]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: Expand on the comment in kvm_vcpu_ad_need_write_protect()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
13673a90 51#include <asm/vmx.h>
3d0c27ad 52#include <asm/kvm_page_track.h>
1261bfa3 53#include "trace.h"
6aa8b732 54
b8e8c830
PB
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
1aa9b957 62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 63#endif
b8e8c830
PB
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 67
d5d6c18d 68static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
d5d6c18d 73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
b8e8c830
PB
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 83
71fe7013
SC
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
18552672
JR
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
2f333bcb 94bool tdp_enabled = false;
18552672 95
1d92d2e8 96static int max_huge_page_level __read_mostly;
83013059 97static int max_tdp_level __read_mostly;
703c335d 98
8b1fe17c
XG
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
6903074c
XG
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
8b1fe17c 106};
37a7d8b0 107
37a7d8b0 108#ifdef MMU_DEBUG
5a9624af 109bool dbg = 0;
fa4a2c08 110module_param(dbg, bool, 0644);
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
6aa8b732
AK
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
d77c26fc 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 119
e04da980
JR
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
6aa8b732
AK
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
90bb6fc5
AK
135#include <trace/events/kvm.h>
136
220f773a
TY
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
53c07b18
XG
140struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
cd4a4e53
AK
143};
144
2d11123a
AK
145struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
2d11123a 148 u64 *sptep;
dd3bfd59 149 int level;
2d11123a
AK
150 unsigned index;
151};
152
7eb77e9f
JS
153#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
c2a2ac2b
XG
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
53c07b18 170static struct kmem_cache *pte_list_desc_cache;
02c00b3a 171struct kmem_cache *mmu_page_header_cache;
45221ab6 172static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 173
ce88decf 174static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
175static union kvm_mmu_page_role
176kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 177
335e192a
PB
178#define CREATE_TRACE_POINTS
179#include "mmutrace.h"
180
40ef75a7
LT
181
182static inline bool kvm_available_flush_tlb_with_range(void)
183{
afaf0b2f 184 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
185}
186
187static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189{
190 int ret = -ENOTSUPP;
191
afaf0b2f 192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
b3646477 193 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
40ef75a7
LT
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197}
198
2f2fad08 199void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
200 u64 start_gfn, u64 pages)
201{
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208}
209
5a9624af 210bool is_nx_huge_page_enabled(void)
b8e8c830
PB
211{
212 return READ_ONCE(nx_huge_pages);
213}
214
8f79b064
BG
215static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217{
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
8f79b064 219
bb18842e 220 trace_mark_mmio_spte(sptep, gfn, mask);
f2fd125d 221 mmu_spte_set(sptep, mask);
ce88decf
XG
222}
223
ce88decf
XG
224static gfn_t get_mmio_spte_gfn(u64 spte)
225{
daa07cbc 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac 227
8a967d65 228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
28a1f3ac
JS
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
ce88decf
XG
232}
233
234static unsigned get_mmio_spte_access(u64 spte)
235{
4af77151 236 return spte & shadow_mmio_access_mask;
ce88decf
XG
237}
238
54bf36aa 239static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 240 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
241{
242 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 243 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
244 return true;
245 }
246
247 return false;
248}
c7addb90 249
54bf36aa 250static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 251{
cae7ed3c 252 u64 kvm_gen, spte_gen, gen;
089504c0 253
cae7ed3c
SC
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
089504c0 257
cae7ed3c 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
f8f55942
XG
263}
264
cd313569
MG
265static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267{
ec7771ab 268 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
cd313569
MG
274 return gpa;
275}
276
6aa8b732
AK
277static int is_cpuid_PSE36(void)
278{
279 return 1;
280}
281
73b1087e
AK
282static int is_nx(struct kvm_vcpu *vcpu)
283{
f6801dff 284 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
285}
286
da928521
AK
287static gfn_t pse36_gfn_delta(u32 gpte)
288{
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292}
293
603e0651 294#ifdef CONFIG_X86_64
d555c333 295static void __set_spte(u64 *sptep, u64 spte)
e663ee64 296{
b19ee2ff 297 WRITE_ONCE(*sptep, spte);
e663ee64
AK
298}
299
603e0651 300static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 301{
b19ee2ff 302 WRITE_ONCE(*sptep, spte);
603e0651
XG
303}
304
305static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306{
307 return xchg(sptep, spte);
308}
c2a2ac2b
XG
309
310static u64 __get_spte_lockless(u64 *sptep)
311{
6aa7de05 312 return READ_ONCE(*sptep);
c2a2ac2b 313}
a9221dd5 314#else
603e0651
XG
315union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321};
a9221dd5 322
c2a2ac2b
XG
323static void count_spte_clear(u64 *sptep, u64 spte)
324{
57354682 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333}
334
603e0651
XG
335static void __set_spte(u64 *sptep, u64 spte)
336{
337 union split_spte *ssptep, sspte;
a9221dd5 338
603e0651
XG
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
352}
353
603e0651
XG
354static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355{
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
b19ee2ff 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 370 count_spte_clear(sptep, spte);
603e0651
XG
371}
372
373static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374{
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 384 count_spte_clear(sptep, spte);
603e0651
XG
385
386 return orig.spte;
387}
c2a2ac2b
XG
388
389/*
390 * The idea using the light way get the spte on x86_32 guest is from
39656e83 391 * gup_get_pte (mm/gup.c).
accaefe0
XG
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
57354682 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
603e0651
XG
429#endif
430
8672b721
XG
431static bool spte_has_volatile_bits(u64 spte)
432{
f160c7b7
JS
433 if (!is_shadow_present_pte(spte))
434 return false;
435
c7ba5b48 436 /*
6a6256f9 437 * Always atomically update spte if it can be updated
c7ba5b48
XG
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
f160c7b7
JS
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
c7ba5b48
XG
444 return true;
445
ac8d57e5 446 if (spte_ad_enabled(spte)) {
f160c7b7
JS
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
8672b721 451
f160c7b7 452 return false;
8672b721
XG
453}
454
1df9f2dc
XG
455/* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461static void mmu_spte_set(u64 *sptep, u64 new_spte)
462{
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465}
466
f39a058d
JS
467/*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
1df9f2dc 470 */
f39a058d 471static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 472{
c7ba5b48 473 u64 old_spte = *sptep;
4132779b 474
afd28fe1 475 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 476
6e7d0354
XG
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
f39a058d 479 return old_spte;
6e7d0354 480 }
4132779b 481
c7ba5b48 482 if (!spte_has_volatile_bits(old_spte))
603e0651 483 __update_clear_spte_fast(sptep, new_spte);
4132779b 484 else
603e0651 485 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 486
83ef6c81
JS
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
f39a058d
JS
489 return old_spte;
490}
491
492/* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504{
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
c7ba5b48
XG
511 /*
512 * For the spte updated out of mmu-lock is safe, since
6a6256f9 513 * we always atomically update it, see the comments in
c7ba5b48
XG
514 * spte_has_volatile_bits().
515 */
ea4114bc 516 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 517 !is_writable_pte(new_spte))
83ef6c81 518 flush = true;
4132779b 519
7e71a59b 520 /*
83ef6c81 521 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
522 * to guarantee consistency between TLB and page tables.
523 */
7e71a59b 524
83ef6c81
JS
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
4132779b 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
4132779b 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 533 }
6e7d0354 534
83ef6c81 535 return flush;
b79b93f9
AK
536}
537
1df9f2dc
XG
538/*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
83ef6c81 542 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
543 */
544static int mmu_spte_clear_track_bits(u64 *sptep)
545{
ba049e93 546 kvm_pfn_t pfn;
1df9f2dc
XG
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
603e0651 550 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 551 else
603e0651 552 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 553
afd28fe1 554 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
86fde74c
XG
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
bf4bea8e 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 565
83ef6c81 566 if (is_accessed_spte(old_spte))
1df9f2dc 567 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
568
569 if (is_dirty_spte(old_spte))
1df9f2dc 570 kvm_set_pfn_dirty(pfn);
83ef6c81 571
1df9f2dc
XG
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
d3e328f2
JS
590/* Restore an acc-track PTE back to a regular PTE */
591static u64 restore_acc_track_spte(u64 spte)
592{
593 u64 new_spte = spte;
8a967d65
PB
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
d3e328f2 596
ac8d57e5 597 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
8a967d65
PB
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
d3e328f2
JS
603 new_spte |= saved_bits;
604
605 return new_spte;
606}
607
f160c7b7
JS
608/* Returns the Accessed status of the PTE and resets it at the same time. */
609static bool mmu_spte_age(u64 *sptep)
610{
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
ac8d57e5 616 if (spte_ad_enabled(spte)) {
f160c7b7
JS
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632}
633
c2a2ac2b
XG
634static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635{
c142786c
AK
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
36ca7e0a 641
c142786c
AK
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
36ca7e0a 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
647}
648
649static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650{
c142786c
AK
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
36ca7e0a 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 657 local_irq_enable();
c2a2ac2b
XG
658}
659
378f5cd6 660static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 661{
e2dec939
AK
662 int r;
663
531281ad 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 667 if (r)
284aa868 668 return r;
94ce87ef
SC
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
d3d25b04 671 if (r)
171a90d7 672 return r;
378f5cd6 673 if (maybe_indirect) {
94ce87ef
SC
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
676 if (r)
677 return r;
678 }
94ce87ef
SC
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
94ce87ef
SC
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
689}
690
53c07b18 691static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 692{
94ce87ef 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
694}
695
53c07b18 696static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 697{
53c07b18 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
699}
700
2032a93d
LJ
701static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702{
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707}
708
709static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710{
e9f2a760 711 if (!sp->role.direct) {
2032a93d 712 sp->gfns[index] = gfn;
e9f2a760
PB
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
721}
722
05da4558 723/*
d4dbf470
TY
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
05da4558 726 */
d4dbf470
TY
727static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
05da4558
MT
730{
731 unsigned long idx;
732
fb03cb6f 733 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 734 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
735}
736
547ffaed
XG
737static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739{
740 struct kvm_lpage_info *linfo;
741 int i;
742
3bae0459 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748}
749
750void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751{
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753}
754
755void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756{
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758}
759
3ed1a478 760static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 761{
699023e2 762 struct kvm_memslots *slots;
d25797b2 763 struct kvm_memory_slot *slot;
3ed1a478 764 gfn_t gfn;
05da4558 765
56ca57f9 766 kvm->arch.indirect_shadow_pages++;
3ed1a478 767 gfn = sp->gfn;
699023e2
PB
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
770
771 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 772 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
547ffaed 776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
777}
778
29cf0f50 779void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
780{
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
787 sp->lpage_disallowed = true;
788}
789
3ed1a478 790static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 791{
699023e2 792 struct kvm_memslots *slots;
d25797b2 793 struct kvm_memory_slot *slot;
3ed1a478 794 gfn_t gfn;
05da4558 795
56ca57f9 796 kvm->arch.indirect_shadow_pages--;
3ed1a478 797 gfn = sp->gfn;
699023e2
PB
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
3bae0459 800 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
547ffaed 804 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
805}
806
29cf0f50 807void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
808{
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
1aa9b957 811 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
812}
813
5d163b1c
XG
814static struct kvm_memory_slot *
815gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
05da4558
MT
817{
818 struct kvm_memory_slot *slot;
5d163b1c 819
54bf36aa 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
044c59c4 823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
91b0d268 824 return NULL;
5d163b1c
XG
825
826 return slot;
827}
828
290fc38d 829/*
018aabb5 830 * About rmap_head encoding:
cd4a4e53 831 *
018aabb5
TY
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 834 * pte_list_desc containing more mappings.
018aabb5
TY
835 */
836
837/*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 839 */
53c07b18 840static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 841 struct kvm_rmap_head *rmap_head)
cd4a4e53 842{
53c07b18 843 struct pte_list_desc *desc;
53a27b39 844 int i, count = 0;
cd4a4e53 845
018aabb5 846 if (!rmap_head->val) {
805a0f83 847 rmap_printk("%p %llx 0->1\n", spte, *spte);
018aabb5
TY
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
805a0f83 850 rmap_printk("%p %llx 1->many\n", spte, *spte);
53c07b18 851 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 852 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 853 desc->sptes[1] = spte;
018aabb5 854 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 855 ++count;
cd4a4e53 856 } else {
805a0f83 857 rmap_printk("%p %llx many->many\n", spte, *spte);
018aabb5 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
c6c4f961 859 while (desc->sptes[PTE_LIST_EXT-1]) {
53c07b18 860 count += PTE_LIST_EXT;
c6c4f961
LR
861
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
866 }
cd4a4e53
AK
867 desc = desc->more;
868 }
d555c333 869 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 870 ++count;
d555c333 871 desc->sptes[i] = spte;
cd4a4e53 872 }
53a27b39 873 return count;
cd4a4e53
AK
874}
875
53c07b18 876static void
018aabb5
TY
877pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
cd4a4e53
AK
880{
881 int j;
882
53c07b18 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 884 ;
d555c333
AK
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
cd4a4e53
AK
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
fe3c2b4c 890 rmap_head->val = 0;
cd4a4e53
AK
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
018aabb5 895 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 896 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
897}
898
8daf3462 899static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 900{
53c07b18
XG
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
cd4a4e53
AK
903 int i;
904
018aabb5 905 if (!rmap_head->val) {
8daf3462 906 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 907 BUG();
018aabb5 908 } else if (!(rmap_head->val & 1)) {
805a0f83 909 rmap_printk("%p 1->0\n", spte);
018aabb5 910 if ((u64 *)rmap_head->val != spte) {
8daf3462 911 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
912 BUG();
913 }
018aabb5 914 rmap_head->val = 0;
cd4a4e53 915 } else {
805a0f83 916 rmap_printk("%p many->many\n", spte);
018aabb5 917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
918 prev_desc = NULL;
919 while (desc) {
018aabb5 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 921 if (desc->sptes[i] == spte) {
018aabb5
TY
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
cd4a4e53
AK
924 return;
925 }
018aabb5 926 }
cd4a4e53
AK
927 prev_desc = desc;
928 desc = desc->more;
929 }
8daf3462 930 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
931 BUG();
932 }
933}
934
e7912386
WY
935static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936{
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
939}
940
018aabb5
TY
941static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
53c07b18 943{
77d11309 944 unsigned long idx;
53c07b18 945
77d11309 946 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
948}
949
018aabb5
TY
950static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
9b9b1492 952{
699023e2 953 struct kvm_memslots *slots;
9b9b1492
TY
954 struct kvm_memory_slot *slot;
955
699023e2
PB
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 958 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
959}
960
f759e2b4
XG
961static bool rmap_can_add(struct kvm_vcpu *vcpu)
962{
356ec69a 963 struct kvm_mmu_memory_cache *mc;
f759e2b4 964
356ec69a 965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 966 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
967}
968
53c07b18
XG
969static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970{
971 struct kvm_mmu_page *sp;
018aabb5 972 struct kvm_rmap_head *rmap_head;
53c07b18 973
57354682 974 sp = sptep_to_sp(spte);
53c07b18 975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
978}
979
53c07b18
XG
980static void rmap_remove(struct kvm *kvm, u64 *spte)
981{
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
018aabb5 984 struct kvm_rmap_head *rmap_head;
53c07b18 985
57354682 986 sp = sptep_to_sp(spte);
53c07b18 987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 989 __pte_list_remove(spte, rmap_head);
53c07b18
XG
990}
991
1e3f42f0
TY
992/*
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
995 */
996struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1000};
1001
1002/*
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1005 * information in the iterator may not be valid.
1e3f42f0
TY
1006 *
1007 * Returns sptep if found, NULL otherwise.
1008 */
018aabb5
TY
1009static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1e3f42f0 1011{
77fbbbd2
TY
1012 u64 *sptep;
1013
018aabb5 1014 if (!rmap_head->val)
1e3f42f0
TY
1015 return NULL;
1016
018aabb5 1017 if (!(rmap_head->val & 1)) {
1e3f42f0 1018 iter->desc = NULL;
77fbbbd2
TY
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1e3f42f0
TY
1021 }
1022
018aabb5 1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1024 iter->pos = 0;
77fbbbd2
TY
1025 sptep = iter->desc->sptes[iter->pos];
1026out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1e3f42f0
TY
1029}
1030
1031/*
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_next(struct rmap_iterator *iter)
1037{
77fbbbd2
TY
1038 u64 *sptep;
1039
1e3f42f0
TY
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
77fbbbd2 1045 goto out;
1e3f42f0
TY
1046 }
1047
1048 iter->desc = iter->desc->more;
1049
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1e3f42f0
TY
1055 }
1056 }
1057
1058 return NULL;
77fbbbd2
TY
1059out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1e3f42f0
TY
1062}
1063
018aabb5
TY
1064#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1066 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1067
c3707958 1068static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1069{
1df9f2dc 1070 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1071 rmap_remove(kvm, sptep);
be38d276
AK
1072}
1073
8e22f955
XG
1074
1075static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076{
1077 if (is_large_pte(*sptep)) {
57354682 1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1082 }
1083
1084 return false;
1085}
1086
1087static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088{
c3134ce2 1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1091
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1094 }
8e22f955
XG
1095}
1096
1097/*
49fde340 1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1099 * spte write-protection is caused by protecting shadow page table.
49fde340 1100 *
b4619660 1101 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
8e22f955 1107 *
c126d94f 1108 * Return true if tlb need be flushed.
8e22f955 1109 */
c4f138b4 1110static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1111{
1112 u64 spte = *sptep;
1113
49fde340 1114 if (!is_writable_pte(spte) &&
ea4114bc 1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1116 return false;
1117
805a0f83 1118 rmap_printk("spte %p %llx\n", sptep, *sptep);
d13bc5b5 1119
49fde340
XG
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1122 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1123
c126d94f 1124 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1125}
1126
018aabb5
TY
1127static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
245c3912 1129 bool pt_protect)
98348e95 1130{
1e3f42f0
TY
1131 u64 *sptep;
1132 struct rmap_iterator iter;
d13bc5b5 1133 bool flush = false;
374cbac0 1134
018aabb5 1135 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1136 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1137
d13bc5b5 1138 return flush;
a0ed4607
TY
1139}
1140
c4f138b4 1141static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1142{
1143 u64 spte = *sptep;
1144
805a0f83 1145 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1146
1f4e5fc8 1147 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1148 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1149 return mmu_spte_update(sptep, spte);
1150}
1151
1f4e5fc8 1152static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1153{
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1f4e5fc8 1156 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159 return was_writable;
1160}
1161
1162/*
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1167 */
0a234f5d
SC
1168static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1169 struct kvm_memory_slot *slot)
f4b4b180
KH
1170{
1171 u64 *sptep;
1172 struct rmap_iterator iter;
1173 bool flush = false;
1174
018aabb5 1175 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1176 if (spte_ad_need_write_protect(*sptep))
1177 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1178 else
1f4e5fc8 1179 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1180
1181 return flush;
1182}
1183
c4f138b4 1184static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1185{
1186 u64 spte = *sptep;
1187
805a0f83 1188 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1189
1f4e5fc8 1190 /*
afaf0b2f 1191 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1192 * do not bother adding back write access to pages marked
1193 * SPTE_AD_WRPROT_ONLY_MASK.
1194 */
f4b4b180
KH
1195 spte |= shadow_dirty_mask;
1196
1197 return mmu_spte_update(sptep, spte);
1198}
1199
0a234f5d
SC
1200static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1201 struct kvm_memory_slot *slot)
f4b4b180
KH
1202{
1203 u64 *sptep;
1204 struct rmap_iterator iter;
1205 bool flush = false;
1206
018aabb5 1207 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1208 if (spte_ad_enabled(*sptep))
1209 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1210
1211 return flush;
1212}
1213
5dc99b23 1214/**
3b0f1d01 1215 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1216 * @kvm: kvm instance
1217 * @slot: slot to protect
1218 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1219 * @mask: indicates which pages we should protect
1220 *
1221 * Used when we do not need to care about huge page mappings: e.g. during dirty
1222 * logging we do not have any such mappings.
1223 */
3b0f1d01 1224static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1225 struct kvm_memory_slot *slot,
1226 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1227{
018aabb5 1228 struct kvm_rmap_head *rmap_head;
a0ed4607 1229
897218ff 1230 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1231 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1232 slot->base_gfn + gfn_offset, mask, true);
5dc99b23 1233 while (mask) {
018aabb5 1234 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1235 PG_LEVEL_4K, slot);
018aabb5 1236 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1237
5dc99b23
TY
1238 /* clear the first set bit */
1239 mask &= mask - 1;
1240 }
374cbac0
AK
1241}
1242
f4b4b180 1243/**
ac8d57e5
PF
1244 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1245 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1246 * @kvm: kvm instance
1247 * @slot: slot to clear D-bit
1248 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1249 * @mask: indicates which pages we should clear D-bit
1250 *
1251 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1252 */
1253void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1254 struct kvm_memory_slot *slot,
1255 gfn_t gfn_offset, unsigned long mask)
1256{
018aabb5 1257 struct kvm_rmap_head *rmap_head;
f4b4b180 1258
897218ff 1259 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1260 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1261 slot->base_gfn + gfn_offset, mask, false);
f4b4b180 1262 while (mask) {
018aabb5 1263 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1264 PG_LEVEL_4K, slot);
0a234f5d 1265 __rmap_clear_dirty(kvm, rmap_head, slot);
f4b4b180
KH
1266
1267 /* clear the first set bit */
1268 mask &= mask - 1;
1269 }
1270}
1271EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1272
3b0f1d01
KH
1273/**
1274 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1275 * PT level pages.
1276 *
1277 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1278 * enable dirty logging for them.
1279 *
1280 * Used when we do not need to care about huge page mappings: e.g. during dirty
1281 * logging we do not have any such mappings.
1282 */
1283void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1284 struct kvm_memory_slot *slot,
1285 gfn_t gfn_offset, unsigned long mask)
1286{
afaf0b2f 1287 if (kvm_x86_ops.enable_log_dirty_pt_masked)
b3646477
JB
1288 static_call(kvm_x86_enable_log_dirty_pt_masked)(kvm, slot,
1289 gfn_offset,
1290 mask);
88178fd4
KH
1291 else
1292 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1293}
1294
fb04a1ed
PX
1295int kvm_cpu_dirty_log_size(void)
1296{
1297 if (kvm_x86_ops.cpu_dirty_log_size)
b3646477 1298 return static_call(kvm_x86_cpu_dirty_log_size)();
fb04a1ed
PX
1299
1300 return 0;
1301}
1302
aeecee2e
XG
1303bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1304 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1305{
018aabb5 1306 struct kvm_rmap_head *rmap_head;
5dc99b23 1307 int i;
2f84569f 1308 bool write_protected = false;
95d4c16c 1309
3bae0459 1310 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1311 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1312 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1313 }
1314
897218ff 1315 if (is_tdp_mmu_enabled(kvm))
46044f72
BG
1316 write_protected |=
1317 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1318
5dc99b23 1319 return write_protected;
95d4c16c
TY
1320}
1321
aeecee2e
XG
1322static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1323{
1324 struct kvm_memory_slot *slot;
1325
1326 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1327 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1328}
1329
0a234f5d
SC
1330static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1331 struct kvm_memory_slot *slot)
e930bffe 1332{
1e3f42f0
TY
1333 u64 *sptep;
1334 struct rmap_iterator iter;
6a49f85c 1335 bool flush = false;
e930bffe 1336
018aabb5 1337 while ((sptep = rmap_get_first(rmap_head, &iter))) {
805a0f83 1338 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1e3f42f0 1339
e7912386 1340 pte_list_remove(rmap_head, sptep);
6a49f85c 1341 flush = true;
e930bffe 1342 }
1e3f42f0 1343
6a49f85c
XG
1344 return flush;
1345}
1346
018aabb5 1347static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1348 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1349 unsigned long data)
1350{
0a234f5d 1351 return kvm_zap_rmapp(kvm, rmap_head, slot);
e930bffe
AA
1352}
1353
018aabb5 1354static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1355 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1356 unsigned long data)
3da0dd43 1357{
1e3f42f0
TY
1358 u64 *sptep;
1359 struct rmap_iterator iter;
3da0dd43 1360 int need_flush = 0;
1e3f42f0 1361 u64 new_spte;
3da0dd43 1362 pte_t *ptep = (pte_t *)data;
ba049e93 1363 kvm_pfn_t new_pfn;
3da0dd43
IE
1364
1365 WARN_ON(pte_huge(*ptep));
1366 new_pfn = pte_pfn(*ptep);
1e3f42f0 1367
0d536790 1368restart:
018aabb5 1369 for_each_rmap_spte(rmap_head, &iter, sptep) {
805a0f83 1370 rmap_printk("spte %p %llx gfn %llx (%d)\n",
f160c7b7 1371 sptep, *sptep, gfn, level);
1e3f42f0 1372
3da0dd43 1373 need_flush = 1;
1e3f42f0 1374
3da0dd43 1375 if (pte_write(*ptep)) {
e7912386 1376 pte_list_remove(rmap_head, sptep);
0d536790 1377 goto restart;
3da0dd43 1378 } else {
cb3eedab
PB
1379 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1380 *sptep, new_pfn);
1e3f42f0
TY
1381
1382 mmu_spte_clear_track_bits(sptep);
1383 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1384 }
1385 }
1e3f42f0 1386
3cc5ea94
LT
1387 if (need_flush && kvm_available_flush_tlb_with_range()) {
1388 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1389 return 0;
1390 }
1391
0cf853c5 1392 return need_flush;
3da0dd43
IE
1393}
1394
6ce1f4e2
XG
1395struct slot_rmap_walk_iterator {
1396 /* input fields. */
1397 struct kvm_memory_slot *slot;
1398 gfn_t start_gfn;
1399 gfn_t end_gfn;
1400 int start_level;
1401 int end_level;
1402
1403 /* output fields. */
1404 gfn_t gfn;
018aabb5 1405 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1406 int level;
1407
1408 /* private field. */
018aabb5 1409 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1410};
1411
1412static void
1413rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1414{
1415 iterator->level = level;
1416 iterator->gfn = iterator->start_gfn;
1417 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1418 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1419 iterator->slot);
1420}
1421
1422static void
1423slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1424 struct kvm_memory_slot *slot, int start_level,
1425 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1426{
1427 iterator->slot = slot;
1428 iterator->start_level = start_level;
1429 iterator->end_level = end_level;
1430 iterator->start_gfn = start_gfn;
1431 iterator->end_gfn = end_gfn;
1432
1433 rmap_walk_init_level(iterator, iterator->start_level);
1434}
1435
1436static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1437{
1438 return !!iterator->rmap;
1439}
1440
1441static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1442{
1443 if (++iterator->rmap <= iterator->end_rmap) {
1444 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1445 return;
1446 }
1447
1448 if (++iterator->level > iterator->end_level) {
1449 iterator->rmap = NULL;
1450 return;
1451 }
1452
1453 rmap_walk_init_level(iterator, iterator->level);
1454}
1455
1456#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1457 _start_gfn, _end_gfn, _iter_) \
1458 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1459 _end_level_, _start_gfn, _end_gfn); \
1460 slot_rmap_walk_okay(_iter_); \
1461 slot_rmap_walk_next(_iter_))
1462
8f5c44f9
MS
1463static __always_inline int
1464kvm_handle_hva_range(struct kvm *kvm,
1465 unsigned long start,
1466 unsigned long end,
1467 unsigned long data,
1468 int (*handler)(struct kvm *kvm,
1469 struct kvm_rmap_head *rmap_head,
1470 struct kvm_memory_slot *slot,
1471 gfn_t gfn,
1472 int level,
1473 unsigned long data))
e930bffe 1474{
bc6678a3 1475 struct kvm_memslots *slots;
be6ba0f0 1476 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1477 struct slot_rmap_walk_iterator iterator;
1478 int ret = 0;
9da0e4d5 1479 int i;
bc6678a3 1480
9da0e4d5
PB
1481 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1482 slots = __kvm_memslots(kvm, i);
1483 kvm_for_each_memslot(memslot, slots) {
1484 unsigned long hva_start, hva_end;
1485 gfn_t gfn_start, gfn_end;
e930bffe 1486
9da0e4d5
PB
1487 hva_start = max(start, memslot->userspace_addr);
1488 hva_end = min(end, memslot->userspace_addr +
1489 (memslot->npages << PAGE_SHIFT));
1490 if (hva_start >= hva_end)
1491 continue;
1492 /*
1493 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1494 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1495 */
1496 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1497 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1498
3bae0459 1499 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1500 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1501 gfn_start, gfn_end - 1,
1502 &iterator)
1503 ret |= handler(kvm, iterator.rmap, memslot,
1504 iterator.gfn, iterator.level, data);
1505 }
e930bffe
AA
1506 }
1507
f395302e 1508 return ret;
e930bffe
AA
1509}
1510
84504ef3
TY
1511static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1512 unsigned long data,
018aabb5
TY
1513 int (*handler)(struct kvm *kvm,
1514 struct kvm_rmap_head *rmap_head,
048212d0 1515 struct kvm_memory_slot *slot,
8a9522d2 1516 gfn_t gfn, int level,
84504ef3
TY
1517 unsigned long data))
1518{
1519 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1520}
1521
fdfe7cbd
WD
1522int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1523 unsigned flags)
b3ae2096 1524{
063afacd
BG
1525 int r;
1526
1527 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1528
897218ff 1529 if (is_tdp_mmu_enabled(kvm))
063afacd
BG
1530 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1531
1532 return r;
b3ae2096
TY
1533}
1534
748c0e31 1535int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1536{
1d8dd6b3
BG
1537 int r;
1538
1539 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1540
897218ff 1541 if (is_tdp_mmu_enabled(kvm))
1d8dd6b3
BG
1542 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1543
1544 return r;
e930bffe
AA
1545}
1546
018aabb5 1547static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1548 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1549 unsigned long data)
e930bffe 1550{
1e3f42f0 1551 u64 *sptep;
3f649ab7 1552 struct rmap_iterator iter;
e930bffe
AA
1553 int young = 0;
1554
f160c7b7
JS
1555 for_each_rmap_spte(rmap_head, &iter, sptep)
1556 young |= mmu_spte_age(sptep);
0d536790 1557
8a9522d2 1558 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1559 return young;
1560}
1561
018aabb5 1562static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1563 struct kvm_memory_slot *slot, gfn_t gfn,
1564 int level, unsigned long data)
8ee53820 1565{
1e3f42f0
TY
1566 u64 *sptep;
1567 struct rmap_iterator iter;
8ee53820 1568
83ef6c81
JS
1569 for_each_rmap_spte(rmap_head, &iter, sptep)
1570 if (is_accessed_spte(*sptep))
1571 return 1;
83ef6c81 1572 return 0;
8ee53820
AA
1573}
1574
53a27b39
MT
1575#define RMAP_RECYCLE_THRESHOLD 1000
1576
852e3c19 1577static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1578{
018aabb5 1579 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1580 struct kvm_mmu_page *sp;
1581
57354682 1582 sp = sptep_to_sp(spte);
53a27b39 1583
018aabb5 1584 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1585
018aabb5 1586 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1587 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1588 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1589}
1590
57128468 1591int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1592{
f8e14497
BG
1593 int young = false;
1594
1595 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
897218ff 1596 if (is_tdp_mmu_enabled(kvm))
f8e14497
BG
1597 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1598
1599 return young;
e930bffe
AA
1600}
1601
8ee53820
AA
1602int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1603{
f8e14497
BG
1604 int young = false;
1605
1606 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
897218ff 1607 if (is_tdp_mmu_enabled(kvm))
f8e14497
BG
1608 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1609
1610 return young;
8ee53820
AA
1611}
1612
d6c69ee9 1613#ifdef MMU_DEBUG
47ad8e68 1614static int is_empty_shadow_page(u64 *spt)
6aa8b732 1615{
139bdb2d
AK
1616 u64 *pos;
1617 u64 *end;
1618
47ad8e68 1619 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1620 if (is_shadow_present_pte(*pos)) {
b8688d51 1621 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1622 pos, *pos);
6aa8b732 1623 return 0;
139bdb2d 1624 }
6aa8b732
AK
1625 return 1;
1626}
d6c69ee9 1627#endif
6aa8b732 1628
45221ab6
DH
1629/*
1630 * This value is the sum of all of the kvm instances's
1631 * kvm->arch.n_used_mmu_pages values. We need a global,
1632 * aggregate version in order to make the slab shrinker
1633 * faster
1634 */
bc8a3d89 1635static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1636{
1637 kvm->arch.n_used_mmu_pages += nr;
1638 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1639}
1640
834be0d8 1641static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1642{
fa4a2c08 1643 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1644 hlist_del(&sp->hash_link);
bd4c86ea
XG
1645 list_del(&sp->link);
1646 free_page((unsigned long)sp->spt);
834be0d8
GN
1647 if (!sp->role.direct)
1648 free_page((unsigned long)sp->gfns);
e8ad9a70 1649 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1650}
1651
cea0f0e7
AK
1652static unsigned kvm_page_table_hashfn(gfn_t gfn)
1653{
114df303 1654 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1655}
1656
714b93da 1657static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1658 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1659{
cea0f0e7
AK
1660 if (!parent_pte)
1661 return;
cea0f0e7 1662
67052b35 1663 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1664}
1665
4db35314 1666static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1667 u64 *parent_pte)
1668{
8daf3462 1669 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1670}
1671
bcdd9a93
XG
1672static void drop_parent_pte(struct kvm_mmu_page *sp,
1673 u64 *parent_pte)
1674{
1675 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1676 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1677}
1678
47005792 1679static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1680{
67052b35 1681 struct kvm_mmu_page *sp;
7ddca7e4 1682
94ce87ef
SC
1683 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1684 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1685 if (!direct)
94ce87ef 1686 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1687 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1688
1689 /*
1690 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1691 * depends on valid pages being added to the head of the list. See
1692 * comments in kvm_zap_obsolete_pages().
1693 */
ca333add 1694 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1695 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1696 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1697 return sp;
ad8cfbe3
MT
1698}
1699
67052b35 1700static void mark_unsync(u64 *spte);
1047df1f 1701static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1702{
74c4e63a
TY
1703 u64 *sptep;
1704 struct rmap_iterator iter;
1705
1706 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1707 mark_unsync(sptep);
1708 }
0074ff63
MT
1709}
1710
67052b35 1711static void mark_unsync(u64 *spte)
0074ff63 1712{
67052b35 1713 struct kvm_mmu_page *sp;
1047df1f 1714 unsigned int index;
0074ff63 1715
57354682 1716 sp = sptep_to_sp(spte);
1047df1f
XG
1717 index = spte - sp->spt;
1718 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1719 return;
1047df1f 1720 if (sp->unsync_children++)
0074ff63 1721 return;
1047df1f 1722 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1723}
1724
e8bc217a 1725static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1726 struct kvm_mmu_page *sp)
e8bc217a 1727{
1f50f1b3 1728 return 0;
e8bc217a
MT
1729}
1730
60c8aec6
MT
1731#define KVM_PAGE_ARRAY_NR 16
1732
1733struct kvm_mmu_pages {
1734 struct mmu_page_and_offset {
1735 struct kvm_mmu_page *sp;
1736 unsigned int idx;
1737 } page[KVM_PAGE_ARRAY_NR];
1738 unsigned int nr;
1739};
1740
cded19f3
HE
1741static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1742 int idx)
4731d4c7 1743{
60c8aec6 1744 int i;
4731d4c7 1745
60c8aec6
MT
1746 if (sp->unsync)
1747 for (i=0; i < pvec->nr; i++)
1748 if (pvec->page[i].sp == sp)
1749 return 0;
1750
1751 pvec->page[pvec->nr].sp = sp;
1752 pvec->page[pvec->nr].idx = idx;
1753 pvec->nr++;
1754 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1755}
1756
fd951457
TY
1757static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1758{
1759 --sp->unsync_children;
1760 WARN_ON((int)sp->unsync_children < 0);
1761 __clear_bit(idx, sp->unsync_child_bitmap);
1762}
1763
60c8aec6
MT
1764static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1765 struct kvm_mmu_pages *pvec)
1766{
1767 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1768
37178b8b 1769 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1770 struct kvm_mmu_page *child;
4731d4c7
MT
1771 u64 ent = sp->spt[i];
1772
fd951457
TY
1773 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1774 clear_unsync_child_bit(sp, i);
1775 continue;
1776 }
7a8f1a74 1777
e47c4aee 1778 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1779
1780 if (child->unsync_children) {
1781 if (mmu_pages_add(pvec, child, i))
1782 return -ENOSPC;
1783
1784 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1785 if (!ret) {
1786 clear_unsync_child_bit(sp, i);
1787 continue;
1788 } else if (ret > 0) {
7a8f1a74 1789 nr_unsync_leaf += ret;
fd951457 1790 } else
7a8f1a74
XG
1791 return ret;
1792 } else if (child->unsync) {
1793 nr_unsync_leaf++;
1794 if (mmu_pages_add(pvec, child, i))
1795 return -ENOSPC;
1796 } else
fd951457 1797 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1798 }
1799
60c8aec6
MT
1800 return nr_unsync_leaf;
1801}
1802
e23d3fef
XG
1803#define INVALID_INDEX (-1)
1804
60c8aec6
MT
1805static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1806 struct kvm_mmu_pages *pvec)
1807{
0a47cd85 1808 pvec->nr = 0;
60c8aec6
MT
1809 if (!sp->unsync_children)
1810 return 0;
1811
e23d3fef 1812 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1813 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1814}
1815
4731d4c7
MT
1816static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1817{
1818 WARN_ON(!sp->unsync);
5e1b3ddb 1819 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1820 sp->unsync = 0;
1821 --kvm->stat.mmu_unsync;
1822}
1823
83cdb568
SC
1824static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1825 struct list_head *invalid_list);
7775834a
XG
1826static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1827 struct list_head *invalid_list);
4731d4c7 1828
ac101b7c
SC
1829#define for_each_valid_sp(_kvm, _sp, _list) \
1830 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1831 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1832 } else
1044b030
TY
1833
1834#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1835 for_each_valid_sp(_kvm, _sp, \
1836 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1837 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1838
47c42e6b
SC
1839static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1840{
1841 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1842}
1843
f918b443 1844/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1845static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1846 struct list_head *invalid_list)
4731d4c7 1847{
47c42e6b
SC
1848 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1849 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1850 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1851 return false;
4731d4c7
MT
1852 }
1853
1f50f1b3 1854 return true;
4731d4c7
MT
1855}
1856
a2113634
SC
1857static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1858 struct list_head *invalid_list,
1859 bool remote_flush)
1860{
cfd32acf 1861 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1862 return false;
1863
1864 if (!list_empty(invalid_list))
1865 kvm_mmu_commit_zap_page(kvm, invalid_list);
1866 else
1867 kvm_flush_remote_tlbs(kvm);
1868 return true;
1869}
1870
35a70510
PB
1871static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1872 struct list_head *invalid_list,
1873 bool remote_flush, bool local_flush)
1d9dc7e0 1874{
a2113634 1875 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1876 return;
d98ba053 1877
a2113634 1878 if (local_flush)
8c8560b8 1879 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1880}
1881
e37fa785
XG
1882#ifdef CONFIG_KVM_MMU_AUDIT
1883#include "mmu_audit.c"
1884#else
1885static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1886static void mmu_audit_disable(void) { }
1887#endif
1888
002c5f73
SC
1889static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1890{
fac026da
SC
1891 return sp->role.invalid ||
1892 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1893}
1894
1f50f1b3 1895static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1896 struct list_head *invalid_list)
1d9dc7e0 1897{
9a43c5d9
PB
1898 kvm_unlink_unsync_page(vcpu->kvm, sp);
1899 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1900}
1901
9f1a122f 1902/* @gfn should be write-protected at the call site */
2a74003a
PB
1903static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1904 struct list_head *invalid_list)
9f1a122f 1905{
9f1a122f 1906 struct kvm_mmu_page *s;
2a74003a 1907 bool ret = false;
9f1a122f 1908
b67bfe0d 1909 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1910 if (!s->unsync)
9f1a122f
XG
1911 continue;
1912
3bae0459 1913 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1914 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1915 }
1916
2a74003a 1917 return ret;
9f1a122f
XG
1918}
1919
60c8aec6 1920struct mmu_page_path {
2a7266a8
YZ
1921 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1922 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1923};
1924
60c8aec6 1925#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1926 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1927 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1928 i = mmu_pages_next(&pvec, &parents, i))
1929
cded19f3
HE
1930static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1931 struct mmu_page_path *parents,
1932 int i)
60c8aec6
MT
1933{
1934 int n;
1935
1936 for (n = i+1; n < pvec->nr; n++) {
1937 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1938 unsigned idx = pvec->page[n].idx;
1939 int level = sp->role.level;
60c8aec6 1940
0a47cd85 1941 parents->idx[level-1] = idx;
3bae0459 1942 if (level == PG_LEVEL_4K)
0a47cd85 1943 break;
60c8aec6 1944
0a47cd85 1945 parents->parent[level-2] = sp;
60c8aec6
MT
1946 }
1947
1948 return n;
1949}
1950
0a47cd85
PB
1951static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1952 struct mmu_page_path *parents)
1953{
1954 struct kvm_mmu_page *sp;
1955 int level;
1956
1957 if (pvec->nr == 0)
1958 return 0;
1959
e23d3fef
XG
1960 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1961
0a47cd85
PB
1962 sp = pvec->page[0].sp;
1963 level = sp->role.level;
3bae0459 1964 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1965
1966 parents->parent[level-2] = sp;
1967
1968 /* Also set up a sentinel. Further entries in pvec are all
1969 * children of sp, so this element is never overwritten.
1970 */
1971 parents->parent[level-1] = NULL;
1972 return mmu_pages_next(pvec, parents, 0);
1973}
1974
cded19f3 1975static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1976{
60c8aec6
MT
1977 struct kvm_mmu_page *sp;
1978 unsigned int level = 0;
1979
1980 do {
1981 unsigned int idx = parents->idx[level];
60c8aec6
MT
1982 sp = parents->parent[level];
1983 if (!sp)
1984 return;
1985
e23d3fef 1986 WARN_ON(idx == INVALID_INDEX);
fd951457 1987 clear_unsync_child_bit(sp, idx);
60c8aec6 1988 level++;
0a47cd85 1989 } while (!sp->unsync_children);
60c8aec6 1990}
4731d4c7 1991
60c8aec6
MT
1992static void mmu_sync_children(struct kvm_vcpu *vcpu,
1993 struct kvm_mmu_page *parent)
1994{
1995 int i;
1996 struct kvm_mmu_page *sp;
1997 struct mmu_page_path parents;
1998 struct kvm_mmu_pages pages;
d98ba053 1999 LIST_HEAD(invalid_list);
50c9e6f3 2000 bool flush = false;
60c8aec6 2001
60c8aec6 2002 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2003 bool protected = false;
b1a36821
MT
2004
2005 for_each_sp(pages, sp, parents, i)
54bf36aa 2006 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2007
50c9e6f3 2008 if (protected) {
b1a36821 2009 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2010 flush = false;
2011 }
b1a36821 2012
60c8aec6 2013 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2014 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2015 mmu_pages_clear_parents(&parents);
2016 }
531810ca 2017 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
50c9e6f3 2018 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
531810ca 2019 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
50c9e6f3
PB
2020 flush = false;
2021 }
60c8aec6 2022 }
50c9e6f3
PB
2023
2024 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2025}
2026
a30f47cb
XG
2027static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2028{
e5691a81 2029 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2030}
2031
2032static void clear_sp_write_flooding_count(u64 *spte)
2033{
57354682 2034 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2035}
2036
cea0f0e7
AK
2037static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2038 gfn_t gfn,
2039 gva_t gaddr,
2040 unsigned level,
f6e2c02b 2041 int direct,
0a2b64c5 2042 unsigned int access)
cea0f0e7 2043{
fb58a9c3 2044 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2045 union kvm_mmu_page_role role;
ac101b7c 2046 struct hlist_head *sp_list;
cea0f0e7 2047 unsigned quadrant;
9f1a122f 2048 struct kvm_mmu_page *sp;
9f1a122f 2049 bool need_sync = false;
2a74003a 2050 bool flush = false;
f3414bc7 2051 int collisions = 0;
2a74003a 2052 LIST_HEAD(invalid_list);
cea0f0e7 2053
36d9594d 2054 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2055 role.level = level;
f6e2c02b 2056 role.direct = direct;
84b0c8c6 2057 if (role.direct)
47c42e6b 2058 role.gpte_is_8_bytes = true;
41074d07 2059 role.access = access;
fb58a9c3 2060 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2061 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2062 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2063 role.quadrant = quadrant;
2064 }
ac101b7c
SC
2065
2066 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2067 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2068 if (sp->gfn != gfn) {
2069 collisions++;
2070 continue;
2071 }
2072
7ae680eb
XG
2073 if (!need_sync && sp->unsync)
2074 need_sync = true;
4731d4c7 2075
7ae680eb
XG
2076 if (sp->role.word != role.word)
2077 continue;
4731d4c7 2078
fb58a9c3
SC
2079 if (direct_mmu)
2080 goto trace_get_page;
2081
2a74003a
PB
2082 if (sp->unsync) {
2083 /* The page is good, but __kvm_sync_page might still end
2084 * up zapping it. If so, break in order to rebuild it.
2085 */
2086 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2087 break;
2088
2089 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2090 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2091 }
e02aa901 2092
98bba238 2093 if (sp->unsync_children)
f6f6195b 2094 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2095
a30f47cb 2096 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2097
2098trace_get_page:
7ae680eb 2099 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2100 goto out;
7ae680eb 2101 }
47005792 2102
dfc5aa00 2103 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2104
2105 sp = kvm_mmu_alloc_page(vcpu, direct);
2106
4db35314
AK
2107 sp->gfn = gfn;
2108 sp->role = role;
ac101b7c 2109 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2110 if (!direct) {
56ca57f9
XG
2111 /*
2112 * we should do write protection before syncing pages
2113 * otherwise the content of the synced shadow page may
2114 * be inconsistent with guest page table.
2115 */
2116 account_shadowed(vcpu->kvm, sp);
3bae0459 2117 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2118 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2119
3bae0459 2120 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2121 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2122 }
f691fe1d 2123 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2124
2125 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2126out:
2127 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2128 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2129 return sp;
cea0f0e7
AK
2130}
2131
7eb77e9f
JS
2132static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2133 struct kvm_vcpu *vcpu, hpa_t root,
2134 u64 addr)
2d11123a
AK
2135{
2136 iterator->addr = addr;
7eb77e9f 2137 iterator->shadow_addr = root;
44dd3ffa 2138 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2139
2a7266a8 2140 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2141 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2142 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2143 --iterator->level;
2144
2d11123a 2145 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2146 /*
2147 * prev_root is currently only used for 64-bit hosts. So only
2148 * the active root_hpa is valid here.
2149 */
44dd3ffa 2150 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2151
2d11123a 2152 iterator->shadow_addr
44dd3ffa 2153 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2154 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2155 --iterator->level;
2156 if (!iterator->shadow_addr)
2157 iterator->level = 0;
2158 }
2159}
2160
7eb77e9f
JS
2161static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2162 struct kvm_vcpu *vcpu, u64 addr)
2163{
44dd3ffa 2164 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2165 addr);
2166}
2167
2d11123a
AK
2168static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2169{
3bae0459 2170 if (iterator->level < PG_LEVEL_4K)
2d11123a 2171 return false;
4d88954d 2172
2d11123a
AK
2173 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2174 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2175 return true;
2176}
2177
c2a2ac2b
XG
2178static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2179 u64 spte)
2d11123a 2180{
c2a2ac2b 2181 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2182 iterator->level = 0;
2183 return;
2184 }
2185
c2a2ac2b 2186 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2187 --iterator->level;
2188}
2189
c2a2ac2b
XG
2190static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2191{
bb606a9b 2192 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2193}
2194
cc4674d0
BG
2195static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2196 struct kvm_mmu_page *sp)
2197{
2198 u64 spte;
2199
2200 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2201
2202 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2203
1df9f2dc 2204 mmu_spte_set(sptep, spte);
98bba238
TY
2205
2206 mmu_page_add_parent_pte(vcpu, sp, sptep);
2207
2208 if (sp->unsync_children || sp->unsync)
2209 mark_unsync(sptep);
32ef26a3
AK
2210}
2211
a357bd22
AK
2212static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2213 unsigned direct_access)
2214{
2215 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2216 struct kvm_mmu_page *child;
2217
2218 /*
2219 * For the direct sp, if the guest pte's dirty bit
2220 * changed form clean to dirty, it will corrupt the
2221 * sp's access: allow writable in the read-only sp,
2222 * so we should update the spte at this point to get
2223 * a new sp with the correct access.
2224 */
e47c4aee 2225 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2226 if (child->role.access == direct_access)
2227 return;
2228
bcdd9a93 2229 drop_parent_pte(child, sptep);
c3134ce2 2230 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2231 }
2232}
2233
2de4085c
BG
2234/* Returns the number of zapped non-leaf child shadow pages. */
2235static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2236 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2237{
2238 u64 pte;
2239 struct kvm_mmu_page *child;
2240
2241 pte = *spte;
2242 if (is_shadow_present_pte(pte)) {
505aef8f 2243 if (is_last_spte(pte, sp->role.level)) {
c3707958 2244 drop_spte(kvm, spte);
505aef8f
XG
2245 if (is_large_pte(pte))
2246 --kvm->stat.lpages;
2247 } else {
e47c4aee 2248 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2249 drop_parent_pte(child, spte);
2de4085c
BG
2250
2251 /*
2252 * Recursively zap nested TDP SPs, parentless SPs are
2253 * unlikely to be used again in the near future. This
2254 * avoids retaining a large number of stale nested SPs.
2255 */
2256 if (tdp_enabled && invalid_list &&
2257 child->role.guest_mode && !child->parent_ptes.val)
2258 return kvm_mmu_prepare_zap_page(kvm, child,
2259 invalid_list);
38e3b2b2 2260 }
ace569e0 2261 } else if (is_mmio_spte(pte)) {
ce88decf 2262 mmu_spte_clear_no_track(spte);
ace569e0 2263 }
2de4085c 2264 return 0;
38e3b2b2
XG
2265}
2266
2de4085c
BG
2267static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2268 struct kvm_mmu_page *sp,
2269 struct list_head *invalid_list)
a436036b 2270{
2de4085c 2271 int zapped = 0;
697fe2e2 2272 unsigned i;
697fe2e2 2273
38e3b2b2 2274 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2275 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2276
2277 return zapped;
a436036b
AK
2278}
2279
31aa2b44 2280static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2281{
1e3f42f0
TY
2282 u64 *sptep;
2283 struct rmap_iterator iter;
a436036b 2284
018aabb5 2285 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2286 drop_parent_pte(sp, sptep);
31aa2b44
AK
2287}
2288
60c8aec6 2289static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2290 struct kvm_mmu_page *parent,
2291 struct list_head *invalid_list)
4731d4c7 2292{
60c8aec6
MT
2293 int i, zapped = 0;
2294 struct mmu_page_path parents;
2295 struct kvm_mmu_pages pages;
4731d4c7 2296
3bae0459 2297 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2298 return 0;
60c8aec6 2299
60c8aec6
MT
2300 while (mmu_unsync_walk(parent, &pages)) {
2301 struct kvm_mmu_page *sp;
2302
2303 for_each_sp(pages, sp, parents, i) {
7775834a 2304 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2305 mmu_pages_clear_parents(&parents);
77662e00 2306 zapped++;
60c8aec6 2307 }
60c8aec6
MT
2308 }
2309
2310 return zapped;
4731d4c7
MT
2311}
2312
83cdb568
SC
2313static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2314 struct kvm_mmu_page *sp,
2315 struct list_head *invalid_list,
2316 int *nr_zapped)
31aa2b44 2317{
83cdb568 2318 bool list_unstable;
f691fe1d 2319
7775834a 2320 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2321 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2322 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2323 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2324 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2325
83cdb568
SC
2326 /* Zapping children means active_mmu_pages has become unstable. */
2327 list_unstable = *nr_zapped;
2328
f6e2c02b 2329 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2330 unaccount_shadowed(kvm, sp);
5304b8d3 2331
4731d4c7
MT
2332 if (sp->unsync)
2333 kvm_unlink_unsync_page(kvm, sp);
4db35314 2334 if (!sp->root_count) {
54a4f023 2335 /* Count self */
83cdb568 2336 (*nr_zapped)++;
f95eec9b
SC
2337
2338 /*
2339 * Already invalid pages (previously active roots) are not on
2340 * the active page list. See list_del() in the "else" case of
2341 * !sp->root_count.
2342 */
2343 if (sp->role.invalid)
2344 list_add(&sp->link, invalid_list);
2345 else
2346 list_move(&sp->link, invalid_list);
aa6bd187 2347 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2348 } else {
f95eec9b
SC
2349 /*
2350 * Remove the active root from the active page list, the root
2351 * will be explicitly freed when the root_count hits zero.
2352 */
2353 list_del(&sp->link);
05988d72 2354
10605204
SC
2355 /*
2356 * Obsolete pages cannot be used on any vCPUs, see the comment
2357 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2358 * treats invalid shadow pages as being obsolete.
2359 */
2360 if (!is_obsolete_sp(kvm, sp))
05988d72 2361 kvm_reload_remote_mmus(kvm);
2e53d63a 2362 }
7775834a 2363
b8e8c830
PB
2364 if (sp->lpage_disallowed)
2365 unaccount_huge_nx_page(kvm, sp);
2366
7775834a 2367 sp->role.invalid = 1;
83cdb568
SC
2368 return list_unstable;
2369}
2370
2371static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2372 struct list_head *invalid_list)
2373{
2374 int nr_zapped;
2375
2376 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2377 return nr_zapped;
a436036b
AK
2378}
2379
7775834a
XG
2380static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2381 struct list_head *invalid_list)
2382{
945315b9 2383 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2384
2385 if (list_empty(invalid_list))
2386 return;
2387
c142786c 2388 /*
9753f529
LT
2389 * We need to make sure everyone sees our modifications to
2390 * the page tables and see changes to vcpu->mode here. The barrier
2391 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2392 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2393 *
2394 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2395 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2396 */
2397 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2398
945315b9 2399 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2400 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2401 kvm_mmu_free_page(sp);
945315b9 2402 }
7775834a
XG
2403}
2404
6b82ef2c
SC
2405static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2406 unsigned long nr_to_zap)
5da59607 2407{
6b82ef2c
SC
2408 unsigned long total_zapped = 0;
2409 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2410 LIST_HEAD(invalid_list);
6b82ef2c
SC
2411 bool unstable;
2412 int nr_zapped;
5da59607
TY
2413
2414 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2415 return 0;
2416
6b82ef2c 2417restart:
8fc51726 2418 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
6b82ef2c
SC
2419 /*
2420 * Don't zap active root pages, the page itself can't be freed
2421 * and zapping it will just force vCPUs to realloc and reload.
2422 */
2423 if (sp->root_count)
2424 continue;
2425
2426 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2427 &nr_zapped);
2428 total_zapped += nr_zapped;
2429 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2430 break;
2431
6b82ef2c
SC
2432 if (unstable)
2433 goto restart;
ba7888dd 2434 }
5da59607 2435
6b82ef2c
SC
2436 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2437
2438 kvm->stat.mmu_recycled += total_zapped;
2439 return total_zapped;
2440}
2441
afe8d7e6
SC
2442static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2443{
2444 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2445 return kvm->arch.n_max_mmu_pages -
2446 kvm->arch.n_used_mmu_pages;
2447
2448 return 0;
5da59607
TY
2449}
2450
ba7888dd
SC
2451static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2452{
6b82ef2c 2453 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2454
6b82ef2c 2455 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2456 return 0;
2457
6b82ef2c 2458 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2459
2460 if (!kvm_mmu_available_pages(vcpu->kvm))
2461 return -ENOSPC;
2462 return 0;
2463}
2464
82ce2c96
IE
2465/*
2466 * Changing the number of mmu pages allocated to the vm
49d5ca26 2467 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2468 */
bc8a3d89 2469void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2470{
531810ca 2471 write_lock(&kvm->mmu_lock);
b34cb590 2472
49d5ca26 2473 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2474 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2475 goal_nr_mmu_pages);
82ce2c96 2476
49d5ca26 2477 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2478 }
82ce2c96 2479
49d5ca26 2480 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590 2481
531810ca 2482 write_unlock(&kvm->mmu_lock);
82ce2c96
IE
2483}
2484
1cb3f3ae 2485int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2486{
4db35314 2487 struct kvm_mmu_page *sp;
d98ba053 2488 LIST_HEAD(invalid_list);
a436036b
AK
2489 int r;
2490
9ad17b10 2491 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2492 r = 0;
531810ca 2493 write_lock(&kvm->mmu_lock);
b67bfe0d 2494 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2495 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2496 sp->role.word);
2497 r = 1;
f41d335a 2498 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2499 }
d98ba053 2500 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 2501 write_unlock(&kvm->mmu_lock);
1cb3f3ae 2502
a436036b 2503 return r;
cea0f0e7 2504}
1cb3f3ae 2505EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2506
5c520e90 2507static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2508{
2509 trace_kvm_mmu_unsync_page(sp);
2510 ++vcpu->kvm->stat.mmu_unsync;
2511 sp->unsync = 1;
2512
2513 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2514}
2515
5a9624af
PB
2516bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2517 bool can_unsync)
4731d4c7 2518{
5c520e90 2519 struct kvm_mmu_page *sp;
4731d4c7 2520
3d0c27ad
XG
2521 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2522 return true;
9cf5cf5a 2523
5c520e90 2524 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2525 if (!can_unsync)
3d0c27ad 2526 return true;
36a2e677 2527
5c520e90
XG
2528 if (sp->unsync)
2529 continue;
9cf5cf5a 2530
3bae0459 2531 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2532 kvm_unsync_page(vcpu, sp);
4731d4c7 2533 }
3d0c27ad 2534
578e1c4d
JS
2535 /*
2536 * We need to ensure that the marking of unsync pages is visible
2537 * before the SPTE is updated to allow writes because
2538 * kvm_mmu_sync_roots() checks the unsync flags without holding
2539 * the MMU lock and so can race with this. If the SPTE was updated
2540 * before the page had been marked as unsync-ed, something like the
2541 * following could happen:
2542 *
2543 * CPU 1 CPU 2
2544 * ---------------------------------------------------------------------
2545 * 1.2 Host updates SPTE
2546 * to be writable
2547 * 2.1 Guest writes a GPTE for GVA X.
2548 * (GPTE being in the guest page table shadowed
2549 * by the SP from CPU 1.)
2550 * This reads SPTE during the page table walk.
2551 * Since SPTE.W is read as 1, there is no
2552 * fault.
2553 *
2554 * 2.2 Guest issues TLB flush.
2555 * That causes a VM Exit.
2556 *
2557 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2558 * Since it is false, so it just returns.
2559 *
2560 * 2.4 Guest accesses GVA X.
2561 * Since the mapping in the SP was not updated,
2562 * so the old mapping for GVA X incorrectly
2563 * gets used.
2564 * 1.1 Host marks SP
2565 * as unsync
2566 * (sp->unsync = true)
2567 *
2568 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2569 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2570 * pairs with this write barrier.
2571 */
2572 smp_wmb();
2573
3d0c27ad 2574 return false;
4731d4c7
MT
2575}
2576
799a4190
BG
2577static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2578 unsigned int pte_access, int level,
2579 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2580 bool can_unsync, bool host_writable)
2581{
2582 u64 spte;
2583 struct kvm_mmu_page *sp;
2584 int ret;
2585
2586 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2587 return 0;
2588
2589 sp = sptep_to_sp(sptep);
2590
2591 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2592 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2593
2594 if (spte & PT_WRITABLE_MASK)
2595 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2596
12703759
SC
2597 if (*sptep == spte)
2598 ret |= SET_SPTE_SPURIOUS;
2599 else if (mmu_spte_update(sptep, spte))
5ce4786f 2600 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2601 return ret;
2602}
2603
0a2b64c5 2604static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2605 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2606 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2607 bool host_writable)
1e73f9dd
MT
2608{
2609 int was_rmapped = 0;
53a27b39 2610 int rmap_count;
5ce4786f 2611 int set_spte_ret;
c4371c2a 2612 int ret = RET_PF_FIXED;
c2a4eadf 2613 bool flush = false;
1e73f9dd 2614
f7616203
XG
2615 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2616 *sptep, write_fault, gfn);
1e73f9dd 2617
afd28fe1 2618 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2619 /*
2620 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2621 * the parent of the now unreachable PTE.
2622 */
3bae0459 2623 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2624 struct kvm_mmu_page *child;
d555c333 2625 u64 pte = *sptep;
1e73f9dd 2626
e47c4aee 2627 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2628 drop_parent_pte(child, sptep);
c2a4eadf 2629 flush = true;
d555c333 2630 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2631 pgprintk("hfn old %llx new %llx\n",
d555c333 2632 spte_to_pfn(*sptep), pfn);
c3707958 2633 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2634 flush = true;
6bed6b9e
JR
2635 } else
2636 was_rmapped = 1;
1e73f9dd 2637 }
852e3c19 2638
5ce4786f
JS
2639 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2640 speculative, true, host_writable);
2641 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2642 if (write_fault)
9b8ebbdb 2643 ret = RET_PF_EMULATE;
8c8560b8 2644 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2645 }
c3134ce2 2646
c2a4eadf 2647 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2648 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2649 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2650
029499b4 2651 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2652 ret = RET_PF_EMULATE;
ce88decf 2653
12703759
SC
2654 /*
2655 * The fault is fully spurious if and only if the new SPTE and old SPTE
2656 * are identical, and emulation is not required.
2657 */
2658 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2659 WARN_ON_ONCE(!was_rmapped);
2660 return RET_PF_SPURIOUS;
2661 }
2662
d555c333 2663 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2664 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2665 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2666 ++vcpu->kvm->stat.lpages;
2667
ffb61bb3 2668 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2669 if (!was_rmapped) {
2670 rmap_count = rmap_add(vcpu, sptep, gfn);
2671 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2672 rmap_recycle(vcpu, sptep, gfn);
2673 }
1c4f1fd6 2674 }
cb9aaa30 2675
9b8ebbdb 2676 return ret;
1c4f1fd6
AK
2677}
2678
ba049e93 2679static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2680 bool no_dirty_log)
2681{
2682 struct kvm_memory_slot *slot;
957ed9ef 2683
5d163b1c 2684 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2685 if (!slot)
6c8ee57b 2686 return KVM_PFN_ERR_FAULT;
957ed9ef 2687
037d92dc 2688 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2689}
2690
2691static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2692 struct kvm_mmu_page *sp,
2693 u64 *start, u64 *end)
2694{
2695 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2696 struct kvm_memory_slot *slot;
0a2b64c5 2697 unsigned int access = sp->role.access;
957ed9ef
XG
2698 int i, ret;
2699 gfn_t gfn;
2700
2701 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2702 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2703 if (!slot)
957ed9ef
XG
2704 return -1;
2705
d9ef13c2 2706 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2707 if (ret <= 0)
2708 return -1;
2709
43fdcda9 2710 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2711 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2712 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2713 put_page(pages[i]);
2714 }
957ed9ef
XG
2715
2716 return 0;
2717}
2718
2719static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2720 struct kvm_mmu_page *sp, u64 *sptep)
2721{
2722 u64 *spte, *start = NULL;
2723 int i;
2724
2725 WARN_ON(!sp->role.direct);
2726
2727 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2728 spte = sp->spt + i;
2729
2730 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2731 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2732 if (!start)
2733 continue;
2734 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2735 break;
2736 start = NULL;
2737 } else if (!start)
2738 start = spte;
2739 }
2740}
2741
2742static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2743{
2744 struct kvm_mmu_page *sp;
2745
57354682 2746 sp = sptep_to_sp(sptep);
ac8d57e5 2747
957ed9ef 2748 /*
ac8d57e5
PF
2749 * Without accessed bits, there's no way to distinguish between
2750 * actually accessed translations and prefetched, so disable pte
2751 * prefetch if accessed bits aren't available.
957ed9ef 2752 */
ac8d57e5 2753 if (sp_ad_disabled(sp))
957ed9ef
XG
2754 return;
2755
3bae0459 2756 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2757 return;
2758
2759 __direct_pte_prefetch(vcpu, sp, sptep);
2760}
2761
1b6d9d9e
SC
2762static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2763 struct kvm_memory_slot *slot)
db543216 2764{
db543216
SC
2765 unsigned long hva;
2766 pte_t *pte;
2767 int level;
2768
e851265a 2769 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2770 return PG_LEVEL_4K;
db543216 2771
293e306e
SC
2772 /*
2773 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2774 * is not solely for performance, it's also necessary to avoid the
2775 * "writable" check in __gfn_to_hva_many(), which will always fail on
2776 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2777 * page fault steps have already verified the guest isn't writing a
2778 * read-only memslot.
2779 */
db543216
SC
2780 hva = __gfn_to_hva_memslot(slot, gfn);
2781
1b6d9d9e 2782 pte = lookup_address_in_mm(kvm->mm, hva, &level);
db543216 2783 if (unlikely(!pte))
3bae0459 2784 return PG_LEVEL_4K;
db543216
SC
2785
2786 return level;
2787}
2788
1b6d9d9e
SC
2789int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
2790 gfn_t gfn, kvm_pfn_t pfn, int max_level)
2791{
2792 struct kvm_lpage_info *linfo;
2793
2794 max_level = min(max_level, max_huge_page_level);
2795 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2796 linfo = lpage_info_slot(gfn, slot, max_level);
2797 if (!linfo->disallow_lpage)
2798 break;
2799 }
2800
2801 if (max_level == PG_LEVEL_4K)
2802 return PG_LEVEL_4K;
2803
2804 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2805}
2806
bb18842e
BG
2807int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2808 int max_level, kvm_pfn_t *pfnp,
2809 bool huge_page_disallowed, int *req_level)
0885904d 2810{
293e306e 2811 struct kvm_memory_slot *slot;
0885904d 2812 kvm_pfn_t pfn = *pfnp;
17eff019 2813 kvm_pfn_t mask;
83f06fa7 2814 int level;
17eff019 2815
3cf06612
SC
2816 *req_level = PG_LEVEL_4K;
2817
3bae0459
SC
2818 if (unlikely(max_level == PG_LEVEL_4K))
2819 return PG_LEVEL_4K;
17eff019 2820
e851265a 2821 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2822 return PG_LEVEL_4K;
17eff019 2823
293e306e
SC
2824 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2825 if (!slot)
3bae0459 2826 return PG_LEVEL_4K;
293e306e 2827
1b6d9d9e 2828 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
3bae0459 2829 if (level == PG_LEVEL_4K)
83f06fa7 2830 return level;
17eff019 2831
3cf06612
SC
2832 *req_level = level = min(level, max_level);
2833
2834 /*
2835 * Enforce the iTLB multihit workaround after capturing the requested
2836 * level, which will be used to do precise, accurate accounting.
2837 */
2838 if (huge_page_disallowed)
2839 return PG_LEVEL_4K;
0885904d
SC
2840
2841 /*
17eff019
SC
2842 * mmu_notifier_retry() was successful and mmu_lock is held, so
2843 * the pmd can't be split from under us.
0885904d 2844 */
17eff019
SC
2845 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2846 VM_BUG_ON((gfn & mask) != (pfn & mask));
2847 *pfnp = pfn & ~mask;
83f06fa7
SC
2848
2849 return level;
0885904d
SC
2850}
2851
bb18842e
BG
2852void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2853 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2854{
bb18842e 2855 int level = *goal_levelp;
b8e8c830 2856
7d945312 2857 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2858 is_shadow_present_pte(spte) &&
2859 !is_large_pte(spte)) {
2860 /*
2861 * A small SPTE exists for this pfn, but FNAME(fetch)
2862 * and __direct_map would like to create a large PTE
2863 * instead: just force them to go down another level,
2864 * patching back for them into pfn the next 9 bits of
2865 * the address.
2866 */
7d945312
BG
2867 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2868 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2869 *pfnp |= gfn & page_mask;
bb18842e 2870 (*goal_levelp)--;
b8e8c830
PB
2871 }
2872}
2873
6c2fd34f 2874static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2875 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2876 bool prefault, bool is_tdp)
140754bc 2877{
6c2fd34f
SC
2878 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2879 bool write = error_code & PFERR_WRITE_MASK;
2880 bool exec = error_code & PFERR_FETCH_MASK;
2881 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2882 struct kvm_shadow_walk_iterator it;
140754bc 2883 struct kvm_mmu_page *sp;
3cf06612 2884 int level, req_level, ret;
3fcf2d1b
PB
2885 gfn_t gfn = gpa >> PAGE_SHIFT;
2886 gfn_t base_gfn = gfn;
6aa8b732 2887
0c7a98e3 2888 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2889 return RET_PF_RETRY;
989c6b34 2890
3cf06612
SC
2891 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2892 huge_page_disallowed, &req_level);
4cd071d1 2893
335e192a 2894 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2895 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2896 /*
2897 * We cannot overwrite existing page tables with an NX
2898 * large page, as the leaf could be executable.
2899 */
dcc70651 2900 if (nx_huge_page_workaround_enabled)
7d945312
BG
2901 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2902 &pfn, &level);
b8e8c830 2903
3fcf2d1b
PB
2904 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2905 if (it.level == level)
9f652d21 2906 break;
6aa8b732 2907
3fcf2d1b
PB
2908 drop_large_spte(vcpu, it.sptep);
2909 if (!is_shadow_present_pte(*it.sptep)) {
2910 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2911 it.level - 1, true, ACC_ALL);
c9fa0b3b 2912
3fcf2d1b 2913 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2914 if (is_tdp && huge_page_disallowed &&
2915 req_level >= it.level)
b8e8c830 2916 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2917 }
2918 }
3fcf2d1b
PB
2919
2920 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2921 write, level, base_gfn, pfn, prefault,
2922 map_writable);
12703759
SC
2923 if (ret == RET_PF_SPURIOUS)
2924 return ret;
2925
3fcf2d1b
PB
2926 direct_pte_prefetch(vcpu, it.sptep);
2927 ++vcpu->stat.pf_fixed;
2928 return ret;
6aa8b732
AK
2929}
2930
77db5cbd 2931static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2932{
585a8b9b 2933 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2934}
2935
ba049e93 2936static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2937{
4d8b81ab
XG
2938 /*
2939 * Do not cache the mmio info caused by writing the readonly gfn
2940 * into the spte otherwise read access on readonly gfn also can
2941 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2942 */
2943 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2944 return RET_PF_EMULATE;
4d8b81ab 2945
e6c1502b 2946 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2947 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2948 return RET_PF_RETRY;
d7c55201 2949 }
edba23e5 2950
2c151b25 2951 return -EFAULT;
bf998156
HY
2952}
2953
d7c55201 2954static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2955 kvm_pfn_t pfn, unsigned int access,
2956 int *ret_val)
d7c55201 2957{
d7c55201 2958 /* The pfn is invalid, report the error! */
81c52c56 2959 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2960 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2961 return true;
d7c55201
XG
2962 }
2963
ce88decf 2964 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
2965 vcpu_cache_mmio_info(vcpu, gva, gfn,
2966 access & shadow_mmio_access_mask);
d7c55201 2967
798e88b3 2968 return false;
d7c55201
XG
2969}
2970
e5552fd2 2971static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2972{
1c118b82
XG
2973 /*
2974 * Do not fix the mmio spte with invalid generation number which
2975 * need to be updated by slow page fault path.
2976 */
2977 if (unlikely(error_code & PFERR_RSVD_MASK))
2978 return false;
2979
f160c7b7
JS
2980 /* See if the page fault is due to an NX violation */
2981 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2982 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2983 return false;
2984
c7ba5b48 2985 /*
f160c7b7
JS
2986 * #PF can be fast if:
2987 * 1. The shadow page table entry is not present, which could mean that
2988 * the fault is potentially caused by access tracking (if enabled).
2989 * 2. The shadow page table entry is present and the fault
2990 * is caused by write-protect, that means we just need change the W
2991 * bit of the spte which can be done out of mmu-lock.
2992 *
2993 * However, if access tracking is disabled we know that a non-present
2994 * page must be a genuine page fault where we have to create a new SPTE.
2995 * So, if access tracking is disabled, we return true only for write
2996 * accesses to a present page.
c7ba5b48 2997 */
c7ba5b48 2998
f160c7b7
JS
2999 return shadow_acc_track_mask != 0 ||
3000 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3001 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3002}
3003
97dceba2
JS
3004/*
3005 * Returns true if the SPTE was fixed successfully. Otherwise,
3006 * someone else modified the SPTE from its original value.
3007 */
c7ba5b48 3008static bool
92a476cb 3009fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3010 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3011{
c7ba5b48
XG
3012 gfn_t gfn;
3013
3014 WARN_ON(!sp->role.direct);
3015
9b51a630
KH
3016 /*
3017 * Theoretically we could also set dirty bit (and flush TLB) here in
3018 * order to eliminate unnecessary PML logging. See comments in
3019 * set_spte. But fast_page_fault is very unlikely to happen with PML
3020 * enabled, so we do not do this. This might result in the same GPA
3021 * to be logged in PML buffer again when the write really happens, and
3022 * eventually to be called by mark_page_dirty twice. But it's also no
3023 * harm. This also avoids the TLB flush needed after setting dirty bit
3024 * so non-PML cases won't be impacted.
3025 *
3026 * Compare with set_spte where instead shadow_dirty_mask is set.
3027 */
f160c7b7 3028 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3029 return false;
3030
d3e328f2 3031 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3032 /*
3033 * The gfn of direct spte is stable since it is
3034 * calculated by sp->gfn.
3035 */
3036 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3037 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3038 }
c7ba5b48
XG
3039
3040 return true;
3041}
3042
d3e328f2
JS
3043static bool is_access_allowed(u32 fault_err_code, u64 spte)
3044{
3045 if (fault_err_code & PFERR_FETCH_MASK)
3046 return is_executable_pte(spte);
3047
3048 if (fault_err_code & PFERR_WRITE_MASK)
3049 return is_writable_pte(spte);
3050
3051 /* Fault was on Read access */
3052 return spte & PT_PRESENT_MASK;
3053}
3054
c7ba5b48 3055/*
c4371c2a 3056 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3057 */
c4371c2a
SC
3058static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3059 u32 error_code)
c7ba5b48
XG
3060{
3061 struct kvm_shadow_walk_iterator iterator;
92a476cb 3062 struct kvm_mmu_page *sp;
c4371c2a 3063 int ret = RET_PF_INVALID;
c7ba5b48 3064 u64 spte = 0ull;
97dceba2 3065 uint retry_count = 0;
c7ba5b48 3066
e5552fd2 3067 if (!page_fault_can_be_fast(error_code))
c4371c2a 3068 return ret;
c7ba5b48
XG
3069
3070 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3071
97dceba2 3072 do {
d3e328f2 3073 u64 new_spte;
c7ba5b48 3074
736c291c 3075 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3076 if (!is_shadow_present_pte(spte))
d162f30a
JS
3077 break;
3078
57354682 3079 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3080 if (!is_last_spte(spte, sp->role.level))
3081 break;
c7ba5b48 3082
97dceba2 3083 /*
f160c7b7
JS
3084 * Check whether the memory access that caused the fault would
3085 * still cause it if it were to be performed right now. If not,
3086 * then this is a spurious fault caused by TLB lazily flushed,
3087 * or some other CPU has already fixed the PTE after the
3088 * current CPU took the fault.
97dceba2
JS
3089 *
3090 * Need not check the access of upper level table entries since
3091 * they are always ACC_ALL.
3092 */
d3e328f2 3093 if (is_access_allowed(error_code, spte)) {
c4371c2a 3094 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3095 break;
3096 }
f160c7b7 3097
d3e328f2
JS
3098 new_spte = spte;
3099
3100 if (is_access_track_spte(spte))
3101 new_spte = restore_acc_track_spte(new_spte);
3102
3103 /*
3104 * Currently, to simplify the code, write-protection can
3105 * be removed in the fast path only if the SPTE was
3106 * write-protected for dirty-logging or access tracking.
3107 */
3108 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3109 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3110 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3111
3112 /*
d3e328f2
JS
3113 * Do not fix write-permission on the large spte. Since
3114 * we only dirty the first page into the dirty-bitmap in
3115 * fast_pf_fix_direct_spte(), other pages are missed
3116 * if its slot has dirty logging enabled.
3117 *
3118 * Instead, we let the slow page fault path create a
3119 * normal spte to fix the access.
3120 *
3121 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3122 */
3bae0459 3123 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3124 break;
97dceba2 3125 }
c7ba5b48 3126
f160c7b7 3127 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3128 if (new_spte == spte ||
3129 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3130 break;
3131
3132 /*
3133 * Currently, fast page fault only works for direct mapping
3134 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3135 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3136 */
c4371c2a
SC
3137 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3138 new_spte)) {
3139 ret = RET_PF_FIXED;
97dceba2 3140 break;
c4371c2a 3141 }
97dceba2
JS
3142
3143 if (++retry_count > 4) {
3144 printk_once(KERN_WARNING
3145 "kvm: Fast #PF retrying more than 4 times.\n");
3146 break;
3147 }
3148
97dceba2 3149 } while (true);
c126d94f 3150
736c291c 3151 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3152 spte, ret);
c7ba5b48
XG
3153 walk_shadow_page_lockless_end(vcpu);
3154
c4371c2a 3155 return ret;
c7ba5b48
XG
3156}
3157
74b566e6
JS
3158static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3159 struct list_head *invalid_list)
17ac10ad 3160{
4db35314 3161 struct kvm_mmu_page *sp;
17ac10ad 3162
74b566e6 3163 if (!VALID_PAGE(*root_hpa))
7b53aa56 3164 return;
35af577a 3165
e47c4aee 3166 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3167
3168 if (kvm_mmu_put_root(kvm, sp)) {
897218ff 3169 if (is_tdp_mmu_page(sp))
02c00b3a
BG
3170 kvm_tdp_mmu_free_root(kvm, sp);
3171 else if (sp->role.invalid)
3172 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3173 }
17ac10ad 3174
74b566e6
JS
3175 *root_hpa = INVALID_PAGE;
3176}
3177
08fb59d8 3178/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3179void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3180 ulong roots_to_free)
74b566e6 3181{
4d710de9 3182 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3183 int i;
3184 LIST_HEAD(invalid_list);
08fb59d8 3185 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3186
b94742c9 3187 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3188
08fb59d8 3189 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3190 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3191 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3192 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3193 VALID_PAGE(mmu->prev_roots[i].hpa))
3194 break;
3195
3196 if (i == KVM_MMU_NUM_PREV_ROOTS)
3197 return;
3198 }
35af577a 3199
531810ca 3200 write_lock(&kvm->mmu_lock);
17ac10ad 3201
b94742c9
JS
3202 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3203 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3204 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3205 &invalid_list);
7c390d35 3206
08fb59d8
JS
3207 if (free_active_root) {
3208 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3209 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3210 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
08fb59d8
JS
3211 } else {
3212 for (i = 0; i < 4; ++i)
3213 if (mmu->pae_root[i] != 0)
4d710de9 3214 mmu_free_root_page(kvm,
08fb59d8
JS
3215 &mmu->pae_root[i],
3216 &invalid_list);
3217 mmu->root_hpa = INVALID_PAGE;
3218 }
be01e8e2 3219 mmu->root_pgd = 0;
17ac10ad 3220 }
74b566e6 3221
4d710de9 3222 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 3223 write_unlock(&kvm->mmu_lock);
17ac10ad 3224}
74b566e6 3225EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3226
8986ecc0
MT
3227static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3228{
3229 int ret = 0;
3230
995decb6 3231 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3232 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3233 ret = 1;
3234 }
3235
3236 return ret;
3237}
3238
8123f265
SC
3239static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3240 u8 level, bool direct)
651dd37a
JR
3241{
3242 struct kvm_mmu_page *sp;
8123f265 3243
531810ca 3244 write_lock(&vcpu->kvm->mmu_lock);
8123f265
SC
3245
3246 if (make_mmu_pages_available(vcpu)) {
531810ca 3247 write_unlock(&vcpu->kvm->mmu_lock);
8123f265
SC
3248 return INVALID_PAGE;
3249 }
3250 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3251 ++sp->root_count;
3252
531810ca 3253 write_unlock(&vcpu->kvm->mmu_lock);
8123f265
SC
3254 return __pa(sp->spt);
3255}
3256
3257static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3258{
3259 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3260 hpa_t root;
7ebaf15e 3261 unsigned i;
651dd37a 3262
897218ff 3263 if (is_tdp_mmu_enabled(vcpu->kvm)) {
02c00b3a
BG
3264 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3265
3266 if (!VALID_PAGE(root))
3267 return -ENOSPC;
3268 vcpu->arch.mmu->root_hpa = root;
3269 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3270 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3271 true);
3272
8123f265 3273 if (!VALID_PAGE(root))
ed52870f 3274 return -ENOSPC;
8123f265
SC
3275 vcpu->arch.mmu->root_hpa = root;
3276 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3277 for (i = 0; i < 4; ++i) {
8123f265 3278 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3279
8123f265
SC
3280 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3281 i << 30, PT32_ROOT_LEVEL, true);
3282 if (!VALID_PAGE(root))
ed52870f 3283 return -ENOSPC;
44dd3ffa 3284 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3285 }
44dd3ffa 3286 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3287 } else
3288 BUG();
3651c7fc 3289
be01e8e2
SC
3290 /* root_pgd is ignored for direct MMUs. */
3291 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3292
3293 return 0;
3294}
3295
3296static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3297{
81407ca5 3298 u64 pdptr, pm_mask;
be01e8e2 3299 gfn_t root_gfn, root_pgd;
8123f265 3300 hpa_t root;
81407ca5 3301 int i;
3bb65a22 3302
be01e8e2
SC
3303 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3304 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3305
651dd37a
JR
3306 if (mmu_check_root(vcpu, root_gfn))
3307 return 1;
3308
3309 /*
3310 * Do we shadow a long mode page table? If so we need to
3311 * write-protect the guests page table root.
3312 */
44dd3ffa 3313 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3314 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3315
8123f265
SC
3316 root = mmu_alloc_root(vcpu, root_gfn, 0,
3317 vcpu->arch.mmu->shadow_root_level, false);
3318 if (!VALID_PAGE(root))
ed52870f 3319 return -ENOSPC;
44dd3ffa 3320 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3321 goto set_root_pgd;
17ac10ad 3322 }
f87f9288 3323
651dd37a
JR
3324 /*
3325 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3326 * or a PAE 3-level page table. In either case we need to be aware that
3327 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3328 */
81407ca5 3329 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3330 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3331 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3332
17ac10ad 3333 for (i = 0; i < 4; ++i) {
8123f265 3334 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3335 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3336 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3337 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3338 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3339 continue;
3340 }
6de4f3ad 3341 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3342 if (mmu_check_root(vcpu, root_gfn))
3343 return 1;
5a7388c2 3344 }
8facbbff 3345
8123f265
SC
3346 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3347 PT32_ROOT_LEVEL, false);
3348 if (!VALID_PAGE(root))
3349 return -ENOSPC;
44dd3ffa 3350 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3351 }
44dd3ffa 3352 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3353
3354 /*
3355 * If we shadow a 32 bit page table with a long mode page
3356 * table we enter this path.
3357 */
44dd3ffa
VK
3358 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3359 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3360 /*
3361 * The additional page necessary for this is only
3362 * allocated on demand.
3363 */
3364
3365 u64 *lm_root;
3366
254272ce 3367 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3368 if (lm_root == NULL)
3369 return 1;
3370
44dd3ffa 3371 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3372
44dd3ffa 3373 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3374 }
3375
44dd3ffa 3376 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3377 }
3378
be01e8e2
SC
3379set_root_pgd:
3380 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3381
8986ecc0 3382 return 0;
17ac10ad
AK
3383}
3384
651dd37a
JR
3385static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3386{
44dd3ffa 3387 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3388 return mmu_alloc_direct_roots(vcpu);
3389 else
3390 return mmu_alloc_shadow_roots(vcpu);
3391}
3392
578e1c4d 3393void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3394{
3395 int i;
3396 struct kvm_mmu_page *sp;
3397
44dd3ffa 3398 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3399 return;
3400
44dd3ffa 3401 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3402 return;
6903074c 3403
56f17dd3 3404 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3405
44dd3ffa
VK
3406 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3407 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3408 sp = to_shadow_page(root);
578e1c4d
JS
3409
3410 /*
3411 * Even if another CPU was marking the SP as unsync-ed
3412 * simultaneously, any guest page table changes are not
3413 * guaranteed to be visible anyway until this VCPU issues a TLB
3414 * flush strictly after those changes are made. We only need to
3415 * ensure that the other CPU sets these flags before any actual
3416 * changes to the page tables are made. The comments in
3417 * mmu_need_write_protect() describe what could go wrong if this
3418 * requirement isn't satisfied.
3419 */
3420 if (!smp_load_acquire(&sp->unsync) &&
3421 !smp_load_acquire(&sp->unsync_children))
3422 return;
3423
531810ca 3424 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3425 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3426
0ba73cda 3427 mmu_sync_children(vcpu, sp);
578e1c4d 3428
0375f7fa 3429 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3430 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3431 return;
3432 }
578e1c4d 3433
531810ca 3434 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3435 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3436
0ba73cda 3437 for (i = 0; i < 4; ++i) {
44dd3ffa 3438 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3439
8986ecc0 3440 if (root && VALID_PAGE(root)) {
0ba73cda 3441 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3442 sp = to_shadow_page(root);
0ba73cda
MT
3443 mmu_sync_children(vcpu, sp);
3444 }
3445 }
0ba73cda 3446
578e1c4d 3447 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3448 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3449}
bfd0a56b 3450EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3451
736c291c 3452static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3453 u32 access, struct x86_exception *exception)
6aa8b732 3454{
ab9ae313
AK
3455 if (exception)
3456 exception->error_code = 0;
6aa8b732
AK
3457 return vaddr;
3458}
3459
736c291c 3460static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3461 u32 access,
3462 struct x86_exception *exception)
6539e738 3463{
ab9ae313
AK
3464 if (exception)
3465 exception->error_code = 0;
54987b7a 3466 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3467}
3468
d625b155
XG
3469static bool
3470__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3471{
b5c3c1b3 3472 int bit7 = (pte >> 7) & 1;
d625b155 3473
b5c3c1b3 3474 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3475}
3476
b5c3c1b3 3477static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3478{
b5c3c1b3 3479 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3480}
3481
ded58749 3482static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3483{
9034e6e8
PB
3484 /*
3485 * A nested guest cannot use the MMIO cache if it is using nested
3486 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3487 */
3488 if (mmu_is_nested(vcpu))
3489 return false;
3490
ce88decf
XG
3491 if (direct)
3492 return vcpu_match_mmio_gpa(vcpu, addr);
3493
3494 return vcpu_match_mmio_gva(vcpu, addr);
3495}
3496
95fb5b02
BG
3497/*
3498 * Return the level of the lowest level SPTE added to sptes.
3499 * That SPTE may be non-present.
3500 */
39b4d43e 3501static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
ce88decf
XG
3502{
3503 struct kvm_shadow_walk_iterator iterator;
2aa07893 3504 int leaf = -1;
95fb5b02 3505 u64 spte;
ce88decf
XG
3506
3507 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3508
39b4d43e
SC
3509 for (shadow_walk_init(&iterator, vcpu, addr),
3510 *root_level = iterator.level;
47ab8751
XG
3511 shadow_walk_okay(&iterator);
3512 __shadow_walk_next(&iterator, spte)) {
95fb5b02 3513 leaf = iterator.level;
47ab8751
XG
3514 spte = mmu_spte_get_lockless(iterator.sptep);
3515
dde81f94 3516 sptes[leaf] = spte;
47ab8751 3517
ce88decf
XG
3518 if (!is_shadow_present_pte(spte))
3519 break;
95fb5b02
BG
3520 }
3521
3522 walk_shadow_page_lockless_end(vcpu);
3523
3524 return leaf;
3525}
3526
9aa41879 3527/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
95fb5b02
BG
3528static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3529{
dde81f94 3530 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
95fb5b02 3531 struct rsvd_bits_validate *rsvd_check;
39b4d43e 3532 int root, leaf, level;
95fb5b02
BG
3533 bool reserved = false;
3534
3535 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3536 *sptep = 0ull;
3537 return reserved;
3538 }
3539
3540 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
39b4d43e 3541 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
95fb5b02 3542 else
39b4d43e 3543 leaf = get_walk(vcpu, addr, sptes, &root);
95fb5b02 3544
2aa07893
SC
3545 if (unlikely(leaf < 0)) {
3546 *sptep = 0ull;
3547 return reserved;
3548 }
3549
9aa41879
SC
3550 *sptep = sptes[leaf];
3551
3552 /*
3553 * Skip reserved bits checks on the terminal leaf if it's not a valid
3554 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3555 * design, always have reserved bits set. The purpose of the checks is
3556 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3557 */
3558 if (!is_shadow_present_pte(sptes[leaf]))
3559 leaf++;
95fb5b02
BG
3560
3561 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3562
9aa41879 3563 for (level = root; level >= leaf; level--)
b5c3c1b3
SC
3564 /*
3565 * Use a bitwise-OR instead of a logical-OR to aggregate the
3566 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3567 * adding a Jcc in the loop.
3568 */
dde81f94
SC
3569 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3570 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
47ab8751 3571
47ab8751
XG
3572 if (reserved) {
3573 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3574 __func__, addr);
95fb5b02 3575 for (level = root; level >= leaf; level--)
47ab8751 3576 pr_err("------ spte 0x%llx level %d.\n",
dde81f94 3577 sptes[level], level);
47ab8751 3578 }
ddce6208 3579
47ab8751 3580 return reserved;
ce88decf
XG
3581}
3582
e08d26f0 3583static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3584{
3585 u64 spte;
47ab8751 3586 bool reserved;
ce88decf 3587
ded58749 3588 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3589 return RET_PF_EMULATE;
ce88decf 3590
95fb5b02 3591 reserved = get_mmio_spte(vcpu, addr, &spte);
450869d6 3592 if (WARN_ON(reserved))
9b8ebbdb 3593 return -EINVAL;
ce88decf
XG
3594
3595 if (is_mmio_spte(spte)) {
3596 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3597 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3598
54bf36aa 3599 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3600 return RET_PF_INVALID;
f8f55942 3601
ce88decf
XG
3602 if (direct)
3603 addr = 0;
4f022648
XG
3604
3605 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3606 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3607 return RET_PF_EMULATE;
ce88decf
XG
3608 }
3609
ce88decf
XG
3610 /*
3611 * If the page table is zapped by other cpus, let CPU fault again on
3612 * the address.
3613 */
9b8ebbdb 3614 return RET_PF_RETRY;
ce88decf 3615}
ce88decf 3616
3d0c27ad
XG
3617static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3618 u32 error_code, gfn_t gfn)
3619{
3620 if (unlikely(error_code & PFERR_RSVD_MASK))
3621 return false;
3622
3623 if (!(error_code & PFERR_PRESENT_MASK) ||
3624 !(error_code & PFERR_WRITE_MASK))
3625 return false;
3626
3627 /*
3628 * guest is writing the page which is write tracked which can
3629 * not be fixed by page fault handler.
3630 */
3631 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3632 return true;
3633
3634 return false;
3635}
3636
e5691a81
XG
3637static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3638{
3639 struct kvm_shadow_walk_iterator iterator;
3640 u64 spte;
3641
e5691a81
XG
3642 walk_shadow_page_lockless_begin(vcpu);
3643 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3644 clear_sp_write_flooding_count(iterator.sptep);
3645 if (!is_shadow_present_pte(spte))
3646 break;
3647 }
3648 walk_shadow_page_lockless_end(vcpu);
3649}
3650
e8c22266
VK
3651static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3652 gfn_t gfn)
af585b92
GN
3653{
3654 struct kvm_arch_async_pf arch;
fb67e14f 3655
7c90705b 3656 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3657 arch.gfn = gfn;
44dd3ffa 3658 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3659 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3660
9f1a8526
SC
3661 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3662 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3663}
3664
78b2c54a 3665static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
3666 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3667 bool *writable)
af585b92 3668{
c36b7150 3669 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3670 bool async;
3671
c36b7150
PB
3672 /* Don't expose private memslots to L2. */
3673 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3674 *pfn = KVM_PFN_NOSLOT;
c583eed6 3675 *writable = false;
3a2936de
JM
3676 return false;
3677 }
3678
3520469d
PB
3679 async = false;
3680 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3681 if (!async)
3682 return false; /* *pfn has correct page already */
3683
9bc1f09f 3684 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3685 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3686 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3687 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3688 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3689 return true;
9f1a8526 3690 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3691 return true;
3692 }
3693
3520469d 3694 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3695 return false;
3696}
3697
0f90e1c1
SC
3698static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3699 bool prefault, int max_level, bool is_tdp)
6aa8b732 3700{
367fd790 3701 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3702 bool map_writable;
6aa8b732 3703
0f90e1c1
SC
3704 gfn_t gfn = gpa >> PAGE_SHIFT;
3705 unsigned long mmu_seq;
3706 kvm_pfn_t pfn;
83f06fa7 3707 int r;
ce88decf 3708
3d0c27ad 3709 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3710 return RET_PF_EMULATE;
ce88decf 3711
bb18842e
BG
3712 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3713 r = fast_page_fault(vcpu, gpa, error_code);
3714 if (r != RET_PF_INVALID)
3715 return r;
3716 }
83291445 3717
378f5cd6 3718 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3719 if (r)
3720 return r;
714b93da 3721
367fd790
SC
3722 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3723 smp_rmb();
3724
3725 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3726 return RET_PF_RETRY;
3727
0f90e1c1 3728 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3729 return r;
6aa8b732 3730
367fd790 3731 r = RET_PF_RETRY;
a2855afc
BG
3732
3733 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3734 read_lock(&vcpu->kvm->mmu_lock);
3735 else
3736 write_lock(&vcpu->kvm->mmu_lock);
3737
367fd790
SC
3738 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3739 goto out_unlock;
7bd7ded6
SC
3740 r = make_mmu_pages_available(vcpu);
3741 if (r)
367fd790 3742 goto out_unlock;
bb18842e
BG
3743
3744 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3745 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3746 pfn, prefault);
3747 else
3748 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3749 prefault, is_tdp);
0f90e1c1 3750
367fd790 3751out_unlock:
a2855afc
BG
3752 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3753 read_unlock(&vcpu->kvm->mmu_lock);
3754 else
3755 write_unlock(&vcpu->kvm->mmu_lock);
367fd790
SC
3756 kvm_release_pfn_clean(pfn);
3757 return r;
6aa8b732
AK
3758}
3759
0f90e1c1
SC
3760static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3761 u32 error_code, bool prefault)
3762{
3763 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3764
3765 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3766 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3767 PG_LEVEL_2M, false);
0f90e1c1
SC
3768}
3769
1261bfa3 3770int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3771 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3772{
3773 int r = 1;
9ce372b3 3774 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3775
736c291c
SC
3776#ifndef CONFIG_X86_64
3777 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3778 if (WARN_ON_ONCE(fault_address >> 32))
3779 return -EFAULT;
3780#endif
3781
c595ceee 3782 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3783 if (!flags) {
1261bfa3
WL
3784 trace_kvm_page_fault(fault_address, error_code);
3785
d0006530 3786 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3787 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3788 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3789 insn_len);
9ce372b3 3790 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3791 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3792 local_irq_disable();
6bca69ad 3793 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3794 local_irq_enable();
9ce372b3
VK
3795 } else {
3796 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3797 }
9ce372b3 3798
1261bfa3
WL
3799 return r;
3800}
3801EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3802
7a02674d
SC
3803int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3804 bool prefault)
fb72d167 3805{
cb9b88c6 3806 int max_level;
fb72d167 3807
e662ec3e 3808 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3809 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3810 max_level--) {
3811 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3812 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3813
cb9b88c6
SC
3814 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3815 break;
fd136902 3816 }
852e3c19 3817
0f90e1c1
SC
3818 return direct_page_fault(vcpu, gpa, error_code, prefault,
3819 max_level, true);
fb72d167
JR
3820}
3821
8a3c1a33
PB
3822static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3823 struct kvm_mmu *context)
6aa8b732 3824{
6aa8b732 3825 context->page_fault = nonpaging_page_fault;
6aa8b732 3826 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3827 context->sync_page = nonpaging_sync_page;
5efac074 3828 context->invlpg = NULL;
cea0f0e7 3829 context->root_level = 0;
6aa8b732 3830 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3831 context->direct_map = true;
2d48a985 3832 context->nx = false;
6aa8b732
AK
3833}
3834
be01e8e2 3835static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3836 union kvm_mmu_page_role role)
3837{
be01e8e2 3838 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3839 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3840 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3841}
3842
b94742c9 3843/*
be01e8e2 3844 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3845 * The current root is also inserted into the cache.
3846 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3847 * returned.
3848 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3849 * false is returned. This root should now be freed by the caller.
3850 */
be01e8e2 3851static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3852 union kvm_mmu_page_role new_role)
3853{
3854 uint i;
3855 struct kvm_mmu_root_info root;
44dd3ffa 3856 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3857
be01e8e2 3858 root.pgd = mmu->root_pgd;
b94742c9
JS
3859 root.hpa = mmu->root_hpa;
3860
be01e8e2 3861 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3862 return true;
3863
b94742c9
JS
3864 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3865 swap(root, mmu->prev_roots[i]);
3866
be01e8e2 3867 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3868 break;
3869 }
3870
3871 mmu->root_hpa = root.hpa;
be01e8e2 3872 mmu->root_pgd = root.pgd;
b94742c9
JS
3873
3874 return i < KVM_MMU_NUM_PREV_ROOTS;
3875}
3876
be01e8e2 3877static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3878 union kvm_mmu_page_role new_role)
6aa8b732 3879{
44dd3ffa 3880 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3881
3882 /*
3883 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3884 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3885 * later if necessary.
3886 */
3887 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3888 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3889 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3890
3891 return false;
6aa8b732
AK
3892}
3893
be01e8e2 3894static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3895 union kvm_mmu_page_role new_role,
4a632ac6 3896 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3897{
be01e8e2 3898 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3899 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3900 return;
3901 }
3902
3903 /*
3904 * It's possible that the cached previous root page is obsolete because
3905 * of a change in the MMU generation number. However, changing the
3906 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3907 * free the root set here and allocate a new one.
3908 */
3909 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3910
71fe7013 3911 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3912 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3913 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3914 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3915
3916 /*
3917 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3918 * switching to a new CR3, that GVA->GPA mapping may no longer be
3919 * valid. So clear any cached MMIO info even when we don't need to sync
3920 * the shadow page tables.
3921 */
3922 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3923
daa5b6c1
BG
3924 /*
3925 * If this is a direct root page, it doesn't have a write flooding
3926 * count. Otherwise, clear the write flooding count.
3927 */
3928 if (!new_role.direct)
3929 __clear_sp_write_flooding_count(
3930 to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3931}
3932
be01e8e2 3933void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3934 bool skip_mmu_sync)
0aab33e4 3935{
be01e8e2 3936 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3937 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3938}
be01e8e2 3939EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3940
5777ed34
JR
3941static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3942{
9f8fe504 3943 return kvm_read_cr3(vcpu);
5777ed34
JR
3944}
3945
54bf36aa 3946static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3947 unsigned int access, int *nr_present)
ce88decf
XG
3948{
3949 if (unlikely(is_mmio_spte(*sptep))) {
3950 if (gfn != get_mmio_spte_gfn(*sptep)) {
3951 mmu_spte_clear_no_track(sptep);
3952 return true;
3953 }
3954
3955 (*nr_present)++;
54bf36aa 3956 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3957 return true;
3958 }
3959
3960 return false;
3961}
3962
6bb69c9b
PB
3963static inline bool is_last_gpte(struct kvm_mmu *mmu,
3964 unsigned level, unsigned gpte)
6fd01b71 3965{
6bb69c9b
PB
3966 /*
3967 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3968 * If it is clear, there are no large pages at this level, so clear
3969 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3970 */
3971 gpte &= level - mmu->last_nonleaf_level;
3972
829ee279 3973 /*
3bae0459
SC
3974 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3975 * iff level <= PG_LEVEL_4K, which for our purpose means
3976 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3977 */
3bae0459 3978 gpte |= level - PG_LEVEL_4K - 1;
829ee279 3979
6bb69c9b 3980 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3981}
3982
37406aaa
NHE
3983#define PTTYPE_EPT 18 /* arbitrary */
3984#define PTTYPE PTTYPE_EPT
3985#include "paging_tmpl.h"
3986#undef PTTYPE
3987
6aa8b732
AK
3988#define PTTYPE 64
3989#include "paging_tmpl.h"
3990#undef PTTYPE
3991
3992#define PTTYPE 32
3993#include "paging_tmpl.h"
3994#undef PTTYPE
3995
6dc98b86
XG
3996static void
3997__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3998 struct rsvd_bits_validate *rsvd_check,
5b7f575c 3999 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
6fec2144 4000 bool pse, bool amd)
82725b20 4001{
5f7dde7b 4002 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4003 u64 nonleaf_bit8_rsvd = 0;
5b7f575c 4004 u64 high_bits_rsvd;
82725b20 4005
a0a64f50 4006 rsvd_check->bad_mt_xwr = 0;
25d92081 4007
6dc98b86 4008 if (!gbpages)
5f7dde7b 4009 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5 4010
5b7f575c
SC
4011 if (level == PT32E_ROOT_LEVEL)
4012 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4013 else
4014 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4015
4016 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4017 if (!nx)
4018 high_bits_rsvd |= rsvd_bits(63, 63);
4019
a0c0feb5
PB
4020 /*
4021 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4022 * leaf entries) on AMD CPUs only.
4023 */
6fec2144 4024 if (amd)
a0c0feb5
PB
4025 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4026
6dc98b86 4027 switch (level) {
82725b20
DE
4028 case PT32_ROOT_LEVEL:
4029 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4030 rsvd_check->rsvd_bits_mask[0][1] = 0;
4031 rsvd_check->rsvd_bits_mask[0][0] = 0;
4032 rsvd_check->rsvd_bits_mask[1][0] =
4033 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4034
6dc98b86 4035 if (!pse) {
a0a64f50 4036 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4037 break;
4038 }
4039
82725b20
DE
4040 if (is_cpuid_PSE36())
4041 /* 36bits PSE 4MB page */
a0a64f50 4042 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4043 else
4044 /* 32 bits PSE 4MB page */
a0a64f50 4045 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4046 break;
4047 case PT32E_ROOT_LEVEL:
5b7f575c
SC
4048 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4049 high_bits_rsvd |
4050 rsvd_bits(5, 8) |
4051 rsvd_bits(1, 2); /* PDPTE */
4052 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4053 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4054 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4055 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4056 rsvd_check->rsvd_bits_mask[1][0] =
4057 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4058 break;
855feb67 4059 case PT64_ROOT_5LEVEL:
5b7f575c
SC
4060 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4061 nonleaf_bit8_rsvd |
4062 rsvd_bits(7, 7);
855feb67
YZ
4063 rsvd_check->rsvd_bits_mask[1][4] =
4064 rsvd_check->rsvd_bits_mask[0][4];
df561f66 4065 fallthrough;
2a7266a8 4066 case PT64_ROOT_4LEVEL:
5b7f575c
SC
4067 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4068 nonleaf_bit8_rsvd |
4069 rsvd_bits(7, 7);
4070 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4071 gbpages_bit_rsvd;
4072 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4073 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
a0a64f50
XG
4074 rsvd_check->rsvd_bits_mask[1][3] =
4075 rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4076 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4077 gbpages_bit_rsvd |
4078 rsvd_bits(13, 29);
4079 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4080 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4081 rsvd_check->rsvd_bits_mask[1][0] =
4082 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4083 break;
4084 }
4085}
4086
6dc98b86
XG
4087static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4088 struct kvm_mmu *context)
4089{
4090 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
5b7f575c
SC
4091 vcpu->arch.reserved_gpa_bits,
4092 context->root_level, context->nx,
d6321d49 4093 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4094 is_pse(vcpu),
4095 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4096}
4097
81b8eebb
XG
4098static void
4099__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5b7f575c 4100 u64 pa_bits_rsvd, bool execonly)
25d92081 4101{
5b7f575c 4102 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
951f9fd7 4103 u64 bad_mt_xwr;
25d92081 4104
5b7f575c
SC
4105 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4106 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4107 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4108 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4109 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
25d92081
YZ
4110
4111 /* large page */
855feb67 4112 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50 4113 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4114 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4115 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
a0a64f50 4116 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4117
951f9fd7
PB
4118 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4119 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4120 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4121 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4122 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4123 if (!execonly) {
4124 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4125 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4126 }
951f9fd7 4127 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4128}
4129
81b8eebb
XG
4130static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4131 struct kvm_mmu *context, bool execonly)
4132{
4133 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5b7f575c 4134 vcpu->arch.reserved_gpa_bits, execonly);
81b8eebb
XG
4135}
4136
6f8e65a6
SC
4137static inline u64 reserved_hpa_bits(void)
4138{
4139 return rsvd_bits(shadow_phys_bits, 63);
4140}
4141
c258b62b
XG
4142/*
4143 * the page table on host is the shadow page table for the page
4144 * table in guest or amd nested guest, its mmu features completely
4145 * follow the features in guest.
4146 */
4147void
4148reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4149{
36d9594d
VK
4150 bool uses_nx = context->nx ||
4151 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4152 struct rsvd_bits_validate *shadow_zero_check;
4153 int i;
5f0b8199 4154
6fec2144
PB
4155 /*
4156 * Passing "true" to the last argument is okay; it adds a check
4157 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4158 */
ea2800dd
BS
4159 shadow_zero_check = &context->shadow_zero_check;
4160 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4161 reserved_hpa_bits(),
5f0b8199 4162 context->shadow_root_level, uses_nx,
d6321d49
RK
4163 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4164 is_pse(vcpu), true);
ea2800dd
BS
4165
4166 if (!shadow_me_mask)
4167 return;
4168
4169 for (i = context->shadow_root_level; --i >= 0;) {
4170 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4171 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4172 }
4173
c258b62b
XG
4174}
4175EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4176
6fec2144
PB
4177static inline bool boot_cpu_is_amd(void)
4178{
4179 WARN_ON_ONCE(!tdp_enabled);
4180 return shadow_x_mask == 0;
4181}
4182
c258b62b
XG
4183/*
4184 * the direct page table on host, use as much mmu features as
4185 * possible, however, kvm currently does not do execution-protection.
4186 */
4187static void
4188reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4189 struct kvm_mmu *context)
4190{
ea2800dd
BS
4191 struct rsvd_bits_validate *shadow_zero_check;
4192 int i;
4193
4194 shadow_zero_check = &context->shadow_zero_check;
4195
6fec2144 4196 if (boot_cpu_is_amd())
ea2800dd 4197 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4198 reserved_hpa_bits(),
c258b62b 4199 context->shadow_root_level, false,
b8291adc
BP
4200 boot_cpu_has(X86_FEATURE_GBPAGES),
4201 true, true);
c258b62b 4202 else
ea2800dd 4203 __reset_rsvds_bits_mask_ept(shadow_zero_check,
6f8e65a6 4204 reserved_hpa_bits(), false);
c258b62b 4205
ea2800dd
BS
4206 if (!shadow_me_mask)
4207 return;
4208
4209 for (i = context->shadow_root_level; --i >= 0;) {
4210 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4211 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4212 }
c258b62b
XG
4213}
4214
4215/*
4216 * as the comments in reset_shadow_zero_bits_mask() except it
4217 * is the shadow page table for intel nested guest.
4218 */
4219static void
4220reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4221 struct kvm_mmu *context, bool execonly)
4222{
4223 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
6f8e65a6 4224 reserved_hpa_bits(), execonly);
c258b62b
XG
4225}
4226
09f037aa
PB
4227#define BYTE_MASK(access) \
4228 ((1 & (access) ? 2 : 0) | \
4229 (2 & (access) ? 4 : 0) | \
4230 (3 & (access) ? 8 : 0) | \
4231 (4 & (access) ? 16 : 0) | \
4232 (5 & (access) ? 32 : 0) | \
4233 (6 & (access) ? 64 : 0) | \
4234 (7 & (access) ? 128 : 0))
4235
4236
edc90b7d
XG
4237static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4238 struct kvm_mmu *mmu, bool ept)
97d64b78 4239{
09f037aa
PB
4240 unsigned byte;
4241
4242 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4243 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4244 const u8 u = BYTE_MASK(ACC_USER_MASK);
4245
4246 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4247 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4248 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4249
97d64b78 4250 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4251 unsigned pfec = byte << 1;
4252
97ec8c06 4253 /*
09f037aa
PB
4254 * Each "*f" variable has a 1 bit for each UWX value
4255 * that causes a fault with the given PFEC.
97ec8c06 4256 */
97d64b78 4257
09f037aa 4258 /* Faults from writes to non-writable pages */
a6a6d3b1 4259 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4260 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4261 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4262 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4263 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4264 /* Faults from kernel mode fetches of user pages */
4265 u8 smepf = 0;
4266 /* Faults from kernel mode accesses of user pages */
4267 u8 smapf = 0;
4268
4269 if (!ept) {
4270 /* Faults from kernel mode accesses to user pages */
4271 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4272
4273 /* Not really needed: !nx will cause pte.nx to fault */
4274 if (!mmu->nx)
4275 ff = 0;
4276
4277 /* Allow supervisor writes if !cr0.wp */
4278 if (!cr0_wp)
4279 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4280
4281 /* Disallow supervisor fetches of user code if cr4.smep */
4282 if (cr4_smep)
4283 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4284
4285 /*
4286 * SMAP:kernel-mode data accesses from user-mode
4287 * mappings should fault. A fault is considered
4288 * as a SMAP violation if all of the following
39337ad1 4289 * conditions are true:
09f037aa
PB
4290 * - X86_CR4_SMAP is set in CR4
4291 * - A user page is accessed
4292 * - The access is not a fetch
4293 * - Page fault in kernel mode
4294 * - if CPL = 3 or X86_EFLAGS_AC is clear
4295 *
4296 * Here, we cover the first three conditions.
4297 * The fourth is computed dynamically in permission_fault();
4298 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4299 * *not* subject to SMAP restrictions.
4300 */
4301 if (cr4_smap)
4302 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4303 }
09f037aa
PB
4304
4305 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4306 }
4307}
4308
2d344105
HH
4309/*
4310* PKU is an additional mechanism by which the paging controls access to
4311* user-mode addresses based on the value in the PKRU register. Protection
4312* key violations are reported through a bit in the page fault error code.
4313* Unlike other bits of the error code, the PK bit is not known at the
4314* call site of e.g. gva_to_gpa; it must be computed directly in
4315* permission_fault based on two bits of PKRU, on some machine state (CR4,
4316* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4317*
4318* In particular the following conditions come from the error code, the
4319* page tables and the machine state:
4320* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4321* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4322* - PK is always zero if U=0 in the page tables
4323* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4324*
4325* The PKRU bitmask caches the result of these four conditions. The error
4326* code (minus the P bit) and the page table's U bit form an index into the
4327* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4328* with the two bits of the PKRU register corresponding to the protection key.
4329* For the first three conditions above the bits will be 00, thus masking
4330* away both AD and WD. For all reads or if the last condition holds, WD
4331* only will be masked away.
4332*/
4333static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4334 bool ept)
4335{
4336 unsigned bit;
4337 bool wp;
4338
4339 if (ept) {
4340 mmu->pkru_mask = 0;
4341 return;
4342 }
4343
4344 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4345 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4346 mmu->pkru_mask = 0;
4347 return;
4348 }
4349
4350 wp = is_write_protection(vcpu);
4351
4352 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4353 unsigned pfec, pkey_bits;
4354 bool check_pkey, check_write, ff, uf, wf, pte_user;
4355
4356 pfec = bit << 1;
4357 ff = pfec & PFERR_FETCH_MASK;
4358 uf = pfec & PFERR_USER_MASK;
4359 wf = pfec & PFERR_WRITE_MASK;
4360
4361 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4362 pte_user = pfec & PFERR_RSVD_MASK;
4363
4364 /*
4365 * Only need to check the access which is not an
4366 * instruction fetch and is to a user page.
4367 */
4368 check_pkey = (!ff && pte_user);
4369 /*
4370 * write access is controlled by PKRU if it is a
4371 * user access or CR0.WP = 1.
4372 */
4373 check_write = check_pkey && wf && (uf || wp);
4374
4375 /* PKRU.AD stops both read and write access. */
4376 pkey_bits = !!check_pkey;
4377 /* PKRU.WD stops write access. */
4378 pkey_bits |= (!!check_write) << 1;
4379
4380 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4381 }
4382}
4383
6bb69c9b 4384static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4385{
6bb69c9b
PB
4386 unsigned root_level = mmu->root_level;
4387
4388 mmu->last_nonleaf_level = root_level;
4389 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4390 mmu->last_nonleaf_level++;
6fd01b71
AK
4391}
4392
8a3c1a33
PB
4393static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4394 struct kvm_mmu *context,
4395 int level)
6aa8b732 4396{
2d48a985 4397 context->nx = is_nx(vcpu);
4d6931c3 4398 context->root_level = level;
2d48a985 4399
4d6931c3 4400 reset_rsvds_bits_mask(vcpu, context);
25d92081 4401 update_permission_bitmask(vcpu, context, false);
2d344105 4402 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4403 update_last_nonleaf_level(vcpu, context);
6aa8b732 4404
fa4a2c08 4405 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4406 context->page_fault = paging64_page_fault;
6aa8b732 4407 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4408 context->sync_page = paging64_sync_page;
a7052897 4409 context->invlpg = paging64_invlpg;
17ac10ad 4410 context->shadow_root_level = level;
c5a78f2b 4411 context->direct_map = false;
6aa8b732
AK
4412}
4413
8a3c1a33
PB
4414static void paging64_init_context(struct kvm_vcpu *vcpu,
4415 struct kvm_mmu *context)
17ac10ad 4416{
855feb67
YZ
4417 int root_level = is_la57_mode(vcpu) ?
4418 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4419
4420 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4421}
4422
8a3c1a33
PB
4423static void paging32_init_context(struct kvm_vcpu *vcpu,
4424 struct kvm_mmu *context)
6aa8b732 4425{
2d48a985 4426 context->nx = false;
4d6931c3 4427 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4428
4d6931c3 4429 reset_rsvds_bits_mask(vcpu, context);
25d92081 4430 update_permission_bitmask(vcpu, context, false);
2d344105 4431 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4432 update_last_nonleaf_level(vcpu, context);
6aa8b732 4433
6aa8b732 4434 context->page_fault = paging32_page_fault;
6aa8b732 4435 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4436 context->sync_page = paging32_sync_page;
a7052897 4437 context->invlpg = paging32_invlpg;
6aa8b732 4438 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4439 context->direct_map = false;
6aa8b732
AK
4440}
4441
8a3c1a33
PB
4442static void paging32E_init_context(struct kvm_vcpu *vcpu,
4443 struct kvm_mmu *context)
6aa8b732 4444{
8a3c1a33 4445 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4446}
4447
a336282d
VK
4448static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4449{
4450 union kvm_mmu_extended_role ext = {0};
4451
7dcd5755 4452 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4453 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4454 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4455 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4456 ext.cr4_pse = !!is_pse(vcpu);
4457 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4458 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4459
4460 ext.valid = 1;
4461
4462 return ext;
4463}
4464
7dcd5755
VK
4465static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4466 bool base_only)
4467{
4468 union kvm_mmu_role role = {0};
4469
4470 role.base.access = ACC_ALL;
4471 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4472 role.base.cr0_wp = is_write_protection(vcpu);
4473 role.base.smm = is_smm(vcpu);
4474 role.base.guest_mode = is_guest_mode(vcpu);
4475
4476 if (base_only)
4477 return role;
4478
4479 role.ext = kvm_calc_mmu_role_ext(vcpu);
4480
4481 return role;
4482}
4483
d468d94b
SC
4484static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4485{
4486 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4487 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4488 return 4;
4489
83013059 4490 return max_tdp_level;
d468d94b
SC
4491}
4492
7dcd5755
VK
4493static union kvm_mmu_role
4494kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4495{
7dcd5755 4496 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4497
7dcd5755 4498 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4499 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4500 role.base.direct = true;
47c42e6b 4501 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4502
4503 return role;
4504}
4505
8a3c1a33 4506static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4507{
8c008659 4508 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4509 union kvm_mmu_role new_role =
4510 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4511
7dcd5755
VK
4512 if (new_role.as_u64 == context->mmu_role.as_u64)
4513 return;
4514
4515 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4516 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4517 context->sync_page = nonpaging_sync_page;
5efac074 4518 context->invlpg = NULL;
d468d94b 4519 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4520 context->direct_map = true;
d8dd54e0 4521 context->get_guest_pgd = get_cr3;
e4e517b4 4522 context->get_pdptr = kvm_pdptr_read;
cb659db8 4523 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4524
4525 if (!is_paging(vcpu)) {
2d48a985 4526 context->nx = false;
fb72d167
JR
4527 context->gva_to_gpa = nonpaging_gva_to_gpa;
4528 context->root_level = 0;
4529 } else if (is_long_mode(vcpu)) {
2d48a985 4530 context->nx = is_nx(vcpu);
855feb67
YZ
4531 context->root_level = is_la57_mode(vcpu) ?
4532 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4533 reset_rsvds_bits_mask(vcpu, context);
4534 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4535 } else if (is_pae(vcpu)) {
2d48a985 4536 context->nx = is_nx(vcpu);
fb72d167 4537 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4538 reset_rsvds_bits_mask(vcpu, context);
4539 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4540 } else {
2d48a985 4541 context->nx = false;
fb72d167 4542 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4543 reset_rsvds_bits_mask(vcpu, context);
4544 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4545 }
4546
25d92081 4547 update_permission_bitmask(vcpu, context, false);
2d344105 4548 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4549 update_last_nonleaf_level(vcpu, context);
c258b62b 4550 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4551}
4552
7dcd5755 4553static union kvm_mmu_role
59505b55 4554kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4555{
4556 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4557
4558 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4559 !is_write_protection(vcpu);
4560 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4561 !is_write_protection(vcpu);
47c42e6b 4562 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4563
59505b55
SC
4564 return role;
4565}
4566
4567static union kvm_mmu_role
4568kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4569{
4570 union kvm_mmu_role role =
4571 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4572
4573 role.base.direct = !is_paging(vcpu);
4574
9fa72119 4575 if (!is_long_mode(vcpu))
7dcd5755 4576 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4577 else if (is_la57_mode(vcpu))
7dcd5755 4578 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4579 else
7dcd5755 4580 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4581
4582 return role;
4583}
4584
8c008659
PB
4585static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4586 u32 cr0, u32 cr4, u32 efer,
4587 union kvm_mmu_role new_role)
9fa72119 4588{
929d1cfa 4589 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4590 nonpaging_init_context(vcpu, context);
929d1cfa 4591 else if (efer & EFER_LMA)
8a3c1a33 4592 paging64_init_context(vcpu, context);
929d1cfa 4593 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4594 paging32E_init_context(vcpu, context);
6aa8b732 4595 else
8a3c1a33 4596 paging32_init_context(vcpu, context);
a770f6f2 4597
7dcd5755 4598 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4599 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4600}
0f04a2ac
VK
4601
4602static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4603{
8c008659 4604 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4605 union kvm_mmu_role new_role =
4606 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4607
4608 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4609 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4610}
4611
59505b55
SC
4612static union kvm_mmu_role
4613kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4614{
4615 union kvm_mmu_role role =
4616 kvm_calc_shadow_root_page_role_common(vcpu, false);
4617
4618 role.base.direct = false;
d468d94b 4619 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4620
4621 return role;
4622}
4623
0f04a2ac
VK
4624void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4625 gpa_t nested_cr3)
4626{
8c008659 4627 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4628 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4629
096586fd
SC
4630 context->shadow_root_level = new_role.base.level;
4631
a506fdd2
VK
4632 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4633
0f04a2ac 4634 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4635 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4636}
4637EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4638
a336282d
VK
4639static union kvm_mmu_role
4640kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4641 bool execonly, u8 level)
9fa72119 4642{
552c69b1 4643 union kvm_mmu_role role = {0};
14c07ad8 4644
47c42e6b
SC
4645 /* SMM flag is inherited from root_mmu */
4646 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4647
bb1fcc70 4648 role.base.level = level;
47c42e6b 4649 role.base.gpte_is_8_bytes = true;
a336282d
VK
4650 role.base.direct = false;
4651 role.base.ad_disabled = !accessed_dirty;
4652 role.base.guest_mode = true;
4653 role.base.access = ACC_ALL;
9fa72119 4654
47c42e6b
SC
4655 /*
4656 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4657 * SMAP variation to denote shadow EPT entries.
4658 */
4659 role.base.cr0_wp = true;
4660 role.base.smap_andnot_wp = true;
4661
552c69b1 4662 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4663 role.ext.execonly = execonly;
9fa72119
JS
4664
4665 return role;
4666}
4667
ae1e2d10 4668void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4669 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4670{
8c008659 4671 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4672 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4673 union kvm_mmu_role new_role =
4674 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4675 execonly, level);
a336282d 4676
be01e8e2 4677 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4678
a336282d
VK
4679 if (new_role.as_u64 == context->mmu_role.as_u64)
4680 return;
ad896af0 4681
bb1fcc70 4682 context->shadow_root_level = level;
155a97a3
NHE
4683
4684 context->nx = true;
ae1e2d10 4685 context->ept_ad = accessed_dirty;
155a97a3
NHE
4686 context->page_fault = ept_page_fault;
4687 context->gva_to_gpa = ept_gva_to_gpa;
4688 context->sync_page = ept_sync_page;
4689 context->invlpg = ept_invlpg;
bb1fcc70 4690 context->root_level = level;
155a97a3 4691 context->direct_map = false;
a336282d 4692 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4693
155a97a3 4694 update_permission_bitmask(vcpu, context, true);
2d344105 4695 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4696 update_last_nonleaf_level(vcpu, context);
155a97a3 4697 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4698 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4699}
4700EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4701
8a3c1a33 4702static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4703{
8c008659 4704 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4705
929d1cfa
PB
4706 kvm_init_shadow_mmu(vcpu,
4707 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4708 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4709 vcpu->arch.efer);
4710
d8dd54e0 4711 context->get_guest_pgd = get_cr3;
ad896af0
PB
4712 context->get_pdptr = kvm_pdptr_read;
4713 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4714}
4715
8a3c1a33 4716static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4717{
bf627a92 4718 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4719 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4720
bf627a92
VK
4721 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4722 return;
4723
4724 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4725 g_context->get_guest_pgd = get_cr3;
e4e517b4 4726 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4727 g_context->inject_page_fault = kvm_inject_page_fault;
4728
5efac074
PB
4729 /*
4730 * L2 page tables are never shadowed, so there is no need to sync
4731 * SPTEs.
4732 */
4733 g_context->invlpg = NULL;
4734
02f59dc9 4735 /*
44dd3ffa 4736 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4737 * L1's nested page tables (e.g. EPT12). The nested translation
4738 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4739 * L2's page tables as the first level of translation and L1's
4740 * nested page tables as the second level of translation. Basically
4741 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4742 */
4743 if (!is_paging(vcpu)) {
2d48a985 4744 g_context->nx = false;
02f59dc9
JR
4745 g_context->root_level = 0;
4746 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4747 } else if (is_long_mode(vcpu)) {
2d48a985 4748 g_context->nx = is_nx(vcpu);
855feb67
YZ
4749 g_context->root_level = is_la57_mode(vcpu) ?
4750 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4751 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4752 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4753 } else if (is_pae(vcpu)) {
2d48a985 4754 g_context->nx = is_nx(vcpu);
02f59dc9 4755 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4756 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4757 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4758 } else {
2d48a985 4759 g_context->nx = false;
02f59dc9 4760 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4761 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4762 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4763 }
4764
25d92081 4765 update_permission_bitmask(vcpu, g_context, false);
2d344105 4766 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4767 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4768}
4769
1c53da3f 4770void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4771{
1c53da3f 4772 if (reset_roots) {
b94742c9
JS
4773 uint i;
4774
44dd3ffa 4775 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4776
4777 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4778 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4779 }
4780
02f59dc9 4781 if (mmu_is_nested(vcpu))
e0c6db3e 4782 init_kvm_nested_mmu(vcpu);
02f59dc9 4783 else if (tdp_enabled)
e0c6db3e 4784 init_kvm_tdp_mmu(vcpu);
fb72d167 4785 else
e0c6db3e 4786 init_kvm_softmmu(vcpu);
fb72d167 4787}
1c53da3f 4788EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4789
9fa72119
JS
4790static union kvm_mmu_page_role
4791kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4792{
7dcd5755
VK
4793 union kvm_mmu_role role;
4794
9fa72119 4795 if (tdp_enabled)
7dcd5755 4796 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4797 else
7dcd5755
VK
4798 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4799
4800 return role.base;
9fa72119 4801}
fb72d167 4802
8a3c1a33 4803void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4804{
95f93af4 4805 kvm_mmu_unload(vcpu);
1c53da3f 4806 kvm_init_mmu(vcpu, true);
17c3ba9d 4807}
8668a3c4 4808EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4809
4810int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4811{
714b93da
AK
4812 int r;
4813
378f5cd6 4814 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4815 if (r)
4816 goto out;
8986ecc0 4817 r = mmu_alloc_roots(vcpu);
e2858b4a 4818 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4819 if (r)
4820 goto out;
727a7e27 4821 kvm_mmu_load_pgd(vcpu);
b3646477 4822 static_call(kvm_x86_tlb_flush_current)(vcpu);
714b93da
AK
4823out:
4824 return r;
6aa8b732 4825}
17c3ba9d
AK
4826EXPORT_SYMBOL_GPL(kvm_mmu_load);
4827
4828void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4829{
14c07ad8
VK
4830 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4831 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4832 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4833 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4834}
4b16184c 4835EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4836
79539cec
AK
4837static bool need_remote_flush(u64 old, u64 new)
4838{
4839 if (!is_shadow_present_pte(old))
4840 return false;
4841 if (!is_shadow_present_pte(new))
4842 return true;
4843 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4844 return true;
53166229
GN
4845 old ^= shadow_nx_mask;
4846 new ^= shadow_nx_mask;
79539cec
AK
4847 return (old & ~new & PT64_PERM_MASK) != 0;
4848}
4849
889e5cbc 4850static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4851 int *bytes)
da4a00f0 4852{
0e0fee5c 4853 u64 gentry = 0;
889e5cbc 4854 int r;
72016f3a 4855
72016f3a
AK
4856 /*
4857 * Assume that the pte write on a page table of the same type
49b26e26
XG
4858 * as the current vcpu paging mode since we update the sptes only
4859 * when they have the same mode.
72016f3a 4860 */
889e5cbc 4861 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4862 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4863 *gpa &= ~(gpa_t)7;
4864 *bytes = 8;
08e850c6
AK
4865 }
4866
0e0fee5c
JS
4867 if (*bytes == 4 || *bytes == 8) {
4868 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4869 if (r)
4870 gentry = 0;
72016f3a
AK
4871 }
4872
889e5cbc
XG
4873 return gentry;
4874}
4875
4876/*
4877 * If we're seeing too many writes to a page, it may no longer be a page table,
4878 * or we may be forking, in which case it is better to unmap the page.
4879 */
a138fe75 4880static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4881{
a30f47cb
XG
4882 /*
4883 * Skip write-flooding detected for the sp whose level is 1, because
4884 * it can become unsync, then the guest page is not write-protected.
4885 */
3bae0459 4886 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4887 return false;
3246af0e 4888
e5691a81
XG
4889 atomic_inc(&sp->write_flooding_count);
4890 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4891}
4892
4893/*
4894 * Misaligned accesses are too much trouble to fix up; also, they usually
4895 * indicate a page is not used as a page table.
4896 */
4897static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4898 int bytes)
4899{
4900 unsigned offset, pte_size, misaligned;
4901
4902 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4903 gpa, bytes, sp->role.word);
4904
4905 offset = offset_in_page(gpa);
47c42e6b 4906 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4907
4908 /*
4909 * Sometimes, the OS only writes the last one bytes to update status
4910 * bits, for example, in linux, andb instruction is used in clear_bit().
4911 */
4912 if (!(offset & (pte_size - 1)) && bytes == 1)
4913 return false;
4914
889e5cbc
XG
4915 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4916 misaligned |= bytes < 4;
4917
4918 return misaligned;
4919}
4920
4921static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4922{
4923 unsigned page_offset, quadrant;
4924 u64 *spte;
4925 int level;
4926
4927 page_offset = offset_in_page(gpa);
4928 level = sp->role.level;
4929 *nspte = 1;
47c42e6b 4930 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4931 page_offset <<= 1; /* 32->64 */
4932 /*
4933 * A 32-bit pde maps 4MB while the shadow pdes map
4934 * only 2MB. So we need to double the offset again
4935 * and zap two pdes instead of one.
4936 */
4937 if (level == PT32_ROOT_LEVEL) {
4938 page_offset &= ~7; /* kill rounding error */
4939 page_offset <<= 1;
4940 *nspte = 2;
4941 }
4942 quadrant = page_offset >> PAGE_SHIFT;
4943 page_offset &= ~PAGE_MASK;
4944 if (quadrant != sp->role.quadrant)
4945 return NULL;
4946 }
4947
4948 spte = &sp->spt[page_offset / sizeof(*spte)];
4949 return spte;
4950}
4951
13d268ca 4952static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4953 const u8 *new, int bytes,
4954 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4955{
4956 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4957 struct kvm_mmu_page *sp;
889e5cbc
XG
4958 LIST_HEAD(invalid_list);
4959 u64 entry, gentry, *spte;
4960 int npte;
b8c67b7a 4961 bool remote_flush, local_flush;
889e5cbc
XG
4962
4963 /*
4964 * If we don't have indirect shadow pages, it means no page is
4965 * write-protected, so we can exit simply.
4966 */
6aa7de05 4967 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4968 return;
4969
b8c67b7a 4970 remote_flush = local_flush = false;
889e5cbc
XG
4971
4972 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4973
889e5cbc
XG
4974 /*
4975 * No need to care whether allocation memory is successful
4976 * or not since pte prefetch is skiped if it does not have
4977 * enough objects in the cache.
4978 */
378f5cd6 4979 mmu_topup_memory_caches(vcpu, true);
889e5cbc 4980
531810ca 4981 write_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
4982
4983 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4984
889e5cbc 4985 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4986 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4987
b67bfe0d 4988 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4989 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4990 detect_write_flooding(sp)) {
b8c67b7a 4991 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4992 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4993 continue;
4994 }
889e5cbc
XG
4995
4996 spte = get_written_sptes(sp, gpa, &npte);
4997 if (!spte)
4998 continue;
4999
0671a8e7 5000 local_flush = true;
ac1b714e 5001 while (npte--) {
79539cec 5002 entry = *spte;
2de4085c 5003 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
c5e2184d
SC
5004 if (gentry && sp->role.level != PG_LEVEL_4K)
5005 ++vcpu->kvm->stat.mmu_pde_zapped;
9bb4f6b1 5006 if (need_remote_flush(entry, *spte))
0671a8e7 5007 remote_flush = true;
ac1b714e 5008 ++spte;
9b7a0325 5009 }
9b7a0325 5010 }
b8c67b7a 5011 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5012 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
531810ca 5013 write_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5014}
5015
a436036b
AK
5016int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5017{
10589a46
MT
5018 gpa_t gpa;
5019 int r;
a436036b 5020
44dd3ffa 5021 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5022 return 0;
5023
1871c602 5024 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5025
10589a46 5026 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5027
10589a46 5028 return r;
a436036b 5029}
577bdc49 5030EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5031
736c291c 5032int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5033 void *insn, int insn_len)
3067714c 5034{
92daa48b 5035 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5036 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5037
6948199a 5038 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5039 return RET_PF_RETRY;
5040
9b8ebbdb 5041 r = RET_PF_INVALID;
e9ee956e 5042 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5043 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5044 if (r == RET_PF_EMULATE)
e9ee956e 5045 goto emulate;
e9ee956e 5046 }
3067714c 5047
9b8ebbdb 5048 if (r == RET_PF_INVALID) {
7a02674d
SC
5049 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5050 lower_32_bits(error_code), false);
7b367bc9
SC
5051 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5052 return -EIO;
9b8ebbdb
PB
5053 }
5054
3067714c 5055 if (r < 0)
e9ee956e 5056 return r;
83a2ba4c
SC
5057 if (r != RET_PF_EMULATE)
5058 return 1;
3067714c 5059
14727754
TL
5060 /*
5061 * Before emulating the instruction, check if the error code
5062 * was due to a RO violation while translating the guest page.
5063 * This can occur when using nested virtualization with nested
5064 * paging in both guests. If true, we simply unprotect the page
5065 * and resume the guest.
14727754 5066 */
44dd3ffa 5067 if (vcpu->arch.mmu->direct_map &&
eebed243 5068 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5069 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5070 return 1;
5071 }
5072
472faffa
SC
5073 /*
5074 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5075 * optimistically try to just unprotect the page and let the processor
5076 * re-execute the instruction that caused the page fault. Do not allow
5077 * retrying MMIO emulation, as it's not only pointless but could also
5078 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5079 * faulting on the non-existent MMIO address. Retrying an instruction
5080 * from a nested guest is also pointless and dangerous as we are only
5081 * explicitly shadowing L1's page tables, i.e. unprotecting something
5082 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5083 */
736c291c 5084 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5085 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5086emulate:
736c291c 5087 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5088 insn_len);
3067714c
AK
5089}
5090EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5091
5efac074
PB
5092void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5093 gva_t gva, hpa_t root_hpa)
a7052897 5094{
b94742c9 5095 int i;
7eb77e9f 5096
5efac074
PB
5097 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5098 if (mmu != &vcpu->arch.guest_mmu) {
5099 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5100 if (is_noncanonical_address(gva, vcpu))
5101 return;
5102
b3646477 5103 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5efac074
PB
5104 }
5105
5106 if (!mmu->invlpg)
faff8758
JS
5107 return;
5108
5efac074
PB
5109 if (root_hpa == INVALID_PAGE) {
5110 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5111
5efac074
PB
5112 /*
5113 * INVLPG is required to invalidate any global mappings for the VA,
5114 * irrespective of PCID. Since it would take us roughly similar amount
5115 * of work to determine whether any of the prev_root mappings of the VA
5116 * is marked global, or to just sync it blindly, so we might as well
5117 * just always sync it.
5118 *
5119 * Mappings not reachable via the current cr3 or the prev_roots will be
5120 * synced when switching to that cr3, so nothing needs to be done here
5121 * for them.
5122 */
5123 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5124 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5125 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5126 } else {
5127 mmu->invlpg(vcpu, gva, root_hpa);
5128 }
5129}
5130EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5131
5efac074
PB
5132void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5133{
5134 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5135 ++vcpu->stat.invlpg;
5136}
5137EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5138
5efac074 5139
eb4b248e
JS
5140void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5141{
44dd3ffa 5142 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5143 bool tlb_flush = false;
b94742c9 5144 uint i;
eb4b248e
JS
5145
5146 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5147 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5148 tlb_flush = true;
eb4b248e
JS
5149 }
5150
b94742c9
JS
5151 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5152 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5153 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5154 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5155 tlb_flush = true;
5156 }
956bf353 5157 }
ade61e28 5158
faff8758 5159 if (tlb_flush)
b3646477 5160 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
faff8758 5161
eb4b248e
JS
5162 ++vcpu->stat.invlpg;
5163
5164 /*
b94742c9
JS
5165 * Mappings not reachable via the current cr3 or the prev_roots will be
5166 * synced when switching to that cr3, so nothing needs to be done here
5167 * for them.
eb4b248e
JS
5168 */
5169}
5170EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5171
83013059
SC
5172void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5173 int tdp_huge_page_level)
18552672 5174{
bde77235 5175 tdp_enabled = enable_tdp;
83013059 5176 max_tdp_level = tdp_max_root_level;
703c335d
SC
5177
5178 /*
1d92d2e8 5179 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5180 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5181 * the kernel is not. But, KVM never creates a page size greater than
5182 * what is used by the kernel for any given HVA, i.e. the kernel's
5183 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5184 */
5185 if (tdp_enabled)
1d92d2e8 5186 max_huge_page_level = tdp_huge_page_level;
703c335d 5187 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5188 max_huge_page_level = PG_LEVEL_1G;
703c335d 5189 else
1d92d2e8 5190 max_huge_page_level = PG_LEVEL_2M;
18552672 5191}
bde77235 5192EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5193
5194/* The return value indicates if tlb flush on all vcpus is needed. */
0a234f5d
SC
5195typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5196 struct kvm_memory_slot *slot);
85875a13
SC
5197
5198/* The caller should hold mmu-lock before calling this function. */
5199static __always_inline bool
5200slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5201 slot_level_handler fn, int start_level, int end_level,
5202 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5203{
5204 struct slot_rmap_walk_iterator iterator;
5205 bool flush = false;
5206
5207 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5208 end_gfn, &iterator) {
5209 if (iterator.rmap)
0a234f5d 5210 flush |= fn(kvm, iterator.rmap, memslot);
85875a13 5211
531810ca 5212 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
85875a13 5213 if (flush && lock_flush_tlb) {
f285c633
BG
5214 kvm_flush_remote_tlbs_with_address(kvm,
5215 start_gfn,
5216 iterator.gfn - start_gfn + 1);
85875a13
SC
5217 flush = false;
5218 }
531810ca 5219 cond_resched_rwlock_write(&kvm->mmu_lock);
85875a13
SC
5220 }
5221 }
5222
5223 if (flush && lock_flush_tlb) {
f285c633
BG
5224 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5225 end_gfn - start_gfn + 1);
85875a13
SC
5226 flush = false;
5227 }
5228
5229 return flush;
5230}
5231
5232static __always_inline bool
5233slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5234 slot_level_handler fn, int start_level, int end_level,
5235 bool lock_flush_tlb)
5236{
5237 return slot_handle_level_range(kvm, memslot, fn, start_level,
5238 end_level, memslot->base_gfn,
5239 memslot->base_gfn + memslot->npages - 1,
5240 lock_flush_tlb);
5241}
5242
5243static __always_inline bool
5244slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5245 slot_level_handler fn, bool lock_flush_tlb)
5246{
3bae0459 5247 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5248 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5249}
5250
5251static __always_inline bool
5252slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5253 slot_level_handler fn, bool lock_flush_tlb)
5254{
3bae0459 5255 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5256 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5257}
5258
5259static __always_inline bool
5260slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5261 slot_level_handler fn, bool lock_flush_tlb)
5262{
3bae0459
SC
5263 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5264 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5265}
5266
1cfff4d9 5267static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5268{
1cfff4d9
JP
5269 free_page((unsigned long)mmu->pae_root);
5270 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5271}
5272
04d28e37 5273static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5274{
17ac10ad 5275 struct page *page;
6aa8b732
AK
5276 int i;
5277
04d28e37
SC
5278 mmu->root_hpa = INVALID_PAGE;
5279 mmu->root_pgd = 0;
5280 mmu->translate_gpa = translate_gpa;
5281 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5282 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5283
17ac10ad 5284 /*
b6b80c78
SC
5285 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5286 * while the PDP table is a per-vCPU construct that's allocated at MMU
5287 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5288 * x86_64. Therefore we need to allocate the PDP table in the first
5289 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5290 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5291 * skip allocating the PDP table.
17ac10ad 5292 */
d468d94b 5293 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5294 return 0;
5295
254272ce 5296 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5297 if (!page)
d7fa6ab2
WY
5298 return -ENOMEM;
5299
1cfff4d9 5300 mmu->pae_root = page_address(page);
17ac10ad 5301 for (i = 0; i < 4; ++i)
1cfff4d9 5302 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5303
6aa8b732 5304 return 0;
6aa8b732
AK
5305}
5306
8018c27b 5307int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5308{
1cfff4d9 5309 int ret;
b94742c9 5310
5962bfb7 5311 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5312 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5313
5962bfb7 5314 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5315 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5316
96880883
SC
5317 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5318
44dd3ffa
VK
5319 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5320 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5321
14c07ad8 5322 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5323
04d28e37 5324 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5325 if (ret)
5326 return ret;
5327
04d28e37 5328 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5329 if (ret)
5330 goto fail_allocate_root;
5331
5332 return ret;
5333 fail_allocate_root:
5334 free_mmu_pages(&vcpu->arch.guest_mmu);
5335 return ret;
6aa8b732
AK
5336}
5337
fbb158cb 5338#define BATCH_ZAP_PAGES 10
002c5f73
SC
5339static void kvm_zap_obsolete_pages(struct kvm *kvm)
5340{
5341 struct kvm_mmu_page *sp, *node;
fbb158cb 5342 int nr_zapped, batch = 0;
002c5f73
SC
5343
5344restart:
5345 list_for_each_entry_safe_reverse(sp, node,
5346 &kvm->arch.active_mmu_pages, link) {
5347 /*
5348 * No obsolete valid page exists before a newly created page
5349 * since active_mmu_pages is a FIFO list.
5350 */
5351 if (!is_obsolete_sp(kvm, sp))
5352 break;
5353
5354 /*
f95eec9b
SC
5355 * Invalid pages should never land back on the list of active
5356 * pages. Skip the bogus page, otherwise we'll get stuck in an
5357 * infinite loop if the page gets put back on the list (again).
002c5f73 5358 */
f95eec9b 5359 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5360 continue;
5361
4506ecf4
SC
5362 /*
5363 * No need to flush the TLB since we're only zapping shadow
5364 * pages with an obsolete generation number and all vCPUS have
5365 * loaded a new root, i.e. the shadow pages being zapped cannot
5366 * be in active use by the guest.
5367 */
fbb158cb 5368 if (batch >= BATCH_ZAP_PAGES &&
531810ca 5369 cond_resched_rwlock_write(&kvm->mmu_lock)) {
fbb158cb 5370 batch = 0;
002c5f73
SC
5371 goto restart;
5372 }
5373
10605204
SC
5374 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5375 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5376 batch += nr_zapped;
002c5f73 5377 goto restart;
fbb158cb 5378 }
002c5f73
SC
5379 }
5380
4506ecf4
SC
5381 /*
5382 * Trigger a remote TLB flush before freeing the page tables to ensure
5383 * KVM is not in the middle of a lockless shadow page table walk, which
5384 * may reference the pages.
5385 */
10605204 5386 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5387}
5388
5389/*
5390 * Fast invalidate all shadow pages and use lock-break technique
5391 * to zap obsolete pages.
5392 *
5393 * It's required when memslot is being deleted or VM is being
5394 * destroyed, in these cases, we should ensure that KVM MMU does
5395 * not use any resource of the being-deleted slot or all slots
5396 * after calling the function.
5397 */
5398static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5399{
ca333add
SC
5400 lockdep_assert_held(&kvm->slots_lock);
5401
531810ca 5402 write_lock(&kvm->mmu_lock);
14a3c4f4 5403 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5404
5405 /*
5406 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5407 * held for the entire duration of zapping obsolete pages, it's
5408 * impossible for there to be multiple invalid generations associated
5409 * with *valid* shadow pages at any given time, i.e. there is exactly
5410 * one valid generation and (at most) one invalid generation.
5411 */
5412 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5413
4506ecf4
SC
5414 /*
5415 * Notify all vcpus to reload its shadow page table and flush TLB.
5416 * Then all vcpus will switch to new shadow page table with the new
5417 * mmu_valid_gen.
5418 *
5419 * Note: we need to do this under the protection of mmu_lock,
5420 * otherwise, vcpu would purge shadow page but miss tlb flush.
5421 */
5422 kvm_reload_remote_mmus(kvm);
5423
002c5f73 5424 kvm_zap_obsolete_pages(kvm);
faaf05b0 5425
897218ff 5426 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5427 kvm_tdp_mmu_zap_all(kvm);
5428
531810ca 5429 write_unlock(&kvm->mmu_lock);
002c5f73
SC
5430}
5431
10605204
SC
5432static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5433{
5434 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5435}
5436
b5f5fdca 5437static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5438 struct kvm_memory_slot *slot,
5439 struct kvm_page_track_notifier_node *node)
b5f5fdca 5440{
002c5f73 5441 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5442}
5443
13d268ca 5444void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5445{
13d268ca 5446 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5447
fe5db27d
BG
5448 kvm_mmu_init_tdp_mmu(kvm);
5449
13d268ca 5450 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5451 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5452 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5453}
5454
13d268ca 5455void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5456{
13d268ca 5457 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5458
13d268ca 5459 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5460
5461 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5462}
5463
efdfe536
XG
5464void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5465{
5466 struct kvm_memslots *slots;
5467 struct kvm_memory_slot *memslot;
9da0e4d5 5468 int i;
faaf05b0 5469 bool flush;
efdfe536 5470
531810ca 5471 write_lock(&kvm->mmu_lock);
9da0e4d5
PB
5472 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5473 slots = __kvm_memslots(kvm, i);
5474 kvm_for_each_memslot(memslot, slots) {
5475 gfn_t start, end;
5476
5477 start = max(gfn_start, memslot->base_gfn);
5478 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5479 if (start >= end)
5480 continue;
efdfe536 5481
92da008f 5482 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5483 PG_LEVEL_4K,
e662ec3e 5484 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5485 start, end - 1, true);
9da0e4d5 5486 }
efdfe536
XG
5487 }
5488
897218ff 5489 if (is_tdp_mmu_enabled(kvm)) {
faaf05b0
BG
5490 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5491 if (flush)
5492 kvm_flush_remote_tlbs(kvm);
5493 }
5494
531810ca 5495 write_unlock(&kvm->mmu_lock);
efdfe536
XG
5496}
5497
018aabb5 5498static bool slot_rmap_write_protect(struct kvm *kvm,
0a234f5d
SC
5499 struct kvm_rmap_head *rmap_head,
5500 struct kvm_memory_slot *slot)
d77aa73c 5501{
018aabb5 5502 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5503}
5504
1c91cad4 5505void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5506 struct kvm_memory_slot *memslot,
5507 int start_level)
6aa8b732 5508{
d77aa73c 5509 bool flush;
6aa8b732 5510
531810ca 5511 write_lock(&kvm->mmu_lock);
3c9bd400 5512 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5513 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
897218ff 5514 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5515 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
531810ca 5516 write_unlock(&kvm->mmu_lock);
198c74f4 5517
198c74f4
XG
5518 /*
5519 * We can flush all the TLBs out of the mmu lock without TLB
5520 * corruption since we just change the spte from writable to
5521 * readonly so that we only need to care the case of changing
5522 * spte from present to present (changing the spte from present
5523 * to nonpresent will flush all the TLBs immediately), in other
5524 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5525 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5526 * instead of PT_WRITABLE_MASK, that means it does not depend
5527 * on PT_WRITABLE_MASK anymore.
5528 */
d91ffee9 5529 if (flush)
7f42aa76 5530 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5531}
37a7d8b0 5532
3ea3b7fa 5533static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
0a234f5d
SC
5534 struct kvm_rmap_head *rmap_head,
5535 struct kvm_memory_slot *slot)
3ea3b7fa
WL
5536{
5537 u64 *sptep;
5538 struct rmap_iterator iter;
5539 int need_tlb_flush = 0;
ba049e93 5540 kvm_pfn_t pfn;
3ea3b7fa
WL
5541 struct kvm_mmu_page *sp;
5542
0d536790 5543restart:
018aabb5 5544 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5545 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5546 pfn = spte_to_pfn(*sptep);
5547
5548 /*
decf6333
XG
5549 * We cannot do huge page mapping for indirect shadow pages,
5550 * which are found on the last rmap (level = 1) when not using
5551 * tdp; such shadow pages are synced with the page table in
5552 * the guest, and the guest page table is using 4K page size
5553 * mapping if the indirect sp has level = 1.
3ea3b7fa 5554 */
a78986aa 5555 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
9eba50f8
SC
5556 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5557 pfn, PG_LEVEL_NUM)) {
e7912386 5558 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5559
5560 if (kvm_available_flush_tlb_with_range())
5561 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5562 KVM_PAGES_PER_HPAGE(sp->role.level));
5563 else
5564 need_tlb_flush = 1;
5565
0d536790
XG
5566 goto restart;
5567 }
3ea3b7fa
WL
5568 }
5569
5570 return need_tlb_flush;
5571}
5572
5573void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5574 const struct kvm_memory_slot *memslot)
3ea3b7fa 5575{
f36f3f28 5576 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
9eba50f8
SC
5577 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5578
531810ca 5579 write_lock(&kvm->mmu_lock);
9eba50f8 5580 slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
14881998 5581
897218ff 5582 if (is_tdp_mmu_enabled(kvm))
9eba50f8 5583 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
531810ca 5584 write_unlock(&kvm->mmu_lock);
3ea3b7fa
WL
5585}
5586
b3594ffb
SC
5587void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5588 struct kvm_memory_slot *memslot)
5589{
5590 /*
7f42aa76
SC
5591 * All current use cases for flushing the TLBs for a specific memslot
5592 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5593 * The interaction between the various operations on memslot must be
5594 * serialized by slots_locks to ensure the TLB flush from one operation
5595 * is observed by any other operation on the same memslot.
b3594ffb
SC
5596 */
5597 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5598 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5599 memslot->npages);
b3594ffb
SC
5600}
5601
f4b4b180
KH
5602void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5603 struct kvm_memory_slot *memslot)
5604{
d77aa73c 5605 bool flush;
f4b4b180 5606
531810ca 5607 write_lock(&kvm->mmu_lock);
d77aa73c 5608 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
897218ff 5609 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5610 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
531810ca 5611 write_unlock(&kvm->mmu_lock);
f4b4b180 5612
f4b4b180
KH
5613 /*
5614 * It's also safe to flush TLBs out of mmu lock here as currently this
5615 * function is only used for dirty logging, in which case flushing TLB
5616 * out of mmu lock also guarantees no dirty pages will be lost in
5617 * dirty_bitmap.
5618 */
5619 if (flush)
7f42aa76 5620 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5621}
5622EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5623
5624void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5625 struct kvm_memory_slot *memslot)
5626{
d77aa73c 5627 bool flush;
f4b4b180 5628
531810ca 5629 write_lock(&kvm->mmu_lock);
d77aa73c
XG
5630 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5631 false);
897218ff 5632 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5633 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
531810ca 5634 write_unlock(&kvm->mmu_lock);
f4b4b180 5635
f4b4b180 5636 if (flush)
7f42aa76 5637 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5638}
5639EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5640
5641void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5642 struct kvm_memory_slot *memslot)
5643{
d77aa73c 5644 bool flush;
f4b4b180 5645
531810ca 5646 write_lock(&kvm->mmu_lock);
d77aa73c 5647 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
897218ff 5648 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5649 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
531810ca 5650 write_unlock(&kvm->mmu_lock);
f4b4b180 5651
f4b4b180 5652 if (flush)
7f42aa76 5653 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5654}
5655EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5656
92f58b5c 5657void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5658{
5659 struct kvm_mmu_page *sp, *node;
7390de1e 5660 LIST_HEAD(invalid_list);
83cdb568 5661 int ign;
5304b8d3 5662
531810ca 5663 write_lock(&kvm->mmu_lock);
5304b8d3 5664restart:
8a674adc 5665 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5666 if (WARN_ON(sp->role.invalid))
4771450c 5667 continue;
92f58b5c 5668 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5669 goto restart;
531810ca 5670 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5304b8d3
XG
5671 goto restart;
5672 }
5673
4771450c 5674 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0 5675
897218ff 5676 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5677 kvm_tdp_mmu_zap_all(kvm);
5678
531810ca 5679 write_unlock(&kvm->mmu_lock);
5304b8d3
XG
5680}
5681
15248258 5682void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5683{
164bf7e5 5684 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5685
164bf7e5 5686 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5687
f8f55942 5688 /*
e1359e2b
SC
5689 * Generation numbers are incremented in multiples of the number of
5690 * address spaces in order to provide unique generations across all
5691 * address spaces. Strip what is effectively the address space
5692 * modifier prior to checking for a wrap of the MMIO generation so
5693 * that a wrap in any address space is detected.
5694 */
5695 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5696
f8f55942 5697 /*
e1359e2b 5698 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5699 * zap all shadow pages.
f8f55942 5700 */
e1359e2b 5701 if (unlikely(gen == 0)) {
ae0f5499 5702 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5703 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5704 }
f8f55942
XG
5705}
5706
70534a73
DC
5707static unsigned long
5708mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5709{
5710 struct kvm *kvm;
1495f230 5711 int nr_to_scan = sc->nr_to_scan;
70534a73 5712 unsigned long freed = 0;
3ee16c81 5713
0d9ce162 5714 mutex_lock(&kvm_lock);
3ee16c81
IE
5715
5716 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5717 int idx;
d98ba053 5718 LIST_HEAD(invalid_list);
3ee16c81 5719
35f2d16b
TY
5720 /*
5721 * Never scan more than sc->nr_to_scan VM instances.
5722 * Will not hit this condition practically since we do not try
5723 * to shrink more than one VM and it is very unlikely to see
5724 * !n_used_mmu_pages so many times.
5725 */
5726 if (!nr_to_scan--)
5727 break;
19526396
GN
5728 /*
5729 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5730 * here. We may skip a VM instance errorneosly, but we do not
5731 * want to shrink a VM that only started to populate its MMU
5732 * anyway.
5733 */
10605204
SC
5734 if (!kvm->arch.n_used_mmu_pages &&
5735 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5736 continue;
19526396 5737
f656ce01 5738 idx = srcu_read_lock(&kvm->srcu);
531810ca 5739 write_lock(&kvm->mmu_lock);
3ee16c81 5740
10605204
SC
5741 if (kvm_has_zapped_obsolete_pages(kvm)) {
5742 kvm_mmu_commit_zap_page(kvm,
5743 &kvm->arch.zapped_obsolete_pages);
5744 goto unlock;
5745 }
5746
ebdb292d 5747 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5748
10605204 5749unlock:
531810ca 5750 write_unlock(&kvm->mmu_lock);
f656ce01 5751 srcu_read_unlock(&kvm->srcu, idx);
19526396 5752
70534a73
DC
5753 /*
5754 * unfair on small ones
5755 * per-vm shrinkers cry out
5756 * sadness comes quickly
5757 */
19526396
GN
5758 list_move_tail(&kvm->vm_list, &vm_list);
5759 break;
3ee16c81 5760 }
3ee16c81 5761
0d9ce162 5762 mutex_unlock(&kvm_lock);
70534a73 5763 return freed;
70534a73
DC
5764}
5765
5766static unsigned long
5767mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5768{
45221ab6 5769 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5770}
5771
5772static struct shrinker mmu_shrinker = {
70534a73
DC
5773 .count_objects = mmu_shrink_count,
5774 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5775 .seeks = DEFAULT_SEEKS * 10,
5776};
5777
2ddfd20e 5778static void mmu_destroy_caches(void)
b5a33a75 5779{
c1bd743e
TH
5780 kmem_cache_destroy(pte_list_desc_cache);
5781 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5782}
5783
7b6f8a06
KH
5784static void kvm_set_mmio_spte_mask(void)
5785{
5786 u64 mask;
7b6f8a06
KH
5787
5788 /*
6129ed87
SC
5789 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5790 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5791 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5792 * 52-bit physical addresses then there are no reserved PA bits in the
5793 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 5794 */
6129ed87
SC
5795 if (shadow_phys_bits < 52)
5796 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5797 else
5798 mask = 0;
7b6f8a06 5799
e7581cac 5800 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
5801}
5802
b8e8c830
PB
5803static bool get_nx_auto_mode(void)
5804{
5805 /* Return true when CPU has the bug, and mitigations are ON */
5806 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5807}
5808
5809static void __set_nx_huge_pages(bool val)
5810{
5811 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5812}
5813
5814static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5815{
5816 bool old_val = nx_huge_pages;
5817 bool new_val;
5818
5819 /* In "auto" mode deploy workaround only if CPU has the bug. */
5820 if (sysfs_streq(val, "off"))
5821 new_val = 0;
5822 else if (sysfs_streq(val, "force"))
5823 new_val = 1;
5824 else if (sysfs_streq(val, "auto"))
5825 new_val = get_nx_auto_mode();
5826 else if (strtobool(val, &new_val) < 0)
5827 return -EINVAL;
5828
5829 __set_nx_huge_pages(new_val);
5830
5831 if (new_val != old_val) {
5832 struct kvm *kvm;
b8e8c830
PB
5833
5834 mutex_lock(&kvm_lock);
5835
5836 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5837 mutex_lock(&kvm->slots_lock);
b8e8c830 5838 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5839 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5840
5841 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5842 }
5843 mutex_unlock(&kvm_lock);
5844 }
5845
5846 return 0;
5847}
5848
b5a33a75
AK
5849int kvm_mmu_module_init(void)
5850{
ab271bd4
AB
5851 int ret = -ENOMEM;
5852
b8e8c830
PB
5853 if (nx_huge_pages == -1)
5854 __set_nx_huge_pages(get_nx_auto_mode());
5855
36d9594d
VK
5856 /*
5857 * MMU roles use union aliasing which is, generally speaking, an
5858 * undefined behavior. However, we supposedly know how compilers behave
5859 * and the current status quo is unlikely to change. Guardians below are
5860 * supposed to let us know if the assumption becomes false.
5861 */
5862 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5863 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5864 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5865
28a1f3ac 5866 kvm_mmu_reset_all_pte_masks();
f160c7b7 5867
7b6f8a06
KH
5868 kvm_set_mmio_spte_mask();
5869
53c07b18
XG
5870 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5871 sizeof(struct pte_list_desc),
46bea48a 5872 0, SLAB_ACCOUNT, NULL);
53c07b18 5873 if (!pte_list_desc_cache)
ab271bd4 5874 goto out;
b5a33a75 5875
d3d25b04
AK
5876 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5877 sizeof(struct kvm_mmu_page),
46bea48a 5878 0, SLAB_ACCOUNT, NULL);
d3d25b04 5879 if (!mmu_page_header_cache)
ab271bd4 5880 goto out;
d3d25b04 5881
908c7f19 5882 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5883 goto out;
45bf21a8 5884
ab271bd4
AB
5885 ret = register_shrinker(&mmu_shrinker);
5886 if (ret)
5887 goto out;
3ee16c81 5888
b5a33a75
AK
5889 return 0;
5890
ab271bd4 5891out:
3ee16c81 5892 mmu_destroy_caches();
ab271bd4 5893 return ret;
b5a33a75
AK
5894}
5895
3ad82a7e 5896/*
39337ad1 5897 * Calculate mmu pages needed for kvm.
3ad82a7e 5898 */
bc8a3d89 5899unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5900{
bc8a3d89
BG
5901 unsigned long nr_mmu_pages;
5902 unsigned long nr_pages = 0;
bc6678a3 5903 struct kvm_memslots *slots;
be6ba0f0 5904 struct kvm_memory_slot *memslot;
9da0e4d5 5905 int i;
3ad82a7e 5906
9da0e4d5
PB
5907 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5908 slots = __kvm_memslots(kvm, i);
90d83dc3 5909
9da0e4d5
PB
5910 kvm_for_each_memslot(memslot, slots)
5911 nr_pages += memslot->npages;
5912 }
3ad82a7e
ZX
5913
5914 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5915 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5916
5917 return nr_mmu_pages;
5918}
5919
c42fffe3
XG
5920void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5921{
95f93af4 5922 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5923 free_mmu_pages(&vcpu->arch.root_mmu);
5924 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5925 mmu_free_memory_caches(vcpu);
b034cf01
XG
5926}
5927
b034cf01
XG
5928void kvm_mmu_module_exit(void)
5929{
5930 mmu_destroy_caches();
5931 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5932 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5933 mmu_audit_disable();
5934}
1aa9b957
JS
5935
5936static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5937{
5938 unsigned int old_val;
5939 int err;
5940
5941 old_val = nx_huge_pages_recovery_ratio;
5942 err = param_set_uint(val, kp);
5943 if (err)
5944 return err;
5945
5946 if (READ_ONCE(nx_huge_pages) &&
5947 !old_val && nx_huge_pages_recovery_ratio) {
5948 struct kvm *kvm;
5949
5950 mutex_lock(&kvm_lock);
5951
5952 list_for_each_entry(kvm, &vm_list, vm_list)
5953 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5954
5955 mutex_unlock(&kvm_lock);
5956 }
5957
5958 return err;
5959}
5960
5961static void kvm_recover_nx_lpages(struct kvm *kvm)
5962{
5963 int rcu_idx;
5964 struct kvm_mmu_page *sp;
5965 unsigned int ratio;
5966 LIST_HEAD(invalid_list);
5967 ulong to_zap;
5968
5969 rcu_idx = srcu_read_lock(&kvm->srcu);
531810ca 5970 write_lock(&kvm->mmu_lock);
1aa9b957
JS
5971
5972 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5973 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5974 for ( ; to_zap; --to_zap) {
5975 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5976 break;
5977
1aa9b957
JS
5978 /*
5979 * We use a separate list instead of just using active_mmu_pages
5980 * because the number of lpage_disallowed pages is expected to
5981 * be relatively small compared to the total.
5982 */
5983 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5984 struct kvm_mmu_page,
5985 lpage_disallowed_link);
5986 WARN_ON_ONCE(!sp->lpage_disallowed);
897218ff 5987 if (is_tdp_mmu_page(sp)) {
29cf0f50
BG
5988 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5989 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
8d1a182e 5990 } else {
29cf0f50
BG
5991 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5992 WARN_ON_ONCE(sp->lpage_disallowed);
5993 }
1aa9b957 5994
531810ca 5995 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1aa9b957 5996 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 5997 cond_resched_rwlock_write(&kvm->mmu_lock);
1aa9b957
JS
5998 }
5999 }
e8950569 6000 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1aa9b957 6001
531810ca 6002 write_unlock(&kvm->mmu_lock);
1aa9b957
JS
6003 srcu_read_unlock(&kvm->srcu, rcu_idx);
6004}
6005
6006static long get_nx_lpage_recovery_timeout(u64 start_time)
6007{
6008 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6009 ? start_time + 60 * HZ - get_jiffies_64()
6010 : MAX_SCHEDULE_TIMEOUT;
6011}
6012
6013static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6014{
6015 u64 start_time;
6016 long remaining_time;
6017
6018 while (true) {
6019 start_time = get_jiffies_64();
6020 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6021
6022 set_current_state(TASK_INTERRUPTIBLE);
6023 while (!kthread_should_stop() && remaining_time > 0) {
6024 schedule_timeout(remaining_time);
6025 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6026 set_current_state(TASK_INTERRUPTIBLE);
6027 }
6028
6029 set_current_state(TASK_RUNNING);
6030
6031 if (kthread_should_stop())
6032 return 0;
6033
6034 kvm_recover_nx_lpages(kvm);
6035 }
6036}
6037
6038int kvm_mmu_post_init_vm(struct kvm *kvm)
6039{
6040 int err;
6041
6042 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6043 "kvm-nx-lpage-recovery",
6044 &kvm->arch.nx_lpage_recovery_thread);
6045 if (!err)
6046 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6047
6048 return err;
6049}
6050
6051void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6052{
6053 if (kvm->arch.nx_lpage_recovery_thread)
6054 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6055}