]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
13673a90 51#include <asm/vmx.h>
3d0c27ad 52#include <asm/kvm_page_track.h>
1261bfa3 53#include "trace.h"
6aa8b732 54
b8e8c830
PB
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
1aa9b957 62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 63#endif
b8e8c830
PB
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 67
d5d6c18d 68static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
d5d6c18d 73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
b8e8c830
PB
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 83
71fe7013
SC
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
18552672
JR
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
2f333bcb 94bool tdp_enabled = false;
18552672 95
1d92d2e8 96static int max_huge_page_level __read_mostly;
83013059 97static int max_tdp_level __read_mostly;
703c335d 98
8b1fe17c
XG
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
6903074c
XG
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
8b1fe17c 106};
37a7d8b0 107
37a7d8b0 108#ifdef MMU_DEBUG
5a9624af 109bool dbg = 0;
fa4a2c08 110module_param(dbg, bool, 0644);
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
6aa8b732
AK
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
d77c26fc 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 119
e04da980
JR
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
6aa8b732
AK
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
90bb6fc5
AK
135#include <trace/events/kvm.h>
136
220f773a
TY
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
53c07b18
XG
140struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
cd4a4e53
AK
143};
144
2d11123a
AK
145struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
2d11123a 148 u64 *sptep;
dd3bfd59 149 int level;
2d11123a
AK
150 unsigned index;
151};
152
7eb77e9f
JS
153#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
c2a2ac2b
XG
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
53c07b18 170static struct kmem_cache *pte_list_desc_cache;
02c00b3a 171struct kmem_cache *mmu_page_header_cache;
45221ab6 172static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 173
ce88decf 174static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
175static union kvm_mmu_page_role
176kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 177
335e192a
PB
178#define CREATE_TRACE_POINTS
179#include "mmutrace.h"
180
40ef75a7
LT
181
182static inline bool kvm_available_flush_tlb_with_range(void)
183{
afaf0b2f 184 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
185}
186
187static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189{
190 int ret = -ENOTSUPP;
191
afaf0b2f
SC
192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197}
198
2f2fad08 199void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
200 u64 start_gfn, u64 pages)
201{
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208}
209
5a9624af 210bool is_nx_huge_page_enabled(void)
b8e8c830
PB
211{
212 return READ_ONCE(nx_huge_pages);
213}
214
8f79b064
BG
215static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217{
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
8f79b064 219
bb18842e 220 trace_mark_mmio_spte(sptep, gfn, mask);
f2fd125d 221 mmu_spte_set(sptep, mask);
ce88decf
XG
222}
223
ce88decf
XG
224static gfn_t get_mmio_spte_gfn(u64 spte)
225{
daa07cbc 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
227
228 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
ce88decf
XG
232}
233
234static unsigned get_mmio_spte_access(u64 spte)
235{
4af77151 236 return spte & shadow_mmio_access_mask;
ce88decf
XG
237}
238
54bf36aa 239static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 240 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
241{
242 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 243 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
244 return true;
245 }
246
247 return false;
248}
c7addb90 249
54bf36aa 250static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 251{
cae7ed3c 252 u64 kvm_gen, spte_gen, gen;
089504c0 253
cae7ed3c
SC
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
089504c0 257
cae7ed3c 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
f8f55942
XG
263}
264
cd313569
MG
265static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267{
ec7771ab 268 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
cd313569
MG
274 return gpa;
275}
276
6aa8b732
AK
277static int is_cpuid_PSE36(void)
278{
279 return 1;
280}
281
73b1087e
AK
282static int is_nx(struct kvm_vcpu *vcpu)
283{
f6801dff 284 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
285}
286
da928521
AK
287static gfn_t pse36_gfn_delta(u32 gpte)
288{
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292}
293
603e0651 294#ifdef CONFIG_X86_64
d555c333 295static void __set_spte(u64 *sptep, u64 spte)
e663ee64 296{
b19ee2ff 297 WRITE_ONCE(*sptep, spte);
e663ee64
AK
298}
299
603e0651 300static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 301{
b19ee2ff 302 WRITE_ONCE(*sptep, spte);
603e0651
XG
303}
304
305static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306{
307 return xchg(sptep, spte);
308}
c2a2ac2b
XG
309
310static u64 __get_spte_lockless(u64 *sptep)
311{
6aa7de05 312 return READ_ONCE(*sptep);
c2a2ac2b 313}
a9221dd5 314#else
603e0651
XG
315union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321};
a9221dd5 322
c2a2ac2b
XG
323static void count_spte_clear(u64 *sptep, u64 spte)
324{
57354682 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333}
334
603e0651
XG
335static void __set_spte(u64 *sptep, u64 spte)
336{
337 union split_spte *ssptep, sspte;
a9221dd5 338
603e0651
XG
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
352}
353
603e0651
XG
354static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355{
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
b19ee2ff 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 370 count_spte_clear(sptep, spte);
603e0651
XG
371}
372
373static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374{
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 384 count_spte_clear(sptep, spte);
603e0651
XG
385
386 return orig.spte;
387}
c2a2ac2b
XG
388
389/*
390 * The idea using the light way get the spte on x86_32 guest is from
39656e83 391 * gup_get_pte (mm/gup.c).
accaefe0
XG
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
57354682 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
603e0651
XG
429#endif
430
8672b721
XG
431static bool spte_has_volatile_bits(u64 spte)
432{
f160c7b7
JS
433 if (!is_shadow_present_pte(spte))
434 return false;
435
c7ba5b48 436 /*
6a6256f9 437 * Always atomically update spte if it can be updated
c7ba5b48
XG
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
f160c7b7
JS
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
c7ba5b48
XG
444 return true;
445
ac8d57e5 446 if (spte_ad_enabled(spte)) {
f160c7b7
JS
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
8672b721 451
f160c7b7 452 return false;
8672b721
XG
453}
454
1df9f2dc
XG
455/* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461static void mmu_spte_set(u64 *sptep, u64 new_spte)
462{
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465}
466
f39a058d
JS
467/*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
1df9f2dc 470 */
f39a058d 471static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 472{
c7ba5b48 473 u64 old_spte = *sptep;
4132779b 474
afd28fe1 475 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 476
6e7d0354
XG
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
f39a058d 479 return old_spte;
6e7d0354 480 }
4132779b 481
c7ba5b48 482 if (!spte_has_volatile_bits(old_spte))
603e0651 483 __update_clear_spte_fast(sptep, new_spte);
4132779b 484 else
603e0651 485 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 486
83ef6c81
JS
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
f39a058d
JS
489 return old_spte;
490}
491
492/* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504{
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
c7ba5b48
XG
511 /*
512 * For the spte updated out of mmu-lock is safe, since
6a6256f9 513 * we always atomically update it, see the comments in
c7ba5b48
XG
514 * spte_has_volatile_bits().
515 */
ea4114bc 516 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 517 !is_writable_pte(new_spte))
83ef6c81 518 flush = true;
4132779b 519
7e71a59b 520 /*
83ef6c81 521 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
522 * to guarantee consistency between TLB and page tables.
523 */
7e71a59b 524
83ef6c81
JS
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
4132779b 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
4132779b 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 533 }
6e7d0354 534
83ef6c81 535 return flush;
b79b93f9
AK
536}
537
1df9f2dc
XG
538/*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
83ef6c81 542 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
543 */
544static int mmu_spte_clear_track_bits(u64 *sptep)
545{
ba049e93 546 kvm_pfn_t pfn;
1df9f2dc
XG
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
603e0651 550 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 551 else
603e0651 552 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 553
afd28fe1 554 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
86fde74c
XG
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
bf4bea8e 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 565
83ef6c81 566 if (is_accessed_spte(old_spte))
1df9f2dc 567 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
568
569 if (is_dirty_spte(old_spte))
1df9f2dc 570 kvm_set_pfn_dirty(pfn);
83ef6c81 571
1df9f2dc
XG
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
d3e328f2
JS
590/* Restore an acc-track PTE back to a regular PTE */
591static u64 restore_acc_track_spte(u64 spte)
592{
593 u64 new_spte = spte;
594 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
595 & shadow_acc_track_saved_bits_mask;
596
ac8d57e5 597 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
601 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
602 shadow_acc_track_saved_bits_shift);
603 new_spte |= saved_bits;
604
605 return new_spte;
606}
607
f160c7b7
JS
608/* Returns the Accessed status of the PTE and resets it at the same time. */
609static bool mmu_spte_age(u64 *sptep)
610{
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
ac8d57e5 616 if (spte_ad_enabled(spte)) {
f160c7b7
JS
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632}
633
c2a2ac2b
XG
634static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635{
c142786c
AK
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
36ca7e0a 641
c142786c
AK
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
36ca7e0a 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
647}
648
649static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650{
c142786c
AK
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
36ca7e0a 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 657 local_irq_enable();
c2a2ac2b
XG
658}
659
378f5cd6 660static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 661{
e2dec939
AK
662 int r;
663
531281ad 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 667 if (r)
284aa868 668 return r;
94ce87ef
SC
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
d3d25b04 671 if (r)
171a90d7 672 return r;
378f5cd6 673 if (maybe_indirect) {
94ce87ef
SC
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
676 if (r)
677 return r;
678 }
94ce87ef
SC
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
94ce87ef
SC
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
689}
690
53c07b18 691static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 692{
94ce87ef 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
694}
695
53c07b18 696static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 697{
53c07b18 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
699}
700
2032a93d
LJ
701static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702{
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707}
708
709static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710{
e9f2a760 711 if (!sp->role.direct) {
2032a93d 712 sp->gfns[index] = gfn;
e9f2a760
PB
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
721}
722
05da4558 723/*
d4dbf470
TY
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
05da4558 726 */
d4dbf470
TY
727static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
05da4558
MT
730{
731 unsigned long idx;
732
fb03cb6f 733 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 734 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
735}
736
547ffaed
XG
737static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739{
740 struct kvm_lpage_info *linfo;
741 int i;
742
3bae0459 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748}
749
750void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751{
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753}
754
755void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756{
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758}
759
3ed1a478 760static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 761{
699023e2 762 struct kvm_memslots *slots;
d25797b2 763 struct kvm_memory_slot *slot;
3ed1a478 764 gfn_t gfn;
05da4558 765
56ca57f9 766 kvm->arch.indirect_shadow_pages++;
3ed1a478 767 gfn = sp->gfn;
699023e2
PB
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
770
771 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 772 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
547ffaed 776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
777}
778
b8e8c830
PB
779static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780{
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
787 sp->lpage_disallowed = true;
788}
789
3ed1a478 790static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 791{
699023e2 792 struct kvm_memslots *slots;
d25797b2 793 struct kvm_memory_slot *slot;
3ed1a478 794 gfn_t gfn;
05da4558 795
56ca57f9 796 kvm->arch.indirect_shadow_pages--;
3ed1a478 797 gfn = sp->gfn;
699023e2
PB
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
3bae0459 800 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
547ffaed 804 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
805}
806
b8e8c830
PB
807static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808{
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
1aa9b957 811 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
812}
813
5d163b1c
XG
814static struct kvm_memory_slot *
815gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
05da4558
MT
817{
818 struct kvm_memory_slot *slot;
5d163b1c 819
54bf36aa 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
823 if (no_dirty_log && slot->dirty_bitmap)
824 return NULL;
5d163b1c
XG
825
826 return slot;
827}
828
290fc38d 829/*
018aabb5 830 * About rmap_head encoding:
cd4a4e53 831 *
018aabb5
TY
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 834 * pte_list_desc containing more mappings.
018aabb5
TY
835 */
836
837/*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 839 */
53c07b18 840static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 841 struct kvm_rmap_head *rmap_head)
cd4a4e53 842{
53c07b18 843 struct pte_list_desc *desc;
53a27b39 844 int i, count = 0;
cd4a4e53 845
018aabb5 846 if (!rmap_head->val) {
53c07b18 847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 852 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 853 desc->sptes[1] = spte;
018aabb5 854 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 855 ++count;
cd4a4e53 856 } else {
53c07b18 857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 859 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 860 desc = desc->more;
53c07b18 861 count += PTE_LIST_EXT;
53a27b39 862 }
53c07b18
XG
863 if (desc->sptes[PTE_LIST_EXT-1]) {
864 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
865 desc = desc->more;
866 }
d555c333 867 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 868 ++count;
d555c333 869 desc->sptes[i] = spte;
cd4a4e53 870 }
53a27b39 871 return count;
cd4a4e53
AK
872}
873
53c07b18 874static void
018aabb5
TY
875pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
876 struct pte_list_desc *desc, int i,
877 struct pte_list_desc *prev_desc)
cd4a4e53
AK
878{
879 int j;
880
53c07b18 881 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 882 ;
d555c333
AK
883 desc->sptes[i] = desc->sptes[j];
884 desc->sptes[j] = NULL;
cd4a4e53
AK
885 if (j != 0)
886 return;
887 if (!prev_desc && !desc->more)
fe3c2b4c 888 rmap_head->val = 0;
cd4a4e53
AK
889 else
890 if (prev_desc)
891 prev_desc->more = desc->more;
892 else
018aabb5 893 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 894 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
895}
896
8daf3462 897static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 898{
53c07b18
XG
899 struct pte_list_desc *desc;
900 struct pte_list_desc *prev_desc;
cd4a4e53
AK
901 int i;
902
018aabb5 903 if (!rmap_head->val) {
8daf3462 904 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 905 BUG();
018aabb5 906 } else if (!(rmap_head->val & 1)) {
8daf3462 907 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 908 if ((u64 *)rmap_head->val != spte) {
8daf3462 909 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
910 BUG();
911 }
018aabb5 912 rmap_head->val = 0;
cd4a4e53 913 } else {
8daf3462 914 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 915 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
916 prev_desc = NULL;
917 while (desc) {
018aabb5 918 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 919 if (desc->sptes[i] == spte) {
018aabb5
TY
920 pte_list_desc_remove_entry(rmap_head,
921 desc, i, prev_desc);
cd4a4e53
AK
922 return;
923 }
018aabb5 924 }
cd4a4e53
AK
925 prev_desc = desc;
926 desc = desc->more;
927 }
8daf3462 928 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
929 BUG();
930 }
931}
932
e7912386
WY
933static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
934{
935 mmu_spte_clear_track_bits(sptep);
936 __pte_list_remove(sptep, rmap_head);
937}
938
018aabb5
TY
939static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
940 struct kvm_memory_slot *slot)
53c07b18 941{
77d11309 942 unsigned long idx;
53c07b18 943
77d11309 944 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 945 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
946}
947
018aabb5
TY
948static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
949 struct kvm_mmu_page *sp)
9b9b1492 950{
699023e2 951 struct kvm_memslots *slots;
9b9b1492
TY
952 struct kvm_memory_slot *slot;
953
699023e2
PB
954 slots = kvm_memslots_for_spte_role(kvm, sp->role);
955 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 956 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
957}
958
f759e2b4
XG
959static bool rmap_can_add(struct kvm_vcpu *vcpu)
960{
356ec69a 961 struct kvm_mmu_memory_cache *mc;
f759e2b4 962
356ec69a 963 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 964 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
965}
966
53c07b18
XG
967static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
968{
969 struct kvm_mmu_page *sp;
018aabb5 970 struct kvm_rmap_head *rmap_head;
53c07b18 971
57354682 972 sp = sptep_to_sp(spte);
53c07b18 973 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
974 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
975 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
976}
977
53c07b18
XG
978static void rmap_remove(struct kvm *kvm, u64 *spte)
979{
980 struct kvm_mmu_page *sp;
981 gfn_t gfn;
018aabb5 982 struct kvm_rmap_head *rmap_head;
53c07b18 983
57354682 984 sp = sptep_to_sp(spte);
53c07b18 985 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 986 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 987 __pte_list_remove(spte, rmap_head);
53c07b18
XG
988}
989
1e3f42f0
TY
990/*
991 * Used by the following functions to iterate through the sptes linked by a
992 * rmap. All fields are private and not assumed to be used outside.
993 */
994struct rmap_iterator {
995 /* private fields */
996 struct pte_list_desc *desc; /* holds the sptep if not NULL */
997 int pos; /* index of the sptep */
998};
999
1000/*
1001 * Iteration must be started by this function. This should also be used after
1002 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1003 * information in the iterator may not be valid.
1e3f42f0
TY
1004 *
1005 * Returns sptep if found, NULL otherwise.
1006 */
018aabb5
TY
1007static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1008 struct rmap_iterator *iter)
1e3f42f0 1009{
77fbbbd2
TY
1010 u64 *sptep;
1011
018aabb5 1012 if (!rmap_head->val)
1e3f42f0
TY
1013 return NULL;
1014
018aabb5 1015 if (!(rmap_head->val & 1)) {
1e3f42f0 1016 iter->desc = NULL;
77fbbbd2
TY
1017 sptep = (u64 *)rmap_head->val;
1018 goto out;
1e3f42f0
TY
1019 }
1020
018aabb5 1021 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1022 iter->pos = 0;
77fbbbd2
TY
1023 sptep = iter->desc->sptes[iter->pos];
1024out:
1025 BUG_ON(!is_shadow_present_pte(*sptep));
1026 return sptep;
1e3f42f0
TY
1027}
1028
1029/*
1030 * Must be used with a valid iterator: e.g. after rmap_get_first().
1031 *
1032 * Returns sptep if found, NULL otherwise.
1033 */
1034static u64 *rmap_get_next(struct rmap_iterator *iter)
1035{
77fbbbd2
TY
1036 u64 *sptep;
1037
1e3f42f0
TY
1038 if (iter->desc) {
1039 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1040 ++iter->pos;
1041 sptep = iter->desc->sptes[iter->pos];
1042 if (sptep)
77fbbbd2 1043 goto out;
1e3f42f0
TY
1044 }
1045
1046 iter->desc = iter->desc->more;
1047
1048 if (iter->desc) {
1049 iter->pos = 0;
1050 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1051 sptep = iter->desc->sptes[iter->pos];
1052 goto out;
1e3f42f0
TY
1053 }
1054 }
1055
1056 return NULL;
77fbbbd2
TY
1057out:
1058 BUG_ON(!is_shadow_present_pte(*sptep));
1059 return sptep;
1e3f42f0
TY
1060}
1061
018aabb5
TY
1062#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1063 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1064 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1065
c3707958 1066static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1067{
1df9f2dc 1068 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1069 rmap_remove(kvm, sptep);
be38d276
AK
1070}
1071
8e22f955
XG
1072
1073static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1074{
1075 if (is_large_pte(*sptep)) {
57354682 1076 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1077 drop_spte(kvm, sptep);
1078 --kvm->stat.lpages;
1079 return true;
1080 }
1081
1082 return false;
1083}
1084
1085static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1086{
c3134ce2 1087 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1088 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1089
1090 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1091 KVM_PAGES_PER_HPAGE(sp->role.level));
1092 }
8e22f955
XG
1093}
1094
1095/*
49fde340 1096 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1097 * spte write-protection is caused by protecting shadow page table.
49fde340 1098 *
b4619660 1099 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1100 * protection:
1101 * - for dirty logging, the spte can be set to writable at anytime if
1102 * its dirty bitmap is properly set.
1103 * - for spte protection, the spte can be writable only after unsync-ing
1104 * shadow page.
8e22f955 1105 *
c126d94f 1106 * Return true if tlb need be flushed.
8e22f955 1107 */
c4f138b4 1108static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1109{
1110 u64 spte = *sptep;
1111
49fde340 1112 if (!is_writable_pte(spte) &&
ea4114bc 1113 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1114 return false;
1115
1116 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1117
49fde340
XG
1118 if (pt_protect)
1119 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1120 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1121
c126d94f 1122 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1123}
1124
018aabb5
TY
1125static bool __rmap_write_protect(struct kvm *kvm,
1126 struct kvm_rmap_head *rmap_head,
245c3912 1127 bool pt_protect)
98348e95 1128{
1e3f42f0
TY
1129 u64 *sptep;
1130 struct rmap_iterator iter;
d13bc5b5 1131 bool flush = false;
374cbac0 1132
018aabb5 1133 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1134 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1135
d13bc5b5 1136 return flush;
a0ed4607
TY
1137}
1138
c4f138b4 1139static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1140{
1141 u64 spte = *sptep;
1142
1143 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1144
1f4e5fc8 1145 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1146 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1147 return mmu_spte_update(sptep, spte);
1148}
1149
1f4e5fc8 1150static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1151{
1152 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1153 (unsigned long *)sptep);
1f4e5fc8 1154 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1155 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1156
1157 return was_writable;
1158}
1159
1160/*
1161 * Gets the GFN ready for another round of dirty logging by clearing the
1162 * - D bit on ad-enabled SPTEs, and
1163 * - W bit on ad-disabled SPTEs.
1164 * Returns true iff any D or W bits were cleared.
1165 */
018aabb5 1166static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1167{
1168 u64 *sptep;
1169 struct rmap_iterator iter;
1170 bool flush = false;
1171
018aabb5 1172 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1173 if (spte_ad_need_write_protect(*sptep))
1174 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1175 else
1f4e5fc8 1176 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1177
1178 return flush;
1179}
1180
c4f138b4 1181static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1182{
1183 u64 spte = *sptep;
1184
1185 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1186
1f4e5fc8 1187 /*
afaf0b2f 1188 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1189 * do not bother adding back write access to pages marked
1190 * SPTE_AD_WRPROT_ONLY_MASK.
1191 */
f4b4b180
KH
1192 spte |= shadow_dirty_mask;
1193
1194 return mmu_spte_update(sptep, spte);
1195}
1196
018aabb5 1197static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1198{
1199 u64 *sptep;
1200 struct rmap_iterator iter;
1201 bool flush = false;
1202
018aabb5 1203 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1204 if (spte_ad_enabled(*sptep))
1205 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1206
1207 return flush;
1208}
1209
5dc99b23 1210/**
3b0f1d01 1211 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1212 * @kvm: kvm instance
1213 * @slot: slot to protect
1214 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1215 * @mask: indicates which pages we should protect
1216 *
1217 * Used when we do not need to care about huge page mappings: e.g. during dirty
1218 * logging we do not have any such mappings.
1219 */
3b0f1d01 1220static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1221 struct kvm_memory_slot *slot,
1222 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1223{
018aabb5 1224 struct kvm_rmap_head *rmap_head;
a0ed4607 1225
a6a0b05d
BG
1226 if (kvm->arch.tdp_mmu_enabled)
1227 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1228 slot->base_gfn + gfn_offset, mask, true);
5dc99b23 1229 while (mask) {
018aabb5 1230 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1231 PG_LEVEL_4K, slot);
018aabb5 1232 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1233
5dc99b23
TY
1234 /* clear the first set bit */
1235 mask &= mask - 1;
1236 }
374cbac0
AK
1237}
1238
f4b4b180 1239/**
ac8d57e5
PF
1240 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1241 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1242 * @kvm: kvm instance
1243 * @slot: slot to clear D-bit
1244 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1245 * @mask: indicates which pages we should clear D-bit
1246 *
1247 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1248 */
1249void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1250 struct kvm_memory_slot *slot,
1251 gfn_t gfn_offset, unsigned long mask)
1252{
018aabb5 1253 struct kvm_rmap_head *rmap_head;
f4b4b180 1254
a6a0b05d
BG
1255 if (kvm->arch.tdp_mmu_enabled)
1256 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1257 slot->base_gfn + gfn_offset, mask, false);
f4b4b180 1258 while (mask) {
018aabb5 1259 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1260 PG_LEVEL_4K, slot);
018aabb5 1261 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1262
1263 /* clear the first set bit */
1264 mask &= mask - 1;
1265 }
1266}
1267EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1268
3b0f1d01
KH
1269/**
1270 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1271 * PT level pages.
1272 *
1273 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1274 * enable dirty logging for them.
1275 *
1276 * Used when we do not need to care about huge page mappings: e.g. during dirty
1277 * logging we do not have any such mappings.
1278 */
1279void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1280 struct kvm_memory_slot *slot,
1281 gfn_t gfn_offset, unsigned long mask)
1282{
afaf0b2f
SC
1283 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1284 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1285 mask);
1286 else
1287 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1288}
1289
aeecee2e
XG
1290bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1291 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1292{
018aabb5 1293 struct kvm_rmap_head *rmap_head;
5dc99b23 1294 int i;
2f84569f 1295 bool write_protected = false;
95d4c16c 1296
3bae0459 1297 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1298 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1299 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1300 }
1301
1302 return write_protected;
95d4c16c
TY
1303}
1304
aeecee2e
XG
1305static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1306{
1307 struct kvm_memory_slot *slot;
1308
1309 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1310 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1311}
1312
018aabb5 1313static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1314{
1e3f42f0
TY
1315 u64 *sptep;
1316 struct rmap_iterator iter;
6a49f85c 1317 bool flush = false;
e930bffe 1318
018aabb5 1319 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1320 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1321
e7912386 1322 pte_list_remove(rmap_head, sptep);
6a49f85c 1323 flush = true;
e930bffe 1324 }
1e3f42f0 1325
6a49f85c
XG
1326 return flush;
1327}
1328
018aabb5 1329static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1330 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1331 unsigned long data)
1332{
018aabb5 1333 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1334}
1335
018aabb5 1336static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1337 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1338 unsigned long data)
3da0dd43 1339{
1e3f42f0
TY
1340 u64 *sptep;
1341 struct rmap_iterator iter;
3da0dd43 1342 int need_flush = 0;
1e3f42f0 1343 u64 new_spte;
3da0dd43 1344 pte_t *ptep = (pte_t *)data;
ba049e93 1345 kvm_pfn_t new_pfn;
3da0dd43
IE
1346
1347 WARN_ON(pte_huge(*ptep));
1348 new_pfn = pte_pfn(*ptep);
1e3f42f0 1349
0d536790 1350restart:
018aabb5 1351 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1352 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1353 sptep, *sptep, gfn, level);
1e3f42f0 1354
3da0dd43 1355 need_flush = 1;
1e3f42f0 1356
3da0dd43 1357 if (pte_write(*ptep)) {
e7912386 1358 pte_list_remove(rmap_head, sptep);
0d536790 1359 goto restart;
3da0dd43 1360 } else {
cb3eedab
PB
1361 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1362 *sptep, new_pfn);
1e3f42f0
TY
1363
1364 mmu_spte_clear_track_bits(sptep);
1365 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1366 }
1367 }
1e3f42f0 1368
3cc5ea94
LT
1369 if (need_flush && kvm_available_flush_tlb_with_range()) {
1370 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1371 return 0;
1372 }
1373
0cf853c5 1374 return need_flush;
3da0dd43
IE
1375}
1376
6ce1f4e2
XG
1377struct slot_rmap_walk_iterator {
1378 /* input fields. */
1379 struct kvm_memory_slot *slot;
1380 gfn_t start_gfn;
1381 gfn_t end_gfn;
1382 int start_level;
1383 int end_level;
1384
1385 /* output fields. */
1386 gfn_t gfn;
018aabb5 1387 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1388 int level;
1389
1390 /* private field. */
018aabb5 1391 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1392};
1393
1394static void
1395rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1396{
1397 iterator->level = level;
1398 iterator->gfn = iterator->start_gfn;
1399 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1400 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1401 iterator->slot);
1402}
1403
1404static void
1405slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1406 struct kvm_memory_slot *slot, int start_level,
1407 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1408{
1409 iterator->slot = slot;
1410 iterator->start_level = start_level;
1411 iterator->end_level = end_level;
1412 iterator->start_gfn = start_gfn;
1413 iterator->end_gfn = end_gfn;
1414
1415 rmap_walk_init_level(iterator, iterator->start_level);
1416}
1417
1418static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1419{
1420 return !!iterator->rmap;
1421}
1422
1423static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1424{
1425 if (++iterator->rmap <= iterator->end_rmap) {
1426 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1427 return;
1428 }
1429
1430 if (++iterator->level > iterator->end_level) {
1431 iterator->rmap = NULL;
1432 return;
1433 }
1434
1435 rmap_walk_init_level(iterator, iterator->level);
1436}
1437
1438#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1439 _start_gfn, _end_gfn, _iter_) \
1440 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1441 _end_level_, _start_gfn, _end_gfn); \
1442 slot_rmap_walk_okay(_iter_); \
1443 slot_rmap_walk_next(_iter_))
1444
84504ef3
TY
1445static int kvm_handle_hva_range(struct kvm *kvm,
1446 unsigned long start,
1447 unsigned long end,
1448 unsigned long data,
1449 int (*handler)(struct kvm *kvm,
018aabb5 1450 struct kvm_rmap_head *rmap_head,
048212d0 1451 struct kvm_memory_slot *slot,
8a9522d2
ALC
1452 gfn_t gfn,
1453 int level,
84504ef3 1454 unsigned long data))
e930bffe 1455{
bc6678a3 1456 struct kvm_memslots *slots;
be6ba0f0 1457 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1458 struct slot_rmap_walk_iterator iterator;
1459 int ret = 0;
9da0e4d5 1460 int i;
bc6678a3 1461
9da0e4d5
PB
1462 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1463 slots = __kvm_memslots(kvm, i);
1464 kvm_for_each_memslot(memslot, slots) {
1465 unsigned long hva_start, hva_end;
1466 gfn_t gfn_start, gfn_end;
e930bffe 1467
9da0e4d5
PB
1468 hva_start = max(start, memslot->userspace_addr);
1469 hva_end = min(end, memslot->userspace_addr +
1470 (memslot->npages << PAGE_SHIFT));
1471 if (hva_start >= hva_end)
1472 continue;
1473 /*
1474 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1475 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1476 */
1477 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1478 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1479
3bae0459 1480 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1481 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1482 gfn_start, gfn_end - 1,
1483 &iterator)
1484 ret |= handler(kvm, iterator.rmap, memslot,
1485 iterator.gfn, iterator.level, data);
1486 }
e930bffe
AA
1487 }
1488
f395302e 1489 return ret;
e930bffe
AA
1490}
1491
84504ef3
TY
1492static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1493 unsigned long data,
018aabb5
TY
1494 int (*handler)(struct kvm *kvm,
1495 struct kvm_rmap_head *rmap_head,
048212d0 1496 struct kvm_memory_slot *slot,
8a9522d2 1497 gfn_t gfn, int level,
84504ef3
TY
1498 unsigned long data))
1499{
1500 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1501}
1502
fdfe7cbd
WD
1503int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1504 unsigned flags)
b3ae2096 1505{
063afacd
BG
1506 int r;
1507
1508 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1509
1510 if (kvm->arch.tdp_mmu_enabled)
1511 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1512
1513 return r;
b3ae2096
TY
1514}
1515
748c0e31 1516int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1517{
1d8dd6b3
BG
1518 int r;
1519
1520 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1521
1522 if (kvm->arch.tdp_mmu_enabled)
1523 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1524
1525 return r;
e930bffe
AA
1526}
1527
018aabb5 1528static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1529 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1530 unsigned long data)
e930bffe 1531{
1e3f42f0 1532 u64 *sptep;
3f649ab7 1533 struct rmap_iterator iter;
e930bffe
AA
1534 int young = 0;
1535
f160c7b7
JS
1536 for_each_rmap_spte(rmap_head, &iter, sptep)
1537 young |= mmu_spte_age(sptep);
0d536790 1538
8a9522d2 1539 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1540 return young;
1541}
1542
018aabb5 1543static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1544 struct kvm_memory_slot *slot, gfn_t gfn,
1545 int level, unsigned long data)
8ee53820 1546{
1e3f42f0
TY
1547 u64 *sptep;
1548 struct rmap_iterator iter;
8ee53820 1549
83ef6c81
JS
1550 for_each_rmap_spte(rmap_head, &iter, sptep)
1551 if (is_accessed_spte(*sptep))
1552 return 1;
83ef6c81 1553 return 0;
8ee53820
AA
1554}
1555
53a27b39
MT
1556#define RMAP_RECYCLE_THRESHOLD 1000
1557
852e3c19 1558static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1559{
018aabb5 1560 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1561 struct kvm_mmu_page *sp;
1562
57354682 1563 sp = sptep_to_sp(spte);
53a27b39 1564
018aabb5 1565 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1566
018aabb5 1567 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1568 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1569 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1570}
1571
57128468 1572int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1573{
f8e14497
BG
1574 int young = false;
1575
1576 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1577 if (kvm->arch.tdp_mmu_enabled)
1578 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1579
1580 return young;
e930bffe
AA
1581}
1582
8ee53820
AA
1583int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1584{
f8e14497
BG
1585 int young = false;
1586
1587 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1588 if (kvm->arch.tdp_mmu_enabled)
1589 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1590
1591 return young;
8ee53820
AA
1592}
1593
d6c69ee9 1594#ifdef MMU_DEBUG
47ad8e68 1595static int is_empty_shadow_page(u64 *spt)
6aa8b732 1596{
139bdb2d
AK
1597 u64 *pos;
1598 u64 *end;
1599
47ad8e68 1600 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1601 if (is_shadow_present_pte(*pos)) {
b8688d51 1602 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1603 pos, *pos);
6aa8b732 1604 return 0;
139bdb2d 1605 }
6aa8b732
AK
1606 return 1;
1607}
d6c69ee9 1608#endif
6aa8b732 1609
45221ab6
DH
1610/*
1611 * This value is the sum of all of the kvm instances's
1612 * kvm->arch.n_used_mmu_pages values. We need a global,
1613 * aggregate version in order to make the slab shrinker
1614 * faster
1615 */
bc8a3d89 1616static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1617{
1618 kvm->arch.n_used_mmu_pages += nr;
1619 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1620}
1621
834be0d8 1622static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1623{
fa4a2c08 1624 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1625 hlist_del(&sp->hash_link);
bd4c86ea
XG
1626 list_del(&sp->link);
1627 free_page((unsigned long)sp->spt);
834be0d8
GN
1628 if (!sp->role.direct)
1629 free_page((unsigned long)sp->gfns);
e8ad9a70 1630 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1631}
1632
cea0f0e7
AK
1633static unsigned kvm_page_table_hashfn(gfn_t gfn)
1634{
114df303 1635 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1636}
1637
714b93da 1638static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1639 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1640{
cea0f0e7
AK
1641 if (!parent_pte)
1642 return;
cea0f0e7 1643
67052b35 1644 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1645}
1646
4db35314 1647static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1648 u64 *parent_pte)
1649{
8daf3462 1650 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1651}
1652
bcdd9a93
XG
1653static void drop_parent_pte(struct kvm_mmu_page *sp,
1654 u64 *parent_pte)
1655{
1656 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1657 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1658}
1659
47005792 1660static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1661{
67052b35 1662 struct kvm_mmu_page *sp;
7ddca7e4 1663
94ce87ef
SC
1664 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1665 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1666 if (!direct)
94ce87ef 1667 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1668 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1669
1670 /*
1671 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1672 * depends on valid pages being added to the head of the list. See
1673 * comments in kvm_zap_obsolete_pages().
1674 */
ca333add 1675 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1676 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1677 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1678 return sp;
ad8cfbe3
MT
1679}
1680
67052b35 1681static void mark_unsync(u64 *spte);
1047df1f 1682static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1683{
74c4e63a
TY
1684 u64 *sptep;
1685 struct rmap_iterator iter;
1686
1687 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1688 mark_unsync(sptep);
1689 }
0074ff63
MT
1690}
1691
67052b35 1692static void mark_unsync(u64 *spte)
0074ff63 1693{
67052b35 1694 struct kvm_mmu_page *sp;
1047df1f 1695 unsigned int index;
0074ff63 1696
57354682 1697 sp = sptep_to_sp(spte);
1047df1f
XG
1698 index = spte - sp->spt;
1699 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1700 return;
1047df1f 1701 if (sp->unsync_children++)
0074ff63 1702 return;
1047df1f 1703 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1704}
1705
e8bc217a 1706static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1707 struct kvm_mmu_page *sp)
e8bc217a 1708{
1f50f1b3 1709 return 0;
e8bc217a
MT
1710}
1711
0f53b5b1
XG
1712static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1713 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1714 const void *pte)
0f53b5b1
XG
1715{
1716 WARN_ON(1);
1717}
1718
60c8aec6
MT
1719#define KVM_PAGE_ARRAY_NR 16
1720
1721struct kvm_mmu_pages {
1722 struct mmu_page_and_offset {
1723 struct kvm_mmu_page *sp;
1724 unsigned int idx;
1725 } page[KVM_PAGE_ARRAY_NR];
1726 unsigned int nr;
1727};
1728
cded19f3
HE
1729static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1730 int idx)
4731d4c7 1731{
60c8aec6 1732 int i;
4731d4c7 1733
60c8aec6
MT
1734 if (sp->unsync)
1735 for (i=0; i < pvec->nr; i++)
1736 if (pvec->page[i].sp == sp)
1737 return 0;
1738
1739 pvec->page[pvec->nr].sp = sp;
1740 pvec->page[pvec->nr].idx = idx;
1741 pvec->nr++;
1742 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1743}
1744
fd951457
TY
1745static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1746{
1747 --sp->unsync_children;
1748 WARN_ON((int)sp->unsync_children < 0);
1749 __clear_bit(idx, sp->unsync_child_bitmap);
1750}
1751
60c8aec6
MT
1752static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1753 struct kvm_mmu_pages *pvec)
1754{
1755 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1756
37178b8b 1757 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1758 struct kvm_mmu_page *child;
4731d4c7
MT
1759 u64 ent = sp->spt[i];
1760
fd951457
TY
1761 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1762 clear_unsync_child_bit(sp, i);
1763 continue;
1764 }
7a8f1a74 1765
e47c4aee 1766 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1767
1768 if (child->unsync_children) {
1769 if (mmu_pages_add(pvec, child, i))
1770 return -ENOSPC;
1771
1772 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1773 if (!ret) {
1774 clear_unsync_child_bit(sp, i);
1775 continue;
1776 } else if (ret > 0) {
7a8f1a74 1777 nr_unsync_leaf += ret;
fd951457 1778 } else
7a8f1a74
XG
1779 return ret;
1780 } else if (child->unsync) {
1781 nr_unsync_leaf++;
1782 if (mmu_pages_add(pvec, child, i))
1783 return -ENOSPC;
1784 } else
fd951457 1785 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1786 }
1787
60c8aec6
MT
1788 return nr_unsync_leaf;
1789}
1790
e23d3fef
XG
1791#define INVALID_INDEX (-1)
1792
60c8aec6
MT
1793static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1794 struct kvm_mmu_pages *pvec)
1795{
0a47cd85 1796 pvec->nr = 0;
60c8aec6
MT
1797 if (!sp->unsync_children)
1798 return 0;
1799
e23d3fef 1800 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1801 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1802}
1803
4731d4c7
MT
1804static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1805{
1806 WARN_ON(!sp->unsync);
5e1b3ddb 1807 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1808 sp->unsync = 0;
1809 --kvm->stat.mmu_unsync;
1810}
1811
83cdb568
SC
1812static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1813 struct list_head *invalid_list);
7775834a
XG
1814static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1815 struct list_head *invalid_list);
4731d4c7 1816
ac101b7c
SC
1817#define for_each_valid_sp(_kvm, _sp, _list) \
1818 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1819 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1820 } else
1044b030
TY
1821
1822#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1823 for_each_valid_sp(_kvm, _sp, \
1824 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1825 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1826
47c42e6b
SC
1827static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1828{
1829 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1830}
1831
f918b443 1832/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1833static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1834 struct list_head *invalid_list)
4731d4c7 1835{
47c42e6b
SC
1836 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1837 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1838 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1839 return false;
4731d4c7
MT
1840 }
1841
1f50f1b3 1842 return true;
4731d4c7
MT
1843}
1844
a2113634
SC
1845static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1846 struct list_head *invalid_list,
1847 bool remote_flush)
1848{
cfd32acf 1849 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1850 return false;
1851
1852 if (!list_empty(invalid_list))
1853 kvm_mmu_commit_zap_page(kvm, invalid_list);
1854 else
1855 kvm_flush_remote_tlbs(kvm);
1856 return true;
1857}
1858
35a70510
PB
1859static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1860 struct list_head *invalid_list,
1861 bool remote_flush, bool local_flush)
1d9dc7e0 1862{
a2113634 1863 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1864 return;
d98ba053 1865
a2113634 1866 if (local_flush)
8c8560b8 1867 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1868}
1869
e37fa785
XG
1870#ifdef CONFIG_KVM_MMU_AUDIT
1871#include "mmu_audit.c"
1872#else
1873static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1874static void mmu_audit_disable(void) { }
1875#endif
1876
002c5f73
SC
1877static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1878{
fac026da
SC
1879 return sp->role.invalid ||
1880 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1881}
1882
1f50f1b3 1883static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1884 struct list_head *invalid_list)
1d9dc7e0 1885{
9a43c5d9
PB
1886 kvm_unlink_unsync_page(vcpu->kvm, sp);
1887 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1888}
1889
9f1a122f 1890/* @gfn should be write-protected at the call site */
2a74003a
PB
1891static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1892 struct list_head *invalid_list)
9f1a122f 1893{
9f1a122f 1894 struct kvm_mmu_page *s;
2a74003a 1895 bool ret = false;
9f1a122f 1896
b67bfe0d 1897 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1898 if (!s->unsync)
9f1a122f
XG
1899 continue;
1900
3bae0459 1901 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1902 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1903 }
1904
2a74003a 1905 return ret;
9f1a122f
XG
1906}
1907
60c8aec6 1908struct mmu_page_path {
2a7266a8
YZ
1909 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1910 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1911};
1912
60c8aec6 1913#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1914 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1915 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1916 i = mmu_pages_next(&pvec, &parents, i))
1917
cded19f3
HE
1918static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1919 struct mmu_page_path *parents,
1920 int i)
60c8aec6
MT
1921{
1922 int n;
1923
1924 for (n = i+1; n < pvec->nr; n++) {
1925 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1926 unsigned idx = pvec->page[n].idx;
1927 int level = sp->role.level;
60c8aec6 1928
0a47cd85 1929 parents->idx[level-1] = idx;
3bae0459 1930 if (level == PG_LEVEL_4K)
0a47cd85 1931 break;
60c8aec6 1932
0a47cd85 1933 parents->parent[level-2] = sp;
60c8aec6
MT
1934 }
1935
1936 return n;
1937}
1938
0a47cd85
PB
1939static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1940 struct mmu_page_path *parents)
1941{
1942 struct kvm_mmu_page *sp;
1943 int level;
1944
1945 if (pvec->nr == 0)
1946 return 0;
1947
e23d3fef
XG
1948 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1949
0a47cd85
PB
1950 sp = pvec->page[0].sp;
1951 level = sp->role.level;
3bae0459 1952 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1953
1954 parents->parent[level-2] = sp;
1955
1956 /* Also set up a sentinel. Further entries in pvec are all
1957 * children of sp, so this element is never overwritten.
1958 */
1959 parents->parent[level-1] = NULL;
1960 return mmu_pages_next(pvec, parents, 0);
1961}
1962
cded19f3 1963static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1964{
60c8aec6
MT
1965 struct kvm_mmu_page *sp;
1966 unsigned int level = 0;
1967
1968 do {
1969 unsigned int idx = parents->idx[level];
60c8aec6
MT
1970 sp = parents->parent[level];
1971 if (!sp)
1972 return;
1973
e23d3fef 1974 WARN_ON(idx == INVALID_INDEX);
fd951457 1975 clear_unsync_child_bit(sp, idx);
60c8aec6 1976 level++;
0a47cd85 1977 } while (!sp->unsync_children);
60c8aec6 1978}
4731d4c7 1979
60c8aec6
MT
1980static void mmu_sync_children(struct kvm_vcpu *vcpu,
1981 struct kvm_mmu_page *parent)
1982{
1983 int i;
1984 struct kvm_mmu_page *sp;
1985 struct mmu_page_path parents;
1986 struct kvm_mmu_pages pages;
d98ba053 1987 LIST_HEAD(invalid_list);
50c9e6f3 1988 bool flush = false;
60c8aec6 1989
60c8aec6 1990 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1991 bool protected = false;
b1a36821
MT
1992
1993 for_each_sp(pages, sp, parents, i)
54bf36aa 1994 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 1995
50c9e6f3 1996 if (protected) {
b1a36821 1997 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
1998 flush = false;
1999 }
b1a36821 2000
60c8aec6 2001 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2002 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2003 mmu_pages_clear_parents(&parents);
2004 }
50c9e6f3
PB
2005 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2006 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2007 cond_resched_lock(&vcpu->kvm->mmu_lock);
2008 flush = false;
2009 }
60c8aec6 2010 }
50c9e6f3
PB
2011
2012 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2013}
2014
a30f47cb
XG
2015static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2016{
e5691a81 2017 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2018}
2019
2020static void clear_sp_write_flooding_count(u64 *spte)
2021{
57354682 2022 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2023}
2024
cea0f0e7
AK
2025static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2026 gfn_t gfn,
2027 gva_t gaddr,
2028 unsigned level,
f6e2c02b 2029 int direct,
0a2b64c5 2030 unsigned int access)
cea0f0e7 2031{
fb58a9c3 2032 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2033 union kvm_mmu_page_role role;
ac101b7c 2034 struct hlist_head *sp_list;
cea0f0e7 2035 unsigned quadrant;
9f1a122f 2036 struct kvm_mmu_page *sp;
9f1a122f 2037 bool need_sync = false;
2a74003a 2038 bool flush = false;
f3414bc7 2039 int collisions = 0;
2a74003a 2040 LIST_HEAD(invalid_list);
cea0f0e7 2041
36d9594d 2042 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2043 role.level = level;
f6e2c02b 2044 role.direct = direct;
84b0c8c6 2045 if (role.direct)
47c42e6b 2046 role.gpte_is_8_bytes = true;
41074d07 2047 role.access = access;
fb58a9c3 2048 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2049 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2050 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2051 role.quadrant = quadrant;
2052 }
ac101b7c
SC
2053
2054 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2055 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2056 if (sp->gfn != gfn) {
2057 collisions++;
2058 continue;
2059 }
2060
7ae680eb
XG
2061 if (!need_sync && sp->unsync)
2062 need_sync = true;
4731d4c7 2063
7ae680eb
XG
2064 if (sp->role.word != role.word)
2065 continue;
4731d4c7 2066
fb58a9c3
SC
2067 if (direct_mmu)
2068 goto trace_get_page;
2069
2a74003a
PB
2070 if (sp->unsync) {
2071 /* The page is good, but __kvm_sync_page might still end
2072 * up zapping it. If so, break in order to rebuild it.
2073 */
2074 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2075 break;
2076
2077 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2078 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2079 }
e02aa901 2080
98bba238 2081 if (sp->unsync_children)
f6f6195b 2082 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2083
a30f47cb 2084 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2085
2086trace_get_page:
7ae680eb 2087 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2088 goto out;
7ae680eb 2089 }
47005792 2090
dfc5aa00 2091 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2092
2093 sp = kvm_mmu_alloc_page(vcpu, direct);
2094
4db35314
AK
2095 sp->gfn = gfn;
2096 sp->role = role;
ac101b7c 2097 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2098 if (!direct) {
56ca57f9
XG
2099 /*
2100 * we should do write protection before syncing pages
2101 * otherwise the content of the synced shadow page may
2102 * be inconsistent with guest page table.
2103 */
2104 account_shadowed(vcpu->kvm, sp);
3bae0459 2105 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2106 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2107
3bae0459 2108 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2109 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2110 }
f691fe1d 2111 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2112
2113 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2114out:
2115 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2116 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2117 return sp;
cea0f0e7
AK
2118}
2119
7eb77e9f
JS
2120static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2121 struct kvm_vcpu *vcpu, hpa_t root,
2122 u64 addr)
2d11123a
AK
2123{
2124 iterator->addr = addr;
7eb77e9f 2125 iterator->shadow_addr = root;
44dd3ffa 2126 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2127
2a7266a8 2128 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2129 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2130 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2131 --iterator->level;
2132
2d11123a 2133 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2134 /*
2135 * prev_root is currently only used for 64-bit hosts. So only
2136 * the active root_hpa is valid here.
2137 */
44dd3ffa 2138 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2139
2d11123a 2140 iterator->shadow_addr
44dd3ffa 2141 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2142 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2143 --iterator->level;
2144 if (!iterator->shadow_addr)
2145 iterator->level = 0;
2146 }
2147}
2148
7eb77e9f
JS
2149static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2150 struct kvm_vcpu *vcpu, u64 addr)
2151{
44dd3ffa 2152 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2153 addr);
2154}
2155
2d11123a
AK
2156static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2157{
3bae0459 2158 if (iterator->level < PG_LEVEL_4K)
2d11123a 2159 return false;
4d88954d 2160
2d11123a
AK
2161 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2162 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2163 return true;
2164}
2165
c2a2ac2b
XG
2166static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2167 u64 spte)
2d11123a 2168{
c2a2ac2b 2169 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2170 iterator->level = 0;
2171 return;
2172 }
2173
c2a2ac2b 2174 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2175 --iterator->level;
2176}
2177
c2a2ac2b
XG
2178static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2179{
bb606a9b 2180 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2181}
2182
cc4674d0
BG
2183static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2184 struct kvm_mmu_page *sp)
2185{
2186 u64 spte;
2187
2188 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2189
2190 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2191
1df9f2dc 2192 mmu_spte_set(sptep, spte);
98bba238
TY
2193
2194 mmu_page_add_parent_pte(vcpu, sp, sptep);
2195
2196 if (sp->unsync_children || sp->unsync)
2197 mark_unsync(sptep);
32ef26a3
AK
2198}
2199
a357bd22
AK
2200static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2201 unsigned direct_access)
2202{
2203 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2204 struct kvm_mmu_page *child;
2205
2206 /*
2207 * For the direct sp, if the guest pte's dirty bit
2208 * changed form clean to dirty, it will corrupt the
2209 * sp's access: allow writable in the read-only sp,
2210 * so we should update the spte at this point to get
2211 * a new sp with the correct access.
2212 */
e47c4aee 2213 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2214 if (child->role.access == direct_access)
2215 return;
2216
bcdd9a93 2217 drop_parent_pte(child, sptep);
c3134ce2 2218 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2219 }
2220}
2221
2de4085c
BG
2222/* Returns the number of zapped non-leaf child shadow pages. */
2223static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2224 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2225{
2226 u64 pte;
2227 struct kvm_mmu_page *child;
2228
2229 pte = *spte;
2230 if (is_shadow_present_pte(pte)) {
505aef8f 2231 if (is_last_spte(pte, sp->role.level)) {
c3707958 2232 drop_spte(kvm, spte);
505aef8f
XG
2233 if (is_large_pte(pte))
2234 --kvm->stat.lpages;
2235 } else {
e47c4aee 2236 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2237 drop_parent_pte(child, spte);
2de4085c
BG
2238
2239 /*
2240 * Recursively zap nested TDP SPs, parentless SPs are
2241 * unlikely to be used again in the near future. This
2242 * avoids retaining a large number of stale nested SPs.
2243 */
2244 if (tdp_enabled && invalid_list &&
2245 child->role.guest_mode && !child->parent_ptes.val)
2246 return kvm_mmu_prepare_zap_page(kvm, child,
2247 invalid_list);
38e3b2b2 2248 }
ace569e0 2249 } else if (is_mmio_spte(pte)) {
ce88decf 2250 mmu_spte_clear_no_track(spte);
ace569e0 2251 }
2de4085c 2252 return 0;
38e3b2b2
XG
2253}
2254
2de4085c
BG
2255static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2256 struct kvm_mmu_page *sp,
2257 struct list_head *invalid_list)
a436036b 2258{
2de4085c 2259 int zapped = 0;
697fe2e2 2260 unsigned i;
697fe2e2 2261
38e3b2b2 2262 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2263 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2264
2265 return zapped;
a436036b
AK
2266}
2267
31aa2b44 2268static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2269{
1e3f42f0
TY
2270 u64 *sptep;
2271 struct rmap_iterator iter;
a436036b 2272
018aabb5 2273 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2274 drop_parent_pte(sp, sptep);
31aa2b44
AK
2275}
2276
60c8aec6 2277static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2278 struct kvm_mmu_page *parent,
2279 struct list_head *invalid_list)
4731d4c7 2280{
60c8aec6
MT
2281 int i, zapped = 0;
2282 struct mmu_page_path parents;
2283 struct kvm_mmu_pages pages;
4731d4c7 2284
3bae0459 2285 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2286 return 0;
60c8aec6 2287
60c8aec6
MT
2288 while (mmu_unsync_walk(parent, &pages)) {
2289 struct kvm_mmu_page *sp;
2290
2291 for_each_sp(pages, sp, parents, i) {
7775834a 2292 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2293 mmu_pages_clear_parents(&parents);
77662e00 2294 zapped++;
60c8aec6 2295 }
60c8aec6
MT
2296 }
2297
2298 return zapped;
4731d4c7
MT
2299}
2300
83cdb568
SC
2301static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2302 struct kvm_mmu_page *sp,
2303 struct list_head *invalid_list,
2304 int *nr_zapped)
31aa2b44 2305{
83cdb568 2306 bool list_unstable;
f691fe1d 2307
7775834a 2308 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2309 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2310 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2311 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2312 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2313
83cdb568
SC
2314 /* Zapping children means active_mmu_pages has become unstable. */
2315 list_unstable = *nr_zapped;
2316
f6e2c02b 2317 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2318 unaccount_shadowed(kvm, sp);
5304b8d3 2319
4731d4c7
MT
2320 if (sp->unsync)
2321 kvm_unlink_unsync_page(kvm, sp);
4db35314 2322 if (!sp->root_count) {
54a4f023 2323 /* Count self */
83cdb568 2324 (*nr_zapped)++;
f95eec9b
SC
2325
2326 /*
2327 * Already invalid pages (previously active roots) are not on
2328 * the active page list. See list_del() in the "else" case of
2329 * !sp->root_count.
2330 */
2331 if (sp->role.invalid)
2332 list_add(&sp->link, invalid_list);
2333 else
2334 list_move(&sp->link, invalid_list);
aa6bd187 2335 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2336 } else {
f95eec9b
SC
2337 /*
2338 * Remove the active root from the active page list, the root
2339 * will be explicitly freed when the root_count hits zero.
2340 */
2341 list_del(&sp->link);
05988d72 2342
10605204
SC
2343 /*
2344 * Obsolete pages cannot be used on any vCPUs, see the comment
2345 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2346 * treats invalid shadow pages as being obsolete.
2347 */
2348 if (!is_obsolete_sp(kvm, sp))
05988d72 2349 kvm_reload_remote_mmus(kvm);
2e53d63a 2350 }
7775834a 2351
b8e8c830
PB
2352 if (sp->lpage_disallowed)
2353 unaccount_huge_nx_page(kvm, sp);
2354
7775834a 2355 sp->role.invalid = 1;
83cdb568
SC
2356 return list_unstable;
2357}
2358
2359static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2360 struct list_head *invalid_list)
2361{
2362 int nr_zapped;
2363
2364 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2365 return nr_zapped;
a436036b
AK
2366}
2367
7775834a
XG
2368static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2369 struct list_head *invalid_list)
2370{
945315b9 2371 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2372
2373 if (list_empty(invalid_list))
2374 return;
2375
c142786c 2376 /*
9753f529
LT
2377 * We need to make sure everyone sees our modifications to
2378 * the page tables and see changes to vcpu->mode here. The barrier
2379 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2380 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2381 *
2382 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2383 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2384 */
2385 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2386
945315b9 2387 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2388 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2389 kvm_mmu_free_page(sp);
945315b9 2390 }
7775834a
XG
2391}
2392
6b82ef2c
SC
2393static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2394 unsigned long nr_to_zap)
5da59607 2395{
6b82ef2c
SC
2396 unsigned long total_zapped = 0;
2397 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2398 LIST_HEAD(invalid_list);
6b82ef2c
SC
2399 bool unstable;
2400 int nr_zapped;
5da59607
TY
2401
2402 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2403 return 0;
2404
6b82ef2c
SC
2405restart:
2406 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2407 /*
2408 * Don't zap active root pages, the page itself can't be freed
2409 * and zapping it will just force vCPUs to realloc and reload.
2410 */
2411 if (sp->root_count)
2412 continue;
2413
2414 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2415 &nr_zapped);
2416 total_zapped += nr_zapped;
2417 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2418 break;
2419
6b82ef2c
SC
2420 if (unstable)
2421 goto restart;
ba7888dd 2422 }
5da59607 2423
6b82ef2c
SC
2424 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2425
2426 kvm->stat.mmu_recycled += total_zapped;
2427 return total_zapped;
2428}
2429
afe8d7e6
SC
2430static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2431{
2432 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2433 return kvm->arch.n_max_mmu_pages -
2434 kvm->arch.n_used_mmu_pages;
2435
2436 return 0;
5da59607
TY
2437}
2438
ba7888dd
SC
2439static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2440{
6b82ef2c 2441 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2442
6b82ef2c 2443 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2444 return 0;
2445
6b82ef2c 2446 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2447
2448 if (!kvm_mmu_available_pages(vcpu->kvm))
2449 return -ENOSPC;
2450 return 0;
2451}
2452
82ce2c96
IE
2453/*
2454 * Changing the number of mmu pages allocated to the vm
49d5ca26 2455 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2456 */
bc8a3d89 2457void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2458{
b34cb590
TY
2459 spin_lock(&kvm->mmu_lock);
2460
49d5ca26 2461 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2462 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2463 goal_nr_mmu_pages);
82ce2c96 2464
49d5ca26 2465 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2466 }
82ce2c96 2467
49d5ca26 2468 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2469
2470 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2471}
2472
1cb3f3ae 2473int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2474{
4db35314 2475 struct kvm_mmu_page *sp;
d98ba053 2476 LIST_HEAD(invalid_list);
a436036b
AK
2477 int r;
2478
9ad17b10 2479 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2480 r = 0;
1cb3f3ae 2481 spin_lock(&kvm->mmu_lock);
b67bfe0d 2482 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2483 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2484 sp->role.word);
2485 r = 1;
f41d335a 2486 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2487 }
d98ba053 2488 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2489 spin_unlock(&kvm->mmu_lock);
2490
a436036b 2491 return r;
cea0f0e7 2492}
1cb3f3ae 2493EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2494
5c520e90 2495static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2496{
2497 trace_kvm_mmu_unsync_page(sp);
2498 ++vcpu->kvm->stat.mmu_unsync;
2499 sp->unsync = 1;
2500
2501 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2502}
2503
5a9624af
PB
2504bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2505 bool can_unsync)
4731d4c7 2506{
5c520e90 2507 struct kvm_mmu_page *sp;
4731d4c7 2508
3d0c27ad
XG
2509 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2510 return true;
9cf5cf5a 2511
5c520e90 2512 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2513 if (!can_unsync)
3d0c27ad 2514 return true;
36a2e677 2515
5c520e90
XG
2516 if (sp->unsync)
2517 continue;
9cf5cf5a 2518
3bae0459 2519 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2520 kvm_unsync_page(vcpu, sp);
4731d4c7 2521 }
3d0c27ad 2522
578e1c4d
JS
2523 /*
2524 * We need to ensure that the marking of unsync pages is visible
2525 * before the SPTE is updated to allow writes because
2526 * kvm_mmu_sync_roots() checks the unsync flags without holding
2527 * the MMU lock and so can race with this. If the SPTE was updated
2528 * before the page had been marked as unsync-ed, something like the
2529 * following could happen:
2530 *
2531 * CPU 1 CPU 2
2532 * ---------------------------------------------------------------------
2533 * 1.2 Host updates SPTE
2534 * to be writable
2535 * 2.1 Guest writes a GPTE for GVA X.
2536 * (GPTE being in the guest page table shadowed
2537 * by the SP from CPU 1.)
2538 * This reads SPTE during the page table walk.
2539 * Since SPTE.W is read as 1, there is no
2540 * fault.
2541 *
2542 * 2.2 Guest issues TLB flush.
2543 * That causes a VM Exit.
2544 *
2545 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2546 * Since it is false, so it just returns.
2547 *
2548 * 2.4 Guest accesses GVA X.
2549 * Since the mapping in the SP was not updated,
2550 * so the old mapping for GVA X incorrectly
2551 * gets used.
2552 * 1.1 Host marks SP
2553 * as unsync
2554 * (sp->unsync = true)
2555 *
2556 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2557 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2558 * pairs with this write barrier.
2559 */
2560 smp_wmb();
2561
3d0c27ad 2562 return false;
4731d4c7
MT
2563}
2564
799a4190
BG
2565static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2566 unsigned int pte_access, int level,
2567 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2568 bool can_unsync, bool host_writable)
2569{
2570 u64 spte;
2571 struct kvm_mmu_page *sp;
2572 int ret;
2573
2574 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2575 return 0;
2576
2577 sp = sptep_to_sp(sptep);
2578
2579 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2580 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2581
2582 if (spte & PT_WRITABLE_MASK)
2583 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2584
12703759
SC
2585 if (*sptep == spte)
2586 ret |= SET_SPTE_SPURIOUS;
2587 else if (mmu_spte_update(sptep, spte))
5ce4786f 2588 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2589 return ret;
2590}
2591
0a2b64c5 2592static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2593 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2594 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2595 bool host_writable)
1e73f9dd
MT
2596{
2597 int was_rmapped = 0;
53a27b39 2598 int rmap_count;
5ce4786f 2599 int set_spte_ret;
c4371c2a 2600 int ret = RET_PF_FIXED;
c2a4eadf 2601 bool flush = false;
1e73f9dd 2602
f7616203
XG
2603 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2604 *sptep, write_fault, gfn);
1e73f9dd 2605
afd28fe1 2606 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2607 /*
2608 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2609 * the parent of the now unreachable PTE.
2610 */
3bae0459 2611 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2612 struct kvm_mmu_page *child;
d555c333 2613 u64 pte = *sptep;
1e73f9dd 2614
e47c4aee 2615 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2616 drop_parent_pte(child, sptep);
c2a4eadf 2617 flush = true;
d555c333 2618 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2619 pgprintk("hfn old %llx new %llx\n",
d555c333 2620 spte_to_pfn(*sptep), pfn);
c3707958 2621 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2622 flush = true;
6bed6b9e
JR
2623 } else
2624 was_rmapped = 1;
1e73f9dd 2625 }
852e3c19 2626
5ce4786f
JS
2627 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2628 speculative, true, host_writable);
2629 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2630 if (write_fault)
9b8ebbdb 2631 ret = RET_PF_EMULATE;
8c8560b8 2632 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2633 }
c3134ce2 2634
c2a4eadf 2635 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2636 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2637 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2638
029499b4 2639 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2640 ret = RET_PF_EMULATE;
ce88decf 2641
12703759
SC
2642 /*
2643 * The fault is fully spurious if and only if the new SPTE and old SPTE
2644 * are identical, and emulation is not required.
2645 */
2646 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2647 WARN_ON_ONCE(!was_rmapped);
2648 return RET_PF_SPURIOUS;
2649 }
2650
d555c333 2651 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2652 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2653 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2654 ++vcpu->kvm->stat.lpages;
2655
ffb61bb3 2656 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2657 if (!was_rmapped) {
2658 rmap_count = rmap_add(vcpu, sptep, gfn);
2659 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2660 rmap_recycle(vcpu, sptep, gfn);
2661 }
1c4f1fd6 2662 }
cb9aaa30 2663
9b8ebbdb 2664 return ret;
1c4f1fd6
AK
2665}
2666
ba049e93 2667static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2668 bool no_dirty_log)
2669{
2670 struct kvm_memory_slot *slot;
957ed9ef 2671
5d163b1c 2672 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2673 if (!slot)
6c8ee57b 2674 return KVM_PFN_ERR_FAULT;
957ed9ef 2675
037d92dc 2676 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2677}
2678
2679static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2680 struct kvm_mmu_page *sp,
2681 u64 *start, u64 *end)
2682{
2683 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2684 struct kvm_memory_slot *slot;
0a2b64c5 2685 unsigned int access = sp->role.access;
957ed9ef
XG
2686 int i, ret;
2687 gfn_t gfn;
2688
2689 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2690 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2691 if (!slot)
957ed9ef
XG
2692 return -1;
2693
d9ef13c2 2694 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2695 if (ret <= 0)
2696 return -1;
2697
43fdcda9 2698 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2699 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2700 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2701 put_page(pages[i]);
2702 }
957ed9ef
XG
2703
2704 return 0;
2705}
2706
2707static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2708 struct kvm_mmu_page *sp, u64 *sptep)
2709{
2710 u64 *spte, *start = NULL;
2711 int i;
2712
2713 WARN_ON(!sp->role.direct);
2714
2715 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2716 spte = sp->spt + i;
2717
2718 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2719 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2720 if (!start)
2721 continue;
2722 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2723 break;
2724 start = NULL;
2725 } else if (!start)
2726 start = spte;
2727 }
2728}
2729
2730static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2731{
2732 struct kvm_mmu_page *sp;
2733
57354682 2734 sp = sptep_to_sp(sptep);
ac8d57e5 2735
957ed9ef 2736 /*
ac8d57e5
PF
2737 * Without accessed bits, there's no way to distinguish between
2738 * actually accessed translations and prefetched, so disable pte
2739 * prefetch if accessed bits aren't available.
957ed9ef 2740 */
ac8d57e5 2741 if (sp_ad_disabled(sp))
957ed9ef
XG
2742 return;
2743
3bae0459 2744 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2745 return;
2746
2747 __direct_pte_prefetch(vcpu, sp, sptep);
2748}
2749
db543216 2750static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 2751 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 2752{
db543216
SC
2753 unsigned long hva;
2754 pte_t *pte;
2755 int level;
2756
e851265a 2757 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2758 return PG_LEVEL_4K;
db543216 2759
293e306e
SC
2760 /*
2761 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2762 * is not solely for performance, it's also necessary to avoid the
2763 * "writable" check in __gfn_to_hva_many(), which will always fail on
2764 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2765 * page fault steps have already verified the guest isn't writing a
2766 * read-only memslot.
2767 */
db543216
SC
2768 hva = __gfn_to_hva_memslot(slot, gfn);
2769
2770 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2771 if (unlikely(!pte))
3bae0459 2772 return PG_LEVEL_4K;
db543216
SC
2773
2774 return level;
2775}
2776
bb18842e
BG
2777int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2778 int max_level, kvm_pfn_t *pfnp,
2779 bool huge_page_disallowed, int *req_level)
0885904d 2780{
293e306e 2781 struct kvm_memory_slot *slot;
2c0629f4 2782 struct kvm_lpage_info *linfo;
0885904d 2783 kvm_pfn_t pfn = *pfnp;
17eff019 2784 kvm_pfn_t mask;
83f06fa7 2785 int level;
17eff019 2786
3cf06612
SC
2787 *req_level = PG_LEVEL_4K;
2788
3bae0459
SC
2789 if (unlikely(max_level == PG_LEVEL_4K))
2790 return PG_LEVEL_4K;
17eff019 2791
e851265a 2792 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2793 return PG_LEVEL_4K;
17eff019 2794
293e306e
SC
2795 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2796 if (!slot)
3bae0459 2797 return PG_LEVEL_4K;
293e306e 2798
1d92d2e8 2799 max_level = min(max_level, max_huge_page_level);
3bae0459 2800 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
2801 linfo = lpage_info_slot(gfn, slot, max_level);
2802 if (!linfo->disallow_lpage)
293e306e
SC
2803 break;
2804 }
2805
3bae0459
SC
2806 if (max_level == PG_LEVEL_4K)
2807 return PG_LEVEL_4K;
293e306e
SC
2808
2809 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 2810 if (level == PG_LEVEL_4K)
83f06fa7 2811 return level;
17eff019 2812
3cf06612
SC
2813 *req_level = level = min(level, max_level);
2814
2815 /*
2816 * Enforce the iTLB multihit workaround after capturing the requested
2817 * level, which will be used to do precise, accurate accounting.
2818 */
2819 if (huge_page_disallowed)
2820 return PG_LEVEL_4K;
0885904d
SC
2821
2822 /*
17eff019
SC
2823 * mmu_notifier_retry() was successful and mmu_lock is held, so
2824 * the pmd can't be split from under us.
0885904d 2825 */
17eff019
SC
2826 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2827 VM_BUG_ON((gfn & mask) != (pfn & mask));
2828 *pfnp = pfn & ~mask;
83f06fa7
SC
2829
2830 return level;
0885904d
SC
2831}
2832
bb18842e
BG
2833void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2834 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2835{
bb18842e 2836 int level = *goal_levelp;
b8e8c830 2837
7d945312 2838 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2839 is_shadow_present_pte(spte) &&
2840 !is_large_pte(spte)) {
2841 /*
2842 * A small SPTE exists for this pfn, but FNAME(fetch)
2843 * and __direct_map would like to create a large PTE
2844 * instead: just force them to go down another level,
2845 * patching back for them into pfn the next 9 bits of
2846 * the address.
2847 */
7d945312
BG
2848 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2849 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2850 *pfnp |= gfn & page_mask;
bb18842e 2851 (*goal_levelp)--;
b8e8c830
PB
2852 }
2853}
2854
6c2fd34f 2855static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2856 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2857 bool prefault, bool is_tdp)
140754bc 2858{
6c2fd34f
SC
2859 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2860 bool write = error_code & PFERR_WRITE_MASK;
2861 bool exec = error_code & PFERR_FETCH_MASK;
2862 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2863 struct kvm_shadow_walk_iterator it;
140754bc 2864 struct kvm_mmu_page *sp;
3cf06612 2865 int level, req_level, ret;
3fcf2d1b
PB
2866 gfn_t gfn = gpa >> PAGE_SHIFT;
2867 gfn_t base_gfn = gfn;
6aa8b732 2868
0c7a98e3 2869 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2870 return RET_PF_RETRY;
989c6b34 2871
3cf06612
SC
2872 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2873 huge_page_disallowed, &req_level);
4cd071d1 2874
335e192a 2875 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2876 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2877 /*
2878 * We cannot overwrite existing page tables with an NX
2879 * large page, as the leaf could be executable.
2880 */
dcc70651 2881 if (nx_huge_page_workaround_enabled)
7d945312
BG
2882 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2883 &pfn, &level);
b8e8c830 2884
3fcf2d1b
PB
2885 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2886 if (it.level == level)
9f652d21 2887 break;
6aa8b732 2888
3fcf2d1b
PB
2889 drop_large_spte(vcpu, it.sptep);
2890 if (!is_shadow_present_pte(*it.sptep)) {
2891 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2892 it.level - 1, true, ACC_ALL);
c9fa0b3b 2893
3fcf2d1b 2894 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2895 if (is_tdp && huge_page_disallowed &&
2896 req_level >= it.level)
b8e8c830 2897 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2898 }
2899 }
3fcf2d1b
PB
2900
2901 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2902 write, level, base_gfn, pfn, prefault,
2903 map_writable);
12703759
SC
2904 if (ret == RET_PF_SPURIOUS)
2905 return ret;
2906
3fcf2d1b
PB
2907 direct_pte_prefetch(vcpu, it.sptep);
2908 ++vcpu->stat.pf_fixed;
2909 return ret;
6aa8b732
AK
2910}
2911
77db5cbd 2912static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2913{
585a8b9b 2914 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2915}
2916
ba049e93 2917static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2918{
4d8b81ab
XG
2919 /*
2920 * Do not cache the mmio info caused by writing the readonly gfn
2921 * into the spte otherwise read access on readonly gfn also can
2922 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2923 */
2924 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2925 return RET_PF_EMULATE;
4d8b81ab 2926
e6c1502b 2927 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2928 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2929 return RET_PF_RETRY;
d7c55201 2930 }
edba23e5 2931
2c151b25 2932 return -EFAULT;
bf998156
HY
2933}
2934
d7c55201 2935static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2936 kvm_pfn_t pfn, unsigned int access,
2937 int *ret_val)
d7c55201 2938{
d7c55201 2939 /* The pfn is invalid, report the error! */
81c52c56 2940 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2941 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2942 return true;
d7c55201
XG
2943 }
2944
ce88decf 2945 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
2946 vcpu_cache_mmio_info(vcpu, gva, gfn,
2947 access & shadow_mmio_access_mask);
d7c55201 2948
798e88b3 2949 return false;
d7c55201
XG
2950}
2951
e5552fd2 2952static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2953{
1c118b82
XG
2954 /*
2955 * Do not fix the mmio spte with invalid generation number which
2956 * need to be updated by slow page fault path.
2957 */
2958 if (unlikely(error_code & PFERR_RSVD_MASK))
2959 return false;
2960
f160c7b7
JS
2961 /* See if the page fault is due to an NX violation */
2962 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2963 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2964 return false;
2965
c7ba5b48 2966 /*
f160c7b7
JS
2967 * #PF can be fast if:
2968 * 1. The shadow page table entry is not present, which could mean that
2969 * the fault is potentially caused by access tracking (if enabled).
2970 * 2. The shadow page table entry is present and the fault
2971 * is caused by write-protect, that means we just need change the W
2972 * bit of the spte which can be done out of mmu-lock.
2973 *
2974 * However, if access tracking is disabled we know that a non-present
2975 * page must be a genuine page fault where we have to create a new SPTE.
2976 * So, if access tracking is disabled, we return true only for write
2977 * accesses to a present page.
c7ba5b48 2978 */
c7ba5b48 2979
f160c7b7
JS
2980 return shadow_acc_track_mask != 0 ||
2981 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2982 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2983}
2984
97dceba2
JS
2985/*
2986 * Returns true if the SPTE was fixed successfully. Otherwise,
2987 * someone else modified the SPTE from its original value.
2988 */
c7ba5b48 2989static bool
92a476cb 2990fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 2991 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 2992{
c7ba5b48
XG
2993 gfn_t gfn;
2994
2995 WARN_ON(!sp->role.direct);
2996
9b51a630
KH
2997 /*
2998 * Theoretically we could also set dirty bit (and flush TLB) here in
2999 * order to eliminate unnecessary PML logging. See comments in
3000 * set_spte. But fast_page_fault is very unlikely to happen with PML
3001 * enabled, so we do not do this. This might result in the same GPA
3002 * to be logged in PML buffer again when the write really happens, and
3003 * eventually to be called by mark_page_dirty twice. But it's also no
3004 * harm. This also avoids the TLB flush needed after setting dirty bit
3005 * so non-PML cases won't be impacted.
3006 *
3007 * Compare with set_spte where instead shadow_dirty_mask is set.
3008 */
f160c7b7 3009 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3010 return false;
3011
d3e328f2 3012 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3013 /*
3014 * The gfn of direct spte is stable since it is
3015 * calculated by sp->gfn.
3016 */
3017 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3018 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3019 }
c7ba5b48
XG
3020
3021 return true;
3022}
3023
d3e328f2
JS
3024static bool is_access_allowed(u32 fault_err_code, u64 spte)
3025{
3026 if (fault_err_code & PFERR_FETCH_MASK)
3027 return is_executable_pte(spte);
3028
3029 if (fault_err_code & PFERR_WRITE_MASK)
3030 return is_writable_pte(spte);
3031
3032 /* Fault was on Read access */
3033 return spte & PT_PRESENT_MASK;
3034}
3035
c7ba5b48 3036/*
c4371c2a 3037 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3038 */
c4371c2a
SC
3039static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3040 u32 error_code)
c7ba5b48
XG
3041{
3042 struct kvm_shadow_walk_iterator iterator;
92a476cb 3043 struct kvm_mmu_page *sp;
c4371c2a 3044 int ret = RET_PF_INVALID;
c7ba5b48 3045 u64 spte = 0ull;
97dceba2 3046 uint retry_count = 0;
c7ba5b48 3047
e5552fd2 3048 if (!page_fault_can_be_fast(error_code))
c4371c2a 3049 return ret;
c7ba5b48
XG
3050
3051 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3052
97dceba2 3053 do {
d3e328f2 3054 u64 new_spte;
c7ba5b48 3055
736c291c 3056 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3057 if (!is_shadow_present_pte(spte))
d162f30a
JS
3058 break;
3059
57354682 3060 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3061 if (!is_last_spte(spte, sp->role.level))
3062 break;
c7ba5b48 3063
97dceba2 3064 /*
f160c7b7
JS
3065 * Check whether the memory access that caused the fault would
3066 * still cause it if it were to be performed right now. If not,
3067 * then this is a spurious fault caused by TLB lazily flushed,
3068 * or some other CPU has already fixed the PTE after the
3069 * current CPU took the fault.
97dceba2
JS
3070 *
3071 * Need not check the access of upper level table entries since
3072 * they are always ACC_ALL.
3073 */
d3e328f2 3074 if (is_access_allowed(error_code, spte)) {
c4371c2a 3075 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3076 break;
3077 }
f160c7b7 3078
d3e328f2
JS
3079 new_spte = spte;
3080
3081 if (is_access_track_spte(spte))
3082 new_spte = restore_acc_track_spte(new_spte);
3083
3084 /*
3085 * Currently, to simplify the code, write-protection can
3086 * be removed in the fast path only if the SPTE was
3087 * write-protected for dirty-logging or access tracking.
3088 */
3089 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3090 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3091 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3092
3093 /*
d3e328f2
JS
3094 * Do not fix write-permission on the large spte. Since
3095 * we only dirty the first page into the dirty-bitmap in
3096 * fast_pf_fix_direct_spte(), other pages are missed
3097 * if its slot has dirty logging enabled.
3098 *
3099 * Instead, we let the slow page fault path create a
3100 * normal spte to fix the access.
3101 *
3102 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3103 */
3bae0459 3104 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3105 break;
97dceba2 3106 }
c7ba5b48 3107
f160c7b7 3108 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3109 if (new_spte == spte ||
3110 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3111 break;
3112
3113 /*
3114 * Currently, fast page fault only works for direct mapping
3115 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3116 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3117 */
c4371c2a
SC
3118 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3119 new_spte)) {
3120 ret = RET_PF_FIXED;
97dceba2 3121 break;
c4371c2a 3122 }
97dceba2
JS
3123
3124 if (++retry_count > 4) {
3125 printk_once(KERN_WARNING
3126 "kvm: Fast #PF retrying more than 4 times.\n");
3127 break;
3128 }
3129
97dceba2 3130 } while (true);
c126d94f 3131
736c291c 3132 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3133 spte, ret);
c7ba5b48
XG
3134 walk_shadow_page_lockless_end(vcpu);
3135
c4371c2a 3136 return ret;
c7ba5b48
XG
3137}
3138
74b566e6
JS
3139static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3140 struct list_head *invalid_list)
17ac10ad 3141{
4db35314 3142 struct kvm_mmu_page *sp;
17ac10ad 3143
74b566e6 3144 if (!VALID_PAGE(*root_hpa))
7b53aa56 3145 return;
35af577a 3146
e47c4aee 3147 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3148
3149 if (kvm_mmu_put_root(kvm, sp)) {
3150 if (sp->tdp_mmu_page)
3151 kvm_tdp_mmu_free_root(kvm, sp);
3152 else if (sp->role.invalid)
3153 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3154 }
17ac10ad 3155
74b566e6
JS
3156 *root_hpa = INVALID_PAGE;
3157}
3158
08fb59d8 3159/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3160void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3161 ulong roots_to_free)
74b566e6 3162{
4d710de9 3163 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3164 int i;
3165 LIST_HEAD(invalid_list);
08fb59d8 3166 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3167
b94742c9 3168 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3169
08fb59d8 3170 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3171 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3172 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3173 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3174 VALID_PAGE(mmu->prev_roots[i].hpa))
3175 break;
3176
3177 if (i == KVM_MMU_NUM_PREV_ROOTS)
3178 return;
3179 }
35af577a 3180
4d710de9 3181 spin_lock(&kvm->mmu_lock);
17ac10ad 3182
b94742c9
JS
3183 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3184 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3185 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3186 &invalid_list);
7c390d35 3187
08fb59d8
JS
3188 if (free_active_root) {
3189 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3190 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3191 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
08fb59d8
JS
3192 } else {
3193 for (i = 0; i < 4; ++i)
3194 if (mmu->pae_root[i] != 0)
4d710de9 3195 mmu_free_root_page(kvm,
08fb59d8
JS
3196 &mmu->pae_root[i],
3197 &invalid_list);
3198 mmu->root_hpa = INVALID_PAGE;
3199 }
be01e8e2 3200 mmu->root_pgd = 0;
17ac10ad 3201 }
74b566e6 3202
4d710de9
SC
3203 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3204 spin_unlock(&kvm->mmu_lock);
17ac10ad 3205}
74b566e6 3206EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3207
8986ecc0
MT
3208static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3209{
3210 int ret = 0;
3211
995decb6 3212 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3213 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3214 ret = 1;
3215 }
3216
3217 return ret;
3218}
3219
8123f265
SC
3220static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3221 u8 level, bool direct)
651dd37a
JR
3222{
3223 struct kvm_mmu_page *sp;
8123f265
SC
3224
3225 spin_lock(&vcpu->kvm->mmu_lock);
3226
3227 if (make_mmu_pages_available(vcpu)) {
3228 spin_unlock(&vcpu->kvm->mmu_lock);
3229 return INVALID_PAGE;
3230 }
3231 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3232 ++sp->root_count;
3233
3234 spin_unlock(&vcpu->kvm->mmu_lock);
3235 return __pa(sp->spt);
3236}
3237
3238static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3239{
3240 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3241 hpa_t root;
7ebaf15e 3242 unsigned i;
651dd37a 3243
02c00b3a
BG
3244 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3245 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3246
3247 if (!VALID_PAGE(root))
3248 return -ENOSPC;
3249 vcpu->arch.mmu->root_hpa = root;
3250 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3251 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3252 true);
3253
8123f265 3254 if (!VALID_PAGE(root))
ed52870f 3255 return -ENOSPC;
8123f265
SC
3256 vcpu->arch.mmu->root_hpa = root;
3257 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3258 for (i = 0; i < 4; ++i) {
8123f265 3259 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3260
8123f265
SC
3261 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3262 i << 30, PT32_ROOT_LEVEL, true);
3263 if (!VALID_PAGE(root))
ed52870f 3264 return -ENOSPC;
44dd3ffa 3265 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3266 }
44dd3ffa 3267 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3268 } else
3269 BUG();
3651c7fc 3270
be01e8e2
SC
3271 /* root_pgd is ignored for direct MMUs. */
3272 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3273
3274 return 0;
3275}
3276
3277static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3278{
81407ca5 3279 u64 pdptr, pm_mask;
be01e8e2 3280 gfn_t root_gfn, root_pgd;
8123f265 3281 hpa_t root;
81407ca5 3282 int i;
3bb65a22 3283
be01e8e2
SC
3284 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3285 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3286
651dd37a
JR
3287 if (mmu_check_root(vcpu, root_gfn))
3288 return 1;
3289
3290 /*
3291 * Do we shadow a long mode page table? If so we need to
3292 * write-protect the guests page table root.
3293 */
44dd3ffa 3294 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3295 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3296
8123f265
SC
3297 root = mmu_alloc_root(vcpu, root_gfn, 0,
3298 vcpu->arch.mmu->shadow_root_level, false);
3299 if (!VALID_PAGE(root))
ed52870f 3300 return -ENOSPC;
44dd3ffa 3301 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3302 goto set_root_pgd;
17ac10ad 3303 }
f87f9288 3304
651dd37a
JR
3305 /*
3306 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3307 * or a PAE 3-level page table. In either case we need to be aware that
3308 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3309 */
81407ca5 3310 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3311 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3312 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3313
17ac10ad 3314 for (i = 0; i < 4; ++i) {
8123f265 3315 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3316 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3317 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3318 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3319 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3320 continue;
3321 }
6de4f3ad 3322 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3323 if (mmu_check_root(vcpu, root_gfn))
3324 return 1;
5a7388c2 3325 }
8facbbff 3326
8123f265
SC
3327 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3328 PT32_ROOT_LEVEL, false);
3329 if (!VALID_PAGE(root))
3330 return -ENOSPC;
44dd3ffa 3331 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3332 }
44dd3ffa 3333 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3334
3335 /*
3336 * If we shadow a 32 bit page table with a long mode page
3337 * table we enter this path.
3338 */
44dd3ffa
VK
3339 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3340 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3341 /*
3342 * The additional page necessary for this is only
3343 * allocated on demand.
3344 */
3345
3346 u64 *lm_root;
3347
254272ce 3348 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3349 if (lm_root == NULL)
3350 return 1;
3351
44dd3ffa 3352 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3353
44dd3ffa 3354 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3355 }
3356
44dd3ffa 3357 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3358 }
3359
be01e8e2
SC
3360set_root_pgd:
3361 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3362
8986ecc0 3363 return 0;
17ac10ad
AK
3364}
3365
651dd37a
JR
3366static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3367{
44dd3ffa 3368 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3369 return mmu_alloc_direct_roots(vcpu);
3370 else
3371 return mmu_alloc_shadow_roots(vcpu);
3372}
3373
578e1c4d 3374void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3375{
3376 int i;
3377 struct kvm_mmu_page *sp;
3378
44dd3ffa 3379 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3380 return;
3381
44dd3ffa 3382 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3383 return;
6903074c 3384
56f17dd3 3385 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3386
44dd3ffa
VK
3387 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3388 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3389 sp = to_shadow_page(root);
578e1c4d
JS
3390
3391 /*
3392 * Even if another CPU was marking the SP as unsync-ed
3393 * simultaneously, any guest page table changes are not
3394 * guaranteed to be visible anyway until this VCPU issues a TLB
3395 * flush strictly after those changes are made. We only need to
3396 * ensure that the other CPU sets these flags before any actual
3397 * changes to the page tables are made. The comments in
3398 * mmu_need_write_protect() describe what could go wrong if this
3399 * requirement isn't satisfied.
3400 */
3401 if (!smp_load_acquire(&sp->unsync) &&
3402 !smp_load_acquire(&sp->unsync_children))
3403 return;
3404
3405 spin_lock(&vcpu->kvm->mmu_lock);
3406 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3407
0ba73cda 3408 mmu_sync_children(vcpu, sp);
578e1c4d 3409
0375f7fa 3410 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3411 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3412 return;
3413 }
578e1c4d
JS
3414
3415 spin_lock(&vcpu->kvm->mmu_lock);
3416 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3417
0ba73cda 3418 for (i = 0; i < 4; ++i) {
44dd3ffa 3419 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3420
8986ecc0 3421 if (root && VALID_PAGE(root)) {
0ba73cda 3422 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3423 sp = to_shadow_page(root);
0ba73cda
MT
3424 mmu_sync_children(vcpu, sp);
3425 }
3426 }
0ba73cda 3427
578e1c4d 3428 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3429 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3430}
bfd0a56b 3431EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3432
736c291c 3433static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3434 u32 access, struct x86_exception *exception)
6aa8b732 3435{
ab9ae313
AK
3436 if (exception)
3437 exception->error_code = 0;
6aa8b732
AK
3438 return vaddr;
3439}
3440
736c291c 3441static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3442 u32 access,
3443 struct x86_exception *exception)
6539e738 3444{
ab9ae313
AK
3445 if (exception)
3446 exception->error_code = 0;
54987b7a 3447 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3448}
3449
d625b155
XG
3450static bool
3451__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3452{
b5c3c1b3 3453 int bit7 = (pte >> 7) & 1;
d625b155 3454
b5c3c1b3 3455 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3456}
3457
b5c3c1b3 3458static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3459{
b5c3c1b3 3460 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3461}
3462
ded58749 3463static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3464{
9034e6e8
PB
3465 /*
3466 * A nested guest cannot use the MMIO cache if it is using nested
3467 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3468 */
3469 if (mmu_is_nested(vcpu))
3470 return false;
3471
ce88decf
XG
3472 if (direct)
3473 return vcpu_match_mmio_gpa(vcpu, addr);
3474
3475 return vcpu_match_mmio_gva(vcpu, addr);
3476}
3477
47ab8751
XG
3478/* return true if reserved bit is detected on spte. */
3479static bool
3480walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3481{
3482 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3483 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3484 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3485 int root, leaf;
3486 bool reserved = false;
ce88decf 3487
b5c3c1b3 3488 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3489
ce88decf 3490 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3491
29ecd660
PB
3492 for (shadow_walk_init(&iterator, vcpu, addr),
3493 leaf = root = iterator.level;
47ab8751
XG
3494 shadow_walk_okay(&iterator);
3495 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3496 spte = mmu_spte_get_lockless(iterator.sptep);
3497
3498 sptes[leaf - 1] = spte;
29ecd660 3499 leaf--;
47ab8751 3500
ce88decf
XG
3501 if (!is_shadow_present_pte(spte))
3502 break;
47ab8751 3503
b5c3c1b3
SC
3504 /*
3505 * Use a bitwise-OR instead of a logical-OR to aggregate the
3506 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3507 * adding a Jcc in the loop.
3508 */
3509 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3510 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3511 }
3512
ce88decf
XG
3513 walk_shadow_page_lockless_end(vcpu);
3514
47ab8751
XG
3515 if (reserved) {
3516 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3517 __func__, addr);
29ecd660 3518 while (root > leaf) {
47ab8751
XG
3519 pr_err("------ spte 0x%llx level %d.\n",
3520 sptes[root - 1], root);
3521 root--;
3522 }
3523 }
ddce6208 3524
47ab8751
XG
3525 *sptep = spte;
3526 return reserved;
ce88decf
XG
3527}
3528
e08d26f0 3529static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3530{
3531 u64 spte;
47ab8751 3532 bool reserved;
ce88decf 3533
ded58749 3534 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3535 return RET_PF_EMULATE;
ce88decf 3536
47ab8751 3537 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3538 if (WARN_ON(reserved))
9b8ebbdb 3539 return -EINVAL;
ce88decf
XG
3540
3541 if (is_mmio_spte(spte)) {
3542 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3543 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3544
54bf36aa 3545 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3546 return RET_PF_INVALID;
f8f55942 3547
ce88decf
XG
3548 if (direct)
3549 addr = 0;
4f022648
XG
3550
3551 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3552 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3553 return RET_PF_EMULATE;
ce88decf
XG
3554 }
3555
ce88decf
XG
3556 /*
3557 * If the page table is zapped by other cpus, let CPU fault again on
3558 * the address.
3559 */
9b8ebbdb 3560 return RET_PF_RETRY;
ce88decf 3561}
ce88decf 3562
3d0c27ad
XG
3563static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3564 u32 error_code, gfn_t gfn)
3565{
3566 if (unlikely(error_code & PFERR_RSVD_MASK))
3567 return false;
3568
3569 if (!(error_code & PFERR_PRESENT_MASK) ||
3570 !(error_code & PFERR_WRITE_MASK))
3571 return false;
3572
3573 /*
3574 * guest is writing the page which is write tracked which can
3575 * not be fixed by page fault handler.
3576 */
3577 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3578 return true;
3579
3580 return false;
3581}
3582
e5691a81
XG
3583static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3584{
3585 struct kvm_shadow_walk_iterator iterator;
3586 u64 spte;
3587
e5691a81
XG
3588 walk_shadow_page_lockless_begin(vcpu);
3589 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3590 clear_sp_write_flooding_count(iterator.sptep);
3591 if (!is_shadow_present_pte(spte))
3592 break;
3593 }
3594 walk_shadow_page_lockless_end(vcpu);
3595}
3596
e8c22266
VK
3597static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3598 gfn_t gfn)
af585b92
GN
3599{
3600 struct kvm_arch_async_pf arch;
fb67e14f 3601
7c90705b 3602 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3603 arch.gfn = gfn;
44dd3ffa 3604 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3605 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3606
9f1a8526
SC
3607 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3608 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3609}
3610
78b2c54a 3611static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
3612 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3613 bool *writable)
af585b92 3614{
c36b7150 3615 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3616 bool async;
3617
c36b7150
PB
3618 /* Don't expose private memslots to L2. */
3619 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3620 *pfn = KVM_PFN_NOSLOT;
c583eed6 3621 *writable = false;
3a2936de
JM
3622 return false;
3623 }
3624
3520469d
PB
3625 async = false;
3626 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3627 if (!async)
3628 return false; /* *pfn has correct page already */
3629
9bc1f09f 3630 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3631 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3632 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3633 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3634 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3635 return true;
9f1a8526 3636 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3637 return true;
3638 }
3639
3520469d 3640 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3641 return false;
3642}
3643
0f90e1c1
SC
3644static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3645 bool prefault, int max_level, bool is_tdp)
6aa8b732 3646{
367fd790 3647 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3648 bool map_writable;
6aa8b732 3649
0f90e1c1
SC
3650 gfn_t gfn = gpa >> PAGE_SHIFT;
3651 unsigned long mmu_seq;
3652 kvm_pfn_t pfn;
83f06fa7 3653 int r;
ce88decf 3654
3d0c27ad 3655 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3656 return RET_PF_EMULATE;
ce88decf 3657
bb18842e
BG
3658 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3659 r = fast_page_fault(vcpu, gpa, error_code);
3660 if (r != RET_PF_INVALID)
3661 return r;
3662 }
83291445 3663
378f5cd6 3664 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3665 if (r)
3666 return r;
714b93da 3667
367fd790
SC
3668 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3669 smp_rmb();
3670
3671 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3672 return RET_PF_RETRY;
3673
0f90e1c1 3674 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3675 return r;
6aa8b732 3676
367fd790
SC
3677 r = RET_PF_RETRY;
3678 spin_lock(&vcpu->kvm->mmu_lock);
3679 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3680 goto out_unlock;
7bd7ded6
SC
3681 r = make_mmu_pages_available(vcpu);
3682 if (r)
367fd790 3683 goto out_unlock;
bb18842e
BG
3684
3685 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3686 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3687 pfn, prefault);
3688 else
3689 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3690 prefault, is_tdp);
0f90e1c1 3691
367fd790
SC
3692out_unlock:
3693 spin_unlock(&vcpu->kvm->mmu_lock);
3694 kvm_release_pfn_clean(pfn);
3695 return r;
6aa8b732
AK
3696}
3697
0f90e1c1
SC
3698static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3699 u32 error_code, bool prefault)
3700{
3701 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3702
3703 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3704 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3705 PG_LEVEL_2M, false);
0f90e1c1
SC
3706}
3707
1261bfa3 3708int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3709 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3710{
3711 int r = 1;
9ce372b3 3712 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3713
736c291c
SC
3714#ifndef CONFIG_X86_64
3715 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3716 if (WARN_ON_ONCE(fault_address >> 32))
3717 return -EFAULT;
3718#endif
3719
c595ceee 3720 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3721 if (!flags) {
1261bfa3
WL
3722 trace_kvm_page_fault(fault_address, error_code);
3723
d0006530 3724 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3725 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3726 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3727 insn_len);
9ce372b3 3728 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3729 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3730 local_irq_disable();
6bca69ad 3731 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3732 local_irq_enable();
9ce372b3
VK
3733 } else {
3734 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3735 }
9ce372b3 3736
1261bfa3
WL
3737 return r;
3738}
3739EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3740
7a02674d
SC
3741int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3742 bool prefault)
fb72d167 3743{
cb9b88c6 3744 int max_level;
fb72d167 3745
e662ec3e 3746 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3747 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3748 max_level--) {
3749 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3750 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3751
cb9b88c6
SC
3752 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3753 break;
fd136902 3754 }
852e3c19 3755
0f90e1c1
SC
3756 return direct_page_fault(vcpu, gpa, error_code, prefault,
3757 max_level, true);
fb72d167
JR
3758}
3759
8a3c1a33
PB
3760static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3761 struct kvm_mmu *context)
6aa8b732 3762{
6aa8b732 3763 context->page_fault = nonpaging_page_fault;
6aa8b732 3764 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3765 context->sync_page = nonpaging_sync_page;
5efac074 3766 context->invlpg = NULL;
0f53b5b1 3767 context->update_pte = nonpaging_update_pte;
cea0f0e7 3768 context->root_level = 0;
6aa8b732 3769 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3770 context->direct_map = true;
2d48a985 3771 context->nx = false;
6aa8b732
AK
3772}
3773
be01e8e2 3774static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3775 union kvm_mmu_page_role role)
3776{
be01e8e2 3777 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3778 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3779 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3780}
3781
b94742c9 3782/*
be01e8e2 3783 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3784 * The current root is also inserted into the cache.
3785 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3786 * returned.
3787 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3788 * false is returned. This root should now be freed by the caller.
3789 */
be01e8e2 3790static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3791 union kvm_mmu_page_role new_role)
3792{
3793 uint i;
3794 struct kvm_mmu_root_info root;
44dd3ffa 3795 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3796
be01e8e2 3797 root.pgd = mmu->root_pgd;
b94742c9
JS
3798 root.hpa = mmu->root_hpa;
3799
be01e8e2 3800 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3801 return true;
3802
b94742c9
JS
3803 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3804 swap(root, mmu->prev_roots[i]);
3805
be01e8e2 3806 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3807 break;
3808 }
3809
3810 mmu->root_hpa = root.hpa;
be01e8e2 3811 mmu->root_pgd = root.pgd;
b94742c9
JS
3812
3813 return i < KVM_MMU_NUM_PREV_ROOTS;
3814}
3815
be01e8e2 3816static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3817 union kvm_mmu_page_role new_role)
6aa8b732 3818{
44dd3ffa 3819 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3820
3821 /*
3822 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3823 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3824 * later if necessary.
3825 */
3826 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3827 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3828 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3829
3830 return false;
6aa8b732
AK
3831}
3832
be01e8e2 3833static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3834 union kvm_mmu_page_role new_role,
4a632ac6 3835 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3836{
be01e8e2 3837 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3838 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3839 return;
3840 }
3841
3842 /*
3843 * It's possible that the cached previous root page is obsolete because
3844 * of a change in the MMU generation number. However, changing the
3845 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3846 * free the root set here and allocate a new one.
3847 */
3848 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3849
71fe7013 3850 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3851 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3852 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3853 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3854
3855 /*
3856 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3857 * switching to a new CR3, that GVA->GPA mapping may no longer be
3858 * valid. So clear any cached MMIO info even when we don't need to sync
3859 * the shadow page tables.
3860 */
3861 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3862
e47c4aee 3863 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3864}
3865
be01e8e2 3866void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3867 bool skip_mmu_sync)
0aab33e4 3868{
be01e8e2 3869 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3870 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3871}
be01e8e2 3872EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3873
5777ed34
JR
3874static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3875{
9f8fe504 3876 return kvm_read_cr3(vcpu);
5777ed34
JR
3877}
3878
54bf36aa 3879static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3880 unsigned int access, int *nr_present)
ce88decf
XG
3881{
3882 if (unlikely(is_mmio_spte(*sptep))) {
3883 if (gfn != get_mmio_spte_gfn(*sptep)) {
3884 mmu_spte_clear_no_track(sptep);
3885 return true;
3886 }
3887
3888 (*nr_present)++;
54bf36aa 3889 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3890 return true;
3891 }
3892
3893 return false;
3894}
3895
6bb69c9b
PB
3896static inline bool is_last_gpte(struct kvm_mmu *mmu,
3897 unsigned level, unsigned gpte)
6fd01b71 3898{
6bb69c9b
PB
3899 /*
3900 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3901 * If it is clear, there are no large pages at this level, so clear
3902 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3903 */
3904 gpte &= level - mmu->last_nonleaf_level;
3905
829ee279 3906 /*
3bae0459
SC
3907 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3908 * iff level <= PG_LEVEL_4K, which for our purpose means
3909 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3910 */
3bae0459 3911 gpte |= level - PG_LEVEL_4K - 1;
829ee279 3912
6bb69c9b 3913 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3914}
3915
37406aaa
NHE
3916#define PTTYPE_EPT 18 /* arbitrary */
3917#define PTTYPE PTTYPE_EPT
3918#include "paging_tmpl.h"
3919#undef PTTYPE
3920
6aa8b732
AK
3921#define PTTYPE 64
3922#include "paging_tmpl.h"
3923#undef PTTYPE
3924
3925#define PTTYPE 32
3926#include "paging_tmpl.h"
3927#undef PTTYPE
3928
6dc98b86
XG
3929static void
3930__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3931 struct rsvd_bits_validate *rsvd_check,
3932 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3933 bool pse, bool amd)
82725b20 3934{
82725b20 3935 u64 exb_bit_rsvd = 0;
5f7dde7b 3936 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3937 u64 nonleaf_bit8_rsvd = 0;
82725b20 3938
a0a64f50 3939 rsvd_check->bad_mt_xwr = 0;
25d92081 3940
6dc98b86 3941 if (!nx)
82725b20 3942 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3943 if (!gbpages)
5f7dde7b 3944 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3945
3946 /*
3947 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3948 * leaf entries) on AMD CPUs only.
3949 */
6fec2144 3950 if (amd)
a0c0feb5
PB
3951 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3952
6dc98b86 3953 switch (level) {
82725b20
DE
3954 case PT32_ROOT_LEVEL:
3955 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3956 rsvd_check->rsvd_bits_mask[0][1] = 0;
3957 rsvd_check->rsvd_bits_mask[0][0] = 0;
3958 rsvd_check->rsvd_bits_mask[1][0] =
3959 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3960
6dc98b86 3961 if (!pse) {
a0a64f50 3962 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3963 break;
3964 }
3965
82725b20
DE
3966 if (is_cpuid_PSE36())
3967 /* 36bits PSE 4MB page */
a0a64f50 3968 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3969 else
3970 /* 32 bits PSE 4MB page */
a0a64f50 3971 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3972 break;
3973 case PT32E_ROOT_LEVEL:
a0a64f50 3974 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3975 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3976 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3977 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3978 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3979 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3980 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3981 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3982 rsvd_bits(maxphyaddr, 62) |
3983 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3984 rsvd_check->rsvd_bits_mask[1][0] =
3985 rsvd_check->rsvd_bits_mask[0][0];
82725b20 3986 break;
855feb67
YZ
3987 case PT64_ROOT_5LEVEL:
3988 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
3989 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3990 rsvd_bits(maxphyaddr, 51);
3991 rsvd_check->rsvd_bits_mask[1][4] =
3992 rsvd_check->rsvd_bits_mask[0][4];
df561f66 3993 fallthrough;
2a7266a8 3994 case PT64_ROOT_4LEVEL:
a0a64f50
XG
3995 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3996 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3997 rsvd_bits(maxphyaddr, 51);
a0a64f50 3998 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5ecad245 3999 gbpages_bit_rsvd |
82725b20 4000 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4001 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4002 rsvd_bits(maxphyaddr, 51);
4003 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4004 rsvd_bits(maxphyaddr, 51);
4005 rsvd_check->rsvd_bits_mask[1][3] =
4006 rsvd_check->rsvd_bits_mask[0][3];
4007 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4008 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4009 rsvd_bits(13, 29);
a0a64f50 4010 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4011 rsvd_bits(maxphyaddr, 51) |
4012 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4013 rsvd_check->rsvd_bits_mask[1][0] =
4014 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4015 break;
4016 }
4017}
4018
6dc98b86
XG
4019static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4020 struct kvm_mmu *context)
4021{
4022 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4023 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4024 context->nx,
4025 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4026 is_pse(vcpu),
4027 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4028}
4029
81b8eebb
XG
4030static void
4031__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4032 int maxphyaddr, bool execonly)
25d92081 4033{
951f9fd7 4034 u64 bad_mt_xwr;
25d92081 4035
855feb67
YZ
4036 rsvd_check->rsvd_bits_mask[0][4] =
4037 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4038 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4039 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4040 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4041 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4042 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4043 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4044 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4045
4046 /* large page */
855feb67 4047 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4048 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4049 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4050 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4051 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4052 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4053 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4054
951f9fd7
PB
4055 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4056 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4057 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4058 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4059 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4060 if (!execonly) {
4061 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4062 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4063 }
951f9fd7 4064 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4065}
4066
81b8eebb
XG
4067static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4068 struct kvm_mmu *context, bool execonly)
4069{
4070 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4071 cpuid_maxphyaddr(vcpu), execonly);
4072}
4073
c258b62b
XG
4074/*
4075 * the page table on host is the shadow page table for the page
4076 * table in guest or amd nested guest, its mmu features completely
4077 * follow the features in guest.
4078 */
4079void
4080reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4081{
36d9594d
VK
4082 bool uses_nx = context->nx ||
4083 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4084 struct rsvd_bits_validate *shadow_zero_check;
4085 int i;
5f0b8199 4086
6fec2144
PB
4087 /*
4088 * Passing "true" to the last argument is okay; it adds a check
4089 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4090 */
ea2800dd
BS
4091 shadow_zero_check = &context->shadow_zero_check;
4092 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4093 shadow_phys_bits,
5f0b8199 4094 context->shadow_root_level, uses_nx,
d6321d49
RK
4095 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4096 is_pse(vcpu), true);
ea2800dd
BS
4097
4098 if (!shadow_me_mask)
4099 return;
4100
4101 for (i = context->shadow_root_level; --i >= 0;) {
4102 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4103 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4104 }
4105
c258b62b
XG
4106}
4107EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4108
6fec2144
PB
4109static inline bool boot_cpu_is_amd(void)
4110{
4111 WARN_ON_ONCE(!tdp_enabled);
4112 return shadow_x_mask == 0;
4113}
4114
c258b62b
XG
4115/*
4116 * the direct page table on host, use as much mmu features as
4117 * possible, however, kvm currently does not do execution-protection.
4118 */
4119static void
4120reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4121 struct kvm_mmu *context)
4122{
ea2800dd
BS
4123 struct rsvd_bits_validate *shadow_zero_check;
4124 int i;
4125
4126 shadow_zero_check = &context->shadow_zero_check;
4127
6fec2144 4128 if (boot_cpu_is_amd())
ea2800dd 4129 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4130 shadow_phys_bits,
c258b62b 4131 context->shadow_root_level, false,
b8291adc
BP
4132 boot_cpu_has(X86_FEATURE_GBPAGES),
4133 true, true);
c258b62b 4134 else
ea2800dd 4135 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4136 shadow_phys_bits,
c258b62b
XG
4137 false);
4138
ea2800dd
BS
4139 if (!shadow_me_mask)
4140 return;
4141
4142 for (i = context->shadow_root_level; --i >= 0;) {
4143 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4144 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4145 }
c258b62b
XG
4146}
4147
4148/*
4149 * as the comments in reset_shadow_zero_bits_mask() except it
4150 * is the shadow page table for intel nested guest.
4151 */
4152static void
4153reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4154 struct kvm_mmu *context, bool execonly)
4155{
4156 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4157 shadow_phys_bits, execonly);
c258b62b
XG
4158}
4159
09f037aa
PB
4160#define BYTE_MASK(access) \
4161 ((1 & (access) ? 2 : 0) | \
4162 (2 & (access) ? 4 : 0) | \
4163 (3 & (access) ? 8 : 0) | \
4164 (4 & (access) ? 16 : 0) | \
4165 (5 & (access) ? 32 : 0) | \
4166 (6 & (access) ? 64 : 0) | \
4167 (7 & (access) ? 128 : 0))
4168
4169
edc90b7d
XG
4170static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4171 struct kvm_mmu *mmu, bool ept)
97d64b78 4172{
09f037aa
PB
4173 unsigned byte;
4174
4175 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4176 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4177 const u8 u = BYTE_MASK(ACC_USER_MASK);
4178
4179 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4180 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4181 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4182
97d64b78 4183 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4184 unsigned pfec = byte << 1;
4185
97ec8c06 4186 /*
09f037aa
PB
4187 * Each "*f" variable has a 1 bit for each UWX value
4188 * that causes a fault with the given PFEC.
97ec8c06 4189 */
97d64b78 4190
09f037aa 4191 /* Faults from writes to non-writable pages */
a6a6d3b1 4192 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4193 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4194 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4195 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4196 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4197 /* Faults from kernel mode fetches of user pages */
4198 u8 smepf = 0;
4199 /* Faults from kernel mode accesses of user pages */
4200 u8 smapf = 0;
4201
4202 if (!ept) {
4203 /* Faults from kernel mode accesses to user pages */
4204 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4205
4206 /* Not really needed: !nx will cause pte.nx to fault */
4207 if (!mmu->nx)
4208 ff = 0;
4209
4210 /* Allow supervisor writes if !cr0.wp */
4211 if (!cr0_wp)
4212 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4213
4214 /* Disallow supervisor fetches of user code if cr4.smep */
4215 if (cr4_smep)
4216 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4217
4218 /*
4219 * SMAP:kernel-mode data accesses from user-mode
4220 * mappings should fault. A fault is considered
4221 * as a SMAP violation if all of the following
39337ad1 4222 * conditions are true:
09f037aa
PB
4223 * - X86_CR4_SMAP is set in CR4
4224 * - A user page is accessed
4225 * - The access is not a fetch
4226 * - Page fault in kernel mode
4227 * - if CPL = 3 or X86_EFLAGS_AC is clear
4228 *
4229 * Here, we cover the first three conditions.
4230 * The fourth is computed dynamically in permission_fault();
4231 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4232 * *not* subject to SMAP restrictions.
4233 */
4234 if (cr4_smap)
4235 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4236 }
09f037aa
PB
4237
4238 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4239 }
4240}
4241
2d344105
HH
4242/*
4243* PKU is an additional mechanism by which the paging controls access to
4244* user-mode addresses based on the value in the PKRU register. Protection
4245* key violations are reported through a bit in the page fault error code.
4246* Unlike other bits of the error code, the PK bit is not known at the
4247* call site of e.g. gva_to_gpa; it must be computed directly in
4248* permission_fault based on two bits of PKRU, on some machine state (CR4,
4249* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4250*
4251* In particular the following conditions come from the error code, the
4252* page tables and the machine state:
4253* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4254* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4255* - PK is always zero if U=0 in the page tables
4256* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4257*
4258* The PKRU bitmask caches the result of these four conditions. The error
4259* code (minus the P bit) and the page table's U bit form an index into the
4260* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4261* with the two bits of the PKRU register corresponding to the protection key.
4262* For the first three conditions above the bits will be 00, thus masking
4263* away both AD and WD. For all reads or if the last condition holds, WD
4264* only will be masked away.
4265*/
4266static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4267 bool ept)
4268{
4269 unsigned bit;
4270 bool wp;
4271
4272 if (ept) {
4273 mmu->pkru_mask = 0;
4274 return;
4275 }
4276
4277 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4278 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4279 mmu->pkru_mask = 0;
4280 return;
4281 }
4282
4283 wp = is_write_protection(vcpu);
4284
4285 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4286 unsigned pfec, pkey_bits;
4287 bool check_pkey, check_write, ff, uf, wf, pte_user;
4288
4289 pfec = bit << 1;
4290 ff = pfec & PFERR_FETCH_MASK;
4291 uf = pfec & PFERR_USER_MASK;
4292 wf = pfec & PFERR_WRITE_MASK;
4293
4294 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4295 pte_user = pfec & PFERR_RSVD_MASK;
4296
4297 /*
4298 * Only need to check the access which is not an
4299 * instruction fetch and is to a user page.
4300 */
4301 check_pkey = (!ff && pte_user);
4302 /*
4303 * write access is controlled by PKRU if it is a
4304 * user access or CR0.WP = 1.
4305 */
4306 check_write = check_pkey && wf && (uf || wp);
4307
4308 /* PKRU.AD stops both read and write access. */
4309 pkey_bits = !!check_pkey;
4310 /* PKRU.WD stops write access. */
4311 pkey_bits |= (!!check_write) << 1;
4312
4313 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4314 }
4315}
4316
6bb69c9b 4317static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4318{
6bb69c9b
PB
4319 unsigned root_level = mmu->root_level;
4320
4321 mmu->last_nonleaf_level = root_level;
4322 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4323 mmu->last_nonleaf_level++;
6fd01b71
AK
4324}
4325
8a3c1a33
PB
4326static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4327 struct kvm_mmu *context,
4328 int level)
6aa8b732 4329{
2d48a985 4330 context->nx = is_nx(vcpu);
4d6931c3 4331 context->root_level = level;
2d48a985 4332
4d6931c3 4333 reset_rsvds_bits_mask(vcpu, context);
25d92081 4334 update_permission_bitmask(vcpu, context, false);
2d344105 4335 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4336 update_last_nonleaf_level(vcpu, context);
6aa8b732 4337
fa4a2c08 4338 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4339 context->page_fault = paging64_page_fault;
6aa8b732 4340 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4341 context->sync_page = paging64_sync_page;
a7052897 4342 context->invlpg = paging64_invlpg;
0f53b5b1 4343 context->update_pte = paging64_update_pte;
17ac10ad 4344 context->shadow_root_level = level;
c5a78f2b 4345 context->direct_map = false;
6aa8b732
AK
4346}
4347
8a3c1a33
PB
4348static void paging64_init_context(struct kvm_vcpu *vcpu,
4349 struct kvm_mmu *context)
17ac10ad 4350{
855feb67
YZ
4351 int root_level = is_la57_mode(vcpu) ?
4352 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4353
4354 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4355}
4356
8a3c1a33
PB
4357static void paging32_init_context(struct kvm_vcpu *vcpu,
4358 struct kvm_mmu *context)
6aa8b732 4359{
2d48a985 4360 context->nx = false;
4d6931c3 4361 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4362
4d6931c3 4363 reset_rsvds_bits_mask(vcpu, context);
25d92081 4364 update_permission_bitmask(vcpu, context, false);
2d344105 4365 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4366 update_last_nonleaf_level(vcpu, context);
6aa8b732 4367
6aa8b732 4368 context->page_fault = paging32_page_fault;
6aa8b732 4369 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4370 context->sync_page = paging32_sync_page;
a7052897 4371 context->invlpg = paging32_invlpg;
0f53b5b1 4372 context->update_pte = paging32_update_pte;
6aa8b732 4373 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4374 context->direct_map = false;
6aa8b732
AK
4375}
4376
8a3c1a33
PB
4377static void paging32E_init_context(struct kvm_vcpu *vcpu,
4378 struct kvm_mmu *context)
6aa8b732 4379{
8a3c1a33 4380 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4381}
4382
a336282d
VK
4383static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4384{
4385 union kvm_mmu_extended_role ext = {0};
4386
7dcd5755 4387 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4388 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4389 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4390 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4391 ext.cr4_pse = !!is_pse(vcpu);
4392 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4393 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4394
4395 ext.valid = 1;
4396
4397 return ext;
4398}
4399
7dcd5755
VK
4400static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4401 bool base_only)
4402{
4403 union kvm_mmu_role role = {0};
4404
4405 role.base.access = ACC_ALL;
4406 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4407 role.base.cr0_wp = is_write_protection(vcpu);
4408 role.base.smm = is_smm(vcpu);
4409 role.base.guest_mode = is_guest_mode(vcpu);
4410
4411 if (base_only)
4412 return role;
4413
4414 role.ext = kvm_calc_mmu_role_ext(vcpu);
4415
4416 return role;
4417}
4418
d468d94b
SC
4419static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4420{
4421 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4422 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4423 return 4;
4424
83013059 4425 return max_tdp_level;
d468d94b
SC
4426}
4427
7dcd5755
VK
4428static union kvm_mmu_role
4429kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4430{
7dcd5755 4431 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4432
7dcd5755 4433 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4434 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4435 role.base.direct = true;
47c42e6b 4436 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4437
4438 return role;
4439}
4440
8a3c1a33 4441static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4442{
8c008659 4443 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4444 union kvm_mmu_role new_role =
4445 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4446
7dcd5755
VK
4447 if (new_role.as_u64 == context->mmu_role.as_u64)
4448 return;
4449
4450 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4451 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4452 context->sync_page = nonpaging_sync_page;
5efac074 4453 context->invlpg = NULL;
0f53b5b1 4454 context->update_pte = nonpaging_update_pte;
d468d94b 4455 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4456 context->direct_map = true;
d8dd54e0 4457 context->get_guest_pgd = get_cr3;
e4e517b4 4458 context->get_pdptr = kvm_pdptr_read;
cb659db8 4459 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4460
4461 if (!is_paging(vcpu)) {
2d48a985 4462 context->nx = false;
fb72d167
JR
4463 context->gva_to_gpa = nonpaging_gva_to_gpa;
4464 context->root_level = 0;
4465 } else if (is_long_mode(vcpu)) {
2d48a985 4466 context->nx = is_nx(vcpu);
855feb67
YZ
4467 context->root_level = is_la57_mode(vcpu) ?
4468 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4469 reset_rsvds_bits_mask(vcpu, context);
4470 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4471 } else if (is_pae(vcpu)) {
2d48a985 4472 context->nx = is_nx(vcpu);
fb72d167 4473 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4474 reset_rsvds_bits_mask(vcpu, context);
4475 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4476 } else {
2d48a985 4477 context->nx = false;
fb72d167 4478 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4479 reset_rsvds_bits_mask(vcpu, context);
4480 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4481 }
4482
25d92081 4483 update_permission_bitmask(vcpu, context, false);
2d344105 4484 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4485 update_last_nonleaf_level(vcpu, context);
c258b62b 4486 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4487}
4488
7dcd5755 4489static union kvm_mmu_role
59505b55 4490kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4491{
4492 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4493
4494 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4495 !is_write_protection(vcpu);
4496 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4497 !is_write_protection(vcpu);
47c42e6b 4498 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4499
59505b55
SC
4500 return role;
4501}
4502
4503static union kvm_mmu_role
4504kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4505{
4506 union kvm_mmu_role role =
4507 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4508
4509 role.base.direct = !is_paging(vcpu);
4510
9fa72119 4511 if (!is_long_mode(vcpu))
7dcd5755 4512 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4513 else if (is_la57_mode(vcpu))
7dcd5755 4514 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4515 else
7dcd5755 4516 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4517
4518 return role;
4519}
4520
8c008659
PB
4521static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4522 u32 cr0, u32 cr4, u32 efer,
4523 union kvm_mmu_role new_role)
9fa72119 4524{
929d1cfa 4525 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4526 nonpaging_init_context(vcpu, context);
929d1cfa 4527 else if (efer & EFER_LMA)
8a3c1a33 4528 paging64_init_context(vcpu, context);
929d1cfa 4529 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4530 paging32E_init_context(vcpu, context);
6aa8b732 4531 else
8a3c1a33 4532 paging32_init_context(vcpu, context);
a770f6f2 4533
7dcd5755 4534 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4535 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4536}
0f04a2ac
VK
4537
4538static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4539{
8c008659 4540 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4541 union kvm_mmu_role new_role =
4542 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4543
4544 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4545 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4546}
4547
59505b55
SC
4548static union kvm_mmu_role
4549kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4550{
4551 union kvm_mmu_role role =
4552 kvm_calc_shadow_root_page_role_common(vcpu, false);
4553
4554 role.base.direct = false;
d468d94b 4555 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4556
4557 return role;
4558}
4559
0f04a2ac
VK
4560void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4561 gpa_t nested_cr3)
4562{
8c008659 4563 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4564 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4565
096586fd
SC
4566 context->shadow_root_level = new_role.base.level;
4567
a506fdd2
VK
4568 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4569
0f04a2ac 4570 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4571 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4572}
4573EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4574
a336282d
VK
4575static union kvm_mmu_role
4576kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4577 bool execonly, u8 level)
9fa72119 4578{
552c69b1 4579 union kvm_mmu_role role = {0};
14c07ad8 4580
47c42e6b
SC
4581 /* SMM flag is inherited from root_mmu */
4582 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4583
bb1fcc70 4584 role.base.level = level;
47c42e6b 4585 role.base.gpte_is_8_bytes = true;
a336282d
VK
4586 role.base.direct = false;
4587 role.base.ad_disabled = !accessed_dirty;
4588 role.base.guest_mode = true;
4589 role.base.access = ACC_ALL;
9fa72119 4590
47c42e6b
SC
4591 /*
4592 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4593 * SMAP variation to denote shadow EPT entries.
4594 */
4595 role.base.cr0_wp = true;
4596 role.base.smap_andnot_wp = true;
4597
552c69b1 4598 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4599 role.ext.execonly = execonly;
9fa72119
JS
4600
4601 return role;
4602}
4603
ae1e2d10 4604void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4605 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4606{
8c008659 4607 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4608 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4609 union kvm_mmu_role new_role =
4610 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4611 execonly, level);
a336282d 4612
be01e8e2 4613 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4614
a336282d
VK
4615 if (new_role.as_u64 == context->mmu_role.as_u64)
4616 return;
ad896af0 4617
bb1fcc70 4618 context->shadow_root_level = level;
155a97a3
NHE
4619
4620 context->nx = true;
ae1e2d10 4621 context->ept_ad = accessed_dirty;
155a97a3
NHE
4622 context->page_fault = ept_page_fault;
4623 context->gva_to_gpa = ept_gva_to_gpa;
4624 context->sync_page = ept_sync_page;
4625 context->invlpg = ept_invlpg;
4626 context->update_pte = ept_update_pte;
bb1fcc70 4627 context->root_level = level;
155a97a3 4628 context->direct_map = false;
a336282d 4629 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4630
155a97a3 4631 update_permission_bitmask(vcpu, context, true);
2d344105 4632 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4633 update_last_nonleaf_level(vcpu, context);
155a97a3 4634 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4635 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4636}
4637EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4638
8a3c1a33 4639static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4640{
8c008659 4641 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4642
929d1cfa
PB
4643 kvm_init_shadow_mmu(vcpu,
4644 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4645 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4646 vcpu->arch.efer);
4647
d8dd54e0 4648 context->get_guest_pgd = get_cr3;
ad896af0
PB
4649 context->get_pdptr = kvm_pdptr_read;
4650 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4651}
4652
8a3c1a33 4653static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4654{
bf627a92 4655 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4656 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4657
bf627a92
VK
4658 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4659 return;
4660
4661 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4662 g_context->get_guest_pgd = get_cr3;
e4e517b4 4663 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4664 g_context->inject_page_fault = kvm_inject_page_fault;
4665
5efac074
PB
4666 /*
4667 * L2 page tables are never shadowed, so there is no need to sync
4668 * SPTEs.
4669 */
4670 g_context->invlpg = NULL;
4671
02f59dc9 4672 /*
44dd3ffa 4673 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4674 * L1's nested page tables (e.g. EPT12). The nested translation
4675 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4676 * L2's page tables as the first level of translation and L1's
4677 * nested page tables as the second level of translation. Basically
4678 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4679 */
4680 if (!is_paging(vcpu)) {
2d48a985 4681 g_context->nx = false;
02f59dc9
JR
4682 g_context->root_level = 0;
4683 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4684 } else if (is_long_mode(vcpu)) {
2d48a985 4685 g_context->nx = is_nx(vcpu);
855feb67
YZ
4686 g_context->root_level = is_la57_mode(vcpu) ?
4687 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4688 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4689 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4690 } else if (is_pae(vcpu)) {
2d48a985 4691 g_context->nx = is_nx(vcpu);
02f59dc9 4692 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4693 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4694 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4695 } else {
2d48a985 4696 g_context->nx = false;
02f59dc9 4697 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4698 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4699 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4700 }
4701
25d92081 4702 update_permission_bitmask(vcpu, g_context, false);
2d344105 4703 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4704 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4705}
4706
1c53da3f 4707void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4708{
1c53da3f 4709 if (reset_roots) {
b94742c9
JS
4710 uint i;
4711
44dd3ffa 4712 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4713
4714 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4715 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4716 }
4717
02f59dc9 4718 if (mmu_is_nested(vcpu))
e0c6db3e 4719 init_kvm_nested_mmu(vcpu);
02f59dc9 4720 else if (tdp_enabled)
e0c6db3e 4721 init_kvm_tdp_mmu(vcpu);
fb72d167 4722 else
e0c6db3e 4723 init_kvm_softmmu(vcpu);
fb72d167 4724}
1c53da3f 4725EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4726
9fa72119
JS
4727static union kvm_mmu_page_role
4728kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4729{
7dcd5755
VK
4730 union kvm_mmu_role role;
4731
9fa72119 4732 if (tdp_enabled)
7dcd5755 4733 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4734 else
7dcd5755
VK
4735 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4736
4737 return role.base;
9fa72119 4738}
fb72d167 4739
8a3c1a33 4740void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4741{
95f93af4 4742 kvm_mmu_unload(vcpu);
1c53da3f 4743 kvm_init_mmu(vcpu, true);
17c3ba9d 4744}
8668a3c4 4745EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4746
4747int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4748{
714b93da
AK
4749 int r;
4750
378f5cd6 4751 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4752 if (r)
4753 goto out;
8986ecc0 4754 r = mmu_alloc_roots(vcpu);
e2858b4a 4755 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4756 if (r)
4757 goto out;
727a7e27 4758 kvm_mmu_load_pgd(vcpu);
8c8560b8 4759 kvm_x86_ops.tlb_flush_current(vcpu);
714b93da
AK
4760out:
4761 return r;
6aa8b732 4762}
17c3ba9d
AK
4763EXPORT_SYMBOL_GPL(kvm_mmu_load);
4764
4765void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4766{
14c07ad8
VK
4767 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4768 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4769 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4770 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4771}
4b16184c 4772EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4773
0028425f 4774static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4775 struct kvm_mmu_page *sp, u64 *spte,
4776 const void *new)
0028425f 4777{
3bae0459 4778 if (sp->role.level != PG_LEVEL_4K) {
7e4e4056
JR
4779 ++vcpu->kvm->stat.mmu_pde_zapped;
4780 return;
30945387 4781 }
0028425f 4782
4cee5764 4783 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 4784 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
4785}
4786
79539cec
AK
4787static bool need_remote_flush(u64 old, u64 new)
4788{
4789 if (!is_shadow_present_pte(old))
4790 return false;
4791 if (!is_shadow_present_pte(new))
4792 return true;
4793 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4794 return true;
53166229
GN
4795 old ^= shadow_nx_mask;
4796 new ^= shadow_nx_mask;
79539cec
AK
4797 return (old & ~new & PT64_PERM_MASK) != 0;
4798}
4799
889e5cbc 4800static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4801 int *bytes)
da4a00f0 4802{
0e0fee5c 4803 u64 gentry = 0;
889e5cbc 4804 int r;
72016f3a 4805
72016f3a
AK
4806 /*
4807 * Assume that the pte write on a page table of the same type
49b26e26
XG
4808 * as the current vcpu paging mode since we update the sptes only
4809 * when they have the same mode.
72016f3a 4810 */
889e5cbc 4811 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4812 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4813 *gpa &= ~(gpa_t)7;
4814 *bytes = 8;
08e850c6
AK
4815 }
4816
0e0fee5c
JS
4817 if (*bytes == 4 || *bytes == 8) {
4818 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4819 if (r)
4820 gentry = 0;
72016f3a
AK
4821 }
4822
889e5cbc
XG
4823 return gentry;
4824}
4825
4826/*
4827 * If we're seeing too many writes to a page, it may no longer be a page table,
4828 * or we may be forking, in which case it is better to unmap the page.
4829 */
a138fe75 4830static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4831{
a30f47cb
XG
4832 /*
4833 * Skip write-flooding detected for the sp whose level is 1, because
4834 * it can become unsync, then the guest page is not write-protected.
4835 */
3bae0459 4836 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4837 return false;
3246af0e 4838
e5691a81
XG
4839 atomic_inc(&sp->write_flooding_count);
4840 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4841}
4842
4843/*
4844 * Misaligned accesses are too much trouble to fix up; also, they usually
4845 * indicate a page is not used as a page table.
4846 */
4847static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4848 int bytes)
4849{
4850 unsigned offset, pte_size, misaligned;
4851
4852 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4853 gpa, bytes, sp->role.word);
4854
4855 offset = offset_in_page(gpa);
47c42e6b 4856 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4857
4858 /*
4859 * Sometimes, the OS only writes the last one bytes to update status
4860 * bits, for example, in linux, andb instruction is used in clear_bit().
4861 */
4862 if (!(offset & (pte_size - 1)) && bytes == 1)
4863 return false;
4864
889e5cbc
XG
4865 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4866 misaligned |= bytes < 4;
4867
4868 return misaligned;
4869}
4870
4871static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4872{
4873 unsigned page_offset, quadrant;
4874 u64 *spte;
4875 int level;
4876
4877 page_offset = offset_in_page(gpa);
4878 level = sp->role.level;
4879 *nspte = 1;
47c42e6b 4880 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4881 page_offset <<= 1; /* 32->64 */
4882 /*
4883 * A 32-bit pde maps 4MB while the shadow pdes map
4884 * only 2MB. So we need to double the offset again
4885 * and zap two pdes instead of one.
4886 */
4887 if (level == PT32_ROOT_LEVEL) {
4888 page_offset &= ~7; /* kill rounding error */
4889 page_offset <<= 1;
4890 *nspte = 2;
4891 }
4892 quadrant = page_offset >> PAGE_SHIFT;
4893 page_offset &= ~PAGE_MASK;
4894 if (quadrant != sp->role.quadrant)
4895 return NULL;
4896 }
4897
4898 spte = &sp->spt[page_offset / sizeof(*spte)];
4899 return spte;
4900}
4901
a102a674
SC
4902/*
4903 * Ignore various flags when determining if a SPTE can be immediately
4904 * overwritten for the current MMU.
4905 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4906 * match the current MMU role, as MMU's level tracks the root level.
4907 * - access: updated based on the new guest PTE
4908 * - quadrant: handled by get_written_sptes()
4909 * - invalid: always false (loop only walks valid shadow pages)
4910 */
4911static const union kvm_mmu_page_role role_ign = {
4912 .level = 0xf,
4913 .access = 0x7,
4914 .quadrant = 0x3,
4915 .invalid = 0x1,
4916};
4917
13d268ca 4918static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4919 const u8 *new, int bytes,
4920 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4921{
4922 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4923 struct kvm_mmu_page *sp;
889e5cbc
XG
4924 LIST_HEAD(invalid_list);
4925 u64 entry, gentry, *spte;
4926 int npte;
b8c67b7a 4927 bool remote_flush, local_flush;
889e5cbc
XG
4928
4929 /*
4930 * If we don't have indirect shadow pages, it means no page is
4931 * write-protected, so we can exit simply.
4932 */
6aa7de05 4933 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4934 return;
4935
b8c67b7a 4936 remote_flush = local_flush = false;
889e5cbc
XG
4937
4938 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4939
889e5cbc
XG
4940 /*
4941 * No need to care whether allocation memory is successful
4942 * or not since pte prefetch is skiped if it does not have
4943 * enough objects in the cache.
4944 */
378f5cd6 4945 mmu_topup_memory_caches(vcpu, true);
889e5cbc
XG
4946
4947 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
4948
4949 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4950
889e5cbc 4951 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4952 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4953
b67bfe0d 4954 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4955 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4956 detect_write_flooding(sp)) {
b8c67b7a 4957 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4958 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4959 continue;
4960 }
889e5cbc
XG
4961
4962 spte = get_written_sptes(sp, gpa, &npte);
4963 if (!spte)
4964 continue;
4965
0671a8e7 4966 local_flush = true;
ac1b714e 4967 while (npte--) {
36d9594d
VK
4968 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
4969
79539cec 4970 entry = *spte;
2de4085c 4971 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
fa1de2bf 4972 if (gentry &&
a102a674
SC
4973 !((sp->role.word ^ base_role) & ~role_ign.word) &&
4974 rmap_can_add(vcpu))
7c562522 4975 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4976 if (need_remote_flush(entry, *spte))
0671a8e7 4977 remote_flush = true;
ac1b714e 4978 ++spte;
9b7a0325 4979 }
9b7a0325 4980 }
b8c67b7a 4981 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4982 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4983 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4984}
4985
a436036b
AK
4986int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4987{
10589a46
MT
4988 gpa_t gpa;
4989 int r;
a436036b 4990
44dd3ffa 4991 if (vcpu->arch.mmu->direct_map)
60f24784
AK
4992 return 0;
4993
1871c602 4994 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4995
10589a46 4996 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4997
10589a46 4998 return r;
a436036b 4999}
577bdc49 5000EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5001
736c291c 5002int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5003 void *insn, int insn_len)
3067714c 5004{
92daa48b 5005 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5006 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5007
6948199a 5008 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5009 return RET_PF_RETRY;
5010
9b8ebbdb 5011 r = RET_PF_INVALID;
e9ee956e 5012 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5013 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5014 if (r == RET_PF_EMULATE)
e9ee956e 5015 goto emulate;
e9ee956e 5016 }
3067714c 5017
9b8ebbdb 5018 if (r == RET_PF_INVALID) {
7a02674d
SC
5019 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5020 lower_32_bits(error_code), false);
7b367bc9
SC
5021 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5022 return -EIO;
9b8ebbdb
PB
5023 }
5024
3067714c 5025 if (r < 0)
e9ee956e 5026 return r;
83a2ba4c
SC
5027 if (r != RET_PF_EMULATE)
5028 return 1;
3067714c 5029
14727754
TL
5030 /*
5031 * Before emulating the instruction, check if the error code
5032 * was due to a RO violation while translating the guest page.
5033 * This can occur when using nested virtualization with nested
5034 * paging in both guests. If true, we simply unprotect the page
5035 * and resume the guest.
14727754 5036 */
44dd3ffa 5037 if (vcpu->arch.mmu->direct_map &&
eebed243 5038 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5039 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5040 return 1;
5041 }
5042
472faffa
SC
5043 /*
5044 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5045 * optimistically try to just unprotect the page and let the processor
5046 * re-execute the instruction that caused the page fault. Do not allow
5047 * retrying MMIO emulation, as it's not only pointless but could also
5048 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5049 * faulting on the non-existent MMIO address. Retrying an instruction
5050 * from a nested guest is also pointless and dangerous as we are only
5051 * explicitly shadowing L1's page tables, i.e. unprotecting something
5052 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5053 */
736c291c 5054 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5055 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5056emulate:
736c291c 5057 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5058 insn_len);
3067714c
AK
5059}
5060EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5061
5efac074
PB
5062void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5063 gva_t gva, hpa_t root_hpa)
a7052897 5064{
b94742c9 5065 int i;
7eb77e9f 5066
5efac074
PB
5067 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5068 if (mmu != &vcpu->arch.guest_mmu) {
5069 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5070 if (is_noncanonical_address(gva, vcpu))
5071 return;
5072
5073 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5074 }
5075
5076 if (!mmu->invlpg)
faff8758
JS
5077 return;
5078
5efac074
PB
5079 if (root_hpa == INVALID_PAGE) {
5080 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5081
5efac074
PB
5082 /*
5083 * INVLPG is required to invalidate any global mappings for the VA,
5084 * irrespective of PCID. Since it would take us roughly similar amount
5085 * of work to determine whether any of the prev_root mappings of the VA
5086 * is marked global, or to just sync it blindly, so we might as well
5087 * just always sync it.
5088 *
5089 * Mappings not reachable via the current cr3 or the prev_roots will be
5090 * synced when switching to that cr3, so nothing needs to be done here
5091 * for them.
5092 */
5093 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5094 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5095 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5096 } else {
5097 mmu->invlpg(vcpu, gva, root_hpa);
5098 }
5099}
5100EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5101
5efac074
PB
5102void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5103{
5104 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5105 ++vcpu->stat.invlpg;
5106}
5107EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5108
5efac074 5109
eb4b248e
JS
5110void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5111{
44dd3ffa 5112 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5113 bool tlb_flush = false;
b94742c9 5114 uint i;
eb4b248e
JS
5115
5116 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5117 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5118 tlb_flush = true;
eb4b248e
JS
5119 }
5120
b94742c9
JS
5121 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5122 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5123 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5124 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5125 tlb_flush = true;
5126 }
956bf353 5127 }
ade61e28 5128
faff8758 5129 if (tlb_flush)
afaf0b2f 5130 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5131
eb4b248e
JS
5132 ++vcpu->stat.invlpg;
5133
5134 /*
b94742c9
JS
5135 * Mappings not reachable via the current cr3 or the prev_roots will be
5136 * synced when switching to that cr3, so nothing needs to be done here
5137 * for them.
eb4b248e
JS
5138 */
5139}
5140EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5141
83013059
SC
5142void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5143 int tdp_huge_page_level)
18552672 5144{
bde77235 5145 tdp_enabled = enable_tdp;
83013059 5146 max_tdp_level = tdp_max_root_level;
703c335d
SC
5147
5148 /*
1d92d2e8 5149 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5150 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5151 * the kernel is not. But, KVM never creates a page size greater than
5152 * what is used by the kernel for any given HVA, i.e. the kernel's
5153 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5154 */
5155 if (tdp_enabled)
1d92d2e8 5156 max_huge_page_level = tdp_huge_page_level;
703c335d 5157 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5158 max_huge_page_level = PG_LEVEL_1G;
703c335d 5159 else
1d92d2e8 5160 max_huge_page_level = PG_LEVEL_2M;
18552672 5161}
bde77235 5162EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5163
5164/* The return value indicates if tlb flush on all vcpus is needed. */
5165typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5166
5167/* The caller should hold mmu-lock before calling this function. */
5168static __always_inline bool
5169slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5170 slot_level_handler fn, int start_level, int end_level,
5171 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5172{
5173 struct slot_rmap_walk_iterator iterator;
5174 bool flush = false;
5175
5176 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5177 end_gfn, &iterator) {
5178 if (iterator.rmap)
5179 flush |= fn(kvm, iterator.rmap);
5180
5181 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5182 if (flush && lock_flush_tlb) {
f285c633
BG
5183 kvm_flush_remote_tlbs_with_address(kvm,
5184 start_gfn,
5185 iterator.gfn - start_gfn + 1);
85875a13
SC
5186 flush = false;
5187 }
5188 cond_resched_lock(&kvm->mmu_lock);
5189 }
5190 }
5191
5192 if (flush && lock_flush_tlb) {
f285c633
BG
5193 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5194 end_gfn - start_gfn + 1);
85875a13
SC
5195 flush = false;
5196 }
5197
5198 return flush;
5199}
5200
5201static __always_inline bool
5202slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5203 slot_level_handler fn, int start_level, int end_level,
5204 bool lock_flush_tlb)
5205{
5206 return slot_handle_level_range(kvm, memslot, fn, start_level,
5207 end_level, memslot->base_gfn,
5208 memslot->base_gfn + memslot->npages - 1,
5209 lock_flush_tlb);
5210}
5211
5212static __always_inline bool
5213slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5214 slot_level_handler fn, bool lock_flush_tlb)
5215{
3bae0459 5216 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5217 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5218}
5219
5220static __always_inline bool
5221slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5222 slot_level_handler fn, bool lock_flush_tlb)
5223{
3bae0459 5224 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5225 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5226}
5227
5228static __always_inline bool
5229slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5230 slot_level_handler fn, bool lock_flush_tlb)
5231{
3bae0459
SC
5232 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5233 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5234}
5235
1cfff4d9 5236static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5237{
1cfff4d9
JP
5238 free_page((unsigned long)mmu->pae_root);
5239 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5240}
5241
04d28e37 5242static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5243{
17ac10ad 5244 struct page *page;
6aa8b732
AK
5245 int i;
5246
04d28e37
SC
5247 mmu->root_hpa = INVALID_PAGE;
5248 mmu->root_pgd = 0;
5249 mmu->translate_gpa = translate_gpa;
5250 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5251 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5252
17ac10ad 5253 /*
b6b80c78
SC
5254 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5255 * while the PDP table is a per-vCPU construct that's allocated at MMU
5256 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5257 * x86_64. Therefore we need to allocate the PDP table in the first
5258 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5259 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5260 * skip allocating the PDP table.
17ac10ad 5261 */
d468d94b 5262 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5263 return 0;
5264
254272ce 5265 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5266 if (!page)
d7fa6ab2
WY
5267 return -ENOMEM;
5268
1cfff4d9 5269 mmu->pae_root = page_address(page);
17ac10ad 5270 for (i = 0; i < 4; ++i)
1cfff4d9 5271 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5272
6aa8b732 5273 return 0;
6aa8b732
AK
5274}
5275
8018c27b 5276int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5277{
1cfff4d9 5278 int ret;
b94742c9 5279
5962bfb7 5280 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5281 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5282
5962bfb7 5283 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5284 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5285
96880883
SC
5286 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5287
44dd3ffa
VK
5288 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5289 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5290
14c07ad8 5291 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5292
04d28e37 5293 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5294 if (ret)
5295 return ret;
5296
04d28e37 5297 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5298 if (ret)
5299 goto fail_allocate_root;
5300
5301 return ret;
5302 fail_allocate_root:
5303 free_mmu_pages(&vcpu->arch.guest_mmu);
5304 return ret;
6aa8b732
AK
5305}
5306
fbb158cb 5307#define BATCH_ZAP_PAGES 10
002c5f73
SC
5308static void kvm_zap_obsolete_pages(struct kvm *kvm)
5309{
5310 struct kvm_mmu_page *sp, *node;
fbb158cb 5311 int nr_zapped, batch = 0;
002c5f73
SC
5312
5313restart:
5314 list_for_each_entry_safe_reverse(sp, node,
5315 &kvm->arch.active_mmu_pages, link) {
5316 /*
5317 * No obsolete valid page exists before a newly created page
5318 * since active_mmu_pages is a FIFO list.
5319 */
5320 if (!is_obsolete_sp(kvm, sp))
5321 break;
5322
5323 /*
f95eec9b
SC
5324 * Invalid pages should never land back on the list of active
5325 * pages. Skip the bogus page, otherwise we'll get stuck in an
5326 * infinite loop if the page gets put back on the list (again).
002c5f73 5327 */
f95eec9b 5328 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5329 continue;
5330
4506ecf4
SC
5331 /*
5332 * No need to flush the TLB since we're only zapping shadow
5333 * pages with an obsolete generation number and all vCPUS have
5334 * loaded a new root, i.e. the shadow pages being zapped cannot
5335 * be in active use by the guest.
5336 */
fbb158cb 5337 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5338 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5339 batch = 0;
002c5f73
SC
5340 goto restart;
5341 }
5342
10605204
SC
5343 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5344 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5345 batch += nr_zapped;
002c5f73 5346 goto restart;
fbb158cb 5347 }
002c5f73
SC
5348 }
5349
4506ecf4
SC
5350 /*
5351 * Trigger a remote TLB flush before freeing the page tables to ensure
5352 * KVM is not in the middle of a lockless shadow page table walk, which
5353 * may reference the pages.
5354 */
10605204 5355 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5356}
5357
5358/*
5359 * Fast invalidate all shadow pages and use lock-break technique
5360 * to zap obsolete pages.
5361 *
5362 * It's required when memslot is being deleted or VM is being
5363 * destroyed, in these cases, we should ensure that KVM MMU does
5364 * not use any resource of the being-deleted slot or all slots
5365 * after calling the function.
5366 */
5367static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5368{
ca333add
SC
5369 lockdep_assert_held(&kvm->slots_lock);
5370
002c5f73 5371 spin_lock(&kvm->mmu_lock);
14a3c4f4 5372 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5373
5374 /*
5375 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5376 * held for the entire duration of zapping obsolete pages, it's
5377 * impossible for there to be multiple invalid generations associated
5378 * with *valid* shadow pages at any given time, i.e. there is exactly
5379 * one valid generation and (at most) one invalid generation.
5380 */
5381 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5382
4506ecf4
SC
5383 /*
5384 * Notify all vcpus to reload its shadow page table and flush TLB.
5385 * Then all vcpus will switch to new shadow page table with the new
5386 * mmu_valid_gen.
5387 *
5388 * Note: we need to do this under the protection of mmu_lock,
5389 * otherwise, vcpu would purge shadow page but miss tlb flush.
5390 */
5391 kvm_reload_remote_mmus(kvm);
5392
002c5f73 5393 kvm_zap_obsolete_pages(kvm);
faaf05b0
BG
5394
5395 if (kvm->arch.tdp_mmu_enabled)
5396 kvm_tdp_mmu_zap_all(kvm);
5397
002c5f73
SC
5398 spin_unlock(&kvm->mmu_lock);
5399}
5400
10605204
SC
5401static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5402{
5403 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5404}
5405
b5f5fdca 5406static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5407 struct kvm_memory_slot *slot,
5408 struct kvm_page_track_notifier_node *node)
b5f5fdca 5409{
002c5f73 5410 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5411}
5412
13d268ca 5413void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5414{
13d268ca 5415 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5416
fe5db27d
BG
5417 kvm_mmu_init_tdp_mmu(kvm);
5418
13d268ca 5419 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5420 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5421 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5422}
5423
13d268ca 5424void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5425{
13d268ca 5426 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5427
13d268ca 5428 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5429
5430 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5431}
5432
efdfe536
XG
5433void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5434{
5435 struct kvm_memslots *slots;
5436 struct kvm_memory_slot *memslot;
9da0e4d5 5437 int i;
faaf05b0 5438 bool flush;
efdfe536
XG
5439
5440 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5441 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5442 slots = __kvm_memslots(kvm, i);
5443 kvm_for_each_memslot(memslot, slots) {
5444 gfn_t start, end;
5445
5446 start = max(gfn_start, memslot->base_gfn);
5447 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5448 if (start >= end)
5449 continue;
efdfe536 5450
92da008f 5451 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5452 PG_LEVEL_4K,
e662ec3e 5453 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5454 start, end - 1, true);
9da0e4d5 5455 }
efdfe536
XG
5456 }
5457
faaf05b0
BG
5458 if (kvm->arch.tdp_mmu_enabled) {
5459 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5460 if (flush)
5461 kvm_flush_remote_tlbs(kvm);
5462 }
5463
efdfe536
XG
5464 spin_unlock(&kvm->mmu_lock);
5465}
5466
018aabb5
TY
5467static bool slot_rmap_write_protect(struct kvm *kvm,
5468 struct kvm_rmap_head *rmap_head)
d77aa73c 5469{
018aabb5 5470 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5471}
5472
1c91cad4 5473void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5474 struct kvm_memory_slot *memslot,
5475 int start_level)
6aa8b732 5476{
d77aa73c 5477 bool flush;
6aa8b732 5478
9d1beefb 5479 spin_lock(&kvm->mmu_lock);
3c9bd400 5480 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5481 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
a6a0b05d
BG
5482 if (kvm->arch.tdp_mmu_enabled)
5483 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
9d1beefb 5484 spin_unlock(&kvm->mmu_lock);
198c74f4 5485
198c74f4
XG
5486 /*
5487 * We can flush all the TLBs out of the mmu lock without TLB
5488 * corruption since we just change the spte from writable to
5489 * readonly so that we only need to care the case of changing
5490 * spte from present to present (changing the spte from present
5491 * to nonpresent will flush all the TLBs immediately), in other
5492 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5493 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5494 * instead of PT_WRITABLE_MASK, that means it does not depend
5495 * on PT_WRITABLE_MASK anymore.
5496 */
d91ffee9 5497 if (flush)
7f42aa76 5498 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5499}
37a7d8b0 5500
3ea3b7fa 5501static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5502 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5503{
5504 u64 *sptep;
5505 struct rmap_iterator iter;
5506 int need_tlb_flush = 0;
ba049e93 5507 kvm_pfn_t pfn;
3ea3b7fa
WL
5508 struct kvm_mmu_page *sp;
5509
0d536790 5510restart:
018aabb5 5511 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5512 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5513 pfn = spte_to_pfn(*sptep);
5514
5515 /*
decf6333
XG
5516 * We cannot do huge page mapping for indirect shadow pages,
5517 * which are found on the last rmap (level = 1) when not using
5518 * tdp; such shadow pages are synced with the page table in
5519 * the guest, and the guest page table is using 4K page size
5520 * mapping if the indirect sp has level = 1.
3ea3b7fa 5521 */
a78986aa 5522 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5523 (kvm_is_zone_device_pfn(pfn) ||
5524 PageCompound(pfn_to_page(pfn)))) {
e7912386 5525 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5526
5527 if (kvm_available_flush_tlb_with_range())
5528 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5529 KVM_PAGES_PER_HPAGE(sp->role.level));
5530 else
5531 need_tlb_flush = 1;
5532
0d536790
XG
5533 goto restart;
5534 }
3ea3b7fa
WL
5535 }
5536
5537 return need_tlb_flush;
5538}
5539
5540void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5541 const struct kvm_memory_slot *memslot)
3ea3b7fa 5542{
f36f3f28 5543 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5544 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5545 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5546 kvm_mmu_zap_collapsible_spte, true);
14881998
BG
5547
5548 if (kvm->arch.tdp_mmu_enabled)
5549 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
3ea3b7fa
WL
5550 spin_unlock(&kvm->mmu_lock);
5551}
5552
b3594ffb
SC
5553void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5554 struct kvm_memory_slot *memslot)
5555{
5556 /*
7f42aa76
SC
5557 * All current use cases for flushing the TLBs for a specific memslot
5558 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5559 * The interaction between the various operations on memslot must be
5560 * serialized by slots_locks to ensure the TLB flush from one operation
5561 * is observed by any other operation on the same memslot.
b3594ffb
SC
5562 */
5563 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5564 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5565 memslot->npages);
b3594ffb
SC
5566}
5567
f4b4b180
KH
5568void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5569 struct kvm_memory_slot *memslot)
5570{
d77aa73c 5571 bool flush;
f4b4b180
KH
5572
5573 spin_lock(&kvm->mmu_lock);
d77aa73c 5574 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
a6a0b05d
BG
5575 if (kvm->arch.tdp_mmu_enabled)
5576 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
f4b4b180
KH
5577 spin_unlock(&kvm->mmu_lock);
5578
f4b4b180
KH
5579 /*
5580 * It's also safe to flush TLBs out of mmu lock here as currently this
5581 * function is only used for dirty logging, in which case flushing TLB
5582 * out of mmu lock also guarantees no dirty pages will be lost in
5583 * dirty_bitmap.
5584 */
5585 if (flush)
7f42aa76 5586 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5587}
5588EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5589
5590void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5591 struct kvm_memory_slot *memslot)
5592{
d77aa73c 5593 bool flush;
f4b4b180
KH
5594
5595 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5596 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5597 false);
a6a0b05d
BG
5598 if (kvm->arch.tdp_mmu_enabled)
5599 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
f4b4b180
KH
5600 spin_unlock(&kvm->mmu_lock);
5601
f4b4b180 5602 if (flush)
7f42aa76 5603 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5604}
5605EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5606
5607void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5608 struct kvm_memory_slot *memslot)
5609{
d77aa73c 5610 bool flush;
f4b4b180
KH
5611
5612 spin_lock(&kvm->mmu_lock);
d77aa73c 5613 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
a6a0b05d
BG
5614 if (kvm->arch.tdp_mmu_enabled)
5615 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
f4b4b180
KH
5616 spin_unlock(&kvm->mmu_lock);
5617
f4b4b180 5618 if (flush)
7f42aa76 5619 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5620}
5621EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5622
92f58b5c 5623void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5624{
5625 struct kvm_mmu_page *sp, *node;
7390de1e 5626 LIST_HEAD(invalid_list);
83cdb568 5627 int ign;
5304b8d3 5628
7390de1e 5629 spin_lock(&kvm->mmu_lock);
5304b8d3 5630restart:
8a674adc 5631 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5632 if (WARN_ON(sp->role.invalid))
4771450c 5633 continue;
92f58b5c 5634 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5635 goto restart;
24efe61f 5636 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5637 goto restart;
5638 }
5639
4771450c 5640 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0
BG
5641
5642 if (kvm->arch.tdp_mmu_enabled)
5643 kvm_tdp_mmu_zap_all(kvm);
5644
5304b8d3
XG
5645 spin_unlock(&kvm->mmu_lock);
5646}
5647
15248258 5648void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5649{
164bf7e5 5650 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5651
164bf7e5 5652 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5653
f8f55942 5654 /*
e1359e2b
SC
5655 * Generation numbers are incremented in multiples of the number of
5656 * address spaces in order to provide unique generations across all
5657 * address spaces. Strip what is effectively the address space
5658 * modifier prior to checking for a wrap of the MMIO generation so
5659 * that a wrap in any address space is detected.
5660 */
5661 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5662
f8f55942 5663 /*
e1359e2b 5664 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5665 * zap all shadow pages.
f8f55942 5666 */
e1359e2b 5667 if (unlikely(gen == 0)) {
ae0f5499 5668 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5669 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5670 }
f8f55942
XG
5671}
5672
70534a73
DC
5673static unsigned long
5674mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5675{
5676 struct kvm *kvm;
1495f230 5677 int nr_to_scan = sc->nr_to_scan;
70534a73 5678 unsigned long freed = 0;
3ee16c81 5679
0d9ce162 5680 mutex_lock(&kvm_lock);
3ee16c81
IE
5681
5682 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5683 int idx;
d98ba053 5684 LIST_HEAD(invalid_list);
3ee16c81 5685
35f2d16b
TY
5686 /*
5687 * Never scan more than sc->nr_to_scan VM instances.
5688 * Will not hit this condition practically since we do not try
5689 * to shrink more than one VM and it is very unlikely to see
5690 * !n_used_mmu_pages so many times.
5691 */
5692 if (!nr_to_scan--)
5693 break;
19526396
GN
5694 /*
5695 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5696 * here. We may skip a VM instance errorneosly, but we do not
5697 * want to shrink a VM that only started to populate its MMU
5698 * anyway.
5699 */
10605204
SC
5700 if (!kvm->arch.n_used_mmu_pages &&
5701 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5702 continue;
19526396 5703
f656ce01 5704 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5705 spin_lock(&kvm->mmu_lock);
3ee16c81 5706
10605204
SC
5707 if (kvm_has_zapped_obsolete_pages(kvm)) {
5708 kvm_mmu_commit_zap_page(kvm,
5709 &kvm->arch.zapped_obsolete_pages);
5710 goto unlock;
5711 }
5712
ebdb292d 5713 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5714
10605204 5715unlock:
3ee16c81 5716 spin_unlock(&kvm->mmu_lock);
f656ce01 5717 srcu_read_unlock(&kvm->srcu, idx);
19526396 5718
70534a73
DC
5719 /*
5720 * unfair on small ones
5721 * per-vm shrinkers cry out
5722 * sadness comes quickly
5723 */
19526396
GN
5724 list_move_tail(&kvm->vm_list, &vm_list);
5725 break;
3ee16c81 5726 }
3ee16c81 5727
0d9ce162 5728 mutex_unlock(&kvm_lock);
70534a73 5729 return freed;
70534a73
DC
5730}
5731
5732static unsigned long
5733mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5734{
45221ab6 5735 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5736}
5737
5738static struct shrinker mmu_shrinker = {
70534a73
DC
5739 .count_objects = mmu_shrink_count,
5740 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5741 .seeks = DEFAULT_SEEKS * 10,
5742};
5743
2ddfd20e 5744static void mmu_destroy_caches(void)
b5a33a75 5745{
c1bd743e
TH
5746 kmem_cache_destroy(pte_list_desc_cache);
5747 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5748}
5749
7b6f8a06
KH
5750static void kvm_set_mmio_spte_mask(void)
5751{
5752 u64 mask;
7b6f8a06
KH
5753
5754 /*
6129ed87
SC
5755 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5756 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5757 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5758 * 52-bit physical addresses then there are no reserved PA bits in the
5759 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 5760 */
6129ed87
SC
5761 if (shadow_phys_bits < 52)
5762 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5763 else
5764 mask = 0;
7b6f8a06 5765
e7581cac 5766 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
5767}
5768
b8e8c830
PB
5769static bool get_nx_auto_mode(void)
5770{
5771 /* Return true when CPU has the bug, and mitigations are ON */
5772 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5773}
5774
5775static void __set_nx_huge_pages(bool val)
5776{
5777 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5778}
5779
5780static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5781{
5782 bool old_val = nx_huge_pages;
5783 bool new_val;
5784
5785 /* In "auto" mode deploy workaround only if CPU has the bug. */
5786 if (sysfs_streq(val, "off"))
5787 new_val = 0;
5788 else if (sysfs_streq(val, "force"))
5789 new_val = 1;
5790 else if (sysfs_streq(val, "auto"))
5791 new_val = get_nx_auto_mode();
5792 else if (strtobool(val, &new_val) < 0)
5793 return -EINVAL;
5794
5795 __set_nx_huge_pages(new_val);
5796
5797 if (new_val != old_val) {
5798 struct kvm *kvm;
b8e8c830
PB
5799
5800 mutex_lock(&kvm_lock);
5801
5802 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5803 mutex_lock(&kvm->slots_lock);
b8e8c830 5804 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5805 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5806
5807 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5808 }
5809 mutex_unlock(&kvm_lock);
5810 }
5811
5812 return 0;
5813}
5814
b5a33a75
AK
5815int kvm_mmu_module_init(void)
5816{
ab271bd4
AB
5817 int ret = -ENOMEM;
5818
b8e8c830
PB
5819 if (nx_huge_pages == -1)
5820 __set_nx_huge_pages(get_nx_auto_mode());
5821
36d9594d
VK
5822 /*
5823 * MMU roles use union aliasing which is, generally speaking, an
5824 * undefined behavior. However, we supposedly know how compilers behave
5825 * and the current status quo is unlikely to change. Guardians below are
5826 * supposed to let us know if the assumption becomes false.
5827 */
5828 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5829 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5830 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5831
28a1f3ac 5832 kvm_mmu_reset_all_pte_masks();
f160c7b7 5833
7b6f8a06
KH
5834 kvm_set_mmio_spte_mask();
5835
53c07b18
XG
5836 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5837 sizeof(struct pte_list_desc),
46bea48a 5838 0, SLAB_ACCOUNT, NULL);
53c07b18 5839 if (!pte_list_desc_cache)
ab271bd4 5840 goto out;
b5a33a75 5841
d3d25b04
AK
5842 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5843 sizeof(struct kvm_mmu_page),
46bea48a 5844 0, SLAB_ACCOUNT, NULL);
d3d25b04 5845 if (!mmu_page_header_cache)
ab271bd4 5846 goto out;
d3d25b04 5847
908c7f19 5848 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5849 goto out;
45bf21a8 5850
ab271bd4
AB
5851 ret = register_shrinker(&mmu_shrinker);
5852 if (ret)
5853 goto out;
3ee16c81 5854
b5a33a75
AK
5855 return 0;
5856
ab271bd4 5857out:
3ee16c81 5858 mmu_destroy_caches();
ab271bd4 5859 return ret;
b5a33a75
AK
5860}
5861
3ad82a7e 5862/*
39337ad1 5863 * Calculate mmu pages needed for kvm.
3ad82a7e 5864 */
bc8a3d89 5865unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5866{
bc8a3d89
BG
5867 unsigned long nr_mmu_pages;
5868 unsigned long nr_pages = 0;
bc6678a3 5869 struct kvm_memslots *slots;
be6ba0f0 5870 struct kvm_memory_slot *memslot;
9da0e4d5 5871 int i;
3ad82a7e 5872
9da0e4d5
PB
5873 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5874 slots = __kvm_memslots(kvm, i);
90d83dc3 5875
9da0e4d5
PB
5876 kvm_for_each_memslot(memslot, slots)
5877 nr_pages += memslot->npages;
5878 }
3ad82a7e
ZX
5879
5880 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5881 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5882
5883 return nr_mmu_pages;
5884}
5885
c42fffe3
XG
5886void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5887{
95f93af4 5888 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5889 free_mmu_pages(&vcpu->arch.root_mmu);
5890 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5891 mmu_free_memory_caches(vcpu);
b034cf01
XG
5892}
5893
b034cf01
XG
5894void kvm_mmu_module_exit(void)
5895{
5896 mmu_destroy_caches();
5897 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5898 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5899 mmu_audit_disable();
5900}
1aa9b957
JS
5901
5902static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5903{
5904 unsigned int old_val;
5905 int err;
5906
5907 old_val = nx_huge_pages_recovery_ratio;
5908 err = param_set_uint(val, kp);
5909 if (err)
5910 return err;
5911
5912 if (READ_ONCE(nx_huge_pages) &&
5913 !old_val && nx_huge_pages_recovery_ratio) {
5914 struct kvm *kvm;
5915
5916 mutex_lock(&kvm_lock);
5917
5918 list_for_each_entry(kvm, &vm_list, vm_list)
5919 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5920
5921 mutex_unlock(&kvm_lock);
5922 }
5923
5924 return err;
5925}
5926
5927static void kvm_recover_nx_lpages(struct kvm *kvm)
5928{
5929 int rcu_idx;
5930 struct kvm_mmu_page *sp;
5931 unsigned int ratio;
5932 LIST_HEAD(invalid_list);
5933 ulong to_zap;
5934
5935 rcu_idx = srcu_read_lock(&kvm->srcu);
5936 spin_lock(&kvm->mmu_lock);
5937
5938 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5939 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5940 for ( ; to_zap; --to_zap) {
5941 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5942 break;
5943
1aa9b957
JS
5944 /*
5945 * We use a separate list instead of just using active_mmu_pages
5946 * because the number of lpage_disallowed pages is expected to
5947 * be relatively small compared to the total.
5948 */
5949 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5950 struct kvm_mmu_page,
5951 lpage_disallowed_link);
5952 WARN_ON_ONCE(!sp->lpage_disallowed);
5953 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5954 WARN_ON_ONCE(sp->lpage_disallowed);
5955
7d919c7a 5956 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
1aa9b957 5957 kvm_mmu_commit_zap_page(kvm, &invalid_list);
7d919c7a 5958 cond_resched_lock(&kvm->mmu_lock);
1aa9b957
JS
5959 }
5960 }
e8950569 5961 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1aa9b957
JS
5962
5963 spin_unlock(&kvm->mmu_lock);
5964 srcu_read_unlock(&kvm->srcu, rcu_idx);
5965}
5966
5967static long get_nx_lpage_recovery_timeout(u64 start_time)
5968{
5969 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5970 ? start_time + 60 * HZ - get_jiffies_64()
5971 : MAX_SCHEDULE_TIMEOUT;
5972}
5973
5974static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5975{
5976 u64 start_time;
5977 long remaining_time;
5978
5979 while (true) {
5980 start_time = get_jiffies_64();
5981 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5982
5983 set_current_state(TASK_INTERRUPTIBLE);
5984 while (!kthread_should_stop() && remaining_time > 0) {
5985 schedule_timeout(remaining_time);
5986 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5987 set_current_state(TASK_INTERRUPTIBLE);
5988 }
5989
5990 set_current_state(TASK_RUNNING);
5991
5992 if (kthread_should_stop())
5993 return 0;
5994
5995 kvm_recover_nx_lpages(kvm);
5996 }
5997}
5998
5999int kvm_mmu_post_init_vm(struct kvm *kvm)
6000{
6001 int err;
6002
6003 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6004 "kvm-nx-lpage-recovery",
6005 &kvm->arch.nx_lpage_recovery_thread);
6006 if (!err)
6007 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6008
6009 return err;
6010}
6011
6012void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6013{
6014 if (kvm->arch.nx_lpage_recovery_thread)
6015 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6016}