kvm, sptep);
be38d276
AK
1609}
1610
8e22f955
XG
1611
1612static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1613{
1614 if (is_large_pte(*sptep)) {
1615 WARN_ON(page_header(__pa(sptep))->role.level ==
1616 PT_PAGE_TABLE_LEVEL);
1617 drop_spte(kvm, sptep);
1618 --kvm->stat.lpages;
1619 return true;
1620 }
1621
1622 return false;
1623}
1624
1625static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1626{
c3134ce2
LT
1627 if (__drop_large_spte(vcpu->kvm, sptep)) {
1628 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1629
1630 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1631 KVM_PAGES_PER_HPAGE(sp->role.level));
1632 }
8e22f955
XG
1633}
1634
1635/*
49fde340 1636 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1637 * spte write-protection is caused by protecting shadow page table.
49fde340 1638 *
b4619660 1639 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1640 * protection:
1641 * - for dirty logging, the spte can be set to writable at anytime if
1642 * its dirty bitmap is properly set.
1643 * - for spte protection, the spte can be writable only after unsync-ing
1644 * shadow page.
8e22f955 1645 *
c126d94f 1646 * Return true if tlb need be flushed.
8e22f955 1647 */
c4f138b4 1648static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1649{
1650 u64 spte = *sptep;
1651
49fde340 1652 if (!is_writable_pte(spte) &&
ea4114bc 1653 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1654 return false;
1655
1656 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1657
49fde340
XG
1658 if (pt_protect)
1659 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1660 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1661
c126d94f 1662 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1663}
1664
018aabb5
TY
1665static bool __rmap_write_protect(struct kvm *kvm,
1666 struct kvm_rmap_head *rmap_head,
245c3912 1667 bool pt_protect)
98348e95 1668{
1e3f42f0
TY
1669 u64 *sptep;
1670 struct rmap_iterator iter;
d13bc5b5 1671 bool flush = false;
374cbac0 1672
018aabb5 1673 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1674 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1675
d13bc5b5 1676 return flush;
a0ed4607
TY
1677}
1678
c4f138b4 1679static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1680{
1681 u64 spte = *sptep;
1682
1683 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1684
1f4e5fc8 1685 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1686 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1687 return mmu_spte_update(sptep, spte);
1688}
1689
1f4e5fc8 1690static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1691{
1692 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1693 (unsigned long *)sptep);
1f4e5fc8 1694 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1695 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1696
1697 return was_writable;
1698}
1699
1700/*
1701 * Gets the GFN ready for another round of dirty logging by clearing the
1702 * - D bit on ad-enabled SPTEs, and
1703 * - W bit on ad-disabled SPTEs.
1704 * Returns true iff any D or W bits were cleared.
1705 */
018aabb5 1706static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1707{
1708 u64 *sptep;
1709 struct rmap_iterator iter;
1710 bool flush = false;
1711
018aabb5 1712 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1713 if (spte_ad_need_write_protect(*sptep))
1714 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1715 else
1f4e5fc8 1716 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1717
1718 return flush;
1719}
1720
c4f138b4 1721static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1722{
1723 u64 spte = *sptep;
1724
1725 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1726
1f4e5fc8
PB
1727 /*
1728 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1729 * do not bother adding back write access to pages marked
1730 * SPTE_AD_WRPROT_ONLY_MASK.
1731 */
f4b4b180
KH
1732 spte |= shadow_dirty_mask;
1733
1734 return mmu_spte_update(sptep, spte);
1735}
1736
018aabb5 1737static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1738{
1739 u64 *sptep;
1740 struct rmap_iterator iter;
1741 bool flush = false;
1742
018aabb5 1743 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1744 if (spte_ad_enabled(*sptep))
1745 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1746
1747 return flush;
1748}
1749
5dc99b23 1750/**
3b0f1d01 1751 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1752 * @kvm: kvm instance
1753 * @slot: slot to protect
1754 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1755 * @mask: indicates which pages we should protect
1756 *
1757 * Used when we do not need to care about huge page mappings: e.g. during dirty
1758 * logging we do not have any such mappings.
1759 */
3b0f1d01 1760static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1761 struct kvm_memory_slot *slot,
1762 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1763{
018aabb5 1764 struct kvm_rmap_head *rmap_head;
a0ed4607 1765
5dc99b23 1766 while (mask) {
018aabb5
TY
1767 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1768 PT_PAGE_TABLE_LEVEL, slot);
1769 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1770
5dc99b23
TY
1771 /* clear the first set bit */
1772 mask &= mask - 1;
1773 }
374cbac0
AK
1774}
1775
f4b4b180 1776/**
ac8d57e5
PF
1777 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1778 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1779 * @kvm: kvm instance
1780 * @slot: slot to clear D-bit
1781 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1782 * @mask: indicates which pages we should clear D-bit
1783 *
1784 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1785 */
1786void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1787 struct kvm_memory_slot *slot,
1788 gfn_t gfn_offset, unsigned long mask)
1789{
018aabb5 1790 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1791
1792 while (mask) {
018aabb5
TY
1793 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1794 PT_PAGE_TABLE_LEVEL, slot);
1795 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1796
1797 /* clear the first set bit */
1798 mask &= mask - 1;
1799 }
1800}
1801EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1802
3b0f1d01
KH
1803/**
1804 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1805 * PT level pages.
1806 *
1807 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1808 * enable dirty logging for them.
1809 *
1810 * Used when we do not need to care about huge page mappings: e.g. during dirty
1811 * logging we do not have any such mappings.
1812 */
1813void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1814 struct kvm_memory_slot *slot,
1815 gfn_t gfn_offset, unsigned long mask)
1816{
88178fd4
KH
1817 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1818 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1819 mask);
1820 else
1821 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1822}
1823
bab4165e
BD
1824/**
1825 * kvm_arch_write_log_dirty - emulate dirty page logging
1826 * @vcpu: Guest mode vcpu
1827 *
1828 * Emulate arch specific page modification logging for the
1829 * nested hypervisor
1830 */
1831int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1832{
1833 if (kvm_x86_ops->write_log_dirty)
1834 return kvm_x86_ops->write_log_dirty(vcpu);
1835
1836 return 0;
1837}
1838
aeecee2e
XG
1839bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1840 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1841{
018aabb5 1842 struct kvm_rmap_head *rmap_head;
5dc99b23 1843 int i;
2f84569f 1844 bool write_protected = false;
95d4c16c 1845
8a3d08f1 1846 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1847 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1848 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1849 }
1850
1851 return write_protected;
95d4c16c
TY
1852}
1853
aeecee2e
XG
1854static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1855{
1856 struct kvm_memory_slot *slot;
1857
1858 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1859 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1860}
1861
018aabb5 1862static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1863{
1e3f42f0
TY
1864 u64 *sptep;
1865 struct rmap_iterator iter;
6a49f85c 1866 bool flush = false;
e930bffe 1867
018aabb5 1868 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1869 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1870
e7912386 1871 pte_list_remove(rmap_head, sptep);
6a49f85c 1872 flush = true;
e930bffe 1873 }
1e3f42f0 1874
6a49f85c
XG
1875 return flush;
1876}
1877
018aabb5 1878static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1879 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1880 unsigned long data)
1881{
018aabb5 1882 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1883}
1884
018aabb5 1885static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1886 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1887 unsigned long data)
3da0dd43 1888{
1e3f42f0
TY
1889 u64 *sptep;
1890 struct rmap_iterator iter;
3da0dd43 1891 int need_flush = 0;
1e3f42f0 1892 u64 new_spte;
3da0dd43 1893 pte_t *ptep = (pte_t *)data;
ba049e93 1894 kvm_pfn_t new_pfn;
3da0dd43
IE
1895
1896 WARN_ON(pte_huge(*ptep));
1897 new_pfn = pte_pfn(*ptep);
1e3f42f0 1898
0d536790 1899restart:
018aabb5 1900 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1901 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1902 sptep, *sptep, gfn, level);
1e3f42f0 1903
3da0dd43 1904 need_flush = 1;
1e3f42f0 1905
3da0dd43 1906 if (pte_write(*ptep)) {
e7912386 1907 pte_list_remove(rmap_head, sptep);
0d536790 1908 goto restart;
3da0dd43 1909 } else {
1e3f42f0 1910 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1911 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1912
1913 new_spte &= ~PT_WRITABLE_MASK;
1914 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1915
1916 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1917
1918 mmu_spte_clear_track_bits(sptep);
1919 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1920 }
1921 }
1e3f42f0 1922
3cc5ea94
LT
1923 if (need_flush && kvm_available_flush_tlb_with_range()) {
1924 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1925 return 0;
1926 }
1927
0cf853c5 1928 return need_flush;
3da0dd43
IE
1929}
1930
6ce1f4e2
XG
1931struct slot_rmap_walk_iterator {
1932 /* input fields. */
1933 struct kvm_memory_slot *slot;
1934 gfn_t start_gfn;
1935 gfn_t end_gfn;
1936 int start_level;
1937 int end_level;
1938
1939 /* output fields. */
1940 gfn_t gfn;
018aabb5 1941 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1942 int level;
1943
1944 /* private field. */
018aabb5 1945 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1946};
1947
1948static void
1949rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1950{
1951 iterator->level = level;
1952 iterator->gfn = iterator->start_gfn;
1953 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1954 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1955 iterator->slot);
1956}
1957
1958static void
1959slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1960 struct kvm_memory_slot *slot, int start_level,
1961 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1962{
1963 iterator->slot = slot;
1964 iterator->start_level = start_level;
1965 iterator->end_level = end_level;
1966 iterator->start_gfn = start_gfn;
1967 iterator->end_gfn = end_gfn;
1968
1969 rmap_walk_init_level(iterator, iterator->start_level);
1970}
1971
1972static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1973{
1974 return !!iterator->rmap;
1975}
1976
1977static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1978{
1979 if (++iterator->rmap <= iterator->end_rmap) {
1980 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1981 return;
1982 }
1983
1984 if (++iterator->level > iterator->end_level) {
1985 iterator->rmap = NULL;
1986 return;
1987 }
1988
1989 rmap_walk_init_level(iterator, iterator->level);
1990}
1991
1992#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1993 _start_gfn, _end_gfn, _iter_) \
1994 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1995 _end_level_, _start_gfn, _end_gfn); \
1996 slot_rmap_walk_okay(_iter_); \
1997 slot_rmap_walk_next(_iter_))
1998
84504ef3
TY
1999static int kvm_handle_hva_range(struct kvm *kvm,
2000 unsigned long start,
2001 unsigned long end,
2002 unsigned long data,
2003 int (*handler)(struct kvm *kvm,
018aabb5 2004 struct kvm_rmap_head *rmap_head,
048212d0 2005 struct kvm_memory_slot *slot,
8a9522d2
ALC
2006 gfn_t gfn,
2007 int level,
84504ef3 2008 unsigned long data))
e930bffe 2009{
bc6678a3 2010 struct kvm_memslots *slots;
be6ba0f0 2011 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
2012 struct slot_rmap_walk_iterator iterator;
2013 int ret = 0;
9da0e4d5 2014 int i;
bc6678a3 2015
9da0e4d5
PB
2016 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2017 slots = __kvm_memslots(kvm, i);
2018 kvm_for_each_memslot(memslot, slots) {
2019 unsigned long hva_start, hva_end;
2020 gfn_t gfn_start, gfn_end;
e930bffe 2021
9da0e4d5
PB
2022 hva_start = max(start, memslot->userspace_addr);
2023 hva_end = min(end, memslot->userspace_addr +
2024 (memslot->npages << PAGE_SHIFT));
2025 if (hva_start >= hva_end)
2026 continue;
2027 /*
2028 * {gfn(page) | page intersects with [hva_start, hva_end)} =
2029 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2030 */
2031 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2032 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2033
2034 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2035 PT_MAX_HUGEPAGE_LEVEL,
2036 gfn_start, gfn_end - 1,
2037 &iterator)
2038 ret |= handler(kvm, iterator.rmap, memslot,
2039 iterator.gfn, iterator.level, data);
2040 }
e930bffe
AA
2041 }
2042
f395302e 2043 return ret;
e930bffe
AA
2044}
2045
84504ef3
TY
2046static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2047 unsigned long data,
018aabb5
TY
2048 int (*handler)(struct kvm *kvm,
2049 struct kvm_rmap_head *rmap_head,
048212d0 2050 struct kvm_memory_slot *slot,
8a9522d2 2051 gfn_t gfn, int level,
84504ef3
TY
2052 unsigned long data))
2053{
2054 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
2055}
2056
b3ae2096
TY
2057int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
2058{
2059 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2060}
2061
748c0e31 2062int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 2063{
0cf853c5 2064 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
2065}
2066
018aabb5 2067static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
2068 struct kvm_memory_slot *slot, gfn_t gfn, int level,
2069 unsigned long data)
e930bffe 2070{
1e3f42f0 2071 u64 *sptep;
79f702a6 2072 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
2073 int young = 0;
2074
f160c7b7
JS
2075 for_each_rmap_spte(rmap_head, &iter, sptep)
2076 young |= mmu_spte_age(sptep);
0d536790 2077
8a9522d2 2078 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
2079 return young;
2080}
2081
018aabb5 2082static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
2083 struct kvm_memory_slot *slot, gfn_t gfn,
2084 int level, unsigned long data)
8ee53820 2085{
1e3f42f0
TY
2086 u64 *sptep;
2087 struct rmap_iterator iter;
8ee53820 2088
83ef6c81
JS
2089 for_each_rmap_spte(rmap_head, &iter, sptep)
2090 if (is_accessed_spte(*sptep))
2091 return 1;
83ef6c81 2092 return 0;
8ee53820
AA
2093}
2094
53a27b39
MT
2095#define RMAP_RECYCLE_THRESHOLD 1000
2096
852e3c19 2097static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 2098{
018aabb5 2099 struct kvm_rmap_head *rmap_head;
852e3c19
JR
2100 struct kvm_mmu_page *sp;
2101
2102 sp = page_header(__pa(spte));
53a27b39 2103
018aabb5 2104 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 2105
018aabb5 2106 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
2107 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2108 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
2109}
2110
57128468 2111int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2112{
57128468 2113 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2114}
2115
8ee53820
AA
2116int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2117{
2118 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2119}
2120
d6c69ee9 2121#ifdef MMU_DEBUG
47ad8e68 2122static int is_empty_shadow_page(u64 *spt)
6aa8b732 2123{
139bdb2d
AK
2124 u64 *pos;
2125 u64 *end;
2126
47ad8e68 2127 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2128 if (is_shadow_present_pte(*pos)) {
b8688d51 2129 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2130 pos, *pos);
6aa8b732 2131 return 0;
139bdb2d 2132 }
6aa8b732
AK
2133 return 1;
2134}
d6c69ee9 2135#endif
6aa8b732 2136
45221ab6
DH
2137/*
2138 * This value is the sum of all of the kvm instances's
2139 * kvm->arch.n_used_mmu_pages values. We need a global,
2140 * aggregate version in order to make the slab shrinker
2141 * faster
2142 */
bc8a3d89 2143static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2144{
2145 kvm->arch.n_used_mmu_pages += nr;
2146 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2147}
2148
834be0d8 2149static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2150{
fa4a2c08 2151 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2152 hlist_del(&sp->hash_link);
bd4c86ea
XG
2153 list_del(&sp->link);
2154 free_page((unsigned long)sp->spt);
834be0d8
GN
2155 if (!sp->role.direct)
2156 free_page((unsigned long)sp->gfns);
e8ad9a70 2157 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2158}
2159
cea0f0e7
AK
2160static unsigned kvm_page_table_hashfn(gfn_t gfn)
2161{
114df303 2162 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2163}
2164
714b93da 2165static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2166 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2167{
cea0f0e7
AK
2168 if (!parent_pte)
2169 return;
cea0f0e7 2170
67052b35 2171 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2172}
2173
4db35314 2174static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2175 u64 *parent_pte)
2176{
8daf3462 2177 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2178}
2179
bcdd9a93
XG
2180static void drop_parent_pte(struct kvm_mmu_page *sp,
2181 u64 *parent_pte)
2182{
2183 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2184 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2185}
2186
47005792 2187static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2188{
67052b35 2189 struct kvm_mmu_page *sp;
7ddca7e4 2190
80feb89a
TY
2191 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2192 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2193 if (!direct)
80feb89a 2194 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2195 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
2196
2197 /*
2198 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2199 * depends on valid pages being added to the head of the list. See
2200 * comments in kvm_zap_obsolete_pages().
2201 */
ca333add 2202 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 2203 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2204 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2205 return sp;
ad8cfbe3
MT
2206}
2207
67052b35 2208static void mark_unsync(u64 *spte);
1047df1f 2209static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2210{
74c4e63a
TY
2211 u64 *sptep;
2212 struct rmap_iterator iter;
2213
2214 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2215 mark_unsync(sptep);
2216 }
0074ff63
MT
2217}
2218
67052b35 2219static void mark_unsync(u64 *spte)
0074ff63 2220{
67052b35 2221 struct kvm_mmu_page *sp;
1047df1f 2222 unsigned int index;
0074ff63 2223
67052b35 2224 sp = page_header(__pa(spte));
1047df1f
XG
2225 index = spte - sp->spt;
2226 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2227 return;
1047df1f 2228 if (sp->unsync_children++)
0074ff63 2229 return;
1047df1f 2230 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2231}
2232
e8bc217a 2233static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2234 struct kvm_mmu_page *sp)
e8bc217a 2235{
1f50f1b3 2236 return 0;
e8bc217a
MT
2237}
2238
7eb77e9f 2239static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2240{
2241}
2242
0f53b5b1
XG
2243static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2244 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2245 const void *pte)
0f53b5b1
XG
2246{
2247 WARN_ON(1);
2248}
2249
60c8aec6
MT
2250#define KVM_PAGE_ARRAY_NR 16
2251
2252struct kvm_mmu_pages {
2253 struct mmu_page_and_offset {
2254 struct kvm_mmu_page *sp;
2255 unsigned int idx;
2256 } page[KVM_PAGE_ARRAY_NR];
2257 unsigned int nr;
2258};
2259
cded19f3
HE
2260static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2261 int idx)
4731d4c7 2262{
60c8aec6 2263 int i;
4731d4c7 2264
60c8aec6
MT
2265 if (sp->unsync)
2266 for (i=0; i < pvec->nr; i++)
2267 if (pvec->page[i].sp == sp)
2268 return 0;
2269
2270 pvec->page[pvec->nr].sp = sp;
2271 pvec->page[pvec->nr].idx = idx;
2272 pvec->nr++;
2273 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2274}
2275
fd951457
TY
2276static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2277{
2278 --sp->unsync_children;
2279 WARN_ON((int)sp->unsync_children < 0);
2280 __clear_bit(idx, sp->unsync_child_bitmap);
2281}
2282
60c8aec6
MT
2283static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2284 struct kvm_mmu_pages *pvec)
2285{
2286 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2287
37178b8b 2288 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2289 struct kvm_mmu_page *child;
4731d4c7
MT
2290 u64 ent = sp->spt[i];
2291
fd951457
TY
2292 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2293 clear_unsync_child_bit(sp, i);
2294 continue;
2295 }
7a8f1a74
XG
2296
2297 child = page_header(ent & PT64_BASE_ADDR_MASK);
2298
2299 if (child->unsync_children) {
2300 if (mmu_pages_add(pvec, child, i))
2301 return -ENOSPC;
2302
2303 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2304 if (!ret) {
2305 clear_unsync_child_bit(sp, i);
2306 continue;
2307 } else if (ret > 0) {
7a8f1a74 2308 nr_unsync_leaf += ret;
fd951457 2309 } else
7a8f1a74
XG
2310 return ret;
2311 } else if (child->unsync) {
2312 nr_unsync_leaf++;
2313 if (mmu_pages_add(pvec, child, i))
2314 return -ENOSPC;
2315 } else
fd951457 2316 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2317 }
2318
60c8aec6
MT
2319 return nr_unsync_leaf;
2320}
2321
e23d3fef
XG
2322#define INVALID_INDEX (-1)
2323
60c8aec6
MT
2324static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2325 struct kvm_mmu_pages *pvec)
2326{
0a47cd85 2327 pvec->nr = 0;
60c8aec6
MT
2328 if (!sp->unsync_children)
2329 return 0;
2330
e23d3fef 2331 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2332 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2333}
2334
4731d4c7
MT
2335static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2336{
2337 WARN_ON(!sp->unsync);
5e1b3ddb 2338 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2339 sp->unsync = 0;
2340 --kvm->stat.mmu_unsync;
2341}
2342
83cdb568
SC
2343static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2344 struct list_head *invalid_list);
7775834a
XG
2345static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2346 struct list_head *invalid_list);
4731d4c7 2347
47c42e6b 2348
f3414bc7 2349#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2350 hlist_for_each_entry(_sp, \
2351 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
fac026da 2352 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 2353 } else
1044b030
TY
2354
2355#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2356 for_each_valid_sp(_kvm, _sp, _gfn) \
2357 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2358
47c42e6b
SC
2359static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2360{
2361 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2362}
2363
f918b443 2364/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2365static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2366 struct list_head *invalid_list)
4731d4c7 2367{
47c42e6b
SC
2368 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2369 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2370 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2371 return false;
4731d4c7
MT
2372 }
2373
1f50f1b3 2374 return true;
4731d4c7
MT
2375}
2376
a2113634
SC
2377static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2378 struct list_head *invalid_list,
2379 bool remote_flush)
2380{
cfd32acf 2381 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2382 return false;
2383
2384 if (!list_empty(invalid_list))
2385 kvm_mmu_commit_zap_page(kvm, invalid_list);
2386 else
2387 kvm_flush_remote_tlbs(kvm);
2388 return true;
2389}
2390
35a70510
PB
2391static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2392 struct list_head *invalid_list,
2393 bool remote_flush, bool local_flush)
1d9dc7e0 2394{
a2113634 2395 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2396 return;
d98ba053 2397
a2113634 2398 if (local_flush)
35a70510 2399 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2400}
2401
e37fa785
XG
2402#ifdef CONFIG_KVM_MMU_AUDIT
2403#include "mmu_audit.c"
2404#else
2405static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2406static void mmu_audit_disable(void) { }
2407#endif
2408
002c5f73
SC
2409static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2410{
fac026da
SC
2411 return sp->role.invalid ||
2412 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
2413}
2414
1f50f1b3 2415static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2416 struct list_head *invalid_list)
1d9dc7e0 2417{
9a43c5d9
PB
2418 kvm_unlink_unsync_page(vcpu->kvm, sp);
2419 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2420}
2421
9f1a122f 2422/* @gfn should be write-protected at the call site */
2a74003a
PB
2423static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2424 struct list_head *invalid_list)
9f1a122f 2425{
9f1a122f 2426 struct kvm_mmu_page *s;
2a74003a 2427 bool ret = false;
9f1a122f 2428
b67bfe0d 2429 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2430 if (!s->unsync)
9f1a122f
XG
2431 continue;
2432
2433 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2434 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2435 }
2436
2a74003a 2437 return ret;
9f1a122f
XG
2438}
2439
60c8aec6 2440struct mmu_page_path {
2a7266a8
YZ
2441 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2442 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2443};
2444
60c8aec6 2445#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2446 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2447 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2448 i = mmu_pages_next(&pvec, &parents, i))
2449
cded19f3
HE
2450static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2451 struct mmu_page_path *parents,
2452 int i)
60c8aec6
MT
2453{
2454 int n;
2455
2456 for (n = i+1; n < pvec->nr; n++) {
2457 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2458 unsigned idx = pvec->page[n].idx;
2459 int level = sp->role.level;
60c8aec6 2460
0a47cd85
PB
2461 parents->idx[level-1] = idx;
2462 if (level == PT_PAGE_TABLE_LEVEL)
2463 break;
60c8aec6 2464
0a47cd85 2465 parents->parent[level-2] = sp;
60c8aec6
MT
2466 }
2467
2468 return n;
2469}
2470
0a47cd85
PB
2471static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2472 struct mmu_page_path *parents)
2473{
2474 struct kvm_mmu_page *sp;
2475 int level;
2476
2477 if (pvec->nr == 0)
2478 return 0;
2479
e23d3fef
XG
2480 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2481
0a47cd85
PB
2482 sp = pvec->page[0].sp;
2483 level = sp->role.level;
2484 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2485
2486 parents->parent[level-2] = sp;
2487
2488 /* Also set up a sentinel. Further entries in pvec are all
2489 * children of sp, so this element is never overwritten.
2490 */
2491 parents->parent[level-1] = NULL;
2492 return mmu_pages_next(pvec, parents, 0);
2493}
2494
cded19f3 2495static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2496{
60c8aec6
MT
2497 struct kvm_mmu_page *sp;
2498 unsigned int level = 0;
2499
2500 do {
2501 unsigned int idx = parents->idx[level];
60c8aec6
MT
2502 sp = parents->parent[level];
2503 if (!sp)
2504 return;
2505
e23d3fef 2506 WARN_ON(idx == INVALID_INDEX);
fd951457 2507 clear_unsync_child_bit(sp, idx);
60c8aec6 2508 level++;
0a47cd85 2509 } while (!sp->unsync_children);
60c8aec6 2510}
4731d4c7 2511
60c8aec6
MT
2512static void mmu_sync_children(struct kvm_vcpu *vcpu,
2513 struct kvm_mmu_page *parent)
2514{
2515 int i;
2516 struct kvm_mmu_page *sp;
2517 struct mmu_page_path parents;
2518 struct kvm_mmu_pages pages;
d98ba053 2519 LIST_HEAD(invalid_list);
50c9e6f3 2520 bool flush = false;
60c8aec6 2521
60c8aec6 2522 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2523 bool protected = false;
b1a36821
MT
2524
2525 for_each_sp(pages, sp, parents, i)
54bf36aa 2526 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2527
50c9e6f3 2528 if (protected) {
b1a36821 2529 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2530 flush = false;
2531 }
b1a36821 2532
60c8aec6 2533 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2534 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2535 mmu_pages_clear_parents(&parents);
2536 }
50c9e6f3
PB
2537 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2538 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2539 cond_resched_lock(&vcpu->kvm->mmu_lock);
2540 flush = false;
2541 }
60c8aec6 2542 }
50c9e6f3
PB
2543
2544 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2545}
2546
a30f47cb
XG
2547static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2548{
e5691a81 2549 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2550}
2551
2552static void clear_sp_write_flooding_count(u64 *spte)
2553{
2554 struct kvm_mmu_page *sp = page_header(__pa(spte));
2555
2556 __clear_sp_write_flooding_count(sp);
2557}
2558
cea0f0e7
AK
2559static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2560 gfn_t gfn,
2561 gva_t gaddr,
2562 unsigned level,
f6e2c02b 2563 int direct,
bb11c6c9 2564 unsigned access)
cea0f0e7
AK
2565{
2566 union kvm_mmu_page_role role;
cea0f0e7 2567 unsigned quadrant;
9f1a122f 2568 struct kvm_mmu_page *sp;
9f1a122f 2569 bool need_sync = false;
2a74003a 2570 bool flush = false;
f3414bc7 2571 int collisions = 0;
2a74003a 2572 LIST_HEAD(invalid_list);
cea0f0e7 2573
36d9594d 2574 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2575 role.level = level;
f6e2c02b 2576 role.direct = direct;
84b0c8c6 2577 if (role.direct)
47c42e6b 2578 role.gpte_is_8_bytes = true;
41074d07 2579 role.access = access;
44dd3ffa
VK
2580 if (!vcpu->arch.mmu->direct_map
2581 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2582 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2583 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2584 role.quadrant = quadrant;
2585 }
f3414bc7
DM
2586 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2587 if (sp->gfn != gfn) {
2588 collisions++;
2589 continue;
2590 }
2591
7ae680eb
XG
2592 if (!need_sync && sp->unsync)
2593 need_sync = true;
4731d4c7 2594
7ae680eb
XG
2595 if (sp->role.word != role.word)
2596 continue;
4731d4c7 2597
2a74003a
PB
2598 if (sp->unsync) {
2599 /* The page is good, but __kvm_sync_page might still end
2600 * up zapping it. If so, break in order to rebuild it.
2601 */
2602 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2603 break;
2604
2605 WARN_ON(!list_empty(&invalid_list));
2606 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2607 }
e02aa901 2608
98bba238 2609 if (sp->unsync_children)
a8eeb04a 2610 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2611
a30f47cb 2612 __clear_sp_write_flooding_count(sp);
7ae680eb 2613 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2614 goto out;
7ae680eb 2615 }
47005792 2616
dfc5aa00 2617 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2618
2619 sp = kvm_mmu_alloc_page(vcpu, direct);
2620
4db35314
AK
2621 sp->gfn = gfn;
2622 sp->role = role;
7ae680eb
XG
2623 hlist_add_head(&sp->hash_link,
2624 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2625 if (!direct) {
56ca57f9
XG
2626 /*
2627 * we should do write protection before syncing pages
2628 * otherwise the content of the synced shadow page may
2629 * be inconsistent with guest page table.
2630 */
2631 account_shadowed(vcpu->kvm, sp);
2632 if (level == PT_PAGE_TABLE_LEVEL &&
2633 rmap_write_protect(vcpu, gfn))
c3134ce2 2634 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2635
9f1a122f 2636 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2637 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2638 }
77492664 2639 clear_page(sp->spt);
f691fe1d 2640 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2641
2642 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2643out:
2644 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2645 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2646 return sp;
cea0f0e7
AK
2647}
2648
7eb77e9f
JS
2649static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2650 struct kvm_vcpu *vcpu, hpa_t root,
2651 u64 addr)
2d11123a
AK
2652{
2653 iterator->addr = addr;
7eb77e9f 2654 iterator->shadow_addr = root;
44dd3ffa 2655 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2656
2a7266a8 2657 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2658 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2659 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2660 --iterator->level;
2661
2d11123a 2662 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2663 /*
2664 * prev_root is currently only used for 64-bit hosts. So only
2665 * the active root_hpa is valid here.
2666 */
44dd3ffa 2667 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2668
2d11123a 2669 iterator->shadow_addr
44dd3ffa 2670 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2671 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2672 --iterator->level;
2673 if (!iterator->shadow_addr)
2674 iterator->level = 0;
2675 }
2676}
2677
7eb77e9f
JS
2678static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2679 struct kvm_vcpu *vcpu, u64 addr)
2680{
44dd3ffa 2681 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2682 addr);
2683}
2684
2d11123a
AK
2685static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2686{
2687 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2688 return false;
4d88954d 2689
2d11123a
AK
2690 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2691 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2692 return true;
2693}
2694
c2a2ac2b
XG
2695static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2696 u64 spte)
2d11123a 2697{
c2a2ac2b 2698 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2699 iterator->level = 0;
2700 return;
2701 }
2702
c2a2ac2b 2703 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2704 --iterator->level;
2705}
2706
c2a2ac2b
XG
2707static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2708{
bb606a9b 2709 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2710}
2711
98bba238
TY
2712static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2713 struct kvm_mmu_page *sp)
32ef26a3
AK
2714{
2715 u64 spte;
2716
ffb128c8 2717 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2718
ffb128c8 2719 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2720 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2721
2722 if (sp_ad_disabled(sp))
6eeb4ef0 2723 spte |= SPTE_AD_DISABLED_MASK;
ac8d57e5
PF
2724 else
2725 spte |= shadow_accessed_mask;
24db2734 2726
1df9f2dc 2727 mmu_spte_set(sptep, spte);
98bba238
TY
2728
2729 mmu_page_add_parent_pte(vcpu, sp, sptep);
2730
2731 if (sp->unsync_children || sp->unsync)
2732 mark_unsync(sptep);
32ef26a3
AK
2733}
2734
a357bd22
AK
2735static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2736 unsigned direct_access)
2737{
2738 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2739 struct kvm_mmu_page *child;
2740
2741 /*
2742 * For the direct sp, if the guest pte's dirty bit
2743 * changed form clean to dirty, it will corrupt the
2744 * sp's access: allow writable in the read-only sp,
2745 * so we should update the spte at this point to get
2746 * a new sp with the correct access.
2747 */
2748 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2749 if (child->role.access == direct_access)
2750 return;
2751
bcdd9a93 2752 drop_parent_pte(child, sptep);
c3134ce2 2753 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2754 }
2755}
2756
505aef8f 2757static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2758 u64 *spte)
2759{
2760 u64 pte;
2761 struct kvm_mmu_page *child;
2762
2763 pte = *spte;
2764 if (is_shadow_present_pte(pte)) {
505aef8f 2765 if (is_last_spte(pte, sp->role.level)) {
c3707958 2766 drop_spte(kvm, spte);
505aef8f
XG
2767 if (is_large_pte(pte))
2768 --kvm->stat.lpages;
2769 } else {
38e3b2b2 2770 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2771 drop_parent_pte(child, spte);
38e3b2b2 2772 }
505aef8f
XG
2773 return true;
2774 }
2775
2776 if (is_mmio_spte(pte))
ce88decf 2777 mmu_spte_clear_no_track(spte);
c3707958 2778
505aef8f 2779 return false;
38e3b2b2
XG
2780}
2781
90cb0529 2782static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2783 struct kvm_mmu_page *sp)
a436036b 2784{
697fe2e2 2785 unsigned i;
697fe2e2 2786
38e3b2b2
XG
2787 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2788 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2789}
2790
31aa2b44 2791static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2792{
1e3f42f0
TY
2793 u64 *sptep;
2794 struct rmap_iterator iter;
a436036b 2795
018aabb5 2796 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2797 drop_parent_pte(sp, sptep);
31aa2b44
AK
2798}
2799
60c8aec6 2800static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2801 struct kvm_mmu_page *parent,
2802 struct list_head *invalid_list)
4731d4c7 2803{
60c8aec6
MT
2804 int i, zapped = 0;
2805 struct mmu_page_path parents;
2806 struct kvm_mmu_pages pages;
4731d4c7 2807
60c8aec6 2808 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2809 return 0;
60c8aec6 2810
60c8aec6
MT
2811 while (mmu_unsync_walk(parent, &pages)) {
2812 struct kvm_mmu_page *sp;
2813
2814 for_each_sp(pages, sp, parents, i) {
7775834a 2815 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2816 mmu_pages_clear_parents(&parents);
77662e00 2817 zapped++;
60c8aec6 2818 }
60c8aec6
MT
2819 }
2820
2821 return zapped;
4731d4c7
MT
2822}
2823
83cdb568
SC
2824static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2825 struct kvm_mmu_page *sp,
2826 struct list_head *invalid_list,
2827 int *nr_zapped)
31aa2b44 2828{
83cdb568 2829 bool list_unstable;
f691fe1d 2830
7775834a 2831 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2832 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2833 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2834 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2835 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2836
83cdb568
SC
2837 /* Zapping children means active_mmu_pages has become unstable. */
2838 list_unstable = *nr_zapped;
2839
f6e2c02b 2840 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2841 unaccount_shadowed(kvm, sp);
5304b8d3 2842
4731d4c7
MT
2843 if (sp->unsync)
2844 kvm_unlink_unsync_page(kvm, sp);
4db35314 2845 if (!sp->root_count) {
54a4f023 2846 /* Count self */
83cdb568 2847 (*nr_zapped)++;
7775834a 2848 list_move(&sp->link, invalid_list);
aa6bd187 2849 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2850 } else {
5b5c6a5a 2851 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2852
10605204
SC
2853 /*
2854 * Obsolete pages cannot be used on any vCPUs, see the comment
2855 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2856 * treats invalid shadow pages as being obsolete.
2857 */
2858 if (!is_obsolete_sp(kvm, sp))
05988d72 2859 kvm_reload_remote_mmus(kvm);
2e53d63a 2860 }
7775834a 2861
b8e8c830
PB
2862 if (sp->lpage_disallowed)
2863 unaccount_huge_nx_page(kvm, sp);
2864
7775834a 2865 sp->role.invalid = 1;
83cdb568
SC
2866 return list_unstable;
2867}
2868
2869static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2870 struct list_head *invalid_list)
2871{
2872 int nr_zapped;
2873
2874 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2875 return nr_zapped;
a436036b
AK
2876}
2877
7775834a
XG
2878static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2879 struct list_head *invalid_list)
2880{
945315b9 2881 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2882
2883 if (list_empty(invalid_list))
2884 return;
2885
c142786c 2886 /*
9753f529
LT
2887 * We need to make sure everyone sees our modifications to
2888 * the page tables and see changes to vcpu->mode here. The barrier
2889 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2890 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2891 *
2892 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2893 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2894 */
2895 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2896
945315b9 2897 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2898 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2899 kvm_mmu_free_page(sp);
945315b9 2900 }
7775834a
XG
2901}
2902
5da59607
TY
2903static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2904 struct list_head *invalid_list)
2905{
2906 struct kvm_mmu_page *sp;
2907
2908 if (list_empty(&kvm->arch.active_mmu_pages))
2909 return false;
2910
d74c0e6b
GT
2911 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2912 struct kvm_mmu_page, link);
42bcbebf 2913 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2914}
2915
ba7888dd
SC
2916static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2917{
2918 LIST_HEAD(invalid_list);
2919
2920 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2921 return 0;
2922
2923 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2924 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2925 break;
2926
2927 ++vcpu->kvm->stat.mmu_recycled;
2928 }
2929 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2930
2931 if (!kvm_mmu_available_pages(vcpu->kvm))
2932 return -ENOSPC;
2933 return 0;
2934}
2935
82ce2c96
IE
2936/*
2937 * Changing the number of mmu pages allocated to the vm
49d5ca26 2938 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2939 */
bc8a3d89 2940void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2941{
d98ba053 2942 LIST_HEAD(invalid_list);
82ce2c96 2943
b34cb590
TY
2944 spin_lock(&kvm->mmu_lock);
2945
49d5ca26 2946 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2947 /* Need to free some mmu pages to achieve the goal. */
2948 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2949 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2950 break;
82ce2c96 2951
aa6bd187 2952 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2953 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2954 }
82ce2c96 2955
49d5ca26 2956 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2957
2958 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2959}
2960
1cb3f3ae 2961int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2962{
4db35314 2963 struct kvm_mmu_page *sp;
d98ba053 2964 LIST_HEAD(invalid_list);
a436036b
AK
2965 int r;
2966
9ad17b10 2967 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2968 r = 0;
1cb3f3ae 2969 spin_lock(&kvm->mmu_lock);
b67bfe0d 2970 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2971 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2972 sp->role.word);
2973 r = 1;
f41d335a 2974 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2975 }
d98ba053 2976 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2977 spin_unlock(&kvm->mmu_lock);
2978
a436036b 2979 return r;
cea0f0e7 2980}
1cb3f3ae 2981EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2982
5c520e90 2983static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2984{
2985 trace_kvm_mmu_unsync_page(sp);
2986 ++vcpu->kvm->stat.mmu_unsync;
2987 sp->unsync = 1;
2988
2989 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2990}
2991
3d0c27ad
XG
2992static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2993 bool can_unsync)
4731d4c7 2994{
5c520e90 2995 struct kvm_mmu_page *sp;
4731d4c7 2996
3d0c27ad
XG
2997 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2998 return true;
9cf5cf5a 2999
5c520e90 3000 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 3001 if (!can_unsync)
3d0c27ad 3002 return true;
36a2e677 3003
5c520e90
XG
3004 if (sp->unsync)
3005 continue;
9cf5cf5a 3006
5c520e90
XG
3007 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
3008 kvm_unsync_page(vcpu, sp);
4731d4c7 3009 }
3d0c27ad 3010
578e1c4d
JS
3011 /*
3012 * We need to ensure that the marking of unsync pages is visible
3013 * before the SPTE is updated to allow writes because
3014 * kvm_mmu_sync_roots() checks the unsync flags without holding
3015 * the MMU lock and so can race with this. If the SPTE was updated
3016 * before the page had been marked as unsync-ed, something like the
3017 * following could happen:
3018 *
3019 * CPU 1 CPU 2
3020 * ---------------------------------------------------------------------
3021 * 1.2 Host updates SPTE
3022 * to be writable
3023 * 2.1 Guest writes a GPTE for GVA X.
3024 * (GPTE being in the guest page table shadowed
3025 * by the SP from CPU 1.)
3026 * This reads SPTE during the page table walk.
3027 * Since SPTE.W is read as 1, there is no
3028 * fault.
3029 *
3030 * 2.2 Guest issues TLB flush.
3031 * That causes a VM Exit.
3032 *
3033 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
3034 * Since it is false, so it just returns.
3035 *
3036 * 2.4 Guest accesses GVA X.
3037 * Since the mapping in the SP was not updated,
3038 * so the old mapping for GVA X incorrectly
3039 * gets used.
3040 * 1.1 Host marks SP
3041 * as unsync
3042 * (sp->unsync = true)
3043 *
3044 * The write barrier below ensures that 1.1 happens before 1.2 and thus
3045 * the situation in 2.4 does not arise. The implicit barrier in 2.2
3046 * pairs with this write barrier.
3047 */
3048 smp_wmb();
3049
3d0c27ad 3050 return false;
4731d4c7
MT
3051}
3052
ba049e93 3053static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
3054{
3055 if (pfn_valid(pfn))
aa2e063a
HZ
3056 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3057 /*
3058 * Some reserved pages, such as those from NVDIMM
3059 * DAX devices, are not for MMIO, and can be mapped
3060 * with cached memory type for better performance.
3061 * However, the above check misconceives those pages
3062 * as MMIO, and results in KVM mapping them with UC
3063 * memory type, which would hurt the performance.
3064 * Therefore, we check the host memory type in addition
3065 * and only treat UC/UC-/WC pages as MMIO.
3066 */
3067 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 3068
0c55671f
KA
3069 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3070 pfn_to_hpa(pfn + 1) - 1,
3071 E820_TYPE_RAM);
d1fe9219
PB
3072}
3073
5ce4786f
JS
3074/* Bits which may be returned by set_spte() */
3075#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
3076#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
3077
d555c333 3078static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 3079 unsigned pte_access, int level,
ba049e93 3080 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 3081 bool can_unsync, bool host_writable)
1c4f1fd6 3082{
ffb128c8 3083 u64 spte = 0;
1e73f9dd 3084 int ret = 0;
ac8d57e5 3085 struct kvm_mmu_page *sp;
64d4d521 3086
54bf36aa 3087 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
3088 return 0;
3089
ac8d57e5
PF
3090 sp = page_header(__pa(sptep));
3091 if (sp_ad_disabled(sp))
6eeb4ef0 3092 spte |= SPTE_AD_DISABLED_MASK;
1f4e5fc8
PB
3093 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3094 spte |= SPTE_AD_WRPROT_ONLY_MASK;
ac8d57e5 3095
d95c5568
BD
3096 /*
3097 * For the EPT case, shadow_present_mask is 0 if hardware
3098 * supports exec-only page table entries. In that case,
3099 * ACC_USER_MASK and shadow_user_mask are used to represent
3100 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3101 */
ffb128c8 3102 spte |= shadow_present_mask;
947da538 3103 if (!speculative)
ac8d57e5 3104 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 3105
b8e8c830
PB
3106 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3107 is_nx_huge_page_enabled()) {
3108 pte_access &= ~ACC_EXEC_MASK;
3109 }
3110
7b52345e
SY
3111 if (pte_access & ACC_EXEC_MASK)
3112 spte |= shadow_x_mask;
3113 else
3114 spte |= shadow_nx_mask;
49fde340 3115
1c4f1fd6 3116 if (pte_access & ACC_USER_MASK)
7b52345e 3117 spte |= shadow_user_mask;
49fde340 3118
852e3c19 3119 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 3120 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 3121 if (tdp_enabled)
4b12f0de 3122 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 3123 kvm_is_mmio_pfn(pfn));
1c4f1fd6 3124
9bdbba13 3125 if (host_writable)
1403283a 3126 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
3127 else
3128 pte_access &= ~ACC_WRITE_MASK;
1403283a 3129
daaf216c
TL
3130 if (!kvm_is_mmio_pfn(pfn))
3131 spte |= shadow_me_mask;
3132
35149e21 3133 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 3134
c2288505 3135 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 3136
c2193463 3137 /*
7751babd
XG
3138 * Other vcpu creates new sp in the window between
3139 * mapping_level() and acquiring mmu-lock. We can
3140 * allow guest to retry the access, the mapping can
3141 * be fixed if guest refault.
c2193463 3142 */
852e3c19 3143 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 3144 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 3145 goto done;
38187c83 3146
49fde340 3147 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3148
ecc5589f
MT
3149 /*
3150 * Optimization: for pte sync, if spte was writable the hash
3151 * lookup is unnecessary (and expensive). Write protection
3152 * is responsibility of mmu_get_page / kvm_sync_page.
3153 * Same reasoning can be applied to dirty page accounting.
3154 */
8dae4445 3155 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3156 goto set_pte;
3157
4731d4c7 3158 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3159 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3160 __func__, gfn);
5ce4786f 3161 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3162 pte_access &= ~ACC_WRITE_MASK;
49fde340 3163 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3164 }
3165 }
3166
9b51a630 3167 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3168 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3169 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3170 }
1c4f1fd6 3171
f160c7b7
JS
3172 if (speculative)
3173 spte = mark_spte_for_access_track(spte);
3174
38187c83 3175set_pte:
6e7d0354 3176 if (mmu_spte_update(sptep, spte))
5ce4786f 3177 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 3178done:
1e73f9dd
MT
3179 return ret;
3180}
3181
9b8ebbdb
PB
3182static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3183 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3184 bool speculative, bool host_writable)
1e73f9dd
MT
3185{
3186 int was_rmapped = 0;
53a27b39 3187 int rmap_count;
5ce4786f 3188 int set_spte_ret;
9b8ebbdb 3189 int ret = RET_PF_RETRY;
c2a4eadf 3190 bool flush = false;
1e73f9dd 3191
f7616203
XG
3192 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3193 *sptep, write_fault, gfn);
1e73f9dd 3194
afd28fe1 3195 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3196 /*
3197 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3198 * the parent of the now unreachable PTE.
3199 */
852e3c19
JR
3200 if (level > PT_PAGE_TABLE_LEVEL &&
3201 !is_large_pte(*sptep)) {
1e73f9dd 3202 struct kvm_mmu_page *child;
d555c333 3203 u64 pte = *sptep;
1e73f9dd
MT
3204
3205 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3206 drop_parent_pte(child, sptep);
c2a4eadf 3207 flush = true;
d555c333 3208 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3209 pgprintk("hfn old %llx new %llx\n",
d555c333 3210 spte_to_pfn(*sptep), pfn);
c3707958 3211 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3212 flush = true;
6bed6b9e
JR
3213 } else
3214 was_rmapped = 1;
1e73f9dd 3215 }
852e3c19 3216
5ce4786f
JS
3217 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3218 speculative, true, host_writable);
3219 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3220 if (write_fault)
9b8ebbdb 3221 ret = RET_PF_EMULATE;
77c3913b 3222 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3223 }
c3134ce2 3224
c2a4eadf 3225 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3226 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3227 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3228
029499b4 3229 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3230 ret = RET_PF_EMULATE;
ce88decf 3231
d555c333 3232 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3233 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3234 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3235 ++vcpu->kvm->stat.lpages;
3236
ffb61bb3 3237 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3238 if (!was_rmapped) {
3239 rmap_count = rmap_add(vcpu, sptep, gfn);
3240 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3241 rmap_recycle(vcpu, sptep, gfn);
3242 }
1c4f1fd6 3243 }
cb9aaa30 3244
9b8ebbdb 3245 return ret;
1c4f1fd6
AK
3246}
3247
ba049e93 3248static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3249 bool no_dirty_log)
3250{
3251 struct kvm_memory_slot *slot;
957ed9ef 3252
5d163b1c 3253 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3254 if (!slot)
6c8ee57b 3255 return KVM_PFN_ERR_FAULT;
957ed9ef 3256
037d92dc 3257 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3258}
3259
3260static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3261 struct kvm_mmu_page *sp,
3262 u64 *start, u64 *end)
3263{
3264 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3265 struct kvm_memory_slot *slot;
957ed9ef
XG
3266 unsigned access = sp->role.access;
3267 int i, ret;
3268 gfn_t gfn;
3269
3270 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3271 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3272 if (!slot)
957ed9ef
XG
3273 return -1;
3274
d9ef13c2 3275 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3276 if (ret <= 0)
3277 return -1;
3278
43fdcda9 3279 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3280 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3281 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3282 put_page(pages[i]);
3283 }
957ed9ef
XG
3284
3285 return 0;
3286}
3287
3288static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3289 struct kvm_mmu_page *sp, u64 *sptep)
3290{
3291 u64 *spte, *start = NULL;
3292 int i;
3293
3294 WARN_ON(!sp->role.direct);
3295
3296 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3297 spte = sp->spt + i;
3298
3299 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3300 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3301 if (!start)
3302 continue;
3303 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3304 break;
3305 start = NULL;
3306 } else if (!start)
3307 start = spte;
3308 }
3309}
3310
3311static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3312{
3313 struct kvm_mmu_page *sp;
3314
ac8d57e5
PF
3315 sp = page_header(__pa(sptep));
3316
957ed9ef 3317 /*
ac8d57e5
PF
3318 * Without accessed bits, there's no way to distinguish between
3319 * actually accessed translations and prefetched, so disable pte
3320 * prefetch if accessed bits aren't available.
957ed9ef 3321 */
ac8d57e5 3322 if (sp_ad_disabled(sp))
957ed9ef
XG
3323 return;
3324
957ed9ef
XG
3325 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3326 return;
3327
3328 __direct_pte_prefetch(vcpu, sp, sptep);
3329}
3330
0885904d
SC
3331static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3332 gfn_t gfn, kvm_pfn_t *pfnp,
3333 int *levelp)
3334{
3335 kvm_pfn_t pfn = *pfnp;
3336 int level = *levelp;
3337
3338 /*
3339 * Check if it's a transparent hugepage. If this would be an
3340 * hugetlbfs page, level wouldn't be set to
3341 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3342 * here.
3343 */
3344 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3345 !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3346 PageTransCompoundMap(pfn_to_page(pfn))) {
3347 unsigned long mask;
4cd071d1 3348
0885904d 3349 /*
4cd071d1
SC
3350 * mmu_notifier_retry() was successful and mmu_lock is held, so
3351 * the pmd can't be split from under us.
0885904d
SC
3352 */
3353 *levelp = level = PT_DIRECTORY_LEVEL;
3354 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3355 VM_BUG_ON((gfn & mask) != (pfn & mask));
4cd071d1 3356 *pfnp = pfn & ~mask;
0885904d
SC
3357 }
3358}
3359
b8e8c830
PB
3360static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3361 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3362{
3363 int level = *levelp;
3364 u64 spte = *it.sptep;
3365
3366 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3367 is_nx_huge_page_enabled() &&
3368 is_shadow_present_pte(spte) &&
3369 !is_large_pte(spte)) {
3370 /*
3371 * A small SPTE exists for this pfn, but FNAME(fetch)
3372 * and __direct_map would like to create a large PTE
3373 * instead: just force them to go down another level,
3374 * patching back for them into pfn the next 9 bits of
3375 * the address.
3376 */
3377 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3378 *pfnp |= gfn & page_mask;
3379 (*levelp)--;
3380 }
3381}
3382
3fcf2d1b 3383static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
4cd071d1
SC
3384 int map_writable, int level, int max_level,
3385 kvm_pfn_t pfn, bool prefault,
3386 bool account_disallowed_nx_lpage)
140754bc 3387{
3fcf2d1b 3388 struct kvm_shadow_walk_iterator it;
140754bc 3389 struct kvm_mmu_page *sp;
3fcf2d1b
PB
3390 int ret;
3391 gfn_t gfn = gpa >> PAGE_SHIFT;
3392 gfn_t base_gfn = gfn;
6aa8b732 3393
0c7a98e3 3394 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 3395 return RET_PF_RETRY;
989c6b34 3396
4cd071d1
SC
3397 if (likely(max_level > PT_PAGE_TABLE_LEVEL))
3398 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3399
335e192a 3400 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 3401 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
3402 /*
3403 * We cannot overwrite existing page tables with an NX
3404 * large page, as the leaf could be executable.
3405 */
3406 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3407
3fcf2d1b
PB
3408 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3409 if (it.level == level)
9f652d21 3410 break;
6aa8b732 3411
3fcf2d1b
PB
3412 drop_large_spte(vcpu, it.sptep);
3413 if (!is_shadow_present_pte(*it.sptep)) {
3414 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3415 it.level - 1, true, ACC_ALL);
c9fa0b3b 3416
3fcf2d1b 3417 link_shadow_page(vcpu, it.sptep, sp);
2cb70fd4 3418 if (account_disallowed_nx_lpage)
b8e8c830 3419 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
3420 }
3421 }
3fcf2d1b
PB
3422
3423 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3424 write, level, base_gfn, pfn, prefault,
3425 map_writable);
3426 direct_pte_prefetch(vcpu, it.sptep);
3427 ++vcpu->stat.pf_fixed;
3428 return ret;
6aa8b732
AK
3429}
3430
77db5cbd 3431static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3432{
585a8b9b 3433 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3434}
3435
ba049e93 3436static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3437{
4d8b81ab
XG
3438 /*
3439 * Do not cache the mmio info caused by writing the readonly gfn
3440 * into the spte otherwise read access on readonly gfn also can
3441 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3442 */
3443 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3444 return RET_PF_EMULATE;
4d8b81ab 3445
e6c1502b 3446 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3447 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3448 return RET_PF_RETRY;
d7c55201 3449 }
edba23e5 3450
2c151b25 3451 return -EFAULT;
bf998156
HY
3452}
3453
d7c55201 3454static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3455 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3456{
d7c55201 3457 /* The pfn is invalid, report the error! */
81c52c56 3458 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3459 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3460 return true;
d7c55201
XG
3461 }
3462
ce88decf 3463 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
3464 vcpu_cache_mmio_info(vcpu, gva, gfn,
3465 access & shadow_mmio_access_mask);
d7c55201 3466
798e88b3 3467 return false;
d7c55201
XG
3468}
3469
e5552fd2 3470static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3471{
1c118b82
XG
3472 /*
3473 * Do not fix the mmio spte with invalid generation number which
3474 * need to be updated by slow page fault path.
3475 */
3476 if (unlikely(error_code & PFERR_RSVD_MASK))
3477 return false;
3478
f160c7b7
JS
3479 /* See if the page fault is due to an NX violation */
3480 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3481 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3482 return false;
3483
c7ba5b48 3484 /*
f160c7b7
JS
3485 * #PF can be fast if:
3486 * 1. The shadow page table entry is not present, which could mean that
3487 * the fault is potentially caused by access tracking (if enabled).
3488 * 2. The shadow page table entry is present and the fault
3489 * is caused by write-protect, that means we just need change the W
3490 * bit of the spte which can be done out of mmu-lock.
3491 *
3492 * However, if access tracking is disabled we know that a non-present
3493 * page must be a genuine page fault where we have to create a new SPTE.
3494 * So, if access tracking is disabled, we return true only for write
3495 * accesses to a present page.
c7ba5b48 3496 */
c7ba5b48 3497
f160c7b7
JS
3498 return shadow_acc_track_mask != 0 ||
3499 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3500 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3501}
3502
97dceba2
JS
3503/*
3504 * Returns true if the SPTE was fixed successfully. Otherwise,
3505 * someone else modified the SPTE from its original value.
3506 */
c7ba5b48 3507static bool
92a476cb 3508fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3509 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3510{
c7ba5b48
XG
3511 gfn_t gfn;
3512
3513 WARN_ON(!sp->role.direct);
3514
9b51a630
KH
3515 /*
3516 * Theoretically we could also set dirty bit (and flush TLB) here in
3517 * order to eliminate unnecessary PML logging. See comments in
3518 * set_spte. But fast_page_fault is very unlikely to happen with PML
3519 * enabled, so we do not do this. This might result in the same GPA
3520 * to be logged in PML buffer again when the write really happens, and
3521 * eventually to be called by mark_page_dirty twice. But it's also no
3522 * harm. This also avoids the TLB flush needed after setting dirty bit
3523 * so non-PML cases won't be impacted.
3524 *
3525 * Compare with set_spte where instead shadow_dirty_mask is set.
3526 */
f160c7b7 3527 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3528 return false;
3529
d3e328f2 3530 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3531 /*
3532 * The gfn of direct spte is stable since it is
3533 * calculated by sp->gfn.
3534 */
3535 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3536 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3537 }
c7ba5b48
XG
3538
3539 return true;
3540}
3541
d3e328f2
JS
3542static bool is_access_allowed(u32 fault_err_code, u64 spte)
3543{
3544 if (fault_err_code & PFERR_FETCH_MASK)
3545 return is_executable_pte(spte);
3546
3547 if (fault_err_code & PFERR_WRITE_MASK)
3548 return is_writable_pte(spte);
3549
3550 /* Fault was on Read access */
3551 return spte & PT_PRESENT_MASK;
3552}
3553
c7ba5b48
XG
3554/*
3555 * Return value:
3556 * - true: let the vcpu to access on the same address again.
3557 * - false: let the real page fault path to fix it.
3558 */
736c291c 3559static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int level,
c7ba5b48
XG
3560 u32 error_code)
3561{
3562 struct kvm_shadow_walk_iterator iterator;
92a476cb 3563 struct kvm_mmu_page *sp;
97dceba2 3564 bool fault_handled = false;
c7ba5b48 3565 u64 spte = 0ull;
97dceba2 3566 uint retry_count = 0;
c7ba5b48 3567
e5552fd2 3568 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3569 return false;
3570
3571 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3572
97dceba2 3573 do {
d3e328f2 3574 u64 new_spte;
c7ba5b48 3575
736c291c 3576 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
d162f30a
JS
3577 if (!is_shadow_present_pte(spte) ||
3578 iterator.level < level)
3579 break;
3580
97dceba2
JS
3581 sp = page_header(__pa(iterator.sptep));
3582 if (!is_last_spte(spte, sp->role.level))
3583 break;
c7ba5b48 3584
97dceba2 3585 /*
f160c7b7
JS
3586 * Check whether the memory access that caused the fault would
3587 * still cause it if it were to be performed right now. If not,
3588 * then this is a spurious fault caused by TLB lazily flushed,
3589 * or some other CPU has already fixed the PTE after the
3590 * current CPU took the fault.
97dceba2
JS
3591 *
3592 * Need not check the access of upper level table entries since
3593 * they are always ACC_ALL.
3594 */
d3e328f2
JS
3595 if (is_access_allowed(error_code, spte)) {
3596 fault_handled = true;
3597 break;
3598 }
f160c7b7 3599
d3e328f2
JS
3600 new_spte = spte;
3601
3602 if (is_access_track_spte(spte))
3603 new_spte = restore_acc_track_spte(new_spte);
3604
3605 /*
3606 * Currently, to simplify the code, write-protection can
3607 * be removed in the fast path only if the SPTE was
3608 * write-protected for dirty-logging or access tracking.
3609 */
3610 if ((error_code & PFERR_WRITE_MASK) &&
3611 spte_can_locklessly_be_made_writable(spte))
3612 {
3613 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3614
3615 /*
d3e328f2
JS
3616 * Do not fix write-permission on the large spte. Since
3617 * we only dirty the first page into the dirty-bitmap in
3618 * fast_pf_fix_direct_spte(), other pages are missed
3619 * if its slot has dirty logging enabled.
3620 *
3621 * Instead, we let the slow page fault path create a
3622 * normal spte to fix the access.
3623 *
3624 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3625 */
d3e328f2 3626 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3627 break;
97dceba2 3628 }
c7ba5b48 3629
f160c7b7 3630 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3631 if (new_spte == spte ||
3632 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3633 break;
3634
3635 /*
3636 * Currently, fast page fault only works for direct mapping
3637 * since the gfn is not stable for indirect shadow page. See
2f5947df 3638 * Documentation/virt/kvm/locking.txt to get more detail.
97dceba2
JS
3639 */
3640 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3641 iterator.sptep, spte,
d3e328f2 3642 new_spte);
97dceba2
JS
3643 if (fault_handled)
3644 break;
3645
3646 if (++retry_count > 4) {
3647 printk_once(KERN_WARNING
3648 "kvm: Fast #PF retrying more than 4 times.\n");
3649 break;
3650 }
3651
97dceba2 3652 } while (true);
c126d94f 3653
736c291c 3654 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
97dceba2 3655 spte, fault_handled);
c7ba5b48
XG
3656 walk_shadow_page_lockless_end(vcpu);
3657
97dceba2 3658 return fault_handled;
c7ba5b48
XG
3659}
3660
74b566e6
JS
3661static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3662 struct list_head *invalid_list)
17ac10ad 3663{
4db35314 3664 struct kvm_mmu_page *sp;
17ac10ad 3665
74b566e6 3666 if (!VALID_PAGE(*root_hpa))
7b53aa56 3667 return;
35af577a 3668
74b566e6
JS
3669 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3670 --sp->root_count;
3671 if (!sp->root_count && sp->role.invalid)
3672 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3673
74b566e6
JS
3674 *root_hpa = INVALID_PAGE;
3675}
3676
08fb59d8 3677/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3678void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3679 ulong roots_to_free)
74b566e6
JS
3680{
3681 int i;
3682 LIST_HEAD(invalid_list);
08fb59d8 3683 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3684
b94742c9 3685 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3686
08fb59d8 3687 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3688 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3689 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3690 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3691 VALID_PAGE(mmu->prev_roots[i].hpa))
3692 break;
3693
3694 if (i == KVM_MMU_NUM_PREV_ROOTS)
3695 return;
3696 }
35af577a
GN
3697
3698 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3699
b94742c9
JS
3700 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3701 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3702 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3703 &invalid_list);
7c390d35 3704
08fb59d8
JS
3705 if (free_active_root) {
3706 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3707 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3708 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3709 &invalid_list);
3710 } else {
3711 for (i = 0; i < 4; ++i)
3712 if (mmu->pae_root[i] != 0)
3713 mmu_free_root_page(vcpu->kvm,
3714 &mmu->pae_root[i],
3715 &invalid_list);
3716 mmu->root_hpa = INVALID_PAGE;
3717 }
ad7dc69a 3718 mmu->root_cr3 = 0;
17ac10ad 3719 }
74b566e6 3720
d98ba053 3721 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3722 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3723}
74b566e6 3724EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3725
8986ecc0
MT
3726static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3727{
3728 int ret = 0;
3729
3730 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3731 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3732 ret = 1;
3733 }
3734
3735 return ret;
3736}
3737
651dd37a
JR
3738static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3739{
3740 struct kvm_mmu_page *sp;
7ebaf15e 3741 unsigned i;
651dd37a 3742
44dd3ffa 3743 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3744 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3745 if(make_mmu_pages_available(vcpu) < 0) {
3746 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3747 return -ENOSPC;
26eeb53c 3748 }
855feb67 3749 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3750 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3751 ++sp->root_count;
3752 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3753 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3754 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3755 for (i = 0; i < 4; ++i) {
44dd3ffa 3756 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3757
fa4a2c08 3758 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3759 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3760 if (make_mmu_pages_available(vcpu) < 0) {
3761 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3762 return -ENOSPC;
26eeb53c 3763 }
649497d1 3764 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3765 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3766 root = __pa(sp->spt);
3767 ++sp->root_count;
3768 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3769 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3770 }
44dd3ffa 3771 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3772 } else
3773 BUG();
ad7dc69a 3774 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
651dd37a
JR
3775
3776 return 0;
3777}
3778
3779static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3780{
4db35314 3781 struct kvm_mmu_page *sp;
81407ca5 3782 u64 pdptr, pm_mask;
ad7dc69a 3783 gfn_t root_gfn, root_cr3;
81407ca5 3784 int i;
3bb65a22 3785
ad7dc69a
VK
3786 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3787 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3788
651dd37a
JR
3789 if (mmu_check_root(vcpu, root_gfn))
3790 return 1;
3791
3792 /*
3793 * Do we shadow a long mode page table? If so we need to
3794 * write-protect the guests page table root.
3795 */
44dd3ffa
VK
3796 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3797 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3798
fa4a2c08 3799 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3800
8facbbff 3801 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3802 if (make_mmu_pages_available(vcpu) < 0) {
3803 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3804 return -ENOSPC;
26eeb53c 3805 }
855feb67 3806 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3807 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3808 root = __pa(sp->spt);
3809 ++sp->root_count;
8facbbff 3810 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3811 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3812 goto set_root_cr3;
17ac10ad 3813 }
f87f9288 3814
651dd37a
JR
3815 /*
3816 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3817 * or a PAE 3-level page table. In either case we need to be aware that
3818 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3819 */
81407ca5 3820 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3821 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3822 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3823
17ac10ad 3824 for (i = 0; i < 4; ++i) {
44dd3ffa 3825 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3826
fa4a2c08 3827 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3828 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3829 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3830 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3831 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3832 continue;
3833 }
6de4f3ad 3834 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3835 if (mmu_check_root(vcpu, root_gfn))
3836 return 1;
5a7388c2 3837 }
8facbbff 3838 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3839 if (make_mmu_pages_available(vcpu) < 0) {
3840 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3841 return -ENOSPC;
26eeb53c 3842 }
bb11c6c9
TY
3843 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3844 0, ACC_ALL);
4db35314
AK
3845 root = __pa(sp->spt);
3846 ++sp->root_count;
8facbbff
AK
3847 spin_unlock(&vcpu->kvm->mmu_lock);
3848
44dd3ffa 3849 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3850 }
44dd3ffa 3851 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3852
3853 /*
3854 * If we shadow a 32 bit page table with a long mode page
3855 * table we enter this path.
3856 */
44dd3ffa
VK
3857 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3858 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3859 /*
3860 * The additional page necessary for this is only
3861 * allocated on demand.
3862 */
3863
3864 u64 *lm_root;
3865
254272ce 3866 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3867 if (lm_root == NULL)
3868 return 1;
3869
44dd3ffa 3870 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3871
44dd3ffa 3872 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3873 }
3874
44dd3ffa 3875 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3876 }
3877
ad7dc69a
VK
3878set_root_cr3:
3879 vcpu->arch.mmu->root_cr3 = root_cr3;
3880
8986ecc0 3881 return 0;
17ac10ad
AK
3882}
3883
651dd37a
JR
3884static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3885{
44dd3ffa 3886 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3887 return mmu_alloc_direct_roots(vcpu);
3888 else
3889 return mmu_alloc_shadow_roots(vcpu);
3890}
3891
578e1c4d 3892void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3893{
3894 int i;
3895 struct kvm_mmu_page *sp;
3896
44dd3ffa 3897 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3898 return;
3899
44dd3ffa 3900 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3901 return;
6903074c 3902
56f17dd3 3903 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3904
44dd3ffa
VK
3905 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3906 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3907 sp = page_header(root);
578e1c4d
JS
3908
3909 /*
3910 * Even if another CPU was marking the SP as unsync-ed
3911 * simultaneously, any guest page table changes are not
3912 * guaranteed to be visible anyway until this VCPU issues a TLB
3913 * flush strictly after those changes are made. We only need to
3914 * ensure that the other CPU sets these flags before any actual
3915 * changes to the page tables are made. The comments in
3916 * mmu_need_write_protect() describe what could go wrong if this
3917 * requirement isn't satisfied.
3918 */
3919 if (!smp_load_acquire(&sp->unsync) &&
3920 !smp_load_acquire(&sp->unsync_children))
3921 return;
3922
3923 spin_lock(&vcpu->kvm->mmu_lock);
3924 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3925
0ba73cda 3926 mmu_sync_children(vcpu, sp);
578e1c4d 3927
0375f7fa 3928 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3929 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3930 return;
3931 }
578e1c4d
JS
3932
3933 spin_lock(&vcpu->kvm->mmu_lock);
3934 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3935
0ba73cda 3936 for (i = 0; i < 4; ++i) {
44dd3ffa 3937 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3938
8986ecc0 3939 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3940 root &= PT64_BASE_ADDR_MASK;
3941 sp = page_header(root);
3942 mmu_sync_children(vcpu, sp);
3943 }
3944 }
0ba73cda 3945
578e1c4d 3946 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3947 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3948}
bfd0a56b 3949EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3950
736c291c 3951static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3952 u32 access, struct x86_exception *exception)
6aa8b732 3953{
ab9ae313
AK
3954 if (exception)
3955 exception->error_code = 0;
6aa8b732
AK
3956 return vaddr;
3957}
3958
736c291c 3959static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3960 u32 access,
3961 struct x86_exception *exception)
6539e738 3962{
ab9ae313
AK
3963 if (exception)
3964 exception->error_code = 0;
54987b7a 3965 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3966}
3967
d625b155
XG
3968static bool
3969__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3970{
3971 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3972
3973 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3974 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3975}
3976
3977static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3978{
3979 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3980}
3981
3982static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3983{
3984 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3985}
3986
ded58749 3987static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3988{
9034e6e8
PB
3989 /*
3990 * A nested guest cannot use the MMIO cache if it is using nested
3991 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3992 */
3993 if (mmu_is_nested(vcpu))
3994 return false;
3995
ce88decf
XG
3996 if (direct)
3997 return vcpu_match_mmio_gpa(vcpu, addr);
3998
3999 return vcpu_match_mmio_gva(vcpu, addr);
4000}
4001
47ab8751
XG
4002/* return true if reserved bit is detected on spte. */
4003static bool
4004walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
4005{
4006 struct kvm_shadow_walk_iterator iterator;
2a7266a8 4007 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
4008 int root, leaf;
4009 bool reserved = false;
ce88decf
XG
4010
4011 walk_shadow_page_lockless_begin(vcpu);
47ab8751 4012
29ecd660
PB
4013 for (shadow_walk_init(&iterator, vcpu, addr),
4014 leaf = root = iterator.level;
47ab8751
XG
4015 shadow_walk_okay(&iterator);
4016 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
4017 spte = mmu_spte_get_lockless(iterator.sptep);
4018
4019 sptes[leaf - 1] = spte;
29ecd660 4020 leaf--;
47ab8751 4021
ce88decf
XG
4022 if (!is_shadow_present_pte(spte))
4023 break;
47ab8751 4024
44dd3ffa 4025 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 4026 iterator.level);
47ab8751
XG
4027 }
4028
ce88decf
XG
4029 walk_shadow_page_lockless_end(vcpu);
4030
47ab8751
XG
4031 if (reserved) {
4032 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4033 __func__, addr);
29ecd660 4034 while (root > leaf) {
47ab8751
XG
4035 pr_err("------ spte 0x%llx level %d.\n",
4036 sptes[root - 1], root);
4037 root--;
4038 }
4039 }
ddce6208 4040
47ab8751
XG
4041 *sptep = spte;
4042 return reserved;
ce88decf
XG
4043}
4044
e08d26f0 4045static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
4046{
4047 u64 spte;
47ab8751 4048 bool reserved;
ce88decf 4049
ded58749 4050 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 4051 return RET_PF_EMULATE;
ce88decf 4052
47ab8751 4053 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 4054 if (WARN_ON(reserved))
9b8ebbdb 4055 return -EINVAL;
ce88decf
XG
4056
4057 if (is_mmio_spte(spte)) {
4058 gfn_t gfn = get_mmio_spte_gfn(spte);
4059 unsigned access = get_mmio_spte_access(spte);
4060
54bf36aa 4061 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 4062 return RET_PF_INVALID;
f8f55942 4063
ce88decf
XG
4064 if (direct)
4065 addr = 0;
4f022648
XG
4066
4067 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 4068 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 4069 return RET_PF_EMULATE;
ce88decf
XG
4070 }
4071
ce88decf
XG
4072 /*
4073 * If the page table is zapped by other cpus, let CPU fault again on
4074 * the address.
4075 */
9b8ebbdb 4076 return RET_PF_RETRY;
ce88decf 4077}
ce88decf 4078
3d0c27ad
XG
4079static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4080 u32 error_code, gfn_t gfn)
4081{
4082 if (unlikely(error_code & PFERR_RSVD_MASK))
4083 return false;
4084
4085 if (!(error_code & PFERR_PRESENT_MASK) ||
4086 !(error_code & PFERR_WRITE_MASK))
4087 return false;
4088
4089 /*
4090 * guest is writing the page which is write tracked which can
4091 * not be fixed by page fault handler.
4092 */
4093 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4094 return true;
4095
4096 return false;
4097}
4098
e5691a81
XG
4099static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4100{
4101 struct kvm_shadow_walk_iterator iterator;
4102 u64 spte;
4103
e5691a81
XG
4104 walk_shadow_page_lockless_begin(vcpu);
4105 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4106 clear_sp_write_flooding_count(iterator.sptep);
4107 if (!is_shadow_present_pte(spte))
4108 break;
4109 }
4110 walk_shadow_page_lockless_end(vcpu);
4111}
4112
9f1a8526
SC
4113static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4114 gfn_t gfn)
4115{
4116 struct kvm_arch_async_pf arch;
4117
4118 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4119 arch.gfn = gfn;
4120 arch.direct_map = vcpu->arch.mmu->direct_map;
4121 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4122
4123 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4124 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4125}
4126
4127static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4128 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4129 bool *writable)
4130{
4131 struct kvm_memory_slot *slot;
4132 bool async;
4133
4134 /*
4135 * Don't expose private memslots to L2.
4136 */
4137 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4138 *pfn = KVM_PFN_NOSLOT;
4139 return false;
4140 }
4141
4142 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4143 async = false;
4144 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4145 if (!async)
4146 return false; /* *pfn has correct page already */
4147
4148 if (!prefault && kvm_can_do_async_pf(vcpu)) {
4149 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4150 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4151 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4152 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4153 return true;
4154 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4155 return true;
4156 }
4157
4158 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4159 return false;
4160}
4161
0f90e1c1
SC
4162static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4163 bool prefault, int max_level, bool is_tdp)
6aa8b732 4164{
367fd790 4165 bool write = error_code & PFERR_WRITE_MASK;
367fd790
SC
4166 bool exec = error_code & PFERR_FETCH_MASK;
4167 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
0f90e1c1 4168 bool map_writable;
6aa8b732 4169
0f90e1c1
SC
4170 gfn_t gfn = gpa >> PAGE_SHIFT;
4171 unsigned long mmu_seq;
4172 kvm_pfn_t pfn;
4173 int level, r;
ce88decf 4174
0f90e1c1 4175 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
367fd790 4176
3d0c27ad 4177 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4178 return RET_PF_EMULATE;
ce88decf 4179
e2dec939
AK
4180 r = mmu_topup_memory_caches(vcpu);
4181 if (r)
4182 return r;
714b93da 4183
0f90e1c1
SC
4184 if (lpage_disallowed)
4185 max_level = PT_PAGE_TABLE_LEVEL;
367fd790 4186
39ca1ecb
SC
4187 level = mapping_level(vcpu, gfn, &max_level);
4188 if (level > PT_PAGE_TABLE_LEVEL)
367fd790 4189 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
367fd790
SC
4190
4191 if (fast_page_fault(vcpu, gpa, level, error_code))
4192 return RET_PF_RETRY;
4193
4194 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4195 smp_rmb();
4196
4197 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4198 return RET_PF_RETRY;
4199
0f90e1c1 4200 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 4201 return r;
6aa8b732 4202
367fd790
SC
4203 r = RET_PF_RETRY;
4204 spin_lock(&vcpu->kvm->mmu_lock);
4205 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4206 goto out_unlock;
4207 if (make_mmu_pages_available(vcpu) < 0)
4208 goto out_unlock;
4cd071d1
SC
4209 r = __direct_map(vcpu, gpa, write, map_writable, level, max_level, pfn,
4210 prefault, is_tdp && lpage_disallowed);
0f90e1c1 4211
367fd790
SC
4212out_unlock:
4213 spin_unlock(&vcpu->kvm->mmu_lock);
4214 kvm_release_pfn_clean(pfn);
4215 return r;
6aa8b732
AK
4216}
4217
0f90e1c1
SC
4218static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4219 u32 error_code, bool prefault)
4220{
4221 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4222
4223 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4224 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4225 PT_DIRECTORY_LEVEL, false);
4226}
4227
1261bfa3 4228int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4229 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4230{
4231 int r = 1;
4232
736c291c
SC
4233#ifndef CONFIG_X86_64
4234 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4235 if (WARN_ON_ONCE(fault_address >> 32))
4236 return -EFAULT;
4237#endif
4238
c595ceee 4239 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4240 switch (vcpu->arch.apf.host_apf_reason) {
4241 default:
4242 trace_kvm_page_fault(fault_address, error_code);
4243
d0006530 4244 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4245 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4246 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4247 insn_len);
4248 break;
4249 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4250 vcpu->arch.apf.host_apf_reason = 0;
4251 local_irq_disable();
a2b7861b 4252 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4253 local_irq_enable();
4254 break;
4255 case KVM_PV_REASON_PAGE_READY:
4256 vcpu->arch.apf.host_apf_reason = 0;
4257 local_irq_disable();
4258 kvm_async_pf_task_wake(fault_address);
4259 local_irq_enable();
4260 break;
4261 }
4262 return r;
4263}
4264EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4265
736c291c 4266static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
78b2c54a 4267 bool prefault)
fb72d167 4268{
cb9b88c6 4269 int max_level;
fb72d167 4270
cb9b88c6
SC
4271 for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4272 max_level > PT_PAGE_TABLE_LEVEL;
4273 max_level--) {
4274 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 4275 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
cb9b88c6
SC
4276
4277 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4278 break;
4279 }
4280
0f90e1c1
SC
4281 return direct_page_fault(vcpu, gpa, error_code, prefault,
4282 max_level, true);
fb72d167
JR
4283}
4284
8a3c1a33
PB
4285static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4286 struct kvm_mmu *context)
6aa8b732 4287{
6aa8b732 4288 context->page_fault = nonpaging_page_fault;
6aa8b732 4289 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4290 context->sync_page = nonpaging_sync_page;
a7052897 4291 context->invlpg = nonpaging_invlpg;
0f53b5b1 4292 context->update_pte = nonpaging_update_pte;
cea0f0e7 4293 context->root_level = 0;
6aa8b732 4294 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4295 context->direct_map = true;
2d48a985 4296 context->nx = false;
6aa8b732
AK
4297}
4298
b94742c9
JS
4299/*
4300 * Find out if a previously cached root matching the new CR3/role is available.
4301 * The current root is also inserted into the cache.
4302 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4303 * returned.
4304 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4305 * false is returned. This root should now be freed by the caller.
4306 */
4307static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4308 union kvm_mmu_page_role new_role)
4309{
4310 uint i;
4311 struct kvm_mmu_root_info root;
44dd3ffa 4312 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4313
ad7dc69a 4314 root.cr3 = mmu->root_cr3;
b94742c9
JS
4315 root.hpa = mmu->root_hpa;
4316
4317 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4318 swap(root, mmu->prev_roots[i]);
4319
4320 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4321 page_header(root.hpa) != NULL &&
4322 new_role.word == page_header(root.hpa)->role.word)
4323 break;
4324 }
4325
4326 mmu->root_hpa = root.hpa;
ad7dc69a 4327 mmu->root_cr3 = root.cr3;
b94742c9
JS
4328
4329 return i < KVM_MMU_NUM_PREV_ROOTS;
4330}
4331
0aab33e4 4332static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4333 union kvm_mmu_page_role new_role,
4334 bool skip_tlb_flush)
6aa8b732 4335{
44dd3ffa 4336 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4337
4338 /*
4339 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4340 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4341 * later if necessary.
4342 */
4343 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4344 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4345 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4346 return false;
4347
b94742c9 4348 if (cached_root_available(vcpu, new_cr3, new_role)) {
002c5f73
SC
4349 /*
4350 * It is possible that the cached previous root page is
4351 * obsolete because of a change in the MMU generation
4352 * number. However, changing the generation number is
4353 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4354 * the root set here and allocate a new one.
4355 */
0aab33e4 4356 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4357 if (!skip_tlb_flush) {
4358 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1924242b 4359 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
956bf353
JS
4360 }
4361
4362 /*
4363 * The last MMIO access's GVA and GPA are cached in the
4364 * VCPU. When switching to a new CR3, that GVA->GPA
4365 * mapping may no longer be valid. So clear any cached
4366 * MMIO info even when we don't need to sync the shadow
4367 * page tables.
4368 */
4369 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4370
7c390d35
JS
4371 __clear_sp_write_flooding_count(
4372 page_header(mmu->root_hpa));
4373
7c390d35
JS
4374 return true;
4375 }
4376 }
4377
4378 return false;
6aa8b732
AK
4379}
4380
0aab33e4 4381static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4382 union kvm_mmu_page_role new_role,
4383 bool skip_tlb_flush)
6aa8b732 4384{
ade61e28 4385 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4386 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4387 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4388}
4389
ade61e28 4390void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4391{
ade61e28
JS
4392 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4393 skip_tlb_flush);
0aab33e4 4394}
50c28f21 4395EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4396
5777ed34
JR
4397static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4398{
9f8fe504 4399 return kvm_read_cr3(vcpu);
5777ed34
JR
4400}
4401
6389ee94
AK
4402static void inject_page_fault(struct kvm_vcpu *vcpu,
4403 struct x86_exception *fault)
6aa8b732 4404{
44dd3ffa 4405 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4406}
4407
54bf36aa 4408static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4409 unsigned access, int *nr_present)
ce88decf
XG
4410{
4411 if (unlikely(is_mmio_spte(*sptep))) {
4412 if (gfn != get_mmio_spte_gfn(*sptep)) {
4413 mmu_spte_clear_no_track(sptep);
4414 return true;
4415 }
4416
4417 (*nr_present)++;
54bf36aa 4418 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4419 return true;
4420 }
4421
4422 return false;
4423}
4424
6bb69c9b
PB
4425static inline bool is_last_gpte(struct kvm_mmu *mmu,
4426 unsigned level, unsigned gpte)
6fd01b71 4427{
6bb69c9b
PB
4428 /*
4429 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4430 * If it is clear, there are no large pages at this level, so clear
4431 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4432 */
4433 gpte &= level - mmu->last_nonleaf_level;
4434
829ee279
LP
4435 /*
4436 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4437 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4438 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4439 */
4440 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4441
6bb69c9b 4442 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4443}
4444
37406aaa
NHE
4445#define PTTYPE_EPT 18 /* arbitrary */
4446#define PTTYPE PTTYPE_EPT
4447#include "paging_tmpl.h"
4448#undef PTTYPE
4449
6aa8b732
AK
4450#define PTTYPE 64
4451#include "paging_tmpl.h"
4452#undef PTTYPE
4453
4454#define PTTYPE 32
4455#include "paging_tmpl.h"
4456#undef PTTYPE
4457
6dc98b86
XG
4458static void
4459__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4460 struct rsvd_bits_validate *rsvd_check,
4461 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4462 bool pse, bool amd)
82725b20 4463{
82725b20 4464 u64 exb_bit_rsvd = 0;
5f7dde7b 4465 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4466 u64 nonleaf_bit8_rsvd = 0;
82725b20 4467
a0a64f50 4468 rsvd_check->bad_mt_xwr = 0;
25d92081 4469
6dc98b86 4470 if (!nx)
82725b20 4471 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4472 if (!gbpages)
5f7dde7b 4473 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4474
4475 /*
4476 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4477 * leaf entries) on AMD CPUs only.
4478 */
6fec2144 4479 if (amd)
a0c0feb5
PB
4480 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4481
6dc98b86 4482 switch (level) {
82725b20
DE
4483 case PT32_ROOT_LEVEL:
4484 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4485 rsvd_check->rsvd_bits_mask[0][1] = 0;
4486 rsvd_check->rsvd_bits_mask[0][0] = 0;
4487 rsvd_check->rsvd_bits_mask[1][0] =
4488 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4489
6dc98b86 4490 if (!pse) {
a0a64f50 4491 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4492 break;
4493 }
4494
82725b20
DE
4495 if (is_cpuid_PSE36())
4496 /* 36bits PSE 4MB page */
a0a64f50 4497 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4498 else
4499 /* 32 bits PSE 4MB page */
a0a64f50 4500 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4501 break;
4502 case PT32E_ROOT_LEVEL:
a0a64f50 4503 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4504 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4505 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4506 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4507 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4508 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4509 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4510 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4511 rsvd_bits(maxphyaddr, 62) |
4512 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4513 rsvd_check->rsvd_bits_mask[1][0] =
4514 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4515 break;
855feb67
YZ
4516 case PT64_ROOT_5LEVEL:
4517 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4518 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4519 rsvd_bits(maxphyaddr, 51);
4520 rsvd_check->rsvd_bits_mask[1][4] =
4521 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4522 /* fall through */
2a7266a8 4523 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4524 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4525 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4526 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4527 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4528 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4529 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4530 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4531 rsvd_bits(maxphyaddr, 51);
4532 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4533 rsvd_bits(maxphyaddr, 51);
4534 rsvd_check->rsvd_bits_mask[1][3] =
4535 rsvd_check->rsvd_bits_mask[0][3];
4536 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4537 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4538 rsvd_bits(13, 29);
a0a64f50 4539 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4540 rsvd_bits(maxphyaddr, 51) |
4541 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4542 rsvd_check->rsvd_bits_mask[1][0] =
4543 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4544 break;
4545 }
4546}
4547
6dc98b86
XG
4548static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4549 struct kvm_mmu *context)
4550{
4551 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4552 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4553 context->nx,
4554 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4555 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4556}
4557
81b8eebb
XG
4558static void
4559__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4560 int maxphyaddr, bool execonly)
25d92081 4561{
951f9fd7 4562 u64 bad_mt_xwr;
25d92081 4563
855feb67
YZ
4564 rsvd_check->rsvd_bits_mask[0][4] =
4565 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4566 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4567 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4568 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4569 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4570 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4571 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4572 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4573
4574 /* large page */
855feb67 4575 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4576 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4577 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4578 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4579 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4580 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4581 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4582
951f9fd7
PB
4583 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4584 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4585 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4586 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4587 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4588 if (!execonly) {
4589 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4590 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4591 }
951f9fd7 4592 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4593}
4594
81b8eebb
XG
4595static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4596 struct kvm_mmu *context, bool execonly)
4597{
4598 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4599 cpuid_maxphyaddr(vcpu), execonly);
4600}
4601
c258b62b
XG
4602/*
4603 * the page table on host is the shadow page table for the page
4604 * table in guest or amd nested guest, its mmu features completely
4605 * follow the features in guest.
4606 */
4607void
4608reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4609{
36d9594d
VK
4610 bool uses_nx = context->nx ||
4611 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4612 struct rsvd_bits_validate *shadow_zero_check;
4613 int i;
5f0b8199 4614
6fec2144
PB
4615 /*
4616 * Passing "true" to the last argument is okay; it adds a check
4617 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4618 */
ea2800dd
BS
4619 shadow_zero_check = &context->shadow_zero_check;
4620 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4621 shadow_phys_bits,
5f0b8199 4622 context->shadow_root_level, uses_nx,
d6321d49
RK
4623 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4624 is_pse(vcpu), true);
ea2800dd
BS
4625
4626 if (!shadow_me_mask)
4627 return;
4628
4629 for (i = context->shadow_root_level; --i >= 0;) {
4630 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4631 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4632 }
4633
c258b62b
XG
4634}
4635EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4636
6fec2144
PB
4637static inline bool boot_cpu_is_amd(void)
4638{
4639 WARN_ON_ONCE(!tdp_enabled);
4640 return shadow_x_mask == 0;
4641}
4642
c258b62b
XG
4643/*
4644 * the direct page table on host, use as much mmu features as
4645 * possible, however, kvm currently does not do execution-protection.
4646 */
4647static void
4648reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4649 struct kvm_mmu *context)
4650{
ea2800dd
BS
4651 struct rsvd_bits_validate *shadow_zero_check;
4652 int i;
4653
4654 shadow_zero_check = &context->shadow_zero_check;
4655
6fec2144 4656 if (boot_cpu_is_amd())
ea2800dd 4657 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4658 shadow_phys_bits,
c258b62b 4659 context->shadow_root_level, false,
b8291adc
BP
4660 boot_cpu_has(X86_FEATURE_GBPAGES),
4661 true, true);
c258b62b 4662 else
ea2800dd 4663 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4664 shadow_phys_bits,
c258b62b
XG
4665 false);
4666
ea2800dd
BS
4667 if (!shadow_me_mask)
4668 return;
4669
4670 for (i = context->shadow_root_level; --i >= 0;) {
4671 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4672 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4673 }
c258b62b
XG
4674}
4675
4676/*
4677 * as the comments in reset_shadow_zero_bits_mask() except it
4678 * is the shadow page table for intel nested guest.
4679 */
4680static void
4681reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4682 struct kvm_mmu *context, bool execonly)
4683{
4684 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4685 shadow_phys_bits, execonly);
c258b62b
XG
4686}
4687
09f037aa
PB
4688#define BYTE_MASK(access) \
4689 ((1 & (access) ? 2 : 0) | \
4690 (2 & (access) ? 4 : 0) | \
4691 (3 & (access) ? 8 : 0) | \
4692 (4 & (access) ? 16 : 0) | \
4693 (5 & (access) ? 32 : 0) | \
4694 (6 & (access) ? 64 : 0) | \
4695 (7 & (access) ? 128 : 0))
4696
4697
edc90b7d
XG
4698static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4699 struct kvm_mmu *mmu, bool ept)
97d64b78 4700{
09f037aa
PB
4701 unsigned byte;
4702
4703 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4704 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4705 const u8 u = BYTE_MASK(ACC_USER_MASK);
4706
4707 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4708 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4709 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4710
97d64b78 4711 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4712 unsigned pfec = byte << 1;
4713
97ec8c06 4714 /*
09f037aa
PB
4715 * Each "*f" variable has a 1 bit for each UWX value
4716 * that causes a fault with the given PFEC.
97ec8c06 4717 */
97d64b78 4718
09f037aa 4719 /* Faults from writes to non-writable pages */
a6a6d3b1 4720 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4721 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4722 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4723 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4724 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4725 /* Faults from kernel mode fetches of user pages */
4726 u8 smepf = 0;
4727 /* Faults from kernel mode accesses of user pages */
4728 u8 smapf = 0;
4729
4730 if (!ept) {
4731 /* Faults from kernel mode accesses to user pages */
4732 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4733
4734 /* Not really needed: !nx will cause pte.nx to fault */
4735 if (!mmu->nx)
4736 ff = 0;
4737
4738 /* Allow supervisor writes if !cr0.wp */
4739 if (!cr0_wp)
4740 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4741
4742 /* Disallow supervisor fetches of user code if cr4.smep */
4743 if (cr4_smep)
4744 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4745
4746 /*
4747 * SMAP:kernel-mode data accesses from user-mode
4748 * mappings should fault. A fault is considered
4749 * as a SMAP violation if all of the following
39337ad1 4750 * conditions are true:
09f037aa
PB
4751 * - X86_CR4_SMAP is set in CR4
4752 * - A user page is accessed
4753 * - The access is not a fetch
4754 * - Page fault in kernel mode
4755 * - if CPL = 3 or X86_EFLAGS_AC is clear
4756 *
4757 * Here, we cover the first three conditions.
4758 * The fourth is computed dynamically in permission_fault();
4759 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4760 * *not* subject to SMAP restrictions.
4761 */
4762 if (cr4_smap)
4763 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4764 }
09f037aa
PB
4765
4766 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4767 }
4768}
4769
2d344105
HH
4770/*
4771* PKU is an additional mechanism by which the paging controls access to
4772* user-mode addresses based on the value in the PKRU register. Protection
4773* key violations are reported through a bit in the page fault error code.
4774* Unlike other bits of the error code, the PK bit is not known at the
4775* call site of e.g. gva_to_gpa; it must be computed directly in
4776* permission_fault based on two bits of PKRU, on some machine state (CR4,
4777* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4778*
4779* In particular the following conditions come from the error code, the
4780* page tables and the machine state:
4781* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4782* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4783* - PK is always zero if U=0 in the page tables
4784* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4785*
4786* The PKRU bitmask caches the result of these four conditions. The error
4787* code (minus the P bit) and the page table's U bit form an index into the
4788* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4789* with the two bits of the PKRU register corresponding to the protection key.
4790* For the first three conditions above the bits will be 00, thus masking
4791* away both AD and WD. For all reads or if the last condition holds, WD
4792* only will be masked away.
4793*/
4794static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4795 bool ept)
4796{
4797 unsigned bit;
4798 bool wp;
4799
4800 if (ept) {
4801 mmu->pkru_mask = 0;
4802 return;
4803 }
4804
4805 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4806 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4807 mmu->pkru_mask = 0;
4808 return;
4809 }
4810
4811 wp = is_write_protection(vcpu);
4812
4813 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4814 unsigned pfec, pkey_bits;
4815 bool check_pkey, check_write, ff, uf, wf, pte_user;
4816
4817 pfec = bit << 1;
4818 ff = pfec & PFERR_FETCH_MASK;
4819 uf = pfec & PFERR_USER_MASK;
4820 wf = pfec & PFERR_WRITE_MASK;
4821
4822 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4823 pte_user = pfec & PFERR_RSVD_MASK;
4824
4825 /*
4826 * Only need to check the access which is not an
4827 * instruction fetch and is to a user page.
4828 */
4829 check_pkey = (!ff && pte_user);
4830 /*
4831 * write access is controlled by PKRU if it is a
4832 * user access or CR0.WP = 1.
4833 */
4834 check_write = check_pkey && wf && (uf || wp);
4835
4836 /* PKRU.AD stops both read and write access. */
4837 pkey_bits = !!check_pkey;
4838 /* PKRU.WD stops write access. */
4839 pkey_bits |= (!!check_write) << 1;
4840
4841 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4842 }
4843}
4844
6bb69c9b 4845static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4846{
6bb69c9b
PB
4847 unsigned root_level = mmu->root_level;
4848
4849 mmu->last_nonleaf_level = root_level;
4850 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4851 mmu->last_nonleaf_level++;
6fd01b71
AK
4852}
4853
8a3c1a33
PB
4854static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4855 struct kvm_mmu *context,
4856 int level)
6aa8b732 4857{
2d48a985 4858 context->nx = is_nx(vcpu);
4d6931c3 4859 context->root_level = level;
2d48a985 4860
4d6931c3 4861 reset_rsvds_bits_mask(vcpu, context);
25d92081 4862 update_permission_bitmask(vcpu, context, false);
2d344105 4863 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4864 update_last_nonleaf_level(vcpu, context);
6aa8b732 4865
fa4a2c08 4866 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4867 context->page_fault = paging64_page_fault;
6aa8b732 4868 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4869 context->sync_page = paging64_sync_page;
a7052897 4870 context->invlpg = paging64_invlpg;
0f53b5b1 4871 context->update_pte = paging64_update_pte;
17ac10ad 4872 context->shadow_root_level = level;
c5a78f2b 4873 context->direct_map = false;
6aa8b732
AK
4874}
4875
8a3c1a33
PB
4876static void paging64_init_context(struct kvm_vcpu *vcpu,
4877 struct kvm_mmu *context)
17ac10ad 4878{
855feb67
YZ
4879 int root_level = is_la57_mode(vcpu) ?
4880 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4881
4882 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4883}
4884
8a3c1a33
PB
4885static void paging32_init_context(struct kvm_vcpu *vcpu,
4886 struct kvm_mmu *context)
6aa8b732 4887{
2d48a985 4888 context->nx = false;
4d6931c3 4889 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4890
4d6931c3 4891 reset_rsvds_bits_mask(vcpu, context);
25d92081 4892 update_permission_bitmask(vcpu, context, false);
2d344105 4893 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4894 update_last_nonleaf_level(vcpu, context);
6aa8b732 4895
6aa8b732 4896 context->page_fault = paging32_page_fault;
6aa8b732 4897 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4898 context->sync_page = paging32_sync_page;
a7052897 4899 context->invlpg = paging32_invlpg;
0f53b5b1 4900 context->update_pte = paging32_update_pte;
6aa8b732 4901 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4902 context->direct_map = false;
6aa8b732
AK
4903}
4904
8a3c1a33
PB
4905static void paging32E_init_context(struct kvm_vcpu *vcpu,
4906 struct kvm_mmu *context)
6aa8b732 4907{
8a3c1a33 4908 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4909}
4910
a336282d
VK
4911static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4912{
4913 union kvm_mmu_extended_role ext = {0};
4914
7dcd5755 4915 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4916 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4917 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4918 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4919 ext.cr4_pse = !!is_pse(vcpu);
4920 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4921 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
de3ccd26 4922 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4923
4924 ext.valid = 1;
4925
4926 return ext;
4927}
4928
7dcd5755
VK
4929static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4930 bool base_only)
4931{
4932 union kvm_mmu_role role = {0};
4933
4934 role.base.access = ACC_ALL;
4935 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4936 role.base.cr0_wp = is_write_protection(vcpu);
4937 role.base.smm = is_smm(vcpu);
4938 role.base.guest_mode = is_guest_mode(vcpu);
4939
4940 if (base_only)
4941 return role;
4942
4943 role.ext = kvm_calc_mmu_role_ext(vcpu);
4944
4945 return role;
4946}
4947
4948static union kvm_mmu_role
4949kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4950{
7dcd5755 4951 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4952
7dcd5755
VK
4953 role.base.ad_disabled = (shadow_accessed_mask == 0);
4954 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4955 role.base.direct = true;
47c42e6b 4956 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4957
4958 return role;
4959}
4960
8a3c1a33 4961static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4962{
44dd3ffa 4963 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4964 union kvm_mmu_role new_role =
4965 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4966
7dcd5755
VK
4967 new_role.base.word &= mmu_base_role_mask.word;
4968 if (new_role.as_u64 == context->mmu_role.as_u64)
4969 return;
4970
4971 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 4972 context->page_fault = tdp_page_fault;
e8bc217a 4973 context->sync_page = nonpaging_sync_page;
a7052897 4974 context->invlpg = nonpaging_invlpg;
0f53b5b1 4975 context->update_pte = nonpaging_update_pte;
855feb67 4976 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4977 context->direct_map = true;
1c97f0a0 4978 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4979 context->get_cr3 = get_cr3;
e4e517b4 4980 context->get_pdptr = kvm_pdptr_read;
cb659db8 4981 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4982
4983 if (!is_paging(vcpu)) {
2d48a985 4984 context->nx = false;
fb72d167
JR
4985 context->gva_to_gpa = nonpaging_gva_to_gpa;
4986 context->root_level = 0;
4987 } else if (is_long_mode(vcpu)) {
2d48a985 4988 context->nx = is_nx(vcpu);
855feb67
YZ
4989 context->root_level = is_la57_mode(vcpu) ?
4990 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4991 reset_rsvds_bits_mask(vcpu, context);
4992 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4993 } else if (is_pae(vcpu)) {
2d48a985 4994 context->nx = is_nx(vcpu);
fb72d167 4995 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4996 reset_rsvds_bits_mask(vcpu, context);
4997 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4998 } else {
2d48a985 4999 context->nx = false;
fb72d167 5000 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
5001 reset_rsvds_bits_mask(vcpu, context);
5002 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
5003 }
5004
25d92081 5005 update_permission_bitmask(vcpu, context, false);
2d344105 5006 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 5007 update_last_nonleaf_level(vcpu, context);
c258b62b 5008 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
5009}
5010
7dcd5755
VK
5011static union kvm_mmu_role
5012kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5013{
5014 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5015
5016 role.base.smep_andnot_wp = role.ext.cr4_smep &&
5017 !is_write_protection(vcpu);
5018 role.base.smap_andnot_wp = role.ext.cr4_smap &&
5019 !is_write_protection(vcpu);
5020 role.base.direct = !is_paging(vcpu);
47c42e6b 5021 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
5022
5023 if (!is_long_mode(vcpu))
7dcd5755 5024 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 5025 else if (is_la57_mode(vcpu))
7dcd5755 5026 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 5027 else
7dcd5755 5028 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
5029
5030 return role;
5031}
5032
5033void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5034{
44dd3ffa 5035 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
5036 union kvm_mmu_role new_role =
5037 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5038
5039 new_role.base.word &= mmu_base_role_mask.word;
5040 if (new_role.as_u64 == context->mmu_role.as_u64)
5041 return;
6aa8b732
AK
5042
5043 if (!is_paging(vcpu))
8a3c1a33 5044 nonpaging_init_context(vcpu, context);
a9058ecd 5045 else if (is_long_mode(vcpu))
8a3c1a33 5046 paging64_init_context(vcpu, context);
6aa8b732 5047 else if (is_pae(vcpu))
8a3c1a33 5048 paging32E_init_context(vcpu, context);
6aa8b732 5049 else
8a3c1a33 5050 paging32_init_context(vcpu, context);
a770f6f2 5051
7dcd5755 5052 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 5053 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
5054}
5055EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5056
a336282d
VK
5057static union kvm_mmu_role
5058kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5059 bool execonly)
9fa72119 5060{
552c69b1 5061 union kvm_mmu_role role = {0};
14c07ad8 5062
47c42e6b
SC
5063 /* SMM flag is inherited from root_mmu */
5064 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 5065
a336282d 5066 role.base.level = PT64_ROOT_4LEVEL;
47c42e6b 5067 role.base.gpte_is_8_bytes = true;
a336282d
VK
5068 role.base.direct = false;
5069 role.base.ad_disabled = !accessed_dirty;
5070 role.base.guest_mode = true;
5071 role.base.access = ACC_ALL;
9fa72119 5072
47c42e6b
SC
5073 /*
5074 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5075 * SMAP variation to denote shadow EPT entries.
5076 */
5077 role.base.cr0_wp = true;
5078 role.base.smap_andnot_wp = true;
5079
552c69b1 5080 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 5081 role.ext.execonly = execonly;
9fa72119
JS
5082
5083 return role;
5084}
5085
ae1e2d10 5086void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 5087 bool accessed_dirty, gpa_t new_eptp)
155a97a3 5088{
44dd3ffa 5089 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
5090 union kvm_mmu_role new_role =
5091 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5092 execonly);
5093
5094 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5095
5096 new_role.base.word &= mmu_base_role_mask.word;
5097 if (new_role.as_u64 == context->mmu_role.as_u64)
5098 return;
ad896af0 5099
855feb67 5100 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
5101
5102 context->nx = true;
ae1e2d10 5103 context->ept_ad = accessed_dirty;
155a97a3
NHE
5104 context->page_fault = ept_page_fault;
5105 context->gva_to_gpa = ept_gva_to_gpa;
5106 context->sync_page = ept_sync_page;
5107 context->invlpg = ept_invlpg;
5108 context->update_pte = ept_update_pte;
855feb67 5109 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 5110 context->direct_map = false;
a336282d 5111 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 5112
155a97a3 5113 update_permission_bitmask(vcpu, context, true);
2d344105 5114 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 5115 update_last_nonleaf_level(vcpu, context);
155a97a3 5116 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 5117 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
5118}
5119EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5120
8a3c1a33 5121static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5122{
44dd3ffa 5123 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
5124
5125 kvm_init_shadow_mmu(vcpu);
5126 context->set_cr3 = kvm_x86_ops->set_cr3;
5127 context->get_cr3 = get_cr3;
5128 context->get_pdptr = kvm_pdptr_read;
5129 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5130}
5131
8a3c1a33 5132static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5133{
bf627a92 5134 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5135 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5136
bf627a92
VK
5137 new_role.base.word &= mmu_base_role_mask.word;
5138 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5139 return;
5140
5141 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 5142 g_context->get_cr3 = get_cr3;
e4e517b4 5143 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5144 g_context->inject_page_fault = kvm_inject_page_fault;
5145
5146 /*
44dd3ffa 5147 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5148 * L1's nested page tables (e.g. EPT12). The nested translation
5149 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5150 * L2's page tables as the first level of translation and L1's
5151 * nested page tables as the second level of translation. Basically
5152 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5153 */
5154 if (!is_paging(vcpu)) {
2d48a985 5155 g_context->nx = false;
02f59dc9
JR
5156 g_context->root_level = 0;
5157 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5158 } else if (is_long_mode(vcpu)) {
2d48a985 5159 g_context->nx = is_nx(vcpu);
855feb67
YZ
5160 g_context->root_level = is_la57_mode(vcpu) ?
5161 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5162 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5163 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5164 } else if (is_pae(vcpu)) {
2d48a985 5165 g_context->nx = is_nx(vcpu);
02f59dc9 5166 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5167 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5168 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5169 } else {
2d48a985 5170 g_context->nx = false;
02f59dc9 5171 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5172 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5173 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5174 }
5175
25d92081 5176 update_permission_bitmask(vcpu, g_context, false);
2d344105 5177 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5178 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5179}
5180
1c53da3f 5181void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5182{
1c53da3f 5183 if (reset_roots) {
b94742c9
JS
5184 uint i;
5185
44dd3ffa 5186 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5187
5188 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5189 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5190 }
5191
02f59dc9 5192 if (mmu_is_nested(vcpu))
e0c6db3e 5193 init_kvm_nested_mmu(vcpu);
02f59dc9 5194 else if (tdp_enabled)
e0c6db3e 5195 init_kvm_tdp_mmu(vcpu);
fb72d167 5196 else
e0c6db3e 5197 init_kvm_softmmu(vcpu);
fb72d167 5198}
1c53da3f 5199EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5200
9fa72119
JS
5201static union kvm_mmu_page_role
5202kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5203{
7dcd5755
VK
5204 union kvm_mmu_role role;
5205
9fa72119 5206 if (tdp_enabled)
7dcd5755 5207 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5208 else
7dcd5755
VK
5209 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5210
5211 return role.base;
9fa72119 5212}
fb72d167 5213
8a3c1a33 5214void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5215{
95f93af4 5216 kvm_mmu_unload(vcpu);
1c53da3f 5217 kvm_init_mmu(vcpu, true);
17c3ba9d 5218}
8668a3c4 5219EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5220
5221int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5222{
714b93da
AK
5223 int r;
5224
e2dec939 5225 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5226 if (r)
5227 goto out;
8986ecc0 5228 r = mmu_alloc_roots(vcpu);
e2858b4a 5229 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5230 if (r)
5231 goto out;
6e42782f 5232 kvm_mmu_load_cr3(vcpu);
afe828d1 5233 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5234out:
5235 return r;
6aa8b732 5236}
17c3ba9d
AK
5237EXPORT_SYMBOL_GPL(kvm_mmu_load);
5238
5239void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5240{
14c07ad8
VK
5241 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5242 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5243 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5244 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5245}
4b16184c 5246EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5247
0028425f 5248static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5249 struct kvm_mmu_page *sp, u64 *spte,
5250 const void *new)
0028425f 5251{
30945387 5252 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5253 ++vcpu->kvm->stat.mmu_pde_zapped;
5254 return;
30945387 5255 }
0028425f 5256
4cee5764 5257 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5258 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5259}
5260
79539cec
AK
5261static bool need_remote_flush(u64 old, u64 new)
5262{
5263 if (!is_shadow_present_pte(old))
5264 return false;
5265 if (!is_shadow_present_pte(new))
5266 return true;
5267 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5268 return true;
53166229
GN
5269 old ^= shadow_nx_mask;
5270 new ^= shadow_nx_mask;
79539cec
AK
5271 return (old & ~new & PT64_PERM_MASK) != 0;
5272}
5273
889e5cbc 5274static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5275 int *bytes)
da4a00f0 5276{
0e0fee5c 5277 u64 gentry = 0;
889e5cbc 5278 int r;
72016f3a 5279
72016f3a
AK
5280 /*
5281 * Assume that the pte write on a page table of the same type
49b26e26
XG
5282 * as the current vcpu paging mode since we update the sptes only
5283 * when they have the same mode.
72016f3a 5284 */
889e5cbc 5285 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5286 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5287 *gpa &= ~(gpa_t)7;
5288 *bytes = 8;
08e850c6
AK
5289 }
5290
0e0fee5c
JS
5291 if (*bytes == 4 || *bytes == 8) {
5292 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5293 if (r)
5294 gentry = 0;
72016f3a
AK
5295 }
5296
889e5cbc
XG
5297 return gentry;
5298}
5299
5300/*
5301 * If we're seeing too many writes to a page, it may no longer be a page table,
5302 * or we may be forking, in which case it is better to unmap the page.
5303 */
a138fe75 5304static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5305{
a30f47cb
XG
5306 /*
5307 * Skip write-flooding detected for the sp whose level is 1, because
5308 * it can become unsync, then the guest page is not write-protected.
5309 */
f71fa31f 5310 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5311 return false;
3246af0e 5312
e5691a81
XG
5313 atomic_inc(&sp->write_flooding_count);
5314 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5315}
5316
5317/*
5318 * Misaligned accesses are too much trouble to fix up; also, they usually
5319 * indicate a page is not used as a page table.
5320 */
5321static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5322 int bytes)
5323{
5324 unsigned offset, pte_size, misaligned;
5325
5326 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5327 gpa, bytes, sp->role.word);
5328
5329 offset = offset_in_page(gpa);
47c42e6b 5330 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5331
5332 /*
5333 * Sometimes, the OS only writes the last one bytes to update status
5334 * bits, for example, in linux, andb instruction is used in clear_bit().
5335 */
5336 if (!(offset & (pte_size - 1)) && bytes == 1)
5337 return false;
5338
889e5cbc
XG
5339 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5340 misaligned |= bytes < 4;
5341
5342 return misaligned;
5343}
5344
5345static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5346{
5347 unsigned page_offset, quadrant;
5348 u64 *spte;
5349 int level;
5350
5351 page_offset = offset_in_page(gpa);
5352 level = sp->role.level;
5353 *nspte = 1;
47c42e6b 5354 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5355 page_offset <<= 1; /* 32->64 */
5356 /*
5357 * A 32-bit pde maps 4MB while the shadow pdes map
5358 * only 2MB. So we need to double the offset again
5359 * and zap two pdes instead of one.
5360 */
5361 if (level == PT32_ROOT_LEVEL) {
5362 page_offset &= ~7; /* kill rounding error */
5363 page_offset <<= 1;
5364 *nspte = 2;
5365 }
5366 quadrant = page_offset >> PAGE_SHIFT;
5367 page_offset &= ~PAGE_MASK;
5368 if (quadrant != sp->role.quadrant)
5369 return NULL;
5370 }
5371
5372 spte = &sp->spt[page_offset / sizeof(*spte)];
5373 return spte;
5374}
5375
13d268ca 5376static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5377 const u8 *new, int bytes,
5378 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5379{
5380 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5381 struct kvm_mmu_page *sp;
889e5cbc
XG
5382 LIST_HEAD(invalid_list);
5383 u64 entry, gentry, *spte;
5384 int npte;
b8c67b7a 5385 bool remote_flush, local_flush;
889e5cbc
XG
5386
5387 /*
5388 * If we don't have indirect shadow pages, it means no page is
5389 * write-protected, so we can exit simply.
5390 */
6aa7de05 5391 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5392 return;
5393
b8c67b7a 5394 remote_flush = local_flush = false;
889e5cbc
XG
5395
5396 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5397
889e5cbc
XG
5398 /*
5399 * No need to care whether allocation memory is successful
5400 * or not since pte prefetch is skiped if it does not have
5401 * enough objects in the cache.
5402 */
5403 mmu_topup_memory_caches(vcpu);
5404
5405 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5406
5407 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5408
889e5cbc 5409 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5410 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5411
b67bfe0d 5412 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5413 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5414 detect_write_flooding(sp)) {
b8c67b7a 5415 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5416 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5417 continue;
5418 }
889e5cbc
XG
5419
5420 spte = get_written_sptes(sp, gpa, &npte);
5421 if (!spte)
5422 continue;
5423
0671a8e7 5424 local_flush = true;
ac1b714e 5425 while (npte--) {
36d9594d
VK
5426 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5427
79539cec 5428 entry = *spte;
38e3b2b2 5429 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5430 if (gentry &&
36d9594d 5431 !((sp->role.word ^ base_role)
9fa72119 5432 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5433 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5434 if (need_remote_flush(entry, *spte))
0671a8e7 5435 remote_flush = true;
ac1b714e 5436 ++spte;
9b7a0325 5437 }
9b7a0325 5438 }
b8c67b7a 5439 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5440 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5441 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5442}
5443
a436036b
AK
5444int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5445{
10589a46
MT
5446 gpa_t gpa;
5447 int r;
a436036b 5448
44dd3ffa 5449 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5450 return 0;
5451
1871c602 5452 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5453
10589a46 5454 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5455
10589a46 5456 return r;
a436036b 5457}
577bdc49 5458EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5459
736c291c 5460int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5461 void *insn, int insn_len)
3067714c 5462{
472faffa 5463 int r, emulation_type = 0;
44dd3ffa 5464 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5465
ddce6208
SC
5466 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
5467 return RET_PF_RETRY;
5468
618232e2 5469 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5470 if (vcpu->arch.mmu->direct_map) {
618232e2 5471 vcpu->arch.gpa_available = true;
736c291c 5472 vcpu->arch.gpa_val = cr2_or_gpa;
618232e2 5473 }
3067714c 5474
9b8ebbdb 5475 r = RET_PF_INVALID;
e9ee956e 5476 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5477 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5478 if (r == RET_PF_EMULATE)
e9ee956e 5479 goto emulate;
e9ee956e 5480 }
3067714c 5481
9b8ebbdb 5482 if (r == RET_PF_INVALID) {
736c291c 5483 r = vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa,
44dd3ffa
VK
5484 lower_32_bits(error_code),
5485 false);
9b8ebbdb
PB
5486 WARN_ON(r == RET_PF_INVALID);
5487 }
5488
5489 if (r == RET_PF_RETRY)
5490 return 1;
3067714c 5491 if (r < 0)
e9ee956e 5492 return r;
3067714c 5493
14727754
TL
5494 /*
5495 * Before emulating the instruction, check if the error code
5496 * was due to a RO violation while translating the guest page.
5497 * This can occur when using nested virtualization with nested
5498 * paging in both guests. If true, we simply unprotect the page
5499 * and resume the guest.
14727754 5500 */
44dd3ffa 5501 if (vcpu->arch.mmu->direct_map &&
eebed243 5502 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5503 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5504 return 1;
5505 }
5506
472faffa
SC
5507 /*
5508 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5509 * optimistically try to just unprotect the page and let the processor
5510 * re-execute the instruction that caused the page fault. Do not allow
5511 * retrying MMIO emulation, as it's not only pointless but could also
5512 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5513 * faulting on the non-existent MMIO address. Retrying an instruction
5514 * from a nested guest is also pointless and dangerous as we are only
5515 * explicitly shadowing L1's page tables, i.e. unprotecting something
5516 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5517 */
736c291c 5518 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
472faffa 5519 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5520emulate:
00b10fe1
BS
5521 /*
5522 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5523 * This can happen if a guest gets a page-fault on data access but the HW
5524 * table walker is not able to read the instruction page (e.g instruction
5525 * page is not present in memory). In those cases we simply restart the
05d5a486 5526 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5527 */
05d5a486
SB
5528 if (unlikely(insn && !insn_len)) {
5529 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5530 return 1;
5531 }
00b10fe1 5532
736c291c 5533 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5534 insn_len);
3067714c
AK
5535}
5536EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5537
a7052897
MT
5538void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5539{
44dd3ffa 5540 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5541 int i;
7eb77e9f 5542
faff8758
JS
5543 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5544 if (is_noncanonical_address(gva, vcpu))
5545 return;
5546
7eb77e9f 5547 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5548
5549 /*
5550 * INVLPG is required to invalidate any global mappings for the VA,
5551 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5552 * of work to determine whether any of the prev_root mappings of the VA
5553 * is marked global, or to just sync it blindly, so we might as well
5554 * just always sync it.
956bf353 5555 *
b94742c9
JS
5556 * Mappings not reachable via the current cr3 or the prev_roots will be
5557 * synced when switching to that cr3, so nothing needs to be done here
5558 * for them.
956bf353 5559 */
b94742c9
JS
5560 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5561 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5562 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5563
faff8758 5564 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5565 ++vcpu->stat.invlpg;
5566}
5567EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5568
eb4b248e
JS
5569void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5570{
44dd3ffa 5571 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5572 bool tlb_flush = false;
b94742c9 5573 uint i;
eb4b248e
JS
5574
5575 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5576 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5577 tlb_flush = true;
eb4b248e
JS
5578 }
5579
b94742c9
JS
5580 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5581 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5582 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5583 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5584 tlb_flush = true;
5585 }
956bf353 5586 }
ade61e28 5587
faff8758
JS
5588 if (tlb_flush)
5589 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5590
eb4b248e
JS
5591 ++vcpu->stat.invlpg;
5592
5593 /*
b94742c9
JS
5594 * Mappings not reachable via the current cr3 or the prev_roots will be
5595 * synced when switching to that cr3, so nothing needs to be done here
5596 * for them.
eb4b248e
JS
5597 */
5598}
5599EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5600
18552672
JR
5601void kvm_enable_tdp(void)
5602{
5603 tdp_enabled = true;
5604}
5605EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5606
5f4cb662
JR
5607void kvm_disable_tdp(void)
5608{
5609 tdp_enabled = false;
5610}
5611EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5612
85875a13
SC
5613
5614/* The return value indicates if tlb flush on all vcpus is needed. */
5615typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5616
5617/* The caller should hold mmu-lock before calling this function. */
5618static __always_inline bool
5619slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5620 slot_level_handler fn, int start_level, int end_level,
5621 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5622{
5623 struct slot_rmap_walk_iterator iterator;
5624 bool flush = false;
5625
5626 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5627 end_gfn, &iterator) {
5628 if (iterator.rmap)
5629 flush |= fn(kvm, iterator.rmap);
5630
5631 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5632 if (flush && lock_flush_tlb) {
f285c633
BG
5633 kvm_flush_remote_tlbs_with_address(kvm,
5634 start_gfn,
5635 iterator.gfn - start_gfn + 1);
85875a13
SC
5636 flush = false;
5637 }
5638 cond_resched_lock(&kvm->mmu_lock);
5639 }
5640 }
5641
5642 if (flush && lock_flush_tlb) {
f285c633
BG
5643 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5644 end_gfn - start_gfn + 1);
85875a13
SC
5645 flush = false;
5646 }
5647
5648 return flush;
5649}
5650
5651static __always_inline bool
5652slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5653 slot_level_handler fn, int start_level, int end_level,
5654 bool lock_flush_tlb)
5655{
5656 return slot_handle_level_range(kvm, memslot, fn, start_level,
5657 end_level, memslot->base_gfn,
5658 memslot->base_gfn + memslot->npages - 1,
5659 lock_flush_tlb);
5660}
5661
5662static __always_inline bool
5663slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5664 slot_level_handler fn, bool lock_flush_tlb)
5665{
5666 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5667 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5668}
5669
5670static __always_inline bool
5671slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5672 slot_level_handler fn, bool lock_flush_tlb)
5673{
5674 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5675 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5676}
5677
5678static __always_inline bool
5679slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5680 slot_level_handler fn, bool lock_flush_tlb)
5681{
5682 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5683 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5684}
5685
1cfff4d9 5686static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5687{
1cfff4d9
JP
5688 free_page((unsigned long)mmu->pae_root);
5689 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5690}
5691
1cfff4d9 5692static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5693{
17ac10ad 5694 struct page *page;
6aa8b732
AK
5695 int i;
5696
17ac10ad 5697 /*
b6b80c78
SC
5698 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5699 * while the PDP table is a per-vCPU construct that's allocated at MMU
5700 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5701 * x86_64. Therefore we need to allocate the PDP table in the first
5702 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5703 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5704 * skip allocating the PDP table.
17ac10ad 5705 */
b6b80c78
SC
5706 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5707 return 0;
5708
254272ce 5709 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5710 if (!page)
d7fa6ab2
WY
5711 return -ENOMEM;
5712
1cfff4d9 5713 mmu->pae_root = page_address(page);
17ac10ad 5714 for (i = 0; i < 4; ++i)
1cfff4d9 5715 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5716
6aa8b732 5717 return 0;
6aa8b732
AK
5718}
5719
8018c27b 5720int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5721{
b94742c9 5722 uint i;
1cfff4d9 5723 int ret;
b94742c9 5724
44dd3ffa
VK
5725 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5726 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5727
44dd3ffa 5728 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5729 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5730 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5731 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5732 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5733
14c07ad8 5734 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5735 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5736 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5737 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5738 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5739
14c07ad8 5740 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9
JP
5741
5742 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5743 if (ret)
5744 return ret;
5745
5746 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5747 if (ret)
5748 goto fail_allocate_root;
5749
5750 return ret;
5751 fail_allocate_root:
5752 free_mmu_pages(&vcpu->arch.guest_mmu);
5753 return ret;
6aa8b732
AK
5754}
5755
fbb158cb 5756#define BATCH_ZAP_PAGES 10
002c5f73
SC
5757static void kvm_zap_obsolete_pages(struct kvm *kvm)
5758{
5759 struct kvm_mmu_page *sp, *node;
fbb158cb 5760 int nr_zapped, batch = 0;
002c5f73
SC
5761
5762restart:
5763 list_for_each_entry_safe_reverse(sp, node,
5764 &kvm->arch.active_mmu_pages, link) {
5765 /*
5766 * No obsolete valid page exists before a newly created page
5767 * since active_mmu_pages is a FIFO list.
5768 */
5769 if (!is_obsolete_sp(kvm, sp))
5770 break;
5771
5772 /*
9a5c034c
SC
5773 * Skip invalid pages with a non-zero root count, zapping pages
5774 * with a non-zero root count will never succeed, i.e. the page
5775 * will get thrown back on active_mmu_pages and we'll get stuck
5776 * in an infinite loop.
002c5f73 5777 */
9a5c034c 5778 if (sp->role.invalid && sp->root_count)
002c5f73
SC
5779 continue;
5780
4506ecf4
SC
5781 /*
5782 * No need to flush the TLB since we're only zapping shadow
5783 * pages with an obsolete generation number and all vCPUS have
5784 * loaded a new root, i.e. the shadow pages being zapped cannot
5785 * be in active use by the guest.
5786 */
fbb158cb 5787 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5788 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5789 batch = 0;
002c5f73
SC
5790 goto restart;
5791 }
5792
10605204
SC
5793 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5794 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5795 batch += nr_zapped;
002c5f73 5796 goto restart;
fbb158cb 5797 }
002c5f73
SC
5798 }
5799
4506ecf4
SC
5800 /*
5801 * Trigger a remote TLB flush before freeing the page tables to ensure
5802 * KVM is not in the middle of a lockless shadow page table walk, which
5803 * may reference the pages.
5804 */
10605204 5805 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5806}
5807
5808/*
5809 * Fast invalidate all shadow pages and use lock-break technique
5810 * to zap obsolete pages.
5811 *
5812 * It's required when memslot is being deleted or VM is being
5813 * destroyed, in these cases, we should ensure that KVM MMU does
5814 * not use any resource of the being-deleted slot or all slots
5815 * after calling the function.
5816 */
5817static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5818{
ca333add
SC
5819 lockdep_assert_held(&kvm->slots_lock);
5820
002c5f73 5821 spin_lock(&kvm->mmu_lock);
14a3c4f4 5822 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5823
5824 /*
5825 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5826 * held for the entire duration of zapping obsolete pages, it's
5827 * impossible for there to be multiple invalid generations associated
5828 * with *valid* shadow pages at any given time, i.e. there is exactly
5829 * one valid generation and (at most) one invalid generation.
5830 */
5831 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5832
4506ecf4
SC
5833 /*
5834 * Notify all vcpus to reload its shadow page table and flush TLB.
5835 * Then all vcpus will switch to new shadow page table with the new
5836 * mmu_valid_gen.
5837 *
5838 * Note: we need to do this under the protection of mmu_lock,
5839 * otherwise, vcpu would purge shadow page but miss tlb flush.
5840 */
5841 kvm_reload_remote_mmus(kvm);
5842
002c5f73
SC
5843 kvm_zap_obsolete_pages(kvm);
5844 spin_unlock(&kvm->mmu_lock);
5845}
5846
10605204
SC
5847static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5848{
5849 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5850}
5851
b5f5fdca 5852static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5853 struct kvm_memory_slot *slot,
5854 struct kvm_page_track_notifier_node *node)
b5f5fdca 5855{
002c5f73 5856 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5857}
5858
13d268ca 5859void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5860{
13d268ca 5861 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5862
13d268ca 5863 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5864 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5865 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5866}
5867
13d268ca 5868void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5869{
13d268ca 5870 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5871
13d268ca 5872 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5873}
5874
efdfe536
XG
5875void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5876{
5877 struct kvm_memslots *slots;
5878 struct kvm_memory_slot *memslot;
9da0e4d5 5879 int i;
efdfe536
XG
5880
5881 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5882 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5883 slots = __kvm_memslots(kvm, i);
5884 kvm_for_each_memslot(memslot, slots) {
5885 gfn_t start, end;
5886
5887 start = max(gfn_start, memslot->base_gfn);
5888 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5889 if (start >= end)
5890 continue;
efdfe536 5891
92da008f
BG
5892 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5893 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5894 start, end - 1, true);
9da0e4d5 5895 }
efdfe536
XG
5896 }
5897
5898 spin_unlock(&kvm->mmu_lock);
5899}
5900
018aabb5
TY
5901static bool slot_rmap_write_protect(struct kvm *kvm,
5902 struct kvm_rmap_head *rmap_head)
d77aa73c 5903{
018aabb5 5904 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5905}
5906
1c91cad4
KH
5907void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5908 struct kvm_memory_slot *memslot)
6aa8b732 5909{
d77aa73c 5910 bool flush;
6aa8b732 5911
9d1beefb 5912 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5913 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5914 false);
9d1beefb 5915 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5916
5917 /*
5918 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5919 * which do tlb flush out of mmu-lock should be serialized by
5920 * kvm->slots_lock otherwise tlb flush would be missed.
5921 */
5922 lockdep_assert_held(&kvm->slots_lock);
5923
5924 /*
5925 * We can flush all the TLBs out of the mmu lock without TLB
5926 * corruption since we just change the spte from writable to
5927 * readonly so that we only need to care the case of changing
5928 * spte from present to present (changing the spte from present
5929 * to nonpresent will flush all the TLBs immediately), in other
5930 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5931 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5932 * instead of PT_WRITABLE_MASK, that means it does not depend
5933 * on PT_WRITABLE_MASK anymore.
5934 */
d91ffee9 5935 if (flush)
c3134ce2
LT
5936 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5937 memslot->npages);
6aa8b732 5938}
37a7d8b0 5939
3ea3b7fa 5940static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5941 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5942{
5943 u64 *sptep;
5944 struct rmap_iterator iter;
5945 int need_tlb_flush = 0;
ba049e93 5946 kvm_pfn_t pfn;
3ea3b7fa
WL
5947 struct kvm_mmu_page *sp;
5948
0d536790 5949restart:
018aabb5 5950 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5951 sp = page_header(__pa(sptep));
5952 pfn = spte_to_pfn(*sptep);
5953
5954 /*
decf6333
XG
5955 * We cannot do huge page mapping for indirect shadow pages,
5956 * which are found on the last rmap (level = 1) when not using
5957 * tdp; such shadow pages are synced with the page table in
5958 * the guest, and the guest page table is using 4K page size
5959 * mapping if the indirect sp has level = 1.
3ea3b7fa 5960 */
a78986aa
SC
5961 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5962 !kvm_is_zone_device_pfn(pfn) &&
5963 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 5964 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5965
5966 if (kvm_available_flush_tlb_with_range())
5967 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5968 KVM_PAGES_PER_HPAGE(sp->role.level));
5969 else
5970 need_tlb_flush = 1;
5971
0d536790
XG
5972 goto restart;
5973 }
3ea3b7fa
WL
5974 }
5975
5976 return need_tlb_flush;
5977}
5978
5979void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5980 const struct kvm_memory_slot *memslot)
3ea3b7fa 5981{
f36f3f28 5982 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5983 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5984 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5985 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5986 spin_unlock(&kvm->mmu_lock);
5987}
5988
f4b4b180
KH
5989void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5990 struct kvm_memory_slot *memslot)
5991{
d77aa73c 5992 bool flush;
f4b4b180
KH
5993
5994 spin_lock(&kvm->mmu_lock);
d77aa73c 5995 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5996 spin_unlock(&kvm->mmu_lock);
5997
5998 lockdep_assert_held(&kvm->slots_lock);
5999
6000 /*
6001 * It's also safe to flush TLBs out of mmu lock here as currently this
6002 * function is only used for dirty logging, in which case flushing TLB
6003 * out of mmu lock also guarantees no dirty pages will be lost in
6004 * dirty_bitmap.
6005 */
6006 if (flush)
c3134ce2
LT
6007 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6008 memslot->npages);
f4b4b180
KH
6009}
6010EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6011
6012void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6013 struct kvm_memory_slot *memslot)
6014{
d77aa73c 6015 bool flush;
f4b4b180
KH
6016
6017 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
6018 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6019 false);
f4b4b180
KH
6020 spin_unlock(&kvm->mmu_lock);
6021
6022 /* see kvm_mmu_slot_remove_write_access */
6023 lockdep_assert_held(&kvm->slots_lock);
6024
6025 if (flush)
c3134ce2
LT
6026 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6027 memslot->npages);
f4b4b180
KH
6028}
6029EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6030
6031void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6032 struct kvm_memory_slot *memslot)
6033{
d77aa73c 6034 bool flush;
f4b4b180
KH
6035
6036 spin_lock(&kvm->mmu_lock);
d77aa73c 6037 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
6038 spin_unlock(&kvm->mmu_lock);
6039
6040 lockdep_assert_held(&kvm->slots_lock);
6041
6042 /* see kvm_mmu_slot_leaf_clear_dirty */
6043 if (flush)
c3134ce2
LT
6044 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6045 memslot->npages);
f4b4b180
KH
6046}
6047EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6048
92f58b5c 6049void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
6050{
6051 struct kvm_mmu_page *sp, *node;
7390de1e 6052 LIST_HEAD(invalid_list);
83cdb568 6053 int ign;
5304b8d3 6054
7390de1e 6055 spin_lock(&kvm->mmu_lock);
5304b8d3 6056restart:
8a674adc 6057 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
8ab3c471 6058 if (sp->role.invalid && sp->root_count)
4771450c 6059 continue;
92f58b5c 6060 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 6061 goto restart;
24efe61f 6062 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
6063 goto restart;
6064 }
6065
4771450c 6066 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
6067 spin_unlock(&kvm->mmu_lock);
6068}
6069
15248258 6070void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 6071{
164bf7e5 6072 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 6073
164bf7e5 6074 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 6075
f8f55942 6076 /*
e1359e2b
SC
6077 * Generation numbers are incremented in multiples of the number of
6078 * address spaces in order to provide unique generations across all
6079 * address spaces. Strip what is effectively the address space
6080 * modifier prior to checking for a wrap of the MMIO generation so
6081 * that a wrap in any address space is detected.
6082 */
6083 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6084
f8f55942 6085 /*
e1359e2b 6086 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 6087 * zap all shadow pages.
f8f55942 6088 */
e1359e2b 6089 if (unlikely(gen == 0)) {
ae0f5499 6090 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 6091 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 6092 }
f8f55942
XG
6093}
6094
70534a73
DC
6095static unsigned long
6096mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
6097{
6098 struct kvm *kvm;
1495f230 6099 int nr_to_scan = sc->nr_to_scan;
70534a73 6100 unsigned long freed = 0;
3ee16c81 6101
0d9ce162 6102 mutex_lock(&kvm_lock);
3ee16c81
IE
6103
6104 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 6105 int idx;
d98ba053 6106 LIST_HEAD(invalid_list);
3ee16c81 6107
35f2d16b
TY
6108 /*
6109 * Never scan more than sc->nr_to_scan VM instances.
6110 * Will not hit this condition practically since we do not try
6111 * to shrink more than one VM and it is very unlikely to see
6112 * !n_used_mmu_pages so many times.
6113 */
6114 if (!nr_to_scan--)
6115 break;
19526396
GN
6116 /*
6117 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6118 * here. We may skip a VM instance errorneosly, but we do not
6119 * want to shrink a VM that only started to populate its MMU
6120 * anyway.
6121 */
10605204
SC
6122 if (!kvm->arch.n_used_mmu_pages &&
6123 !kvm_has_zapped_obsolete_pages(kvm))
19526396 6124 continue;
19526396 6125
f656ce01 6126 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 6127 spin_lock(&kvm->mmu_lock);
3ee16c81 6128
10605204
SC
6129 if (kvm_has_zapped_obsolete_pages(kvm)) {
6130 kvm_mmu_commit_zap_page(kvm,
6131 &kvm->arch.zapped_obsolete_pages);
6132 goto unlock;
6133 }
6134
70534a73
DC
6135 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6136 freed++;
d98ba053 6137 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 6138
10605204 6139unlock:
3ee16c81 6140 spin_unlock(&kvm->mmu_lock);
f656ce01 6141 srcu_read_unlock(&kvm->srcu, idx);
19526396 6142
70534a73
DC
6143 /*
6144 * unfair on small ones
6145 * per-vm shrinkers cry out
6146 * sadness comes quickly
6147 */
19526396
GN
6148 list_move_tail(&kvm->vm_list, &vm_list);
6149 break;
3ee16c81 6150 }
3ee16c81 6151
0d9ce162 6152 mutex_unlock(&kvm_lock);
70534a73 6153 return freed;
70534a73
DC
6154}
6155
6156static unsigned long
6157mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6158{
45221ab6 6159 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
6160}
6161
6162static struct shrinker mmu_shrinker = {
70534a73
DC
6163 .count_objects = mmu_shrink_count,
6164 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
6165 .seeks = DEFAULT_SEEKS * 10,
6166};
6167
2ddfd20e 6168static void mmu_destroy_caches(void)
b5a33a75 6169{
c1bd743e
TH
6170 kmem_cache_destroy(pte_list_desc_cache);
6171 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
6172}
6173
7b6f8a06
KH
6174static void kvm_set_mmio_spte_mask(void)
6175{
6176 u64 mask;
7b6f8a06
KH
6177
6178 /*
6179 * Set the reserved bits and the present bit of an paging-structure
6180 * entry to generate page fault with PFER.RSV = 1.
6181 */
6182
6183 /*
6184 * Mask the uppermost physical address bit, which would be reserved as
6185 * long as the supported physical address width is less than 52.
6186 */
6187 mask = 1ull << 51;
6188
6189 /* Set the present bit. */
6190 mask |= 1ull;
6191
6192 /*
6193 * If reserved bit is not supported, clear the present bit to disable
6194 * mmio page fault.
6195 */
f3ecb59d 6196 if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
7b6f8a06
KH
6197 mask &= ~1ull;
6198
4af77151 6199 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
6200}
6201
b8e8c830
PB
6202static bool get_nx_auto_mode(void)
6203{
6204 /* Return true when CPU has the bug, and mitigations are ON */
6205 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6206}
6207
6208static void __set_nx_huge_pages(bool val)
6209{
6210 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6211}
6212
6213static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6214{
6215 bool old_val = nx_huge_pages;
6216 bool new_val;
6217
6218 /* In "auto" mode deploy workaround only if CPU has the bug. */
6219 if (sysfs_streq(val, "off"))
6220 new_val = 0;
6221 else if (sysfs_streq(val, "force"))
6222 new_val = 1;
6223 else if (sysfs_streq(val, "auto"))
6224 new_val = get_nx_auto_mode();
6225 else if (strtobool(val, &new_val) < 0)
6226 return -EINVAL;
6227
6228 __set_nx_huge_pages(new_val);
6229
6230 if (new_val != old_val) {
6231 struct kvm *kvm;
b8e8c830
PB
6232
6233 mutex_lock(&kvm_lock);
6234
6235 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 6236 mutex_lock(&kvm->slots_lock);
b8e8c830 6237 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 6238 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
6239
6240 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
6241 }
6242 mutex_unlock(&kvm_lock);
6243 }
6244
6245 return 0;
6246}
6247
b5a33a75
AK
6248int kvm_mmu_module_init(void)
6249{
ab271bd4
AB
6250 int ret = -ENOMEM;
6251
b8e8c830
PB
6252 if (nx_huge_pages == -1)
6253 __set_nx_huge_pages(get_nx_auto_mode());
6254
36d9594d
VK
6255 /*
6256 * MMU roles use union aliasing which is, generally speaking, an
6257 * undefined behavior. However, we supposedly know how compilers behave
6258 * and the current status quo is unlikely to change. Guardians below are
6259 * supposed to let us know if the assumption becomes false.
6260 */
6261 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6262 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6263 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6264
28a1f3ac 6265 kvm_mmu_reset_all_pte_masks();
f160c7b7 6266
7b6f8a06
KH
6267 kvm_set_mmio_spte_mask();
6268
53c07b18
XG
6269 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6270 sizeof(struct pte_list_desc),
46bea48a 6271 0, SLAB_ACCOUNT, NULL);
53c07b18 6272 if (!pte_list_desc_cache)
ab271bd4 6273 goto out;
b5a33a75 6274
d3d25b04
AK
6275 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6276 sizeof(struct kvm_mmu_page),
46bea48a 6277 0, SLAB_ACCOUNT, NULL);
d3d25b04 6278 if (!mmu_page_header_cache)
ab271bd4 6279 goto out;
d3d25b04 6280
908c7f19 6281 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6282 goto out;
45bf21a8 6283
ab271bd4
AB
6284 ret = register_shrinker(&mmu_shrinker);
6285 if (ret)
6286 goto out;
3ee16c81 6287
b5a33a75
AK
6288 return 0;
6289
ab271bd4 6290out:
3ee16c81 6291 mmu_destroy_caches();
ab271bd4 6292 return ret;
b5a33a75
AK
6293}
6294
3ad82a7e 6295/*
39337ad1 6296 * Calculate mmu pages needed for kvm.
3ad82a7e 6297 */
bc8a3d89 6298unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6299{
bc8a3d89
BG
6300 unsigned long nr_mmu_pages;
6301 unsigned long nr_pages = 0;
bc6678a3 6302 struct kvm_memslots *slots;
be6ba0f0 6303 struct kvm_memory_slot *memslot;
9da0e4d5 6304 int i;
3ad82a7e 6305
9da0e4d5
PB
6306 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6307 slots = __kvm_memslots(kvm, i);
90d83dc3 6308
9da0e4d5
PB
6309 kvm_for_each_memslot(memslot, slots)
6310 nr_pages += memslot->npages;
6311 }
3ad82a7e
ZX
6312
6313 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6314 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6315
6316 return nr_mmu_pages;
6317}
6318
c42fffe3
XG
6319void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6320{
95f93af4 6321 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6322 free_mmu_pages(&vcpu->arch.root_mmu);
6323 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6324 mmu_free_memory_caches(vcpu);
b034cf01
XG
6325}
6326
b034cf01
XG
6327void kvm_mmu_module_exit(void)
6328{
6329 mmu_destroy_caches();
6330 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6331 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6332 mmu_audit_disable();
6333}
1aa9b957
JS
6334
6335static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6336{
6337 unsigned int old_val;
6338 int err;
6339
6340 old_val = nx_huge_pages_recovery_ratio;
6341 err = param_set_uint(val, kp);
6342 if (err)
6343 return err;
6344
6345 if (READ_ONCE(nx_huge_pages) &&
6346 !old_val && nx_huge_pages_recovery_ratio) {
6347 struct kvm *kvm;
6348
6349 mutex_lock(&kvm_lock);
6350
6351 list_for_each_entry(kvm, &vm_list, vm_list)
6352 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6353
6354 mutex_unlock(&kvm_lock);
6355 }
6356
6357 return err;
6358}
6359
6360static void kvm_recover_nx_lpages(struct kvm *kvm)
6361{
6362 int rcu_idx;
6363 struct kvm_mmu_page *sp;
6364 unsigned int ratio;
6365 LIST_HEAD(invalid_list);
6366 ulong to_zap;
6367
6368 rcu_idx = srcu_read_lock(&kvm->srcu);
6369 spin_lock(&kvm->mmu_lock);
6370
6371 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6372 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6373 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6374 /*
6375 * We use a separate list instead of just using active_mmu_pages
6376 * because the number of lpage_disallowed pages is expected to
6377 * be relatively small compared to the total.
6378 */
6379 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6380 struct kvm_mmu_page,
6381 lpage_disallowed_link);
6382 WARN_ON_ONCE(!sp->lpage_disallowed);
6383 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6384 WARN_ON_ONCE(sp->lpage_disallowed);
6385
6386 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6387 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6388 if (to_zap)
6389 cond_resched_lock(&kvm->mmu_lock);
6390 }
6391 }
6392
6393 spin_unlock(&kvm->mmu_lock);
6394 srcu_read_unlock(&kvm->srcu, rcu_idx);
6395}
6396
6397static long get_nx_lpage_recovery_timeout(u64 start_time)
6398{
6399 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6400 ? start_time + 60 * HZ - get_jiffies_64()
6401 : MAX_SCHEDULE_TIMEOUT;
6402}
6403
6404static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6405{
6406 u64 start_time;
6407 long remaining_time;
6408
6409 while (true) {
6410 start_time = get_jiffies_64();
6411 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6412
6413 set_current_state(TASK_INTERRUPTIBLE);
6414 while (!kthread_should_stop() && remaining_time > 0) {
6415 schedule_timeout(remaining_time);
6416 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6417 set_current_state(TASK_INTERRUPTIBLE);
6418 }
6419
6420 set_current_state(TASK_RUNNING);
6421
6422 if (kthread_should_stop())
6423 return 0;
6424
6425 kvm_recover_nx_lpages(kvm);
6426 }
6427}
6428
6429int kvm_mmu_post_init_vm(struct kvm *kvm)
6430{
6431 int err;
6432
6433 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6434 "kvm-nx-lpage-recovery",
6435 &kvm->arch.nx_lpage_recovery_thread);
6436 if (!err)
6437 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6438
6439 return err;
6440}
6441
6442void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6443{
6444 if (kvm->arch.nx_lpage_recovery_thread)
6445 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6446}