]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: selftests: Test IPI to halted vCPU in xAPIC while backing page moves
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
13673a90 51#include <asm/vmx.h>
3d0c27ad 52#include <asm/kvm_page_track.h>
1261bfa3 53#include "trace.h"
6aa8b732 54
b8e8c830
PB
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
1aa9b957 62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 63#endif
b8e8c830
PB
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 67
d5d6c18d 68static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
d5d6c18d 73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
b8e8c830
PB
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 83
71fe7013
SC
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
18552672
JR
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
2f333bcb 94bool tdp_enabled = false;
18552672 95
1d92d2e8 96static int max_huge_page_level __read_mostly;
83013059 97static int max_tdp_level __read_mostly;
703c335d 98
8b1fe17c
XG
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
6903074c
XG
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
8b1fe17c 106};
37a7d8b0 107
37a7d8b0 108#ifdef MMU_DEBUG
5a9624af 109bool dbg = 0;
fa4a2c08 110module_param(dbg, bool, 0644);
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
6aa8b732
AK
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
d77c26fc 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 119
e04da980
JR
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
6aa8b732
AK
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
90bb6fc5
AK
135#include <trace/events/kvm.h>
136
220f773a
TY
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
53c07b18
XG
140struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
cd4a4e53
AK
143};
144
2d11123a
AK
145struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
2d11123a 148 u64 *sptep;
dd3bfd59 149 int level;
2d11123a
AK
150 unsigned index;
151};
152
7eb77e9f
JS
153#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
c2a2ac2b
XG
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
53c07b18 170static struct kmem_cache *pte_list_desc_cache;
02c00b3a 171struct kmem_cache *mmu_page_header_cache;
45221ab6 172static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 173
ce88decf 174static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
175static union kvm_mmu_page_role
176kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 177
335e192a
PB
178#define CREATE_TRACE_POINTS
179#include "mmutrace.h"
180
40ef75a7
LT
181
182static inline bool kvm_available_flush_tlb_with_range(void)
183{
afaf0b2f 184 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
185}
186
187static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189{
190 int ret = -ENOTSUPP;
191
afaf0b2f
SC
192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197}
198
2f2fad08 199void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
200 u64 start_gfn, u64 pages)
201{
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208}
209
5a9624af 210bool is_nx_huge_page_enabled(void)
b8e8c830
PB
211{
212 return READ_ONCE(nx_huge_pages);
213}
214
8f79b064
BG
215static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217{
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
8f79b064 219
bb18842e 220 trace_mark_mmio_spte(sptep, gfn, mask);
f2fd125d 221 mmu_spte_set(sptep, mask);
ce88decf
XG
222}
223
ce88decf
XG
224static gfn_t get_mmio_spte_gfn(u64 spte)
225{
daa07cbc 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac 227
8a967d65 228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
28a1f3ac
JS
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
ce88decf
XG
232}
233
234static unsigned get_mmio_spte_access(u64 spte)
235{
4af77151 236 return spte & shadow_mmio_access_mask;
ce88decf
XG
237}
238
54bf36aa 239static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 240 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
241{
242 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 243 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
244 return true;
245 }
246
247 return false;
248}
c7addb90 249
54bf36aa 250static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 251{
cae7ed3c 252 u64 kvm_gen, spte_gen, gen;
089504c0 253
cae7ed3c
SC
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
089504c0 257
cae7ed3c 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
f8f55942
XG
263}
264
cd313569
MG
265static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267{
ec7771ab 268 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
cd313569
MG
274 return gpa;
275}
276
6aa8b732
AK
277static int is_cpuid_PSE36(void)
278{
279 return 1;
280}
281
73b1087e
AK
282static int is_nx(struct kvm_vcpu *vcpu)
283{
f6801dff 284 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
285}
286
da928521
AK
287static gfn_t pse36_gfn_delta(u32 gpte)
288{
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292}
293
603e0651 294#ifdef CONFIG_X86_64
d555c333 295static void __set_spte(u64 *sptep, u64 spte)
e663ee64 296{
b19ee2ff 297 WRITE_ONCE(*sptep, spte);
e663ee64
AK
298}
299
603e0651 300static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 301{
b19ee2ff 302 WRITE_ONCE(*sptep, spte);
603e0651
XG
303}
304
305static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306{
307 return xchg(sptep, spte);
308}
c2a2ac2b
XG
309
310static u64 __get_spte_lockless(u64 *sptep)
311{
6aa7de05 312 return READ_ONCE(*sptep);
c2a2ac2b 313}
a9221dd5 314#else
603e0651
XG
315union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321};
a9221dd5 322
c2a2ac2b
XG
323static void count_spte_clear(u64 *sptep, u64 spte)
324{
57354682 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333}
334
603e0651
XG
335static void __set_spte(u64 *sptep, u64 spte)
336{
337 union split_spte *ssptep, sspte;
a9221dd5 338
603e0651
XG
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
352}
353
603e0651
XG
354static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355{
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
b19ee2ff 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 370 count_spte_clear(sptep, spte);
603e0651
XG
371}
372
373static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374{
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 384 count_spte_clear(sptep, spte);
603e0651
XG
385
386 return orig.spte;
387}
c2a2ac2b
XG
388
389/*
390 * The idea using the light way get the spte on x86_32 guest is from
39656e83 391 * gup_get_pte (mm/gup.c).
accaefe0
XG
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
57354682 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
603e0651
XG
429#endif
430
8672b721
XG
431static bool spte_has_volatile_bits(u64 spte)
432{
f160c7b7
JS
433 if (!is_shadow_present_pte(spte))
434 return false;
435
c7ba5b48 436 /*
6a6256f9 437 * Always atomically update spte if it can be updated
c7ba5b48
XG
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
f160c7b7
JS
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
c7ba5b48
XG
444 return true;
445
ac8d57e5 446 if (spte_ad_enabled(spte)) {
f160c7b7
JS
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
8672b721 451
f160c7b7 452 return false;
8672b721
XG
453}
454
1df9f2dc
XG
455/* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461static void mmu_spte_set(u64 *sptep, u64 new_spte)
462{
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465}
466
f39a058d
JS
467/*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
1df9f2dc 470 */
f39a058d 471static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 472{
c7ba5b48 473 u64 old_spte = *sptep;
4132779b 474
afd28fe1 475 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 476
6e7d0354
XG
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
f39a058d 479 return old_spte;
6e7d0354 480 }
4132779b 481
c7ba5b48 482 if (!spte_has_volatile_bits(old_spte))
603e0651 483 __update_clear_spte_fast(sptep, new_spte);
4132779b 484 else
603e0651 485 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 486
83ef6c81
JS
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
f39a058d
JS
489 return old_spte;
490}
491
492/* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504{
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
c7ba5b48
XG
511 /*
512 * For the spte updated out of mmu-lock is safe, since
6a6256f9 513 * we always atomically update it, see the comments in
c7ba5b48
XG
514 * spte_has_volatile_bits().
515 */
ea4114bc 516 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 517 !is_writable_pte(new_spte))
83ef6c81 518 flush = true;
4132779b 519
7e71a59b 520 /*
83ef6c81 521 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
522 * to guarantee consistency between TLB and page tables.
523 */
7e71a59b 524
83ef6c81
JS
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
4132779b 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
4132779b 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 533 }
6e7d0354 534
83ef6c81 535 return flush;
b79b93f9
AK
536}
537
1df9f2dc
XG
538/*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
83ef6c81 542 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
543 */
544static int mmu_spte_clear_track_bits(u64 *sptep)
545{
ba049e93 546 kvm_pfn_t pfn;
1df9f2dc
XG
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
603e0651 550 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 551 else
603e0651 552 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 553
afd28fe1 554 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
86fde74c
XG
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
bf4bea8e 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 565
83ef6c81 566 if (is_accessed_spte(old_spte))
1df9f2dc 567 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
568
569 if (is_dirty_spte(old_spte))
1df9f2dc 570 kvm_set_pfn_dirty(pfn);
83ef6c81 571
1df9f2dc
XG
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
d3e328f2
JS
590/* Restore an acc-track PTE back to a regular PTE */
591static u64 restore_acc_track_spte(u64 spte)
592{
593 u64 new_spte = spte;
8a967d65
PB
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
d3e328f2 596
ac8d57e5 597 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
8a967d65
PB
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
d3e328f2
JS
603 new_spte |= saved_bits;
604
605 return new_spte;
606}
607
f160c7b7
JS
608/* Returns the Accessed status of the PTE and resets it at the same time. */
609static bool mmu_spte_age(u64 *sptep)
610{
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
ac8d57e5 616 if (spte_ad_enabled(spte)) {
f160c7b7
JS
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632}
633
c2a2ac2b
XG
634static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635{
c142786c
AK
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
36ca7e0a 641
c142786c
AK
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
36ca7e0a 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
647}
648
649static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650{
c142786c
AK
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
36ca7e0a 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 657 local_irq_enable();
c2a2ac2b
XG
658}
659
378f5cd6 660static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 661{
e2dec939
AK
662 int r;
663
531281ad 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 667 if (r)
284aa868 668 return r;
94ce87ef
SC
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
d3d25b04 671 if (r)
171a90d7 672 return r;
378f5cd6 673 if (maybe_indirect) {
94ce87ef
SC
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
676 if (r)
677 return r;
678 }
94ce87ef
SC
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
94ce87ef
SC
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
689}
690
53c07b18 691static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 692{
94ce87ef 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
694}
695
53c07b18 696static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 697{
53c07b18 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
699}
700
2032a93d
LJ
701static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702{
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707}
708
709static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710{
e9f2a760 711 if (!sp->role.direct) {
2032a93d 712 sp->gfns[index] = gfn;
e9f2a760
PB
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
721}
722
05da4558 723/*
d4dbf470
TY
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
05da4558 726 */
d4dbf470
TY
727static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
05da4558
MT
730{
731 unsigned long idx;
732
fb03cb6f 733 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 734 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
735}
736
547ffaed
XG
737static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739{
740 struct kvm_lpage_info *linfo;
741 int i;
742
3bae0459 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748}
749
750void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751{
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753}
754
755void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756{
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758}
759
3ed1a478 760static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 761{
699023e2 762 struct kvm_memslots *slots;
d25797b2 763 struct kvm_memory_slot *slot;
3ed1a478 764 gfn_t gfn;
05da4558 765
56ca57f9 766 kvm->arch.indirect_shadow_pages++;
3ed1a478 767 gfn = sp->gfn;
699023e2
PB
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
770
771 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 772 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
547ffaed 776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
777}
778
29cf0f50 779void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
780{
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
787 sp->lpage_disallowed = true;
788}
789
3ed1a478 790static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 791{
699023e2 792 struct kvm_memslots *slots;
d25797b2 793 struct kvm_memory_slot *slot;
3ed1a478 794 gfn_t gfn;
05da4558 795
56ca57f9 796 kvm->arch.indirect_shadow_pages--;
3ed1a478 797 gfn = sp->gfn;
699023e2
PB
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
3bae0459 800 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
547ffaed 804 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
805}
806
29cf0f50 807void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
808{
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
1aa9b957 811 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
812}
813
5d163b1c
XG
814static struct kvm_memory_slot *
815gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
05da4558
MT
817{
818 struct kvm_memory_slot *slot;
5d163b1c 819
54bf36aa 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
044c59c4 823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
91b0d268 824 return NULL;
5d163b1c
XG
825
826 return slot;
827}
828
290fc38d 829/*
018aabb5 830 * About rmap_head encoding:
cd4a4e53 831 *
018aabb5
TY
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 834 * pte_list_desc containing more mappings.
018aabb5
TY
835 */
836
837/*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 839 */
53c07b18 840static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 841 struct kvm_rmap_head *rmap_head)
cd4a4e53 842{
53c07b18 843 struct pte_list_desc *desc;
53a27b39 844 int i, count = 0;
cd4a4e53 845
018aabb5 846 if (!rmap_head->val) {
53c07b18 847 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
850 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 852 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 853 desc->sptes[1] = spte;
018aabb5 854 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 855 ++count;
cd4a4e53 856 } else {
53c07b18 857 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
c6c4f961 859 while (desc->sptes[PTE_LIST_EXT-1]) {
53c07b18 860 count += PTE_LIST_EXT;
c6c4f961
LR
861
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
866 }
cd4a4e53
AK
867 desc = desc->more;
868 }
d555c333 869 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 870 ++count;
d555c333 871 desc->sptes[i] = spte;
cd4a4e53 872 }
53a27b39 873 return count;
cd4a4e53
AK
874}
875
53c07b18 876static void
018aabb5
TY
877pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
cd4a4e53
AK
880{
881 int j;
882
53c07b18 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 884 ;
d555c333
AK
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
cd4a4e53
AK
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
fe3c2b4c 890 rmap_head->val = 0;
cd4a4e53
AK
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
018aabb5 895 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 896 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
897}
898
8daf3462 899static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 900{
53c07b18
XG
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
cd4a4e53
AK
903 int i;
904
018aabb5 905 if (!rmap_head->val) {
8daf3462 906 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 907 BUG();
018aabb5 908 } else if (!(rmap_head->val & 1)) {
8daf3462 909 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 910 if ((u64 *)rmap_head->val != spte) {
8daf3462 911 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
912 BUG();
913 }
018aabb5 914 rmap_head->val = 0;
cd4a4e53 915 } else {
8daf3462 916 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
918 prev_desc = NULL;
919 while (desc) {
018aabb5 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 921 if (desc->sptes[i] == spte) {
018aabb5
TY
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
cd4a4e53
AK
924 return;
925 }
018aabb5 926 }
cd4a4e53
AK
927 prev_desc = desc;
928 desc = desc->more;
929 }
8daf3462 930 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
931 BUG();
932 }
933}
934
e7912386
WY
935static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936{
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
939}
940
018aabb5
TY
941static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
53c07b18 943{
77d11309 944 unsigned long idx;
53c07b18 945
77d11309 946 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
948}
949
018aabb5
TY
950static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
9b9b1492 952{
699023e2 953 struct kvm_memslots *slots;
9b9b1492
TY
954 struct kvm_memory_slot *slot;
955
699023e2
PB
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 958 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
959}
960
f759e2b4
XG
961static bool rmap_can_add(struct kvm_vcpu *vcpu)
962{
356ec69a 963 struct kvm_mmu_memory_cache *mc;
f759e2b4 964
356ec69a 965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 966 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
967}
968
53c07b18
XG
969static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970{
971 struct kvm_mmu_page *sp;
018aabb5 972 struct kvm_rmap_head *rmap_head;
53c07b18 973
57354682 974 sp = sptep_to_sp(spte);
53c07b18 975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
978}
979
53c07b18
XG
980static void rmap_remove(struct kvm *kvm, u64 *spte)
981{
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
018aabb5 984 struct kvm_rmap_head *rmap_head;
53c07b18 985
57354682 986 sp = sptep_to_sp(spte);
53c07b18 987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 989 __pte_list_remove(spte, rmap_head);
53c07b18
XG
990}
991
1e3f42f0
TY
992/*
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
995 */
996struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1000};
1001
1002/*
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1005 * information in the iterator may not be valid.
1e3f42f0
TY
1006 *
1007 * Returns sptep if found, NULL otherwise.
1008 */
018aabb5
TY
1009static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1e3f42f0 1011{
77fbbbd2
TY
1012 u64 *sptep;
1013
018aabb5 1014 if (!rmap_head->val)
1e3f42f0
TY
1015 return NULL;
1016
018aabb5 1017 if (!(rmap_head->val & 1)) {
1e3f42f0 1018 iter->desc = NULL;
77fbbbd2
TY
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1e3f42f0
TY
1021 }
1022
018aabb5 1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1024 iter->pos = 0;
77fbbbd2
TY
1025 sptep = iter->desc->sptes[iter->pos];
1026out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1e3f42f0
TY
1029}
1030
1031/*
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_next(struct rmap_iterator *iter)
1037{
77fbbbd2
TY
1038 u64 *sptep;
1039
1e3f42f0
TY
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
77fbbbd2 1045 goto out;
1e3f42f0
TY
1046 }
1047
1048 iter->desc = iter->desc->more;
1049
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1e3f42f0
TY
1055 }
1056 }
1057
1058 return NULL;
77fbbbd2
TY
1059out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1e3f42f0
TY
1062}
1063
018aabb5
TY
1064#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1066 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1067
c3707958 1068static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1069{
1df9f2dc 1070 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1071 rmap_remove(kvm, sptep);
be38d276
AK
1072}
1073
8e22f955
XG
1074
1075static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076{
1077 if (is_large_pte(*sptep)) {
57354682 1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1082 }
1083
1084 return false;
1085}
1086
1087static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088{
c3134ce2 1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1091
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1094 }
8e22f955
XG
1095}
1096
1097/*
49fde340 1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1099 * spte write-protection is caused by protecting shadow page table.
49fde340 1100 *
b4619660 1101 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
8e22f955 1107 *
c126d94f 1108 * Return true if tlb need be flushed.
8e22f955 1109 */
c4f138b4 1110static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1111{
1112 u64 spte = *sptep;
1113
49fde340 1114 if (!is_writable_pte(spte) &&
ea4114bc 1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1116 return false;
1117
1118 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119
49fde340
XG
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1122 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1123
c126d94f 1124 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1125}
1126
018aabb5
TY
1127static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
245c3912 1129 bool pt_protect)
98348e95 1130{
1e3f42f0
TY
1131 u64 *sptep;
1132 struct rmap_iterator iter;
d13bc5b5 1133 bool flush = false;
374cbac0 1134
018aabb5 1135 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1136 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1137
d13bc5b5 1138 return flush;
a0ed4607
TY
1139}
1140
c4f138b4 1141static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1142{
1143 u64 spte = *sptep;
1144
1145 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146
1f4e5fc8 1147 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1148 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1149 return mmu_spte_update(sptep, spte);
1150}
1151
1f4e5fc8 1152static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1153{
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1f4e5fc8 1156 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159 return was_writable;
1160}
1161
1162/*
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1167 */
018aabb5 1168static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1169{
1170 u64 *sptep;
1171 struct rmap_iterator iter;
1172 bool flush = false;
1173
018aabb5 1174 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1175 if (spte_ad_need_write_protect(*sptep))
1176 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1177 else
1f4e5fc8 1178 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1179
1180 return flush;
1181}
1182
c4f138b4 1183static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1184{
1185 u64 spte = *sptep;
1186
1187 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188
1f4e5fc8 1189 /*
afaf0b2f 1190 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1191 * do not bother adding back write access to pages marked
1192 * SPTE_AD_WRPROT_ONLY_MASK.
1193 */
f4b4b180
KH
1194 spte |= shadow_dirty_mask;
1195
1196 return mmu_spte_update(sptep, spte);
1197}
1198
018aabb5 1199static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1200{
1201 u64 *sptep;
1202 struct rmap_iterator iter;
1203 bool flush = false;
1204
018aabb5 1205 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1206 if (spte_ad_enabled(*sptep))
1207 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1208
1209 return flush;
1210}
1211
5dc99b23 1212/**
3b0f1d01 1213 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1214 * @kvm: kvm instance
1215 * @slot: slot to protect
1216 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217 * @mask: indicates which pages we should protect
1218 *
1219 * Used when we do not need to care about huge page mappings: e.g. during dirty
1220 * logging we do not have any such mappings.
1221 */
3b0f1d01 1222static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1223 struct kvm_memory_slot *slot,
1224 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1225{
018aabb5 1226 struct kvm_rmap_head *rmap_head;
a0ed4607 1227
a6a0b05d
BG
1228 if (kvm->arch.tdp_mmu_enabled)
1229 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230 slot->base_gfn + gfn_offset, mask, true);
5dc99b23 1231 while (mask) {
018aabb5 1232 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1233 PG_LEVEL_4K, slot);
018aabb5 1234 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1235
5dc99b23
TY
1236 /* clear the first set bit */
1237 mask &= mask - 1;
1238 }
374cbac0
AK
1239}
1240
f4b4b180 1241/**
ac8d57e5
PF
1242 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1244 * @kvm: kvm instance
1245 * @slot: slot to clear D-bit
1246 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247 * @mask: indicates which pages we should clear D-bit
1248 *
1249 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250 */
1251void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252 struct kvm_memory_slot *slot,
1253 gfn_t gfn_offset, unsigned long mask)
1254{
018aabb5 1255 struct kvm_rmap_head *rmap_head;
f4b4b180 1256
a6a0b05d
BG
1257 if (kvm->arch.tdp_mmu_enabled)
1258 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259 slot->base_gfn + gfn_offset, mask, false);
f4b4b180 1260 while (mask) {
018aabb5 1261 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1262 PG_LEVEL_4K, slot);
018aabb5 1263 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1264
1265 /* clear the first set bit */
1266 mask &= mask - 1;
1267 }
1268}
1269EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270
3b0f1d01
KH
1271/**
1272 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273 * PT level pages.
1274 *
1275 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276 * enable dirty logging for them.
1277 *
1278 * Used when we do not need to care about huge page mappings: e.g. during dirty
1279 * logging we do not have any such mappings.
1280 */
1281void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282 struct kvm_memory_slot *slot,
1283 gfn_t gfn_offset, unsigned long mask)
1284{
afaf0b2f
SC
1285 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1287 mask);
1288 else
1289 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1290}
1291
fb04a1ed
PX
1292int kvm_cpu_dirty_log_size(void)
1293{
1294 if (kvm_x86_ops.cpu_dirty_log_size)
1295 return kvm_x86_ops.cpu_dirty_log_size();
1296
1297 return 0;
1298}
1299
aeecee2e
XG
1300bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1301 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1302{
018aabb5 1303 struct kvm_rmap_head *rmap_head;
5dc99b23 1304 int i;
2f84569f 1305 bool write_protected = false;
95d4c16c 1306
3bae0459 1307 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1308 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1309 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1310 }
1311
46044f72
BG
1312 if (kvm->arch.tdp_mmu_enabled)
1313 write_protected |=
1314 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1315
5dc99b23 1316 return write_protected;
95d4c16c
TY
1317}
1318
aeecee2e
XG
1319static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1320{
1321 struct kvm_memory_slot *slot;
1322
1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1325}
1326
018aabb5 1327static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1328{
1e3f42f0
TY
1329 u64 *sptep;
1330 struct rmap_iterator iter;
6a49f85c 1331 bool flush = false;
e930bffe 1332
018aabb5 1333 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1334 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1335
e7912386 1336 pte_list_remove(rmap_head, sptep);
6a49f85c 1337 flush = true;
e930bffe 1338 }
1e3f42f0 1339
6a49f85c
XG
1340 return flush;
1341}
1342
018aabb5 1343static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1344 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1345 unsigned long data)
1346{
018aabb5 1347 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1348}
1349
018aabb5 1350static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1351 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1352 unsigned long data)
3da0dd43 1353{
1e3f42f0
TY
1354 u64 *sptep;
1355 struct rmap_iterator iter;
3da0dd43 1356 int need_flush = 0;
1e3f42f0 1357 u64 new_spte;
3da0dd43 1358 pte_t *ptep = (pte_t *)data;
ba049e93 1359 kvm_pfn_t new_pfn;
3da0dd43
IE
1360
1361 WARN_ON(pte_huge(*ptep));
1362 new_pfn = pte_pfn(*ptep);
1e3f42f0 1363
0d536790 1364restart:
018aabb5 1365 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1366 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1367 sptep, *sptep, gfn, level);
1e3f42f0 1368
3da0dd43 1369 need_flush = 1;
1e3f42f0 1370
3da0dd43 1371 if (pte_write(*ptep)) {
e7912386 1372 pte_list_remove(rmap_head, sptep);
0d536790 1373 goto restart;
3da0dd43 1374 } else {
cb3eedab
PB
1375 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1376 *sptep, new_pfn);
1e3f42f0
TY
1377
1378 mmu_spte_clear_track_bits(sptep);
1379 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1380 }
1381 }
1e3f42f0 1382
3cc5ea94
LT
1383 if (need_flush && kvm_available_flush_tlb_with_range()) {
1384 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1385 return 0;
1386 }
1387
0cf853c5 1388 return need_flush;
3da0dd43
IE
1389}
1390
6ce1f4e2
XG
1391struct slot_rmap_walk_iterator {
1392 /* input fields. */
1393 struct kvm_memory_slot *slot;
1394 gfn_t start_gfn;
1395 gfn_t end_gfn;
1396 int start_level;
1397 int end_level;
1398
1399 /* output fields. */
1400 gfn_t gfn;
018aabb5 1401 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1402 int level;
1403
1404 /* private field. */
018aabb5 1405 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1406};
1407
1408static void
1409rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1410{
1411 iterator->level = level;
1412 iterator->gfn = iterator->start_gfn;
1413 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1414 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1415 iterator->slot);
1416}
1417
1418static void
1419slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1420 struct kvm_memory_slot *slot, int start_level,
1421 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1422{
1423 iterator->slot = slot;
1424 iterator->start_level = start_level;
1425 iterator->end_level = end_level;
1426 iterator->start_gfn = start_gfn;
1427 iterator->end_gfn = end_gfn;
1428
1429 rmap_walk_init_level(iterator, iterator->start_level);
1430}
1431
1432static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1433{
1434 return !!iterator->rmap;
1435}
1436
1437static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1438{
1439 if (++iterator->rmap <= iterator->end_rmap) {
1440 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1441 return;
1442 }
1443
1444 if (++iterator->level > iterator->end_level) {
1445 iterator->rmap = NULL;
1446 return;
1447 }
1448
1449 rmap_walk_init_level(iterator, iterator->level);
1450}
1451
1452#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1453 _start_gfn, _end_gfn, _iter_) \
1454 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1455 _end_level_, _start_gfn, _end_gfn); \
1456 slot_rmap_walk_okay(_iter_); \
1457 slot_rmap_walk_next(_iter_))
1458
84504ef3
TY
1459static int kvm_handle_hva_range(struct kvm *kvm,
1460 unsigned long start,
1461 unsigned long end,
1462 unsigned long data,
1463 int (*handler)(struct kvm *kvm,
018aabb5 1464 struct kvm_rmap_head *rmap_head,
048212d0 1465 struct kvm_memory_slot *slot,
8a9522d2
ALC
1466 gfn_t gfn,
1467 int level,
84504ef3 1468 unsigned long data))
e930bffe 1469{
bc6678a3 1470 struct kvm_memslots *slots;
be6ba0f0 1471 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1472 struct slot_rmap_walk_iterator iterator;
1473 int ret = 0;
9da0e4d5 1474 int i;
bc6678a3 1475
9da0e4d5
PB
1476 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1477 slots = __kvm_memslots(kvm, i);
1478 kvm_for_each_memslot(memslot, slots) {
1479 unsigned long hva_start, hva_end;
1480 gfn_t gfn_start, gfn_end;
e930bffe 1481
9da0e4d5
PB
1482 hva_start = max(start, memslot->userspace_addr);
1483 hva_end = min(end, memslot->userspace_addr +
1484 (memslot->npages << PAGE_SHIFT));
1485 if (hva_start >= hva_end)
1486 continue;
1487 /*
1488 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1489 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1490 */
1491 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1492 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1493
3bae0459 1494 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1495 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1496 gfn_start, gfn_end - 1,
1497 &iterator)
1498 ret |= handler(kvm, iterator.rmap, memslot,
1499 iterator.gfn, iterator.level, data);
1500 }
e930bffe
AA
1501 }
1502
f395302e 1503 return ret;
e930bffe
AA
1504}
1505
84504ef3
TY
1506static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1507 unsigned long data,
018aabb5
TY
1508 int (*handler)(struct kvm *kvm,
1509 struct kvm_rmap_head *rmap_head,
048212d0 1510 struct kvm_memory_slot *slot,
8a9522d2 1511 gfn_t gfn, int level,
84504ef3
TY
1512 unsigned long data))
1513{
1514 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1515}
1516
fdfe7cbd
WD
1517int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1518 unsigned flags)
b3ae2096 1519{
063afacd
BG
1520 int r;
1521
1522 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1523
1524 if (kvm->arch.tdp_mmu_enabled)
1525 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1526
1527 return r;
b3ae2096
TY
1528}
1529
748c0e31 1530int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1531{
1d8dd6b3
BG
1532 int r;
1533
1534 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1535
1536 if (kvm->arch.tdp_mmu_enabled)
1537 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1538
1539 return r;
e930bffe
AA
1540}
1541
018aabb5 1542static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1543 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1544 unsigned long data)
e930bffe 1545{
1e3f42f0 1546 u64 *sptep;
3f649ab7 1547 struct rmap_iterator iter;
e930bffe
AA
1548 int young = 0;
1549
f160c7b7
JS
1550 for_each_rmap_spte(rmap_head, &iter, sptep)
1551 young |= mmu_spte_age(sptep);
0d536790 1552
8a9522d2 1553 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1554 return young;
1555}
1556
018aabb5 1557static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1558 struct kvm_memory_slot *slot, gfn_t gfn,
1559 int level, unsigned long data)
8ee53820 1560{
1e3f42f0
TY
1561 u64 *sptep;
1562 struct rmap_iterator iter;
8ee53820 1563
83ef6c81
JS
1564 for_each_rmap_spte(rmap_head, &iter, sptep)
1565 if (is_accessed_spte(*sptep))
1566 return 1;
83ef6c81 1567 return 0;
8ee53820
AA
1568}
1569
53a27b39
MT
1570#define RMAP_RECYCLE_THRESHOLD 1000
1571
852e3c19 1572static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1573{
018aabb5 1574 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1575 struct kvm_mmu_page *sp;
1576
57354682 1577 sp = sptep_to_sp(spte);
53a27b39 1578
018aabb5 1579 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1580
018aabb5 1581 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1582 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1583 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1584}
1585
57128468 1586int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1587{
f8e14497
BG
1588 int young = false;
1589
1590 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1591 if (kvm->arch.tdp_mmu_enabled)
1592 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1593
1594 return young;
e930bffe
AA
1595}
1596
8ee53820
AA
1597int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1598{
f8e14497
BG
1599 int young = false;
1600
1601 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1602 if (kvm->arch.tdp_mmu_enabled)
1603 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1604
1605 return young;
8ee53820
AA
1606}
1607
d6c69ee9 1608#ifdef MMU_DEBUG
47ad8e68 1609static int is_empty_shadow_page(u64 *spt)
6aa8b732 1610{
139bdb2d
AK
1611 u64 *pos;
1612 u64 *end;
1613
47ad8e68 1614 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1615 if (is_shadow_present_pte(*pos)) {
b8688d51 1616 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1617 pos, *pos);
6aa8b732 1618 return 0;
139bdb2d 1619 }
6aa8b732
AK
1620 return 1;
1621}
d6c69ee9 1622#endif
6aa8b732 1623
45221ab6
DH
1624/*
1625 * This value is the sum of all of the kvm instances's
1626 * kvm->arch.n_used_mmu_pages values. We need a global,
1627 * aggregate version in order to make the slab shrinker
1628 * faster
1629 */
bc8a3d89 1630static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1631{
1632 kvm->arch.n_used_mmu_pages += nr;
1633 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1634}
1635
834be0d8 1636static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1637{
fa4a2c08 1638 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1639 hlist_del(&sp->hash_link);
bd4c86ea
XG
1640 list_del(&sp->link);
1641 free_page((unsigned long)sp->spt);
834be0d8
GN
1642 if (!sp->role.direct)
1643 free_page((unsigned long)sp->gfns);
e8ad9a70 1644 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1645}
1646
cea0f0e7
AK
1647static unsigned kvm_page_table_hashfn(gfn_t gfn)
1648{
114df303 1649 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1650}
1651
714b93da 1652static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1653 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1654{
cea0f0e7
AK
1655 if (!parent_pte)
1656 return;
cea0f0e7 1657
67052b35 1658 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1659}
1660
4db35314 1661static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1662 u64 *parent_pte)
1663{
8daf3462 1664 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1665}
1666
bcdd9a93
XG
1667static void drop_parent_pte(struct kvm_mmu_page *sp,
1668 u64 *parent_pte)
1669{
1670 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1671 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1672}
1673
47005792 1674static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1675{
67052b35 1676 struct kvm_mmu_page *sp;
7ddca7e4 1677
94ce87ef
SC
1678 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1679 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1680 if (!direct)
94ce87ef 1681 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1682 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1683
1684 /*
1685 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1686 * depends on valid pages being added to the head of the list. See
1687 * comments in kvm_zap_obsolete_pages().
1688 */
ca333add 1689 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1690 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1691 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1692 return sp;
ad8cfbe3
MT
1693}
1694
67052b35 1695static void mark_unsync(u64 *spte);
1047df1f 1696static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1697{
74c4e63a
TY
1698 u64 *sptep;
1699 struct rmap_iterator iter;
1700
1701 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1702 mark_unsync(sptep);
1703 }
0074ff63
MT
1704}
1705
67052b35 1706static void mark_unsync(u64 *spte)
0074ff63 1707{
67052b35 1708 struct kvm_mmu_page *sp;
1047df1f 1709 unsigned int index;
0074ff63 1710
57354682 1711 sp = sptep_to_sp(spte);
1047df1f
XG
1712 index = spte - sp->spt;
1713 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1714 return;
1047df1f 1715 if (sp->unsync_children++)
0074ff63 1716 return;
1047df1f 1717 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1718}
1719
e8bc217a 1720static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1721 struct kvm_mmu_page *sp)
e8bc217a 1722{
1f50f1b3 1723 return 0;
e8bc217a
MT
1724}
1725
0f53b5b1
XG
1726static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1727 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1728 const void *pte)
0f53b5b1
XG
1729{
1730 WARN_ON(1);
1731}
1732
60c8aec6
MT
1733#define KVM_PAGE_ARRAY_NR 16
1734
1735struct kvm_mmu_pages {
1736 struct mmu_page_and_offset {
1737 struct kvm_mmu_page *sp;
1738 unsigned int idx;
1739 } page[KVM_PAGE_ARRAY_NR];
1740 unsigned int nr;
1741};
1742
cded19f3
HE
1743static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1744 int idx)
4731d4c7 1745{
60c8aec6 1746 int i;
4731d4c7 1747
60c8aec6
MT
1748 if (sp->unsync)
1749 for (i=0; i < pvec->nr; i++)
1750 if (pvec->page[i].sp == sp)
1751 return 0;
1752
1753 pvec->page[pvec->nr].sp = sp;
1754 pvec->page[pvec->nr].idx = idx;
1755 pvec->nr++;
1756 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1757}
1758
fd951457
TY
1759static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1760{
1761 --sp->unsync_children;
1762 WARN_ON((int)sp->unsync_children < 0);
1763 __clear_bit(idx, sp->unsync_child_bitmap);
1764}
1765
60c8aec6
MT
1766static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1767 struct kvm_mmu_pages *pvec)
1768{
1769 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1770
37178b8b 1771 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1772 struct kvm_mmu_page *child;
4731d4c7
MT
1773 u64 ent = sp->spt[i];
1774
fd951457
TY
1775 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1776 clear_unsync_child_bit(sp, i);
1777 continue;
1778 }
7a8f1a74 1779
e47c4aee 1780 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1781
1782 if (child->unsync_children) {
1783 if (mmu_pages_add(pvec, child, i))
1784 return -ENOSPC;
1785
1786 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1787 if (!ret) {
1788 clear_unsync_child_bit(sp, i);
1789 continue;
1790 } else if (ret > 0) {
7a8f1a74 1791 nr_unsync_leaf += ret;
fd951457 1792 } else
7a8f1a74
XG
1793 return ret;
1794 } else if (child->unsync) {
1795 nr_unsync_leaf++;
1796 if (mmu_pages_add(pvec, child, i))
1797 return -ENOSPC;
1798 } else
fd951457 1799 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1800 }
1801
60c8aec6
MT
1802 return nr_unsync_leaf;
1803}
1804
e23d3fef
XG
1805#define INVALID_INDEX (-1)
1806
60c8aec6
MT
1807static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1808 struct kvm_mmu_pages *pvec)
1809{
0a47cd85 1810 pvec->nr = 0;
60c8aec6
MT
1811 if (!sp->unsync_children)
1812 return 0;
1813
e23d3fef 1814 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1815 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1816}
1817
4731d4c7
MT
1818static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1819{
1820 WARN_ON(!sp->unsync);
5e1b3ddb 1821 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1822 sp->unsync = 0;
1823 --kvm->stat.mmu_unsync;
1824}
1825
83cdb568
SC
1826static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1827 struct list_head *invalid_list);
7775834a
XG
1828static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1829 struct list_head *invalid_list);
4731d4c7 1830
ac101b7c
SC
1831#define for_each_valid_sp(_kvm, _sp, _list) \
1832 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1833 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1834 } else
1044b030
TY
1835
1836#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1837 for_each_valid_sp(_kvm, _sp, \
1838 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1839 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1840
47c42e6b
SC
1841static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1842{
1843 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1844}
1845
f918b443 1846/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1847static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1848 struct list_head *invalid_list)
4731d4c7 1849{
47c42e6b
SC
1850 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1851 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1852 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1853 return false;
4731d4c7
MT
1854 }
1855
1f50f1b3 1856 return true;
4731d4c7
MT
1857}
1858
a2113634
SC
1859static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1860 struct list_head *invalid_list,
1861 bool remote_flush)
1862{
cfd32acf 1863 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1864 return false;
1865
1866 if (!list_empty(invalid_list))
1867 kvm_mmu_commit_zap_page(kvm, invalid_list);
1868 else
1869 kvm_flush_remote_tlbs(kvm);
1870 return true;
1871}
1872
35a70510
PB
1873static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1874 struct list_head *invalid_list,
1875 bool remote_flush, bool local_flush)
1d9dc7e0 1876{
a2113634 1877 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1878 return;
d98ba053 1879
a2113634 1880 if (local_flush)
8c8560b8 1881 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1882}
1883
e37fa785
XG
1884#ifdef CONFIG_KVM_MMU_AUDIT
1885#include "mmu_audit.c"
1886#else
1887static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1888static void mmu_audit_disable(void) { }
1889#endif
1890
002c5f73
SC
1891static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1892{
fac026da
SC
1893 return sp->role.invalid ||
1894 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1895}
1896
1f50f1b3 1897static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1898 struct list_head *invalid_list)
1d9dc7e0 1899{
9a43c5d9
PB
1900 kvm_unlink_unsync_page(vcpu->kvm, sp);
1901 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1902}
1903
9f1a122f 1904/* @gfn should be write-protected at the call site */
2a74003a
PB
1905static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1906 struct list_head *invalid_list)
9f1a122f 1907{
9f1a122f 1908 struct kvm_mmu_page *s;
2a74003a 1909 bool ret = false;
9f1a122f 1910
b67bfe0d 1911 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1912 if (!s->unsync)
9f1a122f
XG
1913 continue;
1914
3bae0459 1915 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1916 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1917 }
1918
2a74003a 1919 return ret;
9f1a122f
XG
1920}
1921
60c8aec6 1922struct mmu_page_path {
2a7266a8
YZ
1923 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1924 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1925};
1926
60c8aec6 1927#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1928 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1929 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1930 i = mmu_pages_next(&pvec, &parents, i))
1931
cded19f3
HE
1932static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1933 struct mmu_page_path *parents,
1934 int i)
60c8aec6
MT
1935{
1936 int n;
1937
1938 for (n = i+1; n < pvec->nr; n++) {
1939 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1940 unsigned idx = pvec->page[n].idx;
1941 int level = sp->role.level;
60c8aec6 1942
0a47cd85 1943 parents->idx[level-1] = idx;
3bae0459 1944 if (level == PG_LEVEL_4K)
0a47cd85 1945 break;
60c8aec6 1946
0a47cd85 1947 parents->parent[level-2] = sp;
60c8aec6
MT
1948 }
1949
1950 return n;
1951}
1952
0a47cd85
PB
1953static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1954 struct mmu_page_path *parents)
1955{
1956 struct kvm_mmu_page *sp;
1957 int level;
1958
1959 if (pvec->nr == 0)
1960 return 0;
1961
e23d3fef
XG
1962 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1963
0a47cd85
PB
1964 sp = pvec->page[0].sp;
1965 level = sp->role.level;
3bae0459 1966 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1967
1968 parents->parent[level-2] = sp;
1969
1970 /* Also set up a sentinel. Further entries in pvec are all
1971 * children of sp, so this element is never overwritten.
1972 */
1973 parents->parent[level-1] = NULL;
1974 return mmu_pages_next(pvec, parents, 0);
1975}
1976
cded19f3 1977static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1978{
60c8aec6
MT
1979 struct kvm_mmu_page *sp;
1980 unsigned int level = 0;
1981
1982 do {
1983 unsigned int idx = parents->idx[level];
60c8aec6
MT
1984 sp = parents->parent[level];
1985 if (!sp)
1986 return;
1987
e23d3fef 1988 WARN_ON(idx == INVALID_INDEX);
fd951457 1989 clear_unsync_child_bit(sp, idx);
60c8aec6 1990 level++;
0a47cd85 1991 } while (!sp->unsync_children);
60c8aec6 1992}
4731d4c7 1993
60c8aec6
MT
1994static void mmu_sync_children(struct kvm_vcpu *vcpu,
1995 struct kvm_mmu_page *parent)
1996{
1997 int i;
1998 struct kvm_mmu_page *sp;
1999 struct mmu_page_path parents;
2000 struct kvm_mmu_pages pages;
d98ba053 2001 LIST_HEAD(invalid_list);
50c9e6f3 2002 bool flush = false;
60c8aec6 2003
60c8aec6 2004 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2005 bool protected = false;
b1a36821
MT
2006
2007 for_each_sp(pages, sp, parents, i)
54bf36aa 2008 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2009
50c9e6f3 2010 if (protected) {
b1a36821 2011 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2012 flush = false;
2013 }
b1a36821 2014
60c8aec6 2015 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2016 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2017 mmu_pages_clear_parents(&parents);
2018 }
50c9e6f3
PB
2019 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2020 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2021 cond_resched_lock(&vcpu->kvm->mmu_lock);
2022 flush = false;
2023 }
60c8aec6 2024 }
50c9e6f3
PB
2025
2026 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2027}
2028
a30f47cb
XG
2029static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2030{
e5691a81 2031 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2032}
2033
2034static void clear_sp_write_flooding_count(u64 *spte)
2035{
57354682 2036 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2037}
2038
cea0f0e7
AK
2039static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2040 gfn_t gfn,
2041 gva_t gaddr,
2042 unsigned level,
f6e2c02b 2043 int direct,
0a2b64c5 2044 unsigned int access)
cea0f0e7 2045{
fb58a9c3 2046 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2047 union kvm_mmu_page_role role;
ac101b7c 2048 struct hlist_head *sp_list;
cea0f0e7 2049 unsigned quadrant;
9f1a122f 2050 struct kvm_mmu_page *sp;
9f1a122f 2051 bool need_sync = false;
2a74003a 2052 bool flush = false;
f3414bc7 2053 int collisions = 0;
2a74003a 2054 LIST_HEAD(invalid_list);
cea0f0e7 2055
36d9594d 2056 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2057 role.level = level;
f6e2c02b 2058 role.direct = direct;
84b0c8c6 2059 if (role.direct)
47c42e6b 2060 role.gpte_is_8_bytes = true;
41074d07 2061 role.access = access;
fb58a9c3 2062 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2063 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2064 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2065 role.quadrant = quadrant;
2066 }
ac101b7c
SC
2067
2068 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2069 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2070 if (sp->gfn != gfn) {
2071 collisions++;
2072 continue;
2073 }
2074
7ae680eb
XG
2075 if (!need_sync && sp->unsync)
2076 need_sync = true;
4731d4c7 2077
7ae680eb
XG
2078 if (sp->role.word != role.word)
2079 continue;
4731d4c7 2080
fb58a9c3
SC
2081 if (direct_mmu)
2082 goto trace_get_page;
2083
2a74003a
PB
2084 if (sp->unsync) {
2085 /* The page is good, but __kvm_sync_page might still end
2086 * up zapping it. If so, break in order to rebuild it.
2087 */
2088 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2089 break;
2090
2091 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2092 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2093 }
e02aa901 2094
98bba238 2095 if (sp->unsync_children)
f6f6195b 2096 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2097
a30f47cb 2098 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2099
2100trace_get_page:
7ae680eb 2101 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2102 goto out;
7ae680eb 2103 }
47005792 2104
dfc5aa00 2105 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2106
2107 sp = kvm_mmu_alloc_page(vcpu, direct);
2108
4db35314
AK
2109 sp->gfn = gfn;
2110 sp->role = role;
ac101b7c 2111 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2112 if (!direct) {
56ca57f9
XG
2113 /*
2114 * we should do write protection before syncing pages
2115 * otherwise the content of the synced shadow page may
2116 * be inconsistent with guest page table.
2117 */
2118 account_shadowed(vcpu->kvm, sp);
3bae0459 2119 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2120 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2121
3bae0459 2122 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2123 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2124 }
f691fe1d 2125 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2126
2127 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2128out:
2129 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2130 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2131 return sp;
cea0f0e7
AK
2132}
2133
7eb77e9f
JS
2134static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2135 struct kvm_vcpu *vcpu, hpa_t root,
2136 u64 addr)
2d11123a
AK
2137{
2138 iterator->addr = addr;
7eb77e9f 2139 iterator->shadow_addr = root;
44dd3ffa 2140 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2141
2a7266a8 2142 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2143 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2144 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2145 --iterator->level;
2146
2d11123a 2147 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2148 /*
2149 * prev_root is currently only used for 64-bit hosts. So only
2150 * the active root_hpa is valid here.
2151 */
44dd3ffa 2152 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2153
2d11123a 2154 iterator->shadow_addr
44dd3ffa 2155 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2156 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2157 --iterator->level;
2158 if (!iterator->shadow_addr)
2159 iterator->level = 0;
2160 }
2161}
2162
7eb77e9f
JS
2163static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2164 struct kvm_vcpu *vcpu, u64 addr)
2165{
44dd3ffa 2166 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2167 addr);
2168}
2169
2d11123a
AK
2170static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2171{
3bae0459 2172 if (iterator->level < PG_LEVEL_4K)
2d11123a 2173 return false;
4d88954d 2174
2d11123a
AK
2175 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2176 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2177 return true;
2178}
2179
c2a2ac2b
XG
2180static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2181 u64 spte)
2d11123a 2182{
c2a2ac2b 2183 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2184 iterator->level = 0;
2185 return;
2186 }
2187
c2a2ac2b 2188 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2189 --iterator->level;
2190}
2191
c2a2ac2b
XG
2192static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2193{
bb606a9b 2194 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2195}
2196
cc4674d0
BG
2197static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2198 struct kvm_mmu_page *sp)
2199{
2200 u64 spte;
2201
2202 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2203
2204 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2205
1df9f2dc 2206 mmu_spte_set(sptep, spte);
98bba238
TY
2207
2208 mmu_page_add_parent_pte(vcpu, sp, sptep);
2209
2210 if (sp->unsync_children || sp->unsync)
2211 mark_unsync(sptep);
32ef26a3
AK
2212}
2213
a357bd22
AK
2214static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2215 unsigned direct_access)
2216{
2217 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2218 struct kvm_mmu_page *child;
2219
2220 /*
2221 * For the direct sp, if the guest pte's dirty bit
2222 * changed form clean to dirty, it will corrupt the
2223 * sp's access: allow writable in the read-only sp,
2224 * so we should update the spte at this point to get
2225 * a new sp with the correct access.
2226 */
e47c4aee 2227 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2228 if (child->role.access == direct_access)
2229 return;
2230
bcdd9a93 2231 drop_parent_pte(child, sptep);
c3134ce2 2232 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2233 }
2234}
2235
2de4085c
BG
2236/* Returns the number of zapped non-leaf child shadow pages. */
2237static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2238 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2239{
2240 u64 pte;
2241 struct kvm_mmu_page *child;
2242
2243 pte = *spte;
2244 if (is_shadow_present_pte(pte)) {
505aef8f 2245 if (is_last_spte(pte, sp->role.level)) {
c3707958 2246 drop_spte(kvm, spte);
505aef8f
XG
2247 if (is_large_pte(pte))
2248 --kvm->stat.lpages;
2249 } else {
e47c4aee 2250 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2251 drop_parent_pte(child, spte);
2de4085c
BG
2252
2253 /*
2254 * Recursively zap nested TDP SPs, parentless SPs are
2255 * unlikely to be used again in the near future. This
2256 * avoids retaining a large number of stale nested SPs.
2257 */
2258 if (tdp_enabled && invalid_list &&
2259 child->role.guest_mode && !child->parent_ptes.val)
2260 return kvm_mmu_prepare_zap_page(kvm, child,
2261 invalid_list);
38e3b2b2 2262 }
ace569e0 2263 } else if (is_mmio_spte(pte)) {
ce88decf 2264 mmu_spte_clear_no_track(spte);
ace569e0 2265 }
2de4085c 2266 return 0;
38e3b2b2
XG
2267}
2268
2de4085c
BG
2269static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2270 struct kvm_mmu_page *sp,
2271 struct list_head *invalid_list)
a436036b 2272{
2de4085c 2273 int zapped = 0;
697fe2e2 2274 unsigned i;
697fe2e2 2275
38e3b2b2 2276 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2277 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2278
2279 return zapped;
a436036b
AK
2280}
2281
31aa2b44 2282static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2283{
1e3f42f0
TY
2284 u64 *sptep;
2285 struct rmap_iterator iter;
a436036b 2286
018aabb5 2287 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2288 drop_parent_pte(sp, sptep);
31aa2b44
AK
2289}
2290
60c8aec6 2291static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2292 struct kvm_mmu_page *parent,
2293 struct list_head *invalid_list)
4731d4c7 2294{
60c8aec6
MT
2295 int i, zapped = 0;
2296 struct mmu_page_path parents;
2297 struct kvm_mmu_pages pages;
4731d4c7 2298
3bae0459 2299 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2300 return 0;
60c8aec6 2301
60c8aec6
MT
2302 while (mmu_unsync_walk(parent, &pages)) {
2303 struct kvm_mmu_page *sp;
2304
2305 for_each_sp(pages, sp, parents, i) {
7775834a 2306 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2307 mmu_pages_clear_parents(&parents);
77662e00 2308 zapped++;
60c8aec6 2309 }
60c8aec6
MT
2310 }
2311
2312 return zapped;
4731d4c7
MT
2313}
2314
83cdb568
SC
2315static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2316 struct kvm_mmu_page *sp,
2317 struct list_head *invalid_list,
2318 int *nr_zapped)
31aa2b44 2319{
83cdb568 2320 bool list_unstable;
f691fe1d 2321
7775834a 2322 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2323 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2324 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2325 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2326 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2327
83cdb568
SC
2328 /* Zapping children means active_mmu_pages has become unstable. */
2329 list_unstable = *nr_zapped;
2330
f6e2c02b 2331 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2332 unaccount_shadowed(kvm, sp);
5304b8d3 2333
4731d4c7
MT
2334 if (sp->unsync)
2335 kvm_unlink_unsync_page(kvm, sp);
4db35314 2336 if (!sp->root_count) {
54a4f023 2337 /* Count self */
83cdb568 2338 (*nr_zapped)++;
f95eec9b
SC
2339
2340 /*
2341 * Already invalid pages (previously active roots) are not on
2342 * the active page list. See list_del() in the "else" case of
2343 * !sp->root_count.
2344 */
2345 if (sp->role.invalid)
2346 list_add(&sp->link, invalid_list);
2347 else
2348 list_move(&sp->link, invalid_list);
aa6bd187 2349 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2350 } else {
f95eec9b
SC
2351 /*
2352 * Remove the active root from the active page list, the root
2353 * will be explicitly freed when the root_count hits zero.
2354 */
2355 list_del(&sp->link);
05988d72 2356
10605204
SC
2357 /*
2358 * Obsolete pages cannot be used on any vCPUs, see the comment
2359 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2360 * treats invalid shadow pages as being obsolete.
2361 */
2362 if (!is_obsolete_sp(kvm, sp))
05988d72 2363 kvm_reload_remote_mmus(kvm);
2e53d63a 2364 }
7775834a 2365
b8e8c830
PB
2366 if (sp->lpage_disallowed)
2367 unaccount_huge_nx_page(kvm, sp);
2368
7775834a 2369 sp->role.invalid = 1;
83cdb568
SC
2370 return list_unstable;
2371}
2372
2373static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2374 struct list_head *invalid_list)
2375{
2376 int nr_zapped;
2377
2378 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2379 return nr_zapped;
a436036b
AK
2380}
2381
7775834a
XG
2382static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2383 struct list_head *invalid_list)
2384{
945315b9 2385 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2386
2387 if (list_empty(invalid_list))
2388 return;
2389
c142786c 2390 /*
9753f529
LT
2391 * We need to make sure everyone sees our modifications to
2392 * the page tables and see changes to vcpu->mode here. The barrier
2393 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2394 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2395 *
2396 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2397 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2398 */
2399 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2400
945315b9 2401 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2402 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2403 kvm_mmu_free_page(sp);
945315b9 2404 }
7775834a
XG
2405}
2406
6b82ef2c
SC
2407static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2408 unsigned long nr_to_zap)
5da59607 2409{
6b82ef2c
SC
2410 unsigned long total_zapped = 0;
2411 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2412 LIST_HEAD(invalid_list);
6b82ef2c
SC
2413 bool unstable;
2414 int nr_zapped;
5da59607
TY
2415
2416 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2417 return 0;
2418
6b82ef2c 2419restart:
8fc51726 2420 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
6b82ef2c
SC
2421 /*
2422 * Don't zap active root pages, the page itself can't be freed
2423 * and zapping it will just force vCPUs to realloc and reload.
2424 */
2425 if (sp->root_count)
2426 continue;
2427
2428 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2429 &nr_zapped);
2430 total_zapped += nr_zapped;
2431 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2432 break;
2433
6b82ef2c
SC
2434 if (unstable)
2435 goto restart;
ba7888dd 2436 }
5da59607 2437
6b82ef2c
SC
2438 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2439
2440 kvm->stat.mmu_recycled += total_zapped;
2441 return total_zapped;
2442}
2443
afe8d7e6
SC
2444static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2445{
2446 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2447 return kvm->arch.n_max_mmu_pages -
2448 kvm->arch.n_used_mmu_pages;
2449
2450 return 0;
5da59607
TY
2451}
2452
ba7888dd
SC
2453static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2454{
6b82ef2c 2455 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2456
6b82ef2c 2457 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2458 return 0;
2459
6b82ef2c 2460 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2461
2462 if (!kvm_mmu_available_pages(vcpu->kvm))
2463 return -ENOSPC;
2464 return 0;
2465}
2466
82ce2c96
IE
2467/*
2468 * Changing the number of mmu pages allocated to the vm
49d5ca26 2469 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2470 */
bc8a3d89 2471void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2472{
b34cb590
TY
2473 spin_lock(&kvm->mmu_lock);
2474
49d5ca26 2475 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2476 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2477 goal_nr_mmu_pages);
82ce2c96 2478
49d5ca26 2479 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2480 }
82ce2c96 2481
49d5ca26 2482 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2483
2484 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2485}
2486
1cb3f3ae 2487int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2488{
4db35314 2489 struct kvm_mmu_page *sp;
d98ba053 2490 LIST_HEAD(invalid_list);
a436036b
AK
2491 int r;
2492
9ad17b10 2493 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2494 r = 0;
1cb3f3ae 2495 spin_lock(&kvm->mmu_lock);
b67bfe0d 2496 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2497 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2498 sp->role.word);
2499 r = 1;
f41d335a 2500 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2501 }
d98ba053 2502 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2503 spin_unlock(&kvm->mmu_lock);
2504
a436036b 2505 return r;
cea0f0e7 2506}
1cb3f3ae 2507EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2508
5c520e90 2509static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2510{
2511 trace_kvm_mmu_unsync_page(sp);
2512 ++vcpu->kvm->stat.mmu_unsync;
2513 sp->unsync = 1;
2514
2515 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2516}
2517
5a9624af
PB
2518bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2519 bool can_unsync)
4731d4c7 2520{
5c520e90 2521 struct kvm_mmu_page *sp;
4731d4c7 2522
3d0c27ad
XG
2523 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2524 return true;
9cf5cf5a 2525
5c520e90 2526 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2527 if (!can_unsync)
3d0c27ad 2528 return true;
36a2e677 2529
5c520e90
XG
2530 if (sp->unsync)
2531 continue;
9cf5cf5a 2532
3bae0459 2533 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2534 kvm_unsync_page(vcpu, sp);
4731d4c7 2535 }
3d0c27ad 2536
578e1c4d
JS
2537 /*
2538 * We need to ensure that the marking of unsync pages is visible
2539 * before the SPTE is updated to allow writes because
2540 * kvm_mmu_sync_roots() checks the unsync flags without holding
2541 * the MMU lock and so can race with this. If the SPTE was updated
2542 * before the page had been marked as unsync-ed, something like the
2543 * following could happen:
2544 *
2545 * CPU 1 CPU 2
2546 * ---------------------------------------------------------------------
2547 * 1.2 Host updates SPTE
2548 * to be writable
2549 * 2.1 Guest writes a GPTE for GVA X.
2550 * (GPTE being in the guest page table shadowed
2551 * by the SP from CPU 1.)
2552 * This reads SPTE during the page table walk.
2553 * Since SPTE.W is read as 1, there is no
2554 * fault.
2555 *
2556 * 2.2 Guest issues TLB flush.
2557 * That causes a VM Exit.
2558 *
2559 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2560 * Since it is false, so it just returns.
2561 *
2562 * 2.4 Guest accesses GVA X.
2563 * Since the mapping in the SP was not updated,
2564 * so the old mapping for GVA X incorrectly
2565 * gets used.
2566 * 1.1 Host marks SP
2567 * as unsync
2568 * (sp->unsync = true)
2569 *
2570 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2571 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2572 * pairs with this write barrier.
2573 */
2574 smp_wmb();
2575
3d0c27ad 2576 return false;
4731d4c7
MT
2577}
2578
799a4190
BG
2579static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2580 unsigned int pte_access, int level,
2581 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2582 bool can_unsync, bool host_writable)
2583{
2584 u64 spte;
2585 struct kvm_mmu_page *sp;
2586 int ret;
2587
2588 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2589 return 0;
2590
2591 sp = sptep_to_sp(sptep);
2592
2593 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2594 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2595
2596 if (spte & PT_WRITABLE_MASK)
2597 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2598
12703759
SC
2599 if (*sptep == spte)
2600 ret |= SET_SPTE_SPURIOUS;
2601 else if (mmu_spte_update(sptep, spte))
5ce4786f 2602 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2603 return ret;
2604}
2605
0a2b64c5 2606static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2607 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2608 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2609 bool host_writable)
1e73f9dd
MT
2610{
2611 int was_rmapped = 0;
53a27b39 2612 int rmap_count;
5ce4786f 2613 int set_spte_ret;
c4371c2a 2614 int ret = RET_PF_FIXED;
c2a4eadf 2615 bool flush = false;
1e73f9dd 2616
f7616203
XG
2617 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2618 *sptep, write_fault, gfn);
1e73f9dd 2619
afd28fe1 2620 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2621 /*
2622 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2623 * the parent of the now unreachable PTE.
2624 */
3bae0459 2625 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2626 struct kvm_mmu_page *child;
d555c333 2627 u64 pte = *sptep;
1e73f9dd 2628
e47c4aee 2629 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2630 drop_parent_pte(child, sptep);
c2a4eadf 2631 flush = true;
d555c333 2632 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2633 pgprintk("hfn old %llx new %llx\n",
d555c333 2634 spte_to_pfn(*sptep), pfn);
c3707958 2635 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2636 flush = true;
6bed6b9e
JR
2637 } else
2638 was_rmapped = 1;
1e73f9dd 2639 }
852e3c19 2640
5ce4786f
JS
2641 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2642 speculative, true, host_writable);
2643 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2644 if (write_fault)
9b8ebbdb 2645 ret = RET_PF_EMULATE;
8c8560b8 2646 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2647 }
c3134ce2 2648
c2a4eadf 2649 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2650 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2651 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2652
029499b4 2653 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2654 ret = RET_PF_EMULATE;
ce88decf 2655
12703759
SC
2656 /*
2657 * The fault is fully spurious if and only if the new SPTE and old SPTE
2658 * are identical, and emulation is not required.
2659 */
2660 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2661 WARN_ON_ONCE(!was_rmapped);
2662 return RET_PF_SPURIOUS;
2663 }
2664
d555c333 2665 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2666 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2667 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2668 ++vcpu->kvm->stat.lpages;
2669
ffb61bb3 2670 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2671 if (!was_rmapped) {
2672 rmap_count = rmap_add(vcpu, sptep, gfn);
2673 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2674 rmap_recycle(vcpu, sptep, gfn);
2675 }
1c4f1fd6 2676 }
cb9aaa30 2677
9b8ebbdb 2678 return ret;
1c4f1fd6
AK
2679}
2680
ba049e93 2681static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2682 bool no_dirty_log)
2683{
2684 struct kvm_memory_slot *slot;
957ed9ef 2685
5d163b1c 2686 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2687 if (!slot)
6c8ee57b 2688 return KVM_PFN_ERR_FAULT;
957ed9ef 2689
037d92dc 2690 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2691}
2692
2693static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2694 struct kvm_mmu_page *sp,
2695 u64 *start, u64 *end)
2696{
2697 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2698 struct kvm_memory_slot *slot;
0a2b64c5 2699 unsigned int access = sp->role.access;
957ed9ef
XG
2700 int i, ret;
2701 gfn_t gfn;
2702
2703 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2704 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2705 if (!slot)
957ed9ef
XG
2706 return -1;
2707
d9ef13c2 2708 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2709 if (ret <= 0)
2710 return -1;
2711
43fdcda9 2712 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2713 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2714 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2715 put_page(pages[i]);
2716 }
957ed9ef
XG
2717
2718 return 0;
2719}
2720
2721static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2722 struct kvm_mmu_page *sp, u64 *sptep)
2723{
2724 u64 *spte, *start = NULL;
2725 int i;
2726
2727 WARN_ON(!sp->role.direct);
2728
2729 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2730 spte = sp->spt + i;
2731
2732 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2733 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2734 if (!start)
2735 continue;
2736 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2737 break;
2738 start = NULL;
2739 } else if (!start)
2740 start = spte;
2741 }
2742}
2743
2744static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2745{
2746 struct kvm_mmu_page *sp;
2747
57354682 2748 sp = sptep_to_sp(sptep);
ac8d57e5 2749
957ed9ef 2750 /*
ac8d57e5
PF
2751 * Without accessed bits, there's no way to distinguish between
2752 * actually accessed translations and prefetched, so disable pte
2753 * prefetch if accessed bits aren't available.
957ed9ef 2754 */
ac8d57e5 2755 if (sp_ad_disabled(sp))
957ed9ef
XG
2756 return;
2757
3bae0459 2758 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2759 return;
2760
2761 __direct_pte_prefetch(vcpu, sp, sptep);
2762}
2763
db543216 2764static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 2765 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 2766{
db543216
SC
2767 unsigned long hva;
2768 pte_t *pte;
2769 int level;
2770
e851265a 2771 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2772 return PG_LEVEL_4K;
db543216 2773
293e306e
SC
2774 /*
2775 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2776 * is not solely for performance, it's also necessary to avoid the
2777 * "writable" check in __gfn_to_hva_many(), which will always fail on
2778 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2779 * page fault steps have already verified the guest isn't writing a
2780 * read-only memslot.
2781 */
db543216
SC
2782 hva = __gfn_to_hva_memslot(slot, gfn);
2783
2784 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2785 if (unlikely(!pte))
3bae0459 2786 return PG_LEVEL_4K;
db543216
SC
2787
2788 return level;
2789}
2790
bb18842e
BG
2791int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2792 int max_level, kvm_pfn_t *pfnp,
2793 bool huge_page_disallowed, int *req_level)
0885904d 2794{
293e306e 2795 struct kvm_memory_slot *slot;
2c0629f4 2796 struct kvm_lpage_info *linfo;
0885904d 2797 kvm_pfn_t pfn = *pfnp;
17eff019 2798 kvm_pfn_t mask;
83f06fa7 2799 int level;
17eff019 2800
3cf06612
SC
2801 *req_level = PG_LEVEL_4K;
2802
3bae0459
SC
2803 if (unlikely(max_level == PG_LEVEL_4K))
2804 return PG_LEVEL_4K;
17eff019 2805
e851265a 2806 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2807 return PG_LEVEL_4K;
17eff019 2808
293e306e
SC
2809 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2810 if (!slot)
3bae0459 2811 return PG_LEVEL_4K;
293e306e 2812
1d92d2e8 2813 max_level = min(max_level, max_huge_page_level);
3bae0459 2814 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
2815 linfo = lpage_info_slot(gfn, slot, max_level);
2816 if (!linfo->disallow_lpage)
293e306e
SC
2817 break;
2818 }
2819
3bae0459
SC
2820 if (max_level == PG_LEVEL_4K)
2821 return PG_LEVEL_4K;
293e306e
SC
2822
2823 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 2824 if (level == PG_LEVEL_4K)
83f06fa7 2825 return level;
17eff019 2826
3cf06612
SC
2827 *req_level = level = min(level, max_level);
2828
2829 /*
2830 * Enforce the iTLB multihit workaround after capturing the requested
2831 * level, which will be used to do precise, accurate accounting.
2832 */
2833 if (huge_page_disallowed)
2834 return PG_LEVEL_4K;
0885904d
SC
2835
2836 /*
17eff019
SC
2837 * mmu_notifier_retry() was successful and mmu_lock is held, so
2838 * the pmd can't be split from under us.
0885904d 2839 */
17eff019
SC
2840 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2841 VM_BUG_ON((gfn & mask) != (pfn & mask));
2842 *pfnp = pfn & ~mask;
83f06fa7
SC
2843
2844 return level;
0885904d
SC
2845}
2846
bb18842e
BG
2847void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2848 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2849{
bb18842e 2850 int level = *goal_levelp;
b8e8c830 2851
7d945312 2852 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2853 is_shadow_present_pte(spte) &&
2854 !is_large_pte(spte)) {
2855 /*
2856 * A small SPTE exists for this pfn, but FNAME(fetch)
2857 * and __direct_map would like to create a large PTE
2858 * instead: just force them to go down another level,
2859 * patching back for them into pfn the next 9 bits of
2860 * the address.
2861 */
7d945312
BG
2862 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2863 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2864 *pfnp |= gfn & page_mask;
bb18842e 2865 (*goal_levelp)--;
b8e8c830
PB
2866 }
2867}
2868
6c2fd34f 2869static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2870 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2871 bool prefault, bool is_tdp)
140754bc 2872{
6c2fd34f
SC
2873 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2874 bool write = error_code & PFERR_WRITE_MASK;
2875 bool exec = error_code & PFERR_FETCH_MASK;
2876 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2877 struct kvm_shadow_walk_iterator it;
140754bc 2878 struct kvm_mmu_page *sp;
3cf06612 2879 int level, req_level, ret;
3fcf2d1b
PB
2880 gfn_t gfn = gpa >> PAGE_SHIFT;
2881 gfn_t base_gfn = gfn;
6aa8b732 2882
0c7a98e3 2883 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2884 return RET_PF_RETRY;
989c6b34 2885
3cf06612
SC
2886 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2887 huge_page_disallowed, &req_level);
4cd071d1 2888
335e192a 2889 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2890 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2891 /*
2892 * We cannot overwrite existing page tables with an NX
2893 * large page, as the leaf could be executable.
2894 */
dcc70651 2895 if (nx_huge_page_workaround_enabled)
7d945312
BG
2896 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2897 &pfn, &level);
b8e8c830 2898
3fcf2d1b
PB
2899 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2900 if (it.level == level)
9f652d21 2901 break;
6aa8b732 2902
3fcf2d1b
PB
2903 drop_large_spte(vcpu, it.sptep);
2904 if (!is_shadow_present_pte(*it.sptep)) {
2905 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2906 it.level - 1, true, ACC_ALL);
c9fa0b3b 2907
3fcf2d1b 2908 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2909 if (is_tdp && huge_page_disallowed &&
2910 req_level >= it.level)
b8e8c830 2911 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2912 }
2913 }
3fcf2d1b
PB
2914
2915 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2916 write, level, base_gfn, pfn, prefault,
2917 map_writable);
12703759
SC
2918 if (ret == RET_PF_SPURIOUS)
2919 return ret;
2920
3fcf2d1b
PB
2921 direct_pte_prefetch(vcpu, it.sptep);
2922 ++vcpu->stat.pf_fixed;
2923 return ret;
6aa8b732
AK
2924}
2925
77db5cbd 2926static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2927{
585a8b9b 2928 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2929}
2930
ba049e93 2931static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2932{
4d8b81ab
XG
2933 /*
2934 * Do not cache the mmio info caused by writing the readonly gfn
2935 * into the spte otherwise read access on readonly gfn also can
2936 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2937 */
2938 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2939 return RET_PF_EMULATE;
4d8b81ab 2940
e6c1502b 2941 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2942 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2943 return RET_PF_RETRY;
d7c55201 2944 }
edba23e5 2945
2c151b25 2946 return -EFAULT;
bf998156
HY
2947}
2948
d7c55201 2949static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2950 kvm_pfn_t pfn, unsigned int access,
2951 int *ret_val)
d7c55201 2952{
d7c55201 2953 /* The pfn is invalid, report the error! */
81c52c56 2954 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2955 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2956 return true;
d7c55201
XG
2957 }
2958
ce88decf 2959 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
2960 vcpu_cache_mmio_info(vcpu, gva, gfn,
2961 access & shadow_mmio_access_mask);
d7c55201 2962
798e88b3 2963 return false;
d7c55201
XG
2964}
2965
e5552fd2 2966static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2967{
1c118b82
XG
2968 /*
2969 * Do not fix the mmio spte with invalid generation number which
2970 * need to be updated by slow page fault path.
2971 */
2972 if (unlikely(error_code & PFERR_RSVD_MASK))
2973 return false;
2974
f160c7b7
JS
2975 /* See if the page fault is due to an NX violation */
2976 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2977 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2978 return false;
2979
c7ba5b48 2980 /*
f160c7b7
JS
2981 * #PF can be fast if:
2982 * 1. The shadow page table entry is not present, which could mean that
2983 * the fault is potentially caused by access tracking (if enabled).
2984 * 2. The shadow page table entry is present and the fault
2985 * is caused by write-protect, that means we just need change the W
2986 * bit of the spte which can be done out of mmu-lock.
2987 *
2988 * However, if access tracking is disabled we know that a non-present
2989 * page must be a genuine page fault where we have to create a new SPTE.
2990 * So, if access tracking is disabled, we return true only for write
2991 * accesses to a present page.
c7ba5b48 2992 */
c7ba5b48 2993
f160c7b7
JS
2994 return shadow_acc_track_mask != 0 ||
2995 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2996 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2997}
2998
97dceba2
JS
2999/*
3000 * Returns true if the SPTE was fixed successfully. Otherwise,
3001 * someone else modified the SPTE from its original value.
3002 */
c7ba5b48 3003static bool
92a476cb 3004fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3005 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3006{
c7ba5b48
XG
3007 gfn_t gfn;
3008
3009 WARN_ON(!sp->role.direct);
3010
9b51a630
KH
3011 /*
3012 * Theoretically we could also set dirty bit (and flush TLB) here in
3013 * order to eliminate unnecessary PML logging. See comments in
3014 * set_spte. But fast_page_fault is very unlikely to happen with PML
3015 * enabled, so we do not do this. This might result in the same GPA
3016 * to be logged in PML buffer again when the write really happens, and
3017 * eventually to be called by mark_page_dirty twice. But it's also no
3018 * harm. This also avoids the TLB flush needed after setting dirty bit
3019 * so non-PML cases won't be impacted.
3020 *
3021 * Compare with set_spte where instead shadow_dirty_mask is set.
3022 */
f160c7b7 3023 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3024 return false;
3025
d3e328f2 3026 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3027 /*
3028 * The gfn of direct spte is stable since it is
3029 * calculated by sp->gfn.
3030 */
3031 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3032 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3033 }
c7ba5b48
XG
3034
3035 return true;
3036}
3037
d3e328f2
JS
3038static bool is_access_allowed(u32 fault_err_code, u64 spte)
3039{
3040 if (fault_err_code & PFERR_FETCH_MASK)
3041 return is_executable_pte(spte);
3042
3043 if (fault_err_code & PFERR_WRITE_MASK)
3044 return is_writable_pte(spte);
3045
3046 /* Fault was on Read access */
3047 return spte & PT_PRESENT_MASK;
3048}
3049
c7ba5b48 3050/*
c4371c2a 3051 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3052 */
c4371c2a
SC
3053static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3054 u32 error_code)
c7ba5b48
XG
3055{
3056 struct kvm_shadow_walk_iterator iterator;
92a476cb 3057 struct kvm_mmu_page *sp;
c4371c2a 3058 int ret = RET_PF_INVALID;
c7ba5b48 3059 u64 spte = 0ull;
97dceba2 3060 uint retry_count = 0;
c7ba5b48 3061
e5552fd2 3062 if (!page_fault_can_be_fast(error_code))
c4371c2a 3063 return ret;
c7ba5b48
XG
3064
3065 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3066
97dceba2 3067 do {
d3e328f2 3068 u64 new_spte;
c7ba5b48 3069
736c291c 3070 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3071 if (!is_shadow_present_pte(spte))
d162f30a
JS
3072 break;
3073
57354682 3074 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3075 if (!is_last_spte(spte, sp->role.level))
3076 break;
c7ba5b48 3077
97dceba2 3078 /*
f160c7b7
JS
3079 * Check whether the memory access that caused the fault would
3080 * still cause it if it were to be performed right now. If not,
3081 * then this is a spurious fault caused by TLB lazily flushed,
3082 * or some other CPU has already fixed the PTE after the
3083 * current CPU took the fault.
97dceba2
JS
3084 *
3085 * Need not check the access of upper level table entries since
3086 * they are always ACC_ALL.
3087 */
d3e328f2 3088 if (is_access_allowed(error_code, spte)) {
c4371c2a 3089 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3090 break;
3091 }
f160c7b7 3092
d3e328f2
JS
3093 new_spte = spte;
3094
3095 if (is_access_track_spte(spte))
3096 new_spte = restore_acc_track_spte(new_spte);
3097
3098 /*
3099 * Currently, to simplify the code, write-protection can
3100 * be removed in the fast path only if the SPTE was
3101 * write-protected for dirty-logging or access tracking.
3102 */
3103 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3104 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3105 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3106
3107 /*
d3e328f2
JS
3108 * Do not fix write-permission on the large spte. Since
3109 * we only dirty the first page into the dirty-bitmap in
3110 * fast_pf_fix_direct_spte(), other pages are missed
3111 * if its slot has dirty logging enabled.
3112 *
3113 * Instead, we let the slow page fault path create a
3114 * normal spte to fix the access.
3115 *
3116 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3117 */
3bae0459 3118 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3119 break;
97dceba2 3120 }
c7ba5b48 3121
f160c7b7 3122 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3123 if (new_spte == spte ||
3124 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3125 break;
3126
3127 /*
3128 * Currently, fast page fault only works for direct mapping
3129 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3130 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3131 */
c4371c2a
SC
3132 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3133 new_spte)) {
3134 ret = RET_PF_FIXED;
97dceba2 3135 break;
c4371c2a 3136 }
97dceba2
JS
3137
3138 if (++retry_count > 4) {
3139 printk_once(KERN_WARNING
3140 "kvm: Fast #PF retrying more than 4 times.\n");
3141 break;
3142 }
3143
97dceba2 3144 } while (true);
c126d94f 3145
736c291c 3146 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3147 spte, ret);
c7ba5b48
XG
3148 walk_shadow_page_lockless_end(vcpu);
3149
c4371c2a 3150 return ret;
c7ba5b48
XG
3151}
3152
74b566e6
JS
3153static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3154 struct list_head *invalid_list)
17ac10ad 3155{
4db35314 3156 struct kvm_mmu_page *sp;
17ac10ad 3157
74b566e6 3158 if (!VALID_PAGE(*root_hpa))
7b53aa56 3159 return;
35af577a 3160
e47c4aee 3161 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3162
3163 if (kvm_mmu_put_root(kvm, sp)) {
3164 if (sp->tdp_mmu_page)
3165 kvm_tdp_mmu_free_root(kvm, sp);
3166 else if (sp->role.invalid)
3167 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3168 }
17ac10ad 3169
74b566e6
JS
3170 *root_hpa = INVALID_PAGE;
3171}
3172
08fb59d8 3173/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3174void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3175 ulong roots_to_free)
74b566e6 3176{
4d710de9 3177 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3178 int i;
3179 LIST_HEAD(invalid_list);
08fb59d8 3180 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3181
b94742c9 3182 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3183
08fb59d8 3184 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3185 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3186 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3187 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3188 VALID_PAGE(mmu->prev_roots[i].hpa))
3189 break;
3190
3191 if (i == KVM_MMU_NUM_PREV_ROOTS)
3192 return;
3193 }
35af577a 3194
4d710de9 3195 spin_lock(&kvm->mmu_lock);
17ac10ad 3196
b94742c9
JS
3197 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3198 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3199 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3200 &invalid_list);
7c390d35 3201
08fb59d8
JS
3202 if (free_active_root) {
3203 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3204 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3205 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
08fb59d8
JS
3206 } else {
3207 for (i = 0; i < 4; ++i)
3208 if (mmu->pae_root[i] != 0)
4d710de9 3209 mmu_free_root_page(kvm,
08fb59d8
JS
3210 &mmu->pae_root[i],
3211 &invalid_list);
3212 mmu->root_hpa = INVALID_PAGE;
3213 }
be01e8e2 3214 mmu->root_pgd = 0;
17ac10ad 3215 }
74b566e6 3216
4d710de9
SC
3217 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3218 spin_unlock(&kvm->mmu_lock);
17ac10ad 3219}
74b566e6 3220EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3221
8986ecc0
MT
3222static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3223{
3224 int ret = 0;
3225
995decb6 3226 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3227 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3228 ret = 1;
3229 }
3230
3231 return ret;
3232}
3233
8123f265
SC
3234static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3235 u8 level, bool direct)
651dd37a
JR
3236{
3237 struct kvm_mmu_page *sp;
8123f265
SC
3238
3239 spin_lock(&vcpu->kvm->mmu_lock);
3240
3241 if (make_mmu_pages_available(vcpu)) {
3242 spin_unlock(&vcpu->kvm->mmu_lock);
3243 return INVALID_PAGE;
3244 }
3245 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3246 ++sp->root_count;
3247
3248 spin_unlock(&vcpu->kvm->mmu_lock);
3249 return __pa(sp->spt);
3250}
3251
3252static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3253{
3254 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3255 hpa_t root;
7ebaf15e 3256 unsigned i;
651dd37a 3257
02c00b3a
BG
3258 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3259 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3260
3261 if (!VALID_PAGE(root))
3262 return -ENOSPC;
3263 vcpu->arch.mmu->root_hpa = root;
3264 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3265 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3266 true);
3267
8123f265 3268 if (!VALID_PAGE(root))
ed52870f 3269 return -ENOSPC;
8123f265
SC
3270 vcpu->arch.mmu->root_hpa = root;
3271 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3272 for (i = 0; i < 4; ++i) {
8123f265 3273 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3274
8123f265
SC
3275 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3276 i << 30, PT32_ROOT_LEVEL, true);
3277 if (!VALID_PAGE(root))
ed52870f 3278 return -ENOSPC;
44dd3ffa 3279 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3280 }
44dd3ffa 3281 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3282 } else
3283 BUG();
3651c7fc 3284
be01e8e2
SC
3285 /* root_pgd is ignored for direct MMUs. */
3286 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3287
3288 return 0;
3289}
3290
3291static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3292{
81407ca5 3293 u64 pdptr, pm_mask;
be01e8e2 3294 gfn_t root_gfn, root_pgd;
8123f265 3295 hpa_t root;
81407ca5 3296 int i;
3bb65a22 3297
be01e8e2
SC
3298 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3299 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3300
651dd37a
JR
3301 if (mmu_check_root(vcpu, root_gfn))
3302 return 1;
3303
3304 /*
3305 * Do we shadow a long mode page table? If so we need to
3306 * write-protect the guests page table root.
3307 */
44dd3ffa 3308 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3309 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3310
8123f265
SC
3311 root = mmu_alloc_root(vcpu, root_gfn, 0,
3312 vcpu->arch.mmu->shadow_root_level, false);
3313 if (!VALID_PAGE(root))
ed52870f 3314 return -ENOSPC;
44dd3ffa 3315 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3316 goto set_root_pgd;
17ac10ad 3317 }
f87f9288 3318
651dd37a
JR
3319 /*
3320 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3321 * or a PAE 3-level page table. In either case we need to be aware that
3322 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3323 */
81407ca5 3324 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3325 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3326 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3327
17ac10ad 3328 for (i = 0; i < 4; ++i) {
8123f265 3329 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3330 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3331 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3332 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3333 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3334 continue;
3335 }
6de4f3ad 3336 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3337 if (mmu_check_root(vcpu, root_gfn))
3338 return 1;
5a7388c2 3339 }
8facbbff 3340
8123f265
SC
3341 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3342 PT32_ROOT_LEVEL, false);
3343 if (!VALID_PAGE(root))
3344 return -ENOSPC;
44dd3ffa 3345 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3346 }
44dd3ffa 3347 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3348
3349 /*
3350 * If we shadow a 32 bit page table with a long mode page
3351 * table we enter this path.
3352 */
44dd3ffa
VK
3353 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3354 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3355 /*
3356 * The additional page necessary for this is only
3357 * allocated on demand.
3358 */
3359
3360 u64 *lm_root;
3361
254272ce 3362 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3363 if (lm_root == NULL)
3364 return 1;
3365
44dd3ffa 3366 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3367
44dd3ffa 3368 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3369 }
3370
44dd3ffa 3371 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3372 }
3373
be01e8e2
SC
3374set_root_pgd:
3375 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3376
8986ecc0 3377 return 0;
17ac10ad
AK
3378}
3379
651dd37a
JR
3380static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3381{
44dd3ffa 3382 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3383 return mmu_alloc_direct_roots(vcpu);
3384 else
3385 return mmu_alloc_shadow_roots(vcpu);
3386}
3387
578e1c4d 3388void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3389{
3390 int i;
3391 struct kvm_mmu_page *sp;
3392
44dd3ffa 3393 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3394 return;
3395
44dd3ffa 3396 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3397 return;
6903074c 3398
56f17dd3 3399 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3400
44dd3ffa
VK
3401 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3402 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3403 sp = to_shadow_page(root);
578e1c4d
JS
3404
3405 /*
3406 * Even if another CPU was marking the SP as unsync-ed
3407 * simultaneously, any guest page table changes are not
3408 * guaranteed to be visible anyway until this VCPU issues a TLB
3409 * flush strictly after those changes are made. We only need to
3410 * ensure that the other CPU sets these flags before any actual
3411 * changes to the page tables are made. The comments in
3412 * mmu_need_write_protect() describe what could go wrong if this
3413 * requirement isn't satisfied.
3414 */
3415 if (!smp_load_acquire(&sp->unsync) &&
3416 !smp_load_acquire(&sp->unsync_children))
3417 return;
3418
3419 spin_lock(&vcpu->kvm->mmu_lock);
3420 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3421
0ba73cda 3422 mmu_sync_children(vcpu, sp);
578e1c4d 3423
0375f7fa 3424 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3425 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3426 return;
3427 }
578e1c4d
JS
3428
3429 spin_lock(&vcpu->kvm->mmu_lock);
3430 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3431
0ba73cda 3432 for (i = 0; i < 4; ++i) {
44dd3ffa 3433 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3434
8986ecc0 3435 if (root && VALID_PAGE(root)) {
0ba73cda 3436 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3437 sp = to_shadow_page(root);
0ba73cda
MT
3438 mmu_sync_children(vcpu, sp);
3439 }
3440 }
0ba73cda 3441
578e1c4d 3442 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3443 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3444}
bfd0a56b 3445EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3446
736c291c 3447static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3448 u32 access, struct x86_exception *exception)
6aa8b732 3449{
ab9ae313
AK
3450 if (exception)
3451 exception->error_code = 0;
6aa8b732
AK
3452 return vaddr;
3453}
3454
736c291c 3455static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3456 u32 access,
3457 struct x86_exception *exception)
6539e738 3458{
ab9ae313
AK
3459 if (exception)
3460 exception->error_code = 0;
54987b7a 3461 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3462}
3463
d625b155
XG
3464static bool
3465__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3466{
b5c3c1b3 3467 int bit7 = (pte >> 7) & 1;
d625b155 3468
b5c3c1b3 3469 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3470}
3471
b5c3c1b3 3472static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3473{
b5c3c1b3 3474 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3475}
3476
ded58749 3477static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3478{
9034e6e8
PB
3479 /*
3480 * A nested guest cannot use the MMIO cache if it is using nested
3481 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3482 */
3483 if (mmu_is_nested(vcpu))
3484 return false;
3485
ce88decf
XG
3486 if (direct)
3487 return vcpu_match_mmio_gpa(vcpu, addr);
3488
3489 return vcpu_match_mmio_gva(vcpu, addr);
3490}
3491
95fb5b02
BG
3492/*
3493 * Return the level of the lowest level SPTE added to sptes.
3494 * That SPTE may be non-present.
3495 */
39b4d43e 3496static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
ce88decf
XG
3497{
3498 struct kvm_shadow_walk_iterator iterator;
2aa07893 3499 int leaf = -1;
95fb5b02 3500 u64 spte;
ce88decf
XG
3501
3502 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3503
39b4d43e
SC
3504 for (shadow_walk_init(&iterator, vcpu, addr),
3505 *root_level = iterator.level;
47ab8751
XG
3506 shadow_walk_okay(&iterator);
3507 __shadow_walk_next(&iterator, spte)) {
95fb5b02 3508 leaf = iterator.level;
47ab8751
XG
3509 spte = mmu_spte_get_lockless(iterator.sptep);
3510
dde81f94 3511 sptes[leaf] = spte;
47ab8751 3512
ce88decf
XG
3513 if (!is_shadow_present_pte(spte))
3514 break;
95fb5b02
BG
3515 }
3516
3517 walk_shadow_page_lockless_end(vcpu);
3518
3519 return leaf;
3520}
3521
9aa41879 3522/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
95fb5b02
BG
3523static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3524{
dde81f94 3525 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
95fb5b02 3526 struct rsvd_bits_validate *rsvd_check;
39b4d43e 3527 int root, leaf, level;
95fb5b02
BG
3528 bool reserved = false;
3529
3530 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3531 *sptep = 0ull;
3532 return reserved;
3533 }
3534
3535 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
39b4d43e 3536 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
95fb5b02 3537 else
39b4d43e 3538 leaf = get_walk(vcpu, addr, sptes, &root);
95fb5b02 3539
2aa07893
SC
3540 if (unlikely(leaf < 0)) {
3541 *sptep = 0ull;
3542 return reserved;
3543 }
3544
9aa41879
SC
3545 *sptep = sptes[leaf];
3546
3547 /*
3548 * Skip reserved bits checks on the terminal leaf if it's not a valid
3549 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3550 * design, always have reserved bits set. The purpose of the checks is
3551 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3552 */
3553 if (!is_shadow_present_pte(sptes[leaf]))
3554 leaf++;
95fb5b02
BG
3555
3556 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3557
9aa41879 3558 for (level = root; level >= leaf; level--)
b5c3c1b3
SC
3559 /*
3560 * Use a bitwise-OR instead of a logical-OR to aggregate the
3561 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3562 * adding a Jcc in the loop.
3563 */
dde81f94
SC
3564 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3565 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
47ab8751 3566
47ab8751
XG
3567 if (reserved) {
3568 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3569 __func__, addr);
95fb5b02 3570 for (level = root; level >= leaf; level--)
47ab8751 3571 pr_err("------ spte 0x%llx level %d.\n",
dde81f94 3572 sptes[level], level);
47ab8751 3573 }
ddce6208 3574
47ab8751 3575 return reserved;
ce88decf
XG
3576}
3577
e08d26f0 3578static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3579{
3580 u64 spte;
47ab8751 3581 bool reserved;
ce88decf 3582
ded58749 3583 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3584 return RET_PF_EMULATE;
ce88decf 3585
95fb5b02 3586 reserved = get_mmio_spte(vcpu, addr, &spte);
450869d6 3587 if (WARN_ON(reserved))
9b8ebbdb 3588 return -EINVAL;
ce88decf
XG
3589
3590 if (is_mmio_spte(spte)) {
3591 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3592 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3593
54bf36aa 3594 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3595 return RET_PF_INVALID;
f8f55942 3596
ce88decf
XG
3597 if (direct)
3598 addr = 0;
4f022648
XG
3599
3600 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3601 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3602 return RET_PF_EMULATE;
ce88decf
XG
3603 }
3604
ce88decf
XG
3605 /*
3606 * If the page table is zapped by other cpus, let CPU fault again on
3607 * the address.
3608 */
9b8ebbdb 3609 return RET_PF_RETRY;
ce88decf 3610}
ce88decf 3611
3d0c27ad
XG
3612static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3613 u32 error_code, gfn_t gfn)
3614{
3615 if (unlikely(error_code & PFERR_RSVD_MASK))
3616 return false;
3617
3618 if (!(error_code & PFERR_PRESENT_MASK) ||
3619 !(error_code & PFERR_WRITE_MASK))
3620 return false;
3621
3622 /*
3623 * guest is writing the page which is write tracked which can
3624 * not be fixed by page fault handler.
3625 */
3626 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3627 return true;
3628
3629 return false;
3630}
3631
e5691a81
XG
3632static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3633{
3634 struct kvm_shadow_walk_iterator iterator;
3635 u64 spte;
3636
e5691a81
XG
3637 walk_shadow_page_lockless_begin(vcpu);
3638 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3639 clear_sp_write_flooding_count(iterator.sptep);
3640 if (!is_shadow_present_pte(spte))
3641 break;
3642 }
3643 walk_shadow_page_lockless_end(vcpu);
3644}
3645
e8c22266
VK
3646static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3647 gfn_t gfn)
af585b92
GN
3648{
3649 struct kvm_arch_async_pf arch;
fb67e14f 3650
7c90705b 3651 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3652 arch.gfn = gfn;
44dd3ffa 3653 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3654 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3655
9f1a8526
SC
3656 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3657 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3658}
3659
78b2c54a 3660static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
3661 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3662 bool *writable)
af585b92 3663{
c36b7150 3664 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3665 bool async;
3666
c36b7150
PB
3667 /* Don't expose private memslots to L2. */
3668 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3669 *pfn = KVM_PFN_NOSLOT;
c583eed6 3670 *writable = false;
3a2936de
JM
3671 return false;
3672 }
3673
3520469d
PB
3674 async = false;
3675 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3676 if (!async)
3677 return false; /* *pfn has correct page already */
3678
9bc1f09f 3679 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3680 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3681 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3682 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3683 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3684 return true;
9f1a8526 3685 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3686 return true;
3687 }
3688
3520469d 3689 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3690 return false;
3691}
3692
0f90e1c1
SC
3693static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3694 bool prefault, int max_level, bool is_tdp)
6aa8b732 3695{
367fd790 3696 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3697 bool map_writable;
6aa8b732 3698
0f90e1c1
SC
3699 gfn_t gfn = gpa >> PAGE_SHIFT;
3700 unsigned long mmu_seq;
3701 kvm_pfn_t pfn;
83f06fa7 3702 int r;
ce88decf 3703
3d0c27ad 3704 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3705 return RET_PF_EMULATE;
ce88decf 3706
bb18842e
BG
3707 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3708 r = fast_page_fault(vcpu, gpa, error_code);
3709 if (r != RET_PF_INVALID)
3710 return r;
3711 }
83291445 3712
378f5cd6 3713 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3714 if (r)
3715 return r;
714b93da 3716
367fd790
SC
3717 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3718 smp_rmb();
3719
3720 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3721 return RET_PF_RETRY;
3722
0f90e1c1 3723 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3724 return r;
6aa8b732 3725
367fd790
SC
3726 r = RET_PF_RETRY;
3727 spin_lock(&vcpu->kvm->mmu_lock);
3728 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3729 goto out_unlock;
7bd7ded6
SC
3730 r = make_mmu_pages_available(vcpu);
3731 if (r)
367fd790 3732 goto out_unlock;
bb18842e
BG
3733
3734 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3735 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3736 pfn, prefault);
3737 else
3738 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3739 prefault, is_tdp);
0f90e1c1 3740
367fd790
SC
3741out_unlock:
3742 spin_unlock(&vcpu->kvm->mmu_lock);
3743 kvm_release_pfn_clean(pfn);
3744 return r;
6aa8b732
AK
3745}
3746
0f90e1c1
SC
3747static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3748 u32 error_code, bool prefault)
3749{
3750 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3751
3752 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3753 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3754 PG_LEVEL_2M, false);
0f90e1c1
SC
3755}
3756
1261bfa3 3757int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3758 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3759{
3760 int r = 1;
9ce372b3 3761 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3762
736c291c
SC
3763#ifndef CONFIG_X86_64
3764 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3765 if (WARN_ON_ONCE(fault_address >> 32))
3766 return -EFAULT;
3767#endif
3768
c595ceee 3769 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3770 if (!flags) {
1261bfa3
WL
3771 trace_kvm_page_fault(fault_address, error_code);
3772
d0006530 3773 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3774 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3775 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3776 insn_len);
9ce372b3 3777 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3778 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3779 local_irq_disable();
6bca69ad 3780 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3781 local_irq_enable();
9ce372b3
VK
3782 } else {
3783 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3784 }
9ce372b3 3785
1261bfa3
WL
3786 return r;
3787}
3788EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3789
7a02674d
SC
3790int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3791 bool prefault)
fb72d167 3792{
cb9b88c6 3793 int max_level;
fb72d167 3794
e662ec3e 3795 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3796 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3797 max_level--) {
3798 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3799 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3800
cb9b88c6
SC
3801 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3802 break;
fd136902 3803 }
852e3c19 3804
0f90e1c1
SC
3805 return direct_page_fault(vcpu, gpa, error_code, prefault,
3806 max_level, true);
fb72d167
JR
3807}
3808
8a3c1a33
PB
3809static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3810 struct kvm_mmu *context)
6aa8b732 3811{
6aa8b732 3812 context->page_fault = nonpaging_page_fault;
6aa8b732 3813 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3814 context->sync_page = nonpaging_sync_page;
5efac074 3815 context->invlpg = NULL;
0f53b5b1 3816 context->update_pte = nonpaging_update_pte;
cea0f0e7 3817 context->root_level = 0;
6aa8b732 3818 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3819 context->direct_map = true;
2d48a985 3820 context->nx = false;
6aa8b732
AK
3821}
3822
be01e8e2 3823static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3824 union kvm_mmu_page_role role)
3825{
be01e8e2 3826 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3827 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3828 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3829}
3830
b94742c9 3831/*
be01e8e2 3832 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3833 * The current root is also inserted into the cache.
3834 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3835 * returned.
3836 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3837 * false is returned. This root should now be freed by the caller.
3838 */
be01e8e2 3839static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3840 union kvm_mmu_page_role new_role)
3841{
3842 uint i;
3843 struct kvm_mmu_root_info root;
44dd3ffa 3844 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3845
be01e8e2 3846 root.pgd = mmu->root_pgd;
b94742c9
JS
3847 root.hpa = mmu->root_hpa;
3848
be01e8e2 3849 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3850 return true;
3851
b94742c9
JS
3852 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3853 swap(root, mmu->prev_roots[i]);
3854
be01e8e2 3855 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3856 break;
3857 }
3858
3859 mmu->root_hpa = root.hpa;
be01e8e2 3860 mmu->root_pgd = root.pgd;
b94742c9
JS
3861
3862 return i < KVM_MMU_NUM_PREV_ROOTS;
3863}
3864
be01e8e2 3865static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3866 union kvm_mmu_page_role new_role)
6aa8b732 3867{
44dd3ffa 3868 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3869
3870 /*
3871 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3872 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3873 * later if necessary.
3874 */
3875 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3876 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3877 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3878
3879 return false;
6aa8b732
AK
3880}
3881
be01e8e2 3882static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3883 union kvm_mmu_page_role new_role,
4a632ac6 3884 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3885{
be01e8e2 3886 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3887 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3888 return;
3889 }
3890
3891 /*
3892 * It's possible that the cached previous root page is obsolete because
3893 * of a change in the MMU generation number. However, changing the
3894 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3895 * free the root set here and allocate a new one.
3896 */
3897 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3898
71fe7013 3899 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3900 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3901 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3902 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3903
3904 /*
3905 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3906 * switching to a new CR3, that GVA->GPA mapping may no longer be
3907 * valid. So clear any cached MMIO info even when we don't need to sync
3908 * the shadow page tables.
3909 */
3910 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3911
daa5b6c1
BG
3912 /*
3913 * If this is a direct root page, it doesn't have a write flooding
3914 * count. Otherwise, clear the write flooding count.
3915 */
3916 if (!new_role.direct)
3917 __clear_sp_write_flooding_count(
3918 to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3919}
3920
be01e8e2 3921void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3922 bool skip_mmu_sync)
0aab33e4 3923{
be01e8e2 3924 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3925 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3926}
be01e8e2 3927EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3928
5777ed34
JR
3929static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3930{
9f8fe504 3931 return kvm_read_cr3(vcpu);
5777ed34
JR
3932}
3933
54bf36aa 3934static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3935 unsigned int access, int *nr_present)
ce88decf
XG
3936{
3937 if (unlikely(is_mmio_spte(*sptep))) {
3938 if (gfn != get_mmio_spte_gfn(*sptep)) {
3939 mmu_spte_clear_no_track(sptep);
3940 return true;
3941 }
3942
3943 (*nr_present)++;
54bf36aa 3944 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3945 return true;
3946 }
3947
3948 return false;
3949}
3950
6bb69c9b
PB
3951static inline bool is_last_gpte(struct kvm_mmu *mmu,
3952 unsigned level, unsigned gpte)
6fd01b71 3953{
6bb69c9b
PB
3954 /*
3955 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3956 * If it is clear, there are no large pages at this level, so clear
3957 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3958 */
3959 gpte &= level - mmu->last_nonleaf_level;
3960
829ee279 3961 /*
3bae0459
SC
3962 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3963 * iff level <= PG_LEVEL_4K, which for our purpose means
3964 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3965 */
3bae0459 3966 gpte |= level - PG_LEVEL_4K - 1;
829ee279 3967
6bb69c9b 3968 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3969}
3970
37406aaa
NHE
3971#define PTTYPE_EPT 18 /* arbitrary */
3972#define PTTYPE PTTYPE_EPT
3973#include "paging_tmpl.h"
3974#undef PTTYPE
3975
6aa8b732
AK
3976#define PTTYPE 64
3977#include "paging_tmpl.h"
3978#undef PTTYPE
3979
3980#define PTTYPE 32
3981#include "paging_tmpl.h"
3982#undef PTTYPE
3983
6dc98b86
XG
3984static void
3985__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3986 struct rsvd_bits_validate *rsvd_check,
3987 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3988 bool pse, bool amd)
82725b20 3989{
82725b20 3990 u64 exb_bit_rsvd = 0;
5f7dde7b 3991 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3992 u64 nonleaf_bit8_rsvd = 0;
82725b20 3993
a0a64f50 3994 rsvd_check->bad_mt_xwr = 0;
25d92081 3995
6dc98b86 3996 if (!nx)
82725b20 3997 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3998 if (!gbpages)
5f7dde7b 3999 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4000
4001 /*
4002 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4003 * leaf entries) on AMD CPUs only.
4004 */
6fec2144 4005 if (amd)
a0c0feb5
PB
4006 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4007
6dc98b86 4008 switch (level) {
82725b20
DE
4009 case PT32_ROOT_LEVEL:
4010 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4011 rsvd_check->rsvd_bits_mask[0][1] = 0;
4012 rsvd_check->rsvd_bits_mask[0][0] = 0;
4013 rsvd_check->rsvd_bits_mask[1][0] =
4014 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4015
6dc98b86 4016 if (!pse) {
a0a64f50 4017 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4018 break;
4019 }
4020
82725b20
DE
4021 if (is_cpuid_PSE36())
4022 /* 36bits PSE 4MB page */
a0a64f50 4023 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4024 else
4025 /* 32 bits PSE 4MB page */
a0a64f50 4026 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4027 break;
4028 case PT32E_ROOT_LEVEL:
a0a64f50 4029 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4030 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4031 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4032 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4033 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4034 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4035 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4036 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4037 rsvd_bits(maxphyaddr, 62) |
4038 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4039 rsvd_check->rsvd_bits_mask[1][0] =
4040 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4041 break;
855feb67
YZ
4042 case PT64_ROOT_5LEVEL:
4043 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4044 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4045 rsvd_bits(maxphyaddr, 51);
4046 rsvd_check->rsvd_bits_mask[1][4] =
4047 rsvd_check->rsvd_bits_mask[0][4];
df561f66 4048 fallthrough;
2a7266a8 4049 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4050 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4051 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4052 rsvd_bits(maxphyaddr, 51);
a0a64f50 4053 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5ecad245 4054 gbpages_bit_rsvd |
82725b20 4055 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4056 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4057 rsvd_bits(maxphyaddr, 51);
4058 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4059 rsvd_bits(maxphyaddr, 51);
4060 rsvd_check->rsvd_bits_mask[1][3] =
4061 rsvd_check->rsvd_bits_mask[0][3];
4062 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4063 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4064 rsvd_bits(13, 29);
a0a64f50 4065 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4066 rsvd_bits(maxphyaddr, 51) |
4067 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4068 rsvd_check->rsvd_bits_mask[1][0] =
4069 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4070 break;
4071 }
4072}
4073
6dc98b86
XG
4074static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4075 struct kvm_mmu *context)
4076{
4077 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4078 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4079 context->nx,
4080 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4081 is_pse(vcpu),
4082 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4083}
4084
81b8eebb
XG
4085static void
4086__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4087 int maxphyaddr, bool execonly)
25d92081 4088{
951f9fd7 4089 u64 bad_mt_xwr;
25d92081 4090
855feb67
YZ
4091 rsvd_check->rsvd_bits_mask[0][4] =
4092 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4093 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4094 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4095 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4096 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4097 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4098 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4099 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4100
4101 /* large page */
855feb67 4102 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4103 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4104 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4105 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4106 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4107 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4108 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4109
951f9fd7
PB
4110 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4111 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4112 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4113 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4114 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4115 if (!execonly) {
4116 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4117 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4118 }
951f9fd7 4119 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4120}
4121
81b8eebb
XG
4122static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4123 struct kvm_mmu *context, bool execonly)
4124{
4125 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4126 cpuid_maxphyaddr(vcpu), execonly);
4127}
4128
c258b62b
XG
4129/*
4130 * the page table on host is the shadow page table for the page
4131 * table in guest or amd nested guest, its mmu features completely
4132 * follow the features in guest.
4133 */
4134void
4135reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4136{
36d9594d
VK
4137 bool uses_nx = context->nx ||
4138 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4139 struct rsvd_bits_validate *shadow_zero_check;
4140 int i;
5f0b8199 4141
6fec2144
PB
4142 /*
4143 * Passing "true" to the last argument is okay; it adds a check
4144 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4145 */
ea2800dd
BS
4146 shadow_zero_check = &context->shadow_zero_check;
4147 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4148 shadow_phys_bits,
5f0b8199 4149 context->shadow_root_level, uses_nx,
d6321d49
RK
4150 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4151 is_pse(vcpu), true);
ea2800dd
BS
4152
4153 if (!shadow_me_mask)
4154 return;
4155
4156 for (i = context->shadow_root_level; --i >= 0;) {
4157 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4158 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4159 }
4160
c258b62b
XG
4161}
4162EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4163
6fec2144
PB
4164static inline bool boot_cpu_is_amd(void)
4165{
4166 WARN_ON_ONCE(!tdp_enabled);
4167 return shadow_x_mask == 0;
4168}
4169
c258b62b
XG
4170/*
4171 * the direct page table on host, use as much mmu features as
4172 * possible, however, kvm currently does not do execution-protection.
4173 */
4174static void
4175reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4176 struct kvm_mmu *context)
4177{
ea2800dd
BS
4178 struct rsvd_bits_validate *shadow_zero_check;
4179 int i;
4180
4181 shadow_zero_check = &context->shadow_zero_check;
4182
6fec2144 4183 if (boot_cpu_is_amd())
ea2800dd 4184 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4185 shadow_phys_bits,
c258b62b 4186 context->shadow_root_level, false,
b8291adc
BP
4187 boot_cpu_has(X86_FEATURE_GBPAGES),
4188 true, true);
c258b62b 4189 else
ea2800dd 4190 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4191 shadow_phys_bits,
c258b62b
XG
4192 false);
4193
ea2800dd
BS
4194 if (!shadow_me_mask)
4195 return;
4196
4197 for (i = context->shadow_root_level; --i >= 0;) {
4198 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4199 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4200 }
c258b62b
XG
4201}
4202
4203/*
4204 * as the comments in reset_shadow_zero_bits_mask() except it
4205 * is the shadow page table for intel nested guest.
4206 */
4207static void
4208reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4209 struct kvm_mmu *context, bool execonly)
4210{
4211 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4212 shadow_phys_bits, execonly);
c258b62b
XG
4213}
4214
09f037aa
PB
4215#define BYTE_MASK(access) \
4216 ((1 & (access) ? 2 : 0) | \
4217 (2 & (access) ? 4 : 0) | \
4218 (3 & (access) ? 8 : 0) | \
4219 (4 & (access) ? 16 : 0) | \
4220 (5 & (access) ? 32 : 0) | \
4221 (6 & (access) ? 64 : 0) | \
4222 (7 & (access) ? 128 : 0))
4223
4224
edc90b7d
XG
4225static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4226 struct kvm_mmu *mmu, bool ept)
97d64b78 4227{
09f037aa
PB
4228 unsigned byte;
4229
4230 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4231 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4232 const u8 u = BYTE_MASK(ACC_USER_MASK);
4233
4234 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4235 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4236 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4237
97d64b78 4238 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4239 unsigned pfec = byte << 1;
4240
97ec8c06 4241 /*
09f037aa
PB
4242 * Each "*f" variable has a 1 bit for each UWX value
4243 * that causes a fault with the given PFEC.
97ec8c06 4244 */
97d64b78 4245
09f037aa 4246 /* Faults from writes to non-writable pages */
a6a6d3b1 4247 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4248 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4249 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4250 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4251 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4252 /* Faults from kernel mode fetches of user pages */
4253 u8 smepf = 0;
4254 /* Faults from kernel mode accesses of user pages */
4255 u8 smapf = 0;
4256
4257 if (!ept) {
4258 /* Faults from kernel mode accesses to user pages */
4259 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4260
4261 /* Not really needed: !nx will cause pte.nx to fault */
4262 if (!mmu->nx)
4263 ff = 0;
4264
4265 /* Allow supervisor writes if !cr0.wp */
4266 if (!cr0_wp)
4267 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4268
4269 /* Disallow supervisor fetches of user code if cr4.smep */
4270 if (cr4_smep)
4271 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4272
4273 /*
4274 * SMAP:kernel-mode data accesses from user-mode
4275 * mappings should fault. A fault is considered
4276 * as a SMAP violation if all of the following
39337ad1 4277 * conditions are true:
09f037aa
PB
4278 * - X86_CR4_SMAP is set in CR4
4279 * - A user page is accessed
4280 * - The access is not a fetch
4281 * - Page fault in kernel mode
4282 * - if CPL = 3 or X86_EFLAGS_AC is clear
4283 *
4284 * Here, we cover the first three conditions.
4285 * The fourth is computed dynamically in permission_fault();
4286 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4287 * *not* subject to SMAP restrictions.
4288 */
4289 if (cr4_smap)
4290 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4291 }
09f037aa
PB
4292
4293 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4294 }
4295}
4296
2d344105
HH
4297/*
4298* PKU is an additional mechanism by which the paging controls access to
4299* user-mode addresses based on the value in the PKRU register. Protection
4300* key violations are reported through a bit in the page fault error code.
4301* Unlike other bits of the error code, the PK bit is not known at the
4302* call site of e.g. gva_to_gpa; it must be computed directly in
4303* permission_fault based on two bits of PKRU, on some machine state (CR4,
4304* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4305*
4306* In particular the following conditions come from the error code, the
4307* page tables and the machine state:
4308* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4309* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4310* - PK is always zero if U=0 in the page tables
4311* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4312*
4313* The PKRU bitmask caches the result of these four conditions. The error
4314* code (minus the P bit) and the page table's U bit form an index into the
4315* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4316* with the two bits of the PKRU register corresponding to the protection key.
4317* For the first three conditions above the bits will be 00, thus masking
4318* away both AD and WD. For all reads or if the last condition holds, WD
4319* only will be masked away.
4320*/
4321static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4322 bool ept)
4323{
4324 unsigned bit;
4325 bool wp;
4326
4327 if (ept) {
4328 mmu->pkru_mask = 0;
4329 return;
4330 }
4331
4332 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4333 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4334 mmu->pkru_mask = 0;
4335 return;
4336 }
4337
4338 wp = is_write_protection(vcpu);
4339
4340 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4341 unsigned pfec, pkey_bits;
4342 bool check_pkey, check_write, ff, uf, wf, pte_user;
4343
4344 pfec = bit << 1;
4345 ff = pfec & PFERR_FETCH_MASK;
4346 uf = pfec & PFERR_USER_MASK;
4347 wf = pfec & PFERR_WRITE_MASK;
4348
4349 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4350 pte_user = pfec & PFERR_RSVD_MASK;
4351
4352 /*
4353 * Only need to check the access which is not an
4354 * instruction fetch and is to a user page.
4355 */
4356 check_pkey = (!ff && pte_user);
4357 /*
4358 * write access is controlled by PKRU if it is a
4359 * user access or CR0.WP = 1.
4360 */
4361 check_write = check_pkey && wf && (uf || wp);
4362
4363 /* PKRU.AD stops both read and write access. */
4364 pkey_bits = !!check_pkey;
4365 /* PKRU.WD stops write access. */
4366 pkey_bits |= (!!check_write) << 1;
4367
4368 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4369 }
4370}
4371
6bb69c9b 4372static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4373{
6bb69c9b
PB
4374 unsigned root_level = mmu->root_level;
4375
4376 mmu->last_nonleaf_level = root_level;
4377 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4378 mmu->last_nonleaf_level++;
6fd01b71
AK
4379}
4380
8a3c1a33
PB
4381static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4382 struct kvm_mmu *context,
4383 int level)
6aa8b732 4384{
2d48a985 4385 context->nx = is_nx(vcpu);
4d6931c3 4386 context->root_level = level;
2d48a985 4387
4d6931c3 4388 reset_rsvds_bits_mask(vcpu, context);
25d92081 4389 update_permission_bitmask(vcpu, context, false);
2d344105 4390 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4391 update_last_nonleaf_level(vcpu, context);
6aa8b732 4392
fa4a2c08 4393 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4394 context->page_fault = paging64_page_fault;
6aa8b732 4395 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4396 context->sync_page = paging64_sync_page;
a7052897 4397 context->invlpg = paging64_invlpg;
0f53b5b1 4398 context->update_pte = paging64_update_pte;
17ac10ad 4399 context->shadow_root_level = level;
c5a78f2b 4400 context->direct_map = false;
6aa8b732
AK
4401}
4402
8a3c1a33
PB
4403static void paging64_init_context(struct kvm_vcpu *vcpu,
4404 struct kvm_mmu *context)
17ac10ad 4405{
855feb67
YZ
4406 int root_level = is_la57_mode(vcpu) ?
4407 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4408
4409 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4410}
4411
8a3c1a33
PB
4412static void paging32_init_context(struct kvm_vcpu *vcpu,
4413 struct kvm_mmu *context)
6aa8b732 4414{
2d48a985 4415 context->nx = false;
4d6931c3 4416 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4417
4d6931c3 4418 reset_rsvds_bits_mask(vcpu, context);
25d92081 4419 update_permission_bitmask(vcpu, context, false);
2d344105 4420 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4421 update_last_nonleaf_level(vcpu, context);
6aa8b732 4422
6aa8b732 4423 context->page_fault = paging32_page_fault;
6aa8b732 4424 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4425 context->sync_page = paging32_sync_page;
a7052897 4426 context->invlpg = paging32_invlpg;
0f53b5b1 4427 context->update_pte = paging32_update_pte;
6aa8b732 4428 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4429 context->direct_map = false;
6aa8b732
AK
4430}
4431
8a3c1a33
PB
4432static void paging32E_init_context(struct kvm_vcpu *vcpu,
4433 struct kvm_mmu *context)
6aa8b732 4434{
8a3c1a33 4435 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4436}
4437
a336282d
VK
4438static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4439{
4440 union kvm_mmu_extended_role ext = {0};
4441
7dcd5755 4442 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4443 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4444 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4445 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4446 ext.cr4_pse = !!is_pse(vcpu);
4447 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4448 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4449
4450 ext.valid = 1;
4451
4452 return ext;
4453}
4454
7dcd5755
VK
4455static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4456 bool base_only)
4457{
4458 union kvm_mmu_role role = {0};
4459
4460 role.base.access = ACC_ALL;
4461 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4462 role.base.cr0_wp = is_write_protection(vcpu);
4463 role.base.smm = is_smm(vcpu);
4464 role.base.guest_mode = is_guest_mode(vcpu);
4465
4466 if (base_only)
4467 return role;
4468
4469 role.ext = kvm_calc_mmu_role_ext(vcpu);
4470
4471 return role;
4472}
4473
d468d94b
SC
4474static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4475{
4476 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4477 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4478 return 4;
4479
83013059 4480 return max_tdp_level;
d468d94b
SC
4481}
4482
7dcd5755
VK
4483static union kvm_mmu_role
4484kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4485{
7dcd5755 4486 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4487
7dcd5755 4488 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4489 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4490 role.base.direct = true;
47c42e6b 4491 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4492
4493 return role;
4494}
4495
8a3c1a33 4496static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4497{
8c008659 4498 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4499 union kvm_mmu_role new_role =
4500 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4501
7dcd5755
VK
4502 if (new_role.as_u64 == context->mmu_role.as_u64)
4503 return;
4504
4505 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4506 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4507 context->sync_page = nonpaging_sync_page;
5efac074 4508 context->invlpg = NULL;
0f53b5b1 4509 context->update_pte = nonpaging_update_pte;
d468d94b 4510 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4511 context->direct_map = true;
d8dd54e0 4512 context->get_guest_pgd = get_cr3;
e4e517b4 4513 context->get_pdptr = kvm_pdptr_read;
cb659db8 4514 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4515
4516 if (!is_paging(vcpu)) {
2d48a985 4517 context->nx = false;
fb72d167
JR
4518 context->gva_to_gpa = nonpaging_gva_to_gpa;
4519 context->root_level = 0;
4520 } else if (is_long_mode(vcpu)) {
2d48a985 4521 context->nx = is_nx(vcpu);
855feb67
YZ
4522 context->root_level = is_la57_mode(vcpu) ?
4523 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4524 reset_rsvds_bits_mask(vcpu, context);
4525 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4526 } else if (is_pae(vcpu)) {
2d48a985 4527 context->nx = is_nx(vcpu);
fb72d167 4528 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4529 reset_rsvds_bits_mask(vcpu, context);
4530 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4531 } else {
2d48a985 4532 context->nx = false;
fb72d167 4533 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4534 reset_rsvds_bits_mask(vcpu, context);
4535 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4536 }
4537
25d92081 4538 update_permission_bitmask(vcpu, context, false);
2d344105 4539 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4540 update_last_nonleaf_level(vcpu, context);
c258b62b 4541 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4542}
4543
7dcd5755 4544static union kvm_mmu_role
59505b55 4545kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4546{
4547 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4548
4549 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4550 !is_write_protection(vcpu);
4551 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4552 !is_write_protection(vcpu);
47c42e6b 4553 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4554
59505b55
SC
4555 return role;
4556}
4557
4558static union kvm_mmu_role
4559kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4560{
4561 union kvm_mmu_role role =
4562 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4563
4564 role.base.direct = !is_paging(vcpu);
4565
9fa72119 4566 if (!is_long_mode(vcpu))
7dcd5755 4567 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4568 else if (is_la57_mode(vcpu))
7dcd5755 4569 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4570 else
7dcd5755 4571 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4572
4573 return role;
4574}
4575
8c008659
PB
4576static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4577 u32 cr0, u32 cr4, u32 efer,
4578 union kvm_mmu_role new_role)
9fa72119 4579{
929d1cfa 4580 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4581 nonpaging_init_context(vcpu, context);
929d1cfa 4582 else if (efer & EFER_LMA)
8a3c1a33 4583 paging64_init_context(vcpu, context);
929d1cfa 4584 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4585 paging32E_init_context(vcpu, context);
6aa8b732 4586 else
8a3c1a33 4587 paging32_init_context(vcpu, context);
a770f6f2 4588
7dcd5755 4589 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4590 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4591}
0f04a2ac
VK
4592
4593static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4594{
8c008659 4595 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4596 union kvm_mmu_role new_role =
4597 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4598
4599 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4600 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4601}
4602
59505b55
SC
4603static union kvm_mmu_role
4604kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4605{
4606 union kvm_mmu_role role =
4607 kvm_calc_shadow_root_page_role_common(vcpu, false);
4608
4609 role.base.direct = false;
d468d94b 4610 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4611
4612 return role;
4613}
4614
0f04a2ac
VK
4615void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4616 gpa_t nested_cr3)
4617{
8c008659 4618 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4619 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4620
096586fd
SC
4621 context->shadow_root_level = new_role.base.level;
4622
a506fdd2
VK
4623 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4624
0f04a2ac 4625 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4626 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4627}
4628EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4629
a336282d
VK
4630static union kvm_mmu_role
4631kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4632 bool execonly, u8 level)
9fa72119 4633{
552c69b1 4634 union kvm_mmu_role role = {0};
14c07ad8 4635
47c42e6b
SC
4636 /* SMM flag is inherited from root_mmu */
4637 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4638
bb1fcc70 4639 role.base.level = level;
47c42e6b 4640 role.base.gpte_is_8_bytes = true;
a336282d
VK
4641 role.base.direct = false;
4642 role.base.ad_disabled = !accessed_dirty;
4643 role.base.guest_mode = true;
4644 role.base.access = ACC_ALL;
9fa72119 4645
47c42e6b
SC
4646 /*
4647 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4648 * SMAP variation to denote shadow EPT entries.
4649 */
4650 role.base.cr0_wp = true;
4651 role.base.smap_andnot_wp = true;
4652
552c69b1 4653 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4654 role.ext.execonly = execonly;
9fa72119
JS
4655
4656 return role;
4657}
4658
ae1e2d10 4659void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4660 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4661{
8c008659 4662 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4663 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4664 union kvm_mmu_role new_role =
4665 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4666 execonly, level);
a336282d 4667
be01e8e2 4668 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4669
a336282d
VK
4670 if (new_role.as_u64 == context->mmu_role.as_u64)
4671 return;
ad896af0 4672
bb1fcc70 4673 context->shadow_root_level = level;
155a97a3
NHE
4674
4675 context->nx = true;
ae1e2d10 4676 context->ept_ad = accessed_dirty;
155a97a3
NHE
4677 context->page_fault = ept_page_fault;
4678 context->gva_to_gpa = ept_gva_to_gpa;
4679 context->sync_page = ept_sync_page;
4680 context->invlpg = ept_invlpg;
4681 context->update_pte = ept_update_pte;
bb1fcc70 4682 context->root_level = level;
155a97a3 4683 context->direct_map = false;
a336282d 4684 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4685
155a97a3 4686 update_permission_bitmask(vcpu, context, true);
2d344105 4687 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4688 update_last_nonleaf_level(vcpu, context);
155a97a3 4689 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4690 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4691}
4692EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4693
8a3c1a33 4694static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4695{
8c008659 4696 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4697
929d1cfa
PB
4698 kvm_init_shadow_mmu(vcpu,
4699 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4700 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4701 vcpu->arch.efer);
4702
d8dd54e0 4703 context->get_guest_pgd = get_cr3;
ad896af0
PB
4704 context->get_pdptr = kvm_pdptr_read;
4705 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4706}
4707
8a3c1a33 4708static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4709{
bf627a92 4710 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4711 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4712
bf627a92
VK
4713 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4714 return;
4715
4716 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4717 g_context->get_guest_pgd = get_cr3;
e4e517b4 4718 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4719 g_context->inject_page_fault = kvm_inject_page_fault;
4720
5efac074
PB
4721 /*
4722 * L2 page tables are never shadowed, so there is no need to sync
4723 * SPTEs.
4724 */
4725 g_context->invlpg = NULL;
4726
02f59dc9 4727 /*
44dd3ffa 4728 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4729 * L1's nested page tables (e.g. EPT12). The nested translation
4730 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4731 * L2's page tables as the first level of translation and L1's
4732 * nested page tables as the second level of translation. Basically
4733 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4734 */
4735 if (!is_paging(vcpu)) {
2d48a985 4736 g_context->nx = false;
02f59dc9
JR
4737 g_context->root_level = 0;
4738 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4739 } else if (is_long_mode(vcpu)) {
2d48a985 4740 g_context->nx = is_nx(vcpu);
855feb67
YZ
4741 g_context->root_level = is_la57_mode(vcpu) ?
4742 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4743 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4744 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4745 } else if (is_pae(vcpu)) {
2d48a985 4746 g_context->nx = is_nx(vcpu);
02f59dc9 4747 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4748 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4749 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4750 } else {
2d48a985 4751 g_context->nx = false;
02f59dc9 4752 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4753 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4754 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4755 }
4756
25d92081 4757 update_permission_bitmask(vcpu, g_context, false);
2d344105 4758 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4759 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4760}
4761
1c53da3f 4762void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4763{
1c53da3f 4764 if (reset_roots) {
b94742c9
JS
4765 uint i;
4766
44dd3ffa 4767 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4768
4769 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4770 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4771 }
4772
02f59dc9 4773 if (mmu_is_nested(vcpu))
e0c6db3e 4774 init_kvm_nested_mmu(vcpu);
02f59dc9 4775 else if (tdp_enabled)
e0c6db3e 4776 init_kvm_tdp_mmu(vcpu);
fb72d167 4777 else
e0c6db3e 4778 init_kvm_softmmu(vcpu);
fb72d167 4779}
1c53da3f 4780EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4781
9fa72119
JS
4782static union kvm_mmu_page_role
4783kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4784{
7dcd5755
VK
4785 union kvm_mmu_role role;
4786
9fa72119 4787 if (tdp_enabled)
7dcd5755 4788 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4789 else
7dcd5755
VK
4790 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4791
4792 return role.base;
9fa72119 4793}
fb72d167 4794
8a3c1a33 4795void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4796{
95f93af4 4797 kvm_mmu_unload(vcpu);
1c53da3f 4798 kvm_init_mmu(vcpu, true);
17c3ba9d 4799}
8668a3c4 4800EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4801
4802int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4803{
714b93da
AK
4804 int r;
4805
378f5cd6 4806 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4807 if (r)
4808 goto out;
8986ecc0 4809 r = mmu_alloc_roots(vcpu);
e2858b4a 4810 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4811 if (r)
4812 goto out;
727a7e27 4813 kvm_mmu_load_pgd(vcpu);
8c8560b8 4814 kvm_x86_ops.tlb_flush_current(vcpu);
714b93da
AK
4815out:
4816 return r;
6aa8b732 4817}
17c3ba9d
AK
4818EXPORT_SYMBOL_GPL(kvm_mmu_load);
4819
4820void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4821{
14c07ad8
VK
4822 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4823 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4824 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4825 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4826}
4b16184c 4827EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4828
0028425f 4829static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4830 struct kvm_mmu_page *sp, u64 *spte,
4831 const void *new)
0028425f 4832{
3bae0459 4833 if (sp->role.level != PG_LEVEL_4K) {
7e4e4056
JR
4834 ++vcpu->kvm->stat.mmu_pde_zapped;
4835 return;
30945387 4836 }
0028425f 4837
4cee5764 4838 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 4839 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
4840}
4841
79539cec
AK
4842static bool need_remote_flush(u64 old, u64 new)
4843{
4844 if (!is_shadow_present_pte(old))
4845 return false;
4846 if (!is_shadow_present_pte(new))
4847 return true;
4848 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4849 return true;
53166229
GN
4850 old ^= shadow_nx_mask;
4851 new ^= shadow_nx_mask;
79539cec
AK
4852 return (old & ~new & PT64_PERM_MASK) != 0;
4853}
4854
889e5cbc 4855static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4856 int *bytes)
da4a00f0 4857{
0e0fee5c 4858 u64 gentry = 0;
889e5cbc 4859 int r;
72016f3a 4860
72016f3a
AK
4861 /*
4862 * Assume that the pte write on a page table of the same type
49b26e26
XG
4863 * as the current vcpu paging mode since we update the sptes only
4864 * when they have the same mode.
72016f3a 4865 */
889e5cbc 4866 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4867 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4868 *gpa &= ~(gpa_t)7;
4869 *bytes = 8;
08e850c6
AK
4870 }
4871
0e0fee5c
JS
4872 if (*bytes == 4 || *bytes == 8) {
4873 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4874 if (r)
4875 gentry = 0;
72016f3a
AK
4876 }
4877
889e5cbc
XG
4878 return gentry;
4879}
4880
4881/*
4882 * If we're seeing too many writes to a page, it may no longer be a page table,
4883 * or we may be forking, in which case it is better to unmap the page.
4884 */
a138fe75 4885static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4886{
a30f47cb
XG
4887 /*
4888 * Skip write-flooding detected for the sp whose level is 1, because
4889 * it can become unsync, then the guest page is not write-protected.
4890 */
3bae0459 4891 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4892 return false;
3246af0e 4893
e5691a81
XG
4894 atomic_inc(&sp->write_flooding_count);
4895 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4896}
4897
4898/*
4899 * Misaligned accesses are too much trouble to fix up; also, they usually
4900 * indicate a page is not used as a page table.
4901 */
4902static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4903 int bytes)
4904{
4905 unsigned offset, pte_size, misaligned;
4906
4907 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4908 gpa, bytes, sp->role.word);
4909
4910 offset = offset_in_page(gpa);
47c42e6b 4911 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4912
4913 /*
4914 * Sometimes, the OS only writes the last one bytes to update status
4915 * bits, for example, in linux, andb instruction is used in clear_bit().
4916 */
4917 if (!(offset & (pte_size - 1)) && bytes == 1)
4918 return false;
4919
889e5cbc
XG
4920 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4921 misaligned |= bytes < 4;
4922
4923 return misaligned;
4924}
4925
4926static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4927{
4928 unsigned page_offset, quadrant;
4929 u64 *spte;
4930 int level;
4931
4932 page_offset = offset_in_page(gpa);
4933 level = sp->role.level;
4934 *nspte = 1;
47c42e6b 4935 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4936 page_offset <<= 1; /* 32->64 */
4937 /*
4938 * A 32-bit pde maps 4MB while the shadow pdes map
4939 * only 2MB. So we need to double the offset again
4940 * and zap two pdes instead of one.
4941 */
4942 if (level == PT32_ROOT_LEVEL) {
4943 page_offset &= ~7; /* kill rounding error */
4944 page_offset <<= 1;
4945 *nspte = 2;
4946 }
4947 quadrant = page_offset >> PAGE_SHIFT;
4948 page_offset &= ~PAGE_MASK;
4949 if (quadrant != sp->role.quadrant)
4950 return NULL;
4951 }
4952
4953 spte = &sp->spt[page_offset / sizeof(*spte)];
4954 return spte;
4955}
4956
a102a674
SC
4957/*
4958 * Ignore various flags when determining if a SPTE can be immediately
4959 * overwritten for the current MMU.
4960 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4961 * match the current MMU role, as MMU's level tracks the root level.
4962 * - access: updated based on the new guest PTE
4963 * - quadrant: handled by get_written_sptes()
4964 * - invalid: always false (loop only walks valid shadow pages)
4965 */
4966static const union kvm_mmu_page_role role_ign = {
4967 .level = 0xf,
4968 .access = 0x7,
4969 .quadrant = 0x3,
4970 .invalid = 0x1,
4971};
4972
13d268ca 4973static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4974 const u8 *new, int bytes,
4975 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4976{
4977 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4978 struct kvm_mmu_page *sp;
889e5cbc
XG
4979 LIST_HEAD(invalid_list);
4980 u64 entry, gentry, *spte;
4981 int npte;
b8c67b7a 4982 bool remote_flush, local_flush;
889e5cbc
XG
4983
4984 /*
4985 * If we don't have indirect shadow pages, it means no page is
4986 * write-protected, so we can exit simply.
4987 */
6aa7de05 4988 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4989 return;
4990
b8c67b7a 4991 remote_flush = local_flush = false;
889e5cbc
XG
4992
4993 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4994
889e5cbc
XG
4995 /*
4996 * No need to care whether allocation memory is successful
4997 * or not since pte prefetch is skiped if it does not have
4998 * enough objects in the cache.
4999 */
378f5cd6 5000 mmu_topup_memory_caches(vcpu, true);
889e5cbc
XG
5001
5002 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5003
5004 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5005
889e5cbc 5006 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5007 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5008
b67bfe0d 5009 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5010 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5011 detect_write_flooding(sp)) {
b8c67b7a 5012 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5013 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5014 continue;
5015 }
889e5cbc
XG
5016
5017 spte = get_written_sptes(sp, gpa, &npte);
5018 if (!spte)
5019 continue;
5020
0671a8e7 5021 local_flush = true;
ac1b714e 5022 while (npte--) {
36d9594d
VK
5023 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5024
79539cec 5025 entry = *spte;
2de4085c 5026 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
fa1de2bf 5027 if (gentry &&
a102a674
SC
5028 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5029 rmap_can_add(vcpu))
7c562522 5030 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5031 if (need_remote_flush(entry, *spte))
0671a8e7 5032 remote_flush = true;
ac1b714e 5033 ++spte;
9b7a0325 5034 }
9b7a0325 5035 }
b8c67b7a 5036 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5037 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5038 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5039}
5040
a436036b
AK
5041int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5042{
10589a46
MT
5043 gpa_t gpa;
5044 int r;
a436036b 5045
44dd3ffa 5046 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5047 return 0;
5048
1871c602 5049 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5050
10589a46 5051 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5052
10589a46 5053 return r;
a436036b 5054}
577bdc49 5055EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5056
736c291c 5057int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5058 void *insn, int insn_len)
3067714c 5059{
92daa48b 5060 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5061 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5062
6948199a 5063 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5064 return RET_PF_RETRY;
5065
9b8ebbdb 5066 r = RET_PF_INVALID;
e9ee956e 5067 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5068 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5069 if (r == RET_PF_EMULATE)
e9ee956e 5070 goto emulate;
e9ee956e 5071 }
3067714c 5072
9b8ebbdb 5073 if (r == RET_PF_INVALID) {
7a02674d
SC
5074 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5075 lower_32_bits(error_code), false);
7b367bc9
SC
5076 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5077 return -EIO;
9b8ebbdb
PB
5078 }
5079
3067714c 5080 if (r < 0)
e9ee956e 5081 return r;
83a2ba4c
SC
5082 if (r != RET_PF_EMULATE)
5083 return 1;
3067714c 5084
14727754
TL
5085 /*
5086 * Before emulating the instruction, check if the error code
5087 * was due to a RO violation while translating the guest page.
5088 * This can occur when using nested virtualization with nested
5089 * paging in both guests. If true, we simply unprotect the page
5090 * and resume the guest.
14727754 5091 */
44dd3ffa 5092 if (vcpu->arch.mmu->direct_map &&
eebed243 5093 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5094 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5095 return 1;
5096 }
5097
472faffa
SC
5098 /*
5099 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5100 * optimistically try to just unprotect the page and let the processor
5101 * re-execute the instruction that caused the page fault. Do not allow
5102 * retrying MMIO emulation, as it's not only pointless but could also
5103 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5104 * faulting on the non-existent MMIO address. Retrying an instruction
5105 * from a nested guest is also pointless and dangerous as we are only
5106 * explicitly shadowing L1's page tables, i.e. unprotecting something
5107 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5108 */
736c291c 5109 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5110 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5111emulate:
736c291c 5112 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5113 insn_len);
3067714c
AK
5114}
5115EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5116
5efac074
PB
5117void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5118 gva_t gva, hpa_t root_hpa)
a7052897 5119{
b94742c9 5120 int i;
7eb77e9f 5121
5efac074
PB
5122 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5123 if (mmu != &vcpu->arch.guest_mmu) {
5124 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5125 if (is_noncanonical_address(gva, vcpu))
5126 return;
5127
5128 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5129 }
5130
5131 if (!mmu->invlpg)
faff8758
JS
5132 return;
5133
5efac074
PB
5134 if (root_hpa == INVALID_PAGE) {
5135 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5136
5efac074
PB
5137 /*
5138 * INVLPG is required to invalidate any global mappings for the VA,
5139 * irrespective of PCID. Since it would take us roughly similar amount
5140 * of work to determine whether any of the prev_root mappings of the VA
5141 * is marked global, or to just sync it blindly, so we might as well
5142 * just always sync it.
5143 *
5144 * Mappings not reachable via the current cr3 or the prev_roots will be
5145 * synced when switching to that cr3, so nothing needs to be done here
5146 * for them.
5147 */
5148 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5149 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5150 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5151 } else {
5152 mmu->invlpg(vcpu, gva, root_hpa);
5153 }
5154}
5155EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5156
5efac074
PB
5157void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5158{
5159 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5160 ++vcpu->stat.invlpg;
5161}
5162EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5163
5efac074 5164
eb4b248e
JS
5165void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5166{
44dd3ffa 5167 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5168 bool tlb_flush = false;
b94742c9 5169 uint i;
eb4b248e
JS
5170
5171 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5172 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5173 tlb_flush = true;
eb4b248e
JS
5174 }
5175
b94742c9
JS
5176 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5177 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5178 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5179 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5180 tlb_flush = true;
5181 }
956bf353 5182 }
ade61e28 5183
faff8758 5184 if (tlb_flush)
afaf0b2f 5185 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5186
eb4b248e
JS
5187 ++vcpu->stat.invlpg;
5188
5189 /*
b94742c9
JS
5190 * Mappings not reachable via the current cr3 or the prev_roots will be
5191 * synced when switching to that cr3, so nothing needs to be done here
5192 * for them.
eb4b248e
JS
5193 */
5194}
5195EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5196
83013059
SC
5197void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5198 int tdp_huge_page_level)
18552672 5199{
bde77235 5200 tdp_enabled = enable_tdp;
83013059 5201 max_tdp_level = tdp_max_root_level;
703c335d
SC
5202
5203 /*
1d92d2e8 5204 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5205 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5206 * the kernel is not. But, KVM never creates a page size greater than
5207 * what is used by the kernel for any given HVA, i.e. the kernel's
5208 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5209 */
5210 if (tdp_enabled)
1d92d2e8 5211 max_huge_page_level = tdp_huge_page_level;
703c335d 5212 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5213 max_huge_page_level = PG_LEVEL_1G;
703c335d 5214 else
1d92d2e8 5215 max_huge_page_level = PG_LEVEL_2M;
18552672 5216}
bde77235 5217EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5218
5219/* The return value indicates if tlb flush on all vcpus is needed. */
5220typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5221
5222/* The caller should hold mmu-lock before calling this function. */
5223static __always_inline bool
5224slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5225 slot_level_handler fn, int start_level, int end_level,
5226 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5227{
5228 struct slot_rmap_walk_iterator iterator;
5229 bool flush = false;
5230
5231 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5232 end_gfn, &iterator) {
5233 if (iterator.rmap)
5234 flush |= fn(kvm, iterator.rmap);
5235
5236 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5237 if (flush && lock_flush_tlb) {
f285c633
BG
5238 kvm_flush_remote_tlbs_with_address(kvm,
5239 start_gfn,
5240 iterator.gfn - start_gfn + 1);
85875a13
SC
5241 flush = false;
5242 }
5243 cond_resched_lock(&kvm->mmu_lock);
5244 }
5245 }
5246
5247 if (flush && lock_flush_tlb) {
f285c633
BG
5248 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5249 end_gfn - start_gfn + 1);
85875a13
SC
5250 flush = false;
5251 }
5252
5253 return flush;
5254}
5255
5256static __always_inline bool
5257slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5258 slot_level_handler fn, int start_level, int end_level,
5259 bool lock_flush_tlb)
5260{
5261 return slot_handle_level_range(kvm, memslot, fn, start_level,
5262 end_level, memslot->base_gfn,
5263 memslot->base_gfn + memslot->npages - 1,
5264 lock_flush_tlb);
5265}
5266
5267static __always_inline bool
5268slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5269 slot_level_handler fn, bool lock_flush_tlb)
5270{
3bae0459 5271 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5272 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5273}
5274
5275static __always_inline bool
5276slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5277 slot_level_handler fn, bool lock_flush_tlb)
5278{
3bae0459 5279 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5280 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5281}
5282
5283static __always_inline bool
5284slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5285 slot_level_handler fn, bool lock_flush_tlb)
5286{
3bae0459
SC
5287 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5288 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5289}
5290
1cfff4d9 5291static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5292{
1cfff4d9
JP
5293 free_page((unsigned long)mmu->pae_root);
5294 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5295}
5296
04d28e37 5297static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5298{
17ac10ad 5299 struct page *page;
6aa8b732
AK
5300 int i;
5301
04d28e37
SC
5302 mmu->root_hpa = INVALID_PAGE;
5303 mmu->root_pgd = 0;
5304 mmu->translate_gpa = translate_gpa;
5305 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5306 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5307
17ac10ad 5308 /*
b6b80c78
SC
5309 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5310 * while the PDP table is a per-vCPU construct that's allocated at MMU
5311 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5312 * x86_64. Therefore we need to allocate the PDP table in the first
5313 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5314 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5315 * skip allocating the PDP table.
17ac10ad 5316 */
d468d94b 5317 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5318 return 0;
5319
254272ce 5320 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5321 if (!page)
d7fa6ab2
WY
5322 return -ENOMEM;
5323
1cfff4d9 5324 mmu->pae_root = page_address(page);
17ac10ad 5325 for (i = 0; i < 4; ++i)
1cfff4d9 5326 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5327
6aa8b732 5328 return 0;
6aa8b732
AK
5329}
5330
8018c27b 5331int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5332{
1cfff4d9 5333 int ret;
b94742c9 5334
5962bfb7 5335 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5336 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5337
5962bfb7 5338 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5339 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5340
96880883
SC
5341 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5342
44dd3ffa
VK
5343 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5344 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5345
14c07ad8 5346 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5347
04d28e37 5348 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5349 if (ret)
5350 return ret;
5351
04d28e37 5352 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5353 if (ret)
5354 goto fail_allocate_root;
5355
5356 return ret;
5357 fail_allocate_root:
5358 free_mmu_pages(&vcpu->arch.guest_mmu);
5359 return ret;
6aa8b732
AK
5360}
5361
fbb158cb 5362#define BATCH_ZAP_PAGES 10
002c5f73
SC
5363static void kvm_zap_obsolete_pages(struct kvm *kvm)
5364{
5365 struct kvm_mmu_page *sp, *node;
fbb158cb 5366 int nr_zapped, batch = 0;
002c5f73
SC
5367
5368restart:
5369 list_for_each_entry_safe_reverse(sp, node,
5370 &kvm->arch.active_mmu_pages, link) {
5371 /*
5372 * No obsolete valid page exists before a newly created page
5373 * since active_mmu_pages is a FIFO list.
5374 */
5375 if (!is_obsolete_sp(kvm, sp))
5376 break;
5377
5378 /*
f95eec9b
SC
5379 * Invalid pages should never land back on the list of active
5380 * pages. Skip the bogus page, otherwise we'll get stuck in an
5381 * infinite loop if the page gets put back on the list (again).
002c5f73 5382 */
f95eec9b 5383 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5384 continue;
5385
4506ecf4
SC
5386 /*
5387 * No need to flush the TLB since we're only zapping shadow
5388 * pages with an obsolete generation number and all vCPUS have
5389 * loaded a new root, i.e. the shadow pages being zapped cannot
5390 * be in active use by the guest.
5391 */
fbb158cb 5392 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5393 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5394 batch = 0;
002c5f73
SC
5395 goto restart;
5396 }
5397
10605204
SC
5398 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5399 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5400 batch += nr_zapped;
002c5f73 5401 goto restart;
fbb158cb 5402 }
002c5f73
SC
5403 }
5404
4506ecf4
SC
5405 /*
5406 * Trigger a remote TLB flush before freeing the page tables to ensure
5407 * KVM is not in the middle of a lockless shadow page table walk, which
5408 * may reference the pages.
5409 */
10605204 5410 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5411}
5412
5413/*
5414 * Fast invalidate all shadow pages and use lock-break technique
5415 * to zap obsolete pages.
5416 *
5417 * It's required when memslot is being deleted or VM is being
5418 * destroyed, in these cases, we should ensure that KVM MMU does
5419 * not use any resource of the being-deleted slot or all slots
5420 * after calling the function.
5421 */
5422static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5423{
ca333add
SC
5424 lockdep_assert_held(&kvm->slots_lock);
5425
002c5f73 5426 spin_lock(&kvm->mmu_lock);
14a3c4f4 5427 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5428
5429 /*
5430 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5431 * held for the entire duration of zapping obsolete pages, it's
5432 * impossible for there to be multiple invalid generations associated
5433 * with *valid* shadow pages at any given time, i.e. there is exactly
5434 * one valid generation and (at most) one invalid generation.
5435 */
5436 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5437
4506ecf4
SC
5438 /*
5439 * Notify all vcpus to reload its shadow page table and flush TLB.
5440 * Then all vcpus will switch to new shadow page table with the new
5441 * mmu_valid_gen.
5442 *
5443 * Note: we need to do this under the protection of mmu_lock,
5444 * otherwise, vcpu would purge shadow page but miss tlb flush.
5445 */
5446 kvm_reload_remote_mmus(kvm);
5447
002c5f73 5448 kvm_zap_obsolete_pages(kvm);
faaf05b0
BG
5449
5450 if (kvm->arch.tdp_mmu_enabled)
5451 kvm_tdp_mmu_zap_all(kvm);
5452
002c5f73
SC
5453 spin_unlock(&kvm->mmu_lock);
5454}
5455
10605204
SC
5456static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5457{
5458 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5459}
5460
b5f5fdca 5461static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5462 struct kvm_memory_slot *slot,
5463 struct kvm_page_track_notifier_node *node)
b5f5fdca 5464{
002c5f73 5465 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5466}
5467
13d268ca 5468void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5469{
13d268ca 5470 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5471
fe5db27d
BG
5472 kvm_mmu_init_tdp_mmu(kvm);
5473
13d268ca 5474 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5475 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5476 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5477}
5478
13d268ca 5479void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5480{
13d268ca 5481 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5482
13d268ca 5483 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5484
5485 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5486}
5487
efdfe536
XG
5488void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5489{
5490 struct kvm_memslots *slots;
5491 struct kvm_memory_slot *memslot;
9da0e4d5 5492 int i;
faaf05b0 5493 bool flush;
efdfe536
XG
5494
5495 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5496 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5497 slots = __kvm_memslots(kvm, i);
5498 kvm_for_each_memslot(memslot, slots) {
5499 gfn_t start, end;
5500
5501 start = max(gfn_start, memslot->base_gfn);
5502 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5503 if (start >= end)
5504 continue;
efdfe536 5505
92da008f 5506 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5507 PG_LEVEL_4K,
e662ec3e 5508 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5509 start, end - 1, true);
9da0e4d5 5510 }
efdfe536
XG
5511 }
5512
faaf05b0
BG
5513 if (kvm->arch.tdp_mmu_enabled) {
5514 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5515 if (flush)
5516 kvm_flush_remote_tlbs(kvm);
5517 }
5518
efdfe536
XG
5519 spin_unlock(&kvm->mmu_lock);
5520}
5521
018aabb5
TY
5522static bool slot_rmap_write_protect(struct kvm *kvm,
5523 struct kvm_rmap_head *rmap_head)
d77aa73c 5524{
018aabb5 5525 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5526}
5527
1c91cad4 5528void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5529 struct kvm_memory_slot *memslot,
5530 int start_level)
6aa8b732 5531{
d77aa73c 5532 bool flush;
6aa8b732 5533
9d1beefb 5534 spin_lock(&kvm->mmu_lock);
3c9bd400 5535 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5536 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
a6a0b05d
BG
5537 if (kvm->arch.tdp_mmu_enabled)
5538 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
9d1beefb 5539 spin_unlock(&kvm->mmu_lock);
198c74f4 5540
198c74f4
XG
5541 /*
5542 * We can flush all the TLBs out of the mmu lock without TLB
5543 * corruption since we just change the spte from writable to
5544 * readonly so that we only need to care the case of changing
5545 * spte from present to present (changing the spte from present
5546 * to nonpresent will flush all the TLBs immediately), in other
5547 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5548 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5549 * instead of PT_WRITABLE_MASK, that means it does not depend
5550 * on PT_WRITABLE_MASK anymore.
5551 */
d91ffee9 5552 if (flush)
7f42aa76 5553 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5554}
37a7d8b0 5555
3ea3b7fa 5556static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5557 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5558{
5559 u64 *sptep;
5560 struct rmap_iterator iter;
5561 int need_tlb_flush = 0;
ba049e93 5562 kvm_pfn_t pfn;
3ea3b7fa
WL
5563 struct kvm_mmu_page *sp;
5564
0d536790 5565restart:
018aabb5 5566 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5567 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5568 pfn = spte_to_pfn(*sptep);
5569
5570 /*
decf6333
XG
5571 * We cannot do huge page mapping for indirect shadow pages,
5572 * which are found on the last rmap (level = 1) when not using
5573 * tdp; such shadow pages are synced with the page table in
5574 * the guest, and the guest page table is using 4K page size
5575 * mapping if the indirect sp has level = 1.
3ea3b7fa 5576 */
a78986aa 5577 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5578 (kvm_is_zone_device_pfn(pfn) ||
5579 PageCompound(pfn_to_page(pfn)))) {
e7912386 5580 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5581
5582 if (kvm_available_flush_tlb_with_range())
5583 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5584 KVM_PAGES_PER_HPAGE(sp->role.level));
5585 else
5586 need_tlb_flush = 1;
5587
0d536790
XG
5588 goto restart;
5589 }
3ea3b7fa
WL
5590 }
5591
5592 return need_tlb_flush;
5593}
5594
5595void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5596 const struct kvm_memory_slot *memslot)
3ea3b7fa 5597{
f36f3f28 5598 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5599 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5600 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5601 kvm_mmu_zap_collapsible_spte, true);
14881998
BG
5602
5603 if (kvm->arch.tdp_mmu_enabled)
5604 kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
3ea3b7fa
WL
5605 spin_unlock(&kvm->mmu_lock);
5606}
5607
b3594ffb
SC
5608void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5609 struct kvm_memory_slot *memslot)
5610{
5611 /*
7f42aa76
SC
5612 * All current use cases for flushing the TLBs for a specific memslot
5613 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5614 * The interaction between the various operations on memslot must be
5615 * serialized by slots_locks to ensure the TLB flush from one operation
5616 * is observed by any other operation on the same memslot.
b3594ffb
SC
5617 */
5618 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5619 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5620 memslot->npages);
b3594ffb
SC
5621}
5622
f4b4b180
KH
5623void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5624 struct kvm_memory_slot *memslot)
5625{
d77aa73c 5626 bool flush;
f4b4b180
KH
5627
5628 spin_lock(&kvm->mmu_lock);
d77aa73c 5629 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
a6a0b05d
BG
5630 if (kvm->arch.tdp_mmu_enabled)
5631 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
f4b4b180
KH
5632 spin_unlock(&kvm->mmu_lock);
5633
f4b4b180
KH
5634 /*
5635 * It's also safe to flush TLBs out of mmu lock here as currently this
5636 * function is only used for dirty logging, in which case flushing TLB
5637 * out of mmu lock also guarantees no dirty pages will be lost in
5638 * dirty_bitmap.
5639 */
5640 if (flush)
7f42aa76 5641 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5642}
5643EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5644
5645void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5646 struct kvm_memory_slot *memslot)
5647{
d77aa73c 5648 bool flush;
f4b4b180
KH
5649
5650 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5651 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5652 false);
a6a0b05d
BG
5653 if (kvm->arch.tdp_mmu_enabled)
5654 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
f4b4b180
KH
5655 spin_unlock(&kvm->mmu_lock);
5656
f4b4b180 5657 if (flush)
7f42aa76 5658 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5659}
5660EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5661
5662void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5663 struct kvm_memory_slot *memslot)
5664{
d77aa73c 5665 bool flush;
f4b4b180
KH
5666
5667 spin_lock(&kvm->mmu_lock);
d77aa73c 5668 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
a6a0b05d
BG
5669 if (kvm->arch.tdp_mmu_enabled)
5670 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
f4b4b180
KH
5671 spin_unlock(&kvm->mmu_lock);
5672
f4b4b180 5673 if (flush)
7f42aa76 5674 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5675}
5676EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5677
92f58b5c 5678void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5679{
5680 struct kvm_mmu_page *sp, *node;
7390de1e 5681 LIST_HEAD(invalid_list);
83cdb568 5682 int ign;
5304b8d3 5683
7390de1e 5684 spin_lock(&kvm->mmu_lock);
5304b8d3 5685restart:
8a674adc 5686 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5687 if (WARN_ON(sp->role.invalid))
4771450c 5688 continue;
92f58b5c 5689 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5690 goto restart;
24efe61f 5691 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5692 goto restart;
5693 }
5694
4771450c 5695 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0
BG
5696
5697 if (kvm->arch.tdp_mmu_enabled)
5698 kvm_tdp_mmu_zap_all(kvm);
5699
5304b8d3
XG
5700 spin_unlock(&kvm->mmu_lock);
5701}
5702
15248258 5703void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5704{
164bf7e5 5705 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5706
164bf7e5 5707 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5708
f8f55942 5709 /*
e1359e2b
SC
5710 * Generation numbers are incremented in multiples of the number of
5711 * address spaces in order to provide unique generations across all
5712 * address spaces. Strip what is effectively the address space
5713 * modifier prior to checking for a wrap of the MMIO generation so
5714 * that a wrap in any address space is detected.
5715 */
5716 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5717
f8f55942 5718 /*
e1359e2b 5719 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5720 * zap all shadow pages.
f8f55942 5721 */
e1359e2b 5722 if (unlikely(gen == 0)) {
ae0f5499 5723 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5724 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5725 }
f8f55942
XG
5726}
5727
70534a73
DC
5728static unsigned long
5729mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5730{
5731 struct kvm *kvm;
1495f230 5732 int nr_to_scan = sc->nr_to_scan;
70534a73 5733 unsigned long freed = 0;
3ee16c81 5734
0d9ce162 5735 mutex_lock(&kvm_lock);
3ee16c81
IE
5736
5737 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5738 int idx;
d98ba053 5739 LIST_HEAD(invalid_list);
3ee16c81 5740
35f2d16b
TY
5741 /*
5742 * Never scan more than sc->nr_to_scan VM instances.
5743 * Will not hit this condition practically since we do not try
5744 * to shrink more than one VM and it is very unlikely to see
5745 * !n_used_mmu_pages so many times.
5746 */
5747 if (!nr_to_scan--)
5748 break;
19526396
GN
5749 /*
5750 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5751 * here. We may skip a VM instance errorneosly, but we do not
5752 * want to shrink a VM that only started to populate its MMU
5753 * anyway.
5754 */
10605204
SC
5755 if (!kvm->arch.n_used_mmu_pages &&
5756 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5757 continue;
19526396 5758
f656ce01 5759 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5760 spin_lock(&kvm->mmu_lock);
3ee16c81 5761
10605204
SC
5762 if (kvm_has_zapped_obsolete_pages(kvm)) {
5763 kvm_mmu_commit_zap_page(kvm,
5764 &kvm->arch.zapped_obsolete_pages);
5765 goto unlock;
5766 }
5767
ebdb292d 5768 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5769
10605204 5770unlock:
3ee16c81 5771 spin_unlock(&kvm->mmu_lock);
f656ce01 5772 srcu_read_unlock(&kvm->srcu, idx);
19526396 5773
70534a73
DC
5774 /*
5775 * unfair on small ones
5776 * per-vm shrinkers cry out
5777 * sadness comes quickly
5778 */
19526396
GN
5779 list_move_tail(&kvm->vm_list, &vm_list);
5780 break;
3ee16c81 5781 }
3ee16c81 5782
0d9ce162 5783 mutex_unlock(&kvm_lock);
70534a73 5784 return freed;
70534a73
DC
5785}
5786
5787static unsigned long
5788mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5789{
45221ab6 5790 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5791}
5792
5793static struct shrinker mmu_shrinker = {
70534a73
DC
5794 .count_objects = mmu_shrink_count,
5795 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5796 .seeks = DEFAULT_SEEKS * 10,
5797};
5798
2ddfd20e 5799static void mmu_destroy_caches(void)
b5a33a75 5800{
c1bd743e
TH
5801 kmem_cache_destroy(pte_list_desc_cache);
5802 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5803}
5804
7b6f8a06
KH
5805static void kvm_set_mmio_spte_mask(void)
5806{
5807 u64 mask;
7b6f8a06
KH
5808
5809 /*
6129ed87
SC
5810 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5811 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5812 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5813 * 52-bit physical addresses then there are no reserved PA bits in the
5814 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 5815 */
6129ed87
SC
5816 if (shadow_phys_bits < 52)
5817 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5818 else
5819 mask = 0;
7b6f8a06 5820
e7581cac 5821 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
5822}
5823
b8e8c830
PB
5824static bool get_nx_auto_mode(void)
5825{
5826 /* Return true when CPU has the bug, and mitigations are ON */
5827 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5828}
5829
5830static void __set_nx_huge_pages(bool val)
5831{
5832 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5833}
5834
5835static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5836{
5837 bool old_val = nx_huge_pages;
5838 bool new_val;
5839
5840 /* In "auto" mode deploy workaround only if CPU has the bug. */
5841 if (sysfs_streq(val, "off"))
5842 new_val = 0;
5843 else if (sysfs_streq(val, "force"))
5844 new_val = 1;
5845 else if (sysfs_streq(val, "auto"))
5846 new_val = get_nx_auto_mode();
5847 else if (strtobool(val, &new_val) < 0)
5848 return -EINVAL;
5849
5850 __set_nx_huge_pages(new_val);
5851
5852 if (new_val != old_val) {
5853 struct kvm *kvm;
b8e8c830
PB
5854
5855 mutex_lock(&kvm_lock);
5856
5857 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5858 mutex_lock(&kvm->slots_lock);
b8e8c830 5859 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5860 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5861
5862 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5863 }
5864 mutex_unlock(&kvm_lock);
5865 }
5866
5867 return 0;
5868}
5869
b5a33a75
AK
5870int kvm_mmu_module_init(void)
5871{
ab271bd4
AB
5872 int ret = -ENOMEM;
5873
b8e8c830
PB
5874 if (nx_huge_pages == -1)
5875 __set_nx_huge_pages(get_nx_auto_mode());
5876
36d9594d
VK
5877 /*
5878 * MMU roles use union aliasing which is, generally speaking, an
5879 * undefined behavior. However, we supposedly know how compilers behave
5880 * and the current status quo is unlikely to change. Guardians below are
5881 * supposed to let us know if the assumption becomes false.
5882 */
5883 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5884 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5885 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5886
28a1f3ac 5887 kvm_mmu_reset_all_pte_masks();
f160c7b7 5888
7b6f8a06
KH
5889 kvm_set_mmio_spte_mask();
5890
53c07b18
XG
5891 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5892 sizeof(struct pte_list_desc),
46bea48a 5893 0, SLAB_ACCOUNT, NULL);
53c07b18 5894 if (!pte_list_desc_cache)
ab271bd4 5895 goto out;
b5a33a75 5896
d3d25b04
AK
5897 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5898 sizeof(struct kvm_mmu_page),
46bea48a 5899 0, SLAB_ACCOUNT, NULL);
d3d25b04 5900 if (!mmu_page_header_cache)
ab271bd4 5901 goto out;
d3d25b04 5902
908c7f19 5903 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5904 goto out;
45bf21a8 5905
ab271bd4
AB
5906 ret = register_shrinker(&mmu_shrinker);
5907 if (ret)
5908 goto out;
3ee16c81 5909
b5a33a75
AK
5910 return 0;
5911
ab271bd4 5912out:
3ee16c81 5913 mmu_destroy_caches();
ab271bd4 5914 return ret;
b5a33a75
AK
5915}
5916
3ad82a7e 5917/*
39337ad1 5918 * Calculate mmu pages needed for kvm.
3ad82a7e 5919 */
bc8a3d89 5920unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5921{
bc8a3d89
BG
5922 unsigned long nr_mmu_pages;
5923 unsigned long nr_pages = 0;
bc6678a3 5924 struct kvm_memslots *slots;
be6ba0f0 5925 struct kvm_memory_slot *memslot;
9da0e4d5 5926 int i;
3ad82a7e 5927
9da0e4d5
PB
5928 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5929 slots = __kvm_memslots(kvm, i);
90d83dc3 5930
9da0e4d5
PB
5931 kvm_for_each_memslot(memslot, slots)
5932 nr_pages += memslot->npages;
5933 }
3ad82a7e
ZX
5934
5935 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5936 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5937
5938 return nr_mmu_pages;
5939}
5940
c42fffe3
XG
5941void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5942{
95f93af4 5943 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5944 free_mmu_pages(&vcpu->arch.root_mmu);
5945 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5946 mmu_free_memory_caches(vcpu);
b034cf01
XG
5947}
5948
b034cf01
XG
5949void kvm_mmu_module_exit(void)
5950{
5951 mmu_destroy_caches();
5952 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5953 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5954 mmu_audit_disable();
5955}
1aa9b957
JS
5956
5957static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5958{
5959 unsigned int old_val;
5960 int err;
5961
5962 old_val = nx_huge_pages_recovery_ratio;
5963 err = param_set_uint(val, kp);
5964 if (err)
5965 return err;
5966
5967 if (READ_ONCE(nx_huge_pages) &&
5968 !old_val && nx_huge_pages_recovery_ratio) {
5969 struct kvm *kvm;
5970
5971 mutex_lock(&kvm_lock);
5972
5973 list_for_each_entry(kvm, &vm_list, vm_list)
5974 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5975
5976 mutex_unlock(&kvm_lock);
5977 }
5978
5979 return err;
5980}
5981
5982static void kvm_recover_nx_lpages(struct kvm *kvm)
5983{
5984 int rcu_idx;
5985 struct kvm_mmu_page *sp;
5986 unsigned int ratio;
5987 LIST_HEAD(invalid_list);
5988 ulong to_zap;
5989
5990 rcu_idx = srcu_read_lock(&kvm->srcu);
5991 spin_lock(&kvm->mmu_lock);
5992
5993 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5994 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5995 for ( ; to_zap; --to_zap) {
5996 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5997 break;
5998
1aa9b957
JS
5999 /*
6000 * We use a separate list instead of just using active_mmu_pages
6001 * because the number of lpage_disallowed pages is expected to
6002 * be relatively small compared to the total.
6003 */
6004 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6005 struct kvm_mmu_page,
6006 lpage_disallowed_link);
6007 WARN_ON_ONCE(!sp->lpage_disallowed);
29cf0f50
BG
6008 if (sp->tdp_mmu_page)
6009 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
6010 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
6011 else {
6012 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6013 WARN_ON_ONCE(sp->lpage_disallowed);
6014 }
1aa9b957 6015
7d919c7a 6016 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
1aa9b957 6017 kvm_mmu_commit_zap_page(kvm, &invalid_list);
7d919c7a 6018 cond_resched_lock(&kvm->mmu_lock);
1aa9b957
JS
6019 }
6020 }
e8950569 6021 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1aa9b957
JS
6022
6023 spin_unlock(&kvm->mmu_lock);
6024 srcu_read_unlock(&kvm->srcu, rcu_idx);
6025}
6026
6027static long get_nx_lpage_recovery_timeout(u64 start_time)
6028{
6029 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6030 ? start_time + 60 * HZ - get_jiffies_64()
6031 : MAX_SCHEDULE_TIMEOUT;
6032}
6033
6034static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6035{
6036 u64 start_time;
6037 long remaining_time;
6038
6039 while (true) {
6040 start_time = get_jiffies_64();
6041 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6042
6043 set_current_state(TASK_INTERRUPTIBLE);
6044 while (!kthread_should_stop() && remaining_time > 0) {
6045 schedule_timeout(remaining_time);
6046 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6047 set_current_state(TASK_INTERRUPTIBLE);
6048 }
6049
6050 set_current_state(TASK_RUNNING);
6051
6052 if (kthread_should_stop())
6053 return 0;
6054
6055 kvm_recover_nx_lpages(kvm);
6056 }
6057}
6058
6059int kvm_mmu_post_init_vm(struct kvm *kvm)
6060{
6061 int err;
6062
6063 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6064 "kvm-nx-lpage-recovery",
6065 &kvm->arch.nx_lpage_recovery_thread);
6066 if (!err)
6067 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6068
6069 return err;
6070}
6071
6072void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6073{
6074 if (kvm->arch.nx_lpage_recovery_thread)
6075 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6076}