]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
x86/kvm/vmx: Use native read/write_cr2()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
836a1b3c 22#include "x86.h"
6de4f3ad 23#include "kvm_cache_regs.h"
2f728d66 24#include "kvm_emulate.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
1aa9b957 43#include <linux/kthread.h>
6aa8b732 44
e495606d 45#include <asm/page.h>
eb243d1d 46#include <asm/memtype.h>
e495606d 47#include <asm/cmpxchg.h>
0c55671f 48#include <asm/e820/api.h>
4e542370 49#include <asm/io.h>
13673a90 50#include <asm/vmx.h>
3d0c27ad 51#include <asm/kvm_page_track.h>
1261bfa3 52#include "trace.h"
6aa8b732 53
b8e8c830
PB
54extern bool itlb_multihit_kvm_mitigation;
55
56static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
57#ifdef CONFIG_PREEMPT_RT
58/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
59static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
60#else
1aa9b957 61static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 62#endif
b8e8c830
PB
63
64static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 65static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830
PB
66
67static struct kernel_param_ops nx_huge_pages_ops = {
68 .set = set_nx_huge_pages,
69 .get = param_get_bool,
70};
71
1aa9b957
JS
72static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
73 .set = set_nx_huge_pages_recovery_ratio,
74 .get = param_get_uint,
75};
76
b8e8c830
PB
77module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
78__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
79module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
80 &nx_huge_pages_recovery_ratio, 0644);
81__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 82
71fe7013
SC
83static bool __read_mostly force_flush_and_sync_on_reuse;
84module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
85
18552672
JR
86/*
87 * When setting this variable to true it enables Two-Dimensional-Paging
88 * where the hardware walks 2 page tables:
89 * 1. the guest-virtual to guest-physical
90 * 2. while doing 1. it walks guest-physical to host-physical
91 * If the hardware supports that we don't need to do shadow paging.
92 */
2f333bcb 93bool tdp_enabled = false;
18552672 94
703c335d
SC
95static int max_page_level __read_mostly;
96
8b1fe17c
XG
97enum {
98 AUDIT_PRE_PAGE_FAULT,
99 AUDIT_POST_PAGE_FAULT,
100 AUDIT_PRE_PTE_WRITE,
6903074c
XG
101 AUDIT_POST_PTE_WRITE,
102 AUDIT_PRE_SYNC,
103 AUDIT_POST_SYNC
8b1fe17c 104};
37a7d8b0 105
8b1fe17c 106#undef MMU_DEBUG
37a7d8b0
AK
107
108#ifdef MMU_DEBUG
fa4a2c08
PB
109static bool dbg = 0;
110module_param(dbg, bool, 0644);
37a7d8b0
AK
111
112#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
113#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 114#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 115#else
37a7d8b0
AK
116#define pgprintk(x...) do { } while (0)
117#define rmap_printk(x...) do { } while (0)
fa4a2c08 118#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 119#endif
6aa8b732 120
957ed9ef
XG
121#define PTE_PREFETCH_NUM 8
122
00763e41 123#define PT_FIRST_AVAIL_BITS_SHIFT 10
6eeb4ef0
PB
124#define PT64_SECOND_AVAIL_BITS_SHIFT 54
125
126/*
127 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
128 * Access Tracking SPTEs.
129 */
130#define SPTE_SPECIAL_MASK (3ULL << 52)
131#define SPTE_AD_ENABLED_MASK (0ULL << 52)
132#define SPTE_AD_DISABLED_MASK (1ULL << 52)
1f4e5fc8 133#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
6eeb4ef0 134#define SPTE_MMIO_MASK (3ULL << 52)
6aa8b732 135
6aa8b732
AK
136#define PT64_LEVEL_BITS 9
137
138#define PT64_LEVEL_SHIFT(level) \
d77c26fc 139 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 140
6aa8b732
AK
141#define PT64_INDEX(address, level)\
142 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
143
144
145#define PT32_LEVEL_BITS 10
146
147#define PT32_LEVEL_SHIFT(level) \
d77c26fc 148 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 149
e04da980
JR
150#define PT32_LVL_OFFSET_MASK(level) \
151 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
152 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
153
154#define PT32_INDEX(address, level)\
155 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
156
157
8acc0993
KH
158#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
159#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
160#else
161#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
162#endif
e04da980
JR
163#define PT64_LVL_ADDR_MASK(level) \
164 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
165 * PT64_LEVEL_BITS))) - 1))
166#define PT64_LVL_OFFSET_MASK(level) \
167 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
168 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
169
170#define PT32_BASE_ADDR_MASK PAGE_MASK
171#define PT32_DIR_BASE_ADDR_MASK \
172 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
173#define PT32_LVL_ADDR_MASK(level) \
174 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
175 * PT32_LEVEL_BITS))) - 1))
6aa8b732 176
53166229 177#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 178 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 179
fe135d2c
AK
180#define ACC_EXEC_MASK 1
181#define ACC_WRITE_MASK PT_WRITABLE_MASK
182#define ACC_USER_MASK PT_USER_MASK
183#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
184
f160c7b7
JS
185/* The mask for the R/X bits in EPT PTEs */
186#define PT64_EPT_READABLE_MASK 0x1ull
187#define PT64_EPT_EXECUTABLE_MASK 0x4ull
188
90bb6fc5
AK
189#include <trace/events/kvm.h>
190
49fde340
XG
191#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
192#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 193
135f8c2b
AK
194#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
195
220f773a
TY
196/* make pte_list_desc fit well in cache line */
197#define PTE_LIST_EXT 3
198
9b8ebbdb
PB
199/*
200 * Return values of handle_mmio_page_fault and mmu.page_fault:
201 * RET_PF_RETRY: let CPU fault again on the address.
202 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
203 *
204 * For handle_mmio_page_fault only:
205 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
206 */
207enum {
208 RET_PF_RETRY = 0,
209 RET_PF_EMULATE = 1,
210 RET_PF_INVALID = 2,
211};
212
53c07b18
XG
213struct pte_list_desc {
214 u64 *sptes[PTE_LIST_EXT];
215 struct pte_list_desc *more;
cd4a4e53
AK
216};
217
2d11123a
AK
218struct kvm_shadow_walk_iterator {
219 u64 addr;
220 hpa_t shadow_addr;
2d11123a 221 u64 *sptep;
dd3bfd59 222 int level;
2d11123a
AK
223 unsigned index;
224};
225
7eb77e9f
JS
226#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
227 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
228 (_root), (_addr)); \
229 shadow_walk_okay(&(_walker)); \
230 shadow_walk_next(&(_walker)))
231
232#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
233 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
234 shadow_walk_okay(&(_walker)); \
235 shadow_walk_next(&(_walker)))
236
c2a2ac2b
XG
237#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
238 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
239 shadow_walk_okay(&(_walker)) && \
240 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
241 __shadow_walk_next(&(_walker), spte))
242
53c07b18 243static struct kmem_cache *pte_list_desc_cache;
d3d25b04 244static struct kmem_cache *mmu_page_header_cache;
45221ab6 245static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 246
7b52345e
SY
247static u64 __read_mostly shadow_nx_mask;
248static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
249static u64 __read_mostly shadow_user_mask;
250static u64 __read_mostly shadow_accessed_mask;
251static u64 __read_mostly shadow_dirty_mask;
dcdca5fe 252static u64 __read_mostly shadow_mmio_value;
4af77151 253static u64 __read_mostly shadow_mmio_access_mask;
ffb128c8 254static u64 __read_mostly shadow_present_mask;
d0ec49d4 255static u64 __read_mostly shadow_me_mask;
ce88decf 256
f160c7b7 257/*
6eeb4ef0
PB
258 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
259 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
260 * pages.
f160c7b7
JS
261 */
262static u64 __read_mostly shadow_acc_track_mask;
f160c7b7
JS
263
264/*
265 * The mask/shift to use for saving the original R/X bits when marking the PTE
266 * as not-present for access tracking purposes. We do not save the W bit as the
267 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
268 * restored only when a write is attempted to the page.
269 */
270static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
271 PT64_EPT_EXECUTABLE_MASK;
272static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
273
28a1f3ac
JS
274/*
275 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
276 * to guard against L1TF attacks.
277 */
278static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
279
280/*
281 * The number of high-order 1 bits to use in the mask above.
282 */
283static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
284
daa07cbc
SC
285/*
286 * In some cases, we need to preserve the GFN of a non-present or reserved
287 * SPTE when we usurp the upper five bits of the physical address space to
288 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
289 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
290 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
291 * high and low parts. This mask covers the lower bits of the GFN.
292 */
293static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
294
f3ecb59d
KH
295/*
296 * The number of non-reserved physical address bits irrespective of features
297 * that repurpose legal bits, e.g. MKTME.
298 */
299static u8 __read_mostly shadow_phys_bits;
daa07cbc 300
ce88decf 301static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 302static bool is_executable_pte(u64 spte);
9fa72119
JS
303static union kvm_mmu_page_role
304kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 305
335e192a
PB
306#define CREATE_TRACE_POINTS
307#include "mmutrace.h"
308
40ef75a7
LT
309
310static inline bool kvm_available_flush_tlb_with_range(void)
311{
afaf0b2f 312 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
313}
314
315static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
316 struct kvm_tlb_range *range)
317{
318 int ret = -ENOTSUPP;
319
afaf0b2f
SC
320 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
321 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
322
323 if (ret)
324 kvm_flush_remote_tlbs(kvm);
325}
326
327static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
328 u64 start_gfn, u64 pages)
329{
330 struct kvm_tlb_range range;
331
332 range.start_gfn = start_gfn;
333 range.pages = pages;
334
335 kvm_flush_remote_tlbs_with_range(kvm, &range);
336}
337
e7581cac 338void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
ce88decf 339{
4af77151 340 BUG_ON((u64)(unsigned)access_mask != access_mask);
d43e2675
PB
341 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
342 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
6eeb4ef0 343 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
4af77151 344 shadow_mmio_access_mask = access_mask;
ce88decf
XG
345}
346EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
347
26c44a63
SC
348static bool is_mmio_spte(u64 spte)
349{
e7581cac 350 return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
26c44a63
SC
351}
352
ac8d57e5
PF
353static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
354{
355 return sp->role.ad_disabled;
356}
357
1f4e5fc8
PB
358static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
359{
360 /*
361 * When using the EPT page-modification log, the GPAs in the log
362 * would come from L2 rather than L1. Therefore, we need to rely
363 * on write protection to record dirty pages. This also bypasses
364 * PML, since writes now result in a vmexit.
365 */
366 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
367}
368
ac8d57e5
PF
369static inline bool spte_ad_enabled(u64 spte)
370{
26c44a63 371 MMU_WARN_ON(is_mmio_spte(spte));
1f4e5fc8
PB
372 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
373}
374
375static inline bool spte_ad_need_write_protect(u64 spte)
376{
377 MMU_WARN_ON(is_mmio_spte(spte));
378 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
ac8d57e5
PF
379}
380
b8e8c830
PB
381static bool is_nx_huge_page_enabled(void)
382{
383 return READ_ONCE(nx_huge_pages);
384}
385
ac8d57e5
PF
386static inline u64 spte_shadow_accessed_mask(u64 spte)
387{
26c44a63 388 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
389 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
390}
391
392static inline u64 spte_shadow_dirty_mask(u64 spte)
393{
26c44a63 394 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
395 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
396}
397
f160c7b7
JS
398static inline bool is_access_track_spte(u64 spte)
399{
ac8d57e5 400 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
401}
402
f2fd125d 403/*
cae7ed3c
SC
404 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
405 * the memslots generation and is derived as follows:
ee3d1570 406 *
164bf7e5
SC
407 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
408 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 409 *
164bf7e5
SC
410 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
411 * the MMIO generation number, as doing so would require stealing a bit from
412 * the "real" generation number and thus effectively halve the maximum number
413 * of MMIO generations that can be handled before encountering a wrap (which
414 * requires a full MMU zap). The flag is instead explicitly queried when
415 * checking for MMIO spte cache hits.
f2fd125d 416 */
56871d44 417#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
f2fd125d 418
cae7ed3c
SC
419#define MMIO_SPTE_GEN_LOW_START 3
420#define MMIO_SPTE_GEN_LOW_END 11
421#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
422 MMIO_SPTE_GEN_LOW_START)
f2fd125d 423
56871d44
PB
424#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
425#define MMIO_SPTE_GEN_HIGH_END 62
cae7ed3c
SC
426#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
427 MMIO_SPTE_GEN_HIGH_START)
56871d44 428
5192f9b9 429static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
430{
431 u64 mask;
432
cae7ed3c 433 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
56871d44 434 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
f2fd125d 435
cae7ed3c
SC
436 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
437 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
438 return mask;
439}
440
5192f9b9 441static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 442{
5192f9b9 443 u64 gen;
f2fd125d 444
cae7ed3c
SC
445 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
446 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
447 return gen;
448}
449
8f79b064 450static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
ce88decf 451{
8f79b064 452
cae7ed3c 453 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 454 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 455 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 456
4af77151 457 access &= shadow_mmio_access_mask;
28a1f3ac
JS
458 mask |= shadow_mmio_value | access;
459 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
460 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
461 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 462
8f79b064
BG
463 return mask;
464}
465
466static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
467 unsigned int access)
468{
469 u64 mask = make_mmio_spte(vcpu, gfn, access);
470 unsigned int gen = get_mmio_spte_generation(mask);
471
472 access = mask & ACC_ALL;
473
f8f55942 474 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 475 mmu_spte_set(sptep, mask);
ce88decf
XG
476}
477
ce88decf
XG
478static gfn_t get_mmio_spte_gfn(u64 spte)
479{
daa07cbc 480 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
481
482 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
483 & shadow_nonpresent_or_rsvd_mask;
484
485 return gpa >> PAGE_SHIFT;
ce88decf
XG
486}
487
488static unsigned get_mmio_spte_access(u64 spte)
489{
4af77151 490 return spte & shadow_mmio_access_mask;
ce88decf
XG
491}
492
54bf36aa 493static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 494 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
495{
496 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 497 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
498 return true;
499 }
500
501 return false;
502}
c7addb90 503
54bf36aa 504static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 505{
cae7ed3c 506 u64 kvm_gen, spte_gen, gen;
089504c0 507
cae7ed3c
SC
508 gen = kvm_vcpu_memslots(vcpu)->generation;
509 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
510 return false;
089504c0 511
cae7ed3c 512 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
513 spte_gen = get_mmio_spte_generation(spte);
514
515 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
516 return likely(kvm_gen == spte_gen);
f8f55942
XG
517}
518
ce00053b
PF
519/*
520 * Sets the shadow PTE masks used by the MMU.
521 *
522 * Assumptions:
523 * - Setting either @accessed_mask or @dirty_mask requires setting both
524 * - At least one of @accessed_mask or @acc_track_mask must be set
525 */
7b52345e 526void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 527 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 528 u64 acc_track_mask, u64 me_mask)
7b52345e 529{
ce00053b
PF
530 BUG_ON(!dirty_mask != !accessed_mask);
531 BUG_ON(!accessed_mask && !acc_track_mask);
6eeb4ef0 532 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
312b616b 533
7b52345e
SY
534 shadow_user_mask = user_mask;
535 shadow_accessed_mask = accessed_mask;
536 shadow_dirty_mask = dirty_mask;
537 shadow_nx_mask = nx_mask;
538 shadow_x_mask = x_mask;
ffb128c8 539 shadow_present_mask = p_mask;
f160c7b7 540 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 541 shadow_me_mask = me_mask;
7b52345e
SY
542}
543EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
544
f3ecb59d
KH
545static u8 kvm_get_shadow_phys_bits(void)
546{
547 /*
7adacf5e
PB
548 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
549 * in CPU detection code, but the processor treats those reduced bits as
550 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
551 * the physical address bits reported by CPUID.
f3ecb59d 552 */
7adacf5e
PB
553 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
554 return cpuid_eax(0x80000008) & 0xff;
f3ecb59d 555
7adacf5e
PB
556 /*
557 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
558 * custom CPUID. Proceed with whatever the kernel found since these features
559 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
560 */
561 return boot_cpu_data.x86_phys_bits;
f3ecb59d
KH
562}
563
28a1f3ac 564static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 565{
daa07cbc
SC
566 u8 low_phys_bits;
567
f160c7b7
JS
568 shadow_user_mask = 0;
569 shadow_accessed_mask = 0;
570 shadow_dirty_mask = 0;
571 shadow_nx_mask = 0;
572 shadow_x_mask = 0;
f160c7b7
JS
573 shadow_present_mask = 0;
574 shadow_acc_track_mask = 0;
28a1f3ac 575
f3ecb59d
KH
576 shadow_phys_bits = kvm_get_shadow_phys_bits();
577
28a1f3ac
JS
578 /*
579 * If the CPU has 46 or less physical address bits, then set an
580 * appropriate mask to guard against L1TF attacks. Otherwise, it is
581 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
582 *
583 * Some Intel CPUs address the L1 cache using more PA bits than are
584 * reported by CPUID. Use the PA width of the L1 cache when possible
585 * to achieve more effective mitigation, e.g. if system RAM overlaps
586 * the most significant bits of legal physical address space.
28a1f3ac 587 */
61455bf2 588 shadow_nonpresent_or_rsvd_mask = 0;
d43e2675
PB
589 low_phys_bits = boot_cpu_data.x86_phys_bits;
590 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
591 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
592 52 - shadow_nonpresent_or_rsvd_mask_len)) {
593 low_phys_bits = boot_cpu_data.x86_cache_bits
594 - shadow_nonpresent_or_rsvd_mask_len;
28a1f3ac 595 shadow_nonpresent_or_rsvd_mask =
d43e2675
PB
596 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
597 }
61455bf2 598
daa07cbc
SC
599 shadow_nonpresent_or_rsvd_lower_gfn_mask =
600 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
601}
602
6aa8b732
AK
603static int is_cpuid_PSE36(void)
604{
605 return 1;
606}
607
73b1087e
AK
608static int is_nx(struct kvm_vcpu *vcpu)
609{
f6801dff 610 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
611}
612
c7addb90
AK
613static int is_shadow_present_pte(u64 pte)
614{
f160c7b7 615 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
616}
617
05da4558
MT
618static int is_large_pte(u64 pte)
619{
620 return pte & PT_PAGE_SIZE_MASK;
621}
622
776e6633
MT
623static int is_last_spte(u64 pte, int level)
624{
3bae0459 625 if (level == PG_LEVEL_4K)
776e6633 626 return 1;
852e3c19 627 if (is_large_pte(pte))
776e6633
MT
628 return 1;
629 return 0;
630}
631
d3e328f2
JS
632static bool is_executable_pte(u64 spte)
633{
634 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
635}
636
ba049e93 637static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 638{
35149e21 639 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
640}
641
da928521
AK
642static gfn_t pse36_gfn_delta(u32 gpte)
643{
644 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
645
646 return (gpte & PT32_DIR_PSE36_MASK) << shift;
647}
648
603e0651 649#ifdef CONFIG_X86_64
d555c333 650static void __set_spte(u64 *sptep, u64 spte)
e663ee64 651{
b19ee2ff 652 WRITE_ONCE(*sptep, spte);
e663ee64
AK
653}
654
603e0651 655static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 656{
b19ee2ff 657 WRITE_ONCE(*sptep, spte);
603e0651
XG
658}
659
660static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
661{
662 return xchg(sptep, spte);
663}
c2a2ac2b
XG
664
665static u64 __get_spte_lockless(u64 *sptep)
666{
6aa7de05 667 return READ_ONCE(*sptep);
c2a2ac2b 668}
a9221dd5 669#else
603e0651
XG
670union split_spte {
671 struct {
672 u32 spte_low;
673 u32 spte_high;
674 };
675 u64 spte;
676};
a9221dd5 677
c2a2ac2b
XG
678static void count_spte_clear(u64 *sptep, u64 spte)
679{
57354682 680 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
681
682 if (is_shadow_present_pte(spte))
683 return;
684
685 /* Ensure the spte is completely set before we increase the count */
686 smp_wmb();
687 sp->clear_spte_count++;
688}
689
603e0651
XG
690static void __set_spte(u64 *sptep, u64 spte)
691{
692 union split_spte *ssptep, sspte;
a9221dd5 693
603e0651
XG
694 ssptep = (union split_spte *)sptep;
695 sspte = (union split_spte)spte;
696
697 ssptep->spte_high = sspte.spte_high;
698
699 /*
700 * If we map the spte from nonpresent to present, We should store
701 * the high bits firstly, then set present bit, so cpu can not
702 * fetch this spte while we are setting the spte.
703 */
704 smp_wmb();
705
b19ee2ff 706 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
707}
708
603e0651
XG
709static void __update_clear_spte_fast(u64 *sptep, u64 spte)
710{
711 union split_spte *ssptep, sspte;
712
713 ssptep = (union split_spte *)sptep;
714 sspte = (union split_spte)spte;
715
b19ee2ff 716 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
717
718 /*
719 * If we map the spte from present to nonpresent, we should clear
720 * present bit firstly to avoid vcpu fetch the old high bits.
721 */
722 smp_wmb();
723
724 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 725 count_spte_clear(sptep, spte);
603e0651
XG
726}
727
728static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
729{
730 union split_spte *ssptep, sspte, orig;
731
732 ssptep = (union split_spte *)sptep;
733 sspte = (union split_spte)spte;
734
735 /* xchg acts as a barrier before the setting of the high bits */
736 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
737 orig.spte_high = ssptep->spte_high;
738 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 739 count_spte_clear(sptep, spte);
603e0651
XG
740
741 return orig.spte;
742}
c2a2ac2b
XG
743
744/*
745 * The idea using the light way get the spte on x86_32 guest is from
39656e83 746 * gup_get_pte (mm/gup.c).
accaefe0
XG
747 *
748 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
749 * coalesces them and we are running out of the MMU lock. Therefore
750 * we need to protect against in-progress updates of the spte.
751 *
752 * Reading the spte while an update is in progress may get the old value
753 * for the high part of the spte. The race is fine for a present->non-present
754 * change (because the high part of the spte is ignored for non-present spte),
755 * but for a present->present change we must reread the spte.
756 *
757 * All such changes are done in two steps (present->non-present and
758 * non-present->present), hence it is enough to count the number of
759 * present->non-present updates: if it changed while reading the spte,
760 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
761 */
762static u64 __get_spte_lockless(u64 *sptep)
763{
57354682 764 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
765 union split_spte spte, *orig = (union split_spte *)sptep;
766 int count;
767
768retry:
769 count = sp->clear_spte_count;
770 smp_rmb();
771
772 spte.spte_low = orig->spte_low;
773 smp_rmb();
774
775 spte.spte_high = orig->spte_high;
776 smp_rmb();
777
778 if (unlikely(spte.spte_low != orig->spte_low ||
779 count != sp->clear_spte_count))
780 goto retry;
781
782 return spte.spte;
783}
603e0651
XG
784#endif
785
ea4114bc 786static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 787{
feb3eb70
GN
788 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
789 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
790}
791
8672b721
XG
792static bool spte_has_volatile_bits(u64 spte)
793{
f160c7b7
JS
794 if (!is_shadow_present_pte(spte))
795 return false;
796
c7ba5b48 797 /*
6a6256f9 798 * Always atomically update spte if it can be updated
c7ba5b48
XG
799 * out of mmu-lock, it can ensure dirty bit is not lost,
800 * also, it can help us to get a stable is_writable_pte()
801 * to ensure tlb flush is not missed.
802 */
f160c7b7
JS
803 if (spte_can_locklessly_be_made_writable(spte) ||
804 is_access_track_spte(spte))
c7ba5b48
XG
805 return true;
806
ac8d57e5 807 if (spte_ad_enabled(spte)) {
f160c7b7
JS
808 if ((spte & shadow_accessed_mask) == 0 ||
809 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
810 return true;
811 }
8672b721 812
f160c7b7 813 return false;
8672b721
XG
814}
815
83ef6c81 816static bool is_accessed_spte(u64 spte)
4132779b 817{
ac8d57e5
PF
818 u64 accessed_mask = spte_shadow_accessed_mask(spte);
819
820 return accessed_mask ? spte & accessed_mask
821 : !is_access_track_spte(spte);
4132779b
XG
822}
823
83ef6c81 824static bool is_dirty_spte(u64 spte)
7e71a59b 825{
ac8d57e5
PF
826 u64 dirty_mask = spte_shadow_dirty_mask(spte);
827
828 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
829}
830
1df9f2dc
XG
831/* Rules for using mmu_spte_set:
832 * Set the sptep from nonpresent to present.
833 * Note: the sptep being assigned *must* be either not present
834 * or in a state where the hardware will not attempt to update
835 * the spte.
836 */
837static void mmu_spte_set(u64 *sptep, u64 new_spte)
838{
839 WARN_ON(is_shadow_present_pte(*sptep));
840 __set_spte(sptep, new_spte);
841}
842
f39a058d
JS
843/*
844 * Update the SPTE (excluding the PFN), but do not track changes in its
845 * accessed/dirty status.
1df9f2dc 846 */
f39a058d 847static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 848{
c7ba5b48 849 u64 old_spte = *sptep;
4132779b 850
afd28fe1 851 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 852
6e7d0354
XG
853 if (!is_shadow_present_pte(old_spte)) {
854 mmu_spte_set(sptep, new_spte);
f39a058d 855 return old_spte;
6e7d0354 856 }
4132779b 857
c7ba5b48 858 if (!spte_has_volatile_bits(old_spte))
603e0651 859 __update_clear_spte_fast(sptep, new_spte);
4132779b 860 else
603e0651 861 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 862
83ef6c81
JS
863 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
864
f39a058d
JS
865 return old_spte;
866}
867
868/* Rules for using mmu_spte_update:
869 * Update the state bits, it means the mapped pfn is not changed.
870 *
871 * Whenever we overwrite a writable spte with a read-only one we
872 * should flush remote TLBs. Otherwise rmap_write_protect
873 * will find a read-only spte, even though the writable spte
874 * might be cached on a CPU's TLB, the return value indicates this
875 * case.
876 *
877 * Returns true if the TLB needs to be flushed
878 */
879static bool mmu_spte_update(u64 *sptep, u64 new_spte)
880{
881 bool flush = false;
882 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
883
884 if (!is_shadow_present_pte(old_spte))
885 return false;
886
c7ba5b48
XG
887 /*
888 * For the spte updated out of mmu-lock is safe, since
6a6256f9 889 * we always atomically update it, see the comments in
c7ba5b48
XG
890 * spte_has_volatile_bits().
891 */
ea4114bc 892 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 893 !is_writable_pte(new_spte))
83ef6c81 894 flush = true;
4132779b 895
7e71a59b 896 /*
83ef6c81 897 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
898 * to guarantee consistency between TLB and page tables.
899 */
7e71a59b 900
83ef6c81
JS
901 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
902 flush = true;
4132779b 903 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
904 }
905
906 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
907 flush = true;
4132779b 908 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 909 }
6e7d0354 910
83ef6c81 911 return flush;
b79b93f9
AK
912}
913
1df9f2dc
XG
914/*
915 * Rules for using mmu_spte_clear_track_bits:
916 * It sets the sptep from present to nonpresent, and track the
917 * state bits, it is used to clear the last level sptep.
83ef6c81 918 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
919 */
920static int mmu_spte_clear_track_bits(u64 *sptep)
921{
ba049e93 922 kvm_pfn_t pfn;
1df9f2dc
XG
923 u64 old_spte = *sptep;
924
925 if (!spte_has_volatile_bits(old_spte))
603e0651 926 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 927 else
603e0651 928 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 929
afd28fe1 930 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
931 return 0;
932
933 pfn = spte_to_pfn(old_spte);
86fde74c
XG
934
935 /*
936 * KVM does not hold the refcount of the page used by
937 * kvm mmu, before reclaiming the page, we should
938 * unmap it from mmu first.
939 */
bf4bea8e 940 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 941
83ef6c81 942 if (is_accessed_spte(old_spte))
1df9f2dc 943 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
944
945 if (is_dirty_spte(old_spte))
1df9f2dc 946 kvm_set_pfn_dirty(pfn);
83ef6c81 947
1df9f2dc
XG
948 return 1;
949}
950
951/*
952 * Rules for using mmu_spte_clear_no_track:
953 * Directly clear spte without caring the state bits of sptep,
954 * it is used to set the upper level spte.
955 */
956static void mmu_spte_clear_no_track(u64 *sptep)
957{
603e0651 958 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
959}
960
c2a2ac2b
XG
961static u64 mmu_spte_get_lockless(u64 *sptep)
962{
963 return __get_spte_lockless(sptep);
964}
965
f160c7b7
JS
966static u64 mark_spte_for_access_track(u64 spte)
967{
ac8d57e5 968 if (spte_ad_enabled(spte))
f160c7b7
JS
969 return spte & ~shadow_accessed_mask;
970
ac8d57e5 971 if (is_access_track_spte(spte))
f160c7b7
JS
972 return spte;
973
974 /*
20d65236
JS
975 * Making an Access Tracking PTE will result in removal of write access
976 * from the PTE. So, verify that we will be able to restore the write
977 * access in the fast page fault path later on.
f160c7b7
JS
978 */
979 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
980 !spte_can_locklessly_be_made_writable(spte),
981 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
982
983 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
984 shadow_acc_track_saved_bits_shift),
985 "kvm: Access Tracking saved bit locations are not zero\n");
986
987 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
988 shadow_acc_track_saved_bits_shift;
989 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
990
991 return spte;
992}
993
d3e328f2
JS
994/* Restore an acc-track PTE back to a regular PTE */
995static u64 restore_acc_track_spte(u64 spte)
996{
997 u64 new_spte = spte;
998 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
999 & shadow_acc_track_saved_bits_mask;
1000
ac8d57e5 1001 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
1002 WARN_ON_ONCE(!is_access_track_spte(spte));
1003
1004 new_spte &= ~shadow_acc_track_mask;
1005 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1006 shadow_acc_track_saved_bits_shift);
1007 new_spte |= saved_bits;
1008
1009 return new_spte;
1010}
1011
f160c7b7
JS
1012/* Returns the Accessed status of the PTE and resets it at the same time. */
1013static bool mmu_spte_age(u64 *sptep)
1014{
1015 u64 spte = mmu_spte_get_lockless(sptep);
1016
1017 if (!is_accessed_spte(spte))
1018 return false;
1019
ac8d57e5 1020 if (spte_ad_enabled(spte)) {
f160c7b7
JS
1021 clear_bit((ffs(shadow_accessed_mask) - 1),
1022 (unsigned long *)sptep);
1023 } else {
1024 /*
1025 * Capture the dirty status of the page, so that it doesn't get
1026 * lost when the SPTE is marked for access tracking.
1027 */
1028 if (is_writable_pte(spte))
1029 kvm_set_pfn_dirty(spte_to_pfn(spte));
1030
1031 spte = mark_spte_for_access_track(spte);
1032 mmu_spte_update_no_track(sptep, spte);
1033 }
1034
1035 return true;
1036}
1037
c2a2ac2b
XG
1038static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1039{
c142786c
AK
1040 /*
1041 * Prevent page table teardown by making any free-er wait during
1042 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1043 */
1044 local_irq_disable();
36ca7e0a 1045
c142786c
AK
1046 /*
1047 * Make sure a following spte read is not reordered ahead of the write
1048 * to vcpu->mode.
1049 */
36ca7e0a 1050 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
1051}
1052
1053static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1054{
c142786c
AK
1055 /*
1056 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 1057 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
1058 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1059 */
36ca7e0a 1060 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 1061 local_irq_enable();
c2a2ac2b
XG
1062}
1063
e2dec939 1064static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 1065 struct kmem_cache *base_cache, int min)
714b93da
AK
1066{
1067 void *obj;
1068
1069 if (cache->nobjs >= min)
e2dec939 1070 return 0;
714b93da 1071 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 1072 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 1073 if (!obj)
daefb794 1074 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
1075 cache->objects[cache->nobjs++] = obj;
1076 }
e2dec939 1077 return 0;
714b93da
AK
1078}
1079
f759e2b4
XG
1080static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1081{
1082 return cache->nobjs;
1083}
1084
e8ad9a70
XG
1085static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1086 struct kmem_cache *cache)
714b93da
AK
1087{
1088 while (mc->nobjs)
e8ad9a70 1089 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1090}
1091
c1158e63 1092static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1093 int min)
c1158e63 1094{
842f22ed 1095 void *page;
c1158e63
AK
1096
1097 if (cache->nobjs >= min)
1098 return 0;
1099 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1100 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1101 if (!page)
daefb794 1102 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1103 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1104 }
1105 return 0;
1106}
1107
1108static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1109{
1110 while (mc->nobjs)
c4d198d5 1111 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1112}
1113
2e3e5882 1114static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1115{
e2dec939
AK
1116 int r;
1117
53c07b18 1118 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1119 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1120 if (r)
1121 goto out;
ad312c7c 1122 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1123 if (r)
1124 goto out;
ad312c7c 1125 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1126 mmu_page_header_cache, 4);
e2dec939
AK
1127out:
1128 return r;
714b93da
AK
1129}
1130
1131static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1132{
53c07b18
XG
1133 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1134 pte_list_desc_cache);
ad312c7c 1135 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1136 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1137 mmu_page_header_cache);
714b93da
AK
1138}
1139
80feb89a 1140static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1141{
1142 void *p;
1143
1144 BUG_ON(!mc->nobjs);
1145 p = mc->objects[--mc->nobjs];
714b93da
AK
1146 return p;
1147}
1148
53c07b18 1149static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1150{
80feb89a 1151 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1152}
1153
53c07b18 1154static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1155{
53c07b18 1156 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1157}
1158
2032a93d
LJ
1159static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1160{
1161 if (!sp->role.direct)
1162 return sp->gfns[index];
1163
1164 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1165}
1166
1167static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1168{
e9f2a760 1169 if (!sp->role.direct) {
2032a93d 1170 sp->gfns[index] = gfn;
e9f2a760
PB
1171 return;
1172 }
1173
1174 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1175 pr_err_ratelimited("gfn mismatch under direct page %llx "
1176 "(expected %llx, got %llx)\n",
1177 sp->gfn,
1178 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1179}
1180
05da4558 1181/*
d4dbf470
TY
1182 * Return the pointer to the large page information for a given gfn,
1183 * handling slots that are not large page aligned.
05da4558 1184 */
d4dbf470
TY
1185static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1186 struct kvm_memory_slot *slot,
1187 int level)
05da4558
MT
1188{
1189 unsigned long idx;
1190
fb03cb6f 1191 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1192 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1193}
1194
547ffaed
XG
1195static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1196 gfn_t gfn, int count)
1197{
1198 struct kvm_lpage_info *linfo;
1199 int i;
1200
3bae0459 1201 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
1202 linfo = lpage_info_slot(gfn, slot, i);
1203 linfo->disallow_lpage += count;
1204 WARN_ON(linfo->disallow_lpage < 0);
1205 }
1206}
1207
1208void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1209{
1210 update_gfn_disallow_lpage_count(slot, gfn, 1);
1211}
1212
1213void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1214{
1215 update_gfn_disallow_lpage_count(slot, gfn, -1);
1216}
1217
3ed1a478 1218static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1219{
699023e2 1220 struct kvm_memslots *slots;
d25797b2 1221 struct kvm_memory_slot *slot;
3ed1a478 1222 gfn_t gfn;
05da4558 1223
56ca57f9 1224 kvm->arch.indirect_shadow_pages++;
3ed1a478 1225 gfn = sp->gfn;
699023e2
PB
1226 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1227 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1228
1229 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 1230 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
1231 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1232 KVM_PAGE_TRACK_WRITE);
1233
547ffaed 1234 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1235}
1236
b8e8c830
PB
1237static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1238{
1239 if (sp->lpage_disallowed)
1240 return;
1241
1242 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
1243 list_add_tail(&sp->lpage_disallowed_link,
1244 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
1245 sp->lpage_disallowed = true;
1246}
1247
3ed1a478 1248static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1249{
699023e2 1250 struct kvm_memslots *slots;
d25797b2 1251 struct kvm_memory_slot *slot;
3ed1a478 1252 gfn_t gfn;
05da4558 1253
56ca57f9 1254 kvm->arch.indirect_shadow_pages--;
3ed1a478 1255 gfn = sp->gfn;
699023e2
PB
1256 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1257 slot = __gfn_to_memslot(slots, gfn);
3bae0459 1258 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
1259 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1260 KVM_PAGE_TRACK_WRITE);
1261
547ffaed 1262 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1263}
1264
b8e8c830
PB
1265static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1266{
1267 --kvm->stat.nx_lpage_splits;
1268 sp->lpage_disallowed = false;
1aa9b957 1269 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
1270}
1271
5d163b1c
XG
1272static struct kvm_memory_slot *
1273gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1274 bool no_dirty_log)
05da4558
MT
1275{
1276 struct kvm_memory_slot *slot;
5d163b1c 1277
54bf36aa 1278 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
1279 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1280 return NULL;
1281 if (no_dirty_log && slot->dirty_bitmap)
1282 return NULL;
5d163b1c
XG
1283
1284 return slot;
1285}
1286
290fc38d 1287/*
018aabb5 1288 * About rmap_head encoding:
cd4a4e53 1289 *
018aabb5
TY
1290 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1291 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1292 * pte_list_desc containing more mappings.
018aabb5
TY
1293 */
1294
1295/*
1296 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1297 */
53c07b18 1298static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1299 struct kvm_rmap_head *rmap_head)
cd4a4e53 1300{
53c07b18 1301 struct pte_list_desc *desc;
53a27b39 1302 int i, count = 0;
cd4a4e53 1303
018aabb5 1304 if (!rmap_head->val) {
53c07b18 1305 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1306 rmap_head->val = (unsigned long)spte;
1307 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1308 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1309 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1310 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1311 desc->sptes[1] = spte;
018aabb5 1312 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1313 ++count;
cd4a4e53 1314 } else {
53c07b18 1315 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1316 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1317 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1318 desc = desc->more;
53c07b18 1319 count += PTE_LIST_EXT;
53a27b39 1320 }
53c07b18
XG
1321 if (desc->sptes[PTE_LIST_EXT-1]) {
1322 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1323 desc = desc->more;
1324 }
d555c333 1325 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1326 ++count;
d555c333 1327 desc->sptes[i] = spte;
cd4a4e53 1328 }
53a27b39 1329 return count;
cd4a4e53
AK
1330}
1331
53c07b18 1332static void
018aabb5
TY
1333pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1334 struct pte_list_desc *desc, int i,
1335 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1336{
1337 int j;
1338
53c07b18 1339 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1340 ;
d555c333
AK
1341 desc->sptes[i] = desc->sptes[j];
1342 desc->sptes[j] = NULL;
cd4a4e53
AK
1343 if (j != 0)
1344 return;
1345 if (!prev_desc && !desc->more)
fe3c2b4c 1346 rmap_head->val = 0;
cd4a4e53
AK
1347 else
1348 if (prev_desc)
1349 prev_desc->more = desc->more;
1350 else
018aabb5 1351 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1352 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1353}
1354
8daf3462 1355static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1356{
53c07b18
XG
1357 struct pte_list_desc *desc;
1358 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1359 int i;
1360
018aabb5 1361 if (!rmap_head->val) {
8daf3462 1362 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1363 BUG();
018aabb5 1364 } else if (!(rmap_head->val & 1)) {
8daf3462 1365 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1366 if ((u64 *)rmap_head->val != spte) {
8daf3462 1367 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1368 BUG();
1369 }
018aabb5 1370 rmap_head->val = 0;
cd4a4e53 1371 } else {
8daf3462 1372 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1373 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1374 prev_desc = NULL;
1375 while (desc) {
018aabb5 1376 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1377 if (desc->sptes[i] == spte) {
018aabb5
TY
1378 pte_list_desc_remove_entry(rmap_head,
1379 desc, i, prev_desc);
cd4a4e53
AK
1380 return;
1381 }
018aabb5 1382 }
cd4a4e53
AK
1383 prev_desc = desc;
1384 desc = desc->more;
1385 }
8daf3462 1386 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1387 BUG();
1388 }
1389}
1390
e7912386
WY
1391static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1392{
1393 mmu_spte_clear_track_bits(sptep);
1394 __pte_list_remove(sptep, rmap_head);
1395}
1396
018aabb5
TY
1397static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1398 struct kvm_memory_slot *slot)
53c07b18 1399{
77d11309 1400 unsigned long idx;
53c07b18 1401
77d11309 1402 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 1403 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
1404}
1405
018aabb5
TY
1406static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1407 struct kvm_mmu_page *sp)
9b9b1492 1408{
699023e2 1409 struct kvm_memslots *slots;
9b9b1492
TY
1410 struct kvm_memory_slot *slot;
1411
699023e2
PB
1412 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1413 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1414 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1415}
1416
f759e2b4
XG
1417static bool rmap_can_add(struct kvm_vcpu *vcpu)
1418{
1419 struct kvm_mmu_memory_cache *cache;
1420
1421 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1422 return mmu_memory_cache_free_objects(cache);
1423}
1424
53c07b18
XG
1425static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1426{
1427 struct kvm_mmu_page *sp;
018aabb5 1428 struct kvm_rmap_head *rmap_head;
53c07b18 1429
57354682 1430 sp = sptep_to_sp(spte);
53c07b18 1431 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1432 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1433 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1434}
1435
53c07b18
XG
1436static void rmap_remove(struct kvm *kvm, u64 *spte)
1437{
1438 struct kvm_mmu_page *sp;
1439 gfn_t gfn;
018aabb5 1440 struct kvm_rmap_head *rmap_head;
53c07b18 1441
57354682 1442 sp = sptep_to_sp(spte);
53c07b18 1443 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1444 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1445 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1446}
1447
1e3f42f0
TY
1448/*
1449 * Used by the following functions to iterate through the sptes linked by a
1450 * rmap. All fields are private and not assumed to be used outside.
1451 */
1452struct rmap_iterator {
1453 /* private fields */
1454 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1455 int pos; /* index of the sptep */
1456};
1457
1458/*
1459 * Iteration must be started by this function. This should also be used after
1460 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1461 * information in the iterator may not be valid.
1e3f42f0
TY
1462 *
1463 * Returns sptep if found, NULL otherwise.
1464 */
018aabb5
TY
1465static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1466 struct rmap_iterator *iter)
1e3f42f0 1467{
77fbbbd2
TY
1468 u64 *sptep;
1469
018aabb5 1470 if (!rmap_head->val)
1e3f42f0
TY
1471 return NULL;
1472
018aabb5 1473 if (!(rmap_head->val & 1)) {
1e3f42f0 1474 iter->desc = NULL;
77fbbbd2
TY
1475 sptep = (u64 *)rmap_head->val;
1476 goto out;
1e3f42f0
TY
1477 }
1478
018aabb5 1479 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1480 iter->pos = 0;
77fbbbd2
TY
1481 sptep = iter->desc->sptes[iter->pos];
1482out:
1483 BUG_ON(!is_shadow_present_pte(*sptep));
1484 return sptep;
1e3f42f0
TY
1485}
1486
1487/*
1488 * Must be used with a valid iterator: e.g. after rmap_get_first().
1489 *
1490 * Returns sptep if found, NULL otherwise.
1491 */
1492static u64 *rmap_get_next(struct rmap_iterator *iter)
1493{
77fbbbd2
TY
1494 u64 *sptep;
1495
1e3f42f0
TY
1496 if (iter->desc) {
1497 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1498 ++iter->pos;
1499 sptep = iter->desc->sptes[iter->pos];
1500 if (sptep)
77fbbbd2 1501 goto out;
1e3f42f0
TY
1502 }
1503
1504 iter->desc = iter->desc->more;
1505
1506 if (iter->desc) {
1507 iter->pos = 0;
1508 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1509 sptep = iter->desc->sptes[iter->pos];
1510 goto out;
1e3f42f0
TY
1511 }
1512 }
1513
1514 return NULL;
77fbbbd2
TY
1515out:
1516 BUG_ON(!is_shadow_present_pte(*sptep));
1517 return sptep;
1e3f42f0
TY
1518}
1519
018aabb5
TY
1520#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1521 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1522 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1523
c3707958 1524static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1525{
1df9f2dc 1526 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1527 rmap_remove(kvm, sptep);
be38d276
AK
1528}
1529
8e22f955
XG
1530
1531static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1532{
1533 if (is_large_pte(*sptep)) {
57354682 1534 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1535 drop_spte(kvm, sptep);
1536 --kvm->stat.lpages;
1537 return true;
1538 }
1539
1540 return false;
1541}
1542
1543static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1544{
c3134ce2 1545 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1546 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1547
1548 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1549 KVM_PAGES_PER_HPAGE(sp->role.level));
1550 }
8e22f955
XG
1551}
1552
1553/*
49fde340 1554 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1555 * spte write-protection is caused by protecting shadow page table.
49fde340 1556 *
b4619660 1557 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1558 * protection:
1559 * - for dirty logging, the spte can be set to writable at anytime if
1560 * its dirty bitmap is properly set.
1561 * - for spte protection, the spte can be writable only after unsync-ing
1562 * shadow page.
8e22f955 1563 *
c126d94f 1564 * Return true if tlb need be flushed.
8e22f955 1565 */
c4f138b4 1566static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1567{
1568 u64 spte = *sptep;
1569
49fde340 1570 if (!is_writable_pte(spte) &&
ea4114bc 1571 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1572 return false;
1573
1574 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1575
49fde340
XG
1576 if (pt_protect)
1577 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1578 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1579
c126d94f 1580 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1581}
1582
018aabb5
TY
1583static bool __rmap_write_protect(struct kvm *kvm,
1584 struct kvm_rmap_head *rmap_head,
245c3912 1585 bool pt_protect)
98348e95 1586{
1e3f42f0
TY
1587 u64 *sptep;
1588 struct rmap_iterator iter;
d13bc5b5 1589 bool flush = false;
374cbac0 1590
018aabb5 1591 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1592 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1593
d13bc5b5 1594 return flush;
a0ed4607
TY
1595}
1596
c4f138b4 1597static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1598{
1599 u64 spte = *sptep;
1600
1601 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1602
1f4e5fc8 1603 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1604 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1605 return mmu_spte_update(sptep, spte);
1606}
1607
1f4e5fc8 1608static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1609{
1610 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1611 (unsigned long *)sptep);
1f4e5fc8 1612 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1613 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1614
1615 return was_writable;
1616}
1617
1618/*
1619 * Gets the GFN ready for another round of dirty logging by clearing the
1620 * - D bit on ad-enabled SPTEs, and
1621 * - W bit on ad-disabled SPTEs.
1622 * Returns true iff any D or W bits were cleared.
1623 */
018aabb5 1624static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1625{
1626 u64 *sptep;
1627 struct rmap_iterator iter;
1628 bool flush = false;
1629
018aabb5 1630 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1631 if (spte_ad_need_write_protect(*sptep))
1632 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1633 else
1f4e5fc8 1634 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1635
1636 return flush;
1637}
1638
c4f138b4 1639static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1640{
1641 u64 spte = *sptep;
1642
1643 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1644
1f4e5fc8 1645 /*
afaf0b2f 1646 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1647 * do not bother adding back write access to pages marked
1648 * SPTE_AD_WRPROT_ONLY_MASK.
1649 */
f4b4b180
KH
1650 spte |= shadow_dirty_mask;
1651
1652 return mmu_spte_update(sptep, spte);
1653}
1654
018aabb5 1655static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1656{
1657 u64 *sptep;
1658 struct rmap_iterator iter;
1659 bool flush = false;
1660
018aabb5 1661 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1662 if (spte_ad_enabled(*sptep))
1663 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1664
1665 return flush;
1666}
1667
5dc99b23 1668/**
3b0f1d01 1669 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1670 * @kvm: kvm instance
1671 * @slot: slot to protect
1672 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1673 * @mask: indicates which pages we should protect
1674 *
1675 * Used when we do not need to care about huge page mappings: e.g. during dirty
1676 * logging we do not have any such mappings.
1677 */
3b0f1d01 1678static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1679 struct kvm_memory_slot *slot,
1680 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1681{
018aabb5 1682 struct kvm_rmap_head *rmap_head;
a0ed4607 1683
5dc99b23 1684 while (mask) {
018aabb5 1685 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1686 PG_LEVEL_4K, slot);
018aabb5 1687 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1688
5dc99b23
TY
1689 /* clear the first set bit */
1690 mask &= mask - 1;
1691 }
374cbac0
AK
1692}
1693
f4b4b180 1694/**
ac8d57e5
PF
1695 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1696 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1697 * @kvm: kvm instance
1698 * @slot: slot to clear D-bit
1699 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1700 * @mask: indicates which pages we should clear D-bit
1701 *
1702 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1703 */
1704void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1705 struct kvm_memory_slot *slot,
1706 gfn_t gfn_offset, unsigned long mask)
1707{
018aabb5 1708 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1709
1710 while (mask) {
018aabb5 1711 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1712 PG_LEVEL_4K, slot);
018aabb5 1713 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1714
1715 /* clear the first set bit */
1716 mask &= mask - 1;
1717 }
1718}
1719EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1720
3b0f1d01
KH
1721/**
1722 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1723 * PT level pages.
1724 *
1725 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1726 * enable dirty logging for them.
1727 *
1728 * Used when we do not need to care about huge page mappings: e.g. during dirty
1729 * logging we do not have any such mappings.
1730 */
1731void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1732 struct kvm_memory_slot *slot,
1733 gfn_t gfn_offset, unsigned long mask)
1734{
afaf0b2f
SC
1735 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1736 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1737 mask);
1738 else
1739 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1740}
1741
aeecee2e
XG
1742bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1743 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1744{
018aabb5 1745 struct kvm_rmap_head *rmap_head;
5dc99b23 1746 int i;
2f84569f 1747 bool write_protected = false;
95d4c16c 1748
3bae0459 1749 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1750 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1751 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1752 }
1753
1754 return write_protected;
95d4c16c
TY
1755}
1756
aeecee2e
XG
1757static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1758{
1759 struct kvm_memory_slot *slot;
1760
1761 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1762 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1763}
1764
018aabb5 1765static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1766{
1e3f42f0
TY
1767 u64 *sptep;
1768 struct rmap_iterator iter;
6a49f85c 1769 bool flush = false;
e930bffe 1770
018aabb5 1771 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1772 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1773
e7912386 1774 pte_list_remove(rmap_head, sptep);
6a49f85c 1775 flush = true;
e930bffe 1776 }
1e3f42f0 1777
6a49f85c
XG
1778 return flush;
1779}
1780
018aabb5 1781static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1782 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1783 unsigned long data)
1784{
018aabb5 1785 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1786}
1787
018aabb5 1788static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1789 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1790 unsigned long data)
3da0dd43 1791{
1e3f42f0
TY
1792 u64 *sptep;
1793 struct rmap_iterator iter;
3da0dd43 1794 int need_flush = 0;
1e3f42f0 1795 u64 new_spte;
3da0dd43 1796 pte_t *ptep = (pte_t *)data;
ba049e93 1797 kvm_pfn_t new_pfn;
3da0dd43
IE
1798
1799 WARN_ON(pte_huge(*ptep));
1800 new_pfn = pte_pfn(*ptep);
1e3f42f0 1801
0d536790 1802restart:
018aabb5 1803 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1804 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1805 sptep, *sptep, gfn, level);
1e3f42f0 1806
3da0dd43 1807 need_flush = 1;
1e3f42f0 1808
3da0dd43 1809 if (pte_write(*ptep)) {
e7912386 1810 pte_list_remove(rmap_head, sptep);
0d536790 1811 goto restart;
3da0dd43 1812 } else {
1e3f42f0 1813 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1814 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1815
1816 new_spte &= ~PT_WRITABLE_MASK;
1817 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1818
1819 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1820
1821 mmu_spte_clear_track_bits(sptep);
1822 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1823 }
1824 }
1e3f42f0 1825
3cc5ea94
LT
1826 if (need_flush && kvm_available_flush_tlb_with_range()) {
1827 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1828 return 0;
1829 }
1830
0cf853c5 1831 return need_flush;
3da0dd43
IE
1832}
1833
6ce1f4e2
XG
1834struct slot_rmap_walk_iterator {
1835 /* input fields. */
1836 struct kvm_memory_slot *slot;
1837 gfn_t start_gfn;
1838 gfn_t end_gfn;
1839 int start_level;
1840 int end_level;
1841
1842 /* output fields. */
1843 gfn_t gfn;
018aabb5 1844 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1845 int level;
1846
1847 /* private field. */
018aabb5 1848 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1849};
1850
1851static void
1852rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1853{
1854 iterator->level = level;
1855 iterator->gfn = iterator->start_gfn;
1856 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1857 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1858 iterator->slot);
1859}
1860
1861static void
1862slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1863 struct kvm_memory_slot *slot, int start_level,
1864 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1865{
1866 iterator->slot = slot;
1867 iterator->start_level = start_level;
1868 iterator->end_level = end_level;
1869 iterator->start_gfn = start_gfn;
1870 iterator->end_gfn = end_gfn;
1871
1872 rmap_walk_init_level(iterator, iterator->start_level);
1873}
1874
1875static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1876{
1877 return !!iterator->rmap;
1878}
1879
1880static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1881{
1882 if (++iterator->rmap <= iterator->end_rmap) {
1883 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1884 return;
1885 }
1886
1887 if (++iterator->level > iterator->end_level) {
1888 iterator->rmap = NULL;
1889 return;
1890 }
1891
1892 rmap_walk_init_level(iterator, iterator->level);
1893}
1894
1895#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1896 _start_gfn, _end_gfn, _iter_) \
1897 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1898 _end_level_, _start_gfn, _end_gfn); \
1899 slot_rmap_walk_okay(_iter_); \
1900 slot_rmap_walk_next(_iter_))
1901
84504ef3
TY
1902static int kvm_handle_hva_range(struct kvm *kvm,
1903 unsigned long start,
1904 unsigned long end,
1905 unsigned long data,
1906 int (*handler)(struct kvm *kvm,
018aabb5 1907 struct kvm_rmap_head *rmap_head,
048212d0 1908 struct kvm_memory_slot *slot,
8a9522d2
ALC
1909 gfn_t gfn,
1910 int level,
84504ef3 1911 unsigned long data))
e930bffe 1912{
bc6678a3 1913 struct kvm_memslots *slots;
be6ba0f0 1914 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1915 struct slot_rmap_walk_iterator iterator;
1916 int ret = 0;
9da0e4d5 1917 int i;
bc6678a3 1918
9da0e4d5
PB
1919 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1920 slots = __kvm_memslots(kvm, i);
1921 kvm_for_each_memslot(memslot, slots) {
1922 unsigned long hva_start, hva_end;
1923 gfn_t gfn_start, gfn_end;
e930bffe 1924
9da0e4d5
PB
1925 hva_start = max(start, memslot->userspace_addr);
1926 hva_end = min(end, memslot->userspace_addr +
1927 (memslot->npages << PAGE_SHIFT));
1928 if (hva_start >= hva_end)
1929 continue;
1930 /*
1931 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1932 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1933 */
1934 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1935 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1936
3bae0459 1937 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1938 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1939 gfn_start, gfn_end - 1,
1940 &iterator)
1941 ret |= handler(kvm, iterator.rmap, memslot,
1942 iterator.gfn, iterator.level, data);
1943 }
e930bffe
AA
1944 }
1945
f395302e 1946 return ret;
e930bffe
AA
1947}
1948
84504ef3
TY
1949static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1950 unsigned long data,
018aabb5
TY
1951 int (*handler)(struct kvm *kvm,
1952 struct kvm_rmap_head *rmap_head,
048212d0 1953 struct kvm_memory_slot *slot,
8a9522d2 1954 gfn_t gfn, int level,
84504ef3
TY
1955 unsigned long data))
1956{
1957 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1958}
1959
b3ae2096
TY
1960int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1961{
1962 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1963}
1964
748c0e31 1965int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1966{
0cf853c5 1967 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1968}
1969
018aabb5 1970static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1971 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1972 unsigned long data)
e930bffe 1973{
1e3f42f0 1974 u64 *sptep;
79f702a6 1975 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1976 int young = 0;
1977
f160c7b7
JS
1978 for_each_rmap_spte(rmap_head, &iter, sptep)
1979 young |= mmu_spte_age(sptep);
0d536790 1980
8a9522d2 1981 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1982 return young;
1983}
1984
018aabb5 1985static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1986 struct kvm_memory_slot *slot, gfn_t gfn,
1987 int level, unsigned long data)
8ee53820 1988{
1e3f42f0
TY
1989 u64 *sptep;
1990 struct rmap_iterator iter;
8ee53820 1991
83ef6c81
JS
1992 for_each_rmap_spte(rmap_head, &iter, sptep)
1993 if (is_accessed_spte(*sptep))
1994 return 1;
83ef6c81 1995 return 0;
8ee53820
AA
1996}
1997
53a27b39
MT
1998#define RMAP_RECYCLE_THRESHOLD 1000
1999
852e3c19 2000static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 2001{
018aabb5 2002 struct kvm_rmap_head *rmap_head;
852e3c19
JR
2003 struct kvm_mmu_page *sp;
2004
57354682 2005 sp = sptep_to_sp(spte);
53a27b39 2006
018aabb5 2007 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 2008
018aabb5 2009 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
2010 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2011 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
2012}
2013
57128468 2014int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2015{
57128468 2016 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2017}
2018
8ee53820
AA
2019int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2020{
2021 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2022}
2023
d6c69ee9 2024#ifdef MMU_DEBUG
47ad8e68 2025static int is_empty_shadow_page(u64 *spt)
6aa8b732 2026{
139bdb2d
AK
2027 u64 *pos;
2028 u64 *end;
2029
47ad8e68 2030 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2031 if (is_shadow_present_pte(*pos)) {
b8688d51 2032 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2033 pos, *pos);
6aa8b732 2034 return 0;
139bdb2d 2035 }
6aa8b732
AK
2036 return 1;
2037}
d6c69ee9 2038#endif
6aa8b732 2039
45221ab6
DH
2040/*
2041 * This value is the sum of all of the kvm instances's
2042 * kvm->arch.n_used_mmu_pages values. We need a global,
2043 * aggregate version in order to make the slab shrinker
2044 * faster
2045 */
bc8a3d89 2046static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2047{
2048 kvm->arch.n_used_mmu_pages += nr;
2049 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2050}
2051
834be0d8 2052static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2053{
fa4a2c08 2054 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2055 hlist_del(&sp->hash_link);
bd4c86ea
XG
2056 list_del(&sp->link);
2057 free_page((unsigned long)sp->spt);
834be0d8
GN
2058 if (!sp->role.direct)
2059 free_page((unsigned long)sp->gfns);
e8ad9a70 2060 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2061}
2062
cea0f0e7
AK
2063static unsigned kvm_page_table_hashfn(gfn_t gfn)
2064{
114df303 2065 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2066}
2067
714b93da 2068static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2069 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2070{
cea0f0e7
AK
2071 if (!parent_pte)
2072 return;
cea0f0e7 2073
67052b35 2074 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2075}
2076
4db35314 2077static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2078 u64 *parent_pte)
2079{
8daf3462 2080 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2081}
2082
bcdd9a93
XG
2083static void drop_parent_pte(struct kvm_mmu_page *sp,
2084 u64 *parent_pte)
2085{
2086 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2087 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2088}
2089
47005792 2090static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2091{
67052b35 2092 struct kvm_mmu_page *sp;
7ddca7e4 2093
80feb89a
TY
2094 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2095 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2096 if (!direct)
80feb89a 2097 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2098 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
2099
2100 /*
2101 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2102 * depends on valid pages being added to the head of the list. See
2103 * comments in kvm_zap_obsolete_pages().
2104 */
ca333add 2105 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 2106 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2107 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2108 return sp;
ad8cfbe3
MT
2109}
2110
67052b35 2111static void mark_unsync(u64 *spte);
1047df1f 2112static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2113{
74c4e63a
TY
2114 u64 *sptep;
2115 struct rmap_iterator iter;
2116
2117 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2118 mark_unsync(sptep);
2119 }
0074ff63
MT
2120}
2121
67052b35 2122static void mark_unsync(u64 *spte)
0074ff63 2123{
67052b35 2124 struct kvm_mmu_page *sp;
1047df1f 2125 unsigned int index;
0074ff63 2126
57354682 2127 sp = sptep_to_sp(spte);
1047df1f
XG
2128 index = spte - sp->spt;
2129 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2130 return;
1047df1f 2131 if (sp->unsync_children++)
0074ff63 2132 return;
1047df1f 2133 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2134}
2135
e8bc217a 2136static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2137 struct kvm_mmu_page *sp)
e8bc217a 2138{
1f50f1b3 2139 return 0;
e8bc217a
MT
2140}
2141
0f53b5b1
XG
2142static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2143 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2144 const void *pte)
0f53b5b1
XG
2145{
2146 WARN_ON(1);
2147}
2148
60c8aec6
MT
2149#define KVM_PAGE_ARRAY_NR 16
2150
2151struct kvm_mmu_pages {
2152 struct mmu_page_and_offset {
2153 struct kvm_mmu_page *sp;
2154 unsigned int idx;
2155 } page[KVM_PAGE_ARRAY_NR];
2156 unsigned int nr;
2157};
2158
cded19f3
HE
2159static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2160 int idx)
4731d4c7 2161{
60c8aec6 2162 int i;
4731d4c7 2163
60c8aec6
MT
2164 if (sp->unsync)
2165 for (i=0; i < pvec->nr; i++)
2166 if (pvec->page[i].sp == sp)
2167 return 0;
2168
2169 pvec->page[pvec->nr].sp = sp;
2170 pvec->page[pvec->nr].idx = idx;
2171 pvec->nr++;
2172 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2173}
2174
fd951457
TY
2175static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2176{
2177 --sp->unsync_children;
2178 WARN_ON((int)sp->unsync_children < 0);
2179 __clear_bit(idx, sp->unsync_child_bitmap);
2180}
2181
60c8aec6
MT
2182static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2183 struct kvm_mmu_pages *pvec)
2184{
2185 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2186
37178b8b 2187 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2188 struct kvm_mmu_page *child;
4731d4c7
MT
2189 u64 ent = sp->spt[i];
2190
fd951457
TY
2191 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2192 clear_unsync_child_bit(sp, i);
2193 continue;
2194 }
7a8f1a74 2195
e47c4aee 2196 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
2197
2198 if (child->unsync_children) {
2199 if (mmu_pages_add(pvec, child, i))
2200 return -ENOSPC;
2201
2202 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2203 if (!ret) {
2204 clear_unsync_child_bit(sp, i);
2205 continue;
2206 } else if (ret > 0) {
7a8f1a74 2207 nr_unsync_leaf += ret;
fd951457 2208 } else
7a8f1a74
XG
2209 return ret;
2210 } else if (child->unsync) {
2211 nr_unsync_leaf++;
2212 if (mmu_pages_add(pvec, child, i))
2213 return -ENOSPC;
2214 } else
fd951457 2215 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2216 }
2217
60c8aec6
MT
2218 return nr_unsync_leaf;
2219}
2220
e23d3fef
XG
2221#define INVALID_INDEX (-1)
2222
60c8aec6
MT
2223static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2224 struct kvm_mmu_pages *pvec)
2225{
0a47cd85 2226 pvec->nr = 0;
60c8aec6
MT
2227 if (!sp->unsync_children)
2228 return 0;
2229
e23d3fef 2230 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2231 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2232}
2233
4731d4c7
MT
2234static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2235{
2236 WARN_ON(!sp->unsync);
5e1b3ddb 2237 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2238 sp->unsync = 0;
2239 --kvm->stat.mmu_unsync;
2240}
2241
83cdb568
SC
2242static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2243 struct list_head *invalid_list);
7775834a
XG
2244static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2245 struct list_head *invalid_list);
4731d4c7 2246
ac101b7c
SC
2247#define for_each_valid_sp(_kvm, _sp, _list) \
2248 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 2249 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 2250 } else
1044b030
TY
2251
2252#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
2253 for_each_valid_sp(_kvm, _sp, \
2254 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 2255 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2256
47c42e6b
SC
2257static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2258{
2259 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2260}
2261
f918b443 2262/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2263static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2264 struct list_head *invalid_list)
4731d4c7 2265{
47c42e6b
SC
2266 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2267 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2268 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2269 return false;
4731d4c7
MT
2270 }
2271
1f50f1b3 2272 return true;
4731d4c7
MT
2273}
2274
a2113634
SC
2275static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2276 struct list_head *invalid_list,
2277 bool remote_flush)
2278{
cfd32acf 2279 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2280 return false;
2281
2282 if (!list_empty(invalid_list))
2283 kvm_mmu_commit_zap_page(kvm, invalid_list);
2284 else
2285 kvm_flush_remote_tlbs(kvm);
2286 return true;
2287}
2288
35a70510
PB
2289static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2290 struct list_head *invalid_list,
2291 bool remote_flush, bool local_flush)
1d9dc7e0 2292{
a2113634 2293 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2294 return;
d98ba053 2295
a2113634 2296 if (local_flush)
8c8560b8 2297 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
2298}
2299
e37fa785
XG
2300#ifdef CONFIG_KVM_MMU_AUDIT
2301#include "mmu_audit.c"
2302#else
2303static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2304static void mmu_audit_disable(void) { }
2305#endif
2306
002c5f73
SC
2307static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2308{
fac026da
SC
2309 return sp->role.invalid ||
2310 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
2311}
2312
1f50f1b3 2313static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2314 struct list_head *invalid_list)
1d9dc7e0 2315{
9a43c5d9
PB
2316 kvm_unlink_unsync_page(vcpu->kvm, sp);
2317 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2318}
2319
9f1a122f 2320/* @gfn should be write-protected at the call site */
2a74003a
PB
2321static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2322 struct list_head *invalid_list)
9f1a122f 2323{
9f1a122f 2324 struct kvm_mmu_page *s;
2a74003a 2325 bool ret = false;
9f1a122f 2326
b67bfe0d 2327 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2328 if (!s->unsync)
9f1a122f
XG
2329 continue;
2330
3bae0459 2331 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 2332 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2333 }
2334
2a74003a 2335 return ret;
9f1a122f
XG
2336}
2337
60c8aec6 2338struct mmu_page_path {
2a7266a8
YZ
2339 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2340 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2341};
2342
60c8aec6 2343#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2344 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2345 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2346 i = mmu_pages_next(&pvec, &parents, i))
2347
cded19f3
HE
2348static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2349 struct mmu_page_path *parents,
2350 int i)
60c8aec6
MT
2351{
2352 int n;
2353
2354 for (n = i+1; n < pvec->nr; n++) {
2355 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2356 unsigned idx = pvec->page[n].idx;
2357 int level = sp->role.level;
60c8aec6 2358
0a47cd85 2359 parents->idx[level-1] = idx;
3bae0459 2360 if (level == PG_LEVEL_4K)
0a47cd85 2361 break;
60c8aec6 2362
0a47cd85 2363 parents->parent[level-2] = sp;
60c8aec6
MT
2364 }
2365
2366 return n;
2367}
2368
0a47cd85
PB
2369static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2370 struct mmu_page_path *parents)
2371{
2372 struct kvm_mmu_page *sp;
2373 int level;
2374
2375 if (pvec->nr == 0)
2376 return 0;
2377
e23d3fef
XG
2378 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2379
0a47cd85
PB
2380 sp = pvec->page[0].sp;
2381 level = sp->role.level;
3bae0459 2382 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
2383
2384 parents->parent[level-2] = sp;
2385
2386 /* Also set up a sentinel. Further entries in pvec are all
2387 * children of sp, so this element is never overwritten.
2388 */
2389 parents->parent[level-1] = NULL;
2390 return mmu_pages_next(pvec, parents, 0);
2391}
2392
cded19f3 2393static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2394{
60c8aec6
MT
2395 struct kvm_mmu_page *sp;
2396 unsigned int level = 0;
2397
2398 do {
2399 unsigned int idx = parents->idx[level];
60c8aec6
MT
2400 sp = parents->parent[level];
2401 if (!sp)
2402 return;
2403
e23d3fef 2404 WARN_ON(idx == INVALID_INDEX);
fd951457 2405 clear_unsync_child_bit(sp, idx);
60c8aec6 2406 level++;
0a47cd85 2407 } while (!sp->unsync_children);
60c8aec6 2408}
4731d4c7 2409
60c8aec6
MT
2410static void mmu_sync_children(struct kvm_vcpu *vcpu,
2411 struct kvm_mmu_page *parent)
2412{
2413 int i;
2414 struct kvm_mmu_page *sp;
2415 struct mmu_page_path parents;
2416 struct kvm_mmu_pages pages;
d98ba053 2417 LIST_HEAD(invalid_list);
50c9e6f3 2418 bool flush = false;
60c8aec6 2419
60c8aec6 2420 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2421 bool protected = false;
b1a36821
MT
2422
2423 for_each_sp(pages, sp, parents, i)
54bf36aa 2424 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2425
50c9e6f3 2426 if (protected) {
b1a36821 2427 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2428 flush = false;
2429 }
b1a36821 2430
60c8aec6 2431 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2432 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2433 mmu_pages_clear_parents(&parents);
2434 }
50c9e6f3
PB
2435 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2436 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2437 cond_resched_lock(&vcpu->kvm->mmu_lock);
2438 flush = false;
2439 }
60c8aec6 2440 }
50c9e6f3
PB
2441
2442 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2443}
2444
a30f47cb
XG
2445static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2446{
e5691a81 2447 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2448}
2449
2450static void clear_sp_write_flooding_count(u64 *spte)
2451{
57354682 2452 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2453}
2454
cea0f0e7
AK
2455static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2456 gfn_t gfn,
2457 gva_t gaddr,
2458 unsigned level,
f6e2c02b 2459 int direct,
0a2b64c5 2460 unsigned int access)
cea0f0e7 2461{
fb58a9c3 2462 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2463 union kvm_mmu_page_role role;
ac101b7c 2464 struct hlist_head *sp_list;
cea0f0e7 2465 unsigned quadrant;
9f1a122f 2466 struct kvm_mmu_page *sp;
9f1a122f 2467 bool need_sync = false;
2a74003a 2468 bool flush = false;
f3414bc7 2469 int collisions = 0;
2a74003a 2470 LIST_HEAD(invalid_list);
cea0f0e7 2471
36d9594d 2472 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2473 role.level = level;
f6e2c02b 2474 role.direct = direct;
84b0c8c6 2475 if (role.direct)
47c42e6b 2476 role.gpte_is_8_bytes = true;
41074d07 2477 role.access = access;
fb58a9c3 2478 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2479 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2480 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2481 role.quadrant = quadrant;
2482 }
ac101b7c
SC
2483
2484 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2485 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2486 if (sp->gfn != gfn) {
2487 collisions++;
2488 continue;
2489 }
2490
7ae680eb
XG
2491 if (!need_sync && sp->unsync)
2492 need_sync = true;
4731d4c7 2493
7ae680eb
XG
2494 if (sp->role.word != role.word)
2495 continue;
4731d4c7 2496
fb58a9c3
SC
2497 if (direct_mmu)
2498 goto trace_get_page;
2499
2a74003a
PB
2500 if (sp->unsync) {
2501 /* The page is good, but __kvm_sync_page might still end
2502 * up zapping it. If so, break in order to rebuild it.
2503 */
2504 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2505 break;
2506
2507 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2508 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2509 }
e02aa901 2510
98bba238 2511 if (sp->unsync_children)
8c8560b8 2512 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
e02aa901 2513
a30f47cb 2514 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2515
2516trace_get_page:
7ae680eb 2517 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2518 goto out;
7ae680eb 2519 }
47005792 2520
dfc5aa00 2521 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2522
2523 sp = kvm_mmu_alloc_page(vcpu, direct);
2524
4db35314
AK
2525 sp->gfn = gfn;
2526 sp->role = role;
ac101b7c 2527 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2528 if (!direct) {
56ca57f9
XG
2529 /*
2530 * we should do write protection before syncing pages
2531 * otherwise the content of the synced shadow page may
2532 * be inconsistent with guest page table.
2533 */
2534 account_shadowed(vcpu->kvm, sp);
3bae0459 2535 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2536 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2537
3bae0459 2538 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2539 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2540 }
77492664 2541 clear_page(sp->spt);
f691fe1d 2542 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2543
2544 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2545out:
2546 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2547 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2548 return sp;
cea0f0e7
AK
2549}
2550
7eb77e9f
JS
2551static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2552 struct kvm_vcpu *vcpu, hpa_t root,
2553 u64 addr)
2d11123a
AK
2554{
2555 iterator->addr = addr;
7eb77e9f 2556 iterator->shadow_addr = root;
44dd3ffa 2557 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2558
2a7266a8 2559 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2560 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2561 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2562 --iterator->level;
2563
2d11123a 2564 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2565 /*
2566 * prev_root is currently only used for 64-bit hosts. So only
2567 * the active root_hpa is valid here.
2568 */
44dd3ffa 2569 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2570
2d11123a 2571 iterator->shadow_addr
44dd3ffa 2572 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2573 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2574 --iterator->level;
2575 if (!iterator->shadow_addr)
2576 iterator->level = 0;
2577 }
2578}
2579
7eb77e9f
JS
2580static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2581 struct kvm_vcpu *vcpu, u64 addr)
2582{
44dd3ffa 2583 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2584 addr);
2585}
2586
2d11123a
AK
2587static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2588{
3bae0459 2589 if (iterator->level < PG_LEVEL_4K)
2d11123a 2590 return false;
4d88954d 2591
2d11123a
AK
2592 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2593 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2594 return true;
2595}
2596
c2a2ac2b
XG
2597static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2598 u64 spte)
2d11123a 2599{
c2a2ac2b 2600 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2601 iterator->level = 0;
2602 return;
2603 }
2604
c2a2ac2b 2605 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2606 --iterator->level;
2607}
2608
c2a2ac2b
XG
2609static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2610{
bb606a9b 2611 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2612}
2613
98bba238
TY
2614static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2615 struct kvm_mmu_page *sp)
32ef26a3
AK
2616{
2617 u64 spte;
2618
ffb128c8 2619 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2620
ffb128c8 2621 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2622 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2623
2624 if (sp_ad_disabled(sp))
6eeb4ef0 2625 spte |= SPTE_AD_DISABLED_MASK;
ac8d57e5
PF
2626 else
2627 spte |= shadow_accessed_mask;
24db2734 2628
1df9f2dc 2629 mmu_spte_set(sptep, spte);
98bba238
TY
2630
2631 mmu_page_add_parent_pte(vcpu, sp, sptep);
2632
2633 if (sp->unsync_children || sp->unsync)
2634 mark_unsync(sptep);
32ef26a3
AK
2635}
2636
a357bd22
AK
2637static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2638 unsigned direct_access)
2639{
2640 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2641 struct kvm_mmu_page *child;
2642
2643 /*
2644 * For the direct sp, if the guest pte's dirty bit
2645 * changed form clean to dirty, it will corrupt the
2646 * sp's access: allow writable in the read-only sp,
2647 * so we should update the spte at this point to get
2648 * a new sp with the correct access.
2649 */
e47c4aee 2650 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2651 if (child->role.access == direct_access)
2652 return;
2653
bcdd9a93 2654 drop_parent_pte(child, sptep);
c3134ce2 2655 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2656 }
2657}
2658
505aef8f 2659static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2660 u64 *spte)
2661{
2662 u64 pte;
2663 struct kvm_mmu_page *child;
2664
2665 pte = *spte;
2666 if (is_shadow_present_pte(pte)) {
505aef8f 2667 if (is_last_spte(pte, sp->role.level)) {
c3707958 2668 drop_spte(kvm, spte);
505aef8f
XG
2669 if (is_large_pte(pte))
2670 --kvm->stat.lpages;
2671 } else {
e47c4aee 2672 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2673 drop_parent_pte(child, spte);
38e3b2b2 2674 }
505aef8f
XG
2675 return true;
2676 }
2677
2678 if (is_mmio_spte(pte))
ce88decf 2679 mmu_spte_clear_no_track(spte);
c3707958 2680
505aef8f 2681 return false;
38e3b2b2
XG
2682}
2683
90cb0529 2684static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2685 struct kvm_mmu_page *sp)
a436036b 2686{
697fe2e2 2687 unsigned i;
697fe2e2 2688
38e3b2b2
XG
2689 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2690 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2691}
2692
31aa2b44 2693static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2694{
1e3f42f0
TY
2695 u64 *sptep;
2696 struct rmap_iterator iter;
a436036b 2697
018aabb5 2698 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2699 drop_parent_pte(sp, sptep);
31aa2b44
AK
2700}
2701
60c8aec6 2702static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2703 struct kvm_mmu_page *parent,
2704 struct list_head *invalid_list)
4731d4c7 2705{
60c8aec6
MT
2706 int i, zapped = 0;
2707 struct mmu_page_path parents;
2708 struct kvm_mmu_pages pages;
4731d4c7 2709
3bae0459 2710 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2711 return 0;
60c8aec6 2712
60c8aec6
MT
2713 while (mmu_unsync_walk(parent, &pages)) {
2714 struct kvm_mmu_page *sp;
2715
2716 for_each_sp(pages, sp, parents, i) {
7775834a 2717 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2718 mmu_pages_clear_parents(&parents);
77662e00 2719 zapped++;
60c8aec6 2720 }
60c8aec6
MT
2721 }
2722
2723 return zapped;
4731d4c7
MT
2724}
2725
83cdb568
SC
2726static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2727 struct kvm_mmu_page *sp,
2728 struct list_head *invalid_list,
2729 int *nr_zapped)
31aa2b44 2730{
83cdb568 2731 bool list_unstable;
f691fe1d 2732
7775834a 2733 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2734 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2735 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2736 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2737 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2738
83cdb568
SC
2739 /* Zapping children means active_mmu_pages has become unstable. */
2740 list_unstable = *nr_zapped;
2741
f6e2c02b 2742 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2743 unaccount_shadowed(kvm, sp);
5304b8d3 2744
4731d4c7
MT
2745 if (sp->unsync)
2746 kvm_unlink_unsync_page(kvm, sp);
4db35314 2747 if (!sp->root_count) {
54a4f023 2748 /* Count self */
83cdb568 2749 (*nr_zapped)++;
f95eec9b
SC
2750
2751 /*
2752 * Already invalid pages (previously active roots) are not on
2753 * the active page list. See list_del() in the "else" case of
2754 * !sp->root_count.
2755 */
2756 if (sp->role.invalid)
2757 list_add(&sp->link, invalid_list);
2758 else
2759 list_move(&sp->link, invalid_list);
aa6bd187 2760 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2761 } else {
f95eec9b
SC
2762 /*
2763 * Remove the active root from the active page list, the root
2764 * will be explicitly freed when the root_count hits zero.
2765 */
2766 list_del(&sp->link);
05988d72 2767
10605204
SC
2768 /*
2769 * Obsolete pages cannot be used on any vCPUs, see the comment
2770 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2771 * treats invalid shadow pages as being obsolete.
2772 */
2773 if (!is_obsolete_sp(kvm, sp))
05988d72 2774 kvm_reload_remote_mmus(kvm);
2e53d63a 2775 }
7775834a 2776
b8e8c830
PB
2777 if (sp->lpage_disallowed)
2778 unaccount_huge_nx_page(kvm, sp);
2779
7775834a 2780 sp->role.invalid = 1;
83cdb568
SC
2781 return list_unstable;
2782}
2783
2784static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2785 struct list_head *invalid_list)
2786{
2787 int nr_zapped;
2788
2789 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2790 return nr_zapped;
a436036b
AK
2791}
2792
7775834a
XG
2793static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2794 struct list_head *invalid_list)
2795{
945315b9 2796 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2797
2798 if (list_empty(invalid_list))
2799 return;
2800
c142786c 2801 /*
9753f529
LT
2802 * We need to make sure everyone sees our modifications to
2803 * the page tables and see changes to vcpu->mode here. The barrier
2804 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2805 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2806 *
2807 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2808 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2809 */
2810 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2811
945315b9 2812 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2813 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2814 kvm_mmu_free_page(sp);
945315b9 2815 }
7775834a
XG
2816}
2817
6b82ef2c
SC
2818static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2819 unsigned long nr_to_zap)
ba7888dd 2820{
6b82ef2c
SC
2821 unsigned long total_zapped = 0;
2822 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2823 LIST_HEAD(invalid_list);
6b82ef2c
SC
2824 bool unstable;
2825 int nr_zapped;
ba7888dd 2826
6b82ef2c 2827 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2828 return 0;
2829
6b82ef2c
SC
2830restart:
2831 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2832 /*
2833 * Don't zap active root pages, the page itself can't be freed
2834 * and zapping it will just force vCPUs to realloc and reload.
2835 */
2836 if (sp->root_count)
2837 continue;
2838
2839 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2840 &nr_zapped);
2841 total_zapped += nr_zapped;
2842 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2843 break;
2844
6b82ef2c
SC
2845 if (unstable)
2846 goto restart;
ba7888dd 2847 }
6b82ef2c
SC
2848
2849 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2850
2851 kvm->stat.mmu_recycled += total_zapped;
2852 return total_zapped;
2853}
2854
afe8d7e6
SC
2855static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2856{
2857 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2858 return kvm->arch.n_max_mmu_pages -
2859 kvm->arch.n_used_mmu_pages;
2860
2861 return 0;
2862}
2863
6b82ef2c
SC
2864static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2865{
2866 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2867
2868 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2869 return 0;
2870
2871 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2872
2873 if (!kvm_mmu_available_pages(vcpu->kvm))
2874 return -ENOSPC;
2875 return 0;
2876}
2877
82ce2c96
IE
2878/*
2879 * Changing the number of mmu pages allocated to the vm
49d5ca26 2880 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2881 */
bc8a3d89 2882void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2883{
b34cb590
TY
2884 spin_lock(&kvm->mmu_lock);
2885
49d5ca26 2886 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2887 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2888 goal_nr_mmu_pages);
82ce2c96 2889
49d5ca26 2890 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2891 }
82ce2c96 2892
49d5ca26 2893 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2894
2895 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2896}
2897
1cb3f3ae 2898int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2899{
4db35314 2900 struct kvm_mmu_page *sp;
d98ba053 2901 LIST_HEAD(invalid_list);
a436036b
AK
2902 int r;
2903
9ad17b10 2904 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2905 r = 0;
1cb3f3ae 2906 spin_lock(&kvm->mmu_lock);
b67bfe0d 2907 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2908 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2909 sp->role.word);
2910 r = 1;
f41d335a 2911 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2912 }
d98ba053 2913 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2914 spin_unlock(&kvm->mmu_lock);
2915
a436036b 2916 return r;
cea0f0e7 2917}
1cb3f3ae 2918EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2919
5c520e90 2920static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2921{
2922 trace_kvm_mmu_unsync_page(sp);
2923 ++vcpu->kvm->stat.mmu_unsync;
2924 sp->unsync = 1;
2925
2926 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2927}
2928
3d0c27ad
XG
2929static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2930 bool can_unsync)
4731d4c7 2931{
5c520e90 2932 struct kvm_mmu_page *sp;
4731d4c7 2933
3d0c27ad
XG
2934 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2935 return true;
9cf5cf5a 2936
5c520e90 2937 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2938 if (!can_unsync)
3d0c27ad 2939 return true;
36a2e677 2940
5c520e90
XG
2941 if (sp->unsync)
2942 continue;
9cf5cf5a 2943
3bae0459 2944 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2945 kvm_unsync_page(vcpu, sp);
4731d4c7 2946 }
3d0c27ad 2947
578e1c4d
JS
2948 /*
2949 * We need to ensure that the marking of unsync pages is visible
2950 * before the SPTE is updated to allow writes because
2951 * kvm_mmu_sync_roots() checks the unsync flags without holding
2952 * the MMU lock and so can race with this. If the SPTE was updated
2953 * before the page had been marked as unsync-ed, something like the
2954 * following could happen:
2955 *
2956 * CPU 1 CPU 2
2957 * ---------------------------------------------------------------------
2958 * 1.2 Host updates SPTE
2959 * to be writable
2960 * 2.1 Guest writes a GPTE for GVA X.
2961 * (GPTE being in the guest page table shadowed
2962 * by the SP from CPU 1.)
2963 * This reads SPTE during the page table walk.
2964 * Since SPTE.W is read as 1, there is no
2965 * fault.
2966 *
2967 * 2.2 Guest issues TLB flush.
2968 * That causes a VM Exit.
2969 *
2970 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2971 * Since it is false, so it just returns.
2972 *
2973 * 2.4 Guest accesses GVA X.
2974 * Since the mapping in the SP was not updated,
2975 * so the old mapping for GVA X incorrectly
2976 * gets used.
2977 * 1.1 Host marks SP
2978 * as unsync
2979 * (sp->unsync = true)
2980 *
2981 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2982 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2983 * pairs with this write barrier.
2984 */
2985 smp_wmb();
2986
3d0c27ad 2987 return false;
4731d4c7
MT
2988}
2989
ba049e93 2990static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2991{
2992 if (pfn_valid(pfn))
aa2e063a
HZ
2993 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2994 /*
2995 * Some reserved pages, such as those from NVDIMM
2996 * DAX devices, are not for MMIO, and can be mapped
2997 * with cached memory type for better performance.
2998 * However, the above check misconceives those pages
2999 * as MMIO, and results in KVM mapping them with UC
3000 * memory type, which would hurt the performance.
3001 * Therefore, we check the host memory type in addition
3002 * and only treat UC/UC-/WC pages as MMIO.
3003 */
3004 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 3005
0c55671f
KA
3006 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3007 pfn_to_hpa(pfn + 1) - 1,
3008 E820_TYPE_RAM);
d1fe9219
PB
3009}
3010
5ce4786f
JS
3011/* Bits which may be returned by set_spte() */
3012#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
3013#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
3014
d555c333 3015static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
0a2b64c5 3016 unsigned int pte_access, int level,
ba049e93 3017 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 3018 bool can_unsync, bool host_writable)
1c4f1fd6 3019{
ffb128c8 3020 u64 spte = 0;
1e73f9dd 3021 int ret = 0;
ac8d57e5 3022 struct kvm_mmu_page *sp;
64d4d521 3023
54bf36aa 3024 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
3025 return 0;
3026
57354682 3027 sp = sptep_to_sp(sptep);
ac8d57e5 3028 if (sp_ad_disabled(sp))
6eeb4ef0 3029 spte |= SPTE_AD_DISABLED_MASK;
1f4e5fc8
PB
3030 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3031 spte |= SPTE_AD_WRPROT_ONLY_MASK;
ac8d57e5 3032
d95c5568
BD
3033 /*
3034 * For the EPT case, shadow_present_mask is 0 if hardware
3035 * supports exec-only page table entries. In that case,
3036 * ACC_USER_MASK and shadow_user_mask are used to represent
3037 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3038 */
ffb128c8 3039 spte |= shadow_present_mask;
947da538 3040 if (!speculative)
ac8d57e5 3041 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 3042
3bae0459 3043 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
b8e8c830
PB
3044 is_nx_huge_page_enabled()) {
3045 pte_access &= ~ACC_EXEC_MASK;
3046 }
3047
7b52345e
SY
3048 if (pte_access & ACC_EXEC_MASK)
3049 spte |= shadow_x_mask;
3050 else
3051 spte |= shadow_nx_mask;
49fde340 3052
1c4f1fd6 3053 if (pte_access & ACC_USER_MASK)
7b52345e 3054 spte |= shadow_user_mask;
49fde340 3055
3bae0459 3056 if (level > PG_LEVEL_4K)
05da4558 3057 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 3058 if (tdp_enabled)
afaf0b2f 3059 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
d1fe9219 3060 kvm_is_mmio_pfn(pfn));
1c4f1fd6 3061
9bdbba13 3062 if (host_writable)
1403283a 3063 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
3064 else
3065 pte_access &= ~ACC_WRITE_MASK;
1403283a 3066
daaf216c
TL
3067 if (!kvm_is_mmio_pfn(pfn))
3068 spte |= shadow_me_mask;
3069
35149e21 3070 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 3071
c2288505 3072 if (pte_access & ACC_WRITE_MASK) {
49fde340 3073 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3074
ecc5589f
MT
3075 /*
3076 * Optimization: for pte sync, if spte was writable the hash
3077 * lookup is unnecessary (and expensive). Write protection
3078 * is responsibility of mmu_get_page / kvm_sync_page.
3079 * Same reasoning can be applied to dirty page accounting.
3080 */
8dae4445 3081 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3082 goto set_pte;
3083
4731d4c7 3084 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3085 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3086 __func__, gfn);
5ce4786f 3087 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3088 pte_access &= ~ACC_WRITE_MASK;
49fde340 3089 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3090 }
3091 }
3092
9b51a630 3093 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3094 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3095 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3096 }
1c4f1fd6 3097
f160c7b7
JS
3098 if (speculative)
3099 spte = mark_spte_for_access_track(spte);
3100
38187c83 3101set_pte:
6e7d0354 3102 if (mmu_spte_update(sptep, spte))
5ce4786f 3103 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
3104 return ret;
3105}
3106
0a2b64c5
BG
3107static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3108 unsigned int pte_access, int write_fault, int level,
3109 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3110 bool host_writable)
1e73f9dd
MT
3111{
3112 int was_rmapped = 0;
53a27b39 3113 int rmap_count;
5ce4786f 3114 int set_spte_ret;
9b8ebbdb 3115 int ret = RET_PF_RETRY;
c2a4eadf 3116 bool flush = false;
1e73f9dd 3117
f7616203
XG
3118 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3119 *sptep, write_fault, gfn);
1e73f9dd 3120
afd28fe1 3121 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3122 /*
3123 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3124 * the parent of the now unreachable PTE.
3125 */
3bae0459 3126 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 3127 struct kvm_mmu_page *child;
d555c333 3128 u64 pte = *sptep;
1e73f9dd 3129
e47c4aee 3130 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3131 drop_parent_pte(child, sptep);
c2a4eadf 3132 flush = true;
d555c333 3133 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3134 pgprintk("hfn old %llx new %llx\n",
d555c333 3135 spte_to_pfn(*sptep), pfn);
c3707958 3136 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3137 flush = true;
6bed6b9e
JR
3138 } else
3139 was_rmapped = 1;
1e73f9dd 3140 }
852e3c19 3141
5ce4786f
JS
3142 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3143 speculative, true, host_writable);
3144 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3145 if (write_fault)
9b8ebbdb 3146 ret = RET_PF_EMULATE;
8c8560b8 3147 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 3148 }
c3134ce2 3149
c2a4eadf 3150 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3151 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3152 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3153
029499b4 3154 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3155 ret = RET_PF_EMULATE;
ce88decf 3156
d555c333 3157 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3158 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3159 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3160 ++vcpu->kvm->stat.lpages;
3161
ffb61bb3 3162 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3163 if (!was_rmapped) {
3164 rmap_count = rmap_add(vcpu, sptep, gfn);
3165 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3166 rmap_recycle(vcpu, sptep, gfn);
3167 }
1c4f1fd6 3168 }
cb9aaa30 3169
9b8ebbdb 3170 return ret;
1c4f1fd6
AK
3171}
3172
ba049e93 3173static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3174 bool no_dirty_log)
3175{
3176 struct kvm_memory_slot *slot;
957ed9ef 3177
5d163b1c 3178 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3179 if (!slot)
6c8ee57b 3180 return KVM_PFN_ERR_FAULT;
957ed9ef 3181
037d92dc 3182 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3183}
3184
3185static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3186 struct kvm_mmu_page *sp,
3187 u64 *start, u64 *end)
3188{
3189 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3190 struct kvm_memory_slot *slot;
0a2b64c5 3191 unsigned int access = sp->role.access;
957ed9ef
XG
3192 int i, ret;
3193 gfn_t gfn;
3194
3195 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3196 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3197 if (!slot)
957ed9ef
XG
3198 return -1;
3199
d9ef13c2 3200 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3201 if (ret <= 0)
3202 return -1;
3203
43fdcda9 3204 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3205 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3206 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3207 put_page(pages[i]);
3208 }
957ed9ef
XG
3209
3210 return 0;
3211}
3212
3213static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3214 struct kvm_mmu_page *sp, u64 *sptep)
3215{
3216 u64 *spte, *start = NULL;
3217 int i;
3218
3219 WARN_ON(!sp->role.direct);
3220
3221 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3222 spte = sp->spt + i;
3223
3224 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3225 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3226 if (!start)
3227 continue;
3228 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3229 break;
3230 start = NULL;
3231 } else if (!start)
3232 start = spte;
3233 }
3234}
3235
3236static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3237{
3238 struct kvm_mmu_page *sp;
3239
57354682 3240 sp = sptep_to_sp(sptep);
ac8d57e5 3241
957ed9ef 3242 /*
ac8d57e5
PF
3243 * Without accessed bits, there's no way to distinguish between
3244 * actually accessed translations and prefetched, so disable pte
3245 * prefetch if accessed bits aren't available.
957ed9ef 3246 */
ac8d57e5 3247 if (sp_ad_disabled(sp))
957ed9ef
XG
3248 return;
3249
3bae0459 3250 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
3251 return;
3252
3253 __direct_pte_prefetch(vcpu, sp, sptep);
3254}
3255
db543216 3256static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 3257 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 3258{
db543216
SC
3259 unsigned long hva;
3260 pte_t *pte;
3261 int level;
3262
e851265a 3263 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 3264 return PG_LEVEL_4K;
db543216 3265
293e306e
SC
3266 /*
3267 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3268 * is not solely for performance, it's also necessary to avoid the
3269 * "writable" check in __gfn_to_hva_many(), which will always fail on
3270 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3271 * page fault steps have already verified the guest isn't writing a
3272 * read-only memslot.
3273 */
db543216
SC
3274 hva = __gfn_to_hva_memslot(slot, gfn);
3275
3276 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3277 if (unlikely(!pte))
3bae0459 3278 return PG_LEVEL_4K;
db543216
SC
3279
3280 return level;
3281}
3282
83f06fa7
SC
3283static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3284 int max_level, kvm_pfn_t *pfnp)
0885904d 3285{
293e306e 3286 struct kvm_memory_slot *slot;
2c0629f4 3287 struct kvm_lpage_info *linfo;
0885904d 3288 kvm_pfn_t pfn = *pfnp;
17eff019 3289 kvm_pfn_t mask;
83f06fa7 3290 int level;
17eff019 3291
3bae0459
SC
3292 if (unlikely(max_level == PG_LEVEL_4K))
3293 return PG_LEVEL_4K;
17eff019 3294
e851265a 3295 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 3296 return PG_LEVEL_4K;
17eff019 3297
293e306e
SC
3298 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3299 if (!slot)
3bae0459 3300 return PG_LEVEL_4K;
293e306e 3301
703c335d 3302 max_level = min(max_level, max_page_level);
3bae0459 3303 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
3304 linfo = lpage_info_slot(gfn, slot, max_level);
3305 if (!linfo->disallow_lpage)
293e306e
SC
3306 break;
3307 }
3308
3bae0459
SC
3309 if (max_level == PG_LEVEL_4K)
3310 return PG_LEVEL_4K;
293e306e
SC
3311
3312 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 3313 if (level == PG_LEVEL_4K)
83f06fa7 3314 return level;
17eff019 3315
db543216 3316 level = min(level, max_level);
0885904d
SC
3317
3318 /*
17eff019
SC
3319 * mmu_notifier_retry() was successful and mmu_lock is held, so
3320 * the pmd can't be split from under us.
0885904d 3321 */
17eff019
SC
3322 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3323 VM_BUG_ON((gfn & mask) != (pfn & mask));
3324 *pfnp = pfn & ~mask;
83f06fa7
SC
3325
3326 return level;
0885904d
SC
3327}
3328
b8e8c830
PB
3329static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3330 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3331{
3332 int level = *levelp;
3333 u64 spte = *it.sptep;
3334
3bae0459 3335 if (it.level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
3336 is_nx_huge_page_enabled() &&
3337 is_shadow_present_pte(spte) &&
3338 !is_large_pte(spte)) {
3339 /*
3340 * A small SPTE exists for this pfn, but FNAME(fetch)
3341 * and __direct_map would like to create a large PTE
3342 * instead: just force them to go down another level,
3343 * patching back for them into pfn the next 9 bits of
3344 * the address.
3345 */
3346 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3347 *pfnp |= gfn & page_mask;
3348 (*levelp)--;
3349 }
3350}
3351
3fcf2d1b 3352static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
83f06fa7
SC
3353 int map_writable, int max_level, kvm_pfn_t pfn,
3354 bool prefault, bool account_disallowed_nx_lpage)
140754bc 3355{
3fcf2d1b 3356 struct kvm_shadow_walk_iterator it;
140754bc 3357 struct kvm_mmu_page *sp;
83f06fa7 3358 int level, ret;
3fcf2d1b
PB
3359 gfn_t gfn = gpa >> PAGE_SHIFT;
3360 gfn_t base_gfn = gfn;
6aa8b732 3361
0c7a98e3 3362 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 3363 return RET_PF_RETRY;
989c6b34 3364
83f06fa7 3365 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
4cd071d1 3366
335e192a 3367 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 3368 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
3369 /*
3370 * We cannot overwrite existing page tables with an NX
3371 * large page, as the leaf could be executable.
3372 */
3373 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3374
3fcf2d1b
PB
3375 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3376 if (it.level == level)
9f652d21 3377 break;
6aa8b732 3378
3fcf2d1b
PB
3379 drop_large_spte(vcpu, it.sptep);
3380 if (!is_shadow_present_pte(*it.sptep)) {
3381 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3382 it.level - 1, true, ACC_ALL);
c9fa0b3b 3383
3fcf2d1b 3384 link_shadow_page(vcpu, it.sptep, sp);
2cb70fd4 3385 if (account_disallowed_nx_lpage)
b8e8c830 3386 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
3387 }
3388 }
3fcf2d1b
PB
3389
3390 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3391 write, level, base_gfn, pfn, prefault,
3392 map_writable);
3393 direct_pte_prefetch(vcpu, it.sptep);
3394 ++vcpu->stat.pf_fixed;
3395 return ret;
6aa8b732
AK
3396}
3397
77db5cbd 3398static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3399{
585a8b9b 3400 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3401}
3402
ba049e93 3403static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3404{
4d8b81ab
XG
3405 /*
3406 * Do not cache the mmio info caused by writing the readonly gfn
3407 * into the spte otherwise read access on readonly gfn also can
3408 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3409 */
3410 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3411 return RET_PF_EMULATE;
4d8b81ab 3412
e6c1502b 3413 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3414 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3415 return RET_PF_RETRY;
d7c55201 3416 }
edba23e5 3417
2c151b25 3418 return -EFAULT;
bf998156
HY
3419}
3420
d7c55201 3421static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
3422 kvm_pfn_t pfn, unsigned int access,
3423 int *ret_val)
d7c55201 3424{
d7c55201 3425 /* The pfn is invalid, report the error! */
81c52c56 3426 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3427 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3428 return true;
d7c55201
XG
3429 }
3430
ce88decf 3431 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
3432 vcpu_cache_mmio_info(vcpu, gva, gfn,
3433 access & shadow_mmio_access_mask);
d7c55201 3434
798e88b3 3435 return false;
d7c55201
XG
3436}
3437
e5552fd2 3438static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3439{
1c118b82
XG
3440 /*
3441 * Do not fix the mmio spte with invalid generation number which
3442 * need to be updated by slow page fault path.
3443 */
3444 if (unlikely(error_code & PFERR_RSVD_MASK))
3445 return false;
3446
f160c7b7
JS
3447 /* See if the page fault is due to an NX violation */
3448 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3449 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3450 return false;
3451
c7ba5b48 3452 /*
f160c7b7
JS
3453 * #PF can be fast if:
3454 * 1. The shadow page table entry is not present, which could mean that
3455 * the fault is potentially caused by access tracking (if enabled).
3456 * 2. The shadow page table entry is present and the fault
3457 * is caused by write-protect, that means we just need change the W
3458 * bit of the spte which can be done out of mmu-lock.
3459 *
3460 * However, if access tracking is disabled we know that a non-present
3461 * page must be a genuine page fault where we have to create a new SPTE.
3462 * So, if access tracking is disabled, we return true only for write
3463 * accesses to a present page.
c7ba5b48 3464 */
c7ba5b48 3465
f160c7b7
JS
3466 return shadow_acc_track_mask != 0 ||
3467 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3468 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3469}
3470
97dceba2
JS
3471/*
3472 * Returns true if the SPTE was fixed successfully. Otherwise,
3473 * someone else modified the SPTE from its original value.
3474 */
c7ba5b48 3475static bool
92a476cb 3476fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3477 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3478{
c7ba5b48
XG
3479 gfn_t gfn;
3480
3481 WARN_ON(!sp->role.direct);
3482
9b51a630
KH
3483 /*
3484 * Theoretically we could also set dirty bit (and flush TLB) here in
3485 * order to eliminate unnecessary PML logging. See comments in
3486 * set_spte. But fast_page_fault is very unlikely to happen with PML
3487 * enabled, so we do not do this. This might result in the same GPA
3488 * to be logged in PML buffer again when the write really happens, and
3489 * eventually to be called by mark_page_dirty twice. But it's also no
3490 * harm. This also avoids the TLB flush needed after setting dirty bit
3491 * so non-PML cases won't be impacted.
3492 *
3493 * Compare with set_spte where instead shadow_dirty_mask is set.
3494 */
f160c7b7 3495 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3496 return false;
3497
d3e328f2 3498 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3499 /*
3500 * The gfn of direct spte is stable since it is
3501 * calculated by sp->gfn.
3502 */
3503 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3504 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3505 }
c7ba5b48
XG
3506
3507 return true;
3508}
3509
d3e328f2
JS
3510static bool is_access_allowed(u32 fault_err_code, u64 spte)
3511{
3512 if (fault_err_code & PFERR_FETCH_MASK)
3513 return is_executable_pte(spte);
3514
3515 if (fault_err_code & PFERR_WRITE_MASK)
3516 return is_writable_pte(spte);
3517
3518 /* Fault was on Read access */
3519 return spte & PT_PRESENT_MASK;
3520}
3521
c7ba5b48
XG
3522/*
3523 * Return value:
3524 * - true: let the vcpu to access on the same address again.
3525 * - false: let the real page fault path to fix it.
3526 */
f9fa2509 3527static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
c7ba5b48
XG
3528 u32 error_code)
3529{
3530 struct kvm_shadow_walk_iterator iterator;
92a476cb 3531 struct kvm_mmu_page *sp;
97dceba2 3532 bool fault_handled = false;
c7ba5b48 3533 u64 spte = 0ull;
97dceba2 3534 uint retry_count = 0;
c7ba5b48 3535
e5552fd2 3536 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3537 return false;
3538
3539 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3540
97dceba2 3541 do {
d3e328f2 3542 u64 new_spte;
c7ba5b48 3543
736c291c 3544 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3545 if (!is_shadow_present_pte(spte))
d162f30a
JS
3546 break;
3547
57354682 3548 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3549 if (!is_last_spte(spte, sp->role.level))
3550 break;
c7ba5b48 3551
97dceba2 3552 /*
f160c7b7
JS
3553 * Check whether the memory access that caused the fault would
3554 * still cause it if it were to be performed right now. If not,
3555 * then this is a spurious fault caused by TLB lazily flushed,
3556 * or some other CPU has already fixed the PTE after the
3557 * current CPU took the fault.
97dceba2
JS
3558 *
3559 * Need not check the access of upper level table entries since
3560 * they are always ACC_ALL.
3561 */
d3e328f2
JS
3562 if (is_access_allowed(error_code, spte)) {
3563 fault_handled = true;
3564 break;
3565 }
f160c7b7 3566
d3e328f2
JS
3567 new_spte = spte;
3568
3569 if (is_access_track_spte(spte))
3570 new_spte = restore_acc_track_spte(new_spte);
3571
3572 /*
3573 * Currently, to simplify the code, write-protection can
3574 * be removed in the fast path only if the SPTE was
3575 * write-protected for dirty-logging or access tracking.
3576 */
3577 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3578 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3579 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3580
3581 /*
d3e328f2
JS
3582 * Do not fix write-permission on the large spte. Since
3583 * we only dirty the first page into the dirty-bitmap in
3584 * fast_pf_fix_direct_spte(), other pages are missed
3585 * if its slot has dirty logging enabled.
3586 *
3587 * Instead, we let the slow page fault path create a
3588 * normal spte to fix the access.
3589 *
3590 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3591 */
3bae0459 3592 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3593 break;
97dceba2 3594 }
c7ba5b48 3595
f160c7b7 3596 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3597 if (new_spte == spte ||
3598 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3599 break;
3600
3601 /*
3602 * Currently, fast page fault only works for direct mapping
3603 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3604 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2
JS
3605 */
3606 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3607 iterator.sptep, spte,
d3e328f2 3608 new_spte);
97dceba2
JS
3609 if (fault_handled)
3610 break;
3611
3612 if (++retry_count > 4) {
3613 printk_once(KERN_WARNING
3614 "kvm: Fast #PF retrying more than 4 times.\n");
3615 break;
3616 }
3617
97dceba2 3618 } while (true);
c126d94f 3619
736c291c 3620 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
97dceba2 3621 spte, fault_handled);
c7ba5b48
XG
3622 walk_shadow_page_lockless_end(vcpu);
3623
97dceba2 3624 return fault_handled;
c7ba5b48
XG
3625}
3626
74b566e6
JS
3627static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3628 struct list_head *invalid_list)
17ac10ad 3629{
4db35314 3630 struct kvm_mmu_page *sp;
17ac10ad 3631
74b566e6 3632 if (!VALID_PAGE(*root_hpa))
7b53aa56 3633 return;
35af577a 3634
e47c4aee 3635 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
74b566e6
JS
3636 --sp->root_count;
3637 if (!sp->root_count && sp->role.invalid)
3638 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3639
74b566e6
JS
3640 *root_hpa = INVALID_PAGE;
3641}
3642
08fb59d8 3643/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3644void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3645 ulong roots_to_free)
74b566e6
JS
3646{
3647 int i;
3648 LIST_HEAD(invalid_list);
08fb59d8 3649 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3650
b94742c9 3651 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3652
08fb59d8 3653 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3654 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3655 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3656 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3657 VALID_PAGE(mmu->prev_roots[i].hpa))
3658 break;
3659
3660 if (i == KVM_MMU_NUM_PREV_ROOTS)
3661 return;
3662 }
35af577a
GN
3663
3664 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3665
b94742c9
JS
3666 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3667 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3668 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3669 &invalid_list);
7c390d35 3670
08fb59d8
JS
3671 if (free_active_root) {
3672 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3673 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3674 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3675 &invalid_list);
3676 } else {
3677 for (i = 0; i < 4; ++i)
3678 if (mmu->pae_root[i] != 0)
3679 mmu_free_root_page(vcpu->kvm,
3680 &mmu->pae_root[i],
3681 &invalid_list);
3682 mmu->root_hpa = INVALID_PAGE;
3683 }
be01e8e2 3684 mmu->root_pgd = 0;
17ac10ad 3685 }
74b566e6 3686
d98ba053 3687 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3688 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3689}
74b566e6 3690EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3691
8986ecc0
MT
3692static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3693{
3694 int ret = 0;
3695
995decb6 3696 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3697 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3698 ret = 1;
3699 }
3700
3701 return ret;
3702}
3703
8123f265
SC
3704static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3705 u8 level, bool direct)
651dd37a
JR
3706{
3707 struct kvm_mmu_page *sp;
8123f265
SC
3708
3709 spin_lock(&vcpu->kvm->mmu_lock);
3710
3711 if (make_mmu_pages_available(vcpu)) {
3712 spin_unlock(&vcpu->kvm->mmu_lock);
3713 return INVALID_PAGE;
3714 }
3715 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3716 ++sp->root_count;
3717
3718 spin_unlock(&vcpu->kvm->mmu_lock);
3719 return __pa(sp->spt);
3720}
3721
3722static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3723{
3724 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3725 hpa_t root;
7ebaf15e 3726 unsigned i;
651dd37a 3727
8123f265
SC
3728 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3729 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3730 if (!VALID_PAGE(root))
ed52870f 3731 return -ENOSPC;
8123f265
SC
3732 vcpu->arch.mmu->root_hpa = root;
3733 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3734 for (i = 0; i < 4; ++i) {
8123f265 3735 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3736
8123f265
SC
3737 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3738 i << 30, PT32_ROOT_LEVEL, true);
3739 if (!VALID_PAGE(root))
ed52870f 3740 return -ENOSPC;
44dd3ffa 3741 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3742 }
44dd3ffa 3743 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3744 } else
3745 BUG();
3651c7fc 3746
be01e8e2
SC
3747 /* root_pgd is ignored for direct MMUs. */
3748 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3749
3750 return 0;
3751}
3752
3753static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3754{
81407ca5 3755 u64 pdptr, pm_mask;
be01e8e2 3756 gfn_t root_gfn, root_pgd;
8123f265 3757 hpa_t root;
81407ca5 3758 int i;
3bb65a22 3759
be01e8e2
SC
3760 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3761 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3762
651dd37a
JR
3763 if (mmu_check_root(vcpu, root_gfn))
3764 return 1;
3765
3766 /*
3767 * Do we shadow a long mode page table? If so we need to
3768 * write-protect the guests page table root.
3769 */
44dd3ffa 3770 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3771 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3772
8123f265
SC
3773 root = mmu_alloc_root(vcpu, root_gfn, 0,
3774 vcpu->arch.mmu->shadow_root_level, false);
3775 if (!VALID_PAGE(root))
ed52870f 3776 return -ENOSPC;
44dd3ffa 3777 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3778 goto set_root_pgd;
17ac10ad 3779 }
f87f9288 3780
651dd37a
JR
3781 /*
3782 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3783 * or a PAE 3-level page table. In either case we need to be aware that
3784 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3785 */
81407ca5 3786 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3787 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3788 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3789
17ac10ad 3790 for (i = 0; i < 4; ++i) {
8123f265 3791 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3792 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3793 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3794 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3795 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3796 continue;
3797 }
6de4f3ad 3798 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3799 if (mmu_check_root(vcpu, root_gfn))
3800 return 1;
5a7388c2 3801 }
8facbbff 3802
8123f265
SC
3803 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3804 PT32_ROOT_LEVEL, false);
3805 if (!VALID_PAGE(root))
3806 return -ENOSPC;
44dd3ffa 3807 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3808 }
44dd3ffa 3809 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3810
3811 /*
3812 * If we shadow a 32 bit page table with a long mode page
3813 * table we enter this path.
3814 */
44dd3ffa
VK
3815 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3816 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3817 /*
3818 * The additional page necessary for this is only
3819 * allocated on demand.
3820 */
3821
3822 u64 *lm_root;
3823
254272ce 3824 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3825 if (lm_root == NULL)
3826 return 1;
3827
44dd3ffa 3828 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3829
44dd3ffa 3830 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3831 }
3832
44dd3ffa 3833 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3834 }
3835
be01e8e2
SC
3836set_root_pgd:
3837 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3838
8986ecc0 3839 return 0;
17ac10ad
AK
3840}
3841
651dd37a
JR
3842static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3843{
44dd3ffa 3844 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3845 return mmu_alloc_direct_roots(vcpu);
3846 else
3847 return mmu_alloc_shadow_roots(vcpu);
3848}
3849
578e1c4d 3850void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3851{
3852 int i;
3853 struct kvm_mmu_page *sp;
3854
44dd3ffa 3855 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3856 return;
3857
44dd3ffa 3858 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3859 return;
6903074c 3860
56f17dd3 3861 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3862
44dd3ffa
VK
3863 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3864 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3865 sp = to_shadow_page(root);
578e1c4d
JS
3866
3867 /*
3868 * Even if another CPU was marking the SP as unsync-ed
3869 * simultaneously, any guest page table changes are not
3870 * guaranteed to be visible anyway until this VCPU issues a TLB
3871 * flush strictly after those changes are made. We only need to
3872 * ensure that the other CPU sets these flags before any actual
3873 * changes to the page tables are made. The comments in
3874 * mmu_need_write_protect() describe what could go wrong if this
3875 * requirement isn't satisfied.
3876 */
3877 if (!smp_load_acquire(&sp->unsync) &&
3878 !smp_load_acquire(&sp->unsync_children))
3879 return;
3880
3881 spin_lock(&vcpu->kvm->mmu_lock);
3882 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3883
0ba73cda 3884 mmu_sync_children(vcpu, sp);
578e1c4d 3885
0375f7fa 3886 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3887 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3888 return;
3889 }
578e1c4d
JS
3890
3891 spin_lock(&vcpu->kvm->mmu_lock);
3892 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3893
0ba73cda 3894 for (i = 0; i < 4; ++i) {
44dd3ffa 3895 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3896
8986ecc0 3897 if (root && VALID_PAGE(root)) {
0ba73cda 3898 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3899 sp = to_shadow_page(root);
0ba73cda
MT
3900 mmu_sync_children(vcpu, sp);
3901 }
3902 }
0ba73cda 3903
578e1c4d 3904 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3905 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3906}
bfd0a56b 3907EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3908
736c291c 3909static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3910 u32 access, struct x86_exception *exception)
6aa8b732 3911{
ab9ae313
AK
3912 if (exception)
3913 exception->error_code = 0;
6aa8b732
AK
3914 return vaddr;
3915}
3916
736c291c 3917static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3918 u32 access,
3919 struct x86_exception *exception)
6539e738 3920{
ab9ae313
AK
3921 if (exception)
3922 exception->error_code = 0;
54987b7a 3923 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3924}
3925
d625b155
XG
3926static bool
3927__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3928{
b5c3c1b3 3929 int bit7 = (pte >> 7) & 1;
d625b155 3930
b5c3c1b3 3931 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3932}
3933
b5c3c1b3 3934static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3935{
b5c3c1b3 3936 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3937}
3938
ded58749 3939static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3940{
9034e6e8
PB
3941 /*
3942 * A nested guest cannot use the MMIO cache if it is using nested
3943 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3944 */
3945 if (mmu_is_nested(vcpu))
3946 return false;
3947
ce88decf
XG
3948 if (direct)
3949 return vcpu_match_mmio_gpa(vcpu, addr);
3950
3951 return vcpu_match_mmio_gva(vcpu, addr);
3952}
3953
47ab8751
XG
3954/* return true if reserved bit is detected on spte. */
3955static bool
3956walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3957{
3958 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3959 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3960 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3961 int root, leaf;
3962 bool reserved = false;
ce88decf 3963
b5c3c1b3 3964 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3965
ce88decf 3966 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3967
29ecd660
PB
3968 for (shadow_walk_init(&iterator, vcpu, addr),
3969 leaf = root = iterator.level;
47ab8751
XG
3970 shadow_walk_okay(&iterator);
3971 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3972 spte = mmu_spte_get_lockless(iterator.sptep);
3973
3974 sptes[leaf - 1] = spte;
29ecd660 3975 leaf--;
47ab8751 3976
ce88decf
XG
3977 if (!is_shadow_present_pte(spte))
3978 break;
47ab8751 3979
b5c3c1b3
SC
3980 /*
3981 * Use a bitwise-OR instead of a logical-OR to aggregate the
3982 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3983 * adding a Jcc in the loop.
3984 */
3985 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3986 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3987 }
3988
ce88decf
XG
3989 walk_shadow_page_lockless_end(vcpu);
3990
47ab8751
XG
3991 if (reserved) {
3992 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3993 __func__, addr);
29ecd660 3994 while (root > leaf) {
47ab8751
XG
3995 pr_err("------ spte 0x%llx level %d.\n",
3996 sptes[root - 1], root);
3997 root--;
3998 }
3999 }
ddce6208 4000
47ab8751
XG
4001 *sptep = spte;
4002 return reserved;
ce88decf
XG
4003}
4004
e08d26f0 4005static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
4006{
4007 u64 spte;
47ab8751 4008 bool reserved;
ce88decf 4009
ded58749 4010 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 4011 return RET_PF_EMULATE;
ce88decf 4012
47ab8751 4013 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 4014 if (WARN_ON(reserved))
9b8ebbdb 4015 return -EINVAL;
ce88decf
XG
4016
4017 if (is_mmio_spte(spte)) {
4018 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 4019 unsigned int access = get_mmio_spte_access(spte);
ce88decf 4020
54bf36aa 4021 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 4022 return RET_PF_INVALID;
f8f55942 4023
ce88decf
XG
4024 if (direct)
4025 addr = 0;
4f022648
XG
4026
4027 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 4028 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 4029 return RET_PF_EMULATE;
ce88decf
XG
4030 }
4031
ce88decf
XG
4032 /*
4033 * If the page table is zapped by other cpus, let CPU fault again on
4034 * the address.
4035 */
9b8ebbdb 4036 return RET_PF_RETRY;
ce88decf 4037}
ce88decf 4038
3d0c27ad
XG
4039static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4040 u32 error_code, gfn_t gfn)
4041{
4042 if (unlikely(error_code & PFERR_RSVD_MASK))
4043 return false;
4044
4045 if (!(error_code & PFERR_PRESENT_MASK) ||
4046 !(error_code & PFERR_WRITE_MASK))
4047 return false;
4048
4049 /*
4050 * guest is writing the page which is write tracked which can
4051 * not be fixed by page fault handler.
4052 */
4053 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4054 return true;
4055
4056 return false;
4057}
4058
e5691a81
XG
4059static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4060{
4061 struct kvm_shadow_walk_iterator iterator;
4062 u64 spte;
4063
e5691a81
XG
4064 walk_shadow_page_lockless_begin(vcpu);
4065 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4066 clear_sp_write_flooding_count(iterator.sptep);
4067 if (!is_shadow_present_pte(spte))
4068 break;
4069 }
4070 walk_shadow_page_lockless_end(vcpu);
4071}
4072
e8c22266
VK
4073static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4074 gfn_t gfn)
af585b92
GN
4075{
4076 struct kvm_arch_async_pf arch;
fb67e14f 4077
7c90705b 4078 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4079 arch.gfn = gfn;
44dd3ffa 4080 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 4081 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 4082
9f1a8526
SC
4083 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4084 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4085}
4086
78b2c54a 4087static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
4088 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4089 bool *writable)
af585b92 4090{
c36b7150 4091 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
4092 bool async;
4093
c36b7150
PB
4094 /* Don't expose private memslots to L2. */
4095 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 4096 *pfn = KVM_PFN_NOSLOT;
c583eed6 4097 *writable = false;
3a2936de
JM
4098 return false;
4099 }
4100
3520469d
PB
4101 async = false;
4102 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4103 if (!async)
4104 return false; /* *pfn has correct page already */
4105
9bc1f09f 4106 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 4107 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 4108 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 4109 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
4110 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4111 return true;
9f1a8526 4112 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
4113 return true;
4114 }
4115
3520469d 4116 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4117 return false;
4118}
4119
0f90e1c1
SC
4120static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4121 bool prefault, int max_level, bool is_tdp)
6aa8b732 4122{
367fd790 4123 bool write = error_code & PFERR_WRITE_MASK;
367fd790
SC
4124 bool exec = error_code & PFERR_FETCH_MASK;
4125 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
0f90e1c1 4126 bool map_writable;
6aa8b732 4127
0f90e1c1
SC
4128 gfn_t gfn = gpa >> PAGE_SHIFT;
4129 unsigned long mmu_seq;
4130 kvm_pfn_t pfn;
83f06fa7 4131 int r;
ce88decf 4132
3d0c27ad 4133 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4134 return RET_PF_EMULATE;
ce88decf 4135
e2dec939
AK
4136 r = mmu_topup_memory_caches(vcpu);
4137 if (r)
4138 return r;
714b93da 4139
0f90e1c1 4140 if (lpage_disallowed)
3bae0459 4141 max_level = PG_LEVEL_4K;
367fd790 4142
f9fa2509 4143 if (fast_page_fault(vcpu, gpa, error_code))
367fd790
SC
4144 return RET_PF_RETRY;
4145
4146 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4147 smp_rmb();
4148
4149 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4150 return RET_PF_RETRY;
4151
0f90e1c1 4152 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 4153 return r;
6aa8b732 4154
367fd790
SC
4155 r = RET_PF_RETRY;
4156 spin_lock(&vcpu->kvm->mmu_lock);
4157 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4158 goto out_unlock;
7bd7ded6
SC
4159 r = make_mmu_pages_available(vcpu);
4160 if (r)
367fd790 4161 goto out_unlock;
83f06fa7 4162 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4cd071d1 4163 prefault, is_tdp && lpage_disallowed);
0f90e1c1 4164
367fd790
SC
4165out_unlock:
4166 spin_unlock(&vcpu->kvm->mmu_lock);
4167 kvm_release_pfn_clean(pfn);
4168 return r;
6aa8b732
AK
4169}
4170
0f90e1c1
SC
4171static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4172 u32 error_code, bool prefault)
4173{
4174 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4175
4176 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4177 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 4178 PG_LEVEL_2M, false);
0f90e1c1
SC
4179}
4180
1261bfa3 4181int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4182 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4183{
4184 int r = 1;
9ce372b3 4185 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 4186
736c291c
SC
4187#ifndef CONFIG_X86_64
4188 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4189 if (WARN_ON_ONCE(fault_address >> 32))
4190 return -EFAULT;
4191#endif
4192
c595ceee 4193 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 4194 if (!flags) {
1261bfa3
WL
4195 trace_kvm_page_fault(fault_address, error_code);
4196
d0006530 4197 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4198 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4199 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4200 insn_len);
9ce372b3 4201 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 4202 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 4203 local_irq_disable();
6bca69ad 4204 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 4205 local_irq_enable();
9ce372b3
VK
4206 } else {
4207 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 4208 }
9ce372b3 4209
1261bfa3
WL
4210 return r;
4211}
4212EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4213
7a02674d
SC
4214int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4215 bool prefault)
fb72d167 4216{
cb9b88c6 4217 int max_level;
fb72d167 4218
e662ec3e 4219 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 4220 max_level > PG_LEVEL_4K;
cb9b88c6
SC
4221 max_level--) {
4222 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 4223 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 4224
cb9b88c6
SC
4225 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4226 break;
fd136902 4227 }
852e3c19 4228
0f90e1c1
SC
4229 return direct_page_fault(vcpu, gpa, error_code, prefault,
4230 max_level, true);
fb72d167
JR
4231}
4232
8a3c1a33
PB
4233static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4234 struct kvm_mmu *context)
6aa8b732 4235{
6aa8b732 4236 context->page_fault = nonpaging_page_fault;
6aa8b732 4237 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4238 context->sync_page = nonpaging_sync_page;
5efac074 4239 context->invlpg = NULL;
0f53b5b1 4240 context->update_pte = nonpaging_update_pte;
cea0f0e7 4241 context->root_level = 0;
6aa8b732 4242 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4243 context->direct_map = true;
2d48a985 4244 context->nx = false;
6aa8b732
AK
4245}
4246
be01e8e2 4247static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
4248 union kvm_mmu_page_role role)
4249{
be01e8e2 4250 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
4251 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4252 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
4253}
4254
b94742c9 4255/*
be01e8e2 4256 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
4257 * The current root is also inserted into the cache.
4258 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4259 * returned.
4260 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4261 * false is returned. This root should now be freed by the caller.
4262 */
be01e8e2 4263static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
4264 union kvm_mmu_page_role new_role)
4265{
4266 uint i;
4267 struct kvm_mmu_root_info root;
44dd3ffa 4268 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4269
be01e8e2 4270 root.pgd = mmu->root_pgd;
b94742c9
JS
4271 root.hpa = mmu->root_hpa;
4272
be01e8e2 4273 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
4274 return true;
4275
b94742c9
JS
4276 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4277 swap(root, mmu->prev_roots[i]);
4278
be01e8e2 4279 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
4280 break;
4281 }
4282
4283 mmu->root_hpa = root.hpa;
be01e8e2 4284 mmu->root_pgd = root.pgd;
b94742c9
JS
4285
4286 return i < KVM_MMU_NUM_PREV_ROOTS;
4287}
4288
be01e8e2 4289static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 4290 union kvm_mmu_page_role new_role)
6aa8b732 4291{
44dd3ffa 4292 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4293
4294 /*
4295 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4296 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4297 * later if necessary.
4298 */
4299 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 4300 mmu->root_level >= PT64_ROOT_4LEVEL)
be01e8e2
SC
4301 return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
4302 cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
4303
4304 return false;
6aa8b732
AK
4305}
4306
be01e8e2 4307static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 4308 union kvm_mmu_page_role new_role,
4a632ac6 4309 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 4310{
be01e8e2 4311 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
4312 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4313 return;
4314 }
4315
4316 /*
4317 * It's possible that the cached previous root page is obsolete because
4318 * of a change in the MMU generation number. However, changing the
4319 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4320 * free the root set here and allocate a new one.
4321 */
4322 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4323
71fe7013 4324 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 4325 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 4326 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 4327 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
4328
4329 /*
4330 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4331 * switching to a new CR3, that GVA->GPA mapping may no longer be
4332 * valid. So clear any cached MMIO info even when we don't need to sync
4333 * the shadow page tables.
4334 */
4335 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4336
e47c4aee 4337 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
4338}
4339
be01e8e2 4340void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 4341 bool skip_mmu_sync)
0aab33e4 4342{
be01e8e2 4343 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 4344 skip_tlb_flush, skip_mmu_sync);
0aab33e4 4345}
be01e8e2 4346EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 4347
5777ed34
JR
4348static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4349{
9f8fe504 4350 return kvm_read_cr3(vcpu);
5777ed34
JR
4351}
4352
54bf36aa 4353static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 4354 unsigned int access, int *nr_present)
ce88decf
XG
4355{
4356 if (unlikely(is_mmio_spte(*sptep))) {
4357 if (gfn != get_mmio_spte_gfn(*sptep)) {
4358 mmu_spte_clear_no_track(sptep);
4359 return true;
4360 }
4361
4362 (*nr_present)++;
54bf36aa 4363 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4364 return true;
4365 }
4366
4367 return false;
4368}
4369
6bb69c9b
PB
4370static inline bool is_last_gpte(struct kvm_mmu *mmu,
4371 unsigned level, unsigned gpte)
6fd01b71 4372{
6bb69c9b
PB
4373 /*
4374 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4375 * If it is clear, there are no large pages at this level, so clear
4376 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4377 */
4378 gpte &= level - mmu->last_nonleaf_level;
4379
829ee279 4380 /*
3bae0459
SC
4381 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
4382 * iff level <= PG_LEVEL_4K, which for our purpose means
4383 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 4384 */
3bae0459 4385 gpte |= level - PG_LEVEL_4K - 1;
829ee279 4386
6bb69c9b 4387 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4388}
4389
37406aaa
NHE
4390#define PTTYPE_EPT 18 /* arbitrary */
4391#define PTTYPE PTTYPE_EPT
4392#include "paging_tmpl.h"
4393#undef PTTYPE
4394
6aa8b732
AK
4395#define PTTYPE 64
4396#include "paging_tmpl.h"
4397#undef PTTYPE
4398
4399#define PTTYPE 32
4400#include "paging_tmpl.h"
4401#undef PTTYPE
4402
6dc98b86
XG
4403static void
4404__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4405 struct rsvd_bits_validate *rsvd_check,
4406 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4407 bool pse, bool amd)
82725b20 4408{
82725b20 4409 u64 exb_bit_rsvd = 0;
5f7dde7b 4410 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4411 u64 nonleaf_bit8_rsvd = 0;
82725b20 4412
a0a64f50 4413 rsvd_check->bad_mt_xwr = 0;
25d92081 4414
6dc98b86 4415 if (!nx)
82725b20 4416 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4417 if (!gbpages)
5f7dde7b 4418 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4419
4420 /*
4421 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4422 * leaf entries) on AMD CPUs only.
4423 */
6fec2144 4424 if (amd)
a0c0feb5
PB
4425 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4426
6dc98b86 4427 switch (level) {
82725b20
DE
4428 case PT32_ROOT_LEVEL:
4429 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4430 rsvd_check->rsvd_bits_mask[0][1] = 0;
4431 rsvd_check->rsvd_bits_mask[0][0] = 0;
4432 rsvd_check->rsvd_bits_mask[1][0] =
4433 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4434
6dc98b86 4435 if (!pse) {
a0a64f50 4436 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4437 break;
4438 }
4439
82725b20
DE
4440 if (is_cpuid_PSE36())
4441 /* 36bits PSE 4MB page */
a0a64f50 4442 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4443 else
4444 /* 32 bits PSE 4MB page */
a0a64f50 4445 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4446 break;
4447 case PT32E_ROOT_LEVEL:
a0a64f50 4448 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4449 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4450 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4451 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4452 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4453 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4454 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4455 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4456 rsvd_bits(maxphyaddr, 62) |
4457 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4458 rsvd_check->rsvd_bits_mask[1][0] =
4459 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4460 break;
855feb67
YZ
4461 case PT64_ROOT_5LEVEL:
4462 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4463 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4464 rsvd_bits(maxphyaddr, 51);
4465 rsvd_check->rsvd_bits_mask[1][4] =
4466 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4467 /* fall through */
2a7266a8 4468 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4469 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4470 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4471 rsvd_bits(maxphyaddr, 51);
a0a64f50 4472 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5ecad245 4473 gbpages_bit_rsvd |
82725b20 4474 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4475 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4476 rsvd_bits(maxphyaddr, 51);
4477 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4478 rsvd_bits(maxphyaddr, 51);
4479 rsvd_check->rsvd_bits_mask[1][3] =
4480 rsvd_check->rsvd_bits_mask[0][3];
4481 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4482 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4483 rsvd_bits(13, 29);
a0a64f50 4484 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4485 rsvd_bits(maxphyaddr, 51) |
4486 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4487 rsvd_check->rsvd_bits_mask[1][0] =
4488 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4489 break;
4490 }
4491}
4492
6dc98b86
XG
4493static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4494 struct kvm_mmu *context)
4495{
4496 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4497 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4498 context->nx,
4499 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4500 is_pse(vcpu),
4501 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4502}
4503
81b8eebb
XG
4504static void
4505__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4506 int maxphyaddr, bool execonly)
25d92081 4507{
951f9fd7 4508 u64 bad_mt_xwr;
25d92081 4509
855feb67
YZ
4510 rsvd_check->rsvd_bits_mask[0][4] =
4511 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4512 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4513 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4514 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4515 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4516 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4517 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4518 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4519
4520 /* large page */
855feb67 4521 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4522 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4523 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4524 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4525 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4526 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4527 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4528
951f9fd7
PB
4529 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4530 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4531 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4532 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4533 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4534 if (!execonly) {
4535 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4536 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4537 }
951f9fd7 4538 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4539}
4540
81b8eebb
XG
4541static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4542 struct kvm_mmu *context, bool execonly)
4543{
4544 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4545 cpuid_maxphyaddr(vcpu), execonly);
4546}
4547
c258b62b
XG
4548/*
4549 * the page table on host is the shadow page table for the page
4550 * table in guest or amd nested guest, its mmu features completely
4551 * follow the features in guest.
4552 */
4553void
4554reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4555{
36d9594d
VK
4556 bool uses_nx = context->nx ||
4557 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4558 struct rsvd_bits_validate *shadow_zero_check;
4559 int i;
5f0b8199 4560
6fec2144
PB
4561 /*
4562 * Passing "true" to the last argument is okay; it adds a check
4563 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4564 */
ea2800dd
BS
4565 shadow_zero_check = &context->shadow_zero_check;
4566 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4567 shadow_phys_bits,
5f0b8199 4568 context->shadow_root_level, uses_nx,
d6321d49
RK
4569 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4570 is_pse(vcpu), true);
ea2800dd
BS
4571
4572 if (!shadow_me_mask)
4573 return;
4574
4575 for (i = context->shadow_root_level; --i >= 0;) {
4576 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4577 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4578 }
4579
c258b62b
XG
4580}
4581EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4582
6fec2144
PB
4583static inline bool boot_cpu_is_amd(void)
4584{
4585 WARN_ON_ONCE(!tdp_enabled);
4586 return shadow_x_mask == 0;
4587}
4588
c258b62b
XG
4589/*
4590 * the direct page table on host, use as much mmu features as
4591 * possible, however, kvm currently does not do execution-protection.
4592 */
4593static void
4594reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4595 struct kvm_mmu *context)
4596{
ea2800dd
BS
4597 struct rsvd_bits_validate *shadow_zero_check;
4598 int i;
4599
4600 shadow_zero_check = &context->shadow_zero_check;
4601
6fec2144 4602 if (boot_cpu_is_amd())
ea2800dd 4603 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4604 shadow_phys_bits,
c258b62b 4605 context->shadow_root_level, false,
b8291adc
BP
4606 boot_cpu_has(X86_FEATURE_GBPAGES),
4607 true, true);
c258b62b 4608 else
ea2800dd 4609 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4610 shadow_phys_bits,
c258b62b
XG
4611 false);
4612
ea2800dd
BS
4613 if (!shadow_me_mask)
4614 return;
4615
4616 for (i = context->shadow_root_level; --i >= 0;) {
4617 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4618 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4619 }
c258b62b
XG
4620}
4621
4622/*
4623 * as the comments in reset_shadow_zero_bits_mask() except it
4624 * is the shadow page table for intel nested guest.
4625 */
4626static void
4627reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4628 struct kvm_mmu *context, bool execonly)
4629{
4630 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4631 shadow_phys_bits, execonly);
c258b62b
XG
4632}
4633
09f037aa
PB
4634#define BYTE_MASK(access) \
4635 ((1 & (access) ? 2 : 0) | \
4636 (2 & (access) ? 4 : 0) | \
4637 (3 & (access) ? 8 : 0) | \
4638 (4 & (access) ? 16 : 0) | \
4639 (5 & (access) ? 32 : 0) | \
4640 (6 & (access) ? 64 : 0) | \
4641 (7 & (access) ? 128 : 0))
4642
4643
edc90b7d
XG
4644static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4645 struct kvm_mmu *mmu, bool ept)
97d64b78 4646{
09f037aa
PB
4647 unsigned byte;
4648
4649 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4650 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4651 const u8 u = BYTE_MASK(ACC_USER_MASK);
4652
4653 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4654 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4655 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4656
97d64b78 4657 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4658 unsigned pfec = byte << 1;
4659
97ec8c06 4660 /*
09f037aa
PB
4661 * Each "*f" variable has a 1 bit for each UWX value
4662 * that causes a fault with the given PFEC.
97ec8c06 4663 */
97d64b78 4664
09f037aa 4665 /* Faults from writes to non-writable pages */
a6a6d3b1 4666 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4667 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4668 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4669 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4670 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4671 /* Faults from kernel mode fetches of user pages */
4672 u8 smepf = 0;
4673 /* Faults from kernel mode accesses of user pages */
4674 u8 smapf = 0;
4675
4676 if (!ept) {
4677 /* Faults from kernel mode accesses to user pages */
4678 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4679
4680 /* Not really needed: !nx will cause pte.nx to fault */
4681 if (!mmu->nx)
4682 ff = 0;
4683
4684 /* Allow supervisor writes if !cr0.wp */
4685 if (!cr0_wp)
4686 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4687
4688 /* Disallow supervisor fetches of user code if cr4.smep */
4689 if (cr4_smep)
4690 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4691
4692 /*
4693 * SMAP:kernel-mode data accesses from user-mode
4694 * mappings should fault. A fault is considered
4695 * as a SMAP violation if all of the following
39337ad1 4696 * conditions are true:
09f037aa
PB
4697 * - X86_CR4_SMAP is set in CR4
4698 * - A user page is accessed
4699 * - The access is not a fetch
4700 * - Page fault in kernel mode
4701 * - if CPL = 3 or X86_EFLAGS_AC is clear
4702 *
4703 * Here, we cover the first three conditions.
4704 * The fourth is computed dynamically in permission_fault();
4705 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4706 * *not* subject to SMAP restrictions.
4707 */
4708 if (cr4_smap)
4709 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4710 }
09f037aa
PB
4711
4712 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4713 }
4714}
4715
2d344105
HH
4716/*
4717* PKU is an additional mechanism by which the paging controls access to
4718* user-mode addresses based on the value in the PKRU register. Protection
4719* key violations are reported through a bit in the page fault error code.
4720* Unlike other bits of the error code, the PK bit is not known at the
4721* call site of e.g. gva_to_gpa; it must be computed directly in
4722* permission_fault based on two bits of PKRU, on some machine state (CR4,
4723* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4724*
4725* In particular the following conditions come from the error code, the
4726* page tables and the machine state:
4727* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4728* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4729* - PK is always zero if U=0 in the page tables
4730* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4731*
4732* The PKRU bitmask caches the result of these four conditions. The error
4733* code (minus the P bit) and the page table's U bit form an index into the
4734* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4735* with the two bits of the PKRU register corresponding to the protection key.
4736* For the first three conditions above the bits will be 00, thus masking
4737* away both AD and WD. For all reads or if the last condition holds, WD
4738* only will be masked away.
4739*/
4740static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4741 bool ept)
4742{
4743 unsigned bit;
4744 bool wp;
4745
4746 if (ept) {
4747 mmu->pkru_mask = 0;
4748 return;
4749 }
4750
4751 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4752 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4753 mmu->pkru_mask = 0;
4754 return;
4755 }
4756
4757 wp = is_write_protection(vcpu);
4758
4759 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4760 unsigned pfec, pkey_bits;
4761 bool check_pkey, check_write, ff, uf, wf, pte_user;
4762
4763 pfec = bit << 1;
4764 ff = pfec & PFERR_FETCH_MASK;
4765 uf = pfec & PFERR_USER_MASK;
4766 wf = pfec & PFERR_WRITE_MASK;
4767
4768 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4769 pte_user = pfec & PFERR_RSVD_MASK;
4770
4771 /*
4772 * Only need to check the access which is not an
4773 * instruction fetch and is to a user page.
4774 */
4775 check_pkey = (!ff && pte_user);
4776 /*
4777 * write access is controlled by PKRU if it is a
4778 * user access or CR0.WP = 1.
4779 */
4780 check_write = check_pkey && wf && (uf || wp);
4781
4782 /* PKRU.AD stops both read and write access. */
4783 pkey_bits = !!check_pkey;
4784 /* PKRU.WD stops write access. */
4785 pkey_bits |= (!!check_write) << 1;
4786
4787 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4788 }
4789}
4790
6bb69c9b 4791static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4792{
6bb69c9b
PB
4793 unsigned root_level = mmu->root_level;
4794
4795 mmu->last_nonleaf_level = root_level;
4796 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4797 mmu->last_nonleaf_level++;
6fd01b71
AK
4798}
4799
8a3c1a33
PB
4800static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4801 struct kvm_mmu *context,
4802 int level)
6aa8b732 4803{
2d48a985 4804 context->nx = is_nx(vcpu);
4d6931c3 4805 context->root_level = level;
2d48a985 4806
4d6931c3 4807 reset_rsvds_bits_mask(vcpu, context);
25d92081 4808 update_permission_bitmask(vcpu, context, false);
2d344105 4809 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4810 update_last_nonleaf_level(vcpu, context);
6aa8b732 4811
fa4a2c08 4812 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4813 context->page_fault = paging64_page_fault;
6aa8b732 4814 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4815 context->sync_page = paging64_sync_page;
a7052897 4816 context->invlpg = paging64_invlpg;
0f53b5b1 4817 context->update_pte = paging64_update_pte;
17ac10ad 4818 context->shadow_root_level = level;
c5a78f2b 4819 context->direct_map = false;
6aa8b732
AK
4820}
4821
8a3c1a33
PB
4822static void paging64_init_context(struct kvm_vcpu *vcpu,
4823 struct kvm_mmu *context)
17ac10ad 4824{
855feb67
YZ
4825 int root_level = is_la57_mode(vcpu) ?
4826 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4827
4828 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4829}
4830
8a3c1a33
PB
4831static void paging32_init_context(struct kvm_vcpu *vcpu,
4832 struct kvm_mmu *context)
6aa8b732 4833{
2d48a985 4834 context->nx = false;
4d6931c3 4835 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4836
4d6931c3 4837 reset_rsvds_bits_mask(vcpu, context);
25d92081 4838 update_permission_bitmask(vcpu, context, false);
2d344105 4839 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4840 update_last_nonleaf_level(vcpu, context);
6aa8b732 4841
6aa8b732 4842 context->page_fault = paging32_page_fault;
6aa8b732 4843 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4844 context->sync_page = paging32_sync_page;
a7052897 4845 context->invlpg = paging32_invlpg;
0f53b5b1 4846 context->update_pte = paging32_update_pte;
6aa8b732 4847 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4848 context->direct_map = false;
6aa8b732
AK
4849}
4850
8a3c1a33
PB
4851static void paging32E_init_context(struct kvm_vcpu *vcpu,
4852 struct kvm_mmu *context)
6aa8b732 4853{
8a3c1a33 4854 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4855}
4856
a336282d
VK
4857static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4858{
4859 union kvm_mmu_extended_role ext = {0};
4860
7dcd5755 4861 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4862 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4863 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4864 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4865 ext.cr4_pse = !!is_pse(vcpu);
4866 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4867 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4868
4869 ext.valid = 1;
4870
4871 return ext;
4872}
4873
7dcd5755
VK
4874static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4875 bool base_only)
4876{
4877 union kvm_mmu_role role = {0};
4878
4879 role.base.access = ACC_ALL;
4880 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4881 role.base.cr0_wp = is_write_protection(vcpu);
4882 role.base.smm = is_smm(vcpu);
4883 role.base.guest_mode = is_guest_mode(vcpu);
4884
4885 if (base_only)
4886 return role;
4887
4888 role.ext = kvm_calc_mmu_role_ext(vcpu);
4889
4890 return role;
4891}
4892
4893static union kvm_mmu_role
4894kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4895{
7dcd5755 4896 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4897
7dcd5755 4898 role.base.ad_disabled = (shadow_accessed_mask == 0);
e93fd3b3 4899 role.base.level = vcpu->arch.tdp_level;
7dcd5755 4900 role.base.direct = true;
47c42e6b 4901 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4902
4903 return role;
4904}
4905
8a3c1a33 4906static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4907{
44dd3ffa 4908 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4909 union kvm_mmu_role new_role =
4910 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4911
7dcd5755
VK
4912 if (new_role.as_u64 == context->mmu_role.as_u64)
4913 return;
4914
4915 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4916 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4917 context->sync_page = nonpaging_sync_page;
5efac074 4918 context->invlpg = NULL;
0f53b5b1 4919 context->update_pte = nonpaging_update_pte;
e93fd3b3 4920 context->shadow_root_level = vcpu->arch.tdp_level;
c5a78f2b 4921 context->direct_map = true;
d8dd54e0 4922 context->get_guest_pgd = get_cr3;
e4e517b4 4923 context->get_pdptr = kvm_pdptr_read;
cb659db8 4924 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4925
4926 if (!is_paging(vcpu)) {
2d48a985 4927 context->nx = false;
fb72d167
JR
4928 context->gva_to_gpa = nonpaging_gva_to_gpa;
4929 context->root_level = 0;
4930 } else if (is_long_mode(vcpu)) {
2d48a985 4931 context->nx = is_nx(vcpu);
855feb67
YZ
4932 context->root_level = is_la57_mode(vcpu) ?
4933 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4934 reset_rsvds_bits_mask(vcpu, context);
4935 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4936 } else if (is_pae(vcpu)) {
2d48a985 4937 context->nx = is_nx(vcpu);
fb72d167 4938 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4939 reset_rsvds_bits_mask(vcpu, context);
4940 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4941 } else {
2d48a985 4942 context->nx = false;
fb72d167 4943 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4944 reset_rsvds_bits_mask(vcpu, context);
4945 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4946 }
4947
25d92081 4948 update_permission_bitmask(vcpu, context, false);
2d344105 4949 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4950 update_last_nonleaf_level(vcpu, context);
c258b62b 4951 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4952}
4953
7dcd5755
VK
4954static union kvm_mmu_role
4955kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4956{
4957 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4958
4959 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4960 !is_write_protection(vcpu);
4961 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4962 !is_write_protection(vcpu);
4963 role.base.direct = !is_paging(vcpu);
47c42e6b 4964 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4965
4966 if (!is_long_mode(vcpu))
7dcd5755 4967 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4968 else if (is_la57_mode(vcpu))
7dcd5755 4969 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4970 else
7dcd5755 4971 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4972
4973 return role;
4974}
4975
929d1cfa 4976void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
9fa72119 4977{
44dd3ffa 4978 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4979 union kvm_mmu_role new_role =
4980 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4981
7dcd5755
VK
4982 if (new_role.as_u64 == context->mmu_role.as_u64)
4983 return;
6aa8b732 4984
929d1cfa 4985 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4986 nonpaging_init_context(vcpu, context);
929d1cfa 4987 else if (efer & EFER_LMA)
8a3c1a33 4988 paging64_init_context(vcpu, context);
929d1cfa 4989 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4990 paging32E_init_context(vcpu, context);
6aa8b732 4991 else
8a3c1a33 4992 paging32_init_context(vcpu, context);
a770f6f2 4993
7dcd5755 4994 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4995 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4996}
4997EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4998
a336282d
VK
4999static union kvm_mmu_role
5000kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 5001 bool execonly, u8 level)
9fa72119 5002{
552c69b1 5003 union kvm_mmu_role role = {0};
14c07ad8 5004
47c42e6b
SC
5005 /* SMM flag is inherited from root_mmu */
5006 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 5007
bb1fcc70 5008 role.base.level = level;
47c42e6b 5009 role.base.gpte_is_8_bytes = true;
a336282d
VK
5010 role.base.direct = false;
5011 role.base.ad_disabled = !accessed_dirty;
5012 role.base.guest_mode = true;
5013 role.base.access = ACC_ALL;
9fa72119 5014
47c42e6b
SC
5015 /*
5016 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5017 * SMAP variation to denote shadow EPT entries.
5018 */
5019 role.base.cr0_wp = true;
5020 role.base.smap_andnot_wp = true;
5021
552c69b1 5022 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 5023 role.ext.execonly = execonly;
9fa72119
JS
5024
5025 return role;
5026}
5027
ae1e2d10 5028void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 5029 bool accessed_dirty, gpa_t new_eptp)
155a97a3 5030{
44dd3ffa 5031 struct kvm_mmu *context = vcpu->arch.mmu;
bb1fcc70 5032 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
5033 union kvm_mmu_role new_role =
5034 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 5035 execonly, level);
a336282d 5036
be01e8e2 5037 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 5038
a336282d
VK
5039 if (new_role.as_u64 == context->mmu_role.as_u64)
5040 return;
ad896af0 5041
bb1fcc70 5042 context->shadow_root_level = level;
155a97a3
NHE
5043
5044 context->nx = true;
ae1e2d10 5045 context->ept_ad = accessed_dirty;
155a97a3
NHE
5046 context->page_fault = ept_page_fault;
5047 context->gva_to_gpa = ept_gva_to_gpa;
5048 context->sync_page = ept_sync_page;
5049 context->invlpg = ept_invlpg;
5050 context->update_pte = ept_update_pte;
bb1fcc70 5051 context->root_level = level;
155a97a3 5052 context->direct_map = false;
a336282d 5053 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 5054
155a97a3 5055 update_permission_bitmask(vcpu, context, true);
2d344105 5056 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 5057 update_last_nonleaf_level(vcpu, context);
155a97a3 5058 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 5059 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
5060}
5061EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5062
8a3c1a33 5063static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5064{
44dd3ffa 5065 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0 5066
929d1cfa
PB
5067 kvm_init_shadow_mmu(vcpu,
5068 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5069 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5070 vcpu->arch.efer);
5071
d8dd54e0 5072 context->get_guest_pgd = get_cr3;
ad896af0
PB
5073 context->get_pdptr = kvm_pdptr_read;
5074 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5075}
5076
8a3c1a33 5077static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5078{
bf627a92 5079 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5080 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5081
bf627a92
VK
5082 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5083 return;
5084
5085 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 5086 g_context->get_guest_pgd = get_cr3;
e4e517b4 5087 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5088 g_context->inject_page_fault = kvm_inject_page_fault;
5089
5efac074
PB
5090 /*
5091 * L2 page tables are never shadowed, so there is no need to sync
5092 * SPTEs.
5093 */
5094 g_context->invlpg = NULL;
5095
02f59dc9 5096 /*
44dd3ffa 5097 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5098 * L1's nested page tables (e.g. EPT12). The nested translation
5099 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5100 * L2's page tables as the first level of translation and L1's
5101 * nested page tables as the second level of translation. Basically
5102 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5103 */
5104 if (!is_paging(vcpu)) {
2d48a985 5105 g_context->nx = false;
02f59dc9
JR
5106 g_context->root_level = 0;
5107 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5108 } else if (is_long_mode(vcpu)) {
2d48a985 5109 g_context->nx = is_nx(vcpu);
855feb67
YZ
5110 g_context->root_level = is_la57_mode(vcpu) ?
5111 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5112 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5113 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5114 } else if (is_pae(vcpu)) {
2d48a985 5115 g_context->nx = is_nx(vcpu);
02f59dc9 5116 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5117 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5118 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5119 } else {
2d48a985 5120 g_context->nx = false;
02f59dc9 5121 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5122 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5123 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5124 }
5125
25d92081 5126 update_permission_bitmask(vcpu, g_context, false);
2d344105 5127 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5128 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5129}
5130
1c53da3f 5131void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5132{
1c53da3f 5133 if (reset_roots) {
b94742c9
JS
5134 uint i;
5135
44dd3ffa 5136 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5137
5138 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5139 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5140 }
5141
02f59dc9 5142 if (mmu_is_nested(vcpu))
e0c6db3e 5143 init_kvm_nested_mmu(vcpu);
02f59dc9 5144 else if (tdp_enabled)
e0c6db3e 5145 init_kvm_tdp_mmu(vcpu);
fb72d167 5146 else
e0c6db3e 5147 init_kvm_softmmu(vcpu);
fb72d167 5148}
1c53da3f 5149EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5150
9fa72119
JS
5151static union kvm_mmu_page_role
5152kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5153{
7dcd5755
VK
5154 union kvm_mmu_role role;
5155
9fa72119 5156 if (tdp_enabled)
7dcd5755 5157 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5158 else
7dcd5755
VK
5159 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5160
5161 return role.base;
9fa72119 5162}
fb72d167 5163
8a3c1a33 5164void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5165{
95f93af4 5166 kvm_mmu_unload(vcpu);
1c53da3f 5167 kvm_init_mmu(vcpu, true);
17c3ba9d 5168}
8668a3c4 5169EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5170
5171int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5172{
714b93da
AK
5173 int r;
5174
e2dec939 5175 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5176 if (r)
5177 goto out;
8986ecc0 5178 r = mmu_alloc_roots(vcpu);
e2858b4a 5179 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5180 if (r)
5181 goto out;
727a7e27 5182 kvm_mmu_load_pgd(vcpu);
8c8560b8 5183 kvm_x86_ops.tlb_flush_current(vcpu);
714b93da
AK
5184out:
5185 return r;
6aa8b732 5186}
17c3ba9d
AK
5187EXPORT_SYMBOL_GPL(kvm_mmu_load);
5188
5189void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5190{
14c07ad8
VK
5191 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5192 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5193 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5194 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5195}
4b16184c 5196EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5197
0028425f 5198static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5199 struct kvm_mmu_page *sp, u64 *spte,
5200 const void *new)
0028425f 5201{
3bae0459 5202 if (sp->role.level != PG_LEVEL_4K) {
7e4e4056
JR
5203 ++vcpu->kvm->stat.mmu_pde_zapped;
5204 return;
30945387 5205 }
0028425f 5206
4cee5764 5207 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5208 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5209}
5210
79539cec
AK
5211static bool need_remote_flush(u64 old, u64 new)
5212{
5213 if (!is_shadow_present_pte(old))
5214 return false;
5215 if (!is_shadow_present_pte(new))
5216 return true;
5217 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5218 return true;
53166229
GN
5219 old ^= shadow_nx_mask;
5220 new ^= shadow_nx_mask;
79539cec
AK
5221 return (old & ~new & PT64_PERM_MASK) != 0;
5222}
5223
889e5cbc 5224static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5225 int *bytes)
da4a00f0 5226{
0e0fee5c 5227 u64 gentry = 0;
889e5cbc 5228 int r;
72016f3a 5229
72016f3a
AK
5230 /*
5231 * Assume that the pte write on a page table of the same type
49b26e26
XG
5232 * as the current vcpu paging mode since we update the sptes only
5233 * when they have the same mode.
72016f3a 5234 */
889e5cbc 5235 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5236 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5237 *gpa &= ~(gpa_t)7;
5238 *bytes = 8;
08e850c6
AK
5239 }
5240
0e0fee5c
JS
5241 if (*bytes == 4 || *bytes == 8) {
5242 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5243 if (r)
5244 gentry = 0;
72016f3a
AK
5245 }
5246
889e5cbc
XG
5247 return gentry;
5248}
5249
5250/*
5251 * If we're seeing too many writes to a page, it may no longer be a page table,
5252 * or we may be forking, in which case it is better to unmap the page.
5253 */
a138fe75 5254static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5255{
a30f47cb
XG
5256 /*
5257 * Skip write-flooding detected for the sp whose level is 1, because
5258 * it can become unsync, then the guest page is not write-protected.
5259 */
3bae0459 5260 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 5261 return false;
3246af0e 5262
e5691a81
XG
5263 atomic_inc(&sp->write_flooding_count);
5264 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5265}
5266
5267/*
5268 * Misaligned accesses are too much trouble to fix up; also, they usually
5269 * indicate a page is not used as a page table.
5270 */
5271static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5272 int bytes)
5273{
5274 unsigned offset, pte_size, misaligned;
5275
5276 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5277 gpa, bytes, sp->role.word);
5278
5279 offset = offset_in_page(gpa);
47c42e6b 5280 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5281
5282 /*
5283 * Sometimes, the OS only writes the last one bytes to update status
5284 * bits, for example, in linux, andb instruction is used in clear_bit().
5285 */
5286 if (!(offset & (pte_size - 1)) && bytes == 1)
5287 return false;
5288
889e5cbc
XG
5289 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5290 misaligned |= bytes < 4;
5291
5292 return misaligned;
5293}
5294
5295static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5296{
5297 unsigned page_offset, quadrant;
5298 u64 *spte;
5299 int level;
5300
5301 page_offset = offset_in_page(gpa);
5302 level = sp->role.level;
5303 *nspte = 1;
47c42e6b 5304 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5305 page_offset <<= 1; /* 32->64 */
5306 /*
5307 * A 32-bit pde maps 4MB while the shadow pdes map
5308 * only 2MB. So we need to double the offset again
5309 * and zap two pdes instead of one.
5310 */
5311 if (level == PT32_ROOT_LEVEL) {
5312 page_offset &= ~7; /* kill rounding error */
5313 page_offset <<= 1;
5314 *nspte = 2;
5315 }
5316 quadrant = page_offset >> PAGE_SHIFT;
5317 page_offset &= ~PAGE_MASK;
5318 if (quadrant != sp->role.quadrant)
5319 return NULL;
5320 }
5321
5322 spte = &sp->spt[page_offset / sizeof(*spte)];
5323 return spte;
5324}
5325
a102a674
SC
5326/*
5327 * Ignore various flags when determining if a SPTE can be immediately
5328 * overwritten for the current MMU.
5329 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5330 * match the current MMU role, as MMU's level tracks the root level.
5331 * - access: updated based on the new guest PTE
5332 * - quadrant: handled by get_written_sptes()
5333 * - invalid: always false (loop only walks valid shadow pages)
5334 */
5335static const union kvm_mmu_page_role role_ign = {
5336 .level = 0xf,
5337 .access = 0x7,
5338 .quadrant = 0x3,
5339 .invalid = 0x1,
5340};
5341
13d268ca 5342static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5343 const u8 *new, int bytes,
5344 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5345{
5346 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5347 struct kvm_mmu_page *sp;
889e5cbc
XG
5348 LIST_HEAD(invalid_list);
5349 u64 entry, gentry, *spte;
5350 int npte;
b8c67b7a 5351 bool remote_flush, local_flush;
889e5cbc
XG
5352
5353 /*
5354 * If we don't have indirect shadow pages, it means no page is
5355 * write-protected, so we can exit simply.
5356 */
6aa7de05 5357 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5358 return;
5359
b8c67b7a 5360 remote_flush = local_flush = false;
889e5cbc
XG
5361
5362 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5363
889e5cbc
XG
5364 /*
5365 * No need to care whether allocation memory is successful
5366 * or not since pte prefetch is skiped if it does not have
5367 * enough objects in the cache.
5368 */
5369 mmu_topup_memory_caches(vcpu);
5370
5371 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5372
5373 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5374
889e5cbc 5375 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5376 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5377
b67bfe0d 5378 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5379 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5380 detect_write_flooding(sp)) {
b8c67b7a 5381 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5382 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5383 continue;
5384 }
889e5cbc
XG
5385
5386 spte = get_written_sptes(sp, gpa, &npte);
5387 if (!spte)
5388 continue;
5389
0671a8e7 5390 local_flush = true;
ac1b714e 5391 while (npte--) {
36d9594d
VK
5392 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5393
79539cec 5394 entry = *spte;
38e3b2b2 5395 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5396 if (gentry &&
a102a674
SC
5397 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5398 rmap_can_add(vcpu))
7c562522 5399 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5400 if (need_remote_flush(entry, *spte))
0671a8e7 5401 remote_flush = true;
ac1b714e 5402 ++spte;
9b7a0325 5403 }
9b7a0325 5404 }
b8c67b7a 5405 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5406 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5407 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5408}
5409
a436036b
AK
5410int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5411{
10589a46
MT
5412 gpa_t gpa;
5413 int r;
a436036b 5414
44dd3ffa 5415 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5416 return 0;
5417
1871c602 5418 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5419
10589a46 5420 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5421
10589a46 5422 return r;
a436036b 5423}
577bdc49 5424EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5425
736c291c 5426int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5427 void *insn, int insn_len)
3067714c 5428{
92daa48b 5429 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5430 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5431
6948199a 5432 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5433 return RET_PF_RETRY;
5434
9b8ebbdb 5435 r = RET_PF_INVALID;
e9ee956e 5436 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5437 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5438 if (r == RET_PF_EMULATE)
e9ee956e 5439 goto emulate;
e9ee956e 5440 }
3067714c 5441
9b8ebbdb 5442 if (r == RET_PF_INVALID) {
7a02674d
SC
5443 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5444 lower_32_bits(error_code), false);
9b8ebbdb
PB
5445 WARN_ON(r == RET_PF_INVALID);
5446 }
5447
5448 if (r == RET_PF_RETRY)
5449 return 1;
3067714c 5450 if (r < 0)
e9ee956e 5451 return r;
3067714c 5452
14727754
TL
5453 /*
5454 * Before emulating the instruction, check if the error code
5455 * was due to a RO violation while translating the guest page.
5456 * This can occur when using nested virtualization with nested
5457 * paging in both guests. If true, we simply unprotect the page
5458 * and resume the guest.
14727754 5459 */
44dd3ffa 5460 if (vcpu->arch.mmu->direct_map &&
eebed243 5461 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5462 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5463 return 1;
5464 }
5465
472faffa
SC
5466 /*
5467 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5468 * optimistically try to just unprotect the page and let the processor
5469 * re-execute the instruction that caused the page fault. Do not allow
5470 * retrying MMIO emulation, as it's not only pointless but could also
5471 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5472 * faulting on the non-existent MMIO address. Retrying an instruction
5473 * from a nested guest is also pointless and dangerous as we are only
5474 * explicitly shadowing L1's page tables, i.e. unprotecting something
5475 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5476 */
736c291c 5477 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5478 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5479emulate:
00b10fe1
BS
5480 /*
5481 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5482 * This can happen if a guest gets a page-fault on data access but the HW
5483 * table walker is not able to read the instruction page (e.g instruction
5484 * page is not present in memory). In those cases we simply restart the
05d5a486 5485 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5486 */
05d5a486 5487 if (unlikely(insn && !insn_len)) {
afaf0b2f 5488 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
05d5a486
SB
5489 return 1;
5490 }
00b10fe1 5491
736c291c 5492 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5493 insn_len);
3067714c
AK
5494}
5495EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5496
5efac074
PB
5497void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5498 gva_t gva, hpa_t root_hpa)
a7052897 5499{
b94742c9 5500 int i;
7eb77e9f 5501
5efac074
PB
5502 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5503 if (mmu != &vcpu->arch.guest_mmu) {
5504 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5505 if (is_noncanonical_address(gva, vcpu))
5506 return;
5507
5508 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5509 }
5510
5511 if (!mmu->invlpg)
faff8758
JS
5512 return;
5513
5efac074
PB
5514 if (root_hpa == INVALID_PAGE) {
5515 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5516
5efac074
PB
5517 /*
5518 * INVLPG is required to invalidate any global mappings for the VA,
5519 * irrespective of PCID. Since it would take us roughly similar amount
5520 * of work to determine whether any of the prev_root mappings of the VA
5521 * is marked global, or to just sync it blindly, so we might as well
5522 * just always sync it.
5523 *
5524 * Mappings not reachable via the current cr3 or the prev_roots will be
5525 * synced when switching to that cr3, so nothing needs to be done here
5526 * for them.
5527 */
5528 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5529 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5530 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5531 } else {
5532 mmu->invlpg(vcpu, gva, root_hpa);
5533 }
5534}
5535EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5536
5efac074
PB
5537void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5538{
5539 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5540 ++vcpu->stat.invlpg;
5541}
5542EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5543
5efac074 5544
eb4b248e
JS
5545void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5546{
44dd3ffa 5547 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5548 bool tlb_flush = false;
b94742c9 5549 uint i;
eb4b248e
JS
5550
5551 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5552 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5553 tlb_flush = true;
eb4b248e
JS
5554 }
5555
b94742c9
JS
5556 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5557 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5558 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5559 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5560 tlb_flush = true;
5561 }
956bf353 5562 }
ade61e28 5563
faff8758 5564 if (tlb_flush)
afaf0b2f 5565 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5566
eb4b248e
JS
5567 ++vcpu->stat.invlpg;
5568
5569 /*
b94742c9
JS
5570 * Mappings not reachable via the current cr3 or the prev_roots will be
5571 * synced when switching to that cr3, so nothing needs to be done here
5572 * for them.
eb4b248e
JS
5573 */
5574}
5575EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5576
703c335d 5577void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
18552672 5578{
bde77235 5579 tdp_enabled = enable_tdp;
703c335d
SC
5580
5581 /*
5582 * max_page_level reflects the capabilities of KVM's MMU irrespective
5583 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5584 * the kernel is not. But, KVM never creates a page size greater than
5585 * what is used by the kernel for any given HVA, i.e. the kernel's
5586 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5587 */
5588 if (tdp_enabled)
5589 max_page_level = tdp_page_level;
5590 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
3bae0459 5591 max_page_level = PG_LEVEL_1G;
703c335d 5592 else
3bae0459 5593 max_page_level = PG_LEVEL_2M;
18552672 5594}
bde77235 5595EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5596
5597/* The return value indicates if tlb flush on all vcpus is needed. */
5598typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5599
5600/* The caller should hold mmu-lock before calling this function. */
5601static __always_inline bool
5602slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5603 slot_level_handler fn, int start_level, int end_level,
5604 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5605{
5606 struct slot_rmap_walk_iterator iterator;
5607 bool flush = false;
5608
5609 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5610 end_gfn, &iterator) {
5611 if (iterator.rmap)
5612 flush |= fn(kvm, iterator.rmap);
5613
5614 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5615 if (flush && lock_flush_tlb) {
f285c633
BG
5616 kvm_flush_remote_tlbs_with_address(kvm,
5617 start_gfn,
5618 iterator.gfn - start_gfn + 1);
85875a13
SC
5619 flush = false;
5620 }
5621 cond_resched_lock(&kvm->mmu_lock);
5622 }
5623 }
5624
5625 if (flush && lock_flush_tlb) {
f285c633
BG
5626 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5627 end_gfn - start_gfn + 1);
85875a13
SC
5628 flush = false;
5629 }
5630
5631 return flush;
5632}
5633
5634static __always_inline bool
5635slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5636 slot_level_handler fn, int start_level, int end_level,
5637 bool lock_flush_tlb)
5638{
5639 return slot_handle_level_range(kvm, memslot, fn, start_level,
5640 end_level, memslot->base_gfn,
5641 memslot->base_gfn + memslot->npages - 1,
5642 lock_flush_tlb);
5643}
5644
5645static __always_inline bool
5646slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5647 slot_level_handler fn, bool lock_flush_tlb)
5648{
3bae0459 5649 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5650 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5651}
5652
5653static __always_inline bool
5654slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5655 slot_level_handler fn, bool lock_flush_tlb)
5656{
3bae0459 5657 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5658 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5659}
5660
5661static __always_inline bool
5662slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5663 slot_level_handler fn, bool lock_flush_tlb)
5664{
3bae0459
SC
5665 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5666 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5667}
5668
1cfff4d9 5669static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5670{
1cfff4d9
JP
5671 free_page((unsigned long)mmu->pae_root);
5672 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5673}
5674
1cfff4d9 5675static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5676{
17ac10ad 5677 struct page *page;
6aa8b732
AK
5678 int i;
5679
17ac10ad 5680 /*
b6b80c78
SC
5681 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5682 * while the PDP table is a per-vCPU construct that's allocated at MMU
5683 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5684 * x86_64. Therefore we need to allocate the PDP table in the first
5685 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5686 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5687 * skip allocating the PDP table.
17ac10ad 5688 */
e93fd3b3 5689 if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
b6b80c78
SC
5690 return 0;
5691
254272ce 5692 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5693 if (!page)
d7fa6ab2
WY
5694 return -ENOMEM;
5695
1cfff4d9 5696 mmu->pae_root = page_address(page);
17ac10ad 5697 for (i = 0; i < 4; ++i)
1cfff4d9 5698 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5699
6aa8b732 5700 return 0;
6aa8b732
AK
5701}
5702
8018c27b 5703int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5704{
b94742c9 5705 uint i;
1cfff4d9 5706 int ret;
b94742c9 5707
44dd3ffa
VK
5708 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5709 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5710
44dd3ffa 5711 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
be01e8e2 5712 vcpu->arch.root_mmu.root_pgd = 0;
44dd3ffa 5713 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5714 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5715 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5716
14c07ad8 5717 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
be01e8e2 5718 vcpu->arch.guest_mmu.root_pgd = 0;
14c07ad8
VK
5719 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5720 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5721 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5722
14c07ad8 5723 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9
JP
5724
5725 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5726 if (ret)
5727 return ret;
5728
5729 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5730 if (ret)
5731 goto fail_allocate_root;
5732
5733 return ret;
5734 fail_allocate_root:
5735 free_mmu_pages(&vcpu->arch.guest_mmu);
5736 return ret;
6aa8b732
AK
5737}
5738
fbb158cb 5739#define BATCH_ZAP_PAGES 10
002c5f73
SC
5740static void kvm_zap_obsolete_pages(struct kvm *kvm)
5741{
5742 struct kvm_mmu_page *sp, *node;
fbb158cb 5743 int nr_zapped, batch = 0;
002c5f73
SC
5744
5745restart:
5746 list_for_each_entry_safe_reverse(sp, node,
5747 &kvm->arch.active_mmu_pages, link) {
5748 /*
5749 * No obsolete valid page exists before a newly created page
5750 * since active_mmu_pages is a FIFO list.
5751 */
5752 if (!is_obsolete_sp(kvm, sp))
5753 break;
5754
5755 /*
f95eec9b
SC
5756 * Invalid pages should never land back on the list of active
5757 * pages. Skip the bogus page, otherwise we'll get stuck in an
5758 * infinite loop if the page gets put back on the list (again).
002c5f73 5759 */
f95eec9b 5760 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5761 continue;
5762
4506ecf4
SC
5763 /*
5764 * No need to flush the TLB since we're only zapping shadow
5765 * pages with an obsolete generation number and all vCPUS have
5766 * loaded a new root, i.e. the shadow pages being zapped cannot
5767 * be in active use by the guest.
5768 */
fbb158cb 5769 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5770 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5771 batch = 0;
002c5f73
SC
5772 goto restart;
5773 }
5774
10605204
SC
5775 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5776 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5777 batch += nr_zapped;
002c5f73 5778 goto restart;
fbb158cb 5779 }
002c5f73
SC
5780 }
5781
4506ecf4
SC
5782 /*
5783 * Trigger a remote TLB flush before freeing the page tables to ensure
5784 * KVM is not in the middle of a lockless shadow page table walk, which
5785 * may reference the pages.
5786 */
10605204 5787 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5788}
5789
5790/*
5791 * Fast invalidate all shadow pages and use lock-break technique
5792 * to zap obsolete pages.
5793 *
5794 * It's required when memslot is being deleted or VM is being
5795 * destroyed, in these cases, we should ensure that KVM MMU does
5796 * not use any resource of the being-deleted slot or all slots
5797 * after calling the function.
5798 */
5799static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5800{
ca333add
SC
5801 lockdep_assert_held(&kvm->slots_lock);
5802
002c5f73 5803 spin_lock(&kvm->mmu_lock);
14a3c4f4 5804 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5805
5806 /*
5807 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5808 * held for the entire duration of zapping obsolete pages, it's
5809 * impossible for there to be multiple invalid generations associated
5810 * with *valid* shadow pages at any given time, i.e. there is exactly
5811 * one valid generation and (at most) one invalid generation.
5812 */
5813 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5814
4506ecf4
SC
5815 /*
5816 * Notify all vcpus to reload its shadow page table and flush TLB.
5817 * Then all vcpus will switch to new shadow page table with the new
5818 * mmu_valid_gen.
5819 *
5820 * Note: we need to do this under the protection of mmu_lock,
5821 * otherwise, vcpu would purge shadow page but miss tlb flush.
5822 */
5823 kvm_reload_remote_mmus(kvm);
5824
002c5f73
SC
5825 kvm_zap_obsolete_pages(kvm);
5826 spin_unlock(&kvm->mmu_lock);
5827}
5828
10605204
SC
5829static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5830{
5831 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5832}
5833
b5f5fdca 5834static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5835 struct kvm_memory_slot *slot,
5836 struct kvm_page_track_notifier_node *node)
b5f5fdca 5837{
002c5f73 5838 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5839}
5840
13d268ca 5841void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5842{
13d268ca 5843 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5844
13d268ca 5845 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5846 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5847 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5848}
5849
13d268ca 5850void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5851{
13d268ca 5852 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5853
13d268ca 5854 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5855}
5856
efdfe536
XG
5857void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5858{
5859 struct kvm_memslots *slots;
5860 struct kvm_memory_slot *memslot;
9da0e4d5 5861 int i;
efdfe536
XG
5862
5863 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5864 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5865 slots = __kvm_memslots(kvm, i);
5866 kvm_for_each_memslot(memslot, slots) {
5867 gfn_t start, end;
5868
5869 start = max(gfn_start, memslot->base_gfn);
5870 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5871 if (start >= end)
5872 continue;
efdfe536 5873
92da008f 5874 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5875 PG_LEVEL_4K,
e662ec3e 5876 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5877 start, end - 1, true);
9da0e4d5 5878 }
efdfe536
XG
5879 }
5880
5881 spin_unlock(&kvm->mmu_lock);
5882}
5883
018aabb5
TY
5884static bool slot_rmap_write_protect(struct kvm *kvm,
5885 struct kvm_rmap_head *rmap_head)
d77aa73c 5886{
018aabb5 5887 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5888}
5889
1c91cad4 5890void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5891 struct kvm_memory_slot *memslot,
5892 int start_level)
6aa8b732 5893{
d77aa73c 5894 bool flush;
6aa8b732 5895
9d1beefb 5896 spin_lock(&kvm->mmu_lock);
3c9bd400 5897 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5898 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
9d1beefb 5899 spin_unlock(&kvm->mmu_lock);
198c74f4 5900
198c74f4
XG
5901 /*
5902 * We can flush all the TLBs out of the mmu lock without TLB
5903 * corruption since we just change the spte from writable to
5904 * readonly so that we only need to care the case of changing
5905 * spte from present to present (changing the spte from present
5906 * to nonpresent will flush all the TLBs immediately), in other
5907 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5908 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5909 * instead of PT_WRITABLE_MASK, that means it does not depend
5910 * on PT_WRITABLE_MASK anymore.
5911 */
d91ffee9 5912 if (flush)
7f42aa76 5913 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5914}
37a7d8b0 5915
3ea3b7fa 5916static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5917 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5918{
5919 u64 *sptep;
5920 struct rmap_iterator iter;
5921 int need_tlb_flush = 0;
ba049e93 5922 kvm_pfn_t pfn;
3ea3b7fa
WL
5923 struct kvm_mmu_page *sp;
5924
0d536790 5925restart:
018aabb5 5926 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5927 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5928 pfn = spte_to_pfn(*sptep);
5929
5930 /*
decf6333
XG
5931 * We cannot do huge page mapping for indirect shadow pages,
5932 * which are found on the last rmap (level = 1) when not using
5933 * tdp; such shadow pages are synced with the page table in
5934 * the guest, and the guest page table is using 4K page size
5935 * mapping if the indirect sp has level = 1.
3ea3b7fa 5936 */
a78986aa 5937 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5938 (kvm_is_zone_device_pfn(pfn) ||
5939 PageCompound(pfn_to_page(pfn)))) {
e7912386 5940 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5941
5942 if (kvm_available_flush_tlb_with_range())
5943 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5944 KVM_PAGES_PER_HPAGE(sp->role.level));
5945 else
5946 need_tlb_flush = 1;
5947
0d536790
XG
5948 goto restart;
5949 }
3ea3b7fa
WL
5950 }
5951
5952 return need_tlb_flush;
5953}
5954
5955void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5956 const struct kvm_memory_slot *memslot)
3ea3b7fa 5957{
f36f3f28 5958 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5959 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5960 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5961 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5962 spin_unlock(&kvm->mmu_lock);
5963}
5964
b3594ffb
SC
5965void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5966 struct kvm_memory_slot *memslot)
5967{
5968 /*
7f42aa76
SC
5969 * All current use cases for flushing the TLBs for a specific memslot
5970 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5971 * The interaction between the various operations on memslot must be
5972 * serialized by slots_locks to ensure the TLB flush from one operation
5973 * is observed by any other operation on the same memslot.
b3594ffb
SC
5974 */
5975 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5976 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5977 memslot->npages);
b3594ffb
SC
5978}
5979
f4b4b180
KH
5980void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5981 struct kvm_memory_slot *memslot)
5982{
d77aa73c 5983 bool flush;
f4b4b180
KH
5984
5985 spin_lock(&kvm->mmu_lock);
d77aa73c 5986 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5987 spin_unlock(&kvm->mmu_lock);
5988
f4b4b180
KH
5989 /*
5990 * It's also safe to flush TLBs out of mmu lock here as currently this
5991 * function is only used for dirty logging, in which case flushing TLB
5992 * out of mmu lock also guarantees no dirty pages will be lost in
5993 * dirty_bitmap.
5994 */
5995 if (flush)
7f42aa76 5996 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5997}
5998EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5999
6000void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6001 struct kvm_memory_slot *memslot)
6002{
d77aa73c 6003 bool flush;
f4b4b180
KH
6004
6005 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
6006 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6007 false);
f4b4b180
KH
6008 spin_unlock(&kvm->mmu_lock);
6009
f4b4b180 6010 if (flush)
7f42aa76 6011 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
6012}
6013EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6014
6015void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6016 struct kvm_memory_slot *memslot)
6017{
d77aa73c 6018 bool flush;
f4b4b180
KH
6019
6020 spin_lock(&kvm->mmu_lock);
d77aa73c 6021 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
6022 spin_unlock(&kvm->mmu_lock);
6023
f4b4b180 6024 if (flush)
7f42aa76 6025 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
6026}
6027EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6028
92f58b5c 6029void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
6030{
6031 struct kvm_mmu_page *sp, *node;
7390de1e 6032 LIST_HEAD(invalid_list);
83cdb568 6033 int ign;
5304b8d3 6034
7390de1e 6035 spin_lock(&kvm->mmu_lock);
5304b8d3 6036restart:
8a674adc 6037 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 6038 if (WARN_ON(sp->role.invalid))
4771450c 6039 continue;
92f58b5c 6040 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 6041 goto restart;
24efe61f 6042 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
6043 goto restart;
6044 }
6045
4771450c 6046 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
6047 spin_unlock(&kvm->mmu_lock);
6048}
6049
15248258 6050void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 6051{
164bf7e5 6052 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 6053
164bf7e5 6054 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 6055
f8f55942 6056 /*
e1359e2b
SC
6057 * Generation numbers are incremented in multiples of the number of
6058 * address spaces in order to provide unique generations across all
6059 * address spaces. Strip what is effectively the address space
6060 * modifier prior to checking for a wrap of the MMIO generation so
6061 * that a wrap in any address space is detected.
6062 */
6063 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6064
f8f55942 6065 /*
e1359e2b 6066 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 6067 * zap all shadow pages.
f8f55942 6068 */
e1359e2b 6069 if (unlikely(gen == 0)) {
ae0f5499 6070 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 6071 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 6072 }
f8f55942
XG
6073}
6074
70534a73
DC
6075static unsigned long
6076mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
6077{
6078 struct kvm *kvm;
1495f230 6079 int nr_to_scan = sc->nr_to_scan;
70534a73 6080 unsigned long freed = 0;
3ee16c81 6081
0d9ce162 6082 mutex_lock(&kvm_lock);
3ee16c81
IE
6083
6084 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 6085 int idx;
d98ba053 6086 LIST_HEAD(invalid_list);
3ee16c81 6087
35f2d16b
TY
6088 /*
6089 * Never scan more than sc->nr_to_scan VM instances.
6090 * Will not hit this condition practically since we do not try
6091 * to shrink more than one VM and it is very unlikely to see
6092 * !n_used_mmu_pages so many times.
6093 */
6094 if (!nr_to_scan--)
6095 break;
19526396
GN
6096 /*
6097 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6098 * here. We may skip a VM instance errorneosly, but we do not
6099 * want to shrink a VM that only started to populate its MMU
6100 * anyway.
6101 */
10605204
SC
6102 if (!kvm->arch.n_used_mmu_pages &&
6103 !kvm_has_zapped_obsolete_pages(kvm))
19526396 6104 continue;
19526396 6105
f656ce01 6106 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 6107 spin_lock(&kvm->mmu_lock);
3ee16c81 6108
10605204
SC
6109 if (kvm_has_zapped_obsolete_pages(kvm)) {
6110 kvm_mmu_commit_zap_page(kvm,
6111 &kvm->arch.zapped_obsolete_pages);
6112 goto unlock;
6113 }
6114
ebdb292d 6115 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 6116
10605204 6117unlock:
3ee16c81 6118 spin_unlock(&kvm->mmu_lock);
f656ce01 6119 srcu_read_unlock(&kvm->srcu, idx);
19526396 6120
70534a73
DC
6121 /*
6122 * unfair on small ones
6123 * per-vm shrinkers cry out
6124 * sadness comes quickly
6125 */
19526396
GN
6126 list_move_tail(&kvm->vm_list, &vm_list);
6127 break;
3ee16c81 6128 }
3ee16c81 6129
0d9ce162 6130 mutex_unlock(&kvm_lock);
70534a73 6131 return freed;
70534a73
DC
6132}
6133
6134static unsigned long
6135mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6136{
45221ab6 6137 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
6138}
6139
6140static struct shrinker mmu_shrinker = {
70534a73
DC
6141 .count_objects = mmu_shrink_count,
6142 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
6143 .seeks = DEFAULT_SEEKS * 10,
6144};
6145
2ddfd20e 6146static void mmu_destroy_caches(void)
b5a33a75 6147{
c1bd743e
TH
6148 kmem_cache_destroy(pte_list_desc_cache);
6149 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
6150}
6151
7b6f8a06
KH
6152static void kvm_set_mmio_spte_mask(void)
6153{
6154 u64 mask;
7b6f8a06
KH
6155
6156 /*
6129ed87
SC
6157 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6158 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
6159 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6160 * 52-bit physical addresses then there are no reserved PA bits in the
6161 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 6162 */
6129ed87
SC
6163 if (shadow_phys_bits < 52)
6164 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6165 else
6166 mask = 0;
7b6f8a06 6167
e7581cac 6168 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
6169}
6170
b8e8c830
PB
6171static bool get_nx_auto_mode(void)
6172{
6173 /* Return true when CPU has the bug, and mitigations are ON */
6174 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6175}
6176
6177static void __set_nx_huge_pages(bool val)
6178{
6179 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6180}
6181
6182static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6183{
6184 bool old_val = nx_huge_pages;
6185 bool new_val;
6186
6187 /* In "auto" mode deploy workaround only if CPU has the bug. */
6188 if (sysfs_streq(val, "off"))
6189 new_val = 0;
6190 else if (sysfs_streq(val, "force"))
6191 new_val = 1;
6192 else if (sysfs_streq(val, "auto"))
6193 new_val = get_nx_auto_mode();
6194 else if (strtobool(val, &new_val) < 0)
6195 return -EINVAL;
6196
6197 __set_nx_huge_pages(new_val);
6198
6199 if (new_val != old_val) {
6200 struct kvm *kvm;
b8e8c830
PB
6201
6202 mutex_lock(&kvm_lock);
6203
6204 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 6205 mutex_lock(&kvm->slots_lock);
b8e8c830 6206 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 6207 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
6208
6209 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
6210 }
6211 mutex_unlock(&kvm_lock);
6212 }
6213
6214 return 0;
6215}
6216
b5a33a75
AK
6217int kvm_mmu_module_init(void)
6218{
ab271bd4
AB
6219 int ret = -ENOMEM;
6220
b8e8c830
PB
6221 if (nx_huge_pages == -1)
6222 __set_nx_huge_pages(get_nx_auto_mode());
6223
36d9594d
VK
6224 /*
6225 * MMU roles use union aliasing which is, generally speaking, an
6226 * undefined behavior. However, we supposedly know how compilers behave
6227 * and the current status quo is unlikely to change. Guardians below are
6228 * supposed to let us know if the assumption becomes false.
6229 */
6230 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6231 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6232 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6233
28a1f3ac 6234 kvm_mmu_reset_all_pte_masks();
f160c7b7 6235
7b6f8a06
KH
6236 kvm_set_mmio_spte_mask();
6237
53c07b18
XG
6238 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6239 sizeof(struct pte_list_desc),
46bea48a 6240 0, SLAB_ACCOUNT, NULL);
53c07b18 6241 if (!pte_list_desc_cache)
ab271bd4 6242 goto out;
b5a33a75 6243
d3d25b04
AK
6244 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6245 sizeof(struct kvm_mmu_page),
46bea48a 6246 0, SLAB_ACCOUNT, NULL);
d3d25b04 6247 if (!mmu_page_header_cache)
ab271bd4 6248 goto out;
d3d25b04 6249
908c7f19 6250 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6251 goto out;
45bf21a8 6252
ab271bd4
AB
6253 ret = register_shrinker(&mmu_shrinker);
6254 if (ret)
6255 goto out;
3ee16c81 6256
b5a33a75
AK
6257 return 0;
6258
ab271bd4 6259out:
3ee16c81 6260 mmu_destroy_caches();
ab271bd4 6261 return ret;
b5a33a75
AK
6262}
6263
3ad82a7e 6264/*
39337ad1 6265 * Calculate mmu pages needed for kvm.
3ad82a7e 6266 */
bc8a3d89 6267unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6268{
bc8a3d89
BG
6269 unsigned long nr_mmu_pages;
6270 unsigned long nr_pages = 0;
bc6678a3 6271 struct kvm_memslots *slots;
be6ba0f0 6272 struct kvm_memory_slot *memslot;
9da0e4d5 6273 int i;
3ad82a7e 6274
9da0e4d5
PB
6275 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6276 slots = __kvm_memslots(kvm, i);
90d83dc3 6277
9da0e4d5
PB
6278 kvm_for_each_memslot(memslot, slots)
6279 nr_pages += memslot->npages;
6280 }
3ad82a7e
ZX
6281
6282 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6283 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6284
6285 return nr_mmu_pages;
6286}
6287
c42fffe3
XG
6288void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6289{
95f93af4 6290 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6291 free_mmu_pages(&vcpu->arch.root_mmu);
6292 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6293 mmu_free_memory_caches(vcpu);
b034cf01
XG
6294}
6295
b034cf01
XG
6296void kvm_mmu_module_exit(void)
6297{
6298 mmu_destroy_caches();
6299 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6300 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6301 mmu_audit_disable();
6302}
1aa9b957
JS
6303
6304static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6305{
6306 unsigned int old_val;
6307 int err;
6308
6309 old_val = nx_huge_pages_recovery_ratio;
6310 err = param_set_uint(val, kp);
6311 if (err)
6312 return err;
6313
6314 if (READ_ONCE(nx_huge_pages) &&
6315 !old_val && nx_huge_pages_recovery_ratio) {
6316 struct kvm *kvm;
6317
6318 mutex_lock(&kvm_lock);
6319
6320 list_for_each_entry(kvm, &vm_list, vm_list)
6321 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6322
6323 mutex_unlock(&kvm_lock);
6324 }
6325
6326 return err;
6327}
6328
6329static void kvm_recover_nx_lpages(struct kvm *kvm)
6330{
6331 int rcu_idx;
6332 struct kvm_mmu_page *sp;
6333 unsigned int ratio;
6334 LIST_HEAD(invalid_list);
6335 ulong to_zap;
6336
6337 rcu_idx = srcu_read_lock(&kvm->srcu);
6338 spin_lock(&kvm->mmu_lock);
6339
6340 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6341 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6342 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6343 /*
6344 * We use a separate list instead of just using active_mmu_pages
6345 * because the number of lpage_disallowed pages is expected to
6346 * be relatively small compared to the total.
6347 */
6348 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6349 struct kvm_mmu_page,
6350 lpage_disallowed_link);
6351 WARN_ON_ONCE(!sp->lpage_disallowed);
6352 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6353 WARN_ON_ONCE(sp->lpage_disallowed);
6354
6355 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6356 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6357 if (to_zap)
6358 cond_resched_lock(&kvm->mmu_lock);
6359 }
6360 }
6361
6362 spin_unlock(&kvm->mmu_lock);
6363 srcu_read_unlock(&kvm->srcu, rcu_idx);
6364}
6365
6366static long get_nx_lpage_recovery_timeout(u64 start_time)
6367{
6368 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6369 ? start_time + 60 * HZ - get_jiffies_64()
6370 : MAX_SCHEDULE_TIMEOUT;
6371}
6372
6373static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6374{
6375 u64 start_time;
6376 long remaining_time;
6377
6378 while (true) {
6379 start_time = get_jiffies_64();
6380 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6381
6382 set_current_state(TASK_INTERRUPTIBLE);
6383 while (!kthread_should_stop() && remaining_time > 0) {
6384 schedule_timeout(remaining_time);
6385 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6386 set_current_state(TASK_INTERRUPTIBLE);
6387 }
6388
6389 set_current_state(TASK_RUNNING);
6390
6391 if (kthread_should_stop())
6392 return 0;
6393
6394 kvm_recover_nx_lpages(kvm);
6395 }
6396}
6397
6398int kvm_mmu_post_init_vm(struct kvm *kvm)
6399{
6400 int err;
6401
6402 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6403 "kvm-nx-lpage-recovery",
6404 &kvm->arch.nx_lpage_recovery_thread);
6405 if (!err)
6406 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6407
6408 return err;
6409}
6410
6411void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6412{
6413 if (kvm->arch.nx_lpage_recovery_thread)
6414 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6415}