]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
4a98623d 51#include <asm/set_memory.h>
13673a90 52#include <asm/vmx.h>
3d0c27ad 53#include <asm/kvm_page_track.h>
1261bfa3 54#include "trace.h"
6aa8b732 55
b8e8c830
PB
56extern bool itlb_multihit_kvm_mitigation;
57
58static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
59#ifdef CONFIG_PREEMPT_RT
60/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
61static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62#else
1aa9b957 63static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 64#endif
b8e8c830
PB
65
66static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 67static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 68
d5d6c18d 69static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
70 .set = set_nx_huge_pages,
71 .get = param_get_bool,
72};
73
d5d6c18d 74static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
75 .set = set_nx_huge_pages_recovery_ratio,
76 .get = param_get_uint,
77};
78
b8e8c830
PB
79module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
81module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82 &nx_huge_pages_recovery_ratio, 0644);
83__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 84
71fe7013
SC
85static bool __read_mostly force_flush_and_sync_on_reuse;
86module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
18552672
JR
88/*
89 * When setting this variable to true it enables Two-Dimensional-Paging
90 * where the hardware walks 2 page tables:
91 * 1. the guest-virtual to guest-physical
92 * 2. while doing 1. it walks guest-physical to host-physical
93 * If the hardware supports that we don't need to do shadow paging.
94 */
2f333bcb 95bool tdp_enabled = false;
18552672 96
1d92d2e8 97static int max_huge_page_level __read_mostly;
83013059 98static int max_tdp_level __read_mostly;
703c335d 99
8b1fe17c
XG
100enum {
101 AUDIT_PRE_PAGE_FAULT,
102 AUDIT_POST_PAGE_FAULT,
103 AUDIT_PRE_PTE_WRITE,
6903074c
XG
104 AUDIT_POST_PTE_WRITE,
105 AUDIT_PRE_SYNC,
106 AUDIT_POST_SYNC
8b1fe17c 107};
37a7d8b0 108
37a7d8b0 109#ifdef MMU_DEBUG
5a9624af 110bool dbg = 0;
fa4a2c08 111module_param(dbg, bool, 0644);
d6c69ee9 112#endif
6aa8b732 113
957ed9ef
XG
114#define PTE_PREFETCH_NUM 8
115
6aa8b732
AK
116#define PT32_LEVEL_BITS 10
117
118#define PT32_LEVEL_SHIFT(level) \
d77c26fc 119 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 120
e04da980
JR
121#define PT32_LVL_OFFSET_MASK(level) \
122 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
124
125#define PT32_INDEX(address, level)\
126 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
6aa8b732
AK
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
132#define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
6aa8b732 135
90bb6fc5
AK
136#include <trace/events/kvm.h>
137
220f773a
TY
138/* make pte_list_desc fit well in cache line */
139#define PTE_LIST_EXT 3
140
53c07b18
XG
141struct pte_list_desc {
142 u64 *sptes[PTE_LIST_EXT];
143 struct pte_list_desc *more;
cd4a4e53
AK
144};
145
2d11123a
AK
146struct kvm_shadow_walk_iterator {
147 u64 addr;
148 hpa_t shadow_addr;
2d11123a 149 u64 *sptep;
dd3bfd59 150 int level;
2d11123a
AK
151 unsigned index;
152};
153
7eb77e9f
JS
154#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
155 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
156 (_root), (_addr)); \
157 shadow_walk_okay(&(_walker)); \
158 shadow_walk_next(&(_walker)))
159
160#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
161 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
162 shadow_walk_okay(&(_walker)); \
163 shadow_walk_next(&(_walker)))
164
c2a2ac2b
XG
165#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)) && \
168 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
169 __shadow_walk_next(&(_walker), spte))
170
53c07b18 171static struct kmem_cache *pte_list_desc_cache;
02c00b3a 172struct kmem_cache *mmu_page_header_cache;
45221ab6 173static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 174
ce88decf 175static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
176static union kvm_mmu_page_role
177kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 178
335e192a
PB
179#define CREATE_TRACE_POINTS
180#include "mmutrace.h"
181
40ef75a7
LT
182
183static inline bool kvm_available_flush_tlb_with_range(void)
184{
afaf0b2f 185 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
186}
187
188static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189 struct kvm_tlb_range *range)
190{
191 int ret = -ENOTSUPP;
192
afaf0b2f 193 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
b3646477 194 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
40ef75a7
LT
195
196 if (ret)
197 kvm_flush_remote_tlbs(kvm);
198}
199
2f2fad08 200void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
201 u64 start_gfn, u64 pages)
202{
203 struct kvm_tlb_range range;
204
205 range.start_gfn = start_gfn;
206 range.pages = pages;
207
208 kvm_flush_remote_tlbs_with_range(kvm, &range);
209}
210
5a9624af 211bool is_nx_huge_page_enabled(void)
b8e8c830
PB
212{
213 return READ_ONCE(nx_huge_pages);
214}
215
8f79b064
BG
216static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
217 unsigned int access)
218{
c236d962 219 u64 spte = make_mmio_spte(vcpu, gfn, access);
8f79b064 220
c236d962
SC
221 trace_mark_mmio_spte(sptep, gfn, spte);
222 mmu_spte_set(sptep, spte);
ce88decf
XG
223}
224
ce88decf
XG
225static gfn_t get_mmio_spte_gfn(u64 spte)
226{
daa07cbc 227 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac 228
8a967d65 229 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
28a1f3ac
JS
230 & shadow_nonpresent_or_rsvd_mask;
231
232 return gpa >> PAGE_SHIFT;
ce88decf
XG
233}
234
235static unsigned get_mmio_spte_access(u64 spte)
236{
4af77151 237 return spte & shadow_mmio_access_mask;
ce88decf
XG
238}
239
54bf36aa 240static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 241{
cae7ed3c 242 u64 kvm_gen, spte_gen, gen;
089504c0 243
cae7ed3c
SC
244 gen = kvm_vcpu_memslots(vcpu)->generation;
245 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
246 return false;
089504c0 247
cae7ed3c 248 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
249 spte_gen = get_mmio_spte_generation(spte);
250
251 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
252 return likely(kvm_gen == spte_gen);
f8f55942
XG
253}
254
cd313569
MG
255static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
256 struct x86_exception *exception)
257{
ec7771ab 258 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 259 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
260 exception->error_code |= PFERR_RSVD_MASK;
261 return UNMAPPED_GVA;
262 }
263
cd313569
MG
264 return gpa;
265}
266
6aa8b732
AK
267static int is_cpuid_PSE36(void)
268{
269 return 1;
270}
271
73b1087e
AK
272static int is_nx(struct kvm_vcpu *vcpu)
273{
f6801dff 274 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
275}
276
da928521
AK
277static gfn_t pse36_gfn_delta(u32 gpte)
278{
279 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
280
281 return (gpte & PT32_DIR_PSE36_MASK) << shift;
282}
283
603e0651 284#ifdef CONFIG_X86_64
d555c333 285static void __set_spte(u64 *sptep, u64 spte)
e663ee64 286{
b19ee2ff 287 WRITE_ONCE(*sptep, spte);
e663ee64
AK
288}
289
603e0651 290static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 291{
b19ee2ff 292 WRITE_ONCE(*sptep, spte);
603e0651
XG
293}
294
295static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
296{
297 return xchg(sptep, spte);
298}
c2a2ac2b
XG
299
300static u64 __get_spte_lockless(u64 *sptep)
301{
6aa7de05 302 return READ_ONCE(*sptep);
c2a2ac2b 303}
a9221dd5 304#else
603e0651
XG
305union split_spte {
306 struct {
307 u32 spte_low;
308 u32 spte_high;
309 };
310 u64 spte;
311};
a9221dd5 312
c2a2ac2b
XG
313static void count_spte_clear(u64 *sptep, u64 spte)
314{
57354682 315 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
316
317 if (is_shadow_present_pte(spte))
318 return;
319
320 /* Ensure the spte is completely set before we increase the count */
321 smp_wmb();
322 sp->clear_spte_count++;
323}
324
603e0651
XG
325static void __set_spte(u64 *sptep, u64 spte)
326{
327 union split_spte *ssptep, sspte;
a9221dd5 328
603e0651
XG
329 ssptep = (union split_spte *)sptep;
330 sspte = (union split_spte)spte;
331
332 ssptep->spte_high = sspte.spte_high;
333
334 /*
335 * If we map the spte from nonpresent to present, We should store
336 * the high bits firstly, then set present bit, so cpu can not
337 * fetch this spte while we are setting the spte.
338 */
339 smp_wmb();
340
b19ee2ff 341 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
342}
343
603e0651
XG
344static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345{
346 union split_spte *ssptep, sspte;
347
348 ssptep = (union split_spte *)sptep;
349 sspte = (union split_spte)spte;
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
352
353 /*
354 * If we map the spte from present to nonpresent, we should clear
355 * present bit firstly to avoid vcpu fetch the old high bits.
356 */
357 smp_wmb();
358
359 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 360 count_spte_clear(sptep, spte);
603e0651
XG
361}
362
363static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364{
365 union split_spte *ssptep, sspte, orig;
366
367 ssptep = (union split_spte *)sptep;
368 sspte = (union split_spte)spte;
369
370 /* xchg acts as a barrier before the setting of the high bits */
371 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
372 orig.spte_high = ssptep->spte_high;
373 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 374 count_spte_clear(sptep, spte);
603e0651
XG
375
376 return orig.spte;
377}
c2a2ac2b
XG
378
379/*
380 * The idea using the light way get the spte on x86_32 guest is from
39656e83 381 * gup_get_pte (mm/gup.c).
accaefe0
XG
382 *
383 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
384 * coalesces them and we are running out of the MMU lock. Therefore
385 * we need to protect against in-progress updates of the spte.
386 *
387 * Reading the spte while an update is in progress may get the old value
388 * for the high part of the spte. The race is fine for a present->non-present
389 * change (because the high part of the spte is ignored for non-present spte),
390 * but for a present->present change we must reread the spte.
391 *
392 * All such changes are done in two steps (present->non-present and
393 * non-present->present), hence it is enough to count the number of
394 * present->non-present updates: if it changed while reading the spte,
395 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
396 */
397static u64 __get_spte_lockless(u64 *sptep)
398{
57354682 399 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
400 union split_spte spte, *orig = (union split_spte *)sptep;
401 int count;
402
403retry:
404 count = sp->clear_spte_count;
405 smp_rmb();
406
407 spte.spte_low = orig->spte_low;
408 smp_rmb();
409
410 spte.spte_high = orig->spte_high;
411 smp_rmb();
412
413 if (unlikely(spte.spte_low != orig->spte_low ||
414 count != sp->clear_spte_count))
415 goto retry;
416
417 return spte.spte;
418}
603e0651
XG
419#endif
420
8672b721
XG
421static bool spte_has_volatile_bits(u64 spte)
422{
f160c7b7
JS
423 if (!is_shadow_present_pte(spte))
424 return false;
425
c7ba5b48 426 /*
6a6256f9 427 * Always atomically update spte if it can be updated
c7ba5b48
XG
428 * out of mmu-lock, it can ensure dirty bit is not lost,
429 * also, it can help us to get a stable is_writable_pte()
430 * to ensure tlb flush is not missed.
431 */
f160c7b7
JS
432 if (spte_can_locklessly_be_made_writable(spte) ||
433 is_access_track_spte(spte))
c7ba5b48
XG
434 return true;
435
ac8d57e5 436 if (spte_ad_enabled(spte)) {
f160c7b7
JS
437 if ((spte & shadow_accessed_mask) == 0 ||
438 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
439 return true;
440 }
8672b721 441
f160c7b7 442 return false;
8672b721
XG
443}
444
1df9f2dc
XG
445/* Rules for using mmu_spte_set:
446 * Set the sptep from nonpresent to present.
447 * Note: the sptep being assigned *must* be either not present
448 * or in a state where the hardware will not attempt to update
449 * the spte.
450 */
451static void mmu_spte_set(u64 *sptep, u64 new_spte)
452{
453 WARN_ON(is_shadow_present_pte(*sptep));
454 __set_spte(sptep, new_spte);
455}
456
f39a058d
JS
457/*
458 * Update the SPTE (excluding the PFN), but do not track changes in its
459 * accessed/dirty status.
1df9f2dc 460 */
f39a058d 461static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 462{
c7ba5b48 463 u64 old_spte = *sptep;
4132779b 464
afd28fe1 465 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 466
6e7d0354
XG
467 if (!is_shadow_present_pte(old_spte)) {
468 mmu_spte_set(sptep, new_spte);
f39a058d 469 return old_spte;
6e7d0354 470 }
4132779b 471
c7ba5b48 472 if (!spte_has_volatile_bits(old_spte))
603e0651 473 __update_clear_spte_fast(sptep, new_spte);
4132779b 474 else
603e0651 475 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 476
83ef6c81
JS
477 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
478
f39a058d
JS
479 return old_spte;
480}
481
482/* Rules for using mmu_spte_update:
483 * Update the state bits, it means the mapped pfn is not changed.
484 *
485 * Whenever we overwrite a writable spte with a read-only one we
486 * should flush remote TLBs. Otherwise rmap_write_protect
487 * will find a read-only spte, even though the writable spte
488 * might be cached on a CPU's TLB, the return value indicates this
489 * case.
490 *
491 * Returns true if the TLB needs to be flushed
492 */
493static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494{
495 bool flush = false;
496 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
497
498 if (!is_shadow_present_pte(old_spte))
499 return false;
500
c7ba5b48
XG
501 /*
502 * For the spte updated out of mmu-lock is safe, since
6a6256f9 503 * we always atomically update it, see the comments in
c7ba5b48
XG
504 * spte_has_volatile_bits().
505 */
ea4114bc 506 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 507 !is_writable_pte(new_spte))
83ef6c81 508 flush = true;
4132779b 509
7e71a59b 510 /*
83ef6c81 511 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
512 * to guarantee consistency between TLB and page tables.
513 */
7e71a59b 514
83ef6c81
JS
515 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
516 flush = true;
4132779b 517 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
518 }
519
520 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
521 flush = true;
4132779b 522 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 523 }
6e7d0354 524
83ef6c81 525 return flush;
b79b93f9
AK
526}
527
1df9f2dc
XG
528/*
529 * Rules for using mmu_spte_clear_track_bits:
530 * It sets the sptep from present to nonpresent, and track the
531 * state bits, it is used to clear the last level sptep.
83ef6c81 532 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
533 */
534static int mmu_spte_clear_track_bits(u64 *sptep)
535{
ba049e93 536 kvm_pfn_t pfn;
1df9f2dc
XG
537 u64 old_spte = *sptep;
538
539 if (!spte_has_volatile_bits(old_spte))
603e0651 540 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 541 else
603e0651 542 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 543
afd28fe1 544 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
545 return 0;
546
547 pfn = spte_to_pfn(old_spte);
86fde74c
XG
548
549 /*
550 * KVM does not hold the refcount of the page used by
551 * kvm mmu, before reclaiming the page, we should
552 * unmap it from mmu first.
553 */
bf4bea8e 554 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 555
83ef6c81 556 if (is_accessed_spte(old_spte))
1df9f2dc 557 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
558
559 if (is_dirty_spte(old_spte))
1df9f2dc 560 kvm_set_pfn_dirty(pfn);
83ef6c81 561
1df9f2dc
XG
562 return 1;
563}
564
565/*
566 * Rules for using mmu_spte_clear_no_track:
567 * Directly clear spte without caring the state bits of sptep,
568 * it is used to set the upper level spte.
569 */
570static void mmu_spte_clear_no_track(u64 *sptep)
571{
603e0651 572 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
573}
574
c2a2ac2b
XG
575static u64 mmu_spte_get_lockless(u64 *sptep)
576{
577 return __get_spte_lockless(sptep);
578}
579
d3e328f2
JS
580/* Restore an acc-track PTE back to a regular PTE */
581static u64 restore_acc_track_spte(u64 spte)
582{
583 u64 new_spte = spte;
8a967d65
PB
584 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
585 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
d3e328f2 586
ac8d57e5 587 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
588 WARN_ON_ONCE(!is_access_track_spte(spte));
589
590 new_spte &= ~shadow_acc_track_mask;
8a967d65
PB
591 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
592 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
d3e328f2
JS
593 new_spte |= saved_bits;
594
595 return new_spte;
596}
597
f160c7b7
JS
598/* Returns the Accessed status of the PTE and resets it at the same time. */
599static bool mmu_spte_age(u64 *sptep)
600{
601 u64 spte = mmu_spte_get_lockless(sptep);
602
603 if (!is_accessed_spte(spte))
604 return false;
605
ac8d57e5 606 if (spte_ad_enabled(spte)) {
f160c7b7
JS
607 clear_bit((ffs(shadow_accessed_mask) - 1),
608 (unsigned long *)sptep);
609 } else {
610 /*
611 * Capture the dirty status of the page, so that it doesn't get
612 * lost when the SPTE is marked for access tracking.
613 */
614 if (is_writable_pte(spte))
615 kvm_set_pfn_dirty(spte_to_pfn(spte));
616
617 spte = mark_spte_for_access_track(spte);
618 mmu_spte_update_no_track(sptep, spte);
619 }
620
621 return true;
622}
623
c2a2ac2b
XG
624static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
625{
c142786c
AK
626 /*
627 * Prevent page table teardown by making any free-er wait during
628 * kvm_flush_remote_tlbs() IPI to all active vcpus.
629 */
630 local_irq_disable();
36ca7e0a 631
c142786c
AK
632 /*
633 * Make sure a following spte read is not reordered ahead of the write
634 * to vcpu->mode.
635 */
36ca7e0a 636 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
637}
638
639static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
640{
c142786c
AK
641 /*
642 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 643 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
644 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
645 */
36ca7e0a 646 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 647 local_irq_enable();
c2a2ac2b
XG
648}
649
378f5cd6 650static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 651{
e2dec939
AK
652 int r;
653
531281ad 654 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
655 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
656 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 657 if (r)
284aa868 658 return r;
94ce87ef
SC
659 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
660 PT64_ROOT_MAX_LEVEL);
d3d25b04 661 if (r)
171a90d7 662 return r;
378f5cd6 663 if (maybe_indirect) {
94ce87ef
SC
664 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
665 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
666 if (r)
667 return r;
668 }
94ce87ef
SC
669 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670 PT64_ROOT_MAX_LEVEL);
714b93da
AK
671}
672
673static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
674{
94ce87ef
SC
675 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
676 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
677 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
678 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
679}
680
53c07b18 681static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 682{
94ce87ef 683 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
684}
685
53c07b18 686static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 687{
53c07b18 688 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
689}
690
2032a93d
LJ
691static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
692{
693 if (!sp->role.direct)
694 return sp->gfns[index];
695
696 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
697}
698
699static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
700{
e9f2a760 701 if (!sp->role.direct) {
2032a93d 702 sp->gfns[index] = gfn;
e9f2a760
PB
703 return;
704 }
705
706 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
707 pr_err_ratelimited("gfn mismatch under direct page %llx "
708 "(expected %llx, got %llx)\n",
709 sp->gfn,
710 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
711}
712
05da4558 713/*
d4dbf470
TY
714 * Return the pointer to the large page information for a given gfn,
715 * handling slots that are not large page aligned.
05da4558 716 */
d4dbf470 717static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
8ca6f063 718 const struct kvm_memory_slot *slot, int level)
05da4558
MT
719{
720 unsigned long idx;
721
fb03cb6f 722 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 723 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
724}
725
547ffaed
XG
726static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
727 gfn_t gfn, int count)
728{
729 struct kvm_lpage_info *linfo;
730 int i;
731
3bae0459 732 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
733 linfo = lpage_info_slot(gfn, slot, i);
734 linfo->disallow_lpage += count;
735 WARN_ON(linfo->disallow_lpage < 0);
736 }
737}
738
739void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
740{
741 update_gfn_disallow_lpage_count(slot, gfn, 1);
742}
743
744void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
745{
746 update_gfn_disallow_lpage_count(slot, gfn, -1);
747}
748
3ed1a478 749static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 750{
699023e2 751 struct kvm_memslots *slots;
d25797b2 752 struct kvm_memory_slot *slot;
3ed1a478 753 gfn_t gfn;
05da4558 754
56ca57f9 755 kvm->arch.indirect_shadow_pages++;
3ed1a478 756 gfn = sp->gfn;
699023e2
PB
757 slots = kvm_memslots_for_spte_role(kvm, sp->role);
758 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
759
760 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 761 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
762 return kvm_slot_page_track_add_page(kvm, slot, gfn,
763 KVM_PAGE_TRACK_WRITE);
764
547ffaed 765 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
766}
767
29cf0f50 768void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
769{
770 if (sp->lpage_disallowed)
771 return;
772
773 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
774 list_add_tail(&sp->lpage_disallowed_link,
775 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
776 sp->lpage_disallowed = true;
777}
778
3ed1a478 779static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 780{
699023e2 781 struct kvm_memslots *slots;
d25797b2 782 struct kvm_memory_slot *slot;
3ed1a478 783 gfn_t gfn;
05da4558 784
56ca57f9 785 kvm->arch.indirect_shadow_pages--;
3ed1a478 786 gfn = sp->gfn;
699023e2
PB
787 slots = kvm_memslots_for_spte_role(kvm, sp->role);
788 slot = __gfn_to_memslot(slots, gfn);
3bae0459 789 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
790 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
791 KVM_PAGE_TRACK_WRITE);
792
547ffaed 793 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
794}
795
29cf0f50 796void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
797{
798 --kvm->stat.nx_lpage_splits;
799 sp->lpage_disallowed = false;
1aa9b957 800 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
801}
802
5d163b1c
XG
803static struct kvm_memory_slot *
804gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
805 bool no_dirty_log)
05da4558
MT
806{
807 struct kvm_memory_slot *slot;
5d163b1c 808
54bf36aa 809 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
810 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
811 return NULL;
044c59c4 812 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
91b0d268 813 return NULL;
5d163b1c
XG
814
815 return slot;
816}
817
290fc38d 818/*
018aabb5 819 * About rmap_head encoding:
cd4a4e53 820 *
018aabb5
TY
821 * If the bit zero of rmap_head->val is clear, then it points to the only spte
822 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 823 * pte_list_desc containing more mappings.
018aabb5
TY
824 */
825
826/*
827 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 828 */
53c07b18 829static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 830 struct kvm_rmap_head *rmap_head)
cd4a4e53 831{
53c07b18 832 struct pte_list_desc *desc;
53a27b39 833 int i, count = 0;
cd4a4e53 834
018aabb5 835 if (!rmap_head->val) {
805a0f83 836 rmap_printk("%p %llx 0->1\n", spte, *spte);
018aabb5
TY
837 rmap_head->val = (unsigned long)spte;
838 } else if (!(rmap_head->val & 1)) {
805a0f83 839 rmap_printk("%p %llx 1->many\n", spte, *spte);
53c07b18 840 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 841 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 842 desc->sptes[1] = spte;
018aabb5 843 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 844 ++count;
cd4a4e53 845 } else {
805a0f83 846 rmap_printk("%p %llx many->many\n", spte, *spte);
018aabb5 847 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
c6c4f961 848 while (desc->sptes[PTE_LIST_EXT-1]) {
53c07b18 849 count += PTE_LIST_EXT;
c6c4f961
LR
850
851 if (!desc->more) {
852 desc->more = mmu_alloc_pte_list_desc(vcpu);
853 desc = desc->more;
854 break;
855 }
cd4a4e53
AK
856 desc = desc->more;
857 }
d555c333 858 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 859 ++count;
d555c333 860 desc->sptes[i] = spte;
cd4a4e53 861 }
53a27b39 862 return count;
cd4a4e53
AK
863}
864
53c07b18 865static void
018aabb5
TY
866pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
867 struct pte_list_desc *desc, int i,
868 struct pte_list_desc *prev_desc)
cd4a4e53
AK
869{
870 int j;
871
53c07b18 872 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 873 ;
d555c333
AK
874 desc->sptes[i] = desc->sptes[j];
875 desc->sptes[j] = NULL;
cd4a4e53
AK
876 if (j != 0)
877 return;
878 if (!prev_desc && !desc->more)
fe3c2b4c 879 rmap_head->val = 0;
cd4a4e53
AK
880 else
881 if (prev_desc)
882 prev_desc->more = desc->more;
883 else
018aabb5 884 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 885 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
886}
887
8daf3462 888static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 889{
53c07b18
XG
890 struct pte_list_desc *desc;
891 struct pte_list_desc *prev_desc;
cd4a4e53
AK
892 int i;
893
018aabb5 894 if (!rmap_head->val) {
8daf3462 895 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 896 BUG();
018aabb5 897 } else if (!(rmap_head->val & 1)) {
805a0f83 898 rmap_printk("%p 1->0\n", spte);
018aabb5 899 if ((u64 *)rmap_head->val != spte) {
8daf3462 900 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
901 BUG();
902 }
018aabb5 903 rmap_head->val = 0;
cd4a4e53 904 } else {
805a0f83 905 rmap_printk("%p many->many\n", spte);
018aabb5 906 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
907 prev_desc = NULL;
908 while (desc) {
018aabb5 909 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 910 if (desc->sptes[i] == spte) {
018aabb5
TY
911 pte_list_desc_remove_entry(rmap_head,
912 desc, i, prev_desc);
cd4a4e53
AK
913 return;
914 }
018aabb5 915 }
cd4a4e53
AK
916 prev_desc = desc;
917 desc = desc->more;
918 }
8daf3462 919 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
920 BUG();
921 }
922}
923
e7912386
WY
924static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
925{
926 mmu_spte_clear_track_bits(sptep);
927 __pte_list_remove(sptep, rmap_head);
928}
929
018aabb5
TY
930static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
931 struct kvm_memory_slot *slot)
53c07b18 932{
77d11309 933 unsigned long idx;
53c07b18 934
77d11309 935 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 936 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
937}
938
018aabb5
TY
939static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
940 struct kvm_mmu_page *sp)
9b9b1492 941{
699023e2 942 struct kvm_memslots *slots;
9b9b1492
TY
943 struct kvm_memory_slot *slot;
944
699023e2
PB
945 slots = kvm_memslots_for_spte_role(kvm, sp->role);
946 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 947 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
948}
949
f759e2b4
XG
950static bool rmap_can_add(struct kvm_vcpu *vcpu)
951{
356ec69a 952 struct kvm_mmu_memory_cache *mc;
f759e2b4 953
356ec69a 954 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 955 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
956}
957
53c07b18
XG
958static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
959{
960 struct kvm_mmu_page *sp;
018aabb5 961 struct kvm_rmap_head *rmap_head;
53c07b18 962
57354682 963 sp = sptep_to_sp(spte);
53c07b18 964 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
965 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
966 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
967}
968
53c07b18
XG
969static void rmap_remove(struct kvm *kvm, u64 *spte)
970{
971 struct kvm_mmu_page *sp;
972 gfn_t gfn;
018aabb5 973 struct kvm_rmap_head *rmap_head;
53c07b18 974
57354682 975 sp = sptep_to_sp(spte);
53c07b18 976 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 977 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 978 __pte_list_remove(spte, rmap_head);
53c07b18
XG
979}
980
1e3f42f0
TY
981/*
982 * Used by the following functions to iterate through the sptes linked by a
983 * rmap. All fields are private and not assumed to be used outside.
984 */
985struct rmap_iterator {
986 /* private fields */
987 struct pte_list_desc *desc; /* holds the sptep if not NULL */
988 int pos; /* index of the sptep */
989};
990
991/*
992 * Iteration must be started by this function. This should also be used after
993 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 994 * information in the iterator may not be valid.
1e3f42f0
TY
995 *
996 * Returns sptep if found, NULL otherwise.
997 */
018aabb5
TY
998static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
999 struct rmap_iterator *iter)
1e3f42f0 1000{
77fbbbd2
TY
1001 u64 *sptep;
1002
018aabb5 1003 if (!rmap_head->val)
1e3f42f0
TY
1004 return NULL;
1005
018aabb5 1006 if (!(rmap_head->val & 1)) {
1e3f42f0 1007 iter->desc = NULL;
77fbbbd2
TY
1008 sptep = (u64 *)rmap_head->val;
1009 goto out;
1e3f42f0
TY
1010 }
1011
018aabb5 1012 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1013 iter->pos = 0;
77fbbbd2
TY
1014 sptep = iter->desc->sptes[iter->pos];
1015out:
1016 BUG_ON(!is_shadow_present_pte(*sptep));
1017 return sptep;
1e3f42f0
TY
1018}
1019
1020/*
1021 * Must be used with a valid iterator: e.g. after rmap_get_first().
1022 *
1023 * Returns sptep if found, NULL otherwise.
1024 */
1025static u64 *rmap_get_next(struct rmap_iterator *iter)
1026{
77fbbbd2
TY
1027 u64 *sptep;
1028
1e3f42f0
TY
1029 if (iter->desc) {
1030 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1031 ++iter->pos;
1032 sptep = iter->desc->sptes[iter->pos];
1033 if (sptep)
77fbbbd2 1034 goto out;
1e3f42f0
TY
1035 }
1036
1037 iter->desc = iter->desc->more;
1038
1039 if (iter->desc) {
1040 iter->pos = 0;
1041 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1042 sptep = iter->desc->sptes[iter->pos];
1043 goto out;
1e3f42f0
TY
1044 }
1045 }
1046
1047 return NULL;
77fbbbd2
TY
1048out:
1049 BUG_ON(!is_shadow_present_pte(*sptep));
1050 return sptep;
1e3f42f0
TY
1051}
1052
018aabb5
TY
1053#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1054 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1055 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1056
c3707958 1057static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1058{
1df9f2dc 1059 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1060 rmap_remove(kvm, sptep);
be38d276
AK
1061}
1062
8e22f955
XG
1063
1064static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1065{
1066 if (is_large_pte(*sptep)) {
57354682 1067 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1068 drop_spte(kvm, sptep);
1069 --kvm->stat.lpages;
1070 return true;
1071 }
1072
1073 return false;
1074}
1075
1076static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1077{
c3134ce2 1078 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1079 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1080
1081 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1082 KVM_PAGES_PER_HPAGE(sp->role.level));
1083 }
8e22f955
XG
1084}
1085
1086/*
49fde340 1087 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1088 * spte write-protection is caused by protecting shadow page table.
49fde340 1089 *
b4619660 1090 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1091 * protection:
1092 * - for dirty logging, the spte can be set to writable at anytime if
1093 * its dirty bitmap is properly set.
1094 * - for spte protection, the spte can be writable only after unsync-ing
1095 * shadow page.
8e22f955 1096 *
c126d94f 1097 * Return true if tlb need be flushed.
8e22f955 1098 */
c4f138b4 1099static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1100{
1101 u64 spte = *sptep;
1102
49fde340 1103 if (!is_writable_pte(spte) &&
ea4114bc 1104 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1105 return false;
1106
805a0f83 1107 rmap_printk("spte %p %llx\n", sptep, *sptep);
d13bc5b5 1108
49fde340 1109 if (pt_protect)
5fc3424f 1110 spte &= ~shadow_mmu_writable_mask;
d13bc5b5 1111 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1112
c126d94f 1113 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1114}
1115
018aabb5
TY
1116static bool __rmap_write_protect(struct kvm *kvm,
1117 struct kvm_rmap_head *rmap_head,
245c3912 1118 bool pt_protect)
98348e95 1119{
1e3f42f0
TY
1120 u64 *sptep;
1121 struct rmap_iterator iter;
d13bc5b5 1122 bool flush = false;
374cbac0 1123
018aabb5 1124 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1125 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1126
d13bc5b5 1127 return flush;
a0ed4607
TY
1128}
1129
c4f138b4 1130static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1131{
1132 u64 spte = *sptep;
1133
805a0f83 1134 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1135
1f4e5fc8 1136 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1137 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1138 return mmu_spte_update(sptep, spte);
1139}
1140
1f4e5fc8 1141static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1142{
1143 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1144 (unsigned long *)sptep);
1f4e5fc8 1145 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1146 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1147
1148 return was_writable;
1149}
1150
1151/*
1152 * Gets the GFN ready for another round of dirty logging by clearing the
1153 * - D bit on ad-enabled SPTEs, and
1154 * - W bit on ad-disabled SPTEs.
1155 * Returns true iff any D or W bits were cleared.
1156 */
0a234f5d
SC
1157static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1158 struct kvm_memory_slot *slot)
f4b4b180
KH
1159{
1160 u64 *sptep;
1161 struct rmap_iterator iter;
1162 bool flush = false;
1163
018aabb5 1164 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1165 if (spte_ad_need_write_protect(*sptep))
1166 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1167 else
1f4e5fc8 1168 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1169
1170 return flush;
1171}
1172
5dc99b23 1173/**
3b0f1d01 1174 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1175 * @kvm: kvm instance
1176 * @slot: slot to protect
1177 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1178 * @mask: indicates which pages we should protect
1179 *
1180 * Used when we do not need to care about huge page mappings: e.g. during dirty
1181 * logging we do not have any such mappings.
1182 */
3b0f1d01 1183static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1184 struct kvm_memory_slot *slot,
1185 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1186{
018aabb5 1187 struct kvm_rmap_head *rmap_head;
a0ed4607 1188
897218ff 1189 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1190 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1191 slot->base_gfn + gfn_offset, mask, true);
5dc99b23 1192 while (mask) {
018aabb5 1193 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1194 PG_LEVEL_4K, slot);
018aabb5 1195 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1196
5dc99b23
TY
1197 /* clear the first set bit */
1198 mask &= mask - 1;
1199 }
374cbac0
AK
1200}
1201
f4b4b180 1202/**
ac8d57e5
PF
1203 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1204 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1205 * @kvm: kvm instance
1206 * @slot: slot to clear D-bit
1207 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1208 * @mask: indicates which pages we should clear D-bit
1209 *
1210 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1211 */
a018eba5
SC
1212static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1213 struct kvm_memory_slot *slot,
1214 gfn_t gfn_offset, unsigned long mask)
f4b4b180 1215{
018aabb5 1216 struct kvm_rmap_head *rmap_head;
f4b4b180 1217
897218ff 1218 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1219 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1220 slot->base_gfn + gfn_offset, mask, false);
f4b4b180 1221 while (mask) {
018aabb5 1222 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1223 PG_LEVEL_4K, slot);
0a234f5d 1224 __rmap_clear_dirty(kvm, rmap_head, slot);
f4b4b180
KH
1225
1226 /* clear the first set bit */
1227 mask &= mask - 1;
1228 }
1229}
f4b4b180 1230
3b0f1d01
KH
1231/**
1232 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1233 * PT level pages.
1234 *
1235 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1236 * enable dirty logging for them.
1237 *
1238 * Used when we do not need to care about huge page mappings: e.g. during dirty
1239 * logging we do not have any such mappings.
1240 */
1241void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1242 struct kvm_memory_slot *slot,
1243 gfn_t gfn_offset, unsigned long mask)
1244{
a018eba5
SC
1245 if (kvm_x86_ops.cpu_dirty_log_size)
1246 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
88178fd4
KH
1247 else
1248 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1249}
1250
fb04a1ed
PX
1251int kvm_cpu_dirty_log_size(void)
1252{
6dd03800 1253 return kvm_x86_ops.cpu_dirty_log_size;
fb04a1ed
PX
1254}
1255
aeecee2e
XG
1256bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1257 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1258{
018aabb5 1259 struct kvm_rmap_head *rmap_head;
5dc99b23 1260 int i;
2f84569f 1261 bool write_protected = false;
95d4c16c 1262
3bae0459 1263 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1264 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1265 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1266 }
1267
897218ff 1268 if (is_tdp_mmu_enabled(kvm))
46044f72
BG
1269 write_protected |=
1270 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1271
5dc99b23 1272 return write_protected;
95d4c16c
TY
1273}
1274
aeecee2e
XG
1275static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1276{
1277 struct kvm_memory_slot *slot;
1278
1279 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1280 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1281}
1282
0a234f5d
SC
1283static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1284 struct kvm_memory_slot *slot)
e930bffe 1285{
1e3f42f0
TY
1286 u64 *sptep;
1287 struct rmap_iterator iter;
6a49f85c 1288 bool flush = false;
e930bffe 1289
018aabb5 1290 while ((sptep = rmap_get_first(rmap_head, &iter))) {
805a0f83 1291 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1e3f42f0 1292
e7912386 1293 pte_list_remove(rmap_head, sptep);
6a49f85c 1294 flush = true;
e930bffe 1295 }
1e3f42f0 1296
6a49f85c
XG
1297 return flush;
1298}
1299
3039bcc7
SC
1300static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1301 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1302 pte_t unused)
6a49f85c 1303{
0a234f5d 1304 return kvm_zap_rmapp(kvm, rmap_head, slot);
e930bffe
AA
1305}
1306
3039bcc7
SC
1307static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1308 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1309 pte_t pte)
3da0dd43 1310{
1e3f42f0
TY
1311 u64 *sptep;
1312 struct rmap_iterator iter;
3da0dd43 1313 int need_flush = 0;
1e3f42f0 1314 u64 new_spte;
ba049e93 1315 kvm_pfn_t new_pfn;
3da0dd43 1316
3039bcc7
SC
1317 WARN_ON(pte_huge(pte));
1318 new_pfn = pte_pfn(pte);
1e3f42f0 1319
0d536790 1320restart:
018aabb5 1321 for_each_rmap_spte(rmap_head, &iter, sptep) {
805a0f83 1322 rmap_printk("spte %p %llx gfn %llx (%d)\n",
f160c7b7 1323 sptep, *sptep, gfn, level);
1e3f42f0 1324
3da0dd43 1325 need_flush = 1;
1e3f42f0 1326
3039bcc7 1327 if (pte_write(pte)) {
e7912386 1328 pte_list_remove(rmap_head, sptep);
0d536790 1329 goto restart;
3da0dd43 1330 } else {
cb3eedab
PB
1331 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1332 *sptep, new_pfn);
1e3f42f0
TY
1333
1334 mmu_spte_clear_track_bits(sptep);
1335 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1336 }
1337 }
1e3f42f0 1338
3cc5ea94
LT
1339 if (need_flush && kvm_available_flush_tlb_with_range()) {
1340 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1341 return 0;
1342 }
1343
0cf853c5 1344 return need_flush;
3da0dd43
IE
1345}
1346
6ce1f4e2
XG
1347struct slot_rmap_walk_iterator {
1348 /* input fields. */
1349 struct kvm_memory_slot *slot;
1350 gfn_t start_gfn;
1351 gfn_t end_gfn;
1352 int start_level;
1353 int end_level;
1354
1355 /* output fields. */
1356 gfn_t gfn;
018aabb5 1357 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1358 int level;
1359
1360 /* private field. */
018aabb5 1361 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1362};
1363
1364static void
1365rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1366{
1367 iterator->level = level;
1368 iterator->gfn = iterator->start_gfn;
1369 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1370 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1371 iterator->slot);
1372}
1373
1374static void
1375slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1376 struct kvm_memory_slot *slot, int start_level,
1377 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1378{
1379 iterator->slot = slot;
1380 iterator->start_level = start_level;
1381 iterator->end_level = end_level;
1382 iterator->start_gfn = start_gfn;
1383 iterator->end_gfn = end_gfn;
1384
1385 rmap_walk_init_level(iterator, iterator->start_level);
1386}
1387
1388static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1389{
1390 return !!iterator->rmap;
1391}
1392
1393static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1394{
1395 if (++iterator->rmap <= iterator->end_rmap) {
1396 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1397 return;
1398 }
1399
1400 if (++iterator->level > iterator->end_level) {
1401 iterator->rmap = NULL;
1402 return;
1403 }
1404
1405 rmap_walk_init_level(iterator, iterator->level);
1406}
1407
1408#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1409 _start_gfn, _end_gfn, _iter_) \
1410 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1411 _end_level_, _start_gfn, _end_gfn); \
1412 slot_rmap_walk_okay(_iter_); \
1413 slot_rmap_walk_next(_iter_))
1414
3039bcc7
SC
1415typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1416 struct kvm_memory_slot *slot, gfn_t gfn,
1417 int level, pte_t pte);
c1b91493 1418
3039bcc7
SC
1419static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1420 struct kvm_gfn_range *range,
1421 rmap_handler_t handler)
e930bffe 1422{
6ce1f4e2 1423 struct slot_rmap_walk_iterator iterator;
3039bcc7 1424 bool ret = false;
bc6678a3 1425
3039bcc7
SC
1426 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1427 range->start, range->end - 1, &iterator)
1428 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1429 iterator.level, range->pte);
e930bffe 1430
f395302e 1431 return ret;
e930bffe
AA
1432}
1433
3039bcc7 1434bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
84504ef3 1435{
3039bcc7 1436 bool flush;
e930bffe 1437
3039bcc7 1438 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
063afacd 1439
897218ff 1440 if (is_tdp_mmu_enabled(kvm))
3039bcc7 1441 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
063afacd 1442
3039bcc7 1443 return flush;
b3ae2096
TY
1444}
1445
3039bcc7 1446bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
3da0dd43 1447{
3039bcc7 1448 bool flush;
1d8dd6b3 1449
3039bcc7 1450 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1d8dd6b3 1451
897218ff 1452 if (is_tdp_mmu_enabled(kvm))
3039bcc7 1453 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1d8dd6b3 1454
3039bcc7 1455 return flush;
e930bffe
AA
1456}
1457
3039bcc7
SC
1458static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1459 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1460 pte_t unused)
e930bffe 1461{
1e3f42f0 1462 u64 *sptep;
3f649ab7 1463 struct rmap_iterator iter;
e930bffe
AA
1464 int young = 0;
1465
f160c7b7
JS
1466 for_each_rmap_spte(rmap_head, &iter, sptep)
1467 young |= mmu_spte_age(sptep);
0d536790 1468
e930bffe
AA
1469 return young;
1470}
1471
3039bcc7
SC
1472static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1473 struct kvm_memory_slot *slot, gfn_t gfn,
1474 int level, pte_t unused)
8ee53820 1475{
1e3f42f0
TY
1476 u64 *sptep;
1477 struct rmap_iterator iter;
8ee53820 1478
83ef6c81
JS
1479 for_each_rmap_spte(rmap_head, &iter, sptep)
1480 if (is_accessed_spte(*sptep))
1481 return 1;
83ef6c81 1482 return 0;
8ee53820
AA
1483}
1484
53a27b39
MT
1485#define RMAP_RECYCLE_THRESHOLD 1000
1486
852e3c19 1487static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1488{
018aabb5 1489 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1490 struct kvm_mmu_page *sp;
1491
57354682 1492 sp = sptep_to_sp(spte);
53a27b39 1493
018aabb5 1494 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1495
3039bcc7 1496 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
c3134ce2
LT
1497 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1498 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1499}
1500
3039bcc7 1501bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
e930bffe 1502{
3039bcc7
SC
1503 bool young;
1504
1505 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
f8e14497 1506
897218ff 1507 if (is_tdp_mmu_enabled(kvm))
3039bcc7 1508 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
f8e14497
BG
1509
1510 return young;
e930bffe
AA
1511}
1512
3039bcc7 1513bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
8ee53820 1514{
3039bcc7
SC
1515 bool young;
1516
1517 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
f8e14497 1518
897218ff 1519 if (is_tdp_mmu_enabled(kvm))
3039bcc7 1520 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
f8e14497
BG
1521
1522 return young;
8ee53820
AA
1523}
1524
d6c69ee9 1525#ifdef MMU_DEBUG
47ad8e68 1526static int is_empty_shadow_page(u64 *spt)
6aa8b732 1527{
139bdb2d
AK
1528 u64 *pos;
1529 u64 *end;
1530
47ad8e68 1531 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1532 if (is_shadow_present_pte(*pos)) {
b8688d51 1533 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1534 pos, *pos);
6aa8b732 1535 return 0;
139bdb2d 1536 }
6aa8b732
AK
1537 return 1;
1538}
d6c69ee9 1539#endif
6aa8b732 1540
45221ab6
DH
1541/*
1542 * This value is the sum of all of the kvm instances's
1543 * kvm->arch.n_used_mmu_pages values. We need a global,
1544 * aggregate version in order to make the slab shrinker
1545 * faster
1546 */
bc8a3d89 1547static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1548{
1549 kvm->arch.n_used_mmu_pages += nr;
1550 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1551}
1552
834be0d8 1553static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1554{
fa4a2c08 1555 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1556 hlist_del(&sp->hash_link);
bd4c86ea
XG
1557 list_del(&sp->link);
1558 free_page((unsigned long)sp->spt);
834be0d8
GN
1559 if (!sp->role.direct)
1560 free_page((unsigned long)sp->gfns);
e8ad9a70 1561 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1562}
1563
cea0f0e7
AK
1564static unsigned kvm_page_table_hashfn(gfn_t gfn)
1565{
114df303 1566 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1567}
1568
714b93da 1569static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1570 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1571{
cea0f0e7
AK
1572 if (!parent_pte)
1573 return;
cea0f0e7 1574
67052b35 1575 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1576}
1577
4db35314 1578static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1579 u64 *parent_pte)
1580{
8daf3462 1581 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1582}
1583
bcdd9a93
XG
1584static void drop_parent_pte(struct kvm_mmu_page *sp,
1585 u64 *parent_pte)
1586{
1587 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1588 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1589}
1590
47005792 1591static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1592{
67052b35 1593 struct kvm_mmu_page *sp;
7ddca7e4 1594
94ce87ef
SC
1595 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1596 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1597 if (!direct)
94ce87ef 1598 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1599 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1600
1601 /*
1602 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1603 * depends on valid pages being added to the head of the list. See
1604 * comments in kvm_zap_obsolete_pages().
1605 */
ca333add 1606 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1607 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1608 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1609 return sp;
ad8cfbe3
MT
1610}
1611
67052b35 1612static void mark_unsync(u64 *spte);
1047df1f 1613static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1614{
74c4e63a
TY
1615 u64 *sptep;
1616 struct rmap_iterator iter;
1617
1618 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1619 mark_unsync(sptep);
1620 }
0074ff63
MT
1621}
1622
67052b35 1623static void mark_unsync(u64 *spte)
0074ff63 1624{
67052b35 1625 struct kvm_mmu_page *sp;
1047df1f 1626 unsigned int index;
0074ff63 1627
57354682 1628 sp = sptep_to_sp(spte);
1047df1f
XG
1629 index = spte - sp->spt;
1630 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1631 return;
1047df1f 1632 if (sp->unsync_children++)
0074ff63 1633 return;
1047df1f 1634 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1635}
1636
e8bc217a 1637static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1638 struct kvm_mmu_page *sp)
e8bc217a 1639{
1f50f1b3 1640 return 0;
e8bc217a
MT
1641}
1642
60c8aec6
MT
1643#define KVM_PAGE_ARRAY_NR 16
1644
1645struct kvm_mmu_pages {
1646 struct mmu_page_and_offset {
1647 struct kvm_mmu_page *sp;
1648 unsigned int idx;
1649 } page[KVM_PAGE_ARRAY_NR];
1650 unsigned int nr;
1651};
1652
cded19f3
HE
1653static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1654 int idx)
4731d4c7 1655{
60c8aec6 1656 int i;
4731d4c7 1657
60c8aec6
MT
1658 if (sp->unsync)
1659 for (i=0; i < pvec->nr; i++)
1660 if (pvec->page[i].sp == sp)
1661 return 0;
1662
1663 pvec->page[pvec->nr].sp = sp;
1664 pvec->page[pvec->nr].idx = idx;
1665 pvec->nr++;
1666 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1667}
1668
fd951457
TY
1669static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1670{
1671 --sp->unsync_children;
1672 WARN_ON((int)sp->unsync_children < 0);
1673 __clear_bit(idx, sp->unsync_child_bitmap);
1674}
1675
60c8aec6
MT
1676static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1677 struct kvm_mmu_pages *pvec)
1678{
1679 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1680
37178b8b 1681 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1682 struct kvm_mmu_page *child;
4731d4c7
MT
1683 u64 ent = sp->spt[i];
1684
fd951457
TY
1685 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1686 clear_unsync_child_bit(sp, i);
1687 continue;
1688 }
7a8f1a74 1689
e47c4aee 1690 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1691
1692 if (child->unsync_children) {
1693 if (mmu_pages_add(pvec, child, i))
1694 return -ENOSPC;
1695
1696 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1697 if (!ret) {
1698 clear_unsync_child_bit(sp, i);
1699 continue;
1700 } else if (ret > 0) {
7a8f1a74 1701 nr_unsync_leaf += ret;
fd951457 1702 } else
7a8f1a74
XG
1703 return ret;
1704 } else if (child->unsync) {
1705 nr_unsync_leaf++;
1706 if (mmu_pages_add(pvec, child, i))
1707 return -ENOSPC;
1708 } else
fd951457 1709 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1710 }
1711
60c8aec6
MT
1712 return nr_unsync_leaf;
1713}
1714
e23d3fef
XG
1715#define INVALID_INDEX (-1)
1716
60c8aec6
MT
1717static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1718 struct kvm_mmu_pages *pvec)
1719{
0a47cd85 1720 pvec->nr = 0;
60c8aec6
MT
1721 if (!sp->unsync_children)
1722 return 0;
1723
e23d3fef 1724 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1725 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1726}
1727
4731d4c7
MT
1728static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1729{
1730 WARN_ON(!sp->unsync);
5e1b3ddb 1731 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1732 sp->unsync = 0;
1733 --kvm->stat.mmu_unsync;
1734}
1735
83cdb568
SC
1736static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1737 struct list_head *invalid_list);
7775834a
XG
1738static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1739 struct list_head *invalid_list);
4731d4c7 1740
ac101b7c
SC
1741#define for_each_valid_sp(_kvm, _sp, _list) \
1742 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1743 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1744 } else
1044b030
TY
1745
1746#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1747 for_each_valid_sp(_kvm, _sp, \
1748 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1749 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1750
47c42e6b
SC
1751static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1752{
1753 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1754}
1755
f918b443 1756/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1757static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1758 struct list_head *invalid_list)
4731d4c7 1759{
47c42e6b
SC
1760 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1761 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1762 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1763 return false;
4731d4c7
MT
1764 }
1765
1f50f1b3 1766 return true;
4731d4c7
MT
1767}
1768
a2113634
SC
1769static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1770 struct list_head *invalid_list,
1771 bool remote_flush)
1772{
cfd32acf 1773 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1774 return false;
1775
1776 if (!list_empty(invalid_list))
1777 kvm_mmu_commit_zap_page(kvm, invalid_list);
1778 else
1779 kvm_flush_remote_tlbs(kvm);
1780 return true;
1781}
1782
35a70510
PB
1783static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1784 struct list_head *invalid_list,
1785 bool remote_flush, bool local_flush)
1d9dc7e0 1786{
a2113634 1787 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1788 return;
d98ba053 1789
a2113634 1790 if (local_flush)
8c8560b8 1791 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1792}
1793
e37fa785
XG
1794#ifdef CONFIG_KVM_MMU_AUDIT
1795#include "mmu_audit.c"
1796#else
1797static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1798static void mmu_audit_disable(void) { }
1799#endif
1800
002c5f73
SC
1801static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1802{
fac026da
SC
1803 return sp->role.invalid ||
1804 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1805}
1806
1f50f1b3 1807static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1808 struct list_head *invalid_list)
1d9dc7e0 1809{
9a43c5d9
PB
1810 kvm_unlink_unsync_page(vcpu->kvm, sp);
1811 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1812}
1813
9f1a122f 1814/* @gfn should be write-protected at the call site */
2a74003a
PB
1815static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1816 struct list_head *invalid_list)
9f1a122f 1817{
9f1a122f 1818 struct kvm_mmu_page *s;
2a74003a 1819 bool ret = false;
9f1a122f 1820
b67bfe0d 1821 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1822 if (!s->unsync)
9f1a122f
XG
1823 continue;
1824
3bae0459 1825 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1826 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1827 }
1828
2a74003a 1829 return ret;
9f1a122f
XG
1830}
1831
60c8aec6 1832struct mmu_page_path {
2a7266a8
YZ
1833 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1834 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1835};
1836
60c8aec6 1837#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1838 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1839 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1840 i = mmu_pages_next(&pvec, &parents, i))
1841
cded19f3
HE
1842static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1843 struct mmu_page_path *parents,
1844 int i)
60c8aec6
MT
1845{
1846 int n;
1847
1848 for (n = i+1; n < pvec->nr; n++) {
1849 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1850 unsigned idx = pvec->page[n].idx;
1851 int level = sp->role.level;
60c8aec6 1852
0a47cd85 1853 parents->idx[level-1] = idx;
3bae0459 1854 if (level == PG_LEVEL_4K)
0a47cd85 1855 break;
60c8aec6 1856
0a47cd85 1857 parents->parent[level-2] = sp;
60c8aec6
MT
1858 }
1859
1860 return n;
1861}
1862
0a47cd85
PB
1863static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1864 struct mmu_page_path *parents)
1865{
1866 struct kvm_mmu_page *sp;
1867 int level;
1868
1869 if (pvec->nr == 0)
1870 return 0;
1871
e23d3fef
XG
1872 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1873
0a47cd85
PB
1874 sp = pvec->page[0].sp;
1875 level = sp->role.level;
3bae0459 1876 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1877
1878 parents->parent[level-2] = sp;
1879
1880 /* Also set up a sentinel. Further entries in pvec are all
1881 * children of sp, so this element is never overwritten.
1882 */
1883 parents->parent[level-1] = NULL;
1884 return mmu_pages_next(pvec, parents, 0);
1885}
1886
cded19f3 1887static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1888{
60c8aec6
MT
1889 struct kvm_mmu_page *sp;
1890 unsigned int level = 0;
1891
1892 do {
1893 unsigned int idx = parents->idx[level];
60c8aec6
MT
1894 sp = parents->parent[level];
1895 if (!sp)
1896 return;
1897
e23d3fef 1898 WARN_ON(idx == INVALID_INDEX);
fd951457 1899 clear_unsync_child_bit(sp, idx);
60c8aec6 1900 level++;
0a47cd85 1901 } while (!sp->unsync_children);
60c8aec6 1902}
4731d4c7 1903
60c8aec6
MT
1904static void mmu_sync_children(struct kvm_vcpu *vcpu,
1905 struct kvm_mmu_page *parent)
1906{
1907 int i;
1908 struct kvm_mmu_page *sp;
1909 struct mmu_page_path parents;
1910 struct kvm_mmu_pages pages;
d98ba053 1911 LIST_HEAD(invalid_list);
50c9e6f3 1912 bool flush = false;
60c8aec6 1913
60c8aec6 1914 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1915 bool protected = false;
b1a36821
MT
1916
1917 for_each_sp(pages, sp, parents, i)
54bf36aa 1918 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 1919
50c9e6f3 1920 if (protected) {
b1a36821 1921 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
1922 flush = false;
1923 }
b1a36821 1924
60c8aec6 1925 for_each_sp(pages, sp, parents, i) {
1f50f1b3 1926 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1927 mmu_pages_clear_parents(&parents);
1928 }
531810ca 1929 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
50c9e6f3 1930 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
531810ca 1931 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
50c9e6f3
PB
1932 flush = false;
1933 }
60c8aec6 1934 }
50c9e6f3
PB
1935
1936 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
1937}
1938
a30f47cb
XG
1939static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1940{
e5691a81 1941 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
1942}
1943
1944static void clear_sp_write_flooding_count(u64 *spte)
1945{
57354682 1946 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
1947}
1948
cea0f0e7
AK
1949static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1950 gfn_t gfn,
1951 gva_t gaddr,
1952 unsigned level,
f6e2c02b 1953 int direct,
0a2b64c5 1954 unsigned int access)
cea0f0e7 1955{
fb58a9c3 1956 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 1957 union kvm_mmu_page_role role;
ac101b7c 1958 struct hlist_head *sp_list;
cea0f0e7 1959 unsigned quadrant;
9f1a122f 1960 struct kvm_mmu_page *sp;
9f1a122f 1961 bool need_sync = false;
2a74003a 1962 bool flush = false;
f3414bc7 1963 int collisions = 0;
2a74003a 1964 LIST_HEAD(invalid_list);
cea0f0e7 1965
36d9594d 1966 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 1967 role.level = level;
f6e2c02b 1968 role.direct = direct;
84b0c8c6 1969 if (role.direct)
47c42e6b 1970 role.gpte_is_8_bytes = true;
41074d07 1971 role.access = access;
fb58a9c3 1972 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1973 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1974 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1975 role.quadrant = quadrant;
1976 }
ac101b7c
SC
1977
1978 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
1979 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
1980 if (sp->gfn != gfn) {
1981 collisions++;
1982 continue;
1983 }
1984
7ae680eb
XG
1985 if (!need_sync && sp->unsync)
1986 need_sync = true;
4731d4c7 1987
7ae680eb
XG
1988 if (sp->role.word != role.word)
1989 continue;
4731d4c7 1990
fb58a9c3
SC
1991 if (direct_mmu)
1992 goto trace_get_page;
1993
2a74003a
PB
1994 if (sp->unsync) {
1995 /* The page is good, but __kvm_sync_page might still end
1996 * up zapping it. If so, break in order to rebuild it.
1997 */
1998 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
1999 break;
2000
2001 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2002 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2003 }
e02aa901 2004
98bba238 2005 if (sp->unsync_children)
f6f6195b 2006 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2007
a30f47cb 2008 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2009
2010trace_get_page:
7ae680eb 2011 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2012 goto out;
7ae680eb 2013 }
47005792 2014
dfc5aa00 2015 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2016
2017 sp = kvm_mmu_alloc_page(vcpu, direct);
2018
4db35314
AK
2019 sp->gfn = gfn;
2020 sp->role = role;
ac101b7c 2021 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2022 if (!direct) {
56ca57f9
XG
2023 /*
2024 * we should do write protection before syncing pages
2025 * otherwise the content of the synced shadow page may
2026 * be inconsistent with guest page table.
2027 */
2028 account_shadowed(vcpu->kvm, sp);
3bae0459 2029 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2030 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2031
3bae0459 2032 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2033 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2034 }
f691fe1d 2035 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2036
2037 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2038out:
2039 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2040 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2041 return sp;
cea0f0e7
AK
2042}
2043
7eb77e9f
JS
2044static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2045 struct kvm_vcpu *vcpu, hpa_t root,
2046 u64 addr)
2d11123a
AK
2047{
2048 iterator->addr = addr;
7eb77e9f 2049 iterator->shadow_addr = root;
44dd3ffa 2050 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2051
2a7266a8 2052 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2053 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2054 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2055 --iterator->level;
2056
2d11123a 2057 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2058 /*
2059 * prev_root is currently only used for 64-bit hosts. So only
2060 * the active root_hpa is valid here.
2061 */
44dd3ffa 2062 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2063
2d11123a 2064 iterator->shadow_addr
44dd3ffa 2065 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2066 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2067 --iterator->level;
2068 if (!iterator->shadow_addr)
2069 iterator->level = 0;
2070 }
2071}
2072
7eb77e9f
JS
2073static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2074 struct kvm_vcpu *vcpu, u64 addr)
2075{
44dd3ffa 2076 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2077 addr);
2078}
2079
2d11123a
AK
2080static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2081{
3bae0459 2082 if (iterator->level < PG_LEVEL_4K)
2d11123a 2083 return false;
4d88954d 2084
2d11123a
AK
2085 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2086 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2087 return true;
2088}
2089
c2a2ac2b
XG
2090static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2091 u64 spte)
2d11123a 2092{
c2a2ac2b 2093 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2094 iterator->level = 0;
2095 return;
2096 }
2097
c2a2ac2b 2098 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2099 --iterator->level;
2100}
2101
c2a2ac2b
XG
2102static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2103{
bb606a9b 2104 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2105}
2106
cc4674d0
BG
2107static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2108 struct kvm_mmu_page *sp)
2109{
2110 u64 spte;
2111
2112 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2113
2114 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2115
1df9f2dc 2116 mmu_spte_set(sptep, spte);
98bba238
TY
2117
2118 mmu_page_add_parent_pte(vcpu, sp, sptep);
2119
2120 if (sp->unsync_children || sp->unsync)
2121 mark_unsync(sptep);
32ef26a3
AK
2122}
2123
a357bd22
AK
2124static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2125 unsigned direct_access)
2126{
2127 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2128 struct kvm_mmu_page *child;
2129
2130 /*
2131 * For the direct sp, if the guest pte's dirty bit
2132 * changed form clean to dirty, it will corrupt the
2133 * sp's access: allow writable in the read-only sp,
2134 * so we should update the spte at this point to get
2135 * a new sp with the correct access.
2136 */
e47c4aee 2137 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2138 if (child->role.access == direct_access)
2139 return;
2140
bcdd9a93 2141 drop_parent_pte(child, sptep);
c3134ce2 2142 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2143 }
2144}
2145
2de4085c
BG
2146/* Returns the number of zapped non-leaf child shadow pages. */
2147static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2148 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2149{
2150 u64 pte;
2151 struct kvm_mmu_page *child;
2152
2153 pte = *spte;
2154 if (is_shadow_present_pte(pte)) {
505aef8f 2155 if (is_last_spte(pte, sp->role.level)) {
c3707958 2156 drop_spte(kvm, spte);
505aef8f
XG
2157 if (is_large_pte(pte))
2158 --kvm->stat.lpages;
2159 } else {
e47c4aee 2160 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2161 drop_parent_pte(child, spte);
2de4085c
BG
2162
2163 /*
2164 * Recursively zap nested TDP SPs, parentless SPs are
2165 * unlikely to be used again in the near future. This
2166 * avoids retaining a large number of stale nested SPs.
2167 */
2168 if (tdp_enabled && invalid_list &&
2169 child->role.guest_mode && !child->parent_ptes.val)
2170 return kvm_mmu_prepare_zap_page(kvm, child,
2171 invalid_list);
38e3b2b2 2172 }
ace569e0 2173 } else if (is_mmio_spte(pte)) {
ce88decf 2174 mmu_spte_clear_no_track(spte);
ace569e0 2175 }
2de4085c 2176 return 0;
38e3b2b2
XG
2177}
2178
2de4085c
BG
2179static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2180 struct kvm_mmu_page *sp,
2181 struct list_head *invalid_list)
a436036b 2182{
2de4085c 2183 int zapped = 0;
697fe2e2 2184 unsigned i;
697fe2e2 2185
38e3b2b2 2186 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2187 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2188
2189 return zapped;
a436036b
AK
2190}
2191
31aa2b44 2192static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2193{
1e3f42f0
TY
2194 u64 *sptep;
2195 struct rmap_iterator iter;
a436036b 2196
018aabb5 2197 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2198 drop_parent_pte(sp, sptep);
31aa2b44
AK
2199}
2200
60c8aec6 2201static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2202 struct kvm_mmu_page *parent,
2203 struct list_head *invalid_list)
4731d4c7 2204{
60c8aec6
MT
2205 int i, zapped = 0;
2206 struct mmu_page_path parents;
2207 struct kvm_mmu_pages pages;
4731d4c7 2208
3bae0459 2209 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2210 return 0;
60c8aec6 2211
60c8aec6
MT
2212 while (mmu_unsync_walk(parent, &pages)) {
2213 struct kvm_mmu_page *sp;
2214
2215 for_each_sp(pages, sp, parents, i) {
7775834a 2216 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2217 mmu_pages_clear_parents(&parents);
77662e00 2218 zapped++;
60c8aec6 2219 }
60c8aec6
MT
2220 }
2221
2222 return zapped;
4731d4c7
MT
2223}
2224
83cdb568
SC
2225static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2226 struct kvm_mmu_page *sp,
2227 struct list_head *invalid_list,
2228 int *nr_zapped)
31aa2b44 2229{
83cdb568 2230 bool list_unstable;
f691fe1d 2231
7775834a 2232 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2233 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2234 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2235 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2236 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2237
83cdb568
SC
2238 /* Zapping children means active_mmu_pages has become unstable. */
2239 list_unstable = *nr_zapped;
2240
f6e2c02b 2241 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2242 unaccount_shadowed(kvm, sp);
5304b8d3 2243
4731d4c7
MT
2244 if (sp->unsync)
2245 kvm_unlink_unsync_page(kvm, sp);
4db35314 2246 if (!sp->root_count) {
54a4f023 2247 /* Count self */
83cdb568 2248 (*nr_zapped)++;
f95eec9b
SC
2249
2250 /*
2251 * Already invalid pages (previously active roots) are not on
2252 * the active page list. See list_del() in the "else" case of
2253 * !sp->root_count.
2254 */
2255 if (sp->role.invalid)
2256 list_add(&sp->link, invalid_list);
2257 else
2258 list_move(&sp->link, invalid_list);
aa6bd187 2259 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2260 } else {
f95eec9b
SC
2261 /*
2262 * Remove the active root from the active page list, the root
2263 * will be explicitly freed when the root_count hits zero.
2264 */
2265 list_del(&sp->link);
05988d72 2266
10605204
SC
2267 /*
2268 * Obsolete pages cannot be used on any vCPUs, see the comment
2269 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2270 * treats invalid shadow pages as being obsolete.
2271 */
2272 if (!is_obsolete_sp(kvm, sp))
05988d72 2273 kvm_reload_remote_mmus(kvm);
2e53d63a 2274 }
7775834a 2275
b8e8c830
PB
2276 if (sp->lpage_disallowed)
2277 unaccount_huge_nx_page(kvm, sp);
2278
7775834a 2279 sp->role.invalid = 1;
83cdb568
SC
2280 return list_unstable;
2281}
2282
2283static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2284 struct list_head *invalid_list)
2285{
2286 int nr_zapped;
2287
2288 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2289 return nr_zapped;
a436036b
AK
2290}
2291
7775834a
XG
2292static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2293 struct list_head *invalid_list)
2294{
945315b9 2295 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2296
2297 if (list_empty(invalid_list))
2298 return;
2299
c142786c 2300 /*
9753f529
LT
2301 * We need to make sure everyone sees our modifications to
2302 * the page tables and see changes to vcpu->mode here. The barrier
2303 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2304 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2305 *
2306 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2307 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2308 */
2309 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2310
945315b9 2311 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2312 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2313 kvm_mmu_free_page(sp);
945315b9 2314 }
7775834a
XG
2315}
2316
6b82ef2c
SC
2317static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2318 unsigned long nr_to_zap)
5da59607 2319{
6b82ef2c
SC
2320 unsigned long total_zapped = 0;
2321 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2322 LIST_HEAD(invalid_list);
6b82ef2c
SC
2323 bool unstable;
2324 int nr_zapped;
5da59607
TY
2325
2326 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2327 return 0;
2328
6b82ef2c 2329restart:
8fc51726 2330 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
6b82ef2c
SC
2331 /*
2332 * Don't zap active root pages, the page itself can't be freed
2333 * and zapping it will just force vCPUs to realloc and reload.
2334 */
2335 if (sp->root_count)
2336 continue;
2337
2338 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2339 &nr_zapped);
2340 total_zapped += nr_zapped;
2341 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2342 break;
2343
6b82ef2c
SC
2344 if (unstable)
2345 goto restart;
ba7888dd 2346 }
5da59607 2347
6b82ef2c
SC
2348 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2349
2350 kvm->stat.mmu_recycled += total_zapped;
2351 return total_zapped;
2352}
2353
afe8d7e6
SC
2354static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2355{
2356 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2357 return kvm->arch.n_max_mmu_pages -
2358 kvm->arch.n_used_mmu_pages;
2359
2360 return 0;
5da59607
TY
2361}
2362
ba7888dd
SC
2363static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2364{
6b82ef2c 2365 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2366
6b82ef2c 2367 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2368 return 0;
2369
6b82ef2c 2370 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd 2371
6e6ec584
SC
2372 /*
2373 * Note, this check is intentionally soft, it only guarantees that one
2374 * page is available, while the caller may end up allocating as many as
2375 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2376 * exceeding the (arbitrary by default) limit will not harm the host,
2377 * being too agressive may unnecessarily kill the guest, and getting an
2378 * exact count is far more trouble than it's worth, especially in the
2379 * page fault paths.
2380 */
ba7888dd
SC
2381 if (!kvm_mmu_available_pages(vcpu->kvm))
2382 return -ENOSPC;
2383 return 0;
2384}
2385
82ce2c96
IE
2386/*
2387 * Changing the number of mmu pages allocated to the vm
49d5ca26 2388 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2389 */
bc8a3d89 2390void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2391{
531810ca 2392 write_lock(&kvm->mmu_lock);
b34cb590 2393
49d5ca26 2394 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2395 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2396 goal_nr_mmu_pages);
82ce2c96 2397
49d5ca26 2398 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2399 }
82ce2c96 2400
49d5ca26 2401 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590 2402
531810ca 2403 write_unlock(&kvm->mmu_lock);
82ce2c96
IE
2404}
2405
1cb3f3ae 2406int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2407{
4db35314 2408 struct kvm_mmu_page *sp;
d98ba053 2409 LIST_HEAD(invalid_list);
a436036b
AK
2410 int r;
2411
9ad17b10 2412 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2413 r = 0;
531810ca 2414 write_lock(&kvm->mmu_lock);
b67bfe0d 2415 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2416 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2417 sp->role.word);
2418 r = 1;
f41d335a 2419 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2420 }
d98ba053 2421 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 2422 write_unlock(&kvm->mmu_lock);
1cb3f3ae 2423
a436036b 2424 return r;
cea0f0e7 2425}
96ad91ae
SC
2426
2427static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2428{
2429 gpa_t gpa;
2430 int r;
2431
2432 if (vcpu->arch.mmu->direct_map)
2433 return 0;
2434
2435 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2436
2437 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2438
2439 return r;
2440}
cea0f0e7 2441
5c520e90 2442static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2443{
2444 trace_kvm_mmu_unsync_page(sp);
2445 ++vcpu->kvm->stat.mmu_unsync;
2446 sp->unsync = 1;
2447
2448 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2449}
2450
5a9624af
PB
2451bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2452 bool can_unsync)
4731d4c7 2453{
5c520e90 2454 struct kvm_mmu_page *sp;
4731d4c7 2455
3d0c27ad
XG
2456 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2457 return true;
9cf5cf5a 2458
5c520e90 2459 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2460 if (!can_unsync)
3d0c27ad 2461 return true;
36a2e677 2462
5c520e90
XG
2463 if (sp->unsync)
2464 continue;
9cf5cf5a 2465
3bae0459 2466 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2467 kvm_unsync_page(vcpu, sp);
4731d4c7 2468 }
3d0c27ad 2469
578e1c4d
JS
2470 /*
2471 * We need to ensure that the marking of unsync pages is visible
2472 * before the SPTE is updated to allow writes because
2473 * kvm_mmu_sync_roots() checks the unsync flags without holding
2474 * the MMU lock and so can race with this. If the SPTE was updated
2475 * before the page had been marked as unsync-ed, something like the
2476 * following could happen:
2477 *
2478 * CPU 1 CPU 2
2479 * ---------------------------------------------------------------------
2480 * 1.2 Host updates SPTE
2481 * to be writable
2482 * 2.1 Guest writes a GPTE for GVA X.
2483 * (GPTE being in the guest page table shadowed
2484 * by the SP from CPU 1.)
2485 * This reads SPTE during the page table walk.
2486 * Since SPTE.W is read as 1, there is no
2487 * fault.
2488 *
2489 * 2.2 Guest issues TLB flush.
2490 * That causes a VM Exit.
2491 *
2492 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2493 * Since it is false, so it just returns.
2494 *
2495 * 2.4 Guest accesses GVA X.
2496 * Since the mapping in the SP was not updated,
2497 * so the old mapping for GVA X incorrectly
2498 * gets used.
2499 * 1.1 Host marks SP
2500 * as unsync
2501 * (sp->unsync = true)
2502 *
2503 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2504 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2505 * pairs with this write barrier.
2506 */
2507 smp_wmb();
2508
3d0c27ad 2509 return false;
4731d4c7
MT
2510}
2511
799a4190
BG
2512static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2513 unsigned int pte_access, int level,
2514 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2515 bool can_unsync, bool host_writable)
2516{
2517 u64 spte;
2518 struct kvm_mmu_page *sp;
2519 int ret;
2520
799a4190
BG
2521 sp = sptep_to_sp(sptep);
2522
2523 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2524 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2525
2526 if (spte & PT_WRITABLE_MASK)
2527 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2528
12703759
SC
2529 if (*sptep == spte)
2530 ret |= SET_SPTE_SPURIOUS;
2531 else if (mmu_spte_update(sptep, spte))
5ce4786f 2532 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2533 return ret;
2534}
2535
0a2b64c5 2536static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2537 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2538 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2539 bool host_writable)
1e73f9dd
MT
2540{
2541 int was_rmapped = 0;
53a27b39 2542 int rmap_count;
5ce4786f 2543 int set_spte_ret;
c4371c2a 2544 int ret = RET_PF_FIXED;
c2a4eadf 2545 bool flush = false;
1e73f9dd 2546
f7616203
XG
2547 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2548 *sptep, write_fault, gfn);
1e73f9dd 2549
a54aa15c
SC
2550 if (unlikely(is_noslot_pfn(pfn))) {
2551 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2552 return RET_PF_EMULATE;
2553 }
2554
afd28fe1 2555 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2556 /*
2557 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2558 * the parent of the now unreachable PTE.
2559 */
3bae0459 2560 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2561 struct kvm_mmu_page *child;
d555c333 2562 u64 pte = *sptep;
1e73f9dd 2563
e47c4aee 2564 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2565 drop_parent_pte(child, sptep);
c2a4eadf 2566 flush = true;
d555c333 2567 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2568 pgprintk("hfn old %llx new %llx\n",
d555c333 2569 spte_to_pfn(*sptep), pfn);
c3707958 2570 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2571 flush = true;
6bed6b9e
JR
2572 } else
2573 was_rmapped = 1;
1e73f9dd 2574 }
852e3c19 2575
5ce4786f
JS
2576 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2577 speculative, true, host_writable);
2578 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2579 if (write_fault)
9b8ebbdb 2580 ret = RET_PF_EMULATE;
8c8560b8 2581 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2582 }
c3134ce2 2583
c2a4eadf 2584 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2585 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2586 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2587
12703759
SC
2588 /*
2589 * The fault is fully spurious if and only if the new SPTE and old SPTE
2590 * are identical, and emulation is not required.
2591 */
2592 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2593 WARN_ON_ONCE(!was_rmapped);
2594 return RET_PF_SPURIOUS;
2595 }
2596
d555c333 2597 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2598 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2599 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2600 ++vcpu->kvm->stat.lpages;
2601
ffb61bb3 2602 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2603 if (!was_rmapped) {
2604 rmap_count = rmap_add(vcpu, sptep, gfn);
2605 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2606 rmap_recycle(vcpu, sptep, gfn);
2607 }
1c4f1fd6 2608 }
cb9aaa30 2609
9b8ebbdb 2610 return ret;
1c4f1fd6
AK
2611}
2612
ba049e93 2613static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2614 bool no_dirty_log)
2615{
2616 struct kvm_memory_slot *slot;
957ed9ef 2617
5d163b1c 2618 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2619 if (!slot)
6c8ee57b 2620 return KVM_PFN_ERR_FAULT;
957ed9ef 2621
037d92dc 2622 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2623}
2624
2625static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2626 struct kvm_mmu_page *sp,
2627 u64 *start, u64 *end)
2628{
2629 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2630 struct kvm_memory_slot *slot;
0a2b64c5 2631 unsigned int access = sp->role.access;
957ed9ef
XG
2632 int i, ret;
2633 gfn_t gfn;
2634
2635 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2636 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2637 if (!slot)
957ed9ef
XG
2638 return -1;
2639
d9ef13c2 2640 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2641 if (ret <= 0)
2642 return -1;
2643
43fdcda9 2644 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2645 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2646 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2647 put_page(pages[i]);
2648 }
957ed9ef
XG
2649
2650 return 0;
2651}
2652
2653static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2654 struct kvm_mmu_page *sp, u64 *sptep)
2655{
2656 u64 *spte, *start = NULL;
2657 int i;
2658
2659 WARN_ON(!sp->role.direct);
2660
2661 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2662 spte = sp->spt + i;
2663
2664 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2665 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2666 if (!start)
2667 continue;
2668 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2669 break;
2670 start = NULL;
2671 } else if (!start)
2672 start = spte;
2673 }
2674}
2675
2676static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2677{
2678 struct kvm_mmu_page *sp;
2679
57354682 2680 sp = sptep_to_sp(sptep);
ac8d57e5 2681
957ed9ef 2682 /*
ac8d57e5
PF
2683 * Without accessed bits, there's no way to distinguish between
2684 * actually accessed translations and prefetched, so disable pte
2685 * prefetch if accessed bits aren't available.
957ed9ef 2686 */
ac8d57e5 2687 if (sp_ad_disabled(sp))
957ed9ef
XG
2688 return;
2689
3bae0459 2690 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2691 return;
2692
4a42d848
DS
2693 /*
2694 * If addresses are being invalidated, skip prefetching to avoid
2695 * accidentally prefetching those addresses.
2696 */
2697 if (unlikely(vcpu->kvm->mmu_notifier_count))
2698 return;
2699
957ed9ef
XG
2700 __direct_pte_prefetch(vcpu, sp, sptep);
2701}
2702
1b6d9d9e 2703static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
8ca6f063 2704 const struct kvm_memory_slot *slot)
db543216 2705{
db543216
SC
2706 unsigned long hva;
2707 pte_t *pte;
2708 int level;
2709
e851265a 2710 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2711 return PG_LEVEL_4K;
db543216 2712
293e306e
SC
2713 /*
2714 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2715 * is not solely for performance, it's also necessary to avoid the
2716 * "writable" check in __gfn_to_hva_many(), which will always fail on
2717 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2718 * page fault steps have already verified the guest isn't writing a
2719 * read-only memslot.
2720 */
db543216
SC
2721 hva = __gfn_to_hva_memslot(slot, gfn);
2722
1b6d9d9e 2723 pte = lookup_address_in_mm(kvm->mm, hva, &level);
db543216 2724 if (unlikely(!pte))
3bae0459 2725 return PG_LEVEL_4K;
db543216
SC
2726
2727 return level;
2728}
2729
8ca6f063
BG
2730int kvm_mmu_max_mapping_level(struct kvm *kvm,
2731 const struct kvm_memory_slot *slot, gfn_t gfn,
2732 kvm_pfn_t pfn, int max_level)
1b6d9d9e
SC
2733{
2734 struct kvm_lpage_info *linfo;
2735
2736 max_level = min(max_level, max_huge_page_level);
2737 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2738 linfo = lpage_info_slot(gfn, slot, max_level);
2739 if (!linfo->disallow_lpage)
2740 break;
2741 }
2742
2743 if (max_level == PG_LEVEL_4K)
2744 return PG_LEVEL_4K;
2745
2746 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2747}
2748
bb18842e
BG
2749int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2750 int max_level, kvm_pfn_t *pfnp,
2751 bool huge_page_disallowed, int *req_level)
0885904d 2752{
293e306e 2753 struct kvm_memory_slot *slot;
0885904d 2754 kvm_pfn_t pfn = *pfnp;
17eff019 2755 kvm_pfn_t mask;
83f06fa7 2756 int level;
17eff019 2757
3cf06612
SC
2758 *req_level = PG_LEVEL_4K;
2759
3bae0459
SC
2760 if (unlikely(max_level == PG_LEVEL_4K))
2761 return PG_LEVEL_4K;
17eff019 2762
e851265a 2763 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2764 return PG_LEVEL_4K;
17eff019 2765
293e306e
SC
2766 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2767 if (!slot)
3bae0459 2768 return PG_LEVEL_4K;
293e306e 2769
1b6d9d9e 2770 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
3bae0459 2771 if (level == PG_LEVEL_4K)
83f06fa7 2772 return level;
17eff019 2773
3cf06612
SC
2774 *req_level = level = min(level, max_level);
2775
2776 /*
2777 * Enforce the iTLB multihit workaround after capturing the requested
2778 * level, which will be used to do precise, accurate accounting.
2779 */
2780 if (huge_page_disallowed)
2781 return PG_LEVEL_4K;
0885904d
SC
2782
2783 /*
17eff019
SC
2784 * mmu_notifier_retry() was successful and mmu_lock is held, so
2785 * the pmd can't be split from under us.
0885904d 2786 */
17eff019
SC
2787 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2788 VM_BUG_ON((gfn & mask) != (pfn & mask));
2789 *pfnp = pfn & ~mask;
83f06fa7
SC
2790
2791 return level;
0885904d
SC
2792}
2793
bb18842e
BG
2794void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2795 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2796{
bb18842e 2797 int level = *goal_levelp;
b8e8c830 2798
7d945312 2799 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2800 is_shadow_present_pte(spte) &&
2801 !is_large_pte(spte)) {
2802 /*
2803 * A small SPTE exists for this pfn, but FNAME(fetch)
2804 * and __direct_map would like to create a large PTE
2805 * instead: just force them to go down another level,
2806 * patching back for them into pfn the next 9 bits of
2807 * the address.
2808 */
7d945312
BG
2809 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2810 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2811 *pfnp |= gfn & page_mask;
bb18842e 2812 (*goal_levelp)--;
b8e8c830
PB
2813 }
2814}
2815
6c2fd34f 2816static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2817 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2818 bool prefault, bool is_tdp)
140754bc 2819{
6c2fd34f
SC
2820 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2821 bool write = error_code & PFERR_WRITE_MASK;
2822 bool exec = error_code & PFERR_FETCH_MASK;
2823 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2824 struct kvm_shadow_walk_iterator it;
140754bc 2825 struct kvm_mmu_page *sp;
3cf06612 2826 int level, req_level, ret;
3fcf2d1b
PB
2827 gfn_t gfn = gpa >> PAGE_SHIFT;
2828 gfn_t base_gfn = gfn;
6aa8b732 2829
0c7a98e3 2830 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2831 return RET_PF_RETRY;
989c6b34 2832
3cf06612
SC
2833 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2834 huge_page_disallowed, &req_level);
4cd071d1 2835
335e192a 2836 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2837 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2838 /*
2839 * We cannot overwrite existing page tables with an NX
2840 * large page, as the leaf could be executable.
2841 */
dcc70651 2842 if (nx_huge_page_workaround_enabled)
7d945312
BG
2843 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2844 &pfn, &level);
b8e8c830 2845
3fcf2d1b
PB
2846 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2847 if (it.level == level)
9f652d21 2848 break;
6aa8b732 2849
3fcf2d1b
PB
2850 drop_large_spte(vcpu, it.sptep);
2851 if (!is_shadow_present_pte(*it.sptep)) {
2852 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2853 it.level - 1, true, ACC_ALL);
c9fa0b3b 2854
3fcf2d1b 2855 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2856 if (is_tdp && huge_page_disallowed &&
2857 req_level >= it.level)
b8e8c830 2858 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2859 }
2860 }
3fcf2d1b
PB
2861
2862 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2863 write, level, base_gfn, pfn, prefault,
2864 map_writable);
12703759
SC
2865 if (ret == RET_PF_SPURIOUS)
2866 return ret;
2867
3fcf2d1b
PB
2868 direct_pte_prefetch(vcpu, it.sptep);
2869 ++vcpu->stat.pf_fixed;
2870 return ret;
6aa8b732
AK
2871}
2872
77db5cbd 2873static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2874{
585a8b9b 2875 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2876}
2877
ba049e93 2878static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2879{
4d8b81ab
XG
2880 /*
2881 * Do not cache the mmio info caused by writing the readonly gfn
2882 * into the spte otherwise read access on readonly gfn also can
2883 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2884 */
2885 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2886 return RET_PF_EMULATE;
4d8b81ab 2887
e6c1502b 2888 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2889 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2890 return RET_PF_RETRY;
d7c55201 2891 }
edba23e5 2892
2c151b25 2893 return -EFAULT;
bf998156
HY
2894}
2895
d7c55201 2896static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2897 kvm_pfn_t pfn, unsigned int access,
2898 int *ret_val)
d7c55201 2899{
d7c55201 2900 /* The pfn is invalid, report the error! */
81c52c56 2901 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2902 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2903 return true;
d7c55201
XG
2904 }
2905
30ab5901 2906 if (unlikely(is_noslot_pfn(pfn))) {
4af77151
SC
2907 vcpu_cache_mmio_info(vcpu, gva, gfn,
2908 access & shadow_mmio_access_mask);
30ab5901
SC
2909 /*
2910 * If MMIO caching is disabled, emulate immediately without
2911 * touching the shadow page tables as attempting to install an
2912 * MMIO SPTE will just be an expensive nop.
2913 */
2914 if (unlikely(!shadow_mmio_value)) {
2915 *ret_val = RET_PF_EMULATE;
2916 return true;
2917 }
2918 }
d7c55201 2919
798e88b3 2920 return false;
d7c55201
XG
2921}
2922
e5552fd2 2923static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2924{
1c118b82
XG
2925 /*
2926 * Do not fix the mmio spte with invalid generation number which
2927 * need to be updated by slow page fault path.
2928 */
2929 if (unlikely(error_code & PFERR_RSVD_MASK))
2930 return false;
2931
f160c7b7
JS
2932 /* See if the page fault is due to an NX violation */
2933 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2934 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2935 return false;
2936
c7ba5b48 2937 /*
f160c7b7
JS
2938 * #PF can be fast if:
2939 * 1. The shadow page table entry is not present, which could mean that
2940 * the fault is potentially caused by access tracking (if enabled).
2941 * 2. The shadow page table entry is present and the fault
2942 * is caused by write-protect, that means we just need change the W
2943 * bit of the spte which can be done out of mmu-lock.
2944 *
2945 * However, if access tracking is disabled we know that a non-present
2946 * page must be a genuine page fault where we have to create a new SPTE.
2947 * So, if access tracking is disabled, we return true only for write
2948 * accesses to a present page.
c7ba5b48 2949 */
c7ba5b48 2950
f160c7b7
JS
2951 return shadow_acc_track_mask != 0 ||
2952 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2953 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2954}
2955
97dceba2
JS
2956/*
2957 * Returns true if the SPTE was fixed successfully. Otherwise,
2958 * someone else modified the SPTE from its original value.
2959 */
c7ba5b48 2960static bool
92a476cb 2961fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 2962 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 2963{
c7ba5b48
XG
2964 gfn_t gfn;
2965
2966 WARN_ON(!sp->role.direct);
2967
9b51a630
KH
2968 /*
2969 * Theoretically we could also set dirty bit (and flush TLB) here in
2970 * order to eliminate unnecessary PML logging. See comments in
2971 * set_spte. But fast_page_fault is very unlikely to happen with PML
2972 * enabled, so we do not do this. This might result in the same GPA
2973 * to be logged in PML buffer again when the write really happens, and
2974 * eventually to be called by mark_page_dirty twice. But it's also no
2975 * harm. This also avoids the TLB flush needed after setting dirty bit
2976 * so non-PML cases won't be impacted.
2977 *
2978 * Compare with set_spte where instead shadow_dirty_mask is set.
2979 */
f160c7b7 2980 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
2981 return false;
2982
d3e328f2 2983 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
2984 /*
2985 * The gfn of direct spte is stable since it is
2986 * calculated by sp->gfn.
2987 */
2988 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2989 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2990 }
c7ba5b48
XG
2991
2992 return true;
2993}
2994
d3e328f2
JS
2995static bool is_access_allowed(u32 fault_err_code, u64 spte)
2996{
2997 if (fault_err_code & PFERR_FETCH_MASK)
2998 return is_executable_pte(spte);
2999
3000 if (fault_err_code & PFERR_WRITE_MASK)
3001 return is_writable_pte(spte);
3002
3003 /* Fault was on Read access */
3004 return spte & PT_PRESENT_MASK;
3005}
3006
c7ba5b48 3007/*
c4371c2a 3008 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3009 */
c4371c2a
SC
3010static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3011 u32 error_code)
c7ba5b48
XG
3012{
3013 struct kvm_shadow_walk_iterator iterator;
92a476cb 3014 struct kvm_mmu_page *sp;
c4371c2a 3015 int ret = RET_PF_INVALID;
c7ba5b48 3016 u64 spte = 0ull;
97dceba2 3017 uint retry_count = 0;
c7ba5b48 3018
e5552fd2 3019 if (!page_fault_can_be_fast(error_code))
c4371c2a 3020 return ret;
c7ba5b48
XG
3021
3022 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3023
97dceba2 3024 do {
d3e328f2 3025 u64 new_spte;
c7ba5b48 3026
736c291c 3027 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3028 if (!is_shadow_present_pte(spte))
d162f30a
JS
3029 break;
3030
ec89e643
SC
3031 if (!is_shadow_present_pte(spte))
3032 break;
3033
57354682 3034 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3035 if (!is_last_spte(spte, sp->role.level))
3036 break;
c7ba5b48 3037
97dceba2 3038 /*
f160c7b7
JS
3039 * Check whether the memory access that caused the fault would
3040 * still cause it if it were to be performed right now. If not,
3041 * then this is a spurious fault caused by TLB lazily flushed,
3042 * or some other CPU has already fixed the PTE after the
3043 * current CPU took the fault.
97dceba2
JS
3044 *
3045 * Need not check the access of upper level table entries since
3046 * they are always ACC_ALL.
3047 */
d3e328f2 3048 if (is_access_allowed(error_code, spte)) {
c4371c2a 3049 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3050 break;
3051 }
f160c7b7 3052
d3e328f2
JS
3053 new_spte = spte;
3054
3055 if (is_access_track_spte(spte))
3056 new_spte = restore_acc_track_spte(new_spte);
3057
3058 /*
3059 * Currently, to simplify the code, write-protection can
3060 * be removed in the fast path only if the SPTE was
3061 * write-protected for dirty-logging or access tracking.
3062 */
3063 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3064 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3065 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3066
3067 /*
d3e328f2
JS
3068 * Do not fix write-permission on the large spte. Since
3069 * we only dirty the first page into the dirty-bitmap in
3070 * fast_pf_fix_direct_spte(), other pages are missed
3071 * if its slot has dirty logging enabled.
3072 *
3073 * Instead, we let the slow page fault path create a
3074 * normal spte to fix the access.
3075 *
3076 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3077 */
3bae0459 3078 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3079 break;
97dceba2 3080 }
c7ba5b48 3081
f160c7b7 3082 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3083 if (new_spte == spte ||
3084 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3085 break;
3086
3087 /*
3088 * Currently, fast page fault only works for direct mapping
3089 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3090 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3091 */
c4371c2a
SC
3092 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3093 new_spte)) {
3094 ret = RET_PF_FIXED;
97dceba2 3095 break;
c4371c2a 3096 }
97dceba2
JS
3097
3098 if (++retry_count > 4) {
3099 printk_once(KERN_WARNING
3100 "kvm: Fast #PF retrying more than 4 times.\n");
3101 break;
3102 }
3103
97dceba2 3104 } while (true);
c126d94f 3105
736c291c 3106 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3107 spte, ret);
c7ba5b48
XG
3108 walk_shadow_page_lockless_end(vcpu);
3109
c4371c2a 3110 return ret;
c7ba5b48
XG
3111}
3112
74b566e6
JS
3113static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3114 struct list_head *invalid_list)
17ac10ad 3115{
4db35314 3116 struct kvm_mmu_page *sp;
17ac10ad 3117
74b566e6 3118 if (!VALID_PAGE(*root_hpa))
7b53aa56 3119 return;
35af577a 3120
e47c4aee 3121 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a 3122
2bdb3d84 3123 if (is_tdp_mmu_page(sp))
6103bc07 3124 kvm_tdp_mmu_put_root(kvm, sp, false);
76eb54e7
BG
3125 else if (!--sp->root_count && sp->role.invalid)
3126 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3127
74b566e6
JS
3128 *root_hpa = INVALID_PAGE;
3129}
3130
08fb59d8 3131/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3132void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3133 ulong roots_to_free)
74b566e6 3134{
4d710de9 3135 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3136 int i;
3137 LIST_HEAD(invalid_list);
08fb59d8 3138 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3139
b94742c9 3140 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3141
08fb59d8 3142 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3143 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3144 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3145 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3146 VALID_PAGE(mmu->prev_roots[i].hpa))
3147 break;
3148
3149 if (i == KVM_MMU_NUM_PREV_ROOTS)
3150 return;
3151 }
35af577a 3152
531810ca 3153 write_lock(&kvm->mmu_lock);
17ac10ad 3154
b94742c9
JS
3155 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3156 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3157 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3158 &invalid_list);
7c390d35 3159
08fb59d8
JS
3160 if (free_active_root) {
3161 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3162 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3163 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
04d45551 3164 } else if (mmu->pae_root) {
c834e5e4
SC
3165 for (i = 0; i < 4; ++i) {
3166 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3167 continue;
3168
3169 mmu_free_root_page(kvm, &mmu->pae_root[i],
3170 &invalid_list);
3171 mmu->pae_root[i] = INVALID_PAE_ROOT;
3172 }
08fb59d8 3173 }
04d45551 3174 mmu->root_hpa = INVALID_PAGE;
be01e8e2 3175 mmu->root_pgd = 0;
17ac10ad 3176 }
74b566e6 3177
4d710de9 3178 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 3179 write_unlock(&kvm->mmu_lock);
17ac10ad 3180}
74b566e6 3181EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3182
8986ecc0
MT
3183static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3184{
3185 int ret = 0;
3186
995decb6 3187 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3188 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3189 ret = 1;
3190 }
3191
3192 return ret;
3193}
3194
8123f265
SC
3195static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3196 u8 level, bool direct)
651dd37a
JR
3197{
3198 struct kvm_mmu_page *sp;
8123f265 3199
8123f265
SC
3200 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3201 ++sp->root_count;
3202
8123f265
SC
3203 return __pa(sp->spt);
3204}
3205
3206static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3207{
b37233c9
SC
3208 struct kvm_mmu *mmu = vcpu->arch.mmu;
3209 u8 shadow_root_level = mmu->shadow_root_level;
8123f265 3210 hpa_t root;
7ebaf15e 3211 unsigned i;
4a38162e
PB
3212 int r;
3213
3214 write_lock(&vcpu->kvm->mmu_lock);
3215 r = make_mmu_pages_available(vcpu);
3216 if (r < 0)
3217 goto out_unlock;
651dd37a 3218
897218ff 3219 if (is_tdp_mmu_enabled(vcpu->kvm)) {
02c00b3a 3220 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
b37233c9 3221 mmu->root_hpa = root;
02c00b3a 3222 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
6e6ec584 3223 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
b37233c9 3224 mmu->root_hpa = root;
8123f265 3225 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
4a38162e
PB
3226 if (WARN_ON_ONCE(!mmu->pae_root)) {
3227 r = -EIO;
3228 goto out_unlock;
3229 }
73ad1606 3230
651dd37a 3231 for (i = 0; i < 4; ++i) {
c834e5e4 3232 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
651dd37a 3233
8123f265
SC
3234 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3235 i << 30, PT32_ROOT_LEVEL, true);
17e368d9
SC
3236 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3237 shadow_me_mask;
651dd37a 3238 }
b37233c9 3239 mmu->root_hpa = __pa(mmu->pae_root);
73ad1606
SC
3240 } else {
3241 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
4a38162e
PB
3242 r = -EIO;
3243 goto out_unlock;
73ad1606 3244 }
3651c7fc 3245
be01e8e2 3246 /* root_pgd is ignored for direct MMUs. */
b37233c9 3247 mmu->root_pgd = 0;
4a38162e
PB
3248out_unlock:
3249 write_unlock(&vcpu->kvm->mmu_lock);
3250 return r;
651dd37a
JR
3251}
3252
3253static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3254{
b37233c9 3255 struct kvm_mmu *mmu = vcpu->arch.mmu;
6e0918ae 3256 u64 pdptrs[4], pm_mask;
be01e8e2 3257 gfn_t root_gfn, root_pgd;
8123f265 3258 hpa_t root;
4a38162e
PB
3259 unsigned i;
3260 int r;
3bb65a22 3261
b37233c9 3262 root_pgd = mmu->get_guest_pgd(vcpu);
be01e8e2 3263 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3264
651dd37a
JR
3265 if (mmu_check_root(vcpu, root_gfn))
3266 return 1;
3267
4a38162e
PB
3268 /*
3269 * On SVM, reading PDPTRs might access guest memory, which might fault
3270 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3271 */
6e0918ae
SC
3272 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3273 for (i = 0; i < 4; ++i) {
3274 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3275 if (!(pdptrs[i] & PT_PRESENT_MASK))
3276 continue;
3277
3278 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3279 return 1;
3280 }
3281 }
3282
4a38162e
PB
3283 write_lock(&vcpu->kvm->mmu_lock);
3284 r = make_mmu_pages_available(vcpu);
3285 if (r < 0)
3286 goto out_unlock;
3287
651dd37a
JR
3288 /*
3289 * Do we shadow a long mode page table? If so we need to
3290 * write-protect the guests page table root.
3291 */
b37233c9 3292 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3293 root = mmu_alloc_root(vcpu, root_gfn, 0,
b37233c9 3294 mmu->shadow_root_level, false);
b37233c9 3295 mmu->root_hpa = root;
be01e8e2 3296 goto set_root_pgd;
17ac10ad 3297 }
f87f9288 3298
4a38162e
PB
3299 if (WARN_ON_ONCE(!mmu->pae_root)) {
3300 r = -EIO;
3301 goto out_unlock;
3302 }
73ad1606 3303
651dd37a
JR
3304 /*
3305 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3306 * or a PAE 3-level page table. In either case we need to be aware that
3307 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3308 */
17e368d9 3309 pm_mask = PT_PRESENT_MASK | shadow_me_mask;
748e52b9 3310 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
81407ca5
JR
3311 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3312
4a38162e
PB
3313 if (WARN_ON_ONCE(!mmu->lm_root)) {
3314 r = -EIO;
3315 goto out_unlock;
3316 }
73ad1606 3317
748e52b9 3318 mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
04d45551
SC
3319 }
3320
17ac10ad 3321 for (i = 0; i < 4; ++i) {
c834e5e4 3322 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
6e6ec584 3323
b37233c9 3324 if (mmu->root_level == PT32E_ROOT_LEVEL) {
6e0918ae 3325 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
c834e5e4 3326 mmu->pae_root[i] = INVALID_PAE_ROOT;
417726a3
AK
3327 continue;
3328 }
6e0918ae 3329 root_gfn = pdptrs[i] >> PAGE_SHIFT;
5a7388c2 3330 }
8facbbff 3331
8123f265
SC
3332 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3333 PT32_ROOT_LEVEL, false);
b37233c9 3334 mmu->pae_root[i] = root | pm_mask;
17ac10ad 3335 }
81407ca5 3336
ba0a194f 3337 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
b37233c9 3338 mmu->root_hpa = __pa(mmu->lm_root);
ba0a194f
SC
3339 else
3340 mmu->root_hpa = __pa(mmu->pae_root);
81407ca5 3341
be01e8e2 3342set_root_pgd:
b37233c9 3343 mmu->root_pgd = root_pgd;
4a38162e
PB
3344out_unlock:
3345 write_unlock(&vcpu->kvm->mmu_lock);
ad7dc69a 3346
8986ecc0 3347 return 0;
17ac10ad
AK
3348}
3349
748e52b9
SC
3350static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3351{
3352 struct kvm_mmu *mmu = vcpu->arch.mmu;
3353 u64 *lm_root, *pae_root;
3354
3355 /*
3356 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3357 * tables are allocated and initialized at root creation as there is no
3358 * equivalent level in the guest's NPT to shadow. Allocate the tables
3359 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3360 */
3361 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3362 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3363 return 0;
3364
3365 /*
3366 * This mess only works with 4-level paging and needs to be updated to
3367 * work with 5-level paging.
3368 */
3369 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3370 return -EIO;
3371
3372 if (mmu->pae_root && mmu->lm_root)
3373 return 0;
3374
3375 /*
3376 * The special roots should always be allocated in concert. Yell and
3377 * bail if KVM ends up in a state where only one of the roots is valid.
3378 */
3379 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
3380 return -EIO;
3381
4a98623d
SC
3382 /*
3383 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3384 * doesn't need to be decrypted.
3385 */
748e52b9
SC
3386 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3387 if (!pae_root)
3388 return -ENOMEM;
3389
3390 lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3391 if (!lm_root) {
3392 free_page((unsigned long)pae_root);
3393 return -ENOMEM;
3394 }
3395
3396 mmu->pae_root = pae_root;
3397 mmu->lm_root = lm_root;
3398
3399 return 0;
3400}
3401
578e1c4d 3402void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3403{
3404 int i;
3405 struct kvm_mmu_page *sp;
3406
44dd3ffa 3407 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3408 return;
3409
44dd3ffa 3410 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3411 return;
6903074c 3412
56f17dd3 3413 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3414
44dd3ffa
VK
3415 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3416 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3417 sp = to_shadow_page(root);
578e1c4d
JS
3418
3419 /*
3420 * Even if another CPU was marking the SP as unsync-ed
3421 * simultaneously, any guest page table changes are not
3422 * guaranteed to be visible anyway until this VCPU issues a TLB
3423 * flush strictly after those changes are made. We only need to
3424 * ensure that the other CPU sets these flags before any actual
3425 * changes to the page tables are made. The comments in
3426 * mmu_need_write_protect() describe what could go wrong if this
3427 * requirement isn't satisfied.
3428 */
3429 if (!smp_load_acquire(&sp->unsync) &&
3430 !smp_load_acquire(&sp->unsync_children))
3431 return;
3432
531810ca 3433 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3434 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3435
0ba73cda 3436 mmu_sync_children(vcpu, sp);
578e1c4d 3437
0375f7fa 3438 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3439 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3440 return;
3441 }
578e1c4d 3442
531810ca 3443 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3444 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3445
0ba73cda 3446 for (i = 0; i < 4; ++i) {
44dd3ffa 3447 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3448
c834e5e4 3449 if (IS_VALID_PAE_ROOT(root)) {
0ba73cda 3450 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3451 sp = to_shadow_page(root);
0ba73cda
MT
3452 mmu_sync_children(vcpu, sp);
3453 }
3454 }
0ba73cda 3455
578e1c4d 3456 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3457 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3458}
3459
736c291c 3460static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3461 u32 access, struct x86_exception *exception)
6aa8b732 3462{
ab9ae313
AK
3463 if (exception)
3464 exception->error_code = 0;
6aa8b732
AK
3465 return vaddr;
3466}
3467
736c291c 3468static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3469 u32 access,
3470 struct x86_exception *exception)
6539e738 3471{
ab9ae313
AK
3472 if (exception)
3473 exception->error_code = 0;
54987b7a 3474 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3475}
3476
d625b155
XG
3477static bool
3478__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3479{
b5c3c1b3 3480 int bit7 = (pte >> 7) & 1;
d625b155 3481
b5c3c1b3 3482 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3483}
3484
b5c3c1b3 3485static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3486{
b5c3c1b3 3487 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3488}
3489
ded58749 3490static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3491{
9034e6e8
PB
3492 /*
3493 * A nested guest cannot use the MMIO cache if it is using nested
3494 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3495 */
3496 if (mmu_is_nested(vcpu))
3497 return false;
3498
ce88decf
XG
3499 if (direct)
3500 return vcpu_match_mmio_gpa(vcpu, addr);
3501
3502 return vcpu_match_mmio_gva(vcpu, addr);
3503}
3504
95fb5b02
BG
3505/*
3506 * Return the level of the lowest level SPTE added to sptes.
3507 * That SPTE may be non-present.
3508 */
39b4d43e 3509static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
ce88decf
XG
3510{
3511 struct kvm_shadow_walk_iterator iterator;
2aa07893 3512 int leaf = -1;
95fb5b02 3513 u64 spte;
ce88decf
XG
3514
3515 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3516
39b4d43e
SC
3517 for (shadow_walk_init(&iterator, vcpu, addr),
3518 *root_level = iterator.level;
47ab8751
XG
3519 shadow_walk_okay(&iterator);
3520 __shadow_walk_next(&iterator, spte)) {
95fb5b02 3521 leaf = iterator.level;
47ab8751
XG
3522 spte = mmu_spte_get_lockless(iterator.sptep);
3523
dde81f94 3524 sptes[leaf] = spte;
47ab8751 3525
ce88decf
XG
3526 if (!is_shadow_present_pte(spte))
3527 break;
95fb5b02
BG
3528 }
3529
3530 walk_shadow_page_lockless_end(vcpu);
3531
3532 return leaf;
3533}
3534
9aa41879 3535/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
95fb5b02
BG
3536static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3537{
dde81f94 3538 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
95fb5b02 3539 struct rsvd_bits_validate *rsvd_check;
39b4d43e 3540 int root, leaf, level;
95fb5b02
BG
3541 bool reserved = false;
3542
3543 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3544 *sptep = 0ull;
3545 return reserved;
3546 }
3547
3548 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
39b4d43e 3549 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
95fb5b02 3550 else
39b4d43e 3551 leaf = get_walk(vcpu, addr, sptes, &root);
95fb5b02 3552
2aa07893
SC
3553 if (unlikely(leaf < 0)) {
3554 *sptep = 0ull;
3555 return reserved;
3556 }
3557
9aa41879
SC
3558 *sptep = sptes[leaf];
3559
3560 /*
3561 * Skip reserved bits checks on the terminal leaf if it's not a valid
3562 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3563 * design, always have reserved bits set. The purpose of the checks is
3564 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3565 */
3566 if (!is_shadow_present_pte(sptes[leaf]))
3567 leaf++;
95fb5b02
BG
3568
3569 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3570
9aa41879 3571 for (level = root; level >= leaf; level--)
b5c3c1b3
SC
3572 /*
3573 * Use a bitwise-OR instead of a logical-OR to aggregate the
3574 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3575 * adding a Jcc in the loop.
3576 */
dde81f94
SC
3577 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3578 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
47ab8751 3579
47ab8751 3580 if (reserved) {
bb4cdf3a 3581 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
47ab8751 3582 __func__, addr);
95fb5b02 3583 for (level = root; level >= leaf; level--)
bb4cdf3a
SC
3584 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3585 sptes[level], level,
3586 rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
47ab8751 3587 }
ddce6208 3588
47ab8751 3589 return reserved;
ce88decf
XG
3590}
3591
e08d26f0 3592static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3593{
3594 u64 spte;
47ab8751 3595 bool reserved;
ce88decf 3596
ded58749 3597 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3598 return RET_PF_EMULATE;
ce88decf 3599
95fb5b02 3600 reserved = get_mmio_spte(vcpu, addr, &spte);
450869d6 3601 if (WARN_ON(reserved))
9b8ebbdb 3602 return -EINVAL;
ce88decf
XG
3603
3604 if (is_mmio_spte(spte)) {
3605 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3606 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3607
54bf36aa 3608 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3609 return RET_PF_INVALID;
f8f55942 3610
ce88decf
XG
3611 if (direct)
3612 addr = 0;
4f022648
XG
3613
3614 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3615 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3616 return RET_PF_EMULATE;
ce88decf
XG
3617 }
3618
ce88decf
XG
3619 /*
3620 * If the page table is zapped by other cpus, let CPU fault again on
3621 * the address.
3622 */
9b8ebbdb 3623 return RET_PF_RETRY;
ce88decf 3624}
ce88decf 3625
3d0c27ad
XG
3626static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3627 u32 error_code, gfn_t gfn)
3628{
3629 if (unlikely(error_code & PFERR_RSVD_MASK))
3630 return false;
3631
3632 if (!(error_code & PFERR_PRESENT_MASK) ||
3633 !(error_code & PFERR_WRITE_MASK))
3634 return false;
3635
3636 /*
3637 * guest is writing the page which is write tracked which can
3638 * not be fixed by page fault handler.
3639 */
3640 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3641 return true;
3642
3643 return false;
3644}
3645
e5691a81
XG
3646static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3647{
3648 struct kvm_shadow_walk_iterator iterator;
3649 u64 spte;
3650
e5691a81
XG
3651 walk_shadow_page_lockless_begin(vcpu);
3652 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3653 clear_sp_write_flooding_count(iterator.sptep);
3654 if (!is_shadow_present_pte(spte))
3655 break;
3656 }
3657 walk_shadow_page_lockless_end(vcpu);
3658}
3659
e8c22266
VK
3660static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3661 gfn_t gfn)
af585b92
GN
3662{
3663 struct kvm_arch_async_pf arch;
fb67e14f 3664
7c90705b 3665 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3666 arch.gfn = gfn;
44dd3ffa 3667 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3668 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3669
9f1a8526
SC
3670 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3671 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3672}
3673
78b2c54a 3674static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4a42d848
DS
3675 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3676 bool write, bool *writable)
af585b92 3677{
c36b7150 3678 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3679 bool async;
3680
e0c37868
SC
3681 /*
3682 * Retry the page fault if the gfn hit a memslot that is being deleted
3683 * or moved. This ensures any existing SPTEs for the old memslot will
3684 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3685 */
3686 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3687 return true;
3688
c36b7150
PB
3689 /* Don't expose private memslots to L2. */
3690 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3691 *pfn = KVM_PFN_NOSLOT;
c583eed6 3692 *writable = false;
3a2936de
JM
3693 return false;
3694 }
3695
3520469d 3696 async = false;
4a42d848
DS
3697 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3698 write, writable, hva);
af585b92
GN
3699 if (!async)
3700 return false; /* *pfn has correct page already */
3701
9bc1f09f 3702 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3703 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3704 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3705 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3706 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3707 return true;
9f1a8526 3708 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3709 return true;
3710 }
3711
4a42d848
DS
3712 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3713 write, writable, hva);
af585b92
GN
3714 return false;
3715}
3716
0f90e1c1
SC
3717static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3718 bool prefault, int max_level, bool is_tdp)
6aa8b732 3719{
367fd790 3720 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3721 bool map_writable;
6aa8b732 3722
0f90e1c1
SC
3723 gfn_t gfn = gpa >> PAGE_SHIFT;
3724 unsigned long mmu_seq;
3725 kvm_pfn_t pfn;
4a42d848 3726 hva_t hva;
83f06fa7 3727 int r;
ce88decf 3728
3d0c27ad 3729 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3730 return RET_PF_EMULATE;
ce88decf 3731
bb18842e
BG
3732 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3733 r = fast_page_fault(vcpu, gpa, error_code);
3734 if (r != RET_PF_INVALID)
3735 return r;
3736 }
83291445 3737
378f5cd6 3738 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3739 if (r)
3740 return r;
714b93da 3741
367fd790
SC
3742 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3743 smp_rmb();
3744
4a42d848
DS
3745 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3746 write, &map_writable))
367fd790
SC
3747 return RET_PF_RETRY;
3748
0f90e1c1 3749 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3750 return r;
6aa8b732 3751
367fd790 3752 r = RET_PF_RETRY;
a2855afc
BG
3753
3754 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3755 read_lock(&vcpu->kvm->mmu_lock);
3756 else
3757 write_lock(&vcpu->kvm->mmu_lock);
3758
4a42d848 3759 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
367fd790 3760 goto out_unlock;
7bd7ded6
SC
3761 r = make_mmu_pages_available(vcpu);
3762 if (r)
367fd790 3763 goto out_unlock;
bb18842e
BG
3764
3765 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3766 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3767 pfn, prefault);
3768 else
3769 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3770 prefault, is_tdp);
0f90e1c1 3771
367fd790 3772out_unlock:
a2855afc
BG
3773 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3774 read_unlock(&vcpu->kvm->mmu_lock);
3775 else
3776 write_unlock(&vcpu->kvm->mmu_lock);
367fd790
SC
3777 kvm_release_pfn_clean(pfn);
3778 return r;
6aa8b732
AK
3779}
3780
0f90e1c1
SC
3781static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3782 u32 error_code, bool prefault)
3783{
3784 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3785
3786 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3787 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3788 PG_LEVEL_2M, false);
0f90e1c1
SC
3789}
3790
1261bfa3 3791int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3792 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3793{
3794 int r = 1;
9ce372b3 3795 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3796
736c291c
SC
3797#ifndef CONFIG_X86_64
3798 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3799 if (WARN_ON_ONCE(fault_address >> 32))
3800 return -EFAULT;
3801#endif
3802
c595ceee 3803 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3804 if (!flags) {
1261bfa3
WL
3805 trace_kvm_page_fault(fault_address, error_code);
3806
d0006530 3807 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3808 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3809 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3810 insn_len);
9ce372b3 3811 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3812 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3813 local_irq_disable();
6bca69ad 3814 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3815 local_irq_enable();
9ce372b3
VK
3816 } else {
3817 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3818 }
9ce372b3 3819
1261bfa3
WL
3820 return r;
3821}
3822EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3823
7a02674d
SC
3824int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3825 bool prefault)
fb72d167 3826{
cb9b88c6 3827 int max_level;
fb72d167 3828
e662ec3e 3829 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3830 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3831 max_level--) {
3832 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3833 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3834
cb9b88c6
SC
3835 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3836 break;
fd136902 3837 }
852e3c19 3838
0f90e1c1
SC
3839 return direct_page_fault(vcpu, gpa, error_code, prefault,
3840 max_level, true);
fb72d167
JR
3841}
3842
8a3c1a33
PB
3843static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3844 struct kvm_mmu *context)
6aa8b732 3845{
6aa8b732 3846 context->page_fault = nonpaging_page_fault;
6aa8b732 3847 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3848 context->sync_page = nonpaging_sync_page;
5efac074 3849 context->invlpg = NULL;
cea0f0e7 3850 context->root_level = 0;
6aa8b732 3851 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3852 context->direct_map = true;
2d48a985 3853 context->nx = false;
6aa8b732
AK
3854}
3855
be01e8e2 3856static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3857 union kvm_mmu_page_role role)
3858{
be01e8e2 3859 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3860 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3861 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3862}
3863
b94742c9 3864/*
be01e8e2 3865 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3866 * The current root is also inserted into the cache.
3867 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3868 * returned.
3869 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3870 * false is returned. This root should now be freed by the caller.
3871 */
be01e8e2 3872static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3873 union kvm_mmu_page_role new_role)
3874{
3875 uint i;
3876 struct kvm_mmu_root_info root;
44dd3ffa 3877 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3878
be01e8e2 3879 root.pgd = mmu->root_pgd;
b94742c9
JS
3880 root.hpa = mmu->root_hpa;
3881
be01e8e2 3882 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3883 return true;
3884
b94742c9
JS
3885 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3886 swap(root, mmu->prev_roots[i]);
3887
be01e8e2 3888 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3889 break;
3890 }
3891
3892 mmu->root_hpa = root.hpa;
be01e8e2 3893 mmu->root_pgd = root.pgd;
b94742c9
JS
3894
3895 return i < KVM_MMU_NUM_PREV_ROOTS;
3896}
3897
be01e8e2 3898static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3899 union kvm_mmu_page_role new_role)
6aa8b732 3900{
44dd3ffa 3901 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3902
3903 /*
3904 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3905 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3906 * later if necessary.
3907 */
3908 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3909 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3910 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3911
3912 return false;
6aa8b732
AK
3913}
3914
be01e8e2 3915static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3916 union kvm_mmu_page_role new_role,
4a632ac6 3917 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3918{
be01e8e2 3919 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3920 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3921 return;
3922 }
3923
3924 /*
3925 * It's possible that the cached previous root page is obsolete because
3926 * of a change in the MMU generation number. However, changing the
3927 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3928 * free the root set here and allocate a new one.
3929 */
3930 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3931
71fe7013 3932 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3933 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3934 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3935 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3936
3937 /*
3938 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3939 * switching to a new CR3, that GVA->GPA mapping may no longer be
3940 * valid. So clear any cached MMIO info even when we don't need to sync
3941 * the shadow page tables.
3942 */
3943 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3944
daa5b6c1
BG
3945 /*
3946 * If this is a direct root page, it doesn't have a write flooding
3947 * count. Otherwise, clear the write flooding count.
3948 */
3949 if (!new_role.direct)
3950 __clear_sp_write_flooding_count(
3951 to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3952}
3953
be01e8e2 3954void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3955 bool skip_mmu_sync)
0aab33e4 3956{
be01e8e2 3957 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3958 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3959}
be01e8e2 3960EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3961
5777ed34
JR
3962static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3963{
9f8fe504 3964 return kvm_read_cr3(vcpu);
5777ed34
JR
3965}
3966
54bf36aa 3967static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3968 unsigned int access, int *nr_present)
ce88decf
XG
3969{
3970 if (unlikely(is_mmio_spte(*sptep))) {
3971 if (gfn != get_mmio_spte_gfn(*sptep)) {
3972 mmu_spte_clear_no_track(sptep);
3973 return true;
3974 }
3975
3976 (*nr_present)++;
54bf36aa 3977 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3978 return true;
3979 }
3980
3981 return false;
3982}
3983
6bb69c9b
PB
3984static inline bool is_last_gpte(struct kvm_mmu *mmu,
3985 unsigned level, unsigned gpte)
6fd01b71 3986{
6bb69c9b
PB
3987 /*
3988 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3989 * If it is clear, there are no large pages at this level, so clear
3990 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3991 */
3992 gpte &= level - mmu->last_nonleaf_level;
3993
829ee279 3994 /*
3bae0459
SC
3995 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3996 * iff level <= PG_LEVEL_4K, which for our purpose means
3997 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3998 */
3bae0459 3999 gpte |= level - PG_LEVEL_4K - 1;
829ee279 4000
6bb69c9b 4001 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4002}
4003
37406aaa
NHE
4004#define PTTYPE_EPT 18 /* arbitrary */
4005#define PTTYPE PTTYPE_EPT
4006#include "paging_tmpl.h"
4007#undef PTTYPE
4008
6aa8b732
AK
4009#define PTTYPE 64
4010#include "paging_tmpl.h"
4011#undef PTTYPE
4012
4013#define PTTYPE 32
4014#include "paging_tmpl.h"
4015#undef PTTYPE
4016
6dc98b86
XG
4017static void
4018__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4019 struct rsvd_bits_validate *rsvd_check,
5b7f575c 4020 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
6fec2144 4021 bool pse, bool amd)
82725b20 4022{
5f7dde7b 4023 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4024 u64 nonleaf_bit8_rsvd = 0;
5b7f575c 4025 u64 high_bits_rsvd;
82725b20 4026
a0a64f50 4027 rsvd_check->bad_mt_xwr = 0;
25d92081 4028
6dc98b86 4029 if (!gbpages)
5f7dde7b 4030 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5 4031
5b7f575c
SC
4032 if (level == PT32E_ROOT_LEVEL)
4033 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4034 else
4035 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4036
4037 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4038 if (!nx)
4039 high_bits_rsvd |= rsvd_bits(63, 63);
4040
a0c0feb5
PB
4041 /*
4042 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4043 * leaf entries) on AMD CPUs only.
4044 */
6fec2144 4045 if (amd)
a0c0feb5
PB
4046 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4047
6dc98b86 4048 switch (level) {
82725b20
DE
4049 case PT32_ROOT_LEVEL:
4050 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4051 rsvd_check->rsvd_bits_mask[0][1] = 0;
4052 rsvd_check->rsvd_bits_mask[0][0] = 0;
4053 rsvd_check->rsvd_bits_mask[1][0] =
4054 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4055
6dc98b86 4056 if (!pse) {
a0a64f50 4057 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4058 break;
4059 }
4060
82725b20
DE
4061 if (is_cpuid_PSE36())
4062 /* 36bits PSE 4MB page */
a0a64f50 4063 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4064 else
4065 /* 32 bits PSE 4MB page */
a0a64f50 4066 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4067 break;
4068 case PT32E_ROOT_LEVEL:
5b7f575c
SC
4069 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4070 high_bits_rsvd |
4071 rsvd_bits(5, 8) |
4072 rsvd_bits(1, 2); /* PDPTE */
4073 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4074 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4075 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4076 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4077 rsvd_check->rsvd_bits_mask[1][0] =
4078 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4079 break;
855feb67 4080 case PT64_ROOT_5LEVEL:
5b7f575c
SC
4081 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4082 nonleaf_bit8_rsvd |
4083 rsvd_bits(7, 7);
855feb67
YZ
4084 rsvd_check->rsvd_bits_mask[1][4] =
4085 rsvd_check->rsvd_bits_mask[0][4];
df561f66 4086 fallthrough;
2a7266a8 4087 case PT64_ROOT_4LEVEL:
5b7f575c
SC
4088 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4089 nonleaf_bit8_rsvd |
4090 rsvd_bits(7, 7);
4091 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4092 gbpages_bit_rsvd;
4093 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4094 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
a0a64f50
XG
4095 rsvd_check->rsvd_bits_mask[1][3] =
4096 rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4097 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4098 gbpages_bit_rsvd |
4099 rsvd_bits(13, 29);
4100 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4101 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4102 rsvd_check->rsvd_bits_mask[1][0] =
4103 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4104 break;
4105 }
4106}
4107
6dc98b86
XG
4108static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4109 struct kvm_mmu *context)
4110{
4111 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
5b7f575c
SC
4112 vcpu->arch.reserved_gpa_bits,
4113 context->root_level, context->nx,
d6321d49 4114 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4115 is_pse(vcpu),
4116 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4117}
4118
81b8eebb
XG
4119static void
4120__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5b7f575c 4121 u64 pa_bits_rsvd, bool execonly)
25d92081 4122{
5b7f575c 4123 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
951f9fd7 4124 u64 bad_mt_xwr;
25d92081 4125
5b7f575c
SC
4126 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4127 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4128 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4129 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4130 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
25d92081
YZ
4131
4132 /* large page */
855feb67 4133 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50 4134 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4135 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4136 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
a0a64f50 4137 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4138
951f9fd7
PB
4139 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4140 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4141 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4142 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4143 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4144 if (!execonly) {
4145 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4146 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4147 }
951f9fd7 4148 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4149}
4150
81b8eebb
XG
4151static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4152 struct kvm_mmu *context, bool execonly)
4153{
4154 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5b7f575c 4155 vcpu->arch.reserved_gpa_bits, execonly);
81b8eebb
XG
4156}
4157
6f8e65a6
SC
4158static inline u64 reserved_hpa_bits(void)
4159{
4160 return rsvd_bits(shadow_phys_bits, 63);
4161}
4162
c258b62b
XG
4163/*
4164 * the page table on host is the shadow page table for the page
4165 * table in guest or amd nested guest, its mmu features completely
4166 * follow the features in guest.
4167 */
4168void
4169reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4170{
36d9594d
VK
4171 bool uses_nx = context->nx ||
4172 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4173 struct rsvd_bits_validate *shadow_zero_check;
4174 int i;
5f0b8199 4175
6fec2144
PB
4176 /*
4177 * Passing "true" to the last argument is okay; it adds a check
4178 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4179 */
ea2800dd
BS
4180 shadow_zero_check = &context->shadow_zero_check;
4181 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4182 reserved_hpa_bits(),
5f0b8199 4183 context->shadow_root_level, uses_nx,
d6321d49
RK
4184 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4185 is_pse(vcpu), true);
ea2800dd
BS
4186
4187 if (!shadow_me_mask)
4188 return;
4189
4190 for (i = context->shadow_root_level; --i >= 0;) {
4191 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4192 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4193 }
4194
c258b62b
XG
4195}
4196EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4197
6fec2144
PB
4198static inline bool boot_cpu_is_amd(void)
4199{
4200 WARN_ON_ONCE(!tdp_enabled);
4201 return shadow_x_mask == 0;
4202}
4203
c258b62b
XG
4204/*
4205 * the direct page table on host, use as much mmu features as
4206 * possible, however, kvm currently does not do execution-protection.
4207 */
4208static void
4209reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4210 struct kvm_mmu *context)
4211{
ea2800dd
BS
4212 struct rsvd_bits_validate *shadow_zero_check;
4213 int i;
4214
4215 shadow_zero_check = &context->shadow_zero_check;
4216
6fec2144 4217 if (boot_cpu_is_amd())
ea2800dd 4218 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4219 reserved_hpa_bits(),
c258b62b 4220 context->shadow_root_level, false,
b8291adc
BP
4221 boot_cpu_has(X86_FEATURE_GBPAGES),
4222 true, true);
c258b62b 4223 else
ea2800dd 4224 __reset_rsvds_bits_mask_ept(shadow_zero_check,
6f8e65a6 4225 reserved_hpa_bits(), false);
c258b62b 4226
ea2800dd
BS
4227 if (!shadow_me_mask)
4228 return;
4229
4230 for (i = context->shadow_root_level; --i >= 0;) {
4231 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4232 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4233 }
c258b62b
XG
4234}
4235
4236/*
4237 * as the comments in reset_shadow_zero_bits_mask() except it
4238 * is the shadow page table for intel nested guest.
4239 */
4240static void
4241reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4242 struct kvm_mmu *context, bool execonly)
4243{
4244 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
6f8e65a6 4245 reserved_hpa_bits(), execonly);
c258b62b
XG
4246}
4247
09f037aa
PB
4248#define BYTE_MASK(access) \
4249 ((1 & (access) ? 2 : 0) | \
4250 (2 & (access) ? 4 : 0) | \
4251 (3 & (access) ? 8 : 0) | \
4252 (4 & (access) ? 16 : 0) | \
4253 (5 & (access) ? 32 : 0) | \
4254 (6 & (access) ? 64 : 0) | \
4255 (7 & (access) ? 128 : 0))
4256
4257
edc90b7d
XG
4258static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4259 struct kvm_mmu *mmu, bool ept)
97d64b78 4260{
09f037aa
PB
4261 unsigned byte;
4262
4263 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4264 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4265 const u8 u = BYTE_MASK(ACC_USER_MASK);
4266
4267 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4268 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4269 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4270
97d64b78 4271 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4272 unsigned pfec = byte << 1;
4273
97ec8c06 4274 /*
09f037aa
PB
4275 * Each "*f" variable has a 1 bit for each UWX value
4276 * that causes a fault with the given PFEC.
97ec8c06 4277 */
97d64b78 4278
09f037aa 4279 /* Faults from writes to non-writable pages */
a6a6d3b1 4280 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4281 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4282 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4283 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4284 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4285 /* Faults from kernel mode fetches of user pages */
4286 u8 smepf = 0;
4287 /* Faults from kernel mode accesses of user pages */
4288 u8 smapf = 0;
4289
4290 if (!ept) {
4291 /* Faults from kernel mode accesses to user pages */
4292 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4293
4294 /* Not really needed: !nx will cause pte.nx to fault */
4295 if (!mmu->nx)
4296 ff = 0;
4297
4298 /* Allow supervisor writes if !cr0.wp */
4299 if (!cr0_wp)
4300 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4301
4302 /* Disallow supervisor fetches of user code if cr4.smep */
4303 if (cr4_smep)
4304 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4305
4306 /*
4307 * SMAP:kernel-mode data accesses from user-mode
4308 * mappings should fault. A fault is considered
4309 * as a SMAP violation if all of the following
39337ad1 4310 * conditions are true:
09f037aa
PB
4311 * - X86_CR4_SMAP is set in CR4
4312 * - A user page is accessed
4313 * - The access is not a fetch
4314 * - Page fault in kernel mode
4315 * - if CPL = 3 or X86_EFLAGS_AC is clear
4316 *
4317 * Here, we cover the first three conditions.
4318 * The fourth is computed dynamically in permission_fault();
4319 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4320 * *not* subject to SMAP restrictions.
4321 */
4322 if (cr4_smap)
4323 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4324 }
09f037aa
PB
4325
4326 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4327 }
4328}
4329
2d344105
HH
4330/*
4331* PKU is an additional mechanism by which the paging controls access to
4332* user-mode addresses based on the value in the PKRU register. Protection
4333* key violations are reported through a bit in the page fault error code.
4334* Unlike other bits of the error code, the PK bit is not known at the
4335* call site of e.g. gva_to_gpa; it must be computed directly in
4336* permission_fault based on two bits of PKRU, on some machine state (CR4,
4337* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4338*
4339* In particular the following conditions come from the error code, the
4340* page tables and the machine state:
4341* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4342* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4343* - PK is always zero if U=0 in the page tables
4344* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4345*
4346* The PKRU bitmask caches the result of these four conditions. The error
4347* code (minus the P bit) and the page table's U bit form an index into the
4348* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4349* with the two bits of the PKRU register corresponding to the protection key.
4350* For the first three conditions above the bits will be 00, thus masking
4351* away both AD and WD. For all reads or if the last condition holds, WD
4352* only will be masked away.
4353*/
4354static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4355 bool ept)
4356{
4357 unsigned bit;
4358 bool wp;
4359
4360 if (ept) {
4361 mmu->pkru_mask = 0;
4362 return;
4363 }
4364
4365 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4366 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4367 mmu->pkru_mask = 0;
4368 return;
4369 }
4370
4371 wp = is_write_protection(vcpu);
4372
4373 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4374 unsigned pfec, pkey_bits;
4375 bool check_pkey, check_write, ff, uf, wf, pte_user;
4376
4377 pfec = bit << 1;
4378 ff = pfec & PFERR_FETCH_MASK;
4379 uf = pfec & PFERR_USER_MASK;
4380 wf = pfec & PFERR_WRITE_MASK;
4381
4382 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4383 pte_user = pfec & PFERR_RSVD_MASK;
4384
4385 /*
4386 * Only need to check the access which is not an
4387 * instruction fetch and is to a user page.
4388 */
4389 check_pkey = (!ff && pte_user);
4390 /*
4391 * write access is controlled by PKRU if it is a
4392 * user access or CR0.WP = 1.
4393 */
4394 check_write = check_pkey && wf && (uf || wp);
4395
4396 /* PKRU.AD stops both read and write access. */
4397 pkey_bits = !!check_pkey;
4398 /* PKRU.WD stops write access. */
4399 pkey_bits |= (!!check_write) << 1;
4400
4401 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4402 }
4403}
4404
6bb69c9b 4405static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4406{
6bb69c9b
PB
4407 unsigned root_level = mmu->root_level;
4408
4409 mmu->last_nonleaf_level = root_level;
4410 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4411 mmu->last_nonleaf_level++;
6fd01b71
AK
4412}
4413
8a3c1a33
PB
4414static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4415 struct kvm_mmu *context,
4416 int level)
6aa8b732 4417{
2d48a985 4418 context->nx = is_nx(vcpu);
4d6931c3 4419 context->root_level = level;
2d48a985 4420
4d6931c3 4421 reset_rsvds_bits_mask(vcpu, context);
25d92081 4422 update_permission_bitmask(vcpu, context, false);
2d344105 4423 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4424 update_last_nonleaf_level(vcpu, context);
6aa8b732 4425
fa4a2c08 4426 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4427 context->page_fault = paging64_page_fault;
6aa8b732 4428 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4429 context->sync_page = paging64_sync_page;
a7052897 4430 context->invlpg = paging64_invlpg;
17ac10ad 4431 context->shadow_root_level = level;
c5a78f2b 4432 context->direct_map = false;
6aa8b732
AK
4433}
4434
8a3c1a33
PB
4435static void paging64_init_context(struct kvm_vcpu *vcpu,
4436 struct kvm_mmu *context)
17ac10ad 4437{
855feb67
YZ
4438 int root_level = is_la57_mode(vcpu) ?
4439 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4440
4441 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4442}
4443
8a3c1a33
PB
4444static void paging32_init_context(struct kvm_vcpu *vcpu,
4445 struct kvm_mmu *context)
6aa8b732 4446{
2d48a985 4447 context->nx = false;
4d6931c3 4448 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4449
4d6931c3 4450 reset_rsvds_bits_mask(vcpu, context);
25d92081 4451 update_permission_bitmask(vcpu, context, false);
2d344105 4452 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4453 update_last_nonleaf_level(vcpu, context);
6aa8b732 4454
6aa8b732 4455 context->page_fault = paging32_page_fault;
6aa8b732 4456 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4457 context->sync_page = paging32_sync_page;
a7052897 4458 context->invlpg = paging32_invlpg;
6aa8b732 4459 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4460 context->direct_map = false;
6aa8b732
AK
4461}
4462
8a3c1a33
PB
4463static void paging32E_init_context(struct kvm_vcpu *vcpu,
4464 struct kvm_mmu *context)
6aa8b732 4465{
8a3c1a33 4466 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4467}
4468
a336282d
VK
4469static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4470{
4471 union kvm_mmu_extended_role ext = {0};
4472
7dcd5755 4473 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4474 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4475 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4476 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4477 ext.cr4_pse = !!is_pse(vcpu);
4478 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4479 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4480
4481 ext.valid = 1;
4482
4483 return ext;
4484}
4485
7dcd5755
VK
4486static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4487 bool base_only)
4488{
4489 union kvm_mmu_role role = {0};
4490
4491 role.base.access = ACC_ALL;
4492 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4493 role.base.cr0_wp = is_write_protection(vcpu);
4494 role.base.smm = is_smm(vcpu);
4495 role.base.guest_mode = is_guest_mode(vcpu);
4496
4497 if (base_only)
4498 return role;
4499
4500 role.ext = kvm_calc_mmu_role_ext(vcpu);
4501
4502 return role;
4503}
4504
d468d94b
SC
4505static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4506{
4507 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4508 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4509 return 4;
4510
83013059 4511 return max_tdp_level;
d468d94b
SC
4512}
4513
7dcd5755
VK
4514static union kvm_mmu_role
4515kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4516{
7dcd5755 4517 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4518
7dcd5755 4519 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4520 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4521 role.base.direct = true;
47c42e6b 4522 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4523
4524 return role;
4525}
4526
8a3c1a33 4527static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4528{
8c008659 4529 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4530 union kvm_mmu_role new_role =
4531 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4532
7dcd5755
VK
4533 if (new_role.as_u64 == context->mmu_role.as_u64)
4534 return;
4535
4536 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4537 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4538 context->sync_page = nonpaging_sync_page;
5efac074 4539 context->invlpg = NULL;
d468d94b 4540 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4541 context->direct_map = true;
d8dd54e0 4542 context->get_guest_pgd = get_cr3;
e4e517b4 4543 context->get_pdptr = kvm_pdptr_read;
cb659db8 4544 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4545
4546 if (!is_paging(vcpu)) {
2d48a985 4547 context->nx = false;
fb72d167
JR
4548 context->gva_to_gpa = nonpaging_gva_to_gpa;
4549 context->root_level = 0;
4550 } else if (is_long_mode(vcpu)) {
2d48a985 4551 context->nx = is_nx(vcpu);
855feb67
YZ
4552 context->root_level = is_la57_mode(vcpu) ?
4553 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4554 reset_rsvds_bits_mask(vcpu, context);
4555 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4556 } else if (is_pae(vcpu)) {
2d48a985 4557 context->nx = is_nx(vcpu);
fb72d167 4558 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4559 reset_rsvds_bits_mask(vcpu, context);
4560 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4561 } else {
2d48a985 4562 context->nx = false;
fb72d167 4563 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4564 reset_rsvds_bits_mask(vcpu, context);
4565 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4566 }
4567
25d92081 4568 update_permission_bitmask(vcpu, context, false);
2d344105 4569 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4570 update_last_nonleaf_level(vcpu, context);
c258b62b 4571 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4572}
4573
7dcd5755 4574static union kvm_mmu_role
59505b55 4575kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4576{
4577 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4578
4579 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4580 !is_write_protection(vcpu);
4581 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4582 !is_write_protection(vcpu);
47c42e6b 4583 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4584
59505b55
SC
4585 return role;
4586}
4587
4588static union kvm_mmu_role
4589kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4590{
4591 union kvm_mmu_role role =
4592 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4593
4594 role.base.direct = !is_paging(vcpu);
4595
9fa72119 4596 if (!is_long_mode(vcpu))
7dcd5755 4597 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4598 else if (is_la57_mode(vcpu))
7dcd5755 4599 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4600 else
7dcd5755 4601 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4602
4603 return role;
4604}
4605
8c008659
PB
4606static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4607 u32 cr0, u32 cr4, u32 efer,
4608 union kvm_mmu_role new_role)
9fa72119 4609{
929d1cfa 4610 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4611 nonpaging_init_context(vcpu, context);
929d1cfa 4612 else if (efer & EFER_LMA)
8a3c1a33 4613 paging64_init_context(vcpu, context);
929d1cfa 4614 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4615 paging32E_init_context(vcpu, context);
6aa8b732 4616 else
8a3c1a33 4617 paging32_init_context(vcpu, context);
a770f6f2 4618
7dcd5755 4619 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4620 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4621}
0f04a2ac
VK
4622
4623static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4624{
8c008659 4625 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4626 union kvm_mmu_role new_role =
4627 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4628
4629 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4630 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4631}
4632
59505b55
SC
4633static union kvm_mmu_role
4634kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4635{
4636 union kvm_mmu_role role =
4637 kvm_calc_shadow_root_page_role_common(vcpu, false);
4638
4639 role.base.direct = false;
d468d94b 4640 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4641
4642 return role;
4643}
4644
0f04a2ac
VK
4645void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4646 gpa_t nested_cr3)
4647{
8c008659 4648 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4649 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4650
a506fdd2
VK
4651 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4652
a3322d5c 4653 if (new_role.as_u64 != context->mmu_role.as_u64) {
8c008659 4654 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
a3322d5c
SC
4655
4656 /*
4657 * Override the level set by the common init helper, nested TDP
4658 * always uses the host's TDP configuration.
4659 */
4660 context->shadow_root_level = new_role.base.level;
4661 }
0f04a2ac
VK
4662}
4663EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4664
a336282d
VK
4665static union kvm_mmu_role
4666kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4667 bool execonly, u8 level)
9fa72119 4668{
552c69b1 4669 union kvm_mmu_role role = {0};
14c07ad8 4670
47c42e6b
SC
4671 /* SMM flag is inherited from root_mmu */
4672 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4673
bb1fcc70 4674 role.base.level = level;
47c42e6b 4675 role.base.gpte_is_8_bytes = true;
a336282d
VK
4676 role.base.direct = false;
4677 role.base.ad_disabled = !accessed_dirty;
4678 role.base.guest_mode = true;
4679 role.base.access = ACC_ALL;
9fa72119 4680
47c42e6b
SC
4681 /*
4682 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4683 * SMAP variation to denote shadow EPT entries.
4684 */
4685 role.base.cr0_wp = true;
4686 role.base.smap_andnot_wp = true;
4687
552c69b1 4688 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4689 role.ext.execonly = execonly;
9fa72119
JS
4690
4691 return role;
4692}
4693
ae1e2d10 4694void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4695 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4696{
8c008659 4697 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4698 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4699 union kvm_mmu_role new_role =
4700 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4701 execonly, level);
a336282d 4702
be01e8e2 4703 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4704
a336282d
VK
4705 if (new_role.as_u64 == context->mmu_role.as_u64)
4706 return;
ad896af0 4707
bb1fcc70 4708 context->shadow_root_level = level;
155a97a3
NHE
4709
4710 context->nx = true;
ae1e2d10 4711 context->ept_ad = accessed_dirty;
155a97a3
NHE
4712 context->page_fault = ept_page_fault;
4713 context->gva_to_gpa = ept_gva_to_gpa;
4714 context->sync_page = ept_sync_page;
4715 context->invlpg = ept_invlpg;
bb1fcc70 4716 context->root_level = level;
155a97a3 4717 context->direct_map = false;
a336282d 4718 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4719
155a97a3 4720 update_permission_bitmask(vcpu, context, true);
2d344105 4721 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4722 update_last_nonleaf_level(vcpu, context);
155a97a3 4723 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4724 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4725}
4726EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4727
8a3c1a33 4728static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4729{
8c008659 4730 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4731
929d1cfa
PB
4732 kvm_init_shadow_mmu(vcpu,
4733 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4734 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4735 vcpu->arch.efer);
4736
d8dd54e0 4737 context->get_guest_pgd = get_cr3;
ad896af0
PB
4738 context->get_pdptr = kvm_pdptr_read;
4739 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4740}
4741
8a3c1a33 4742static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4743{
bf627a92 4744 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4745 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4746
bf627a92
VK
4747 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4748 return;
4749
4750 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4751 g_context->get_guest_pgd = get_cr3;
e4e517b4 4752 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4753 g_context->inject_page_fault = kvm_inject_page_fault;
4754
5efac074
PB
4755 /*
4756 * L2 page tables are never shadowed, so there is no need to sync
4757 * SPTEs.
4758 */
4759 g_context->invlpg = NULL;
4760
02f59dc9 4761 /*
44dd3ffa 4762 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4763 * L1's nested page tables (e.g. EPT12). The nested translation
4764 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4765 * L2's page tables as the first level of translation and L1's
4766 * nested page tables as the second level of translation. Basically
4767 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4768 */
4769 if (!is_paging(vcpu)) {
2d48a985 4770 g_context->nx = false;
02f59dc9
JR
4771 g_context->root_level = 0;
4772 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4773 } else if (is_long_mode(vcpu)) {
2d48a985 4774 g_context->nx = is_nx(vcpu);
855feb67
YZ
4775 g_context->root_level = is_la57_mode(vcpu) ?
4776 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4777 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4778 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4779 } else if (is_pae(vcpu)) {
2d48a985 4780 g_context->nx = is_nx(vcpu);
02f59dc9 4781 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4782 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4783 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4784 } else {
2d48a985 4785 g_context->nx = false;
02f59dc9 4786 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4787 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4788 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4789 }
4790
25d92081 4791 update_permission_bitmask(vcpu, g_context, false);
2d344105 4792 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4793 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4794}
4795
1c53da3f 4796void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4797{
1c53da3f 4798 if (reset_roots) {
b94742c9
JS
4799 uint i;
4800
44dd3ffa 4801 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4802
4803 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4804 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4805 }
4806
02f59dc9 4807 if (mmu_is_nested(vcpu))
e0c6db3e 4808 init_kvm_nested_mmu(vcpu);
02f59dc9 4809 else if (tdp_enabled)
e0c6db3e 4810 init_kvm_tdp_mmu(vcpu);
fb72d167 4811 else
e0c6db3e 4812 init_kvm_softmmu(vcpu);
fb72d167 4813}
1c53da3f 4814EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4815
9fa72119
JS
4816static union kvm_mmu_page_role
4817kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4818{
7dcd5755
VK
4819 union kvm_mmu_role role;
4820
9fa72119 4821 if (tdp_enabled)
7dcd5755 4822 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4823 else
7dcd5755
VK
4824 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4825
4826 return role.base;
9fa72119 4827}
fb72d167 4828
8a3c1a33 4829void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4830{
95f93af4 4831 kvm_mmu_unload(vcpu);
1c53da3f 4832 kvm_init_mmu(vcpu, true);
17c3ba9d 4833}
8668a3c4 4834EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4835
4836int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4837{
714b93da
AK
4838 int r;
4839
378f5cd6 4840 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
748e52b9
SC
4841 if (r)
4842 goto out;
4843 r = mmu_alloc_special_roots(vcpu);
17c3ba9d
AK
4844 if (r)
4845 goto out;
4a38162e 4846 if (vcpu->arch.mmu->direct_map)
6e6ec584
SC
4847 r = mmu_alloc_direct_roots(vcpu);
4848 else
4849 r = mmu_alloc_shadow_roots(vcpu);
8986ecc0
MT
4850 if (r)
4851 goto out;
a91f387b
SC
4852
4853 kvm_mmu_sync_roots(vcpu);
4854
727a7e27 4855 kvm_mmu_load_pgd(vcpu);
b3646477 4856 static_call(kvm_x86_tlb_flush_current)(vcpu);
714b93da
AK
4857out:
4858 return r;
6aa8b732 4859}
17c3ba9d
AK
4860
4861void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4862{
14c07ad8
VK
4863 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4864 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4865 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4866 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4867}
6aa8b732 4868
79539cec
AK
4869static bool need_remote_flush(u64 old, u64 new)
4870{
4871 if (!is_shadow_present_pte(old))
4872 return false;
4873 if (!is_shadow_present_pte(new))
4874 return true;
4875 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4876 return true;
53166229
GN
4877 old ^= shadow_nx_mask;
4878 new ^= shadow_nx_mask;
79539cec
AK
4879 return (old & ~new & PT64_PERM_MASK) != 0;
4880}
4881
889e5cbc 4882static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4883 int *bytes)
da4a00f0 4884{
0e0fee5c 4885 u64 gentry = 0;
889e5cbc 4886 int r;
72016f3a 4887
72016f3a
AK
4888 /*
4889 * Assume that the pte write on a page table of the same type
49b26e26
XG
4890 * as the current vcpu paging mode since we update the sptes only
4891 * when they have the same mode.
72016f3a 4892 */
889e5cbc 4893 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4894 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4895 *gpa &= ~(gpa_t)7;
4896 *bytes = 8;
08e850c6
AK
4897 }
4898
0e0fee5c
JS
4899 if (*bytes == 4 || *bytes == 8) {
4900 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4901 if (r)
4902 gentry = 0;
72016f3a
AK
4903 }
4904
889e5cbc
XG
4905 return gentry;
4906}
4907
4908/*
4909 * If we're seeing too many writes to a page, it may no longer be a page table,
4910 * or we may be forking, in which case it is better to unmap the page.
4911 */
a138fe75 4912static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4913{
a30f47cb
XG
4914 /*
4915 * Skip write-flooding detected for the sp whose level is 1, because
4916 * it can become unsync, then the guest page is not write-protected.
4917 */
3bae0459 4918 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4919 return false;
3246af0e 4920
e5691a81
XG
4921 atomic_inc(&sp->write_flooding_count);
4922 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4923}
4924
4925/*
4926 * Misaligned accesses are too much trouble to fix up; also, they usually
4927 * indicate a page is not used as a page table.
4928 */
4929static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4930 int bytes)
4931{
4932 unsigned offset, pte_size, misaligned;
4933
4934 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4935 gpa, bytes, sp->role.word);
4936
4937 offset = offset_in_page(gpa);
47c42e6b 4938 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4939
4940 /*
4941 * Sometimes, the OS only writes the last one bytes to update status
4942 * bits, for example, in linux, andb instruction is used in clear_bit().
4943 */
4944 if (!(offset & (pte_size - 1)) && bytes == 1)
4945 return false;
4946
889e5cbc
XG
4947 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4948 misaligned |= bytes < 4;
4949
4950 return misaligned;
4951}
4952
4953static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4954{
4955 unsigned page_offset, quadrant;
4956 u64 *spte;
4957 int level;
4958
4959 page_offset = offset_in_page(gpa);
4960 level = sp->role.level;
4961 *nspte = 1;
47c42e6b 4962 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4963 page_offset <<= 1; /* 32->64 */
4964 /*
4965 * A 32-bit pde maps 4MB while the shadow pdes map
4966 * only 2MB. So we need to double the offset again
4967 * and zap two pdes instead of one.
4968 */
4969 if (level == PT32_ROOT_LEVEL) {
4970 page_offset &= ~7; /* kill rounding error */
4971 page_offset <<= 1;
4972 *nspte = 2;
4973 }
4974 quadrant = page_offset >> PAGE_SHIFT;
4975 page_offset &= ~PAGE_MASK;
4976 if (quadrant != sp->role.quadrant)
4977 return NULL;
4978 }
4979
4980 spte = &sp->spt[page_offset / sizeof(*spte)];
4981 return spte;
4982}
4983
13d268ca 4984static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4985 const u8 *new, int bytes,
4986 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4987{
4988 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4989 struct kvm_mmu_page *sp;
889e5cbc
XG
4990 LIST_HEAD(invalid_list);
4991 u64 entry, gentry, *spte;
4992 int npte;
b8c67b7a 4993 bool remote_flush, local_flush;
889e5cbc
XG
4994
4995 /*
4996 * If we don't have indirect shadow pages, it means no page is
4997 * write-protected, so we can exit simply.
4998 */
6aa7de05 4999 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5000 return;
5001
b8c67b7a 5002 remote_flush = local_flush = false;
889e5cbc
XG
5003
5004 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5005
889e5cbc
XG
5006 /*
5007 * No need to care whether allocation memory is successful
5008 * or not since pte prefetch is skiped if it does not have
5009 * enough objects in the cache.
5010 */
378f5cd6 5011 mmu_topup_memory_caches(vcpu, true);
889e5cbc 5012
531810ca 5013 write_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5014
5015 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5016
889e5cbc 5017 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5018 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5019
b67bfe0d 5020 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5021 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5022 detect_write_flooding(sp)) {
b8c67b7a 5023 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5024 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5025 continue;
5026 }
889e5cbc
XG
5027
5028 spte = get_written_sptes(sp, gpa, &npte);
5029 if (!spte)
5030 continue;
5031
0671a8e7 5032 local_flush = true;
ac1b714e 5033 while (npte--) {
79539cec 5034 entry = *spte;
2de4085c 5035 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
c5e2184d
SC
5036 if (gentry && sp->role.level != PG_LEVEL_4K)
5037 ++vcpu->kvm->stat.mmu_pde_zapped;
9bb4f6b1 5038 if (need_remote_flush(entry, *spte))
0671a8e7 5039 remote_flush = true;
ac1b714e 5040 ++spte;
9b7a0325 5041 }
9b7a0325 5042 }
b8c67b7a 5043 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5044 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
531810ca 5045 write_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5046}
5047
736c291c 5048int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5049 void *insn, int insn_len)
3067714c 5050{
92daa48b 5051 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5052 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5053
6948199a 5054 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5055 return RET_PF_RETRY;
5056
9b8ebbdb 5057 r = RET_PF_INVALID;
e9ee956e 5058 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5059 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5060 if (r == RET_PF_EMULATE)
e9ee956e 5061 goto emulate;
e9ee956e 5062 }
3067714c 5063
9b8ebbdb 5064 if (r == RET_PF_INVALID) {
7a02674d
SC
5065 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5066 lower_32_bits(error_code), false);
7b367bc9
SC
5067 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5068 return -EIO;
9b8ebbdb
PB
5069 }
5070
3067714c 5071 if (r < 0)
e9ee956e 5072 return r;
83a2ba4c
SC
5073 if (r != RET_PF_EMULATE)
5074 return 1;
3067714c 5075
14727754
TL
5076 /*
5077 * Before emulating the instruction, check if the error code
5078 * was due to a RO violation while translating the guest page.
5079 * This can occur when using nested virtualization with nested
5080 * paging in both guests. If true, we simply unprotect the page
5081 * and resume the guest.
14727754 5082 */
44dd3ffa 5083 if (vcpu->arch.mmu->direct_map &&
eebed243 5084 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5085 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5086 return 1;
5087 }
5088
472faffa
SC
5089 /*
5090 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5091 * optimistically try to just unprotect the page and let the processor
5092 * re-execute the instruction that caused the page fault. Do not allow
5093 * retrying MMIO emulation, as it's not only pointless but could also
5094 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5095 * faulting on the non-existent MMIO address. Retrying an instruction
5096 * from a nested guest is also pointless and dangerous as we are only
5097 * explicitly shadowing L1's page tables, i.e. unprotecting something
5098 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5099 */
736c291c 5100 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5101 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5102emulate:
736c291c 5103 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5104 insn_len);
3067714c
AK
5105}
5106EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5107
5efac074
PB
5108void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5109 gva_t gva, hpa_t root_hpa)
a7052897 5110{
b94742c9 5111 int i;
7eb77e9f 5112
5efac074
PB
5113 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5114 if (mmu != &vcpu->arch.guest_mmu) {
5115 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5116 if (is_noncanonical_address(gva, vcpu))
5117 return;
5118
b3646477 5119 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5efac074
PB
5120 }
5121
5122 if (!mmu->invlpg)
faff8758
JS
5123 return;
5124
5efac074
PB
5125 if (root_hpa == INVALID_PAGE) {
5126 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5127
5efac074
PB
5128 /*
5129 * INVLPG is required to invalidate any global mappings for the VA,
5130 * irrespective of PCID. Since it would take us roughly similar amount
5131 * of work to determine whether any of the prev_root mappings of the VA
5132 * is marked global, or to just sync it blindly, so we might as well
5133 * just always sync it.
5134 *
5135 * Mappings not reachable via the current cr3 or the prev_roots will be
5136 * synced when switching to that cr3, so nothing needs to be done here
5137 * for them.
5138 */
5139 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5140 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5141 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5142 } else {
5143 mmu->invlpg(vcpu, gva, root_hpa);
5144 }
5145}
956bf353 5146
5efac074
PB
5147void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5148{
5149 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5150 ++vcpu->stat.invlpg;
5151}
5152EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5153
5efac074 5154
eb4b248e
JS
5155void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5156{
44dd3ffa 5157 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5158 bool tlb_flush = false;
b94742c9 5159 uint i;
eb4b248e
JS
5160
5161 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5162 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5163 tlb_flush = true;
eb4b248e
JS
5164 }
5165
b94742c9
JS
5166 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5167 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5168 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5169 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5170 tlb_flush = true;
5171 }
956bf353 5172 }
ade61e28 5173
faff8758 5174 if (tlb_flush)
b3646477 5175 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
faff8758 5176
eb4b248e
JS
5177 ++vcpu->stat.invlpg;
5178
5179 /*
b94742c9
JS
5180 * Mappings not reachable via the current cr3 or the prev_roots will be
5181 * synced when switching to that cr3, so nothing needs to be done here
5182 * for them.
eb4b248e
JS
5183 */
5184}
eb4b248e 5185
83013059
SC
5186void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5187 int tdp_huge_page_level)
18552672 5188{
bde77235 5189 tdp_enabled = enable_tdp;
83013059 5190 max_tdp_level = tdp_max_root_level;
703c335d
SC
5191
5192 /*
1d92d2e8 5193 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5194 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5195 * the kernel is not. But, KVM never creates a page size greater than
5196 * what is used by the kernel for any given HVA, i.e. the kernel's
5197 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5198 */
5199 if (tdp_enabled)
1d92d2e8 5200 max_huge_page_level = tdp_huge_page_level;
703c335d 5201 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5202 max_huge_page_level = PG_LEVEL_1G;
703c335d 5203 else
1d92d2e8 5204 max_huge_page_level = PG_LEVEL_2M;
18552672 5205}
bde77235 5206EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5207
5208/* The return value indicates if tlb flush on all vcpus is needed. */
0a234f5d
SC
5209typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5210 struct kvm_memory_slot *slot);
85875a13
SC
5211
5212/* The caller should hold mmu-lock before calling this function. */
5213static __always_inline bool
5214slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5215 slot_level_handler fn, int start_level, int end_level,
1a61b7db
SC
5216 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5217 bool flush)
85875a13
SC
5218{
5219 struct slot_rmap_walk_iterator iterator;
85875a13
SC
5220
5221 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5222 end_gfn, &iterator) {
5223 if (iterator.rmap)
0a234f5d 5224 flush |= fn(kvm, iterator.rmap, memslot);
85875a13 5225
531810ca 5226 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
302695a5 5227 if (flush && flush_on_yield) {
f285c633
BG
5228 kvm_flush_remote_tlbs_with_address(kvm,
5229 start_gfn,
5230 iterator.gfn - start_gfn + 1);
85875a13
SC
5231 flush = false;
5232 }
531810ca 5233 cond_resched_rwlock_write(&kvm->mmu_lock);
85875a13
SC
5234 }
5235 }
5236
85875a13
SC
5237 return flush;
5238}
5239
5240static __always_inline bool
5241slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5242 slot_level_handler fn, int start_level, int end_level,
302695a5 5243 bool flush_on_yield)
85875a13
SC
5244{
5245 return slot_handle_level_range(kvm, memslot, fn, start_level,
5246 end_level, memslot->base_gfn,
5247 memslot->base_gfn + memslot->npages - 1,
1a61b7db 5248 flush_on_yield, false);
85875a13
SC
5249}
5250
85875a13
SC
5251static __always_inline bool
5252slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
302695a5 5253 slot_level_handler fn, bool flush_on_yield)
85875a13 5254{
3bae0459 5255 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
302695a5 5256 PG_LEVEL_4K, flush_on_yield);
85875a13
SC
5257}
5258
1cfff4d9 5259static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5260{
4a98623d
SC
5261 if (!tdp_enabled && mmu->pae_root)
5262 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
1cfff4d9
JP
5263 free_page((unsigned long)mmu->pae_root);
5264 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5265}
5266
04d28e37 5267static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5268{
17ac10ad 5269 struct page *page;
6aa8b732
AK
5270 int i;
5271
04d28e37
SC
5272 mmu->root_hpa = INVALID_PAGE;
5273 mmu->root_pgd = 0;
5274 mmu->translate_gpa = translate_gpa;
5275 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5276 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5277
17ac10ad 5278 /*
b6b80c78
SC
5279 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5280 * while the PDP table is a per-vCPU construct that's allocated at MMU
5281 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5282 * x86_64. Therefore we need to allocate the PDP table in the first
04d45551
SC
5283 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5284 * generally doesn't use PAE paging and can skip allocating the PDP
5285 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5286 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5287 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
17ac10ad 5288 */
d468d94b 5289 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5290 return 0;
5291
254272ce 5292 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5293 if (!page)
d7fa6ab2
WY
5294 return -ENOMEM;
5295
1cfff4d9 5296 mmu->pae_root = page_address(page);
4a98623d
SC
5297
5298 /*
5299 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5300 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5301 * that KVM's writes and the CPU's reads get along. Note, this is
5302 * only necessary when using shadow paging, as 64-bit NPT can get at
5303 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5304 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5305 */
5306 if (!tdp_enabled)
5307 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5308 else
5309 WARN_ON_ONCE(shadow_me_mask);
5310
17ac10ad 5311 for (i = 0; i < 4; ++i)
c834e5e4 5312 mmu->pae_root[i] = INVALID_PAE_ROOT;
17ac10ad 5313
6aa8b732 5314 return 0;
6aa8b732
AK
5315}
5316
8018c27b 5317int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5318{
1cfff4d9 5319 int ret;
b94742c9 5320
5962bfb7 5321 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5322 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5323
5962bfb7 5324 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5325 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5326
96880883
SC
5327 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5328
44dd3ffa
VK
5329 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5330 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5331
14c07ad8 5332 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5333
04d28e37 5334 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5335 if (ret)
5336 return ret;
5337
04d28e37 5338 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5339 if (ret)
5340 goto fail_allocate_root;
5341
5342 return ret;
5343 fail_allocate_root:
5344 free_mmu_pages(&vcpu->arch.guest_mmu);
5345 return ret;
6aa8b732
AK
5346}
5347
fbb158cb 5348#define BATCH_ZAP_PAGES 10
002c5f73
SC
5349static void kvm_zap_obsolete_pages(struct kvm *kvm)
5350{
5351 struct kvm_mmu_page *sp, *node;
fbb158cb 5352 int nr_zapped, batch = 0;
002c5f73
SC
5353
5354restart:
5355 list_for_each_entry_safe_reverse(sp, node,
5356 &kvm->arch.active_mmu_pages, link) {
5357 /*
5358 * No obsolete valid page exists before a newly created page
5359 * since active_mmu_pages is a FIFO list.
5360 */
5361 if (!is_obsolete_sp(kvm, sp))
5362 break;
5363
5364 /*
f95eec9b
SC
5365 * Invalid pages should never land back on the list of active
5366 * pages. Skip the bogus page, otherwise we'll get stuck in an
5367 * infinite loop if the page gets put back on the list (again).
002c5f73 5368 */
f95eec9b 5369 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5370 continue;
5371
4506ecf4
SC
5372 /*
5373 * No need to flush the TLB since we're only zapping shadow
5374 * pages with an obsolete generation number and all vCPUS have
5375 * loaded a new root, i.e. the shadow pages being zapped cannot
5376 * be in active use by the guest.
5377 */
fbb158cb 5378 if (batch >= BATCH_ZAP_PAGES &&
531810ca 5379 cond_resched_rwlock_write(&kvm->mmu_lock)) {
fbb158cb 5380 batch = 0;
002c5f73
SC
5381 goto restart;
5382 }
5383
10605204
SC
5384 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5385 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5386 batch += nr_zapped;
002c5f73 5387 goto restart;
fbb158cb 5388 }
002c5f73
SC
5389 }
5390
4506ecf4
SC
5391 /*
5392 * Trigger a remote TLB flush before freeing the page tables to ensure
5393 * KVM is not in the middle of a lockless shadow page table walk, which
5394 * may reference the pages.
5395 */
10605204 5396 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5397}
5398
5399/*
5400 * Fast invalidate all shadow pages and use lock-break technique
5401 * to zap obsolete pages.
5402 *
5403 * It's required when memslot is being deleted or VM is being
5404 * destroyed, in these cases, we should ensure that KVM MMU does
5405 * not use any resource of the being-deleted slot or all slots
5406 * after calling the function.
5407 */
5408static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5409{
ca333add
SC
5410 lockdep_assert_held(&kvm->slots_lock);
5411
531810ca 5412 write_lock(&kvm->mmu_lock);
14a3c4f4 5413 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5414
5415 /*
5416 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5417 * held for the entire duration of zapping obsolete pages, it's
5418 * impossible for there to be multiple invalid generations associated
5419 * with *valid* shadow pages at any given time, i.e. there is exactly
5420 * one valid generation and (at most) one invalid generation.
5421 */
5422 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5423
4506ecf4
SC
5424 /*
5425 * Notify all vcpus to reload its shadow page table and flush TLB.
5426 * Then all vcpus will switch to new shadow page table with the new
5427 * mmu_valid_gen.
5428 *
5429 * Note: we need to do this under the protection of mmu_lock,
5430 * otherwise, vcpu would purge shadow page but miss tlb flush.
5431 */
5432 kvm_reload_remote_mmus(kvm);
5433
002c5f73 5434 kvm_zap_obsolete_pages(kvm);
faaf05b0 5435
897218ff 5436 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5437 kvm_tdp_mmu_zap_all(kvm);
5438
531810ca 5439 write_unlock(&kvm->mmu_lock);
002c5f73
SC
5440}
5441
10605204
SC
5442static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5443{
5444 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5445}
5446
b5f5fdca 5447static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5448 struct kvm_memory_slot *slot,
5449 struct kvm_page_track_notifier_node *node)
b5f5fdca 5450{
002c5f73 5451 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5452}
5453
13d268ca 5454void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5455{
13d268ca 5456 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5457
fe5db27d
BG
5458 kvm_mmu_init_tdp_mmu(kvm);
5459
13d268ca 5460 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5461 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5462 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5463}
5464
13d268ca 5465void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5466{
13d268ca 5467 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5468
13d268ca 5469 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5470
5471 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5472}
5473
efdfe536
XG
5474void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5475{
5476 struct kvm_memslots *slots;
5477 struct kvm_memory_slot *memslot;
9da0e4d5 5478 int i;
1a61b7db 5479 bool flush = false;
efdfe536 5480
531810ca 5481 write_lock(&kvm->mmu_lock);
9da0e4d5
PB
5482 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5483 slots = __kvm_memslots(kvm, i);
5484 kvm_for_each_memslot(memslot, slots) {
5485 gfn_t start, end;
5486
5487 start = max(gfn_start, memslot->base_gfn);
5488 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5489 if (start >= end)
5490 continue;
efdfe536 5491
302695a5
SC
5492 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5493 PG_LEVEL_4K,
5494 KVM_MAX_HUGEPAGE_LEVEL,
1a61b7db 5495 start, end - 1, true, flush);
9da0e4d5 5496 }
efdfe536
XG
5497 }
5498
2b9663d8
SC
5499 if (flush)
5500 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5501
531810ca 5502 write_unlock(&kvm->mmu_lock);
6103bc07
BG
5503
5504 if (is_tdp_mmu_enabled(kvm)) {
5505 flush = false;
5506
5507 read_lock(&kvm->mmu_lock);
5508 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5509 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5510 gfn_end, flush, true);
5511 if (flush)
5512 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5513 gfn_end);
5514
5515 read_unlock(&kvm->mmu_lock);
5516 }
efdfe536
XG
5517}
5518
018aabb5 5519static bool slot_rmap_write_protect(struct kvm *kvm,
0a234f5d
SC
5520 struct kvm_rmap_head *rmap_head,
5521 struct kvm_memory_slot *slot)
d77aa73c 5522{
018aabb5 5523 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5524}
5525
1c91cad4 5526void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5527 struct kvm_memory_slot *memslot,
5528 int start_level)
6aa8b732 5529{
d77aa73c 5530 bool flush;
6aa8b732 5531
531810ca 5532 write_lock(&kvm->mmu_lock);
3c9bd400 5533 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5534 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
897218ff 5535 if (is_tdp_mmu_enabled(kvm))
dbb6964e 5536 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
531810ca 5537 write_unlock(&kvm->mmu_lock);
198c74f4 5538
198c74f4
XG
5539 /*
5540 * We can flush all the TLBs out of the mmu lock without TLB
5541 * corruption since we just change the spte from writable to
5542 * readonly so that we only need to care the case of changing
5543 * spte from present to present (changing the spte from present
5544 * to nonpresent will flush all the TLBs immediately), in other
5545 * words, the only case we care is mmu_spte_update() where we
5fc3424f
SC
5546 * have checked Host-writable | MMU-writable instead of
5547 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5548 * anymore.
198c74f4 5549 */
d91ffee9 5550 if (flush)
7f42aa76 5551 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5552}
37a7d8b0 5553
3ea3b7fa 5554static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
0a234f5d
SC
5555 struct kvm_rmap_head *rmap_head,
5556 struct kvm_memory_slot *slot)
3ea3b7fa
WL
5557{
5558 u64 *sptep;
5559 struct rmap_iterator iter;
5560 int need_tlb_flush = 0;
ba049e93 5561 kvm_pfn_t pfn;
3ea3b7fa
WL
5562 struct kvm_mmu_page *sp;
5563
0d536790 5564restart:
018aabb5 5565 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5566 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5567 pfn = spte_to_pfn(*sptep);
5568
5569 /*
decf6333
XG
5570 * We cannot do huge page mapping for indirect shadow pages,
5571 * which are found on the last rmap (level = 1) when not using
5572 * tdp; such shadow pages are synced with the page table in
5573 * the guest, and the guest page table is using 4K page size
5574 * mapping if the indirect sp has level = 1.
3ea3b7fa 5575 */
a78986aa 5576 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
9eba50f8
SC
5577 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5578 pfn, PG_LEVEL_NUM)) {
e7912386 5579 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5580
5581 if (kvm_available_flush_tlb_with_range())
5582 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5583 KVM_PAGES_PER_HPAGE(sp->role.level));
5584 else
5585 need_tlb_flush = 1;
5586
0d536790
XG
5587 goto restart;
5588 }
3ea3b7fa
WL
5589 }
5590
5591 return need_tlb_flush;
5592}
5593
5594void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5595 const struct kvm_memory_slot *memslot)
3ea3b7fa 5596{
f36f3f28 5597 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
9eba50f8 5598 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
302695a5 5599 bool flush;
9eba50f8 5600
531810ca 5601 write_lock(&kvm->mmu_lock);
302695a5 5602 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
142ccde1
SC
5603
5604 if (is_tdp_mmu_enabled(kvm))
5605 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5606
302695a5
SC
5607 if (flush)
5608 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
14881998 5609
531810ca 5610 write_unlock(&kvm->mmu_lock);
3ea3b7fa
WL
5611}
5612
b3594ffb 5613void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
6c9dd6d2 5614 const struct kvm_memory_slot *memslot)
b3594ffb
SC
5615{
5616 /*
7f42aa76 5617 * All current use cases for flushing the TLBs for a specific memslot
302695a5 5618 * related to dirty logging, and many do the TLB flush out of mmu_lock.
7f42aa76
SC
5619 * The interaction between the various operations on memslot must be
5620 * serialized by slots_locks to ensure the TLB flush from one operation
5621 * is observed by any other operation on the same memslot.
b3594ffb
SC
5622 */
5623 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5624 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5625 memslot->npages);
b3594ffb
SC
5626}
5627
f4b4b180
KH
5628void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5629 struct kvm_memory_slot *memslot)
5630{
d77aa73c 5631 bool flush;
f4b4b180 5632
531810ca 5633 write_lock(&kvm->mmu_lock);
d77aa73c 5634 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
897218ff 5635 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5636 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
531810ca 5637 write_unlock(&kvm->mmu_lock);
f4b4b180 5638
f4b4b180
KH
5639 /*
5640 * It's also safe to flush TLBs out of mmu lock here as currently this
5641 * function is only used for dirty logging, in which case flushing TLB
5642 * out of mmu lock also guarantees no dirty pages will be lost in
5643 * dirty_bitmap.
5644 */
5645 if (flush)
7f42aa76 5646 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180 5647}
f4b4b180 5648
92f58b5c 5649void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5650{
5651 struct kvm_mmu_page *sp, *node;
7390de1e 5652 LIST_HEAD(invalid_list);
83cdb568 5653 int ign;
5304b8d3 5654
531810ca 5655 write_lock(&kvm->mmu_lock);
5304b8d3 5656restart:
8a674adc 5657 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5658 if (WARN_ON(sp->role.invalid))
4771450c 5659 continue;
92f58b5c 5660 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5661 goto restart;
531810ca 5662 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5304b8d3
XG
5663 goto restart;
5664 }
5665
4771450c 5666 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0 5667
897218ff 5668 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5669 kvm_tdp_mmu_zap_all(kvm);
5670
531810ca 5671 write_unlock(&kvm->mmu_lock);
5304b8d3
XG
5672}
5673
15248258 5674void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5675{
164bf7e5 5676 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5677
164bf7e5 5678 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5679
f8f55942 5680 /*
e1359e2b
SC
5681 * Generation numbers are incremented in multiples of the number of
5682 * address spaces in order to provide unique generations across all
5683 * address spaces. Strip what is effectively the address space
5684 * modifier prior to checking for a wrap of the MMIO generation so
5685 * that a wrap in any address space is detected.
5686 */
5687 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5688
f8f55942 5689 /*
e1359e2b 5690 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5691 * zap all shadow pages.
f8f55942 5692 */
e1359e2b 5693 if (unlikely(gen == 0)) {
ae0f5499 5694 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5695 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5696 }
f8f55942
XG
5697}
5698
70534a73
DC
5699static unsigned long
5700mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5701{
5702 struct kvm *kvm;
1495f230 5703 int nr_to_scan = sc->nr_to_scan;
70534a73 5704 unsigned long freed = 0;
3ee16c81 5705
0d9ce162 5706 mutex_lock(&kvm_lock);
3ee16c81
IE
5707
5708 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5709 int idx;
d98ba053 5710 LIST_HEAD(invalid_list);
3ee16c81 5711
35f2d16b
TY
5712 /*
5713 * Never scan more than sc->nr_to_scan VM instances.
5714 * Will not hit this condition practically since we do not try
5715 * to shrink more than one VM and it is very unlikely to see
5716 * !n_used_mmu_pages so many times.
5717 */
5718 if (!nr_to_scan--)
5719 break;
19526396
GN
5720 /*
5721 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5722 * here. We may skip a VM instance errorneosly, but we do not
5723 * want to shrink a VM that only started to populate its MMU
5724 * anyway.
5725 */
10605204
SC
5726 if (!kvm->arch.n_used_mmu_pages &&
5727 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5728 continue;
19526396 5729
f656ce01 5730 idx = srcu_read_lock(&kvm->srcu);
531810ca 5731 write_lock(&kvm->mmu_lock);
3ee16c81 5732
10605204
SC
5733 if (kvm_has_zapped_obsolete_pages(kvm)) {
5734 kvm_mmu_commit_zap_page(kvm,
5735 &kvm->arch.zapped_obsolete_pages);
5736 goto unlock;
5737 }
5738
ebdb292d 5739 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5740
10605204 5741unlock:
531810ca 5742 write_unlock(&kvm->mmu_lock);
f656ce01 5743 srcu_read_unlock(&kvm->srcu, idx);
19526396 5744
70534a73
DC
5745 /*
5746 * unfair on small ones
5747 * per-vm shrinkers cry out
5748 * sadness comes quickly
5749 */
19526396
GN
5750 list_move_tail(&kvm->vm_list, &vm_list);
5751 break;
3ee16c81 5752 }
3ee16c81 5753
0d9ce162 5754 mutex_unlock(&kvm_lock);
70534a73 5755 return freed;
70534a73
DC
5756}
5757
5758static unsigned long
5759mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5760{
45221ab6 5761 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5762}
5763
5764static struct shrinker mmu_shrinker = {
70534a73
DC
5765 .count_objects = mmu_shrink_count,
5766 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5767 .seeks = DEFAULT_SEEKS * 10,
5768};
5769
2ddfd20e 5770static void mmu_destroy_caches(void)
b5a33a75 5771{
c1bd743e
TH
5772 kmem_cache_destroy(pte_list_desc_cache);
5773 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5774}
5775
b8e8c830
PB
5776static bool get_nx_auto_mode(void)
5777{
5778 /* Return true when CPU has the bug, and mitigations are ON */
5779 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5780}
5781
5782static void __set_nx_huge_pages(bool val)
5783{
5784 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5785}
5786
5787static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5788{
5789 bool old_val = nx_huge_pages;
5790 bool new_val;
5791
5792 /* In "auto" mode deploy workaround only if CPU has the bug. */
5793 if (sysfs_streq(val, "off"))
5794 new_val = 0;
5795 else if (sysfs_streq(val, "force"))
5796 new_val = 1;
5797 else if (sysfs_streq(val, "auto"))
5798 new_val = get_nx_auto_mode();
5799 else if (strtobool(val, &new_val) < 0)
5800 return -EINVAL;
5801
5802 __set_nx_huge_pages(new_val);
5803
5804 if (new_val != old_val) {
5805 struct kvm *kvm;
b8e8c830
PB
5806
5807 mutex_lock(&kvm_lock);
5808
5809 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5810 mutex_lock(&kvm->slots_lock);
b8e8c830 5811 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5812 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5813
5814 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5815 }
5816 mutex_unlock(&kvm_lock);
5817 }
5818
5819 return 0;
5820}
5821
b5a33a75
AK
5822int kvm_mmu_module_init(void)
5823{
ab271bd4
AB
5824 int ret = -ENOMEM;
5825
b8e8c830
PB
5826 if (nx_huge_pages == -1)
5827 __set_nx_huge_pages(get_nx_auto_mode());
5828
36d9594d
VK
5829 /*
5830 * MMU roles use union aliasing which is, generally speaking, an
5831 * undefined behavior. However, we supposedly know how compilers behave
5832 * and the current status quo is unlikely to change. Guardians below are
5833 * supposed to let us know if the assumption becomes false.
5834 */
5835 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5836 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5837 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5838
28a1f3ac 5839 kvm_mmu_reset_all_pte_masks();
f160c7b7 5840
53c07b18
XG
5841 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5842 sizeof(struct pte_list_desc),
46bea48a 5843 0, SLAB_ACCOUNT, NULL);
53c07b18 5844 if (!pte_list_desc_cache)
ab271bd4 5845 goto out;
b5a33a75 5846
d3d25b04
AK
5847 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5848 sizeof(struct kvm_mmu_page),
46bea48a 5849 0, SLAB_ACCOUNT, NULL);
d3d25b04 5850 if (!mmu_page_header_cache)
ab271bd4 5851 goto out;
d3d25b04 5852
908c7f19 5853 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5854 goto out;
45bf21a8 5855
ab271bd4
AB
5856 ret = register_shrinker(&mmu_shrinker);
5857 if (ret)
5858 goto out;
3ee16c81 5859
b5a33a75
AK
5860 return 0;
5861
ab271bd4 5862out:
3ee16c81 5863 mmu_destroy_caches();
ab271bd4 5864 return ret;
b5a33a75
AK
5865}
5866
3ad82a7e 5867/*
39337ad1 5868 * Calculate mmu pages needed for kvm.
3ad82a7e 5869 */
bc8a3d89 5870unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5871{
bc8a3d89
BG
5872 unsigned long nr_mmu_pages;
5873 unsigned long nr_pages = 0;
bc6678a3 5874 struct kvm_memslots *slots;
be6ba0f0 5875 struct kvm_memory_slot *memslot;
9da0e4d5 5876 int i;
3ad82a7e 5877
9da0e4d5
PB
5878 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5879 slots = __kvm_memslots(kvm, i);
90d83dc3 5880
9da0e4d5
PB
5881 kvm_for_each_memslot(memslot, slots)
5882 nr_pages += memslot->npages;
5883 }
3ad82a7e
ZX
5884
5885 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5886 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5887
5888 return nr_mmu_pages;
5889}
5890
c42fffe3
XG
5891void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5892{
95f93af4 5893 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5894 free_mmu_pages(&vcpu->arch.root_mmu);
5895 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5896 mmu_free_memory_caches(vcpu);
b034cf01
XG
5897}
5898
b034cf01
XG
5899void kvm_mmu_module_exit(void)
5900{
5901 mmu_destroy_caches();
5902 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5903 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5904 mmu_audit_disable();
5905}
1aa9b957
JS
5906
5907static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5908{
5909 unsigned int old_val;
5910 int err;
5911
5912 old_val = nx_huge_pages_recovery_ratio;
5913 err = param_set_uint(val, kp);
5914 if (err)
5915 return err;
5916
5917 if (READ_ONCE(nx_huge_pages) &&
5918 !old_val && nx_huge_pages_recovery_ratio) {
5919 struct kvm *kvm;
5920
5921 mutex_lock(&kvm_lock);
5922
5923 list_for_each_entry(kvm, &vm_list, vm_list)
5924 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5925
5926 mutex_unlock(&kvm_lock);
5927 }
5928
5929 return err;
5930}
5931
5932static void kvm_recover_nx_lpages(struct kvm *kvm)
5933{
5934 int rcu_idx;
5935 struct kvm_mmu_page *sp;
5936 unsigned int ratio;
5937 LIST_HEAD(invalid_list);
048f4980 5938 bool flush = false;
1aa9b957
JS
5939 ulong to_zap;
5940
5941 rcu_idx = srcu_read_lock(&kvm->srcu);
531810ca 5942 write_lock(&kvm->mmu_lock);
1aa9b957
JS
5943
5944 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5945 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5946 for ( ; to_zap; --to_zap) {
5947 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5948 break;
5949
1aa9b957
JS
5950 /*
5951 * We use a separate list instead of just using active_mmu_pages
5952 * because the number of lpage_disallowed pages is expected to
5953 * be relatively small compared to the total.
5954 */
5955 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5956 struct kvm_mmu_page,
5957 lpage_disallowed_link);
5958 WARN_ON_ONCE(!sp->lpage_disallowed);
897218ff 5959 if (is_tdp_mmu_page(sp)) {
33a31641 5960 flush = kvm_tdp_mmu_zap_sp(kvm, sp);
8d1a182e 5961 } else {
29cf0f50
BG
5962 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5963 WARN_ON_ONCE(sp->lpage_disallowed);
5964 }
1aa9b957 5965
531810ca 5966 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
048f4980 5967 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
531810ca 5968 cond_resched_rwlock_write(&kvm->mmu_lock);
048f4980 5969 flush = false;
1aa9b957
JS
5970 }
5971 }
048f4980 5972 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
1aa9b957 5973
531810ca 5974 write_unlock(&kvm->mmu_lock);
1aa9b957
JS
5975 srcu_read_unlock(&kvm->srcu, rcu_idx);
5976}
5977
5978static long get_nx_lpage_recovery_timeout(u64 start_time)
5979{
5980 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5981 ? start_time + 60 * HZ - get_jiffies_64()
5982 : MAX_SCHEDULE_TIMEOUT;
5983}
5984
5985static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5986{
5987 u64 start_time;
5988 long remaining_time;
5989
5990 while (true) {
5991 start_time = get_jiffies_64();
5992 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5993
5994 set_current_state(TASK_INTERRUPTIBLE);
5995 while (!kthread_should_stop() && remaining_time > 0) {
5996 schedule_timeout(remaining_time);
5997 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5998 set_current_state(TASK_INTERRUPTIBLE);
5999 }
6000
6001 set_current_state(TASK_RUNNING);
6002
6003 if (kthread_should_stop())
6004 return 0;
6005
6006 kvm_recover_nx_lpages(kvm);
6007 }
6008}
6009
6010int kvm_mmu_post_init_vm(struct kvm *kvm)
6011{
6012 int err;
6013
6014 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6015 "kvm-nx-lpage-recovery",
6016 &kvm->arch.nx_lpage_recovery_thread);
6017 if (!err)
6018 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6019
6020 return err;
6021}
6022
6023void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6024{
6025 if (kvm->arch.nx_lpage_recovery_thread)
6026 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6027}