]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: WARN and zap SP when sync'ing if MMU role mismatches
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
4a98623d 51#include <asm/set_memory.h>
13673a90 52#include <asm/vmx.h>
3d0c27ad 53#include <asm/kvm_page_track.h>
1261bfa3 54#include "trace.h"
6aa8b732 55
b8e8c830
PB
56extern bool itlb_multihit_kvm_mitigation;
57
a9d6496d 58int __read_mostly nx_huge_pages = -1;
13fb5927
PB
59#ifdef CONFIG_PREEMPT_RT
60/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
61static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62#else
1aa9b957 63static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 64#endif
b8e8c830
PB
65
66static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 67static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 68
d5d6c18d 69static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
70 .set = set_nx_huge_pages,
71 .get = param_get_bool,
72};
73
d5d6c18d 74static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
75 .set = set_nx_huge_pages_recovery_ratio,
76 .get = param_get_uint,
77};
78
b8e8c830
PB
79module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
81module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82 &nx_huge_pages_recovery_ratio, 0644);
83__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 84
71fe7013
SC
85static bool __read_mostly force_flush_and_sync_on_reuse;
86module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
18552672
JR
88/*
89 * When setting this variable to true it enables Two-Dimensional-Paging
90 * where the hardware walks 2 page tables:
91 * 1. the guest-virtual to guest-physical
92 * 2. while doing 1. it walks guest-physical to host-physical
93 * If the hardware supports that we don't need to do shadow paging.
94 */
2f333bcb 95bool tdp_enabled = false;
18552672 96
1d92d2e8 97static int max_huge_page_level __read_mostly;
83013059 98static int max_tdp_level __read_mostly;
703c335d 99
8b1fe17c
XG
100enum {
101 AUDIT_PRE_PAGE_FAULT,
102 AUDIT_POST_PAGE_FAULT,
103 AUDIT_PRE_PTE_WRITE,
6903074c
XG
104 AUDIT_POST_PTE_WRITE,
105 AUDIT_PRE_SYNC,
106 AUDIT_POST_SYNC
8b1fe17c 107};
37a7d8b0 108
37a7d8b0 109#ifdef MMU_DEBUG
5a9624af 110bool dbg = 0;
fa4a2c08 111module_param(dbg, bool, 0644);
d6c69ee9 112#endif
6aa8b732 113
957ed9ef
XG
114#define PTE_PREFETCH_NUM 8
115
6aa8b732
AK
116#define PT32_LEVEL_BITS 10
117
118#define PT32_LEVEL_SHIFT(level) \
d77c26fc 119 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 120
e04da980
JR
121#define PT32_LVL_OFFSET_MASK(level) \
122 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
124
125#define PT32_INDEX(address, level)\
126 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
6aa8b732
AK
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
132#define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
6aa8b732 135
90bb6fc5
AK
136#include <trace/events/kvm.h>
137
220f773a
TY
138/* make pte_list_desc fit well in cache line */
139#define PTE_LIST_EXT 3
140
53c07b18
XG
141struct pte_list_desc {
142 u64 *sptes[PTE_LIST_EXT];
143 struct pte_list_desc *more;
cd4a4e53
AK
144};
145
2d11123a
AK
146struct kvm_shadow_walk_iterator {
147 u64 addr;
148 hpa_t shadow_addr;
2d11123a 149 u64 *sptep;
dd3bfd59 150 int level;
2d11123a
AK
151 unsigned index;
152};
153
7eb77e9f
JS
154#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
155 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
156 (_root), (_addr)); \
157 shadow_walk_okay(&(_walker)); \
158 shadow_walk_next(&(_walker)))
159
160#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
161 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
162 shadow_walk_okay(&(_walker)); \
163 shadow_walk_next(&(_walker)))
164
c2a2ac2b
XG
165#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)) && \
168 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
169 __shadow_walk_next(&(_walker), spte))
170
53c07b18 171static struct kmem_cache *pte_list_desc_cache;
02c00b3a 172struct kmem_cache *mmu_page_header_cache;
45221ab6 173static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 174
ce88decf 175static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
176static union kvm_mmu_page_role
177kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 178
335e192a
PB
179#define CREATE_TRACE_POINTS
180#include "mmutrace.h"
181
40ef75a7
LT
182
183static inline bool kvm_available_flush_tlb_with_range(void)
184{
afaf0b2f 185 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
186}
187
188static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189 struct kvm_tlb_range *range)
190{
191 int ret = -ENOTSUPP;
192
afaf0b2f 193 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
b3646477 194 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
40ef75a7
LT
195
196 if (ret)
197 kvm_flush_remote_tlbs(kvm);
198}
199
2f2fad08 200void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
201 u64 start_gfn, u64 pages)
202{
203 struct kvm_tlb_range range;
204
205 range.start_gfn = start_gfn;
206 range.pages = pages;
207
208 kvm_flush_remote_tlbs_with_range(kvm, &range);
209}
210
8f79b064
BG
211static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
212 unsigned int access)
213{
c236d962 214 u64 spte = make_mmio_spte(vcpu, gfn, access);
8f79b064 215
c236d962
SC
216 trace_mark_mmio_spte(sptep, gfn, spte);
217 mmu_spte_set(sptep, spte);
ce88decf
XG
218}
219
ce88decf
XG
220static gfn_t get_mmio_spte_gfn(u64 spte)
221{
daa07cbc 222 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac 223
8a967d65 224 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
28a1f3ac
JS
225 & shadow_nonpresent_or_rsvd_mask;
226
227 return gpa >> PAGE_SHIFT;
ce88decf
XG
228}
229
230static unsigned get_mmio_spte_access(u64 spte)
231{
4af77151 232 return spte & shadow_mmio_access_mask;
ce88decf
XG
233}
234
54bf36aa 235static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 236{
cae7ed3c 237 u64 kvm_gen, spte_gen, gen;
089504c0 238
cae7ed3c
SC
239 gen = kvm_vcpu_memslots(vcpu)->generation;
240 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
241 return false;
089504c0 242
cae7ed3c 243 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
244 spte_gen = get_mmio_spte_generation(spte);
245
246 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
247 return likely(kvm_gen == spte_gen);
f8f55942
XG
248}
249
cd313569
MG
250static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
251 struct x86_exception *exception)
252{
ec7771ab 253 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 254 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
255 exception->error_code |= PFERR_RSVD_MASK;
256 return UNMAPPED_GVA;
257 }
258
cd313569
MG
259 return gpa;
260}
261
6aa8b732
AK
262static int is_cpuid_PSE36(void)
263{
264 return 1;
265}
266
73b1087e
AK
267static int is_nx(struct kvm_vcpu *vcpu)
268{
f6801dff 269 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
270}
271
da928521
AK
272static gfn_t pse36_gfn_delta(u32 gpte)
273{
274 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
275
276 return (gpte & PT32_DIR_PSE36_MASK) << shift;
277}
278
603e0651 279#ifdef CONFIG_X86_64
d555c333 280static void __set_spte(u64 *sptep, u64 spte)
e663ee64 281{
b19ee2ff 282 WRITE_ONCE(*sptep, spte);
e663ee64
AK
283}
284
603e0651 285static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 286{
b19ee2ff 287 WRITE_ONCE(*sptep, spte);
603e0651
XG
288}
289
290static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
291{
292 return xchg(sptep, spte);
293}
c2a2ac2b
XG
294
295static u64 __get_spte_lockless(u64 *sptep)
296{
6aa7de05 297 return READ_ONCE(*sptep);
c2a2ac2b 298}
a9221dd5 299#else
603e0651
XG
300union split_spte {
301 struct {
302 u32 spte_low;
303 u32 spte_high;
304 };
305 u64 spte;
306};
a9221dd5 307
c2a2ac2b
XG
308static void count_spte_clear(u64 *sptep, u64 spte)
309{
57354682 310 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
311
312 if (is_shadow_present_pte(spte))
313 return;
314
315 /* Ensure the spte is completely set before we increase the count */
316 smp_wmb();
317 sp->clear_spte_count++;
318}
319
603e0651
XG
320static void __set_spte(u64 *sptep, u64 spte)
321{
322 union split_spte *ssptep, sspte;
a9221dd5 323
603e0651
XG
324 ssptep = (union split_spte *)sptep;
325 sspte = (union split_spte)spte;
326
327 ssptep->spte_high = sspte.spte_high;
328
329 /*
330 * If we map the spte from nonpresent to present, We should store
331 * the high bits firstly, then set present bit, so cpu can not
332 * fetch this spte while we are setting the spte.
333 */
334 smp_wmb();
335
b19ee2ff 336 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
337}
338
603e0651
XG
339static void __update_clear_spte_fast(u64 *sptep, u64 spte)
340{
341 union split_spte *ssptep, sspte;
342
343 ssptep = (union split_spte *)sptep;
344 sspte = (union split_spte)spte;
345
b19ee2ff 346 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
347
348 /*
349 * If we map the spte from present to nonpresent, we should clear
350 * present bit firstly to avoid vcpu fetch the old high bits.
351 */
352 smp_wmb();
353
354 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 355 count_spte_clear(sptep, spte);
603e0651
XG
356}
357
358static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
359{
360 union split_spte *ssptep, sspte, orig;
361
362 ssptep = (union split_spte *)sptep;
363 sspte = (union split_spte)spte;
364
365 /* xchg acts as a barrier before the setting of the high bits */
366 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
367 orig.spte_high = ssptep->spte_high;
368 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 369 count_spte_clear(sptep, spte);
603e0651
XG
370
371 return orig.spte;
372}
c2a2ac2b
XG
373
374/*
375 * The idea using the light way get the spte on x86_32 guest is from
39656e83 376 * gup_get_pte (mm/gup.c).
accaefe0
XG
377 *
378 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
379 * coalesces them and we are running out of the MMU lock. Therefore
380 * we need to protect against in-progress updates of the spte.
381 *
382 * Reading the spte while an update is in progress may get the old value
383 * for the high part of the spte. The race is fine for a present->non-present
384 * change (because the high part of the spte is ignored for non-present spte),
385 * but for a present->present change we must reread the spte.
386 *
387 * All such changes are done in two steps (present->non-present and
388 * non-present->present), hence it is enough to count the number of
389 * present->non-present updates: if it changed while reading the spte,
390 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
391 */
392static u64 __get_spte_lockless(u64 *sptep)
393{
57354682 394 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
395 union split_spte spte, *orig = (union split_spte *)sptep;
396 int count;
397
398retry:
399 count = sp->clear_spte_count;
400 smp_rmb();
401
402 spte.spte_low = orig->spte_low;
403 smp_rmb();
404
405 spte.spte_high = orig->spte_high;
406 smp_rmb();
407
408 if (unlikely(spte.spte_low != orig->spte_low ||
409 count != sp->clear_spte_count))
410 goto retry;
411
412 return spte.spte;
413}
603e0651
XG
414#endif
415
8672b721
XG
416static bool spte_has_volatile_bits(u64 spte)
417{
f160c7b7
JS
418 if (!is_shadow_present_pte(spte))
419 return false;
420
c7ba5b48 421 /*
6a6256f9 422 * Always atomically update spte if it can be updated
c7ba5b48
XG
423 * out of mmu-lock, it can ensure dirty bit is not lost,
424 * also, it can help us to get a stable is_writable_pte()
425 * to ensure tlb flush is not missed.
426 */
f160c7b7
JS
427 if (spte_can_locklessly_be_made_writable(spte) ||
428 is_access_track_spte(spte))
c7ba5b48
XG
429 return true;
430
ac8d57e5 431 if (spte_ad_enabled(spte)) {
f160c7b7
JS
432 if ((spte & shadow_accessed_mask) == 0 ||
433 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
434 return true;
435 }
8672b721 436
f160c7b7 437 return false;
8672b721
XG
438}
439
1df9f2dc
XG
440/* Rules for using mmu_spte_set:
441 * Set the sptep from nonpresent to present.
442 * Note: the sptep being assigned *must* be either not present
443 * or in a state where the hardware will not attempt to update
444 * the spte.
445 */
446static void mmu_spte_set(u64 *sptep, u64 new_spte)
447{
448 WARN_ON(is_shadow_present_pte(*sptep));
449 __set_spte(sptep, new_spte);
450}
451
f39a058d
JS
452/*
453 * Update the SPTE (excluding the PFN), but do not track changes in its
454 * accessed/dirty status.
1df9f2dc 455 */
f39a058d 456static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 457{
c7ba5b48 458 u64 old_spte = *sptep;
4132779b 459
afd28fe1 460 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 461
6e7d0354
XG
462 if (!is_shadow_present_pte(old_spte)) {
463 mmu_spte_set(sptep, new_spte);
f39a058d 464 return old_spte;
6e7d0354 465 }
4132779b 466
c7ba5b48 467 if (!spte_has_volatile_bits(old_spte))
603e0651 468 __update_clear_spte_fast(sptep, new_spte);
4132779b 469 else
603e0651 470 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 471
83ef6c81
JS
472 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
473
f39a058d
JS
474 return old_spte;
475}
476
477/* Rules for using mmu_spte_update:
478 * Update the state bits, it means the mapped pfn is not changed.
479 *
480 * Whenever we overwrite a writable spte with a read-only one we
481 * should flush remote TLBs. Otherwise rmap_write_protect
482 * will find a read-only spte, even though the writable spte
483 * might be cached on a CPU's TLB, the return value indicates this
484 * case.
485 *
486 * Returns true if the TLB needs to be flushed
487 */
488static bool mmu_spte_update(u64 *sptep, u64 new_spte)
489{
490 bool flush = false;
491 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
492
493 if (!is_shadow_present_pte(old_spte))
494 return false;
495
c7ba5b48
XG
496 /*
497 * For the spte updated out of mmu-lock is safe, since
6a6256f9 498 * we always atomically update it, see the comments in
c7ba5b48
XG
499 * spte_has_volatile_bits().
500 */
ea4114bc 501 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 502 !is_writable_pte(new_spte))
83ef6c81 503 flush = true;
4132779b 504
7e71a59b 505 /*
83ef6c81 506 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
507 * to guarantee consistency between TLB and page tables.
508 */
7e71a59b 509
83ef6c81
JS
510 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
511 flush = true;
4132779b 512 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
513 }
514
515 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
516 flush = true;
4132779b 517 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 518 }
6e7d0354 519
83ef6c81 520 return flush;
b79b93f9
AK
521}
522
1df9f2dc
XG
523/*
524 * Rules for using mmu_spte_clear_track_bits:
525 * It sets the sptep from present to nonpresent, and track the
526 * state bits, it is used to clear the last level sptep.
83ef6c81 527 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
528 */
529static int mmu_spte_clear_track_bits(u64 *sptep)
530{
ba049e93 531 kvm_pfn_t pfn;
1df9f2dc
XG
532 u64 old_spte = *sptep;
533
534 if (!spte_has_volatile_bits(old_spte))
603e0651 535 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 536 else
603e0651 537 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 538
afd28fe1 539 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
540 return 0;
541
542 pfn = spte_to_pfn(old_spte);
86fde74c
XG
543
544 /*
545 * KVM does not hold the refcount of the page used by
546 * kvm mmu, before reclaiming the page, we should
547 * unmap it from mmu first.
548 */
bf4bea8e 549 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 550
83ef6c81 551 if (is_accessed_spte(old_spte))
1df9f2dc 552 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
553
554 if (is_dirty_spte(old_spte))
1df9f2dc 555 kvm_set_pfn_dirty(pfn);
83ef6c81 556
1df9f2dc
XG
557 return 1;
558}
559
560/*
561 * Rules for using mmu_spte_clear_no_track:
562 * Directly clear spte without caring the state bits of sptep,
563 * it is used to set the upper level spte.
564 */
565static void mmu_spte_clear_no_track(u64 *sptep)
566{
603e0651 567 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
568}
569
c2a2ac2b
XG
570static u64 mmu_spte_get_lockless(u64 *sptep)
571{
572 return __get_spte_lockless(sptep);
573}
574
d3e328f2
JS
575/* Restore an acc-track PTE back to a regular PTE */
576static u64 restore_acc_track_spte(u64 spte)
577{
578 u64 new_spte = spte;
8a967d65
PB
579 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
580 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
d3e328f2 581
ac8d57e5 582 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
583 WARN_ON_ONCE(!is_access_track_spte(spte));
584
585 new_spte &= ~shadow_acc_track_mask;
8a967d65
PB
586 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
587 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
d3e328f2
JS
588 new_spte |= saved_bits;
589
590 return new_spte;
591}
592
f160c7b7
JS
593/* Returns the Accessed status of the PTE and resets it at the same time. */
594static bool mmu_spte_age(u64 *sptep)
595{
596 u64 spte = mmu_spte_get_lockless(sptep);
597
598 if (!is_accessed_spte(spte))
599 return false;
600
ac8d57e5 601 if (spte_ad_enabled(spte)) {
f160c7b7
JS
602 clear_bit((ffs(shadow_accessed_mask) - 1),
603 (unsigned long *)sptep);
604 } else {
605 /*
606 * Capture the dirty status of the page, so that it doesn't get
607 * lost when the SPTE is marked for access tracking.
608 */
609 if (is_writable_pte(spte))
610 kvm_set_pfn_dirty(spte_to_pfn(spte));
611
612 spte = mark_spte_for_access_track(spte);
613 mmu_spte_update_no_track(sptep, spte);
614 }
615
616 return true;
617}
618
c2a2ac2b
XG
619static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
620{
c142786c
AK
621 /*
622 * Prevent page table teardown by making any free-er wait during
623 * kvm_flush_remote_tlbs() IPI to all active vcpus.
624 */
625 local_irq_disable();
36ca7e0a 626
c142786c
AK
627 /*
628 * Make sure a following spte read is not reordered ahead of the write
629 * to vcpu->mode.
630 */
36ca7e0a 631 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
632}
633
634static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
635{
c142786c
AK
636 /*
637 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 638 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
639 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
640 */
36ca7e0a 641 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 642 local_irq_enable();
c2a2ac2b
XG
643}
644
378f5cd6 645static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 646{
e2dec939
AK
647 int r;
648
531281ad 649 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
650 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
651 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 652 if (r)
284aa868 653 return r;
94ce87ef
SC
654 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
655 PT64_ROOT_MAX_LEVEL);
d3d25b04 656 if (r)
171a90d7 657 return r;
378f5cd6 658 if (maybe_indirect) {
94ce87ef
SC
659 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
660 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
661 if (r)
662 return r;
663 }
94ce87ef
SC
664 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
665 PT64_ROOT_MAX_LEVEL);
714b93da
AK
666}
667
668static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
669{
94ce87ef
SC
670 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
671 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
672 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
673 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
674}
675
53c07b18 676static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 677{
94ce87ef 678 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
679}
680
53c07b18 681static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 682{
53c07b18 683 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
684}
685
2032a93d
LJ
686static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
687{
688 if (!sp->role.direct)
689 return sp->gfns[index];
690
691 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
692}
693
694static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
695{
e9f2a760 696 if (!sp->role.direct) {
2032a93d 697 sp->gfns[index] = gfn;
e9f2a760
PB
698 return;
699 }
700
701 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
702 pr_err_ratelimited("gfn mismatch under direct page %llx "
703 "(expected %llx, got %llx)\n",
704 sp->gfn,
705 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
706}
707
05da4558 708/*
d4dbf470
TY
709 * Return the pointer to the large page information for a given gfn,
710 * handling slots that are not large page aligned.
05da4558 711 */
d4dbf470 712static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
8ca6f063 713 const struct kvm_memory_slot *slot, int level)
05da4558
MT
714{
715 unsigned long idx;
716
fb03cb6f 717 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 718 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
719}
720
547ffaed
XG
721static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
722 gfn_t gfn, int count)
723{
724 struct kvm_lpage_info *linfo;
725 int i;
726
3bae0459 727 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
728 linfo = lpage_info_slot(gfn, slot, i);
729 linfo->disallow_lpage += count;
730 WARN_ON(linfo->disallow_lpage < 0);
731 }
732}
733
734void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
735{
736 update_gfn_disallow_lpage_count(slot, gfn, 1);
737}
738
739void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
740{
741 update_gfn_disallow_lpage_count(slot, gfn, -1);
742}
743
3ed1a478 744static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 745{
699023e2 746 struct kvm_memslots *slots;
d25797b2 747 struct kvm_memory_slot *slot;
3ed1a478 748 gfn_t gfn;
05da4558 749
56ca57f9 750 kvm->arch.indirect_shadow_pages++;
3ed1a478 751 gfn = sp->gfn;
699023e2
PB
752 slots = kvm_memslots_for_spte_role(kvm, sp->role);
753 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
754
755 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 756 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
757 return kvm_slot_page_track_add_page(kvm, slot, gfn,
758 KVM_PAGE_TRACK_WRITE);
759
547ffaed 760 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
761}
762
29cf0f50 763void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
764{
765 if (sp->lpage_disallowed)
766 return;
767
768 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
769 list_add_tail(&sp->lpage_disallowed_link,
770 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
771 sp->lpage_disallowed = true;
772}
773
3ed1a478 774static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 775{
699023e2 776 struct kvm_memslots *slots;
d25797b2 777 struct kvm_memory_slot *slot;
3ed1a478 778 gfn_t gfn;
05da4558 779
56ca57f9 780 kvm->arch.indirect_shadow_pages--;
3ed1a478 781 gfn = sp->gfn;
699023e2
PB
782 slots = kvm_memslots_for_spte_role(kvm, sp->role);
783 slot = __gfn_to_memslot(slots, gfn);
3bae0459 784 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
785 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
786 KVM_PAGE_TRACK_WRITE);
787
547ffaed 788 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
789}
790
29cf0f50 791void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
792{
793 --kvm->stat.nx_lpage_splits;
794 sp->lpage_disallowed = false;
1aa9b957 795 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
796}
797
5d163b1c
XG
798static struct kvm_memory_slot *
799gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800 bool no_dirty_log)
05da4558
MT
801{
802 struct kvm_memory_slot *slot;
5d163b1c 803
54bf36aa 804 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
805 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
806 return NULL;
044c59c4 807 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
91b0d268 808 return NULL;
5d163b1c
XG
809
810 return slot;
811}
812
290fc38d 813/*
018aabb5 814 * About rmap_head encoding:
cd4a4e53 815 *
018aabb5
TY
816 * If the bit zero of rmap_head->val is clear, then it points to the only spte
817 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 818 * pte_list_desc containing more mappings.
018aabb5
TY
819 */
820
821/*
822 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 823 */
53c07b18 824static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 825 struct kvm_rmap_head *rmap_head)
cd4a4e53 826{
53c07b18 827 struct pte_list_desc *desc;
53a27b39 828 int i, count = 0;
cd4a4e53 829
018aabb5 830 if (!rmap_head->val) {
805a0f83 831 rmap_printk("%p %llx 0->1\n", spte, *spte);
018aabb5
TY
832 rmap_head->val = (unsigned long)spte;
833 } else if (!(rmap_head->val & 1)) {
805a0f83 834 rmap_printk("%p %llx 1->many\n", spte, *spte);
53c07b18 835 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 836 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 837 desc->sptes[1] = spte;
018aabb5 838 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 839 ++count;
cd4a4e53 840 } else {
805a0f83 841 rmap_printk("%p %llx many->many\n", spte, *spte);
018aabb5 842 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
c6c4f961 843 while (desc->sptes[PTE_LIST_EXT-1]) {
53c07b18 844 count += PTE_LIST_EXT;
c6c4f961
LR
845
846 if (!desc->more) {
847 desc->more = mmu_alloc_pte_list_desc(vcpu);
848 desc = desc->more;
849 break;
850 }
cd4a4e53
AK
851 desc = desc->more;
852 }
d555c333 853 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 854 ++count;
d555c333 855 desc->sptes[i] = spte;
cd4a4e53 856 }
53a27b39 857 return count;
cd4a4e53
AK
858}
859
53c07b18 860static void
018aabb5
TY
861pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
862 struct pte_list_desc *desc, int i,
863 struct pte_list_desc *prev_desc)
cd4a4e53
AK
864{
865 int j;
866
53c07b18 867 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 868 ;
d555c333
AK
869 desc->sptes[i] = desc->sptes[j];
870 desc->sptes[j] = NULL;
cd4a4e53
AK
871 if (j != 0)
872 return;
873 if (!prev_desc && !desc->more)
fe3c2b4c 874 rmap_head->val = 0;
cd4a4e53
AK
875 else
876 if (prev_desc)
877 prev_desc->more = desc->more;
878 else
018aabb5 879 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 880 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
881}
882
8daf3462 883static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 884{
53c07b18
XG
885 struct pte_list_desc *desc;
886 struct pte_list_desc *prev_desc;
cd4a4e53
AK
887 int i;
888
018aabb5 889 if (!rmap_head->val) {
8daf3462 890 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 891 BUG();
018aabb5 892 } else if (!(rmap_head->val & 1)) {
805a0f83 893 rmap_printk("%p 1->0\n", spte);
018aabb5 894 if ((u64 *)rmap_head->val != spte) {
8daf3462 895 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
896 BUG();
897 }
018aabb5 898 rmap_head->val = 0;
cd4a4e53 899 } else {
805a0f83 900 rmap_printk("%p many->many\n", spte);
018aabb5 901 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
902 prev_desc = NULL;
903 while (desc) {
018aabb5 904 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 905 if (desc->sptes[i] == spte) {
018aabb5
TY
906 pte_list_desc_remove_entry(rmap_head,
907 desc, i, prev_desc);
cd4a4e53
AK
908 return;
909 }
018aabb5 910 }
cd4a4e53
AK
911 prev_desc = desc;
912 desc = desc->more;
913 }
8daf3462 914 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
915 BUG();
916 }
917}
918
e7912386
WY
919static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
920{
921 mmu_spte_clear_track_bits(sptep);
922 __pte_list_remove(sptep, rmap_head);
923}
924
018aabb5
TY
925static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
926 struct kvm_memory_slot *slot)
53c07b18 927{
77d11309 928 unsigned long idx;
53c07b18 929
77d11309 930 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 931 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
932}
933
018aabb5
TY
934static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
935 struct kvm_mmu_page *sp)
9b9b1492 936{
699023e2 937 struct kvm_memslots *slots;
9b9b1492
TY
938 struct kvm_memory_slot *slot;
939
699023e2
PB
940 slots = kvm_memslots_for_spte_role(kvm, sp->role);
941 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 942 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
943}
944
f759e2b4
XG
945static bool rmap_can_add(struct kvm_vcpu *vcpu)
946{
356ec69a 947 struct kvm_mmu_memory_cache *mc;
f759e2b4 948
356ec69a 949 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 950 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
951}
952
53c07b18
XG
953static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
954{
955 struct kvm_mmu_page *sp;
018aabb5 956 struct kvm_rmap_head *rmap_head;
53c07b18 957
57354682 958 sp = sptep_to_sp(spte);
53c07b18 959 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
960 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
961 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
962}
963
53c07b18
XG
964static void rmap_remove(struct kvm *kvm, u64 *spte)
965{
966 struct kvm_mmu_page *sp;
967 gfn_t gfn;
018aabb5 968 struct kvm_rmap_head *rmap_head;
53c07b18 969
57354682 970 sp = sptep_to_sp(spte);
53c07b18 971 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 972 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 973 __pte_list_remove(spte, rmap_head);
53c07b18
XG
974}
975
1e3f42f0
TY
976/*
977 * Used by the following functions to iterate through the sptes linked by a
978 * rmap. All fields are private and not assumed to be used outside.
979 */
980struct rmap_iterator {
981 /* private fields */
982 struct pte_list_desc *desc; /* holds the sptep if not NULL */
983 int pos; /* index of the sptep */
984};
985
986/*
987 * Iteration must be started by this function. This should also be used after
988 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 989 * information in the iterator may not be valid.
1e3f42f0
TY
990 *
991 * Returns sptep if found, NULL otherwise.
992 */
018aabb5
TY
993static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
994 struct rmap_iterator *iter)
1e3f42f0 995{
77fbbbd2
TY
996 u64 *sptep;
997
018aabb5 998 if (!rmap_head->val)
1e3f42f0
TY
999 return NULL;
1000
018aabb5 1001 if (!(rmap_head->val & 1)) {
1e3f42f0 1002 iter->desc = NULL;
77fbbbd2
TY
1003 sptep = (u64 *)rmap_head->val;
1004 goto out;
1e3f42f0
TY
1005 }
1006
018aabb5 1007 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1008 iter->pos = 0;
77fbbbd2
TY
1009 sptep = iter->desc->sptes[iter->pos];
1010out:
1011 BUG_ON(!is_shadow_present_pte(*sptep));
1012 return sptep;
1e3f42f0
TY
1013}
1014
1015/*
1016 * Must be used with a valid iterator: e.g. after rmap_get_first().
1017 *
1018 * Returns sptep if found, NULL otherwise.
1019 */
1020static u64 *rmap_get_next(struct rmap_iterator *iter)
1021{
77fbbbd2
TY
1022 u64 *sptep;
1023
1e3f42f0
TY
1024 if (iter->desc) {
1025 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1026 ++iter->pos;
1027 sptep = iter->desc->sptes[iter->pos];
1028 if (sptep)
77fbbbd2 1029 goto out;
1e3f42f0
TY
1030 }
1031
1032 iter->desc = iter->desc->more;
1033
1034 if (iter->desc) {
1035 iter->pos = 0;
1036 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1037 sptep = iter->desc->sptes[iter->pos];
1038 goto out;
1e3f42f0
TY
1039 }
1040 }
1041
1042 return NULL;
77fbbbd2
TY
1043out:
1044 BUG_ON(!is_shadow_present_pte(*sptep));
1045 return sptep;
1e3f42f0
TY
1046}
1047
018aabb5
TY
1048#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1049 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1050 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1051
c3707958 1052static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1053{
1df9f2dc 1054 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1055 rmap_remove(kvm, sptep);
be38d276
AK
1056}
1057
8e22f955
XG
1058
1059static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1060{
1061 if (is_large_pte(*sptep)) {
57354682 1062 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1063 drop_spte(kvm, sptep);
1064 --kvm->stat.lpages;
1065 return true;
1066 }
1067
1068 return false;
1069}
1070
1071static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1072{
c3134ce2 1073 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1074 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1075
1076 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1077 KVM_PAGES_PER_HPAGE(sp->role.level));
1078 }
8e22f955
XG
1079}
1080
1081/*
49fde340 1082 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1083 * spte write-protection is caused by protecting shadow page table.
49fde340 1084 *
b4619660 1085 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1086 * protection:
1087 * - for dirty logging, the spte can be set to writable at anytime if
1088 * its dirty bitmap is properly set.
1089 * - for spte protection, the spte can be writable only after unsync-ing
1090 * shadow page.
8e22f955 1091 *
c126d94f 1092 * Return true if tlb need be flushed.
8e22f955 1093 */
c4f138b4 1094static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1095{
1096 u64 spte = *sptep;
1097
49fde340 1098 if (!is_writable_pte(spte) &&
ea4114bc 1099 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1100 return false;
1101
805a0f83 1102 rmap_printk("spte %p %llx\n", sptep, *sptep);
d13bc5b5 1103
49fde340 1104 if (pt_protect)
5fc3424f 1105 spte &= ~shadow_mmu_writable_mask;
d13bc5b5 1106 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1107
c126d94f 1108 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1109}
1110
018aabb5
TY
1111static bool __rmap_write_protect(struct kvm *kvm,
1112 struct kvm_rmap_head *rmap_head,
245c3912 1113 bool pt_protect)
98348e95 1114{
1e3f42f0
TY
1115 u64 *sptep;
1116 struct rmap_iterator iter;
d13bc5b5 1117 bool flush = false;
374cbac0 1118
018aabb5 1119 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1120 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1121
d13bc5b5 1122 return flush;
a0ed4607
TY
1123}
1124
c4f138b4 1125static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1126{
1127 u64 spte = *sptep;
1128
805a0f83 1129 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1130
1f4e5fc8 1131 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1132 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1133 return mmu_spte_update(sptep, spte);
1134}
1135
1f4e5fc8 1136static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1137{
1138 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1139 (unsigned long *)sptep);
1f4e5fc8 1140 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1141 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1142
1143 return was_writable;
1144}
1145
1146/*
1147 * Gets the GFN ready for another round of dirty logging by clearing the
1148 * - D bit on ad-enabled SPTEs, and
1149 * - W bit on ad-disabled SPTEs.
1150 * Returns true iff any D or W bits were cleared.
1151 */
0a234f5d
SC
1152static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1153 struct kvm_memory_slot *slot)
f4b4b180
KH
1154{
1155 u64 *sptep;
1156 struct rmap_iterator iter;
1157 bool flush = false;
1158
018aabb5 1159 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1160 if (spte_ad_need_write_protect(*sptep))
1161 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1162 else
1f4e5fc8 1163 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1164
1165 return flush;
1166}
1167
5dc99b23 1168/**
3b0f1d01 1169 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1170 * @kvm: kvm instance
1171 * @slot: slot to protect
1172 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1173 * @mask: indicates which pages we should protect
1174 *
89212919 1175 * Used when we do not need to care about huge page mappings.
5dc99b23 1176 */
3b0f1d01 1177static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1180{
018aabb5 1181 struct kvm_rmap_head *rmap_head;
a0ed4607 1182
897218ff 1183 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1184 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1185 slot->base_gfn + gfn_offset, mask, true);
e2209710
BG
1186
1187 if (!kvm_memslots_have_rmaps(kvm))
1188 return;
1189
5dc99b23 1190 while (mask) {
018aabb5 1191 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1192 PG_LEVEL_4K, slot);
018aabb5 1193 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1194
5dc99b23
TY
1195 /* clear the first set bit */
1196 mask &= mask - 1;
1197 }
374cbac0
AK
1198}
1199
f4b4b180 1200/**
ac8d57e5
PF
1201 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1202 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1203 * @kvm: kvm instance
1204 * @slot: slot to clear D-bit
1205 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1206 * @mask: indicates which pages we should clear D-bit
1207 *
1208 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1209 */
a018eba5
SC
1210static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1211 struct kvm_memory_slot *slot,
1212 gfn_t gfn_offset, unsigned long mask)
f4b4b180 1213{
018aabb5 1214 struct kvm_rmap_head *rmap_head;
f4b4b180 1215
897218ff 1216 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1217 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1218 slot->base_gfn + gfn_offset, mask, false);
e2209710
BG
1219
1220 if (!kvm_memslots_have_rmaps(kvm))
1221 return;
1222
f4b4b180 1223 while (mask) {
018aabb5 1224 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1225 PG_LEVEL_4K, slot);
0a234f5d 1226 __rmap_clear_dirty(kvm, rmap_head, slot);
f4b4b180
KH
1227
1228 /* clear the first set bit */
1229 mask &= mask - 1;
1230 }
1231}
f4b4b180 1232
3b0f1d01
KH
1233/**
1234 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1235 * PT level pages.
1236 *
1237 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1238 * enable dirty logging for them.
1239 *
89212919
KZ
1240 * We need to care about huge page mappings: e.g. during dirty logging we may
1241 * have such mappings.
3b0f1d01
KH
1242 */
1243void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1244 struct kvm_memory_slot *slot,
1245 gfn_t gfn_offset, unsigned long mask)
1246{
89212919
KZ
1247 /*
1248 * Huge pages are NOT write protected when we start dirty logging in
1249 * initially-all-set mode; must write protect them here so that they
1250 * are split to 4K on the first write.
1251 *
1252 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1253 * of memslot has no such restriction, so the range can cross two large
1254 * pages.
1255 */
1256 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1257 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1258 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1259
1260 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1261
1262 /* Cross two large pages? */
1263 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1264 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1265 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1266 PG_LEVEL_2M);
1267 }
1268
1269 /* Now handle 4K PTEs. */
a018eba5
SC
1270 if (kvm_x86_ops.cpu_dirty_log_size)
1271 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
88178fd4
KH
1272 else
1273 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1274}
1275
fb04a1ed
PX
1276int kvm_cpu_dirty_log_size(void)
1277{
6dd03800 1278 return kvm_x86_ops.cpu_dirty_log_size;
fb04a1ed
PX
1279}
1280
aeecee2e 1281bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
3ad93562
KZ
1282 struct kvm_memory_slot *slot, u64 gfn,
1283 int min_level)
95d4c16c 1284{
018aabb5 1285 struct kvm_rmap_head *rmap_head;
5dc99b23 1286 int i;
2f84569f 1287 bool write_protected = false;
95d4c16c 1288
e2209710
BG
1289 if (kvm_memslots_have_rmaps(kvm)) {
1290 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1291 rmap_head = __gfn_to_rmap(gfn, i, slot);
1292 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1293 }
5dc99b23
TY
1294 }
1295
897218ff 1296 if (is_tdp_mmu_enabled(kvm))
46044f72 1297 write_protected |=
3ad93562 1298 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
46044f72 1299
5dc99b23 1300 return write_protected;
95d4c16c
TY
1301}
1302
aeecee2e
XG
1303static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1304{
1305 struct kvm_memory_slot *slot;
1306
1307 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3ad93562 1308 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
aeecee2e
XG
1309}
1310
0a234f5d
SC
1311static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1312 struct kvm_memory_slot *slot)
e930bffe 1313{
1e3f42f0
TY
1314 u64 *sptep;
1315 struct rmap_iterator iter;
6a49f85c 1316 bool flush = false;
e930bffe 1317
018aabb5 1318 while ((sptep = rmap_get_first(rmap_head, &iter))) {
805a0f83 1319 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1e3f42f0 1320
e7912386 1321 pte_list_remove(rmap_head, sptep);
6a49f85c 1322 flush = true;
e930bffe 1323 }
1e3f42f0 1324
6a49f85c
XG
1325 return flush;
1326}
1327
3039bcc7
SC
1328static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1329 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1330 pte_t unused)
6a49f85c 1331{
0a234f5d 1332 return kvm_zap_rmapp(kvm, rmap_head, slot);
e930bffe
AA
1333}
1334
3039bcc7
SC
1335static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1336 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1337 pte_t pte)
3da0dd43 1338{
1e3f42f0
TY
1339 u64 *sptep;
1340 struct rmap_iterator iter;
3da0dd43 1341 int need_flush = 0;
1e3f42f0 1342 u64 new_spte;
ba049e93 1343 kvm_pfn_t new_pfn;
3da0dd43 1344
3039bcc7
SC
1345 WARN_ON(pte_huge(pte));
1346 new_pfn = pte_pfn(pte);
1e3f42f0 1347
0d536790 1348restart:
018aabb5 1349 for_each_rmap_spte(rmap_head, &iter, sptep) {
805a0f83 1350 rmap_printk("spte %p %llx gfn %llx (%d)\n",
f160c7b7 1351 sptep, *sptep, gfn, level);
1e3f42f0 1352
3da0dd43 1353 need_flush = 1;
1e3f42f0 1354
3039bcc7 1355 if (pte_write(pte)) {
e7912386 1356 pte_list_remove(rmap_head, sptep);
0d536790 1357 goto restart;
3da0dd43 1358 } else {
cb3eedab
PB
1359 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1360 *sptep, new_pfn);
1e3f42f0
TY
1361
1362 mmu_spte_clear_track_bits(sptep);
1363 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1364 }
1365 }
1e3f42f0 1366
3cc5ea94
LT
1367 if (need_flush && kvm_available_flush_tlb_with_range()) {
1368 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1369 return 0;
1370 }
1371
0cf853c5 1372 return need_flush;
3da0dd43
IE
1373}
1374
6ce1f4e2
XG
1375struct slot_rmap_walk_iterator {
1376 /* input fields. */
1377 struct kvm_memory_slot *slot;
1378 gfn_t start_gfn;
1379 gfn_t end_gfn;
1380 int start_level;
1381 int end_level;
1382
1383 /* output fields. */
1384 gfn_t gfn;
018aabb5 1385 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1386 int level;
1387
1388 /* private field. */
018aabb5 1389 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1390};
1391
1392static void
1393rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1394{
1395 iterator->level = level;
1396 iterator->gfn = iterator->start_gfn;
1397 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1398 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1399 iterator->slot);
1400}
1401
1402static void
1403slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1404 struct kvm_memory_slot *slot, int start_level,
1405 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1406{
1407 iterator->slot = slot;
1408 iterator->start_level = start_level;
1409 iterator->end_level = end_level;
1410 iterator->start_gfn = start_gfn;
1411 iterator->end_gfn = end_gfn;
1412
1413 rmap_walk_init_level(iterator, iterator->start_level);
1414}
1415
1416static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1417{
1418 return !!iterator->rmap;
1419}
1420
1421static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1422{
1423 if (++iterator->rmap <= iterator->end_rmap) {
1424 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1425 return;
1426 }
1427
1428 if (++iterator->level > iterator->end_level) {
1429 iterator->rmap = NULL;
1430 return;
1431 }
1432
1433 rmap_walk_init_level(iterator, iterator->level);
1434}
1435
1436#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1437 _start_gfn, _end_gfn, _iter_) \
1438 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1439 _end_level_, _start_gfn, _end_gfn); \
1440 slot_rmap_walk_okay(_iter_); \
1441 slot_rmap_walk_next(_iter_))
1442
3039bcc7
SC
1443typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1444 struct kvm_memory_slot *slot, gfn_t gfn,
1445 int level, pte_t pte);
c1b91493 1446
3039bcc7
SC
1447static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1448 struct kvm_gfn_range *range,
1449 rmap_handler_t handler)
e930bffe 1450{
6ce1f4e2 1451 struct slot_rmap_walk_iterator iterator;
3039bcc7 1452 bool ret = false;
e930bffe 1453
3039bcc7
SC
1454 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1455 range->start, range->end - 1, &iterator)
1456 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1457 iterator.level, range->pte);
e930bffe 1458
f395302e 1459 return ret;
e930bffe
AA
1460}
1461
3039bcc7 1462bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
84504ef3 1463{
e2209710 1464 bool flush = false;
063afacd 1465
e2209710
BG
1466 if (kvm_memslots_have_rmaps(kvm))
1467 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
063afacd 1468
897218ff 1469 if (is_tdp_mmu_enabled(kvm))
3039bcc7 1470 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
063afacd 1471
3039bcc7 1472 return flush;
b3ae2096
TY
1473}
1474
3039bcc7 1475bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
3da0dd43 1476{
e2209710 1477 bool flush = false;
1d8dd6b3 1478
e2209710
BG
1479 if (kvm_memslots_have_rmaps(kvm))
1480 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1d8dd6b3 1481
897218ff 1482 if (is_tdp_mmu_enabled(kvm))
3039bcc7 1483 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1d8dd6b3 1484
3039bcc7 1485 return flush;
e930bffe
AA
1486}
1487
3039bcc7
SC
1488static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1489 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1490 pte_t unused)
e930bffe 1491{
1e3f42f0 1492 u64 *sptep;
3f649ab7 1493 struct rmap_iterator iter;
e930bffe
AA
1494 int young = 0;
1495
f160c7b7
JS
1496 for_each_rmap_spte(rmap_head, &iter, sptep)
1497 young |= mmu_spte_age(sptep);
0d536790 1498
e930bffe
AA
1499 return young;
1500}
1501
3039bcc7
SC
1502static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1503 struct kvm_memory_slot *slot, gfn_t gfn,
1504 int level, pte_t unused)
8ee53820 1505{
1e3f42f0
TY
1506 u64 *sptep;
1507 struct rmap_iterator iter;
8ee53820 1508
83ef6c81
JS
1509 for_each_rmap_spte(rmap_head, &iter, sptep)
1510 if (is_accessed_spte(*sptep))
1511 return 1;
83ef6c81 1512 return 0;
8ee53820
AA
1513}
1514
53a27b39
MT
1515#define RMAP_RECYCLE_THRESHOLD 1000
1516
852e3c19 1517static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1518{
018aabb5 1519 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1520 struct kvm_mmu_page *sp;
1521
57354682 1522 sp = sptep_to_sp(spte);
53a27b39 1523
018aabb5 1524 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1525
3039bcc7 1526 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
c3134ce2
LT
1527 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1528 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1529}
1530
3039bcc7 1531bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
e930bffe 1532{
e2209710 1533 bool young = false;
3039bcc7 1534
e2209710
BG
1535 if (kvm_memslots_have_rmaps(kvm))
1536 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
f8e14497 1537
897218ff 1538 if (is_tdp_mmu_enabled(kvm))
3039bcc7 1539 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
f8e14497
BG
1540
1541 return young;
e930bffe
AA
1542}
1543
3039bcc7 1544bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
8ee53820 1545{
e2209710 1546 bool young = false;
3039bcc7 1547
e2209710
BG
1548 if (kvm_memslots_have_rmaps(kvm))
1549 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
f8e14497 1550
897218ff 1551 if (is_tdp_mmu_enabled(kvm))
3039bcc7 1552 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
f8e14497
BG
1553
1554 return young;
8ee53820
AA
1555}
1556
d6c69ee9 1557#ifdef MMU_DEBUG
47ad8e68 1558static int is_empty_shadow_page(u64 *spt)
6aa8b732 1559{
139bdb2d
AK
1560 u64 *pos;
1561 u64 *end;
1562
47ad8e68 1563 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1564 if (is_shadow_present_pte(*pos)) {
b8688d51 1565 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1566 pos, *pos);
6aa8b732 1567 return 0;
139bdb2d 1568 }
6aa8b732
AK
1569 return 1;
1570}
d6c69ee9 1571#endif
6aa8b732 1572
45221ab6
DH
1573/*
1574 * This value is the sum of all of the kvm instances's
1575 * kvm->arch.n_used_mmu_pages values. We need a global,
1576 * aggregate version in order to make the slab shrinker
1577 * faster
1578 */
bc8a3d89 1579static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1580{
1581 kvm->arch.n_used_mmu_pages += nr;
1582 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1583}
1584
834be0d8 1585static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1586{
fa4a2c08 1587 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1588 hlist_del(&sp->hash_link);
bd4c86ea
XG
1589 list_del(&sp->link);
1590 free_page((unsigned long)sp->spt);
834be0d8
GN
1591 if (!sp->role.direct)
1592 free_page((unsigned long)sp->gfns);
e8ad9a70 1593 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1594}
1595
cea0f0e7
AK
1596static unsigned kvm_page_table_hashfn(gfn_t gfn)
1597{
114df303 1598 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1599}
1600
714b93da 1601static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1602 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1603{
cea0f0e7
AK
1604 if (!parent_pte)
1605 return;
cea0f0e7 1606
67052b35 1607 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1608}
1609
4db35314 1610static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1611 u64 *parent_pte)
1612{
8daf3462 1613 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1614}
1615
bcdd9a93
XG
1616static void drop_parent_pte(struct kvm_mmu_page *sp,
1617 u64 *parent_pte)
1618{
1619 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1620 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1621}
1622
47005792 1623static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1624{
67052b35 1625 struct kvm_mmu_page *sp;
7ddca7e4 1626
94ce87ef
SC
1627 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1628 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1629 if (!direct)
94ce87ef 1630 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1631 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1632
1633 /*
1634 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1635 * depends on valid pages being added to the head of the list. See
1636 * comments in kvm_zap_obsolete_pages().
1637 */
ca333add 1638 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1639 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1640 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1641 return sp;
ad8cfbe3
MT
1642}
1643
67052b35 1644static void mark_unsync(u64 *spte);
1047df1f 1645static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1646{
74c4e63a
TY
1647 u64 *sptep;
1648 struct rmap_iterator iter;
1649
1650 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1651 mark_unsync(sptep);
1652 }
0074ff63
MT
1653}
1654
67052b35 1655static void mark_unsync(u64 *spte)
0074ff63 1656{
67052b35 1657 struct kvm_mmu_page *sp;
1047df1f 1658 unsigned int index;
0074ff63 1659
57354682 1660 sp = sptep_to_sp(spte);
1047df1f
XG
1661 index = spte - sp->spt;
1662 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1663 return;
1047df1f 1664 if (sp->unsync_children++)
0074ff63 1665 return;
1047df1f 1666 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1667}
1668
e8bc217a 1669static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1670 struct kvm_mmu_page *sp)
e8bc217a 1671{
1f50f1b3 1672 return 0;
e8bc217a
MT
1673}
1674
60c8aec6
MT
1675#define KVM_PAGE_ARRAY_NR 16
1676
1677struct kvm_mmu_pages {
1678 struct mmu_page_and_offset {
1679 struct kvm_mmu_page *sp;
1680 unsigned int idx;
1681 } page[KVM_PAGE_ARRAY_NR];
1682 unsigned int nr;
1683};
1684
cded19f3
HE
1685static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1686 int idx)
4731d4c7 1687{
60c8aec6 1688 int i;
4731d4c7 1689
60c8aec6
MT
1690 if (sp->unsync)
1691 for (i=0; i < pvec->nr; i++)
1692 if (pvec->page[i].sp == sp)
1693 return 0;
1694
1695 pvec->page[pvec->nr].sp = sp;
1696 pvec->page[pvec->nr].idx = idx;
1697 pvec->nr++;
1698 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1699}
1700
fd951457
TY
1701static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1702{
1703 --sp->unsync_children;
1704 WARN_ON((int)sp->unsync_children < 0);
1705 __clear_bit(idx, sp->unsync_child_bitmap);
1706}
1707
60c8aec6
MT
1708static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1709 struct kvm_mmu_pages *pvec)
1710{
1711 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1712
37178b8b 1713 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1714 struct kvm_mmu_page *child;
4731d4c7
MT
1715 u64 ent = sp->spt[i];
1716
fd951457
TY
1717 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1718 clear_unsync_child_bit(sp, i);
1719 continue;
1720 }
7a8f1a74 1721
e47c4aee 1722 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1723
1724 if (child->unsync_children) {
1725 if (mmu_pages_add(pvec, child, i))
1726 return -ENOSPC;
1727
1728 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1729 if (!ret) {
1730 clear_unsync_child_bit(sp, i);
1731 continue;
1732 } else if (ret > 0) {
7a8f1a74 1733 nr_unsync_leaf += ret;
fd951457 1734 } else
7a8f1a74
XG
1735 return ret;
1736 } else if (child->unsync) {
1737 nr_unsync_leaf++;
1738 if (mmu_pages_add(pvec, child, i))
1739 return -ENOSPC;
1740 } else
fd951457 1741 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1742 }
1743
60c8aec6
MT
1744 return nr_unsync_leaf;
1745}
1746
e23d3fef
XG
1747#define INVALID_INDEX (-1)
1748
60c8aec6
MT
1749static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1750 struct kvm_mmu_pages *pvec)
1751{
0a47cd85 1752 pvec->nr = 0;
60c8aec6
MT
1753 if (!sp->unsync_children)
1754 return 0;
1755
e23d3fef 1756 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1757 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1758}
1759
4731d4c7
MT
1760static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1761{
1762 WARN_ON(!sp->unsync);
5e1b3ddb 1763 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1764 sp->unsync = 0;
1765 --kvm->stat.mmu_unsync;
1766}
1767
83cdb568
SC
1768static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1769 struct list_head *invalid_list);
7775834a
XG
1770static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1771 struct list_head *invalid_list);
4731d4c7 1772
ac101b7c
SC
1773#define for_each_valid_sp(_kvm, _sp, _list) \
1774 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1775 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1776 } else
1044b030
TY
1777
1778#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1779 for_each_valid_sp(_kvm, _sp, \
1780 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1781 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1782
f918b443 1783/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1784static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1785 struct list_head *invalid_list)
4731d4c7 1786{
2640b086 1787 if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1788 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1789 return false;
4731d4c7
MT
1790 }
1791
1f50f1b3 1792 return true;
4731d4c7
MT
1793}
1794
a2113634
SC
1795static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1796 struct list_head *invalid_list,
1797 bool remote_flush)
1798{
cfd32acf 1799 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1800 return false;
1801
1802 if (!list_empty(invalid_list))
1803 kvm_mmu_commit_zap_page(kvm, invalid_list);
1804 else
1805 kvm_flush_remote_tlbs(kvm);
1806 return true;
1807}
1808
35a70510
PB
1809static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1810 struct list_head *invalid_list,
1811 bool remote_flush, bool local_flush)
1d9dc7e0 1812{
a2113634 1813 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1814 return;
d98ba053 1815
a2113634 1816 if (local_flush)
8c8560b8 1817 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1818}
1819
e37fa785
XG
1820#ifdef CONFIG_KVM_MMU_AUDIT
1821#include "mmu_audit.c"
1822#else
1823static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1824static void mmu_audit_disable(void) { }
1825#endif
1826
002c5f73
SC
1827static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1828{
fac026da
SC
1829 return sp->role.invalid ||
1830 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1831}
1832
1f50f1b3 1833static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1834 struct list_head *invalid_list)
1d9dc7e0 1835{
9a43c5d9
PB
1836 kvm_unlink_unsync_page(vcpu->kvm, sp);
1837 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1838}
1839
60c8aec6 1840struct mmu_page_path {
2a7266a8
YZ
1841 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1842 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1843};
1844
60c8aec6 1845#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1846 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1847 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1848 i = mmu_pages_next(&pvec, &parents, i))
1849
cded19f3
HE
1850static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1851 struct mmu_page_path *parents,
1852 int i)
60c8aec6
MT
1853{
1854 int n;
1855
1856 for (n = i+1; n < pvec->nr; n++) {
1857 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1858 unsigned idx = pvec->page[n].idx;
1859 int level = sp->role.level;
60c8aec6 1860
0a47cd85 1861 parents->idx[level-1] = idx;
3bae0459 1862 if (level == PG_LEVEL_4K)
0a47cd85 1863 break;
60c8aec6 1864
0a47cd85 1865 parents->parent[level-2] = sp;
60c8aec6
MT
1866 }
1867
1868 return n;
1869}
1870
0a47cd85
PB
1871static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1872 struct mmu_page_path *parents)
1873{
1874 struct kvm_mmu_page *sp;
1875 int level;
1876
1877 if (pvec->nr == 0)
1878 return 0;
1879
e23d3fef
XG
1880 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1881
0a47cd85
PB
1882 sp = pvec->page[0].sp;
1883 level = sp->role.level;
3bae0459 1884 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1885
1886 parents->parent[level-2] = sp;
1887
1888 /* Also set up a sentinel. Further entries in pvec are all
1889 * children of sp, so this element is never overwritten.
1890 */
1891 parents->parent[level-1] = NULL;
1892 return mmu_pages_next(pvec, parents, 0);
1893}
1894
cded19f3 1895static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1896{
60c8aec6
MT
1897 struct kvm_mmu_page *sp;
1898 unsigned int level = 0;
1899
1900 do {
1901 unsigned int idx = parents->idx[level];
60c8aec6
MT
1902 sp = parents->parent[level];
1903 if (!sp)
1904 return;
1905
e23d3fef 1906 WARN_ON(idx == INVALID_INDEX);
fd951457 1907 clear_unsync_child_bit(sp, idx);
60c8aec6 1908 level++;
0a47cd85 1909 } while (!sp->unsync_children);
60c8aec6 1910}
4731d4c7 1911
60c8aec6
MT
1912static void mmu_sync_children(struct kvm_vcpu *vcpu,
1913 struct kvm_mmu_page *parent)
1914{
1915 int i;
1916 struct kvm_mmu_page *sp;
1917 struct mmu_page_path parents;
1918 struct kvm_mmu_pages pages;
d98ba053 1919 LIST_HEAD(invalid_list);
50c9e6f3 1920 bool flush = false;
60c8aec6 1921
60c8aec6 1922 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1923 bool protected = false;
b1a36821
MT
1924
1925 for_each_sp(pages, sp, parents, i)
54bf36aa 1926 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 1927
50c9e6f3 1928 if (protected) {
b1a36821 1929 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
1930 flush = false;
1931 }
b1a36821 1932
60c8aec6 1933 for_each_sp(pages, sp, parents, i) {
1f50f1b3 1934 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1935 mmu_pages_clear_parents(&parents);
1936 }
531810ca 1937 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
50c9e6f3 1938 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
531810ca 1939 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
50c9e6f3
PB
1940 flush = false;
1941 }
60c8aec6 1942 }
50c9e6f3
PB
1943
1944 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
1945}
1946
a30f47cb
XG
1947static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1948{
e5691a81 1949 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
1950}
1951
1952static void clear_sp_write_flooding_count(u64 *spte)
1953{
57354682 1954 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
1955}
1956
cea0f0e7
AK
1957static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1958 gfn_t gfn,
1959 gva_t gaddr,
1960 unsigned level,
f6e2c02b 1961 int direct,
0a2b64c5 1962 unsigned int access)
cea0f0e7 1963{
fb58a9c3 1964 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 1965 union kvm_mmu_page_role role;
ac101b7c 1966 struct hlist_head *sp_list;
cea0f0e7 1967 unsigned quadrant;
9f1a122f 1968 struct kvm_mmu_page *sp;
f3414bc7 1969 int collisions = 0;
2a74003a 1970 LIST_HEAD(invalid_list);
cea0f0e7 1971
36d9594d 1972 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 1973 role.level = level;
f6e2c02b 1974 role.direct = direct;
84b0c8c6 1975 if (role.direct)
47c42e6b 1976 role.gpte_is_8_bytes = true;
41074d07 1977 role.access = access;
fb58a9c3 1978 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1979 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1980 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1981 role.quadrant = quadrant;
1982 }
ac101b7c
SC
1983
1984 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
1985 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
1986 if (sp->gfn != gfn) {
1987 collisions++;
1988 continue;
1989 }
1990
ddc16abb
SC
1991 if (sp->role.word != role.word) {
1992 /*
1993 * If the guest is creating an upper-level page, zap
1994 * unsync pages for the same gfn. While it's possible
1995 * the guest is using recursive page tables, in all
1996 * likelihood the guest has stopped using the unsync
1997 * page and is installing a completely unrelated page.
1998 * Unsync pages must not be left as is, because the new
1999 * upper-level page will be write-protected.
2000 */
2001 if (level > PG_LEVEL_4K && sp->unsync)
2002 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2003 &invalid_list);
7ae680eb 2004 continue;
ddc16abb 2005 }
4731d4c7 2006
fb58a9c3
SC
2007 if (direct_mmu)
2008 goto trace_get_page;
2009
2a74003a
PB
2010 if (sp->unsync) {
2011 /* The page is good, but __kvm_sync_page might still end
2012 * up zapping it. If so, break in order to rebuild it.
2013 */
2014 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2015 break;
2016
2017 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2018 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2019 }
e02aa901 2020
98bba238 2021 if (sp->unsync_children)
f6f6195b 2022 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2023
a30f47cb 2024 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2025
2026trace_get_page:
7ae680eb 2027 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2028 goto out;
7ae680eb 2029 }
47005792 2030
dfc5aa00 2031 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2032
2033 sp = kvm_mmu_alloc_page(vcpu, direct);
2034
4db35314
AK
2035 sp->gfn = gfn;
2036 sp->role = role;
ac101b7c 2037 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2038 if (!direct) {
56ca57f9 2039 account_shadowed(vcpu->kvm, sp);
3bae0459 2040 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2041 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
4731d4c7 2042 }
f691fe1d 2043 trace_kvm_mmu_get_page(sp, true);
f3414bc7 2044out:
ddc16abb
SC
2045 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2046
f3414bc7
DM
2047 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2048 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2049 return sp;
cea0f0e7
AK
2050}
2051
7eb77e9f
JS
2052static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2053 struct kvm_vcpu *vcpu, hpa_t root,
2054 u64 addr)
2d11123a
AK
2055{
2056 iterator->addr = addr;
7eb77e9f 2057 iterator->shadow_addr = root;
44dd3ffa 2058 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2059
2a7266a8 2060 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2061 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2062 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2063 --iterator->level;
2064
2d11123a 2065 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2066 /*
2067 * prev_root is currently only used for 64-bit hosts. So only
2068 * the active root_hpa is valid here.
2069 */
44dd3ffa 2070 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2071
2d11123a 2072 iterator->shadow_addr
44dd3ffa 2073 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2074 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2075 --iterator->level;
2076 if (!iterator->shadow_addr)
2077 iterator->level = 0;
2078 }
2079}
2080
7eb77e9f
JS
2081static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2082 struct kvm_vcpu *vcpu, u64 addr)
2083{
44dd3ffa 2084 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2085 addr);
2086}
2087
2d11123a
AK
2088static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2089{
3bae0459 2090 if (iterator->level < PG_LEVEL_4K)
2d11123a 2091 return false;
4d88954d 2092
2d11123a
AK
2093 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2094 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2095 return true;
2096}
2097
c2a2ac2b
XG
2098static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2099 u64 spte)
2d11123a 2100{
c2a2ac2b 2101 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2102 iterator->level = 0;
2103 return;
2104 }
2105
c2a2ac2b 2106 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2107 --iterator->level;
2108}
2109
c2a2ac2b
XG
2110static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2111{
bb606a9b 2112 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2113}
2114
cc4674d0
BG
2115static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2116 struct kvm_mmu_page *sp)
2117{
2118 u64 spte;
2119
2120 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2121
2122 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2123
1df9f2dc 2124 mmu_spte_set(sptep, spte);
98bba238
TY
2125
2126 mmu_page_add_parent_pte(vcpu, sp, sptep);
2127
2128 if (sp->unsync_children || sp->unsync)
2129 mark_unsync(sptep);
32ef26a3
AK
2130}
2131
a357bd22
AK
2132static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2133 unsigned direct_access)
2134{
2135 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2136 struct kvm_mmu_page *child;
2137
2138 /*
2139 * For the direct sp, if the guest pte's dirty bit
2140 * changed form clean to dirty, it will corrupt the
2141 * sp's access: allow writable in the read-only sp,
2142 * so we should update the spte at this point to get
2143 * a new sp with the correct access.
2144 */
e47c4aee 2145 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2146 if (child->role.access == direct_access)
2147 return;
2148
bcdd9a93 2149 drop_parent_pte(child, sptep);
c3134ce2 2150 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2151 }
2152}
2153
2de4085c
BG
2154/* Returns the number of zapped non-leaf child shadow pages. */
2155static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2156 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2157{
2158 u64 pte;
2159 struct kvm_mmu_page *child;
2160
2161 pte = *spte;
2162 if (is_shadow_present_pte(pte)) {
505aef8f 2163 if (is_last_spte(pte, sp->role.level)) {
c3707958 2164 drop_spte(kvm, spte);
505aef8f
XG
2165 if (is_large_pte(pte))
2166 --kvm->stat.lpages;
2167 } else {
e47c4aee 2168 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2169 drop_parent_pte(child, spte);
2de4085c
BG
2170
2171 /*
2172 * Recursively zap nested TDP SPs, parentless SPs are
2173 * unlikely to be used again in the near future. This
2174 * avoids retaining a large number of stale nested SPs.
2175 */
2176 if (tdp_enabled && invalid_list &&
2177 child->role.guest_mode && !child->parent_ptes.val)
2178 return kvm_mmu_prepare_zap_page(kvm, child,
2179 invalid_list);
38e3b2b2 2180 }
ace569e0 2181 } else if (is_mmio_spte(pte)) {
ce88decf 2182 mmu_spte_clear_no_track(spte);
ace569e0 2183 }
2de4085c 2184 return 0;
38e3b2b2
XG
2185}
2186
2de4085c
BG
2187static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2188 struct kvm_mmu_page *sp,
2189 struct list_head *invalid_list)
a436036b 2190{
2de4085c 2191 int zapped = 0;
697fe2e2 2192 unsigned i;
697fe2e2 2193
38e3b2b2 2194 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2195 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2196
2197 return zapped;
a436036b
AK
2198}
2199
31aa2b44 2200static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2201{
1e3f42f0
TY
2202 u64 *sptep;
2203 struct rmap_iterator iter;
a436036b 2204
018aabb5 2205 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2206 drop_parent_pte(sp, sptep);
31aa2b44
AK
2207}
2208
60c8aec6 2209static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2210 struct kvm_mmu_page *parent,
2211 struct list_head *invalid_list)
4731d4c7 2212{
60c8aec6
MT
2213 int i, zapped = 0;
2214 struct mmu_page_path parents;
2215 struct kvm_mmu_pages pages;
4731d4c7 2216
3bae0459 2217 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2218 return 0;
60c8aec6 2219
60c8aec6
MT
2220 while (mmu_unsync_walk(parent, &pages)) {
2221 struct kvm_mmu_page *sp;
2222
2223 for_each_sp(pages, sp, parents, i) {
7775834a 2224 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2225 mmu_pages_clear_parents(&parents);
77662e00 2226 zapped++;
60c8aec6 2227 }
60c8aec6
MT
2228 }
2229
2230 return zapped;
4731d4c7
MT
2231}
2232
83cdb568
SC
2233static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2234 struct kvm_mmu_page *sp,
2235 struct list_head *invalid_list,
2236 int *nr_zapped)
31aa2b44 2237{
83cdb568 2238 bool list_unstable;
f691fe1d 2239
7775834a 2240 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2241 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2242 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2243 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2244 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2245
83cdb568
SC
2246 /* Zapping children means active_mmu_pages has become unstable. */
2247 list_unstable = *nr_zapped;
2248
f6e2c02b 2249 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2250 unaccount_shadowed(kvm, sp);
5304b8d3 2251
4731d4c7
MT
2252 if (sp->unsync)
2253 kvm_unlink_unsync_page(kvm, sp);
4db35314 2254 if (!sp->root_count) {
54a4f023 2255 /* Count self */
83cdb568 2256 (*nr_zapped)++;
f95eec9b
SC
2257
2258 /*
2259 * Already invalid pages (previously active roots) are not on
2260 * the active page list. See list_del() in the "else" case of
2261 * !sp->root_count.
2262 */
2263 if (sp->role.invalid)
2264 list_add(&sp->link, invalid_list);
2265 else
2266 list_move(&sp->link, invalid_list);
aa6bd187 2267 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2268 } else {
f95eec9b
SC
2269 /*
2270 * Remove the active root from the active page list, the root
2271 * will be explicitly freed when the root_count hits zero.
2272 */
2273 list_del(&sp->link);
05988d72 2274
10605204
SC
2275 /*
2276 * Obsolete pages cannot be used on any vCPUs, see the comment
2277 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2278 * treats invalid shadow pages as being obsolete.
2279 */
2280 if (!is_obsolete_sp(kvm, sp))
05988d72 2281 kvm_reload_remote_mmus(kvm);
2e53d63a 2282 }
7775834a 2283
b8e8c830
PB
2284 if (sp->lpage_disallowed)
2285 unaccount_huge_nx_page(kvm, sp);
2286
7775834a 2287 sp->role.invalid = 1;
83cdb568
SC
2288 return list_unstable;
2289}
2290
2291static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2292 struct list_head *invalid_list)
2293{
2294 int nr_zapped;
2295
2296 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2297 return nr_zapped;
a436036b
AK
2298}
2299
7775834a
XG
2300static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2301 struct list_head *invalid_list)
2302{
945315b9 2303 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2304
2305 if (list_empty(invalid_list))
2306 return;
2307
c142786c 2308 /*
9753f529
LT
2309 * We need to make sure everyone sees our modifications to
2310 * the page tables and see changes to vcpu->mode here. The barrier
2311 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2312 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2313 *
2314 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2315 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2316 */
2317 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2318
945315b9 2319 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2320 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2321 kvm_mmu_free_page(sp);
945315b9 2322 }
7775834a
XG
2323}
2324
6b82ef2c
SC
2325static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2326 unsigned long nr_to_zap)
5da59607 2327{
6b82ef2c
SC
2328 unsigned long total_zapped = 0;
2329 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2330 LIST_HEAD(invalid_list);
6b82ef2c
SC
2331 bool unstable;
2332 int nr_zapped;
5da59607
TY
2333
2334 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2335 return 0;
2336
6b82ef2c 2337restart:
8fc51726 2338 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
6b82ef2c
SC
2339 /*
2340 * Don't zap active root pages, the page itself can't be freed
2341 * and zapping it will just force vCPUs to realloc and reload.
2342 */
2343 if (sp->root_count)
2344 continue;
2345
2346 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2347 &nr_zapped);
2348 total_zapped += nr_zapped;
2349 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2350 break;
2351
6b82ef2c
SC
2352 if (unstable)
2353 goto restart;
ba7888dd 2354 }
5da59607 2355
6b82ef2c
SC
2356 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2357
2358 kvm->stat.mmu_recycled += total_zapped;
2359 return total_zapped;
2360}
2361
afe8d7e6
SC
2362static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2363{
2364 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2365 return kvm->arch.n_max_mmu_pages -
2366 kvm->arch.n_used_mmu_pages;
2367
2368 return 0;
5da59607
TY
2369}
2370
ba7888dd
SC
2371static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2372{
6b82ef2c 2373 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2374
6b82ef2c 2375 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2376 return 0;
2377
6b82ef2c 2378 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd 2379
6e6ec584
SC
2380 /*
2381 * Note, this check is intentionally soft, it only guarantees that one
2382 * page is available, while the caller may end up allocating as many as
2383 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2384 * exceeding the (arbitrary by default) limit will not harm the host,
2385 * being too agressive may unnecessarily kill the guest, and getting an
2386 * exact count is far more trouble than it's worth, especially in the
2387 * page fault paths.
2388 */
ba7888dd
SC
2389 if (!kvm_mmu_available_pages(vcpu->kvm))
2390 return -ENOSPC;
2391 return 0;
2392}
2393
82ce2c96
IE
2394/*
2395 * Changing the number of mmu pages allocated to the vm
49d5ca26 2396 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2397 */
bc8a3d89 2398void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2399{
531810ca 2400 write_lock(&kvm->mmu_lock);
b34cb590 2401
49d5ca26 2402 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2403 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2404 goal_nr_mmu_pages);
82ce2c96 2405
49d5ca26 2406 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2407 }
82ce2c96 2408
49d5ca26 2409 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590 2410
531810ca 2411 write_unlock(&kvm->mmu_lock);
82ce2c96
IE
2412}
2413
1cb3f3ae 2414int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2415{
4db35314 2416 struct kvm_mmu_page *sp;
d98ba053 2417 LIST_HEAD(invalid_list);
a436036b
AK
2418 int r;
2419
9ad17b10 2420 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2421 r = 0;
531810ca 2422 write_lock(&kvm->mmu_lock);
b67bfe0d 2423 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2424 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2425 sp->role.word);
2426 r = 1;
f41d335a 2427 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2428 }
d98ba053 2429 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 2430 write_unlock(&kvm->mmu_lock);
1cb3f3ae 2431
a436036b 2432 return r;
cea0f0e7 2433}
96ad91ae
SC
2434
2435static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2436{
2437 gpa_t gpa;
2438 int r;
2439
2440 if (vcpu->arch.mmu->direct_map)
2441 return 0;
2442
2443 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2444
2445 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2446
2447 return r;
2448}
cea0f0e7 2449
5c520e90 2450static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2451{
2452 trace_kvm_mmu_unsync_page(sp);
2453 ++vcpu->kvm->stat.mmu_unsync;
2454 sp->unsync = 1;
2455
2456 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2457}
2458
5a9624af
PB
2459bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2460 bool can_unsync)
4731d4c7 2461{
5c520e90 2462 struct kvm_mmu_page *sp;
4731d4c7 2463
3d0c27ad
XG
2464 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2465 return true;
9cf5cf5a 2466
5c520e90 2467 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2468 if (!can_unsync)
3d0c27ad 2469 return true;
36a2e677 2470
5c520e90
XG
2471 if (sp->unsync)
2472 continue;
9cf5cf5a 2473
3bae0459 2474 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2475 kvm_unsync_page(vcpu, sp);
4731d4c7 2476 }
3d0c27ad 2477
578e1c4d
JS
2478 /*
2479 * We need to ensure that the marking of unsync pages is visible
2480 * before the SPTE is updated to allow writes because
2481 * kvm_mmu_sync_roots() checks the unsync flags without holding
2482 * the MMU lock and so can race with this. If the SPTE was updated
2483 * before the page had been marked as unsync-ed, something like the
2484 * following could happen:
2485 *
2486 * CPU 1 CPU 2
2487 * ---------------------------------------------------------------------
2488 * 1.2 Host updates SPTE
2489 * to be writable
2490 * 2.1 Guest writes a GPTE for GVA X.
2491 * (GPTE being in the guest page table shadowed
2492 * by the SP from CPU 1.)
2493 * This reads SPTE during the page table walk.
2494 * Since SPTE.W is read as 1, there is no
2495 * fault.
2496 *
2497 * 2.2 Guest issues TLB flush.
2498 * That causes a VM Exit.
2499 *
2500 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2501 * Since it is false, so it just returns.
2502 *
2503 * 2.4 Guest accesses GVA X.
2504 * Since the mapping in the SP was not updated,
2505 * so the old mapping for GVA X incorrectly
2506 * gets used.
2507 * 1.1 Host marks SP
2508 * as unsync
2509 * (sp->unsync = true)
2510 *
2511 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2512 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2513 * pairs with this write barrier.
2514 */
2515 smp_wmb();
2516
3d0c27ad 2517 return false;
4731d4c7
MT
2518}
2519
799a4190
BG
2520static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2521 unsigned int pte_access, int level,
2522 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2523 bool can_unsync, bool host_writable)
2524{
2525 u64 spte;
2526 struct kvm_mmu_page *sp;
2527 int ret;
2528
799a4190
BG
2529 sp = sptep_to_sp(sptep);
2530
2531 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2532 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2533
2534 if (spte & PT_WRITABLE_MASK)
2535 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2536
12703759
SC
2537 if (*sptep == spte)
2538 ret |= SET_SPTE_SPURIOUS;
2539 else if (mmu_spte_update(sptep, spte))
5ce4786f 2540 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2541 return ret;
2542}
2543
0a2b64c5 2544static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2545 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2546 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2547 bool host_writable)
1e73f9dd
MT
2548{
2549 int was_rmapped = 0;
53a27b39 2550 int rmap_count;
5ce4786f 2551 int set_spte_ret;
c4371c2a 2552 int ret = RET_PF_FIXED;
c2a4eadf 2553 bool flush = false;
1e73f9dd 2554
f7616203
XG
2555 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2556 *sptep, write_fault, gfn);
1e73f9dd 2557
a54aa15c
SC
2558 if (unlikely(is_noslot_pfn(pfn))) {
2559 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2560 return RET_PF_EMULATE;
2561 }
2562
afd28fe1 2563 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2564 /*
2565 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2566 * the parent of the now unreachable PTE.
2567 */
3bae0459 2568 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2569 struct kvm_mmu_page *child;
d555c333 2570 u64 pte = *sptep;
1e73f9dd 2571
e47c4aee 2572 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2573 drop_parent_pte(child, sptep);
c2a4eadf 2574 flush = true;
d555c333 2575 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2576 pgprintk("hfn old %llx new %llx\n",
d555c333 2577 spte_to_pfn(*sptep), pfn);
c3707958 2578 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2579 flush = true;
6bed6b9e
JR
2580 } else
2581 was_rmapped = 1;
1e73f9dd 2582 }
852e3c19 2583
5ce4786f
JS
2584 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2585 speculative, true, host_writable);
2586 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2587 if (write_fault)
9b8ebbdb 2588 ret = RET_PF_EMULATE;
8c8560b8 2589 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2590 }
c3134ce2 2591
c2a4eadf 2592 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2593 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2594 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2595
12703759
SC
2596 /*
2597 * The fault is fully spurious if and only if the new SPTE and old SPTE
2598 * are identical, and emulation is not required.
2599 */
2600 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2601 WARN_ON_ONCE(!was_rmapped);
2602 return RET_PF_SPURIOUS;
2603 }
2604
d555c333 2605 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2606 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2607 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2608 ++vcpu->kvm->stat.lpages;
2609
ffb61bb3 2610 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2611 if (!was_rmapped) {
2612 rmap_count = rmap_add(vcpu, sptep, gfn);
2613 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2614 rmap_recycle(vcpu, sptep, gfn);
2615 }
1c4f1fd6 2616 }
cb9aaa30 2617
9b8ebbdb 2618 return ret;
1c4f1fd6
AK
2619}
2620
ba049e93 2621static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2622 bool no_dirty_log)
2623{
2624 struct kvm_memory_slot *slot;
957ed9ef 2625
5d163b1c 2626 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2627 if (!slot)
6c8ee57b 2628 return KVM_PFN_ERR_FAULT;
957ed9ef 2629
037d92dc 2630 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2631}
2632
2633static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2634 struct kvm_mmu_page *sp,
2635 u64 *start, u64 *end)
2636{
2637 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2638 struct kvm_memory_slot *slot;
0a2b64c5 2639 unsigned int access = sp->role.access;
957ed9ef
XG
2640 int i, ret;
2641 gfn_t gfn;
2642
2643 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2644 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2645 if (!slot)
957ed9ef
XG
2646 return -1;
2647
d9ef13c2 2648 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2649 if (ret <= 0)
2650 return -1;
2651
43fdcda9 2652 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2653 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2654 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2655 put_page(pages[i]);
2656 }
957ed9ef
XG
2657
2658 return 0;
2659}
2660
2661static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2662 struct kvm_mmu_page *sp, u64 *sptep)
2663{
2664 u64 *spte, *start = NULL;
2665 int i;
2666
2667 WARN_ON(!sp->role.direct);
2668
2669 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2670 spte = sp->spt + i;
2671
2672 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2673 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2674 if (!start)
2675 continue;
2676 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2677 break;
2678 start = NULL;
2679 } else if (!start)
2680 start = spte;
2681 }
2682}
2683
2684static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2685{
2686 struct kvm_mmu_page *sp;
2687
57354682 2688 sp = sptep_to_sp(sptep);
ac8d57e5 2689
957ed9ef 2690 /*
ac8d57e5
PF
2691 * Without accessed bits, there's no way to distinguish between
2692 * actually accessed translations and prefetched, so disable pte
2693 * prefetch if accessed bits aren't available.
957ed9ef 2694 */
ac8d57e5 2695 if (sp_ad_disabled(sp))
957ed9ef
XG
2696 return;
2697
3bae0459 2698 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2699 return;
2700
4a42d848
DS
2701 /*
2702 * If addresses are being invalidated, skip prefetching to avoid
2703 * accidentally prefetching those addresses.
2704 */
2705 if (unlikely(vcpu->kvm->mmu_notifier_count))
2706 return;
2707
957ed9ef
XG
2708 __direct_pte_prefetch(vcpu, sp, sptep);
2709}
2710
1b6d9d9e 2711static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
8ca6f063 2712 const struct kvm_memory_slot *slot)
db543216 2713{
db543216
SC
2714 unsigned long hva;
2715 pte_t *pte;
2716 int level;
2717
e851265a 2718 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2719 return PG_LEVEL_4K;
db543216 2720
293e306e
SC
2721 /*
2722 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2723 * is not solely for performance, it's also necessary to avoid the
2724 * "writable" check in __gfn_to_hva_many(), which will always fail on
2725 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2726 * page fault steps have already verified the guest isn't writing a
2727 * read-only memslot.
2728 */
db543216
SC
2729 hva = __gfn_to_hva_memslot(slot, gfn);
2730
1b6d9d9e 2731 pte = lookup_address_in_mm(kvm->mm, hva, &level);
db543216 2732 if (unlikely(!pte))
3bae0459 2733 return PG_LEVEL_4K;
db543216
SC
2734
2735 return level;
2736}
2737
8ca6f063
BG
2738int kvm_mmu_max_mapping_level(struct kvm *kvm,
2739 const struct kvm_memory_slot *slot, gfn_t gfn,
2740 kvm_pfn_t pfn, int max_level)
1b6d9d9e
SC
2741{
2742 struct kvm_lpage_info *linfo;
2743
2744 max_level = min(max_level, max_huge_page_level);
2745 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2746 linfo = lpage_info_slot(gfn, slot, max_level);
2747 if (!linfo->disallow_lpage)
2748 break;
2749 }
2750
2751 if (max_level == PG_LEVEL_4K)
2752 return PG_LEVEL_4K;
2753
2754 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2755}
2756
bb18842e
BG
2757int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2758 int max_level, kvm_pfn_t *pfnp,
2759 bool huge_page_disallowed, int *req_level)
0885904d 2760{
293e306e 2761 struct kvm_memory_slot *slot;
0885904d 2762 kvm_pfn_t pfn = *pfnp;
17eff019 2763 kvm_pfn_t mask;
83f06fa7 2764 int level;
17eff019 2765
3cf06612
SC
2766 *req_level = PG_LEVEL_4K;
2767
3bae0459
SC
2768 if (unlikely(max_level == PG_LEVEL_4K))
2769 return PG_LEVEL_4K;
17eff019 2770
e851265a 2771 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2772 return PG_LEVEL_4K;
17eff019 2773
293e306e
SC
2774 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2775 if (!slot)
3bae0459 2776 return PG_LEVEL_4K;
293e306e 2777
1b6d9d9e 2778 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
3bae0459 2779 if (level == PG_LEVEL_4K)
83f06fa7 2780 return level;
17eff019 2781
3cf06612
SC
2782 *req_level = level = min(level, max_level);
2783
2784 /*
2785 * Enforce the iTLB multihit workaround after capturing the requested
2786 * level, which will be used to do precise, accurate accounting.
2787 */
2788 if (huge_page_disallowed)
2789 return PG_LEVEL_4K;
0885904d
SC
2790
2791 /*
17eff019
SC
2792 * mmu_notifier_retry() was successful and mmu_lock is held, so
2793 * the pmd can't be split from under us.
0885904d 2794 */
17eff019
SC
2795 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2796 VM_BUG_ON((gfn & mask) != (pfn & mask));
2797 *pfnp = pfn & ~mask;
83f06fa7
SC
2798
2799 return level;
0885904d
SC
2800}
2801
bb18842e
BG
2802void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2803 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2804{
bb18842e 2805 int level = *goal_levelp;
b8e8c830 2806
7d945312 2807 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2808 is_shadow_present_pte(spte) &&
2809 !is_large_pte(spte)) {
2810 /*
2811 * A small SPTE exists for this pfn, but FNAME(fetch)
2812 * and __direct_map would like to create a large PTE
2813 * instead: just force them to go down another level,
2814 * patching back for them into pfn the next 9 bits of
2815 * the address.
2816 */
7d945312
BG
2817 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2818 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2819 *pfnp |= gfn & page_mask;
bb18842e 2820 (*goal_levelp)--;
b8e8c830
PB
2821 }
2822}
2823
6c2fd34f 2824static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2825 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2826 bool prefault, bool is_tdp)
140754bc 2827{
6c2fd34f
SC
2828 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2829 bool write = error_code & PFERR_WRITE_MASK;
2830 bool exec = error_code & PFERR_FETCH_MASK;
2831 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2832 struct kvm_shadow_walk_iterator it;
140754bc 2833 struct kvm_mmu_page *sp;
3cf06612 2834 int level, req_level, ret;
3fcf2d1b
PB
2835 gfn_t gfn = gpa >> PAGE_SHIFT;
2836 gfn_t base_gfn = gfn;
6aa8b732 2837
3cf06612
SC
2838 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2839 huge_page_disallowed, &req_level);
4cd071d1 2840
335e192a 2841 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2842 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2843 /*
2844 * We cannot overwrite existing page tables with an NX
2845 * large page, as the leaf could be executable.
2846 */
dcc70651 2847 if (nx_huge_page_workaround_enabled)
7d945312
BG
2848 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2849 &pfn, &level);
b8e8c830 2850
3fcf2d1b
PB
2851 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2852 if (it.level == level)
9f652d21 2853 break;
6aa8b732 2854
3fcf2d1b
PB
2855 drop_large_spte(vcpu, it.sptep);
2856 if (!is_shadow_present_pte(*it.sptep)) {
2857 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2858 it.level - 1, true, ACC_ALL);
c9fa0b3b 2859
3fcf2d1b 2860 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2861 if (is_tdp && huge_page_disallowed &&
2862 req_level >= it.level)
b8e8c830 2863 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2864 }
2865 }
3fcf2d1b
PB
2866
2867 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2868 write, level, base_gfn, pfn, prefault,
2869 map_writable);
12703759
SC
2870 if (ret == RET_PF_SPURIOUS)
2871 return ret;
2872
3fcf2d1b
PB
2873 direct_pte_prefetch(vcpu, it.sptep);
2874 ++vcpu->stat.pf_fixed;
2875 return ret;
6aa8b732
AK
2876}
2877
77db5cbd 2878static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2879{
585a8b9b 2880 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2881}
2882
ba049e93 2883static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2884{
4d8b81ab
XG
2885 /*
2886 * Do not cache the mmio info caused by writing the readonly gfn
2887 * into the spte otherwise read access on readonly gfn also can
2888 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2889 */
2890 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2891 return RET_PF_EMULATE;
4d8b81ab 2892
e6c1502b 2893 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2894 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2895 return RET_PF_RETRY;
d7c55201 2896 }
edba23e5 2897
2c151b25 2898 return -EFAULT;
bf998156
HY
2899}
2900
d7c55201 2901static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2902 kvm_pfn_t pfn, unsigned int access,
2903 int *ret_val)
d7c55201 2904{
d7c55201 2905 /* The pfn is invalid, report the error! */
81c52c56 2906 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2907 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2908 return true;
d7c55201
XG
2909 }
2910
30ab5901 2911 if (unlikely(is_noslot_pfn(pfn))) {
4af77151
SC
2912 vcpu_cache_mmio_info(vcpu, gva, gfn,
2913 access & shadow_mmio_access_mask);
30ab5901
SC
2914 /*
2915 * If MMIO caching is disabled, emulate immediately without
2916 * touching the shadow page tables as attempting to install an
2917 * MMIO SPTE will just be an expensive nop.
2918 */
2919 if (unlikely(!shadow_mmio_value)) {
2920 *ret_val = RET_PF_EMULATE;
2921 return true;
2922 }
2923 }
d7c55201 2924
798e88b3 2925 return false;
d7c55201
XG
2926}
2927
e5552fd2 2928static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2929{
1c118b82
XG
2930 /*
2931 * Do not fix the mmio spte with invalid generation number which
2932 * need to be updated by slow page fault path.
2933 */
2934 if (unlikely(error_code & PFERR_RSVD_MASK))
2935 return false;
2936
f160c7b7
JS
2937 /* See if the page fault is due to an NX violation */
2938 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2939 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2940 return false;
2941
c7ba5b48 2942 /*
f160c7b7
JS
2943 * #PF can be fast if:
2944 * 1. The shadow page table entry is not present, which could mean that
2945 * the fault is potentially caused by access tracking (if enabled).
2946 * 2. The shadow page table entry is present and the fault
2947 * is caused by write-protect, that means we just need change the W
2948 * bit of the spte which can be done out of mmu-lock.
2949 *
2950 * However, if access tracking is disabled we know that a non-present
2951 * page must be a genuine page fault where we have to create a new SPTE.
2952 * So, if access tracking is disabled, we return true only for write
2953 * accesses to a present page.
c7ba5b48 2954 */
c7ba5b48 2955
f160c7b7
JS
2956 return shadow_acc_track_mask != 0 ||
2957 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2958 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2959}
2960
97dceba2
JS
2961/*
2962 * Returns true if the SPTE was fixed successfully. Otherwise,
2963 * someone else modified the SPTE from its original value.
2964 */
c7ba5b48 2965static bool
92a476cb 2966fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 2967 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 2968{
c7ba5b48
XG
2969 gfn_t gfn;
2970
2971 WARN_ON(!sp->role.direct);
2972
9b51a630
KH
2973 /*
2974 * Theoretically we could also set dirty bit (and flush TLB) here in
2975 * order to eliminate unnecessary PML logging. See comments in
2976 * set_spte. But fast_page_fault is very unlikely to happen with PML
2977 * enabled, so we do not do this. This might result in the same GPA
2978 * to be logged in PML buffer again when the write really happens, and
2979 * eventually to be called by mark_page_dirty twice. But it's also no
2980 * harm. This also avoids the TLB flush needed after setting dirty bit
2981 * so non-PML cases won't be impacted.
2982 *
2983 * Compare with set_spte where instead shadow_dirty_mask is set.
2984 */
f160c7b7 2985 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
2986 return false;
2987
d3e328f2 2988 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
2989 /*
2990 * The gfn of direct spte is stable since it is
2991 * calculated by sp->gfn.
2992 */
2993 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2994 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2995 }
c7ba5b48
XG
2996
2997 return true;
2998}
2999
d3e328f2
JS
3000static bool is_access_allowed(u32 fault_err_code, u64 spte)
3001{
3002 if (fault_err_code & PFERR_FETCH_MASK)
3003 return is_executable_pte(spte);
3004
3005 if (fault_err_code & PFERR_WRITE_MASK)
3006 return is_writable_pte(spte);
3007
3008 /* Fault was on Read access */
3009 return spte & PT_PRESENT_MASK;
3010}
3011
c7ba5b48 3012/*
c4371c2a 3013 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3014 */
c4371c2a
SC
3015static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3016 u32 error_code)
c7ba5b48
XG
3017{
3018 struct kvm_shadow_walk_iterator iterator;
92a476cb 3019 struct kvm_mmu_page *sp;
c4371c2a 3020 int ret = RET_PF_INVALID;
c7ba5b48 3021 u64 spte = 0ull;
97dceba2 3022 uint retry_count = 0;
c7ba5b48 3023
e5552fd2 3024 if (!page_fault_can_be_fast(error_code))
c4371c2a 3025 return ret;
c7ba5b48
XG
3026
3027 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3028
97dceba2 3029 do {
d3e328f2 3030 u64 new_spte;
c7ba5b48 3031
736c291c 3032 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3033 if (!is_shadow_present_pte(spte))
d162f30a
JS
3034 break;
3035
ec89e643
SC
3036 if (!is_shadow_present_pte(spte))
3037 break;
3038
57354682 3039 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3040 if (!is_last_spte(spte, sp->role.level))
3041 break;
c7ba5b48 3042
97dceba2 3043 /*
f160c7b7
JS
3044 * Check whether the memory access that caused the fault would
3045 * still cause it if it were to be performed right now. If not,
3046 * then this is a spurious fault caused by TLB lazily flushed,
3047 * or some other CPU has already fixed the PTE after the
3048 * current CPU took the fault.
97dceba2
JS
3049 *
3050 * Need not check the access of upper level table entries since
3051 * they are always ACC_ALL.
3052 */
d3e328f2 3053 if (is_access_allowed(error_code, spte)) {
c4371c2a 3054 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3055 break;
3056 }
f160c7b7 3057
d3e328f2
JS
3058 new_spte = spte;
3059
3060 if (is_access_track_spte(spte))
3061 new_spte = restore_acc_track_spte(new_spte);
3062
3063 /*
3064 * Currently, to simplify the code, write-protection can
3065 * be removed in the fast path only if the SPTE was
3066 * write-protected for dirty-logging or access tracking.
3067 */
3068 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3069 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3070 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3071
3072 /*
d3e328f2
JS
3073 * Do not fix write-permission on the large spte. Since
3074 * we only dirty the first page into the dirty-bitmap in
3075 * fast_pf_fix_direct_spte(), other pages are missed
3076 * if its slot has dirty logging enabled.
3077 *
3078 * Instead, we let the slow page fault path create a
3079 * normal spte to fix the access.
3080 *
3081 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3082 */
3bae0459 3083 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3084 break;
97dceba2 3085 }
c7ba5b48 3086
f160c7b7 3087 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3088 if (new_spte == spte ||
3089 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3090 break;
3091
3092 /*
3093 * Currently, fast page fault only works for direct mapping
3094 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3095 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3096 */
c4371c2a
SC
3097 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3098 new_spte)) {
3099 ret = RET_PF_FIXED;
97dceba2 3100 break;
c4371c2a 3101 }
97dceba2
JS
3102
3103 if (++retry_count > 4) {
3104 printk_once(KERN_WARNING
3105 "kvm: Fast #PF retrying more than 4 times.\n");
3106 break;
3107 }
3108
97dceba2 3109 } while (true);
c126d94f 3110
736c291c 3111 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3112 spte, ret);
c7ba5b48
XG
3113 walk_shadow_page_lockless_end(vcpu);
3114
c4371c2a 3115 return ret;
c7ba5b48
XG
3116}
3117
74b566e6
JS
3118static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3119 struct list_head *invalid_list)
17ac10ad 3120{
4db35314 3121 struct kvm_mmu_page *sp;
17ac10ad 3122
74b566e6 3123 if (!VALID_PAGE(*root_hpa))
7b53aa56 3124 return;
35af577a 3125
e47c4aee 3126 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a 3127
2bdb3d84 3128 if (is_tdp_mmu_page(sp))
6103bc07 3129 kvm_tdp_mmu_put_root(kvm, sp, false);
76eb54e7
BG
3130 else if (!--sp->root_count && sp->role.invalid)
3131 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3132
74b566e6
JS
3133 *root_hpa = INVALID_PAGE;
3134}
3135
08fb59d8 3136/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3137void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3138 ulong roots_to_free)
74b566e6 3139{
4d710de9 3140 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3141 int i;
3142 LIST_HEAD(invalid_list);
08fb59d8 3143 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3144
b94742c9 3145 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3146
08fb59d8 3147 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3148 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3149 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3150 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3151 VALID_PAGE(mmu->prev_roots[i].hpa))
3152 break;
3153
3154 if (i == KVM_MMU_NUM_PREV_ROOTS)
3155 return;
3156 }
35af577a 3157
531810ca 3158 write_lock(&kvm->mmu_lock);
17ac10ad 3159
b94742c9
JS
3160 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3161 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3162 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3163 &invalid_list);
7c390d35 3164
08fb59d8
JS
3165 if (free_active_root) {
3166 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3167 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3168 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
04d45551 3169 } else if (mmu->pae_root) {
c834e5e4
SC
3170 for (i = 0; i < 4; ++i) {
3171 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3172 continue;
3173
3174 mmu_free_root_page(kvm, &mmu->pae_root[i],
3175 &invalid_list);
3176 mmu->pae_root[i] = INVALID_PAE_ROOT;
3177 }
08fb59d8 3178 }
04d45551 3179 mmu->root_hpa = INVALID_PAGE;
be01e8e2 3180 mmu->root_pgd = 0;
17ac10ad 3181 }
74b566e6 3182
4d710de9 3183 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 3184 write_unlock(&kvm->mmu_lock);
17ac10ad 3185}
74b566e6 3186EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3187
25b62c62
SC
3188void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3189{
3190 unsigned long roots_to_free = 0;
3191 hpa_t root_hpa;
3192 int i;
3193
3194 /*
3195 * This should not be called while L2 is active, L2 can't invalidate
3196 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3197 */
3198 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3199
3200 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3201 root_hpa = mmu->prev_roots[i].hpa;
3202 if (!VALID_PAGE(root_hpa))
3203 continue;
3204
3205 if (!to_shadow_page(root_hpa) ||
3206 to_shadow_page(root_hpa)->role.guest_mode)
3207 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3208 }
3209
3210 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3211}
3212EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3213
3214
8986ecc0
MT
3215static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3216{
3217 int ret = 0;
3218
995decb6 3219 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3220 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3221 ret = 1;
3222 }
3223
3224 return ret;
3225}
3226
8123f265
SC
3227static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3228 u8 level, bool direct)
651dd37a
JR
3229{
3230 struct kvm_mmu_page *sp;
8123f265 3231
8123f265
SC
3232 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3233 ++sp->root_count;
3234
8123f265
SC
3235 return __pa(sp->spt);
3236}
3237
3238static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3239{
b37233c9
SC
3240 struct kvm_mmu *mmu = vcpu->arch.mmu;
3241 u8 shadow_root_level = mmu->shadow_root_level;
8123f265 3242 hpa_t root;
7ebaf15e 3243 unsigned i;
4a38162e
PB
3244 int r;
3245
3246 write_lock(&vcpu->kvm->mmu_lock);
3247 r = make_mmu_pages_available(vcpu);
3248 if (r < 0)
3249 goto out_unlock;
651dd37a 3250
897218ff 3251 if (is_tdp_mmu_enabled(vcpu->kvm)) {
02c00b3a 3252 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
b37233c9 3253 mmu->root_hpa = root;
02c00b3a 3254 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
6e6ec584 3255 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
b37233c9 3256 mmu->root_hpa = root;
8123f265 3257 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
4a38162e
PB
3258 if (WARN_ON_ONCE(!mmu->pae_root)) {
3259 r = -EIO;
3260 goto out_unlock;
3261 }
73ad1606 3262
651dd37a 3263 for (i = 0; i < 4; ++i) {
c834e5e4 3264 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
651dd37a 3265
8123f265
SC
3266 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3267 i << 30, PT32_ROOT_LEVEL, true);
17e368d9
SC
3268 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3269 shadow_me_mask;
651dd37a 3270 }
b37233c9 3271 mmu->root_hpa = __pa(mmu->pae_root);
73ad1606
SC
3272 } else {
3273 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
4a38162e
PB
3274 r = -EIO;
3275 goto out_unlock;
73ad1606 3276 }
3651c7fc 3277
be01e8e2 3278 /* root_pgd is ignored for direct MMUs. */
b37233c9 3279 mmu->root_pgd = 0;
4a38162e
PB
3280out_unlock:
3281 write_unlock(&vcpu->kvm->mmu_lock);
3282 return r;
651dd37a
JR
3283}
3284
3285static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3286{
b37233c9 3287 struct kvm_mmu *mmu = vcpu->arch.mmu;
6e0918ae 3288 u64 pdptrs[4], pm_mask;
be01e8e2 3289 gfn_t root_gfn, root_pgd;
8123f265 3290 hpa_t root;
4a38162e
PB
3291 unsigned i;
3292 int r;
3bb65a22 3293
b37233c9 3294 root_pgd = mmu->get_guest_pgd(vcpu);
be01e8e2 3295 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3296
651dd37a
JR
3297 if (mmu_check_root(vcpu, root_gfn))
3298 return 1;
3299
4a38162e
PB
3300 /*
3301 * On SVM, reading PDPTRs might access guest memory, which might fault
3302 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3303 */
6e0918ae
SC
3304 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3305 for (i = 0; i < 4; ++i) {
3306 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3307 if (!(pdptrs[i] & PT_PRESENT_MASK))
3308 continue;
3309
3310 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3311 return 1;
3312 }
3313 }
3314
d501f747
BG
3315 r = alloc_all_memslots_rmaps(vcpu->kvm);
3316 if (r)
3317 return r;
3318
4a38162e
PB
3319 write_lock(&vcpu->kvm->mmu_lock);
3320 r = make_mmu_pages_available(vcpu);
3321 if (r < 0)
3322 goto out_unlock;
3323
651dd37a
JR
3324 /*
3325 * Do we shadow a long mode page table? If so we need to
3326 * write-protect the guests page table root.
3327 */
b37233c9 3328 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3329 root = mmu_alloc_root(vcpu, root_gfn, 0,
b37233c9 3330 mmu->shadow_root_level, false);
b37233c9 3331 mmu->root_hpa = root;
be01e8e2 3332 goto set_root_pgd;
17ac10ad 3333 }
f87f9288 3334
4a38162e
PB
3335 if (WARN_ON_ONCE(!mmu->pae_root)) {
3336 r = -EIO;
3337 goto out_unlock;
3338 }
73ad1606 3339
651dd37a
JR
3340 /*
3341 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3342 * or a PAE 3-level page table. In either case we need to be aware that
3343 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3344 */
17e368d9 3345 pm_mask = PT_PRESENT_MASK | shadow_me_mask;
748e52b9 3346 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
81407ca5
JR
3347 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3348
03ca4589 3349 if (WARN_ON_ONCE(!mmu->pml4_root)) {
4a38162e
PB
3350 r = -EIO;
3351 goto out_unlock;
3352 }
73ad1606 3353
03ca4589 3354 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
04d45551
SC
3355 }
3356
17ac10ad 3357 for (i = 0; i < 4; ++i) {
c834e5e4 3358 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
6e6ec584 3359
b37233c9 3360 if (mmu->root_level == PT32E_ROOT_LEVEL) {
6e0918ae 3361 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
c834e5e4 3362 mmu->pae_root[i] = INVALID_PAE_ROOT;
417726a3
AK
3363 continue;
3364 }
6e0918ae 3365 root_gfn = pdptrs[i] >> PAGE_SHIFT;
5a7388c2 3366 }
8facbbff 3367
8123f265
SC
3368 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3369 PT32_ROOT_LEVEL, false);
b37233c9 3370 mmu->pae_root[i] = root | pm_mask;
17ac10ad 3371 }
81407ca5 3372
ba0a194f 3373 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
03ca4589 3374 mmu->root_hpa = __pa(mmu->pml4_root);
ba0a194f
SC
3375 else
3376 mmu->root_hpa = __pa(mmu->pae_root);
81407ca5 3377
be01e8e2 3378set_root_pgd:
b37233c9 3379 mmu->root_pgd = root_pgd;
4a38162e
PB
3380out_unlock:
3381 write_unlock(&vcpu->kvm->mmu_lock);
ad7dc69a 3382
8986ecc0 3383 return 0;
17ac10ad
AK
3384}
3385
748e52b9
SC
3386static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3387{
3388 struct kvm_mmu *mmu = vcpu->arch.mmu;
03ca4589 3389 u64 *pml4_root, *pae_root;
81407ca5
JR
3390
3391 /*
748e52b9
SC
3392 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3393 * tables are allocated and initialized at root creation as there is no
3394 * equivalent level in the guest's NPT to shadow. Allocate the tables
3395 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
81407ca5 3396 */
748e52b9
SC
3397 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3398 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3399 return 0;
81407ca5 3400
748e52b9
SC
3401 /*
3402 * This mess only works with 4-level paging and needs to be updated to
3403 * work with 5-level paging.
3404 */
3405 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3406 return -EIO;
81407ca5 3407
03ca4589 3408 if (mmu->pae_root && mmu->pml4_root)
748e52b9 3409 return 0;
81407ca5 3410
748e52b9
SC
3411 /*
3412 * The special roots should always be allocated in concert. Yell and
3413 * bail if KVM ends up in a state where only one of the roots is valid.
3414 */
03ca4589 3415 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
748e52b9 3416 return -EIO;
81407ca5 3417
4a98623d
SC
3418 /*
3419 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3420 * doesn't need to be decrypted.
3421 */
748e52b9
SC
3422 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3423 if (!pae_root)
3424 return -ENOMEM;
81407ca5 3425
03ca4589
SC
3426 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3427 if (!pml4_root) {
748e52b9
SC
3428 free_page((unsigned long)pae_root);
3429 return -ENOMEM;
81407ca5
JR
3430 }
3431
748e52b9 3432 mmu->pae_root = pae_root;
03ca4589 3433 mmu->pml4_root = pml4_root;
ad7dc69a 3434
8986ecc0 3435 return 0;
17ac10ad
AK
3436}
3437
578e1c4d 3438void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3439{
3440 int i;
3441 struct kvm_mmu_page *sp;
3442
44dd3ffa 3443 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3444 return;
3445
44dd3ffa 3446 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3447 return;
6903074c 3448
56f17dd3 3449 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3450
44dd3ffa
VK
3451 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3452 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3453 sp = to_shadow_page(root);
578e1c4d
JS
3454
3455 /*
3456 * Even if another CPU was marking the SP as unsync-ed
3457 * simultaneously, any guest page table changes are not
3458 * guaranteed to be visible anyway until this VCPU issues a TLB
3459 * flush strictly after those changes are made. We only need to
3460 * ensure that the other CPU sets these flags before any actual
3461 * changes to the page tables are made. The comments in
3462 * mmu_need_write_protect() describe what could go wrong if this
3463 * requirement isn't satisfied.
3464 */
3465 if (!smp_load_acquire(&sp->unsync) &&
3466 !smp_load_acquire(&sp->unsync_children))
3467 return;
3468
531810ca 3469 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3470 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3471
0ba73cda 3472 mmu_sync_children(vcpu, sp);
578e1c4d 3473
0375f7fa 3474 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3475 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3476 return;
3477 }
578e1c4d 3478
531810ca 3479 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3480 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3481
0ba73cda 3482 for (i = 0; i < 4; ++i) {
44dd3ffa 3483 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3484
c834e5e4 3485 if (IS_VALID_PAE_ROOT(root)) {
0ba73cda 3486 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3487 sp = to_shadow_page(root);
0ba73cda
MT
3488 mmu_sync_children(vcpu, sp);
3489 }
3490 }
0ba73cda 3491
578e1c4d 3492 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3493 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3494}
3495
736c291c 3496static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3497 u32 access, struct x86_exception *exception)
6aa8b732 3498{
ab9ae313
AK
3499 if (exception)
3500 exception->error_code = 0;
6aa8b732
AK
3501 return vaddr;
3502}
3503
736c291c 3504static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3505 u32 access,
3506 struct x86_exception *exception)
6539e738 3507{
ab9ae313
AK
3508 if (exception)
3509 exception->error_code = 0;
54987b7a 3510 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3511}
3512
d625b155
XG
3513static bool
3514__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3515{
b5c3c1b3 3516 int bit7 = (pte >> 7) & 1;
d625b155 3517
b5c3c1b3 3518 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3519}
3520
b5c3c1b3 3521static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3522{
b5c3c1b3 3523 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3524}
3525
ded58749 3526static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3527{
9034e6e8
PB
3528 /*
3529 * A nested guest cannot use the MMIO cache if it is using nested
3530 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3531 */
3532 if (mmu_is_nested(vcpu))
3533 return false;
3534
ce88decf
XG
3535 if (direct)
3536 return vcpu_match_mmio_gpa(vcpu, addr);
3537
3538 return vcpu_match_mmio_gva(vcpu, addr);
3539}
3540
95fb5b02
BG
3541/*
3542 * Return the level of the lowest level SPTE added to sptes.
3543 * That SPTE may be non-present.
3544 */
39b4d43e 3545static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
ce88decf
XG
3546{
3547 struct kvm_shadow_walk_iterator iterator;
2aa07893 3548 int leaf = -1;
95fb5b02 3549 u64 spte;
ce88decf
XG
3550
3551 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3552
39b4d43e
SC
3553 for (shadow_walk_init(&iterator, vcpu, addr),
3554 *root_level = iterator.level;
47ab8751
XG
3555 shadow_walk_okay(&iterator);
3556 __shadow_walk_next(&iterator, spte)) {
95fb5b02 3557 leaf = iterator.level;
47ab8751
XG
3558 spte = mmu_spte_get_lockless(iterator.sptep);
3559
dde81f94 3560 sptes[leaf] = spte;
47ab8751 3561
ce88decf
XG
3562 if (!is_shadow_present_pte(spte))
3563 break;
95fb5b02
BG
3564 }
3565
3566 walk_shadow_page_lockless_end(vcpu);
3567
3568 return leaf;
3569}
3570
9aa41879 3571/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
95fb5b02
BG
3572static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3573{
dde81f94 3574 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
95fb5b02 3575 struct rsvd_bits_validate *rsvd_check;
39b4d43e 3576 int root, leaf, level;
95fb5b02
BG
3577 bool reserved = false;
3578
63c0cac9 3579 if (is_tdp_mmu(vcpu->arch.mmu))
39b4d43e 3580 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
95fb5b02 3581 else
39b4d43e 3582 leaf = get_walk(vcpu, addr, sptes, &root);
95fb5b02 3583
2aa07893
SC
3584 if (unlikely(leaf < 0)) {
3585 *sptep = 0ull;
3586 return reserved;
3587 }
3588
9aa41879
SC
3589 *sptep = sptes[leaf];
3590
3591 /*
3592 * Skip reserved bits checks on the terminal leaf if it's not a valid
3593 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3594 * design, always have reserved bits set. The purpose of the checks is
3595 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3596 */
3597 if (!is_shadow_present_pte(sptes[leaf]))
3598 leaf++;
95fb5b02
BG
3599
3600 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3601
9aa41879 3602 for (level = root; level >= leaf; level--)
b5c3c1b3
SC
3603 /*
3604 * Use a bitwise-OR instead of a logical-OR to aggregate the
3605 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3606 * adding a Jcc in the loop.
3607 */
dde81f94
SC
3608 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3609 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
47ab8751 3610
47ab8751 3611 if (reserved) {
bb4cdf3a 3612 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
47ab8751 3613 __func__, addr);
95fb5b02 3614 for (level = root; level >= leaf; level--)
bb4cdf3a
SC
3615 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3616 sptes[level], level,
3617 rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
47ab8751 3618 }
ddce6208 3619
47ab8751 3620 return reserved;
ce88decf
XG
3621}
3622
e08d26f0 3623static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3624{
3625 u64 spte;
47ab8751 3626 bool reserved;
ce88decf 3627
ded58749 3628 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3629 return RET_PF_EMULATE;
ce88decf 3630
95fb5b02 3631 reserved = get_mmio_spte(vcpu, addr, &spte);
450869d6 3632 if (WARN_ON(reserved))
9b8ebbdb 3633 return -EINVAL;
ce88decf
XG
3634
3635 if (is_mmio_spte(spte)) {
3636 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3637 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3638
54bf36aa 3639 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3640 return RET_PF_INVALID;
f8f55942 3641
ce88decf
XG
3642 if (direct)
3643 addr = 0;
4f022648
XG
3644
3645 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3646 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3647 return RET_PF_EMULATE;
ce88decf
XG
3648 }
3649
ce88decf
XG
3650 /*
3651 * If the page table is zapped by other cpus, let CPU fault again on
3652 * the address.
3653 */
9b8ebbdb 3654 return RET_PF_RETRY;
ce88decf 3655}
ce88decf 3656
3d0c27ad
XG
3657static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3658 u32 error_code, gfn_t gfn)
3659{
3660 if (unlikely(error_code & PFERR_RSVD_MASK))
3661 return false;
3662
3663 if (!(error_code & PFERR_PRESENT_MASK) ||
3664 !(error_code & PFERR_WRITE_MASK))
3665 return false;
3666
3667 /*
3668 * guest is writing the page which is write tracked which can
3669 * not be fixed by page fault handler.
3670 */
3671 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3672 return true;
3673
3674 return false;
3675}
3676
e5691a81
XG
3677static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3678{
3679 struct kvm_shadow_walk_iterator iterator;
3680 u64 spte;
3681
e5691a81
XG
3682 walk_shadow_page_lockless_begin(vcpu);
3683 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3684 clear_sp_write_flooding_count(iterator.sptep);
3685 if (!is_shadow_present_pte(spte))
3686 break;
3687 }
3688 walk_shadow_page_lockless_end(vcpu);
3689}
3690
e8c22266
VK
3691static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3692 gfn_t gfn)
af585b92
GN
3693{
3694 struct kvm_arch_async_pf arch;
fb67e14f 3695
7c90705b 3696 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3697 arch.gfn = gfn;
44dd3ffa 3698 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3699 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3700
9f1a8526
SC
3701 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3702 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3703}
3704
78b2c54a 3705static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4a42d848
DS
3706 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3707 bool write, bool *writable)
af585b92 3708{
c36b7150 3709 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3710 bool async;
3711
e0c37868
SC
3712 /*
3713 * Retry the page fault if the gfn hit a memslot that is being deleted
3714 * or moved. This ensures any existing SPTEs for the old memslot will
3715 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3716 */
3717 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3718 return true;
3719
c36b7150
PB
3720 /* Don't expose private memslots to L2. */
3721 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3722 *pfn = KVM_PFN_NOSLOT;
c583eed6 3723 *writable = false;
3a2936de
JM
3724 return false;
3725 }
3726
3520469d 3727 async = false;
4a42d848
DS
3728 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3729 write, writable, hva);
af585b92
GN
3730 if (!async)
3731 return false; /* *pfn has correct page already */
3732
9bc1f09f 3733 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3734 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3735 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3736 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3737 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3738 return true;
9f1a8526 3739 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3740 return true;
3741 }
3742
4a42d848
DS
3743 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3744 write, writable, hva);
af585b92
GN
3745 return false;
3746}
3747
0f90e1c1
SC
3748static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3749 bool prefault, int max_level, bool is_tdp)
6aa8b732 3750{
63c0cac9 3751 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
367fd790 3752 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3753 bool map_writable;
6aa8b732 3754
0f90e1c1
SC
3755 gfn_t gfn = gpa >> PAGE_SHIFT;
3756 unsigned long mmu_seq;
3757 kvm_pfn_t pfn;
4a42d848 3758 hva_t hva;
83f06fa7 3759 int r;
ce88decf 3760
3d0c27ad 3761 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3762 return RET_PF_EMULATE;
ce88decf 3763
0b873fd7 3764 if (!is_tdp_mmu_fault) {
bb18842e
BG
3765 r = fast_page_fault(vcpu, gpa, error_code);
3766 if (r != RET_PF_INVALID)
3767 return r;
3768 }
83291445 3769
378f5cd6 3770 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3771 if (r)
3772 return r;
714b93da 3773
367fd790
SC
3774 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3775 smp_rmb();
3776
4a42d848
DS
3777 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3778 write, &map_writable))
367fd790
SC
3779 return RET_PF_RETRY;
3780
0f90e1c1 3781 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3782 return r;
6aa8b732 3783
367fd790 3784 r = RET_PF_RETRY;
a2855afc 3785
0b873fd7 3786 if (is_tdp_mmu_fault)
a2855afc
BG
3787 read_lock(&vcpu->kvm->mmu_lock);
3788 else
3789 write_lock(&vcpu->kvm->mmu_lock);
3790
4a42d848 3791 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
367fd790 3792 goto out_unlock;
7bd7ded6
SC
3793 r = make_mmu_pages_available(vcpu);
3794 if (r)
367fd790 3795 goto out_unlock;
bb18842e 3796
0b873fd7 3797 if (is_tdp_mmu_fault)
bb18842e
BG
3798 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3799 pfn, prefault);
3800 else
3801 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3802 prefault, is_tdp);
0f90e1c1 3803
367fd790 3804out_unlock:
0b873fd7 3805 if (is_tdp_mmu_fault)
a2855afc
BG
3806 read_unlock(&vcpu->kvm->mmu_lock);
3807 else
3808 write_unlock(&vcpu->kvm->mmu_lock);
367fd790
SC
3809 kvm_release_pfn_clean(pfn);
3810 return r;
6aa8b732
AK
3811}
3812
0f90e1c1
SC
3813static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3814 u32 error_code, bool prefault)
3815{
3816 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3817
3818 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3819 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3820 PG_LEVEL_2M, false);
0f90e1c1
SC
3821}
3822
1261bfa3 3823int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3824 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3825{
3826 int r = 1;
9ce372b3 3827 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3828
736c291c
SC
3829#ifndef CONFIG_X86_64
3830 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3831 if (WARN_ON_ONCE(fault_address >> 32))
3832 return -EFAULT;
3833#endif
3834
c595ceee 3835 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3836 if (!flags) {
1261bfa3
WL
3837 trace_kvm_page_fault(fault_address, error_code);
3838
d0006530 3839 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3840 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3841 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3842 insn_len);
9ce372b3 3843 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3844 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3845 local_irq_disable();
6bca69ad 3846 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3847 local_irq_enable();
9ce372b3
VK
3848 } else {
3849 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3850 }
9ce372b3 3851
1261bfa3
WL
3852 return r;
3853}
3854EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3855
7a02674d
SC
3856int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3857 bool prefault)
fb72d167 3858{
cb9b88c6 3859 int max_level;
fb72d167 3860
e662ec3e 3861 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3862 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3863 max_level--) {
3864 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3865 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3866
cb9b88c6
SC
3867 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3868 break;
fd136902 3869 }
852e3c19 3870
0f90e1c1
SC
3871 return direct_page_fault(vcpu, gpa, error_code, prefault,
3872 max_level, true);
fb72d167
JR
3873}
3874
8a3c1a33
PB
3875static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3876 struct kvm_mmu *context)
6aa8b732 3877{
6aa8b732 3878 context->page_fault = nonpaging_page_fault;
6aa8b732 3879 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3880 context->sync_page = nonpaging_sync_page;
5efac074 3881 context->invlpg = NULL;
cea0f0e7 3882 context->root_level = 0;
6aa8b732 3883 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3884 context->direct_map = true;
2d48a985 3885 context->nx = false;
6aa8b732
AK
3886}
3887
be01e8e2 3888static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3889 union kvm_mmu_page_role role)
3890{
be01e8e2 3891 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3892 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3893 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3894}
3895
b94742c9 3896/*
be01e8e2 3897 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3898 * The current root is also inserted into the cache.
3899 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3900 * returned.
3901 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3902 * false is returned. This root should now be freed by the caller.
3903 */
be01e8e2 3904static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3905 union kvm_mmu_page_role new_role)
3906{
3907 uint i;
3908 struct kvm_mmu_root_info root;
44dd3ffa 3909 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3910
be01e8e2 3911 root.pgd = mmu->root_pgd;
b94742c9
JS
3912 root.hpa = mmu->root_hpa;
3913
be01e8e2 3914 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3915 return true;
3916
b94742c9
JS
3917 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3918 swap(root, mmu->prev_roots[i]);
3919
be01e8e2 3920 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3921 break;
3922 }
3923
3924 mmu->root_hpa = root.hpa;
be01e8e2 3925 mmu->root_pgd = root.pgd;
b94742c9
JS
3926
3927 return i < KVM_MMU_NUM_PREV_ROOTS;
3928}
3929
be01e8e2 3930static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3931 union kvm_mmu_page_role new_role)
6aa8b732 3932{
44dd3ffa 3933 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3934
3935 /*
3936 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3937 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3938 * later if necessary.
3939 */
3940 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3941 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3942 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3943
3944 return false;
6aa8b732
AK
3945}
3946
be01e8e2 3947static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b5129100 3948 union kvm_mmu_page_role new_role)
6aa8b732 3949{
be01e8e2 3950 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3951 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3952 return;
3953 }
3954
3955 /*
3956 * It's possible that the cached previous root page is obsolete because
3957 * of a change in the MMU generation number. However, changing the
3958 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3959 * free the root set here and allocate a new one.
3960 */
3961 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3962
b5129100 3963 if (force_flush_and_sync_on_reuse) {
b869855b
SC
3964 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3965 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b5129100 3966 }
b869855b
SC
3967
3968 /*
3969 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3970 * switching to a new CR3, that GVA->GPA mapping may no longer be
3971 * valid. So clear any cached MMIO info even when we don't need to sync
3972 * the shadow page tables.
3973 */
3974 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3975
daa5b6c1
BG
3976 /*
3977 * If this is a direct root page, it doesn't have a write flooding
3978 * count. Otherwise, clear the write flooding count.
3979 */
3980 if (!new_role.direct)
3981 __clear_sp_write_flooding_count(
3982 to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3983}
3984
b5129100 3985void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
0aab33e4 3986{
b5129100 3987 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
0aab33e4 3988}
be01e8e2 3989EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3990
5777ed34
JR
3991static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3992{
9f8fe504 3993 return kvm_read_cr3(vcpu);
5777ed34
JR
3994}
3995
54bf36aa 3996static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3997 unsigned int access, int *nr_present)
ce88decf
XG
3998{
3999 if (unlikely(is_mmio_spte(*sptep))) {
4000 if (gfn != get_mmio_spte_gfn(*sptep)) {
4001 mmu_spte_clear_no_track(sptep);
4002 return true;
4003 }
4004
4005 (*nr_present)++;
54bf36aa 4006 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4007 return true;
4008 }
4009
4010 return false;
4011}
4012
6bb69c9b
PB
4013static inline bool is_last_gpte(struct kvm_mmu *mmu,
4014 unsigned level, unsigned gpte)
6fd01b71 4015{
6bb69c9b
PB
4016 /*
4017 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4018 * If it is clear, there are no large pages at this level, so clear
4019 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4020 */
4021 gpte &= level - mmu->last_nonleaf_level;
4022
829ee279 4023 /*
3bae0459
SC
4024 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
4025 * iff level <= PG_LEVEL_4K, which for our purpose means
4026 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 4027 */
3bae0459 4028 gpte |= level - PG_LEVEL_4K - 1;
829ee279 4029
6bb69c9b 4030 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4031}
4032
37406aaa
NHE
4033#define PTTYPE_EPT 18 /* arbitrary */
4034#define PTTYPE PTTYPE_EPT
4035#include "paging_tmpl.h"
4036#undef PTTYPE
4037
6aa8b732
AK
4038#define PTTYPE 64
4039#include "paging_tmpl.h"
4040#undef PTTYPE
4041
4042#define PTTYPE 32
4043#include "paging_tmpl.h"
4044#undef PTTYPE
4045
6dc98b86
XG
4046static void
4047__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4048 struct rsvd_bits_validate *rsvd_check,
5b7f575c 4049 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
6fec2144 4050 bool pse, bool amd)
82725b20 4051{
5f7dde7b 4052 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4053 u64 nonleaf_bit8_rsvd = 0;
5b7f575c 4054 u64 high_bits_rsvd;
82725b20 4055
a0a64f50 4056 rsvd_check->bad_mt_xwr = 0;
25d92081 4057
6dc98b86 4058 if (!gbpages)
5f7dde7b 4059 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5 4060
5b7f575c
SC
4061 if (level == PT32E_ROOT_LEVEL)
4062 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4063 else
4064 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4065
4066 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4067 if (!nx)
4068 high_bits_rsvd |= rsvd_bits(63, 63);
4069
a0c0feb5
PB
4070 /*
4071 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4072 * leaf entries) on AMD CPUs only.
4073 */
6fec2144 4074 if (amd)
a0c0feb5
PB
4075 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4076
6dc98b86 4077 switch (level) {
82725b20
DE
4078 case PT32_ROOT_LEVEL:
4079 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4080 rsvd_check->rsvd_bits_mask[0][1] = 0;
4081 rsvd_check->rsvd_bits_mask[0][0] = 0;
4082 rsvd_check->rsvd_bits_mask[1][0] =
4083 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4084
6dc98b86 4085 if (!pse) {
a0a64f50 4086 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4087 break;
4088 }
4089
82725b20
DE
4090 if (is_cpuid_PSE36())
4091 /* 36bits PSE 4MB page */
a0a64f50 4092 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4093 else
4094 /* 32 bits PSE 4MB page */
a0a64f50 4095 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4096 break;
4097 case PT32E_ROOT_LEVEL:
5b7f575c
SC
4098 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4099 high_bits_rsvd |
4100 rsvd_bits(5, 8) |
4101 rsvd_bits(1, 2); /* PDPTE */
4102 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4103 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4104 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4105 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4106 rsvd_check->rsvd_bits_mask[1][0] =
4107 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4108 break;
855feb67 4109 case PT64_ROOT_5LEVEL:
5b7f575c
SC
4110 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4111 nonleaf_bit8_rsvd |
4112 rsvd_bits(7, 7);
855feb67
YZ
4113 rsvd_check->rsvd_bits_mask[1][4] =
4114 rsvd_check->rsvd_bits_mask[0][4];
df561f66 4115 fallthrough;
2a7266a8 4116 case PT64_ROOT_4LEVEL:
5b7f575c
SC
4117 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4118 nonleaf_bit8_rsvd |
4119 rsvd_bits(7, 7);
4120 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4121 gbpages_bit_rsvd;
4122 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4123 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
a0a64f50
XG
4124 rsvd_check->rsvd_bits_mask[1][3] =
4125 rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4126 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4127 gbpages_bit_rsvd |
4128 rsvd_bits(13, 29);
4129 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4130 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4131 rsvd_check->rsvd_bits_mask[1][0] =
4132 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4133 break;
4134 }
4135}
4136
6dc98b86
XG
4137static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4138 struct kvm_mmu *context)
4139{
4140 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
5b7f575c
SC
4141 vcpu->arch.reserved_gpa_bits,
4142 context->root_level, context->nx,
d6321d49 4143 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4144 is_pse(vcpu),
4145 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4146}
4147
81b8eebb
XG
4148static void
4149__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5b7f575c 4150 u64 pa_bits_rsvd, bool execonly)
25d92081 4151{
5b7f575c 4152 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
951f9fd7 4153 u64 bad_mt_xwr;
25d92081 4154
5b7f575c
SC
4155 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4156 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4157 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4158 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4159 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
25d92081
YZ
4160
4161 /* large page */
855feb67 4162 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50 4163 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4164 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4165 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
a0a64f50 4166 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4167
951f9fd7
PB
4168 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4169 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4170 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4171 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4172 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4173 if (!execonly) {
4174 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4175 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4176 }
951f9fd7 4177 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4178}
4179
81b8eebb
XG
4180static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4181 struct kvm_mmu *context, bool execonly)
4182{
4183 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5b7f575c 4184 vcpu->arch.reserved_gpa_bits, execonly);
81b8eebb
XG
4185}
4186
6f8e65a6
SC
4187static inline u64 reserved_hpa_bits(void)
4188{
4189 return rsvd_bits(shadow_phys_bits, 63);
4190}
4191
c258b62b
XG
4192/*
4193 * the page table on host is the shadow page table for the page
4194 * table in guest or amd nested guest, its mmu features completely
4195 * follow the features in guest.
4196 */
4197void
4198reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4199{
112022bd
SC
4200 /*
4201 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4202 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4203 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4204 * The iTLB multi-hit workaround can be toggled at any time, so assume
4205 * NX can be used by any non-nested shadow MMU to avoid having to reset
4206 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled.
4207 */
4208 bool uses_nx = context->nx || !tdp_enabled ||
36d9594d 4209 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4210 struct rsvd_bits_validate *shadow_zero_check;
4211 int i;
5f0b8199 4212
6fec2144
PB
4213 /*
4214 * Passing "true" to the last argument is okay; it adds a check
4215 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4216 */
ea2800dd
BS
4217 shadow_zero_check = &context->shadow_zero_check;
4218 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4219 reserved_hpa_bits(),
5f0b8199 4220 context->shadow_root_level, uses_nx,
d6321d49
RK
4221 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4222 is_pse(vcpu), true);
ea2800dd
BS
4223
4224 if (!shadow_me_mask)
4225 return;
4226
4227 for (i = context->shadow_root_level; --i >= 0;) {
4228 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4229 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4230 }
4231
c258b62b
XG
4232}
4233EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4234
6fec2144
PB
4235static inline bool boot_cpu_is_amd(void)
4236{
4237 WARN_ON_ONCE(!tdp_enabled);
4238 return shadow_x_mask == 0;
4239}
4240
c258b62b
XG
4241/*
4242 * the direct page table on host, use as much mmu features as
4243 * possible, however, kvm currently does not do execution-protection.
4244 */
4245static void
4246reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4247 struct kvm_mmu *context)
4248{
ea2800dd
BS
4249 struct rsvd_bits_validate *shadow_zero_check;
4250 int i;
4251
4252 shadow_zero_check = &context->shadow_zero_check;
4253
6fec2144 4254 if (boot_cpu_is_amd())
ea2800dd 4255 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4256 reserved_hpa_bits(),
c258b62b 4257 context->shadow_root_level, false,
b8291adc
BP
4258 boot_cpu_has(X86_FEATURE_GBPAGES),
4259 true, true);
c258b62b 4260 else
ea2800dd 4261 __reset_rsvds_bits_mask_ept(shadow_zero_check,
6f8e65a6 4262 reserved_hpa_bits(), false);
c258b62b 4263
ea2800dd
BS
4264 if (!shadow_me_mask)
4265 return;
4266
4267 for (i = context->shadow_root_level; --i >= 0;) {
4268 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4269 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4270 }
c258b62b
XG
4271}
4272
4273/*
4274 * as the comments in reset_shadow_zero_bits_mask() except it
4275 * is the shadow page table for intel nested guest.
4276 */
4277static void
4278reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4279 struct kvm_mmu *context, bool execonly)
4280{
4281 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
6f8e65a6 4282 reserved_hpa_bits(), execonly);
c258b62b
XG
4283}
4284
09f037aa
PB
4285#define BYTE_MASK(access) \
4286 ((1 & (access) ? 2 : 0) | \
4287 (2 & (access) ? 4 : 0) | \
4288 (3 & (access) ? 8 : 0) | \
4289 (4 & (access) ? 16 : 0) | \
4290 (5 & (access) ? 32 : 0) | \
4291 (6 & (access) ? 64 : 0) | \
4292 (7 & (access) ? 128 : 0))
4293
4294
edc90b7d
XG
4295static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4296 struct kvm_mmu *mmu, bool ept)
97d64b78 4297{
09f037aa
PB
4298 unsigned byte;
4299
4300 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4301 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4302 const u8 u = BYTE_MASK(ACC_USER_MASK);
4303
4304 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4305 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4306 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4307
97d64b78 4308 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4309 unsigned pfec = byte << 1;
4310
97ec8c06 4311 /*
09f037aa
PB
4312 * Each "*f" variable has a 1 bit for each UWX value
4313 * that causes a fault with the given PFEC.
97ec8c06 4314 */
97d64b78 4315
09f037aa 4316 /* Faults from writes to non-writable pages */
a6a6d3b1 4317 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4318 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4319 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4320 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4321 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4322 /* Faults from kernel mode fetches of user pages */
4323 u8 smepf = 0;
4324 /* Faults from kernel mode accesses of user pages */
4325 u8 smapf = 0;
4326
4327 if (!ept) {
4328 /* Faults from kernel mode accesses to user pages */
4329 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4330
4331 /* Not really needed: !nx will cause pte.nx to fault */
4332 if (!mmu->nx)
4333 ff = 0;
4334
4335 /* Allow supervisor writes if !cr0.wp */
4336 if (!cr0_wp)
4337 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4338
4339 /* Disallow supervisor fetches of user code if cr4.smep */
4340 if (cr4_smep)
4341 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4342
4343 /*
4344 * SMAP:kernel-mode data accesses from user-mode
4345 * mappings should fault. A fault is considered
4346 * as a SMAP violation if all of the following
39337ad1 4347 * conditions are true:
09f037aa
PB
4348 * - X86_CR4_SMAP is set in CR4
4349 * - A user page is accessed
4350 * - The access is not a fetch
4351 * - Page fault in kernel mode
4352 * - if CPL = 3 or X86_EFLAGS_AC is clear
4353 *
4354 * Here, we cover the first three conditions.
4355 * The fourth is computed dynamically in permission_fault();
4356 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4357 * *not* subject to SMAP restrictions.
4358 */
4359 if (cr4_smap)
4360 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4361 }
09f037aa
PB
4362
4363 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4364 }
4365}
4366
2d344105
HH
4367/*
4368* PKU is an additional mechanism by which the paging controls access to
4369* user-mode addresses based on the value in the PKRU register. Protection
4370* key violations are reported through a bit in the page fault error code.
4371* Unlike other bits of the error code, the PK bit is not known at the
4372* call site of e.g. gva_to_gpa; it must be computed directly in
4373* permission_fault based on two bits of PKRU, on some machine state (CR4,
4374* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4375*
4376* In particular the following conditions come from the error code, the
4377* page tables and the machine state:
4378* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4379* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4380* - PK is always zero if U=0 in the page tables
4381* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4382*
4383* The PKRU bitmask caches the result of these four conditions. The error
4384* code (minus the P bit) and the page table's U bit form an index into the
4385* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4386* with the two bits of the PKRU register corresponding to the protection key.
4387* For the first three conditions above the bits will be 00, thus masking
4388* away both AD and WD. For all reads or if the last condition holds, WD
4389* only will be masked away.
4390*/
4391static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4392 bool ept)
4393{
4394 unsigned bit;
4395 bool wp;
4396
4397 if (ept) {
4398 mmu->pkru_mask = 0;
4399 return;
4400 }
4401
4402 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4403 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4404 mmu->pkru_mask = 0;
4405 return;
4406 }
4407
4408 wp = is_write_protection(vcpu);
4409
4410 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4411 unsigned pfec, pkey_bits;
4412 bool check_pkey, check_write, ff, uf, wf, pte_user;
4413
4414 pfec = bit << 1;
4415 ff = pfec & PFERR_FETCH_MASK;
4416 uf = pfec & PFERR_USER_MASK;
4417 wf = pfec & PFERR_WRITE_MASK;
4418
4419 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4420 pte_user = pfec & PFERR_RSVD_MASK;
4421
4422 /*
4423 * Only need to check the access which is not an
4424 * instruction fetch and is to a user page.
4425 */
4426 check_pkey = (!ff && pte_user);
4427 /*
4428 * write access is controlled by PKRU if it is a
4429 * user access or CR0.WP = 1.
4430 */
4431 check_write = check_pkey && wf && (uf || wp);
4432
4433 /* PKRU.AD stops both read and write access. */
4434 pkey_bits = !!check_pkey;
4435 /* PKRU.WD stops write access. */
4436 pkey_bits |= (!!check_write) << 1;
4437
4438 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4439 }
4440}
4441
6bb69c9b 4442static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4443{
6bb69c9b
PB
4444 unsigned root_level = mmu->root_level;
4445
4446 mmu->last_nonleaf_level = root_level;
4447 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4448 mmu->last_nonleaf_level++;
6fd01b71
AK
4449}
4450
8a3c1a33
PB
4451static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4452 struct kvm_mmu *context,
4453 int level)
6aa8b732 4454{
2d48a985 4455 context->nx = is_nx(vcpu);
4d6931c3 4456 context->root_level = level;
2d48a985 4457
4d6931c3 4458 reset_rsvds_bits_mask(vcpu, context);
25d92081 4459 update_permission_bitmask(vcpu, context, false);
2d344105 4460 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4461 update_last_nonleaf_level(vcpu, context);
6aa8b732 4462
fa4a2c08 4463 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4464 context->page_fault = paging64_page_fault;
6aa8b732 4465 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4466 context->sync_page = paging64_sync_page;
a7052897 4467 context->invlpg = paging64_invlpg;
17ac10ad 4468 context->shadow_root_level = level;
c5a78f2b 4469 context->direct_map = false;
6aa8b732
AK
4470}
4471
8a3c1a33
PB
4472static void paging64_init_context(struct kvm_vcpu *vcpu,
4473 struct kvm_mmu *context)
17ac10ad 4474{
855feb67
YZ
4475 int root_level = is_la57_mode(vcpu) ?
4476 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4477
4478 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4479}
4480
8a3c1a33
PB
4481static void paging32_init_context(struct kvm_vcpu *vcpu,
4482 struct kvm_mmu *context)
6aa8b732 4483{
2d48a985 4484 context->nx = false;
4d6931c3 4485 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4486
4d6931c3 4487 reset_rsvds_bits_mask(vcpu, context);
25d92081 4488 update_permission_bitmask(vcpu, context, false);
2d344105 4489 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4490 update_last_nonleaf_level(vcpu, context);
6aa8b732 4491
6aa8b732 4492 context->page_fault = paging32_page_fault;
6aa8b732 4493 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4494 context->sync_page = paging32_sync_page;
a7052897 4495 context->invlpg = paging32_invlpg;
6aa8b732 4496 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4497 context->direct_map = false;
6aa8b732
AK
4498}
4499
8a3c1a33
PB
4500static void paging32E_init_context(struct kvm_vcpu *vcpu,
4501 struct kvm_mmu *context)
6aa8b732 4502{
8a3c1a33 4503 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4504}
4505
a336282d
VK
4506static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4507{
4508 union kvm_mmu_extended_role ext = {0};
4509
7dcd5755 4510 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4511 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4512 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4513 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4514 ext.cr4_pse = !!is_pse(vcpu);
4515 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
f71a53d1 4516 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
a336282d
VK
4517
4518 ext.valid = 1;
4519
4520 return ext;
4521}
4522
7dcd5755
VK
4523static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4524 bool base_only)
4525{
4526 union kvm_mmu_role role = {0};
4527
4528 role.base.access = ACC_ALL;
4529 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4530 role.base.cr0_wp = is_write_protection(vcpu);
4531 role.base.smm = is_smm(vcpu);
4532 role.base.guest_mode = is_guest_mode(vcpu);
4533
4534 if (base_only)
4535 return role;
4536
4537 role.ext = kvm_calc_mmu_role_ext(vcpu);
4538
4539 return role;
4540}
4541
d468d94b
SC
4542static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4543{
4544 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4545 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4546 return 4;
4547
83013059 4548 return max_tdp_level;
d468d94b
SC
4549}
4550
7dcd5755
VK
4551static union kvm_mmu_role
4552kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4553{
7dcd5755 4554 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4555
7dcd5755 4556 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4557 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4558 role.base.direct = true;
47c42e6b 4559 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4560
4561 return role;
4562}
4563
8a3c1a33 4564static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4565{
8c008659 4566 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4567 union kvm_mmu_role new_role =
4568 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4569
7dcd5755
VK
4570 if (new_role.as_u64 == context->mmu_role.as_u64)
4571 return;
4572
4573 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4574 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4575 context->sync_page = nonpaging_sync_page;
5efac074 4576 context->invlpg = NULL;
d468d94b 4577 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4578 context->direct_map = true;
d8dd54e0 4579 context->get_guest_pgd = get_cr3;
e4e517b4 4580 context->get_pdptr = kvm_pdptr_read;
cb659db8 4581 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4582
4583 if (!is_paging(vcpu)) {
2d48a985 4584 context->nx = false;
fb72d167
JR
4585 context->gva_to_gpa = nonpaging_gva_to_gpa;
4586 context->root_level = 0;
4587 } else if (is_long_mode(vcpu)) {
2d48a985 4588 context->nx = is_nx(vcpu);
855feb67
YZ
4589 context->root_level = is_la57_mode(vcpu) ?
4590 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4591 reset_rsvds_bits_mask(vcpu, context);
4592 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4593 } else if (is_pae(vcpu)) {
2d48a985 4594 context->nx = is_nx(vcpu);
fb72d167 4595 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4596 reset_rsvds_bits_mask(vcpu, context);
4597 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4598 } else {
2d48a985 4599 context->nx = false;
fb72d167 4600 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4601 reset_rsvds_bits_mask(vcpu, context);
4602 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4603 }
4604
25d92081 4605 update_permission_bitmask(vcpu, context, false);
2d344105 4606 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4607 update_last_nonleaf_level(vcpu, context);
c258b62b 4608 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4609}
4610
7dcd5755 4611static union kvm_mmu_role
59505b55 4612kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4613{
4614 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4615
4616 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4617 !is_write_protection(vcpu);
4618 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4619 !is_write_protection(vcpu);
47c42e6b 4620 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4621
59505b55
SC
4622 return role;
4623}
4624
4625static union kvm_mmu_role
4626kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4627{
4628 union kvm_mmu_role role =
4629 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4630
4631 role.base.direct = !is_paging(vcpu);
4632
9fa72119 4633 if (!is_long_mode(vcpu))
7dcd5755 4634 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4635 else if (is_la57_mode(vcpu))
7dcd5755 4636 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4637 else
7dcd5755 4638 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4639
4640 return role;
4641}
4642
8c008659
PB
4643static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4644 u32 cr0, u32 cr4, u32 efer,
4645 union kvm_mmu_role new_role)
9fa72119 4646{
929d1cfa 4647 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4648 nonpaging_init_context(vcpu, context);
929d1cfa 4649 else if (efer & EFER_LMA)
8a3c1a33 4650 paging64_init_context(vcpu, context);
929d1cfa 4651 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4652 paging32E_init_context(vcpu, context);
6aa8b732 4653 else
8a3c1a33 4654 paging32_init_context(vcpu, context);
a770f6f2 4655
7dcd5755 4656 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4657 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4658}
0f04a2ac
VK
4659
4660static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4661{
8c008659 4662 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4663 union kvm_mmu_role new_role =
4664 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4665
4666 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4667 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4668}
4669
59505b55
SC
4670static union kvm_mmu_role
4671kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4672{
4673 union kvm_mmu_role role =
4674 kvm_calc_shadow_root_page_role_common(vcpu, false);
4675
4676 role.base.direct = false;
d468d94b 4677 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4678
4679 return role;
4680}
4681
0f04a2ac
VK
4682void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4683 gpa_t nested_cr3)
4684{
8c008659 4685 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4686 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4687
b5129100 4688 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
a506fdd2 4689
a3322d5c 4690 if (new_role.as_u64 != context->mmu_role.as_u64) {
8c008659 4691 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
a3322d5c
SC
4692
4693 /*
4694 * Override the level set by the common init helper, nested TDP
4695 * always uses the host's TDP configuration.
4696 */
4697 context->shadow_root_level = new_role.base.level;
4698 }
0f04a2ac
VK
4699}
4700EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4701
a336282d
VK
4702static union kvm_mmu_role
4703kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4704 bool execonly, u8 level)
9fa72119 4705{
552c69b1 4706 union kvm_mmu_role role = {0};
14c07ad8 4707
47c42e6b
SC
4708 /* SMM flag is inherited from root_mmu */
4709 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4710
bb1fcc70 4711 role.base.level = level;
47c42e6b 4712 role.base.gpte_is_8_bytes = true;
a336282d
VK
4713 role.base.direct = false;
4714 role.base.ad_disabled = !accessed_dirty;
4715 role.base.guest_mode = true;
4716 role.base.access = ACC_ALL;
9fa72119 4717
552c69b1 4718 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4719 role.ext.execonly = execonly;
9fa72119
JS
4720
4721 return role;
4722}
4723
ae1e2d10 4724void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4725 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4726{
8c008659 4727 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4728 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4729 union kvm_mmu_role new_role =
4730 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4731 execonly, level);
a336282d 4732
b5129100 4733 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
a336282d 4734
a336282d
VK
4735 if (new_role.as_u64 == context->mmu_role.as_u64)
4736 return;
ad896af0 4737
bb1fcc70 4738 context->shadow_root_level = level;
155a97a3
NHE
4739
4740 context->nx = true;
ae1e2d10 4741 context->ept_ad = accessed_dirty;
155a97a3
NHE
4742 context->page_fault = ept_page_fault;
4743 context->gva_to_gpa = ept_gva_to_gpa;
4744 context->sync_page = ept_sync_page;
4745 context->invlpg = ept_invlpg;
bb1fcc70 4746 context->root_level = level;
155a97a3 4747 context->direct_map = false;
a336282d 4748 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4749
155a97a3 4750 update_permission_bitmask(vcpu, context, true);
2d344105 4751 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4752 update_last_nonleaf_level(vcpu, context);
155a97a3 4753 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4754 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4755}
4756EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4757
8a3c1a33 4758static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4759{
8c008659 4760 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4761
929d1cfa
PB
4762 kvm_init_shadow_mmu(vcpu,
4763 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4764 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4765 vcpu->arch.efer);
4766
d8dd54e0 4767 context->get_guest_pgd = get_cr3;
ad896af0
PB
4768 context->get_pdptr = kvm_pdptr_read;
4769 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4770}
4771
654430ef
SC
4772static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu)
4773{
4774 union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false);
4775
4776 /*
4777 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4778 * shadow pages of their own and so "direct" has no meaning. Set it
4779 * to "true" to try to detect bogus usage of the nested MMU.
4780 */
4781 role.base.direct = true;
4782
4783 if (!is_paging(vcpu))
4784 role.base.level = 0;
4785 else if (is_long_mode(vcpu))
4786 role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL :
4787 PT64_ROOT_4LEVEL;
4788 else if (is_pae(vcpu))
4789 role.base.level = PT32E_ROOT_LEVEL;
4790 else
4791 role.base.level = PT32_ROOT_LEVEL;
4792
4793 return role;
4794}
4795
8a3c1a33 4796static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4797{
654430ef 4798 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu);
02f59dc9
JR
4799 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4800
bf627a92
VK
4801 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4802 return;
4803
4804 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4805 g_context->get_guest_pgd = get_cr3;
e4e517b4 4806 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4807 g_context->inject_page_fault = kvm_inject_page_fault;
4808
5efac074
PB
4809 /*
4810 * L2 page tables are never shadowed, so there is no need to sync
4811 * SPTEs.
4812 */
4813 g_context->invlpg = NULL;
4814
02f59dc9 4815 /*
44dd3ffa 4816 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4817 * L1's nested page tables (e.g. EPT12). The nested translation
4818 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4819 * L2's page tables as the first level of translation and L1's
4820 * nested page tables as the second level of translation. Basically
4821 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4822 */
4823 if (!is_paging(vcpu)) {
2d48a985 4824 g_context->nx = false;
02f59dc9
JR
4825 g_context->root_level = 0;
4826 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4827 } else if (is_long_mode(vcpu)) {
2d48a985 4828 g_context->nx = is_nx(vcpu);
855feb67
YZ
4829 g_context->root_level = is_la57_mode(vcpu) ?
4830 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4831 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4832 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4833 } else if (is_pae(vcpu)) {
2d48a985 4834 g_context->nx = is_nx(vcpu);
02f59dc9 4835 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4836 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4837 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4838 } else {
2d48a985 4839 g_context->nx = false;
02f59dc9 4840 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4841 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4842 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4843 }
4844
25d92081 4845 update_permission_bitmask(vcpu, g_context, false);
2d344105 4846 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4847 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4848}
4849
c9060662 4850void kvm_init_mmu(struct kvm_vcpu *vcpu)
fb72d167 4851{
02f59dc9 4852 if (mmu_is_nested(vcpu))
e0c6db3e 4853 init_kvm_nested_mmu(vcpu);
02f59dc9 4854 else if (tdp_enabled)
e0c6db3e 4855 init_kvm_tdp_mmu(vcpu);
fb72d167 4856 else
e0c6db3e 4857 init_kvm_softmmu(vcpu);
fb72d167 4858}
1c53da3f 4859EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4860
9fa72119
JS
4861static union kvm_mmu_page_role
4862kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4863{
7dcd5755
VK
4864 union kvm_mmu_role role;
4865
9fa72119 4866 if (tdp_enabled)
7dcd5755 4867 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4868 else
7dcd5755
VK
4869 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4870
4871 return role.base;
9fa72119 4872}
fb72d167 4873
49c6f875
SC
4874void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4875{
4876 /*
4877 * Invalidate all MMU roles to force them to reinitialize as CPUID
4878 * information is factored into reserved bit calculations.
4879 */
4880 vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4881 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4882 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4883 kvm_mmu_reset_context(vcpu);
63f5a190
SC
4884
4885 /*
4886 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4887 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4888 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
4889 * faults due to reusing SPs/SPTEs. Alert userspace, but otherwise
4890 * sweep the problem under the rug.
4891 *
4892 * KVM's horrific CPUID ABI makes the problem all but impossible to
4893 * solve, as correctly handling multiple vCPU models (with respect to
4894 * paging and physical address properties) in a single VM would require
4895 * tracking all relevant CPUID information in kvm_mmu_page_role. That
4896 * is very undesirable as it would double the memory requirements for
4897 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4898 * no sane VMM mucks with the core vCPU model on the fly.
4899 */
4900 if (vcpu->arch.last_vmentry_cpu != -1) {
4901 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4902 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4903 }
49c6f875
SC
4904}
4905
8a3c1a33 4906void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4907{
95f93af4 4908 kvm_mmu_unload(vcpu);
c9060662 4909 kvm_init_mmu(vcpu);
17c3ba9d 4910}
8668a3c4 4911EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4912
4913int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4914{
714b93da
AK
4915 int r;
4916
378f5cd6 4917 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4918 if (r)
4919 goto out;
748e52b9 4920 r = mmu_alloc_special_roots(vcpu);
17c3ba9d
AK
4921 if (r)
4922 goto out;
4a38162e 4923 if (vcpu->arch.mmu->direct_map)
6e6ec584
SC
4924 r = mmu_alloc_direct_roots(vcpu);
4925 else
4926 r = mmu_alloc_shadow_roots(vcpu);
8986ecc0
MT
4927 if (r)
4928 goto out;
a91f387b
SC
4929
4930 kvm_mmu_sync_roots(vcpu);
4931
727a7e27 4932 kvm_mmu_load_pgd(vcpu);
b3646477 4933 static_call(kvm_x86_tlb_flush_current)(vcpu);
714b93da
AK
4934out:
4935 return r;
6aa8b732 4936}
17c3ba9d
AK
4937
4938void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4939{
14c07ad8
VK
4940 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4941 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4942 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4943 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4944}
6aa8b732 4945
79539cec
AK
4946static bool need_remote_flush(u64 old, u64 new)
4947{
4948 if (!is_shadow_present_pte(old))
4949 return false;
4950 if (!is_shadow_present_pte(new))
4951 return true;
4952 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4953 return true;
53166229
GN
4954 old ^= shadow_nx_mask;
4955 new ^= shadow_nx_mask;
79539cec
AK
4956 return (old & ~new & PT64_PERM_MASK) != 0;
4957}
4958
889e5cbc 4959static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4960 int *bytes)
da4a00f0 4961{
0e0fee5c 4962 u64 gentry = 0;
889e5cbc 4963 int r;
72016f3a 4964
72016f3a
AK
4965 /*
4966 * Assume that the pte write on a page table of the same type
49b26e26
XG
4967 * as the current vcpu paging mode since we update the sptes only
4968 * when they have the same mode.
72016f3a 4969 */
889e5cbc 4970 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4971 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4972 *gpa &= ~(gpa_t)7;
4973 *bytes = 8;
08e850c6
AK
4974 }
4975
0e0fee5c
JS
4976 if (*bytes == 4 || *bytes == 8) {
4977 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4978 if (r)
4979 gentry = 0;
72016f3a
AK
4980 }
4981
889e5cbc
XG
4982 return gentry;
4983}
4984
4985/*
4986 * If we're seeing too many writes to a page, it may no longer be a page table,
4987 * or we may be forking, in which case it is better to unmap the page.
4988 */
a138fe75 4989static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4990{
a30f47cb
XG
4991 /*
4992 * Skip write-flooding detected for the sp whose level is 1, because
4993 * it can become unsync, then the guest page is not write-protected.
4994 */
3bae0459 4995 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4996 return false;
3246af0e 4997
e5691a81
XG
4998 atomic_inc(&sp->write_flooding_count);
4999 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5000}
5001
5002/*
5003 * Misaligned accesses are too much trouble to fix up; also, they usually
5004 * indicate a page is not used as a page table.
5005 */
5006static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5007 int bytes)
5008{
5009 unsigned offset, pte_size, misaligned;
5010
5011 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5012 gpa, bytes, sp->role.word);
5013
5014 offset = offset_in_page(gpa);
47c42e6b 5015 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5016
5017 /*
5018 * Sometimes, the OS only writes the last one bytes to update status
5019 * bits, for example, in linux, andb instruction is used in clear_bit().
5020 */
5021 if (!(offset & (pte_size - 1)) && bytes == 1)
5022 return false;
5023
889e5cbc
XG
5024 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5025 misaligned |= bytes < 4;
5026
5027 return misaligned;
5028}
5029
5030static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5031{
5032 unsigned page_offset, quadrant;
5033 u64 *spte;
5034 int level;
5035
5036 page_offset = offset_in_page(gpa);
5037 level = sp->role.level;
5038 *nspte = 1;
47c42e6b 5039 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5040 page_offset <<= 1; /* 32->64 */
5041 /*
5042 * A 32-bit pde maps 4MB while the shadow pdes map
5043 * only 2MB. So we need to double the offset again
5044 * and zap two pdes instead of one.
5045 */
5046 if (level == PT32_ROOT_LEVEL) {
5047 page_offset &= ~7; /* kill rounding error */
5048 page_offset <<= 1;
5049 *nspte = 2;
5050 }
5051 quadrant = page_offset >> PAGE_SHIFT;
5052 page_offset &= ~PAGE_MASK;
5053 if (quadrant != sp->role.quadrant)
5054 return NULL;
5055 }
5056
5057 spte = &sp->spt[page_offset / sizeof(*spte)];
5058 return spte;
5059}
5060
13d268ca 5061static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5062 const u8 *new, int bytes,
5063 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5064{
5065 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5066 struct kvm_mmu_page *sp;
889e5cbc
XG
5067 LIST_HEAD(invalid_list);
5068 u64 entry, gentry, *spte;
5069 int npte;
b8c67b7a 5070 bool remote_flush, local_flush;
889e5cbc
XG
5071
5072 /*
5073 * If we don't have indirect shadow pages, it means no page is
5074 * write-protected, so we can exit simply.
5075 */
6aa7de05 5076 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5077 return;
5078
b8c67b7a 5079 remote_flush = local_flush = false;
889e5cbc
XG
5080
5081 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5082
889e5cbc
XG
5083 /*
5084 * No need to care whether allocation memory is successful
d9f6e12f 5085 * or not since pte prefetch is skipped if it does not have
889e5cbc
XG
5086 * enough objects in the cache.
5087 */
378f5cd6 5088 mmu_topup_memory_caches(vcpu, true);
889e5cbc 5089
531810ca 5090 write_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5091
5092 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5093
889e5cbc 5094 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5095 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5096
b67bfe0d 5097 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5098 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5099 detect_write_flooding(sp)) {
b8c67b7a 5100 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5101 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5102 continue;
5103 }
889e5cbc
XG
5104
5105 spte = get_written_sptes(sp, gpa, &npte);
5106 if (!spte)
5107 continue;
5108
0671a8e7 5109 local_flush = true;
ac1b714e 5110 while (npte--) {
79539cec 5111 entry = *spte;
2de4085c 5112 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
c5e2184d
SC
5113 if (gentry && sp->role.level != PG_LEVEL_4K)
5114 ++vcpu->kvm->stat.mmu_pde_zapped;
9bb4f6b1 5115 if (need_remote_flush(entry, *spte))
0671a8e7 5116 remote_flush = true;
ac1b714e 5117 ++spte;
9b7a0325 5118 }
9b7a0325 5119 }
b8c67b7a 5120 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5121 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
531810ca 5122 write_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5123}
5124
736c291c 5125int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5126 void *insn, int insn_len)
3067714c 5127{
92daa48b 5128 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5129 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5130
6948199a 5131 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5132 return RET_PF_RETRY;
5133
9b8ebbdb 5134 r = RET_PF_INVALID;
e9ee956e 5135 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5136 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5137 if (r == RET_PF_EMULATE)
e9ee956e 5138 goto emulate;
e9ee956e 5139 }
3067714c 5140
9b8ebbdb 5141 if (r == RET_PF_INVALID) {
7a02674d
SC
5142 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5143 lower_32_bits(error_code), false);
7b367bc9
SC
5144 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5145 return -EIO;
9b8ebbdb
PB
5146 }
5147
3067714c 5148 if (r < 0)
e9ee956e 5149 return r;
83a2ba4c
SC
5150 if (r != RET_PF_EMULATE)
5151 return 1;
3067714c 5152
14727754
TL
5153 /*
5154 * Before emulating the instruction, check if the error code
5155 * was due to a RO violation while translating the guest page.
5156 * This can occur when using nested virtualization with nested
5157 * paging in both guests. If true, we simply unprotect the page
5158 * and resume the guest.
14727754 5159 */
44dd3ffa 5160 if (vcpu->arch.mmu->direct_map &&
eebed243 5161 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5162 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5163 return 1;
5164 }
5165
472faffa
SC
5166 /*
5167 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5168 * optimistically try to just unprotect the page and let the processor
5169 * re-execute the instruction that caused the page fault. Do not allow
5170 * retrying MMIO emulation, as it's not only pointless but could also
5171 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5172 * faulting on the non-existent MMIO address. Retrying an instruction
5173 * from a nested guest is also pointless and dangerous as we are only
5174 * explicitly shadowing L1's page tables, i.e. unprotecting something
5175 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5176 */
736c291c 5177 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5178 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5179emulate:
736c291c 5180 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5181 insn_len);
3067714c
AK
5182}
5183EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5184
5efac074
PB
5185void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5186 gva_t gva, hpa_t root_hpa)
a7052897 5187{
b94742c9 5188 int i;
7eb77e9f 5189
5efac074
PB
5190 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5191 if (mmu != &vcpu->arch.guest_mmu) {
5192 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5193 if (is_noncanonical_address(gva, vcpu))
5194 return;
5195
b3646477 5196 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5efac074
PB
5197 }
5198
5199 if (!mmu->invlpg)
faff8758
JS
5200 return;
5201
5efac074
PB
5202 if (root_hpa == INVALID_PAGE) {
5203 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5204
5efac074
PB
5205 /*
5206 * INVLPG is required to invalidate any global mappings for the VA,
5207 * irrespective of PCID. Since it would take us roughly similar amount
5208 * of work to determine whether any of the prev_root mappings of the VA
5209 * is marked global, or to just sync it blindly, so we might as well
5210 * just always sync it.
5211 *
5212 * Mappings not reachable via the current cr3 or the prev_roots will be
5213 * synced when switching to that cr3, so nothing needs to be done here
5214 * for them.
5215 */
5216 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5217 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5218 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5219 } else {
5220 mmu->invlpg(vcpu, gva, root_hpa);
5221 }
5222}
956bf353 5223
5efac074
PB
5224void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5225{
5226 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5227 ++vcpu->stat.invlpg;
5228}
5229EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5230
5efac074 5231
eb4b248e
JS
5232void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5233{
44dd3ffa 5234 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5235 bool tlb_flush = false;
b94742c9 5236 uint i;
eb4b248e
JS
5237
5238 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5239 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5240 tlb_flush = true;
eb4b248e
JS
5241 }
5242
b94742c9
JS
5243 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5244 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5245 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5246 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5247 tlb_flush = true;
5248 }
956bf353 5249 }
ade61e28 5250
faff8758 5251 if (tlb_flush)
b3646477 5252 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
faff8758 5253
eb4b248e
JS
5254 ++vcpu->stat.invlpg;
5255
5256 /*
b94742c9
JS
5257 * Mappings not reachable via the current cr3 or the prev_roots will be
5258 * synced when switching to that cr3, so nothing needs to be done here
5259 * for them.
eb4b248e
JS
5260 */
5261}
eb4b248e 5262
83013059
SC
5263void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5264 int tdp_huge_page_level)
18552672 5265{
bde77235 5266 tdp_enabled = enable_tdp;
83013059 5267 max_tdp_level = tdp_max_root_level;
703c335d
SC
5268
5269 /*
1d92d2e8 5270 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5271 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5272 * the kernel is not. But, KVM never creates a page size greater than
5273 * what is used by the kernel for any given HVA, i.e. the kernel's
5274 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5275 */
5276 if (tdp_enabled)
1d92d2e8 5277 max_huge_page_level = tdp_huge_page_level;
703c335d 5278 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5279 max_huge_page_level = PG_LEVEL_1G;
703c335d 5280 else
1d92d2e8 5281 max_huge_page_level = PG_LEVEL_2M;
18552672 5282}
bde77235 5283EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5284
5285/* The return value indicates if tlb flush on all vcpus is needed. */
0a234f5d
SC
5286typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5287 struct kvm_memory_slot *slot);
85875a13
SC
5288
5289/* The caller should hold mmu-lock before calling this function. */
5290static __always_inline bool
5291slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5292 slot_level_handler fn, int start_level, int end_level,
1a61b7db
SC
5293 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5294 bool flush)
85875a13
SC
5295{
5296 struct slot_rmap_walk_iterator iterator;
85875a13
SC
5297
5298 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5299 end_gfn, &iterator) {
5300 if (iterator.rmap)
0a234f5d 5301 flush |= fn(kvm, iterator.rmap, memslot);
85875a13 5302
531810ca 5303 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
302695a5 5304 if (flush && flush_on_yield) {
f285c633
BG
5305 kvm_flush_remote_tlbs_with_address(kvm,
5306 start_gfn,
5307 iterator.gfn - start_gfn + 1);
85875a13
SC
5308 flush = false;
5309 }
531810ca 5310 cond_resched_rwlock_write(&kvm->mmu_lock);
85875a13
SC
5311 }
5312 }
5313
85875a13
SC
5314 return flush;
5315}
5316
5317static __always_inline bool
5318slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5319 slot_level_handler fn, int start_level, int end_level,
302695a5 5320 bool flush_on_yield)
85875a13
SC
5321{
5322 return slot_handle_level_range(kvm, memslot, fn, start_level,
5323 end_level, memslot->base_gfn,
5324 memslot->base_gfn + memslot->npages - 1,
1a61b7db 5325 flush_on_yield, false);
85875a13
SC
5326}
5327
85875a13
SC
5328static __always_inline bool
5329slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
302695a5 5330 slot_level_handler fn, bool flush_on_yield)
85875a13 5331{
3bae0459 5332 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
302695a5 5333 PG_LEVEL_4K, flush_on_yield);
85875a13
SC
5334}
5335
1cfff4d9 5336static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5337{
4a98623d
SC
5338 if (!tdp_enabled && mmu->pae_root)
5339 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
1cfff4d9 5340 free_page((unsigned long)mmu->pae_root);
03ca4589 5341 free_page((unsigned long)mmu->pml4_root);
6aa8b732
AK
5342}
5343
04d28e37 5344static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5345{
17ac10ad 5346 struct page *page;
6aa8b732
AK
5347 int i;
5348
04d28e37
SC
5349 mmu->root_hpa = INVALID_PAGE;
5350 mmu->root_pgd = 0;
5351 mmu->translate_gpa = translate_gpa;
5352 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5353 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5354
17ac10ad 5355 /*
b6b80c78
SC
5356 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5357 * while the PDP table is a per-vCPU construct that's allocated at MMU
5358 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5359 * x86_64. Therefore we need to allocate the PDP table in the first
04d45551
SC
5360 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5361 * generally doesn't use PAE paging and can skip allocating the PDP
5362 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5363 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5364 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
17ac10ad 5365 */
d468d94b 5366 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5367 return 0;
5368
254272ce 5369 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5370 if (!page)
d7fa6ab2
WY
5371 return -ENOMEM;
5372
1cfff4d9 5373 mmu->pae_root = page_address(page);
4a98623d
SC
5374
5375 /*
5376 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5377 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5378 * that KVM's writes and the CPU's reads get along. Note, this is
5379 * only necessary when using shadow paging, as 64-bit NPT can get at
5380 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5381 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5382 */
5383 if (!tdp_enabled)
5384 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5385 else
5386 WARN_ON_ONCE(shadow_me_mask);
5387
17ac10ad 5388 for (i = 0; i < 4; ++i)
c834e5e4 5389 mmu->pae_root[i] = INVALID_PAE_ROOT;
17ac10ad 5390
6aa8b732 5391 return 0;
6aa8b732
AK
5392}
5393
8018c27b 5394int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5395{
1cfff4d9 5396 int ret;
b94742c9 5397
5962bfb7 5398 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5399 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5400
5962bfb7 5401 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5402 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5403
96880883
SC
5404 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5405
44dd3ffa
VK
5406 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5407 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5408
14c07ad8 5409 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5410
04d28e37 5411 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5412 if (ret)
5413 return ret;
5414
04d28e37 5415 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5416 if (ret)
5417 goto fail_allocate_root;
5418
5419 return ret;
5420 fail_allocate_root:
5421 free_mmu_pages(&vcpu->arch.guest_mmu);
5422 return ret;
6aa8b732
AK
5423}
5424
fbb158cb 5425#define BATCH_ZAP_PAGES 10
002c5f73
SC
5426static void kvm_zap_obsolete_pages(struct kvm *kvm)
5427{
5428 struct kvm_mmu_page *sp, *node;
fbb158cb 5429 int nr_zapped, batch = 0;
002c5f73
SC
5430
5431restart:
5432 list_for_each_entry_safe_reverse(sp, node,
5433 &kvm->arch.active_mmu_pages, link) {
5434 /*
5435 * No obsolete valid page exists before a newly created page
5436 * since active_mmu_pages is a FIFO list.
5437 */
5438 if (!is_obsolete_sp(kvm, sp))
5439 break;
5440
5441 /*
f95eec9b
SC
5442 * Invalid pages should never land back on the list of active
5443 * pages. Skip the bogus page, otherwise we'll get stuck in an
5444 * infinite loop if the page gets put back on the list (again).
002c5f73 5445 */
f95eec9b 5446 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5447 continue;
5448
4506ecf4
SC
5449 /*
5450 * No need to flush the TLB since we're only zapping shadow
5451 * pages with an obsolete generation number and all vCPUS have
5452 * loaded a new root, i.e. the shadow pages being zapped cannot
5453 * be in active use by the guest.
5454 */
fbb158cb 5455 if (batch >= BATCH_ZAP_PAGES &&
531810ca 5456 cond_resched_rwlock_write(&kvm->mmu_lock)) {
fbb158cb 5457 batch = 0;
002c5f73
SC
5458 goto restart;
5459 }
5460
10605204
SC
5461 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5462 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5463 batch += nr_zapped;
002c5f73 5464 goto restart;
fbb158cb 5465 }
002c5f73
SC
5466 }
5467
4506ecf4
SC
5468 /*
5469 * Trigger a remote TLB flush before freeing the page tables to ensure
5470 * KVM is not in the middle of a lockless shadow page table walk, which
5471 * may reference the pages.
5472 */
10605204 5473 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5474}
5475
5476/*
5477 * Fast invalidate all shadow pages and use lock-break technique
5478 * to zap obsolete pages.
5479 *
5480 * It's required when memslot is being deleted or VM is being
5481 * destroyed, in these cases, we should ensure that KVM MMU does
5482 * not use any resource of the being-deleted slot or all slots
5483 * after calling the function.
5484 */
5485static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5486{
ca333add
SC
5487 lockdep_assert_held(&kvm->slots_lock);
5488
531810ca 5489 write_lock(&kvm->mmu_lock);
14a3c4f4 5490 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5491
5492 /*
5493 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5494 * held for the entire duration of zapping obsolete pages, it's
5495 * impossible for there to be multiple invalid generations associated
5496 * with *valid* shadow pages at any given time, i.e. there is exactly
5497 * one valid generation and (at most) one invalid generation.
5498 */
5499 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5500
b7cccd39
BG
5501 /* In order to ensure all threads see this change when
5502 * handling the MMU reload signal, this must happen in the
5503 * same critical section as kvm_reload_remote_mmus, and
5504 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5505 * could drop the MMU lock and yield.
5506 */
5507 if (is_tdp_mmu_enabled(kvm))
5508 kvm_tdp_mmu_invalidate_all_roots(kvm);
5509
4506ecf4
SC
5510 /*
5511 * Notify all vcpus to reload its shadow page table and flush TLB.
5512 * Then all vcpus will switch to new shadow page table with the new
5513 * mmu_valid_gen.
5514 *
5515 * Note: we need to do this under the protection of mmu_lock,
5516 * otherwise, vcpu would purge shadow page but miss tlb flush.
5517 */
5518 kvm_reload_remote_mmus(kvm);
5519
002c5f73 5520 kvm_zap_obsolete_pages(kvm);
faaf05b0 5521
531810ca 5522 write_unlock(&kvm->mmu_lock);
4c6654bd
BG
5523
5524 if (is_tdp_mmu_enabled(kvm)) {
5525 read_lock(&kvm->mmu_lock);
5526 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5527 read_unlock(&kvm->mmu_lock);
5528 }
002c5f73
SC
5529}
5530
10605204
SC
5531static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5532{
5533 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5534}
5535
b5f5fdca 5536static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5537 struct kvm_memory_slot *slot,
5538 struct kvm_page_track_notifier_node *node)
b5f5fdca 5539{
002c5f73 5540 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5541}
5542
13d268ca 5543void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5544{
13d268ca 5545 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5546
d501f747
BG
5547 if (!kvm_mmu_init_tdp_mmu(kvm))
5548 /*
5549 * No smp_load/store wrappers needed here as we are in
5550 * VM init and there cannot be any memslots / other threads
5551 * accessing this struct kvm yet.
5552 */
5553 kvm->arch.memslots_have_rmaps = true;
a2557408 5554
13d268ca 5555 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5556 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5557 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5558}
5559
13d268ca 5560void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5561{
13d268ca 5562 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5563
13d268ca 5564 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5565
5566 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5567}
5568
efdfe536
XG
5569void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5570{
5571 struct kvm_memslots *slots;
5572 struct kvm_memory_slot *memslot;
9da0e4d5 5573 int i;
1a61b7db 5574 bool flush = false;
efdfe536 5575
e2209710
BG
5576 if (kvm_memslots_have_rmaps(kvm)) {
5577 write_lock(&kvm->mmu_lock);
5578 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5579 slots = __kvm_memslots(kvm, i);
5580 kvm_for_each_memslot(memslot, slots) {
5581 gfn_t start, end;
5582
5583 start = max(gfn_start, memslot->base_gfn);
5584 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5585 if (start >= end)
5586 continue;
efdfe536 5587
e2209710
BG
5588 flush = slot_handle_level_range(kvm, memslot,
5589 kvm_zap_rmapp, PG_LEVEL_4K,
5590 KVM_MAX_HUGEPAGE_LEVEL, start,
5591 end - 1, true, flush);
5592 }
9da0e4d5 5593 }
e2209710
BG
5594 if (flush)
5595 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5596 write_unlock(&kvm->mmu_lock);
efdfe536
XG
5597 }
5598
897218ff 5599 if (is_tdp_mmu_enabled(kvm)) {
6103bc07
BG
5600 flush = false;
5601
5602 read_lock(&kvm->mmu_lock);
5603 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5604 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5605 gfn_end, flush, true);
faaf05b0 5606 if (flush)
6103bc07
BG
5607 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5608 gfn_end);
faaf05b0 5609
6103bc07
BG
5610 read_unlock(&kvm->mmu_lock);
5611 }
efdfe536
XG
5612}
5613
018aabb5 5614static bool slot_rmap_write_protect(struct kvm *kvm,
0a234f5d
SC
5615 struct kvm_rmap_head *rmap_head,
5616 struct kvm_memory_slot *slot)
d77aa73c 5617{
018aabb5 5618 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5619}
5620
1c91cad4 5621void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5622 struct kvm_memory_slot *memslot,
5623 int start_level)
6aa8b732 5624{
e2209710 5625 bool flush = false;
6aa8b732 5626
e2209710
BG
5627 if (kvm_memslots_have_rmaps(kvm)) {
5628 write_lock(&kvm->mmu_lock);
5629 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5630 start_level, KVM_MAX_HUGEPAGE_LEVEL,
5631 false);
5632 write_unlock(&kvm->mmu_lock);
5633 }
198c74f4 5634
24ae4cfa
BG
5635 if (is_tdp_mmu_enabled(kvm)) {
5636 read_lock(&kvm->mmu_lock);
5637 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5638 read_unlock(&kvm->mmu_lock);
5639 }
5640
198c74f4
XG
5641 /*
5642 * We can flush all the TLBs out of the mmu lock without TLB
5643 * corruption since we just change the spte from writable to
5644 * readonly so that we only need to care the case of changing
5645 * spte from present to present (changing the spte from present
5646 * to nonpresent will flush all the TLBs immediately), in other
5647 * words, the only case we care is mmu_spte_update() where we
5fc3424f
SC
5648 * have checked Host-writable | MMU-writable instead of
5649 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5650 * anymore.
198c74f4 5651 */
d91ffee9 5652 if (flush)
7f42aa76 5653 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5654}
37a7d8b0 5655
3ea3b7fa 5656static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
0a234f5d
SC
5657 struct kvm_rmap_head *rmap_head,
5658 struct kvm_memory_slot *slot)
3ea3b7fa
WL
5659{
5660 u64 *sptep;
5661 struct rmap_iterator iter;
5662 int need_tlb_flush = 0;
ba049e93 5663 kvm_pfn_t pfn;
3ea3b7fa
WL
5664 struct kvm_mmu_page *sp;
5665
0d536790 5666restart:
018aabb5 5667 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5668 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5669 pfn = spte_to_pfn(*sptep);
5670
5671 /*
decf6333
XG
5672 * We cannot do huge page mapping for indirect shadow pages,
5673 * which are found on the last rmap (level = 1) when not using
5674 * tdp; such shadow pages are synced with the page table in
5675 * the guest, and the guest page table is using 4K page size
5676 * mapping if the indirect sp has level = 1.
3ea3b7fa 5677 */
a78986aa 5678 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
9eba50f8
SC
5679 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5680 pfn, PG_LEVEL_NUM)) {
e7912386 5681 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5682
5683 if (kvm_available_flush_tlb_with_range())
5684 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5685 KVM_PAGES_PER_HPAGE(sp->role.level));
5686 else
5687 need_tlb_flush = 1;
5688
0d536790
XG
5689 goto restart;
5690 }
3ea3b7fa
WL
5691 }
5692
5693 return need_tlb_flush;
5694}
5695
5696void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5697 const struct kvm_memory_slot *memslot)
3ea3b7fa 5698{
f36f3f28 5699 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
9eba50f8 5700 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
31c65657 5701 bool flush = false;
9eba50f8 5702
e2209710
BG
5703 if (kvm_memslots_have_rmaps(kvm)) {
5704 write_lock(&kvm->mmu_lock);
5705 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5706 if (flush)
5707 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5708 write_unlock(&kvm->mmu_lock);
5709 }
2db6f772
BG
5710
5711 if (is_tdp_mmu_enabled(kvm)) {
2db6f772
BG
5712 read_lock(&kvm->mmu_lock);
5713 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5714 if (flush)
5715 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5716 read_unlock(&kvm->mmu_lock);
5717 }
3ea3b7fa
WL
5718}
5719
b3594ffb 5720void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6c9dd6d2 5721 const struct kvm_memory_slot *memslot)
b3594ffb
SC
5722{
5723 /*
7f42aa76 5724 * All current use cases for flushing the TLBs for a specific memslot
302695a5 5725 * related to dirty logging, and many do the TLB flush out of mmu_lock.
7f42aa76
SC
5726 * The interaction between the various operations on memslot must be
5727 * serialized by slots_locks to ensure the TLB flush from one operation
5728 * is observed by any other operation on the same memslot.
b3594ffb
SC
5729 */
5730 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5731 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5732 memslot->npages);
b3594ffb
SC
5733}
5734
f4b4b180
KH
5735void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5736 struct kvm_memory_slot *memslot)
5737{
e2209710 5738 bool flush = false;
f4b4b180 5739
e2209710
BG
5740 if (kvm_memslots_have_rmaps(kvm)) {
5741 write_lock(&kvm->mmu_lock);
5742 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5743 false);
5744 write_unlock(&kvm->mmu_lock);
5745 }
f4b4b180 5746
24ae4cfa
BG
5747 if (is_tdp_mmu_enabled(kvm)) {
5748 read_lock(&kvm->mmu_lock);
5749 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5750 read_unlock(&kvm->mmu_lock);
5751 }
5752
f4b4b180
KH
5753 /*
5754 * It's also safe to flush TLBs out of mmu lock here as currently this
5755 * function is only used for dirty logging, in which case flushing TLB
5756 * out of mmu lock also guarantees no dirty pages will be lost in
5757 * dirty_bitmap.
5758 */
5759 if (flush)
7f42aa76 5760 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180 5761}
f4b4b180 5762
92f58b5c 5763void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5764{
5765 struct kvm_mmu_page *sp, *node;
7390de1e 5766 LIST_HEAD(invalid_list);
83cdb568 5767 int ign;
5304b8d3 5768
531810ca 5769 write_lock(&kvm->mmu_lock);
5304b8d3 5770restart:
8a674adc 5771 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5772 if (WARN_ON(sp->role.invalid))
4771450c 5773 continue;
92f58b5c 5774 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5775 goto restart;
531810ca 5776 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5304b8d3
XG
5777 goto restart;
5778 }
5779
4771450c 5780 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0 5781
897218ff 5782 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5783 kvm_tdp_mmu_zap_all(kvm);
5784
531810ca 5785 write_unlock(&kvm->mmu_lock);
5304b8d3
XG
5786}
5787
15248258 5788void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5789{
164bf7e5 5790 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5791
164bf7e5 5792 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5793
f8f55942 5794 /*
e1359e2b
SC
5795 * Generation numbers are incremented in multiples of the number of
5796 * address spaces in order to provide unique generations across all
5797 * address spaces. Strip what is effectively the address space
5798 * modifier prior to checking for a wrap of the MMIO generation so
5799 * that a wrap in any address space is detected.
5800 */
5801 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5802
f8f55942 5803 /*
e1359e2b 5804 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5805 * zap all shadow pages.
f8f55942 5806 */
e1359e2b 5807 if (unlikely(gen == 0)) {
ae0f5499 5808 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5809 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5810 }
f8f55942
XG
5811}
5812
70534a73
DC
5813static unsigned long
5814mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5815{
5816 struct kvm *kvm;
1495f230 5817 int nr_to_scan = sc->nr_to_scan;
70534a73 5818 unsigned long freed = 0;
3ee16c81 5819
0d9ce162 5820 mutex_lock(&kvm_lock);
3ee16c81
IE
5821
5822 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5823 int idx;
d98ba053 5824 LIST_HEAD(invalid_list);
3ee16c81 5825
35f2d16b
TY
5826 /*
5827 * Never scan more than sc->nr_to_scan VM instances.
5828 * Will not hit this condition practically since we do not try
5829 * to shrink more than one VM and it is very unlikely to see
5830 * !n_used_mmu_pages so many times.
5831 */
5832 if (!nr_to_scan--)
5833 break;
19526396
GN
5834 /*
5835 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5836 * here. We may skip a VM instance errorneosly, but we do not
5837 * want to shrink a VM that only started to populate its MMU
5838 * anyway.
5839 */
10605204
SC
5840 if (!kvm->arch.n_used_mmu_pages &&
5841 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5842 continue;
19526396 5843
f656ce01 5844 idx = srcu_read_lock(&kvm->srcu);
531810ca 5845 write_lock(&kvm->mmu_lock);
3ee16c81 5846
10605204
SC
5847 if (kvm_has_zapped_obsolete_pages(kvm)) {
5848 kvm_mmu_commit_zap_page(kvm,
5849 &kvm->arch.zapped_obsolete_pages);
5850 goto unlock;
5851 }
5852
ebdb292d 5853 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5854
10605204 5855unlock:
531810ca 5856 write_unlock(&kvm->mmu_lock);
f656ce01 5857 srcu_read_unlock(&kvm->srcu, idx);
19526396 5858
70534a73
DC
5859 /*
5860 * unfair on small ones
5861 * per-vm shrinkers cry out
5862 * sadness comes quickly
5863 */
19526396
GN
5864 list_move_tail(&kvm->vm_list, &vm_list);
5865 break;
3ee16c81 5866 }
3ee16c81 5867
0d9ce162 5868 mutex_unlock(&kvm_lock);
70534a73 5869 return freed;
70534a73
DC
5870}
5871
5872static unsigned long
5873mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5874{
45221ab6 5875 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5876}
5877
5878static struct shrinker mmu_shrinker = {
70534a73
DC
5879 .count_objects = mmu_shrink_count,
5880 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5881 .seeks = DEFAULT_SEEKS * 10,
5882};
5883
2ddfd20e 5884static void mmu_destroy_caches(void)
b5a33a75 5885{
c1bd743e
TH
5886 kmem_cache_destroy(pte_list_desc_cache);
5887 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5888}
5889
b8e8c830
PB
5890static bool get_nx_auto_mode(void)
5891{
5892 /* Return true when CPU has the bug, and mitigations are ON */
5893 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5894}
5895
5896static void __set_nx_huge_pages(bool val)
5897{
5898 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5899}
5900
5901static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5902{
5903 bool old_val = nx_huge_pages;
5904 bool new_val;
5905
5906 /* In "auto" mode deploy workaround only if CPU has the bug. */
5907 if (sysfs_streq(val, "off"))
5908 new_val = 0;
5909 else if (sysfs_streq(val, "force"))
5910 new_val = 1;
5911 else if (sysfs_streq(val, "auto"))
5912 new_val = get_nx_auto_mode();
5913 else if (strtobool(val, &new_val) < 0)
5914 return -EINVAL;
5915
5916 __set_nx_huge_pages(new_val);
5917
5918 if (new_val != old_val) {
5919 struct kvm *kvm;
b8e8c830
PB
5920
5921 mutex_lock(&kvm_lock);
5922
5923 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5924 mutex_lock(&kvm->slots_lock);
b8e8c830 5925 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5926 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5927
5928 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5929 }
5930 mutex_unlock(&kvm_lock);
5931 }
5932
5933 return 0;
5934}
5935
b5a33a75
AK
5936int kvm_mmu_module_init(void)
5937{
ab271bd4
AB
5938 int ret = -ENOMEM;
5939
b8e8c830
PB
5940 if (nx_huge_pages == -1)
5941 __set_nx_huge_pages(get_nx_auto_mode());
5942
36d9594d
VK
5943 /*
5944 * MMU roles use union aliasing which is, generally speaking, an
5945 * undefined behavior. However, we supposedly know how compilers behave
5946 * and the current status quo is unlikely to change. Guardians below are
5947 * supposed to let us know if the assumption becomes false.
5948 */
5949 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5950 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5951 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5952
28a1f3ac 5953 kvm_mmu_reset_all_pte_masks();
f160c7b7 5954
53c07b18
XG
5955 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5956 sizeof(struct pte_list_desc),
46bea48a 5957 0, SLAB_ACCOUNT, NULL);
53c07b18 5958 if (!pte_list_desc_cache)
ab271bd4 5959 goto out;
b5a33a75 5960
d3d25b04
AK
5961 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5962 sizeof(struct kvm_mmu_page),
46bea48a 5963 0, SLAB_ACCOUNT, NULL);
d3d25b04 5964 if (!mmu_page_header_cache)
ab271bd4 5965 goto out;
d3d25b04 5966
908c7f19 5967 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5968 goto out;
45bf21a8 5969
ab271bd4
AB
5970 ret = register_shrinker(&mmu_shrinker);
5971 if (ret)
5972 goto out;
3ee16c81 5973
b5a33a75
AK
5974 return 0;
5975
ab271bd4 5976out:
3ee16c81 5977 mmu_destroy_caches();
ab271bd4 5978 return ret;
b5a33a75
AK
5979}
5980
3ad82a7e 5981/*
39337ad1 5982 * Calculate mmu pages needed for kvm.
3ad82a7e 5983 */
bc8a3d89 5984unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5985{
bc8a3d89
BG
5986 unsigned long nr_mmu_pages;
5987 unsigned long nr_pages = 0;
bc6678a3 5988 struct kvm_memslots *slots;
be6ba0f0 5989 struct kvm_memory_slot *memslot;
9da0e4d5 5990 int i;
3ad82a7e 5991
9da0e4d5
PB
5992 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5993 slots = __kvm_memslots(kvm, i);
90d83dc3 5994
9da0e4d5
PB
5995 kvm_for_each_memslot(memslot, slots)
5996 nr_pages += memslot->npages;
5997 }
3ad82a7e
ZX
5998
5999 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6000 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6001
6002 return nr_mmu_pages;
6003}
6004
c42fffe3
XG
6005void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6006{
95f93af4 6007 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6008 free_mmu_pages(&vcpu->arch.root_mmu);
6009 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6010 mmu_free_memory_caches(vcpu);
b034cf01
XG
6011}
6012
b034cf01
XG
6013void kvm_mmu_module_exit(void)
6014{
6015 mmu_destroy_caches();
6016 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6017 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6018 mmu_audit_disable();
6019}
1aa9b957
JS
6020
6021static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6022{
6023 unsigned int old_val;
6024 int err;
6025
6026 old_val = nx_huge_pages_recovery_ratio;
6027 err = param_set_uint(val, kp);
6028 if (err)
6029 return err;
6030
6031 if (READ_ONCE(nx_huge_pages) &&
6032 !old_val && nx_huge_pages_recovery_ratio) {
6033 struct kvm *kvm;
6034
6035 mutex_lock(&kvm_lock);
6036
6037 list_for_each_entry(kvm, &vm_list, vm_list)
6038 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6039
6040 mutex_unlock(&kvm_lock);
6041 }
6042
6043 return err;
6044}
6045
6046static void kvm_recover_nx_lpages(struct kvm *kvm)
6047{
ade74e14 6048 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
1aa9b957
JS
6049 int rcu_idx;
6050 struct kvm_mmu_page *sp;
6051 unsigned int ratio;
6052 LIST_HEAD(invalid_list);
048f4980 6053 bool flush = false;
1aa9b957
JS
6054 ulong to_zap;
6055
6056 rcu_idx = srcu_read_lock(&kvm->srcu);
531810ca 6057 write_lock(&kvm->mmu_lock);
1aa9b957
JS
6058
6059 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
ade74e14 6060 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7d919c7a
SC
6061 for ( ; to_zap; --to_zap) {
6062 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6063 break;
6064
1aa9b957
JS
6065 /*
6066 * We use a separate list instead of just using active_mmu_pages
6067 * because the number of lpage_disallowed pages is expected to
6068 * be relatively small compared to the total.
6069 */
6070 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6071 struct kvm_mmu_page,
6072 lpage_disallowed_link);
6073 WARN_ON_ONCE(!sp->lpage_disallowed);
897218ff 6074 if (is_tdp_mmu_page(sp)) {
315f02c6 6075 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
8d1a182e 6076 } else {
29cf0f50
BG
6077 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6078 WARN_ON_ONCE(sp->lpage_disallowed);
6079 }
1aa9b957 6080
531810ca 6081 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
048f4980 6082 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
531810ca 6083 cond_resched_rwlock_write(&kvm->mmu_lock);
048f4980 6084 flush = false;
1aa9b957
JS
6085 }
6086 }
048f4980 6087 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
1aa9b957 6088
531810ca 6089 write_unlock(&kvm->mmu_lock);
1aa9b957
JS
6090 srcu_read_unlock(&kvm->srcu, rcu_idx);
6091}
6092
6093static long get_nx_lpage_recovery_timeout(u64 start_time)
6094{
6095 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6096 ? start_time + 60 * HZ - get_jiffies_64()
6097 : MAX_SCHEDULE_TIMEOUT;
6098}
6099
6100static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6101{
6102 u64 start_time;
6103 long remaining_time;
6104
6105 while (true) {
6106 start_time = get_jiffies_64();
6107 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6108
6109 set_current_state(TASK_INTERRUPTIBLE);
6110 while (!kthread_should_stop() && remaining_time > 0) {
6111 schedule_timeout(remaining_time);
6112 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6113 set_current_state(TASK_INTERRUPTIBLE);
6114 }
6115
6116 set_current_state(TASK_RUNNING);
6117
6118 if (kthread_should_stop())
6119 return 0;
6120
6121 kvm_recover_nx_lpages(kvm);
6122 }
6123}
6124
6125int kvm_mmu_post_init_vm(struct kvm *kvm)
6126{
6127 int err;
6128
6129 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6130 "kvm-nx-lpage-recovery",
6131 &kvm->arch.nx_lpage_recovery_thread);
6132 if (!err)
6133 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6134
6135 return err;
6136}
6137
6138void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6139{
6140 if (kvm->arch.nx_lpage_recovery_thread)
6141 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6142}