]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: Make dirty log size hook (PML) a value, not a function
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
13673a90 51#include <asm/vmx.h>
3d0c27ad 52#include <asm/kvm_page_track.h>
1261bfa3 53#include "trace.h"
6aa8b732 54
b8e8c830
PB
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
1aa9b957 62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 63#endif
b8e8c830
PB
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 67
d5d6c18d 68static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
d5d6c18d 73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
b8e8c830
PB
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 83
71fe7013
SC
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
18552672
JR
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
2f333bcb 94bool tdp_enabled = false;
18552672 95
1d92d2e8 96static int max_huge_page_level __read_mostly;
83013059 97static int max_tdp_level __read_mostly;
703c335d 98
8b1fe17c
XG
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
6903074c
XG
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
8b1fe17c 106};
37a7d8b0 107
37a7d8b0 108#ifdef MMU_DEBUG
5a9624af 109bool dbg = 0;
fa4a2c08 110module_param(dbg, bool, 0644);
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
6aa8b732
AK
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
d77c26fc 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 119
e04da980
JR
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
6aa8b732
AK
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
90bb6fc5
AK
135#include <trace/events/kvm.h>
136
220f773a
TY
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
53c07b18
XG
140struct pte_list_desc {
141 u64 *sptes[PTE_LIST_EXT];
142 struct pte_list_desc *more;
cd4a4e53
AK
143};
144
2d11123a
AK
145struct kvm_shadow_walk_iterator {
146 u64 addr;
147 hpa_t shadow_addr;
2d11123a 148 u64 *sptep;
dd3bfd59 149 int level;
2d11123a
AK
150 unsigned index;
151};
152
7eb77e9f
JS
153#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
154 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
155 (_root), (_addr)); \
156 shadow_walk_okay(&(_walker)); \
157 shadow_walk_next(&(_walker)))
158
159#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
160 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
161 shadow_walk_okay(&(_walker)); \
162 shadow_walk_next(&(_walker)))
163
c2a2ac2b
XG
164#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
165 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
166 shadow_walk_okay(&(_walker)) && \
167 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
168 __shadow_walk_next(&(_walker), spte))
169
53c07b18 170static struct kmem_cache *pte_list_desc_cache;
02c00b3a 171struct kmem_cache *mmu_page_header_cache;
45221ab6 172static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 173
ce88decf 174static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
175static union kvm_mmu_page_role
176kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 177
335e192a
PB
178#define CREATE_TRACE_POINTS
179#include "mmutrace.h"
180
40ef75a7
LT
181
182static inline bool kvm_available_flush_tlb_with_range(void)
183{
afaf0b2f 184 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
185}
186
187static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188 struct kvm_tlb_range *range)
189{
190 int ret = -ENOTSUPP;
191
afaf0b2f 192 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
b3646477 193 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
40ef75a7
LT
194
195 if (ret)
196 kvm_flush_remote_tlbs(kvm);
197}
198
2f2fad08 199void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
200 u64 start_gfn, u64 pages)
201{
202 struct kvm_tlb_range range;
203
204 range.start_gfn = start_gfn;
205 range.pages = pages;
206
207 kvm_flush_remote_tlbs_with_range(kvm, &range);
208}
209
5a9624af 210bool is_nx_huge_page_enabled(void)
b8e8c830
PB
211{
212 return READ_ONCE(nx_huge_pages);
213}
214
8f79b064
BG
215static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216 unsigned int access)
217{
218 u64 mask = make_mmio_spte(vcpu, gfn, access);
8f79b064 219
bb18842e 220 trace_mark_mmio_spte(sptep, gfn, mask);
f2fd125d 221 mmu_spte_set(sptep, mask);
ce88decf
XG
222}
223
ce88decf
XG
224static gfn_t get_mmio_spte_gfn(u64 spte)
225{
daa07cbc 226 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac 227
8a967d65 228 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
28a1f3ac
JS
229 & shadow_nonpresent_or_rsvd_mask;
230
231 return gpa >> PAGE_SHIFT;
ce88decf
XG
232}
233
234static unsigned get_mmio_spte_access(u64 spte)
235{
4af77151 236 return spte & shadow_mmio_access_mask;
ce88decf
XG
237}
238
54bf36aa 239static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 240 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
241{
242 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 243 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
244 return true;
245 }
246
247 return false;
248}
c7addb90 249
54bf36aa 250static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 251{
cae7ed3c 252 u64 kvm_gen, spte_gen, gen;
089504c0 253
cae7ed3c
SC
254 gen = kvm_vcpu_memslots(vcpu)->generation;
255 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256 return false;
089504c0 257
cae7ed3c 258 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
259 spte_gen = get_mmio_spte_generation(spte);
260
261 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262 return likely(kvm_gen == spte_gen);
f8f55942
XG
263}
264
cd313569
MG
265static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266 struct x86_exception *exception)
267{
ec7771ab 268 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 269 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
270 exception->error_code |= PFERR_RSVD_MASK;
271 return UNMAPPED_GVA;
272 }
273
cd313569
MG
274 return gpa;
275}
276
6aa8b732
AK
277static int is_cpuid_PSE36(void)
278{
279 return 1;
280}
281
73b1087e
AK
282static int is_nx(struct kvm_vcpu *vcpu)
283{
f6801dff 284 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
285}
286
da928521
AK
287static gfn_t pse36_gfn_delta(u32 gpte)
288{
289 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290
291 return (gpte & PT32_DIR_PSE36_MASK) << shift;
292}
293
603e0651 294#ifdef CONFIG_X86_64
d555c333 295static void __set_spte(u64 *sptep, u64 spte)
e663ee64 296{
b19ee2ff 297 WRITE_ONCE(*sptep, spte);
e663ee64
AK
298}
299
603e0651 300static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 301{
b19ee2ff 302 WRITE_ONCE(*sptep, spte);
603e0651
XG
303}
304
305static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306{
307 return xchg(sptep, spte);
308}
c2a2ac2b
XG
309
310static u64 __get_spte_lockless(u64 *sptep)
311{
6aa7de05 312 return READ_ONCE(*sptep);
c2a2ac2b 313}
a9221dd5 314#else
603e0651
XG
315union split_spte {
316 struct {
317 u32 spte_low;
318 u32 spte_high;
319 };
320 u64 spte;
321};
a9221dd5 322
c2a2ac2b
XG
323static void count_spte_clear(u64 *sptep, u64 spte)
324{
57354682 325 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
326
327 if (is_shadow_present_pte(spte))
328 return;
329
330 /* Ensure the spte is completely set before we increase the count */
331 smp_wmb();
332 sp->clear_spte_count++;
333}
334
603e0651
XG
335static void __set_spte(u64 *sptep, u64 spte)
336{
337 union split_spte *ssptep, sspte;
a9221dd5 338
603e0651
XG
339 ssptep = (union split_spte *)sptep;
340 sspte = (union split_spte)spte;
341
342 ssptep->spte_high = sspte.spte_high;
343
344 /*
345 * If we map the spte from nonpresent to present, We should store
346 * the high bits firstly, then set present bit, so cpu can not
347 * fetch this spte while we are setting the spte.
348 */
349 smp_wmb();
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
352}
353
603e0651
XG
354static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355{
356 union split_spte *ssptep, sspte;
357
358 ssptep = (union split_spte *)sptep;
359 sspte = (union split_spte)spte;
360
b19ee2ff 361 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
362
363 /*
364 * If we map the spte from present to nonpresent, we should clear
365 * present bit firstly to avoid vcpu fetch the old high bits.
366 */
367 smp_wmb();
368
369 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 370 count_spte_clear(sptep, spte);
603e0651
XG
371}
372
373static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374{
375 union split_spte *ssptep, sspte, orig;
376
377 ssptep = (union split_spte *)sptep;
378 sspte = (union split_spte)spte;
379
380 /* xchg acts as a barrier before the setting of the high bits */
381 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
382 orig.spte_high = ssptep->spte_high;
383 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 384 count_spte_clear(sptep, spte);
603e0651
XG
385
386 return orig.spte;
387}
c2a2ac2b
XG
388
389/*
390 * The idea using the light way get the spte on x86_32 guest is from
39656e83 391 * gup_get_pte (mm/gup.c).
accaefe0
XG
392 *
393 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394 * coalesces them and we are running out of the MMU lock. Therefore
395 * we need to protect against in-progress updates of the spte.
396 *
397 * Reading the spte while an update is in progress may get the old value
398 * for the high part of the spte. The race is fine for a present->non-present
399 * change (because the high part of the spte is ignored for non-present spte),
400 * but for a present->present change we must reread the spte.
401 *
402 * All such changes are done in two steps (present->non-present and
403 * non-present->present), hence it is enough to count the number of
404 * present->non-present updates: if it changed while reading the spte,
405 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
57354682 409 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
603e0651
XG
429#endif
430
8672b721
XG
431static bool spte_has_volatile_bits(u64 spte)
432{
f160c7b7
JS
433 if (!is_shadow_present_pte(spte))
434 return false;
435
c7ba5b48 436 /*
6a6256f9 437 * Always atomically update spte if it can be updated
c7ba5b48
XG
438 * out of mmu-lock, it can ensure dirty bit is not lost,
439 * also, it can help us to get a stable is_writable_pte()
440 * to ensure tlb flush is not missed.
441 */
f160c7b7
JS
442 if (spte_can_locklessly_be_made_writable(spte) ||
443 is_access_track_spte(spte))
c7ba5b48
XG
444 return true;
445
ac8d57e5 446 if (spte_ad_enabled(spte)) {
f160c7b7
JS
447 if ((spte & shadow_accessed_mask) == 0 ||
448 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449 return true;
450 }
8672b721 451
f160c7b7 452 return false;
8672b721
XG
453}
454
1df9f2dc
XG
455/* Rules for using mmu_spte_set:
456 * Set the sptep from nonpresent to present.
457 * Note: the sptep being assigned *must* be either not present
458 * or in a state where the hardware will not attempt to update
459 * the spte.
460 */
461static void mmu_spte_set(u64 *sptep, u64 new_spte)
462{
463 WARN_ON(is_shadow_present_pte(*sptep));
464 __set_spte(sptep, new_spte);
465}
466
f39a058d
JS
467/*
468 * Update the SPTE (excluding the PFN), but do not track changes in its
469 * accessed/dirty status.
1df9f2dc 470 */
f39a058d 471static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 472{
c7ba5b48 473 u64 old_spte = *sptep;
4132779b 474
afd28fe1 475 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 476
6e7d0354
XG
477 if (!is_shadow_present_pte(old_spte)) {
478 mmu_spte_set(sptep, new_spte);
f39a058d 479 return old_spte;
6e7d0354 480 }
4132779b 481
c7ba5b48 482 if (!spte_has_volatile_bits(old_spte))
603e0651 483 __update_clear_spte_fast(sptep, new_spte);
4132779b 484 else
603e0651 485 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 486
83ef6c81
JS
487 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488
f39a058d
JS
489 return old_spte;
490}
491
492/* Rules for using mmu_spte_update:
493 * Update the state bits, it means the mapped pfn is not changed.
494 *
495 * Whenever we overwrite a writable spte with a read-only one we
496 * should flush remote TLBs. Otherwise rmap_write_protect
497 * will find a read-only spte, even though the writable spte
498 * might be cached on a CPU's TLB, the return value indicates this
499 * case.
500 *
501 * Returns true if the TLB needs to be flushed
502 */
503static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504{
505 bool flush = false;
506 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507
508 if (!is_shadow_present_pte(old_spte))
509 return false;
510
c7ba5b48
XG
511 /*
512 * For the spte updated out of mmu-lock is safe, since
6a6256f9 513 * we always atomically update it, see the comments in
c7ba5b48
XG
514 * spte_has_volatile_bits().
515 */
ea4114bc 516 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 517 !is_writable_pte(new_spte))
83ef6c81 518 flush = true;
4132779b 519
7e71a59b 520 /*
83ef6c81 521 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
522 * to guarantee consistency between TLB and page tables.
523 */
7e71a59b 524
83ef6c81
JS
525 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526 flush = true;
4132779b 527 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
528 }
529
530 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531 flush = true;
4132779b 532 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 533 }
6e7d0354 534
83ef6c81 535 return flush;
b79b93f9
AK
536}
537
1df9f2dc
XG
538/*
539 * Rules for using mmu_spte_clear_track_bits:
540 * It sets the sptep from present to nonpresent, and track the
541 * state bits, it is used to clear the last level sptep.
83ef6c81 542 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
543 */
544static int mmu_spte_clear_track_bits(u64 *sptep)
545{
ba049e93 546 kvm_pfn_t pfn;
1df9f2dc
XG
547 u64 old_spte = *sptep;
548
549 if (!spte_has_volatile_bits(old_spte))
603e0651 550 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 551 else
603e0651 552 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 553
afd28fe1 554 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
555 return 0;
556
557 pfn = spte_to_pfn(old_spte);
86fde74c
XG
558
559 /*
560 * KVM does not hold the refcount of the page used by
561 * kvm mmu, before reclaiming the page, we should
562 * unmap it from mmu first.
563 */
bf4bea8e 564 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 565
83ef6c81 566 if (is_accessed_spte(old_spte))
1df9f2dc 567 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
568
569 if (is_dirty_spte(old_spte))
1df9f2dc 570 kvm_set_pfn_dirty(pfn);
83ef6c81 571
1df9f2dc
XG
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
d3e328f2
JS
590/* Restore an acc-track PTE back to a regular PTE */
591static u64 restore_acc_track_spte(u64 spte)
592{
593 u64 new_spte = spte;
8a967d65
PB
594 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
d3e328f2 596
ac8d57e5 597 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
598 WARN_ON_ONCE(!is_access_track_spte(spte));
599
600 new_spte &= ~shadow_acc_track_mask;
8a967d65
PB
601 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
d3e328f2
JS
603 new_spte |= saved_bits;
604
605 return new_spte;
606}
607
f160c7b7
JS
608/* Returns the Accessed status of the PTE and resets it at the same time. */
609static bool mmu_spte_age(u64 *sptep)
610{
611 u64 spte = mmu_spte_get_lockless(sptep);
612
613 if (!is_accessed_spte(spte))
614 return false;
615
ac8d57e5 616 if (spte_ad_enabled(spte)) {
f160c7b7
JS
617 clear_bit((ffs(shadow_accessed_mask) - 1),
618 (unsigned long *)sptep);
619 } else {
620 /*
621 * Capture the dirty status of the page, so that it doesn't get
622 * lost when the SPTE is marked for access tracking.
623 */
624 if (is_writable_pte(spte))
625 kvm_set_pfn_dirty(spte_to_pfn(spte));
626
627 spte = mark_spte_for_access_track(spte);
628 mmu_spte_update_no_track(sptep, spte);
629 }
630
631 return true;
632}
633
c2a2ac2b
XG
634static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635{
c142786c
AK
636 /*
637 * Prevent page table teardown by making any free-er wait during
638 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639 */
640 local_irq_disable();
36ca7e0a 641
c142786c
AK
642 /*
643 * Make sure a following spte read is not reordered ahead of the write
644 * to vcpu->mode.
645 */
36ca7e0a 646 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
647}
648
649static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650{
c142786c
AK
651 /*
652 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 653 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
654 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655 */
36ca7e0a 656 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 657 local_irq_enable();
c2a2ac2b
XG
658}
659
378f5cd6 660static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 661{
e2dec939
AK
662 int r;
663
531281ad 664 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
665 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 667 if (r)
284aa868 668 return r;
94ce87ef
SC
669 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670 PT64_ROOT_MAX_LEVEL);
d3d25b04 671 if (r)
171a90d7 672 return r;
378f5cd6 673 if (maybe_indirect) {
94ce87ef
SC
674 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
676 if (r)
677 return r;
678 }
94ce87ef
SC
679 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680 PT64_ROOT_MAX_LEVEL);
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
94ce87ef
SC
685 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
689}
690
53c07b18 691static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 692{
94ce87ef 693 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
694}
695
53c07b18 696static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 697{
53c07b18 698 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
699}
700
2032a93d
LJ
701static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702{
703 if (!sp->role.direct)
704 return sp->gfns[index];
705
706 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707}
708
709static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710{
e9f2a760 711 if (!sp->role.direct) {
2032a93d 712 sp->gfns[index] = gfn;
e9f2a760
PB
713 return;
714 }
715
716 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717 pr_err_ratelimited("gfn mismatch under direct page %llx "
718 "(expected %llx, got %llx)\n",
719 sp->gfn,
720 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
721}
722
05da4558 723/*
d4dbf470
TY
724 * Return the pointer to the large page information for a given gfn,
725 * handling slots that are not large page aligned.
05da4558 726 */
d4dbf470
TY
727static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728 struct kvm_memory_slot *slot,
729 int level)
05da4558
MT
730{
731 unsigned long idx;
732
fb03cb6f 733 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 734 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
735}
736
547ffaed
XG
737static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738 gfn_t gfn, int count)
739{
740 struct kvm_lpage_info *linfo;
741 int i;
742
3bae0459 743 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
744 linfo = lpage_info_slot(gfn, slot, i);
745 linfo->disallow_lpage += count;
746 WARN_ON(linfo->disallow_lpage < 0);
747 }
748}
749
750void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751{
752 update_gfn_disallow_lpage_count(slot, gfn, 1);
753}
754
755void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756{
757 update_gfn_disallow_lpage_count(slot, gfn, -1);
758}
759
3ed1a478 760static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 761{
699023e2 762 struct kvm_memslots *slots;
d25797b2 763 struct kvm_memory_slot *slot;
3ed1a478 764 gfn_t gfn;
05da4558 765
56ca57f9 766 kvm->arch.indirect_shadow_pages++;
3ed1a478 767 gfn = sp->gfn;
699023e2
PB
768 slots = kvm_memslots_for_spte_role(kvm, sp->role);
769 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
770
771 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 772 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
773 return kvm_slot_page_track_add_page(kvm, slot, gfn,
774 KVM_PAGE_TRACK_WRITE);
775
547ffaed 776 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
777}
778
29cf0f50 779void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
780{
781 if (sp->lpage_disallowed)
782 return;
783
784 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
785 list_add_tail(&sp->lpage_disallowed_link,
786 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
787 sp->lpage_disallowed = true;
788}
789
3ed1a478 790static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 791{
699023e2 792 struct kvm_memslots *slots;
d25797b2 793 struct kvm_memory_slot *slot;
3ed1a478 794 gfn_t gfn;
05da4558 795
56ca57f9 796 kvm->arch.indirect_shadow_pages--;
3ed1a478 797 gfn = sp->gfn;
699023e2
PB
798 slots = kvm_memslots_for_spte_role(kvm, sp->role);
799 slot = __gfn_to_memslot(slots, gfn);
3bae0459 800 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
801 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802 KVM_PAGE_TRACK_WRITE);
803
547ffaed 804 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
805}
806
29cf0f50 807void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
808{
809 --kvm->stat.nx_lpage_splits;
810 sp->lpage_disallowed = false;
1aa9b957 811 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
812}
813
5d163b1c
XG
814static struct kvm_memory_slot *
815gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816 bool no_dirty_log)
05da4558
MT
817{
818 struct kvm_memory_slot *slot;
5d163b1c 819
54bf36aa 820 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
821 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822 return NULL;
044c59c4 823 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
91b0d268 824 return NULL;
5d163b1c
XG
825
826 return slot;
827}
828
290fc38d 829/*
018aabb5 830 * About rmap_head encoding:
cd4a4e53 831 *
018aabb5
TY
832 * If the bit zero of rmap_head->val is clear, then it points to the only spte
833 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 834 * pte_list_desc containing more mappings.
018aabb5
TY
835 */
836
837/*
838 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 839 */
53c07b18 840static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 841 struct kvm_rmap_head *rmap_head)
cd4a4e53 842{
53c07b18 843 struct pte_list_desc *desc;
53a27b39 844 int i, count = 0;
cd4a4e53 845
018aabb5 846 if (!rmap_head->val) {
805a0f83 847 rmap_printk("%p %llx 0->1\n", spte, *spte);
018aabb5
TY
848 rmap_head->val = (unsigned long)spte;
849 } else if (!(rmap_head->val & 1)) {
805a0f83 850 rmap_printk("%p %llx 1->many\n", spte, *spte);
53c07b18 851 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 852 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 853 desc->sptes[1] = spte;
018aabb5 854 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 855 ++count;
cd4a4e53 856 } else {
805a0f83 857 rmap_printk("%p %llx many->many\n", spte, *spte);
018aabb5 858 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
c6c4f961 859 while (desc->sptes[PTE_LIST_EXT-1]) {
53c07b18 860 count += PTE_LIST_EXT;
c6c4f961
LR
861
862 if (!desc->more) {
863 desc->more = mmu_alloc_pte_list_desc(vcpu);
864 desc = desc->more;
865 break;
866 }
cd4a4e53
AK
867 desc = desc->more;
868 }
d555c333 869 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 870 ++count;
d555c333 871 desc->sptes[i] = spte;
cd4a4e53 872 }
53a27b39 873 return count;
cd4a4e53
AK
874}
875
53c07b18 876static void
018aabb5
TY
877pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878 struct pte_list_desc *desc, int i,
879 struct pte_list_desc *prev_desc)
cd4a4e53
AK
880{
881 int j;
882
53c07b18 883 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 884 ;
d555c333
AK
885 desc->sptes[i] = desc->sptes[j];
886 desc->sptes[j] = NULL;
cd4a4e53
AK
887 if (j != 0)
888 return;
889 if (!prev_desc && !desc->more)
fe3c2b4c 890 rmap_head->val = 0;
cd4a4e53
AK
891 else
892 if (prev_desc)
893 prev_desc->more = desc->more;
894 else
018aabb5 895 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 896 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
897}
898
8daf3462 899static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 900{
53c07b18
XG
901 struct pte_list_desc *desc;
902 struct pte_list_desc *prev_desc;
cd4a4e53
AK
903 int i;
904
018aabb5 905 if (!rmap_head->val) {
8daf3462 906 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 907 BUG();
018aabb5 908 } else if (!(rmap_head->val & 1)) {
805a0f83 909 rmap_printk("%p 1->0\n", spte);
018aabb5 910 if ((u64 *)rmap_head->val != spte) {
8daf3462 911 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
912 BUG();
913 }
018aabb5 914 rmap_head->val = 0;
cd4a4e53 915 } else {
805a0f83 916 rmap_printk("%p many->many\n", spte);
018aabb5 917 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
918 prev_desc = NULL;
919 while (desc) {
018aabb5 920 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 921 if (desc->sptes[i] == spte) {
018aabb5
TY
922 pte_list_desc_remove_entry(rmap_head,
923 desc, i, prev_desc);
cd4a4e53
AK
924 return;
925 }
018aabb5 926 }
cd4a4e53
AK
927 prev_desc = desc;
928 desc = desc->more;
929 }
8daf3462 930 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
931 BUG();
932 }
933}
934
e7912386
WY
935static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936{
937 mmu_spte_clear_track_bits(sptep);
938 __pte_list_remove(sptep, rmap_head);
939}
940
018aabb5
TY
941static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942 struct kvm_memory_slot *slot)
53c07b18 943{
77d11309 944 unsigned long idx;
53c07b18 945
77d11309 946 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 947 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
948}
949
018aabb5
TY
950static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951 struct kvm_mmu_page *sp)
9b9b1492 952{
699023e2 953 struct kvm_memslots *slots;
9b9b1492
TY
954 struct kvm_memory_slot *slot;
955
699023e2
PB
956 slots = kvm_memslots_for_spte_role(kvm, sp->role);
957 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 958 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
959}
960
f759e2b4
XG
961static bool rmap_can_add(struct kvm_vcpu *vcpu)
962{
356ec69a 963 struct kvm_mmu_memory_cache *mc;
f759e2b4 964
356ec69a 965 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 966 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
967}
968
53c07b18
XG
969static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970{
971 struct kvm_mmu_page *sp;
018aabb5 972 struct kvm_rmap_head *rmap_head;
53c07b18 973
57354682 974 sp = sptep_to_sp(spte);
53c07b18 975 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
976 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
978}
979
53c07b18
XG
980static void rmap_remove(struct kvm *kvm, u64 *spte)
981{
982 struct kvm_mmu_page *sp;
983 gfn_t gfn;
018aabb5 984 struct kvm_rmap_head *rmap_head;
53c07b18 985
57354682 986 sp = sptep_to_sp(spte);
53c07b18 987 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 988 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 989 __pte_list_remove(spte, rmap_head);
53c07b18
XG
990}
991
1e3f42f0
TY
992/*
993 * Used by the following functions to iterate through the sptes linked by a
994 * rmap. All fields are private and not assumed to be used outside.
995 */
996struct rmap_iterator {
997 /* private fields */
998 struct pte_list_desc *desc; /* holds the sptep if not NULL */
999 int pos; /* index of the sptep */
1000};
1001
1002/*
1003 * Iteration must be started by this function. This should also be used after
1004 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1005 * information in the iterator may not be valid.
1e3f42f0
TY
1006 *
1007 * Returns sptep if found, NULL otherwise.
1008 */
018aabb5
TY
1009static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010 struct rmap_iterator *iter)
1e3f42f0 1011{
77fbbbd2
TY
1012 u64 *sptep;
1013
018aabb5 1014 if (!rmap_head->val)
1e3f42f0
TY
1015 return NULL;
1016
018aabb5 1017 if (!(rmap_head->val & 1)) {
1e3f42f0 1018 iter->desc = NULL;
77fbbbd2
TY
1019 sptep = (u64 *)rmap_head->val;
1020 goto out;
1e3f42f0
TY
1021 }
1022
018aabb5 1023 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1024 iter->pos = 0;
77fbbbd2
TY
1025 sptep = iter->desc->sptes[iter->pos];
1026out:
1027 BUG_ON(!is_shadow_present_pte(*sptep));
1028 return sptep;
1e3f42f0
TY
1029}
1030
1031/*
1032 * Must be used with a valid iterator: e.g. after rmap_get_first().
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_next(struct rmap_iterator *iter)
1037{
77fbbbd2
TY
1038 u64 *sptep;
1039
1e3f42f0
TY
1040 if (iter->desc) {
1041 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1042 ++iter->pos;
1043 sptep = iter->desc->sptes[iter->pos];
1044 if (sptep)
77fbbbd2 1045 goto out;
1e3f42f0
TY
1046 }
1047
1048 iter->desc = iter->desc->more;
1049
1050 if (iter->desc) {
1051 iter->pos = 0;
1052 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1053 sptep = iter->desc->sptes[iter->pos];
1054 goto out;
1e3f42f0
TY
1055 }
1056 }
1057
1058 return NULL;
77fbbbd2
TY
1059out:
1060 BUG_ON(!is_shadow_present_pte(*sptep));
1061 return sptep;
1e3f42f0
TY
1062}
1063
018aabb5
TY
1064#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1065 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1066 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1067
c3707958 1068static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1069{
1df9f2dc 1070 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1071 rmap_remove(kvm, sptep);
be38d276
AK
1072}
1073
8e22f955
XG
1074
1075static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076{
1077 if (is_large_pte(*sptep)) {
57354682 1078 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1079 drop_spte(kvm, sptep);
1080 --kvm->stat.lpages;
1081 return true;
1082 }
1083
1084 return false;
1085}
1086
1087static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088{
c3134ce2 1089 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1090 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1091
1092 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093 KVM_PAGES_PER_HPAGE(sp->role.level));
1094 }
8e22f955
XG
1095}
1096
1097/*
49fde340 1098 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1099 * spte write-protection is caused by protecting shadow page table.
49fde340 1100 *
b4619660 1101 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1102 * protection:
1103 * - for dirty logging, the spte can be set to writable at anytime if
1104 * its dirty bitmap is properly set.
1105 * - for spte protection, the spte can be writable only after unsync-ing
1106 * shadow page.
8e22f955 1107 *
c126d94f 1108 * Return true if tlb need be flushed.
8e22f955 1109 */
c4f138b4 1110static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1111{
1112 u64 spte = *sptep;
1113
49fde340 1114 if (!is_writable_pte(spte) &&
ea4114bc 1115 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1116 return false;
1117
805a0f83 1118 rmap_printk("spte %p %llx\n", sptep, *sptep);
d13bc5b5 1119
49fde340
XG
1120 if (pt_protect)
1121 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1122 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1123
c126d94f 1124 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1125}
1126
018aabb5
TY
1127static bool __rmap_write_protect(struct kvm *kvm,
1128 struct kvm_rmap_head *rmap_head,
245c3912 1129 bool pt_protect)
98348e95 1130{
1e3f42f0
TY
1131 u64 *sptep;
1132 struct rmap_iterator iter;
d13bc5b5 1133 bool flush = false;
374cbac0 1134
018aabb5 1135 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1136 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1137
d13bc5b5 1138 return flush;
a0ed4607
TY
1139}
1140
c4f138b4 1141static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1142{
1143 u64 spte = *sptep;
1144
805a0f83 1145 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1146
1f4e5fc8 1147 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1148 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1149 return mmu_spte_update(sptep, spte);
1150}
1151
1f4e5fc8 1152static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1153{
1154 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155 (unsigned long *)sptep);
1f4e5fc8 1156 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1157 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158
1159 return was_writable;
1160}
1161
1162/*
1163 * Gets the GFN ready for another round of dirty logging by clearing the
1164 * - D bit on ad-enabled SPTEs, and
1165 * - W bit on ad-disabled SPTEs.
1166 * Returns true iff any D or W bits were cleared.
1167 */
0a234f5d
SC
1168static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1169 struct kvm_memory_slot *slot)
f4b4b180
KH
1170{
1171 u64 *sptep;
1172 struct rmap_iterator iter;
1173 bool flush = false;
1174
018aabb5 1175 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1176 if (spte_ad_need_write_protect(*sptep))
1177 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1178 else
1f4e5fc8 1179 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1180
1181 return flush;
1182}
1183
c4f138b4 1184static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1185{
1186 u64 spte = *sptep;
1187
805a0f83 1188 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1189
1f4e5fc8 1190 /*
afaf0b2f 1191 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1192 * do not bother adding back write access to pages marked
1193 * SPTE_AD_WRPROT_ONLY_MASK.
1194 */
f4b4b180
KH
1195 spte |= shadow_dirty_mask;
1196
1197 return mmu_spte_update(sptep, spte);
1198}
1199
0a234f5d
SC
1200static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1201 struct kvm_memory_slot *slot)
f4b4b180
KH
1202{
1203 u64 *sptep;
1204 struct rmap_iterator iter;
1205 bool flush = false;
1206
018aabb5 1207 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1208 if (spte_ad_enabled(*sptep))
1209 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1210
1211 return flush;
1212}
1213
5dc99b23 1214/**
3b0f1d01 1215 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1216 * @kvm: kvm instance
1217 * @slot: slot to protect
1218 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1219 * @mask: indicates which pages we should protect
1220 *
1221 * Used when we do not need to care about huge page mappings: e.g. during dirty
1222 * logging we do not have any such mappings.
1223 */
3b0f1d01 1224static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1225 struct kvm_memory_slot *slot,
1226 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1227{
018aabb5 1228 struct kvm_rmap_head *rmap_head;
a0ed4607 1229
897218ff 1230 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1231 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1232 slot->base_gfn + gfn_offset, mask, true);
5dc99b23 1233 while (mask) {
018aabb5 1234 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1235 PG_LEVEL_4K, slot);
018aabb5 1236 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1237
5dc99b23
TY
1238 /* clear the first set bit */
1239 mask &= mask - 1;
1240 }
374cbac0
AK
1241}
1242
f4b4b180 1243/**
ac8d57e5
PF
1244 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1245 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1246 * @kvm: kvm instance
1247 * @slot: slot to clear D-bit
1248 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1249 * @mask: indicates which pages we should clear D-bit
1250 *
1251 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1252 */
1253void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1254 struct kvm_memory_slot *slot,
1255 gfn_t gfn_offset, unsigned long mask)
1256{
018aabb5 1257 struct kvm_rmap_head *rmap_head;
f4b4b180 1258
897218ff 1259 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1260 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1261 slot->base_gfn + gfn_offset, mask, false);
f4b4b180 1262 while (mask) {
018aabb5 1263 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1264 PG_LEVEL_4K, slot);
0a234f5d 1265 __rmap_clear_dirty(kvm, rmap_head, slot);
f4b4b180
KH
1266
1267 /* clear the first set bit */
1268 mask &= mask - 1;
1269 }
1270}
1271EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1272
3b0f1d01
KH
1273/**
1274 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1275 * PT level pages.
1276 *
1277 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1278 * enable dirty logging for them.
1279 *
1280 * Used when we do not need to care about huge page mappings: e.g. during dirty
1281 * logging we do not have any such mappings.
1282 */
1283void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1284 struct kvm_memory_slot *slot,
1285 gfn_t gfn_offset, unsigned long mask)
1286{
afaf0b2f 1287 if (kvm_x86_ops.enable_log_dirty_pt_masked)
b3646477
JB
1288 static_call(kvm_x86_enable_log_dirty_pt_masked)(kvm, slot,
1289 gfn_offset,
1290 mask);
88178fd4
KH
1291 else
1292 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1293}
1294
fb04a1ed
PX
1295int kvm_cpu_dirty_log_size(void)
1296{
6dd03800 1297 return kvm_x86_ops.cpu_dirty_log_size;
fb04a1ed
PX
1298}
1299
aeecee2e
XG
1300bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1301 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1302{
018aabb5 1303 struct kvm_rmap_head *rmap_head;
5dc99b23 1304 int i;
2f84569f 1305 bool write_protected = false;
95d4c16c 1306
3bae0459 1307 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1308 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1309 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1310 }
1311
897218ff 1312 if (is_tdp_mmu_enabled(kvm))
46044f72
BG
1313 write_protected |=
1314 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1315
5dc99b23 1316 return write_protected;
95d4c16c
TY
1317}
1318
aeecee2e
XG
1319static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1320{
1321 struct kvm_memory_slot *slot;
1322
1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1325}
1326
0a234f5d
SC
1327static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1328 struct kvm_memory_slot *slot)
e930bffe 1329{
1e3f42f0
TY
1330 u64 *sptep;
1331 struct rmap_iterator iter;
6a49f85c 1332 bool flush = false;
e930bffe 1333
018aabb5 1334 while ((sptep = rmap_get_first(rmap_head, &iter))) {
805a0f83 1335 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1e3f42f0 1336
e7912386 1337 pte_list_remove(rmap_head, sptep);
6a49f85c 1338 flush = true;
e930bffe 1339 }
1e3f42f0 1340
6a49f85c
XG
1341 return flush;
1342}
1343
018aabb5 1344static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1345 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1346 unsigned long data)
1347{
0a234f5d 1348 return kvm_zap_rmapp(kvm, rmap_head, slot);
e930bffe
AA
1349}
1350
018aabb5 1351static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1352 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1353 unsigned long data)
3da0dd43 1354{
1e3f42f0
TY
1355 u64 *sptep;
1356 struct rmap_iterator iter;
3da0dd43 1357 int need_flush = 0;
1e3f42f0 1358 u64 new_spte;
3da0dd43 1359 pte_t *ptep = (pte_t *)data;
ba049e93 1360 kvm_pfn_t new_pfn;
3da0dd43
IE
1361
1362 WARN_ON(pte_huge(*ptep));
1363 new_pfn = pte_pfn(*ptep);
1e3f42f0 1364
0d536790 1365restart:
018aabb5 1366 for_each_rmap_spte(rmap_head, &iter, sptep) {
805a0f83 1367 rmap_printk("spte %p %llx gfn %llx (%d)\n",
f160c7b7 1368 sptep, *sptep, gfn, level);
1e3f42f0 1369
3da0dd43 1370 need_flush = 1;
1e3f42f0 1371
3da0dd43 1372 if (pte_write(*ptep)) {
e7912386 1373 pte_list_remove(rmap_head, sptep);
0d536790 1374 goto restart;
3da0dd43 1375 } else {
cb3eedab
PB
1376 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1377 *sptep, new_pfn);
1e3f42f0
TY
1378
1379 mmu_spte_clear_track_bits(sptep);
1380 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1381 }
1382 }
1e3f42f0 1383
3cc5ea94
LT
1384 if (need_flush && kvm_available_flush_tlb_with_range()) {
1385 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1386 return 0;
1387 }
1388
0cf853c5 1389 return need_flush;
3da0dd43
IE
1390}
1391
6ce1f4e2
XG
1392struct slot_rmap_walk_iterator {
1393 /* input fields. */
1394 struct kvm_memory_slot *slot;
1395 gfn_t start_gfn;
1396 gfn_t end_gfn;
1397 int start_level;
1398 int end_level;
1399
1400 /* output fields. */
1401 gfn_t gfn;
018aabb5 1402 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1403 int level;
1404
1405 /* private field. */
018aabb5 1406 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1407};
1408
1409static void
1410rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1411{
1412 iterator->level = level;
1413 iterator->gfn = iterator->start_gfn;
1414 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1415 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1416 iterator->slot);
1417}
1418
1419static void
1420slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1421 struct kvm_memory_slot *slot, int start_level,
1422 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1423{
1424 iterator->slot = slot;
1425 iterator->start_level = start_level;
1426 iterator->end_level = end_level;
1427 iterator->start_gfn = start_gfn;
1428 iterator->end_gfn = end_gfn;
1429
1430 rmap_walk_init_level(iterator, iterator->start_level);
1431}
1432
1433static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1434{
1435 return !!iterator->rmap;
1436}
1437
1438static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1439{
1440 if (++iterator->rmap <= iterator->end_rmap) {
1441 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1442 return;
1443 }
1444
1445 if (++iterator->level > iterator->end_level) {
1446 iterator->rmap = NULL;
1447 return;
1448 }
1449
1450 rmap_walk_init_level(iterator, iterator->level);
1451}
1452
1453#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1454 _start_gfn, _end_gfn, _iter_) \
1455 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1456 _end_level_, _start_gfn, _end_gfn); \
1457 slot_rmap_walk_okay(_iter_); \
1458 slot_rmap_walk_next(_iter_))
1459
8f5c44f9
MS
1460static __always_inline int
1461kvm_handle_hva_range(struct kvm *kvm,
1462 unsigned long start,
1463 unsigned long end,
1464 unsigned long data,
1465 int (*handler)(struct kvm *kvm,
1466 struct kvm_rmap_head *rmap_head,
1467 struct kvm_memory_slot *slot,
1468 gfn_t gfn,
1469 int level,
1470 unsigned long data))
e930bffe 1471{
bc6678a3 1472 struct kvm_memslots *slots;
be6ba0f0 1473 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1474 struct slot_rmap_walk_iterator iterator;
1475 int ret = 0;
9da0e4d5 1476 int i;
bc6678a3 1477
9da0e4d5
PB
1478 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1479 slots = __kvm_memslots(kvm, i);
1480 kvm_for_each_memslot(memslot, slots) {
1481 unsigned long hva_start, hva_end;
1482 gfn_t gfn_start, gfn_end;
e930bffe 1483
9da0e4d5
PB
1484 hva_start = max(start, memslot->userspace_addr);
1485 hva_end = min(end, memslot->userspace_addr +
1486 (memslot->npages << PAGE_SHIFT));
1487 if (hva_start >= hva_end)
1488 continue;
1489 /*
1490 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1491 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1492 */
1493 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1494 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1495
3bae0459 1496 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1497 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1498 gfn_start, gfn_end - 1,
1499 &iterator)
1500 ret |= handler(kvm, iterator.rmap, memslot,
1501 iterator.gfn, iterator.level, data);
1502 }
e930bffe
AA
1503 }
1504
f395302e 1505 return ret;
e930bffe
AA
1506}
1507
84504ef3
TY
1508static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1509 unsigned long data,
018aabb5
TY
1510 int (*handler)(struct kvm *kvm,
1511 struct kvm_rmap_head *rmap_head,
048212d0 1512 struct kvm_memory_slot *slot,
8a9522d2 1513 gfn_t gfn, int level,
84504ef3
TY
1514 unsigned long data))
1515{
1516 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1517}
1518
fdfe7cbd
WD
1519int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1520 unsigned flags)
b3ae2096 1521{
063afacd
BG
1522 int r;
1523
1524 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1525
897218ff 1526 if (is_tdp_mmu_enabled(kvm))
063afacd
BG
1527 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1528
1529 return r;
b3ae2096
TY
1530}
1531
748c0e31 1532int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1533{
1d8dd6b3
BG
1534 int r;
1535
1536 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1537
897218ff 1538 if (is_tdp_mmu_enabled(kvm))
1d8dd6b3
BG
1539 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1540
1541 return r;
e930bffe
AA
1542}
1543
018aabb5 1544static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1545 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1546 unsigned long data)
e930bffe 1547{
1e3f42f0 1548 u64 *sptep;
3f649ab7 1549 struct rmap_iterator iter;
e930bffe
AA
1550 int young = 0;
1551
f160c7b7
JS
1552 for_each_rmap_spte(rmap_head, &iter, sptep)
1553 young |= mmu_spte_age(sptep);
0d536790 1554
8a9522d2 1555 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1556 return young;
1557}
1558
018aabb5 1559static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1560 struct kvm_memory_slot *slot, gfn_t gfn,
1561 int level, unsigned long data)
8ee53820 1562{
1e3f42f0
TY
1563 u64 *sptep;
1564 struct rmap_iterator iter;
8ee53820 1565
83ef6c81
JS
1566 for_each_rmap_spte(rmap_head, &iter, sptep)
1567 if (is_accessed_spte(*sptep))
1568 return 1;
83ef6c81 1569 return 0;
8ee53820
AA
1570}
1571
53a27b39
MT
1572#define RMAP_RECYCLE_THRESHOLD 1000
1573
852e3c19 1574static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1575{
018aabb5 1576 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1577 struct kvm_mmu_page *sp;
1578
57354682 1579 sp = sptep_to_sp(spte);
53a27b39 1580
018aabb5 1581 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1582
018aabb5 1583 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1584 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1585 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1586}
1587
57128468 1588int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1589{
f8e14497
BG
1590 int young = false;
1591
1592 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
897218ff 1593 if (is_tdp_mmu_enabled(kvm))
f8e14497
BG
1594 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1595
1596 return young;
e930bffe
AA
1597}
1598
8ee53820
AA
1599int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1600{
f8e14497
BG
1601 int young = false;
1602
1603 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
897218ff 1604 if (is_tdp_mmu_enabled(kvm))
f8e14497
BG
1605 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1606
1607 return young;
8ee53820
AA
1608}
1609
d6c69ee9 1610#ifdef MMU_DEBUG
47ad8e68 1611static int is_empty_shadow_page(u64 *spt)
6aa8b732 1612{
139bdb2d
AK
1613 u64 *pos;
1614 u64 *end;
1615
47ad8e68 1616 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1617 if (is_shadow_present_pte(*pos)) {
b8688d51 1618 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1619 pos, *pos);
6aa8b732 1620 return 0;
139bdb2d 1621 }
6aa8b732
AK
1622 return 1;
1623}
d6c69ee9 1624#endif
6aa8b732 1625
45221ab6
DH
1626/*
1627 * This value is the sum of all of the kvm instances's
1628 * kvm->arch.n_used_mmu_pages values. We need a global,
1629 * aggregate version in order to make the slab shrinker
1630 * faster
1631 */
bc8a3d89 1632static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1633{
1634 kvm->arch.n_used_mmu_pages += nr;
1635 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1636}
1637
834be0d8 1638static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1639{
fa4a2c08 1640 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1641 hlist_del(&sp->hash_link);
bd4c86ea
XG
1642 list_del(&sp->link);
1643 free_page((unsigned long)sp->spt);
834be0d8
GN
1644 if (!sp->role.direct)
1645 free_page((unsigned long)sp->gfns);
e8ad9a70 1646 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1647}
1648
cea0f0e7
AK
1649static unsigned kvm_page_table_hashfn(gfn_t gfn)
1650{
114df303 1651 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1652}
1653
714b93da 1654static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1655 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1656{
cea0f0e7
AK
1657 if (!parent_pte)
1658 return;
cea0f0e7 1659
67052b35 1660 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1661}
1662
4db35314 1663static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1664 u64 *parent_pte)
1665{
8daf3462 1666 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1667}
1668
bcdd9a93
XG
1669static void drop_parent_pte(struct kvm_mmu_page *sp,
1670 u64 *parent_pte)
1671{
1672 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1673 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1674}
1675
47005792 1676static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1677{
67052b35 1678 struct kvm_mmu_page *sp;
7ddca7e4 1679
94ce87ef
SC
1680 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1681 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1682 if (!direct)
94ce87ef 1683 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1684 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1685
1686 /*
1687 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1688 * depends on valid pages being added to the head of the list. See
1689 * comments in kvm_zap_obsolete_pages().
1690 */
ca333add 1691 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1692 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1693 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1694 return sp;
ad8cfbe3
MT
1695}
1696
67052b35 1697static void mark_unsync(u64 *spte);
1047df1f 1698static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1699{
74c4e63a
TY
1700 u64 *sptep;
1701 struct rmap_iterator iter;
1702
1703 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1704 mark_unsync(sptep);
1705 }
0074ff63
MT
1706}
1707
67052b35 1708static void mark_unsync(u64 *spte)
0074ff63 1709{
67052b35 1710 struct kvm_mmu_page *sp;
1047df1f 1711 unsigned int index;
0074ff63 1712
57354682 1713 sp = sptep_to_sp(spte);
1047df1f
XG
1714 index = spte - sp->spt;
1715 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1716 return;
1047df1f 1717 if (sp->unsync_children++)
0074ff63 1718 return;
1047df1f 1719 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1720}
1721
e8bc217a 1722static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1723 struct kvm_mmu_page *sp)
e8bc217a 1724{
1f50f1b3 1725 return 0;
e8bc217a
MT
1726}
1727
60c8aec6
MT
1728#define KVM_PAGE_ARRAY_NR 16
1729
1730struct kvm_mmu_pages {
1731 struct mmu_page_and_offset {
1732 struct kvm_mmu_page *sp;
1733 unsigned int idx;
1734 } page[KVM_PAGE_ARRAY_NR];
1735 unsigned int nr;
1736};
1737
cded19f3
HE
1738static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1739 int idx)
4731d4c7 1740{
60c8aec6 1741 int i;
4731d4c7 1742
60c8aec6
MT
1743 if (sp->unsync)
1744 for (i=0; i < pvec->nr; i++)
1745 if (pvec->page[i].sp == sp)
1746 return 0;
1747
1748 pvec->page[pvec->nr].sp = sp;
1749 pvec->page[pvec->nr].idx = idx;
1750 pvec->nr++;
1751 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1752}
1753
fd951457
TY
1754static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1755{
1756 --sp->unsync_children;
1757 WARN_ON((int)sp->unsync_children < 0);
1758 __clear_bit(idx, sp->unsync_child_bitmap);
1759}
1760
60c8aec6
MT
1761static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1762 struct kvm_mmu_pages *pvec)
1763{
1764 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1765
37178b8b 1766 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1767 struct kvm_mmu_page *child;
4731d4c7
MT
1768 u64 ent = sp->spt[i];
1769
fd951457
TY
1770 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1771 clear_unsync_child_bit(sp, i);
1772 continue;
1773 }
7a8f1a74 1774
e47c4aee 1775 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1776
1777 if (child->unsync_children) {
1778 if (mmu_pages_add(pvec, child, i))
1779 return -ENOSPC;
1780
1781 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1782 if (!ret) {
1783 clear_unsync_child_bit(sp, i);
1784 continue;
1785 } else if (ret > 0) {
7a8f1a74 1786 nr_unsync_leaf += ret;
fd951457 1787 } else
7a8f1a74
XG
1788 return ret;
1789 } else if (child->unsync) {
1790 nr_unsync_leaf++;
1791 if (mmu_pages_add(pvec, child, i))
1792 return -ENOSPC;
1793 } else
fd951457 1794 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1795 }
1796
60c8aec6
MT
1797 return nr_unsync_leaf;
1798}
1799
e23d3fef
XG
1800#define INVALID_INDEX (-1)
1801
60c8aec6
MT
1802static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1803 struct kvm_mmu_pages *pvec)
1804{
0a47cd85 1805 pvec->nr = 0;
60c8aec6
MT
1806 if (!sp->unsync_children)
1807 return 0;
1808
e23d3fef 1809 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1810 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1811}
1812
4731d4c7
MT
1813static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1814{
1815 WARN_ON(!sp->unsync);
5e1b3ddb 1816 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1817 sp->unsync = 0;
1818 --kvm->stat.mmu_unsync;
1819}
1820
83cdb568
SC
1821static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1822 struct list_head *invalid_list);
7775834a
XG
1823static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1824 struct list_head *invalid_list);
4731d4c7 1825
ac101b7c
SC
1826#define for_each_valid_sp(_kvm, _sp, _list) \
1827 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1828 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1829 } else
1044b030
TY
1830
1831#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1832 for_each_valid_sp(_kvm, _sp, \
1833 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1834 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1835
47c42e6b
SC
1836static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1837{
1838 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1839}
1840
f918b443 1841/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1842static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1843 struct list_head *invalid_list)
4731d4c7 1844{
47c42e6b
SC
1845 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1846 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1847 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1848 return false;
4731d4c7
MT
1849 }
1850
1f50f1b3 1851 return true;
4731d4c7
MT
1852}
1853
a2113634
SC
1854static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1855 struct list_head *invalid_list,
1856 bool remote_flush)
1857{
cfd32acf 1858 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1859 return false;
1860
1861 if (!list_empty(invalid_list))
1862 kvm_mmu_commit_zap_page(kvm, invalid_list);
1863 else
1864 kvm_flush_remote_tlbs(kvm);
1865 return true;
1866}
1867
35a70510
PB
1868static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1869 struct list_head *invalid_list,
1870 bool remote_flush, bool local_flush)
1d9dc7e0 1871{
a2113634 1872 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1873 return;
d98ba053 1874
a2113634 1875 if (local_flush)
8c8560b8 1876 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1877}
1878
e37fa785
XG
1879#ifdef CONFIG_KVM_MMU_AUDIT
1880#include "mmu_audit.c"
1881#else
1882static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1883static void mmu_audit_disable(void) { }
1884#endif
1885
002c5f73
SC
1886static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1887{
fac026da
SC
1888 return sp->role.invalid ||
1889 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1890}
1891
1f50f1b3 1892static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1893 struct list_head *invalid_list)
1d9dc7e0 1894{
9a43c5d9
PB
1895 kvm_unlink_unsync_page(vcpu->kvm, sp);
1896 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1897}
1898
9f1a122f 1899/* @gfn should be write-protected at the call site */
2a74003a
PB
1900static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1901 struct list_head *invalid_list)
9f1a122f 1902{
9f1a122f 1903 struct kvm_mmu_page *s;
2a74003a 1904 bool ret = false;
9f1a122f 1905
b67bfe0d 1906 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1907 if (!s->unsync)
9f1a122f
XG
1908 continue;
1909
3bae0459 1910 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1911 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1912 }
1913
2a74003a 1914 return ret;
9f1a122f
XG
1915}
1916
60c8aec6 1917struct mmu_page_path {
2a7266a8
YZ
1918 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1919 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1920};
1921
60c8aec6 1922#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1923 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1924 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1925 i = mmu_pages_next(&pvec, &parents, i))
1926
cded19f3
HE
1927static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1928 struct mmu_page_path *parents,
1929 int i)
60c8aec6
MT
1930{
1931 int n;
1932
1933 for (n = i+1; n < pvec->nr; n++) {
1934 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1935 unsigned idx = pvec->page[n].idx;
1936 int level = sp->role.level;
60c8aec6 1937
0a47cd85 1938 parents->idx[level-1] = idx;
3bae0459 1939 if (level == PG_LEVEL_4K)
0a47cd85 1940 break;
60c8aec6 1941
0a47cd85 1942 parents->parent[level-2] = sp;
60c8aec6
MT
1943 }
1944
1945 return n;
1946}
1947
0a47cd85
PB
1948static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1949 struct mmu_page_path *parents)
1950{
1951 struct kvm_mmu_page *sp;
1952 int level;
1953
1954 if (pvec->nr == 0)
1955 return 0;
1956
e23d3fef
XG
1957 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1958
0a47cd85
PB
1959 sp = pvec->page[0].sp;
1960 level = sp->role.level;
3bae0459 1961 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1962
1963 parents->parent[level-2] = sp;
1964
1965 /* Also set up a sentinel. Further entries in pvec are all
1966 * children of sp, so this element is never overwritten.
1967 */
1968 parents->parent[level-1] = NULL;
1969 return mmu_pages_next(pvec, parents, 0);
1970}
1971
cded19f3 1972static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1973{
60c8aec6
MT
1974 struct kvm_mmu_page *sp;
1975 unsigned int level = 0;
1976
1977 do {
1978 unsigned int idx = parents->idx[level];
60c8aec6
MT
1979 sp = parents->parent[level];
1980 if (!sp)
1981 return;
1982
e23d3fef 1983 WARN_ON(idx == INVALID_INDEX);
fd951457 1984 clear_unsync_child_bit(sp, idx);
60c8aec6 1985 level++;
0a47cd85 1986 } while (!sp->unsync_children);
60c8aec6 1987}
4731d4c7 1988
60c8aec6
MT
1989static void mmu_sync_children(struct kvm_vcpu *vcpu,
1990 struct kvm_mmu_page *parent)
1991{
1992 int i;
1993 struct kvm_mmu_page *sp;
1994 struct mmu_page_path parents;
1995 struct kvm_mmu_pages pages;
d98ba053 1996 LIST_HEAD(invalid_list);
50c9e6f3 1997 bool flush = false;
60c8aec6 1998
60c8aec6 1999 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2000 bool protected = false;
b1a36821
MT
2001
2002 for_each_sp(pages, sp, parents, i)
54bf36aa 2003 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2004
50c9e6f3 2005 if (protected) {
b1a36821 2006 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2007 flush = false;
2008 }
b1a36821 2009
60c8aec6 2010 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2011 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2012 mmu_pages_clear_parents(&parents);
2013 }
531810ca 2014 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
50c9e6f3 2015 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
531810ca 2016 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
50c9e6f3
PB
2017 flush = false;
2018 }
60c8aec6 2019 }
50c9e6f3
PB
2020
2021 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2022}
2023
a30f47cb
XG
2024static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2025{
e5691a81 2026 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2027}
2028
2029static void clear_sp_write_flooding_count(u64 *spte)
2030{
57354682 2031 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2032}
2033
cea0f0e7
AK
2034static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2035 gfn_t gfn,
2036 gva_t gaddr,
2037 unsigned level,
f6e2c02b 2038 int direct,
0a2b64c5 2039 unsigned int access)
cea0f0e7 2040{
fb58a9c3 2041 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2042 union kvm_mmu_page_role role;
ac101b7c 2043 struct hlist_head *sp_list;
cea0f0e7 2044 unsigned quadrant;
9f1a122f 2045 struct kvm_mmu_page *sp;
9f1a122f 2046 bool need_sync = false;
2a74003a 2047 bool flush = false;
f3414bc7 2048 int collisions = 0;
2a74003a 2049 LIST_HEAD(invalid_list);
cea0f0e7 2050
36d9594d 2051 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2052 role.level = level;
f6e2c02b 2053 role.direct = direct;
84b0c8c6 2054 if (role.direct)
47c42e6b 2055 role.gpte_is_8_bytes = true;
41074d07 2056 role.access = access;
fb58a9c3 2057 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2058 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2059 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2060 role.quadrant = quadrant;
2061 }
ac101b7c
SC
2062
2063 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2064 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2065 if (sp->gfn != gfn) {
2066 collisions++;
2067 continue;
2068 }
2069
7ae680eb
XG
2070 if (!need_sync && sp->unsync)
2071 need_sync = true;
4731d4c7 2072
7ae680eb
XG
2073 if (sp->role.word != role.word)
2074 continue;
4731d4c7 2075
fb58a9c3
SC
2076 if (direct_mmu)
2077 goto trace_get_page;
2078
2a74003a
PB
2079 if (sp->unsync) {
2080 /* The page is good, but __kvm_sync_page might still end
2081 * up zapping it. If so, break in order to rebuild it.
2082 */
2083 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2084 break;
2085
2086 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2087 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2088 }
e02aa901 2089
98bba238 2090 if (sp->unsync_children)
f6f6195b 2091 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2092
a30f47cb 2093 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2094
2095trace_get_page:
7ae680eb 2096 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2097 goto out;
7ae680eb 2098 }
47005792 2099
dfc5aa00 2100 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2101
2102 sp = kvm_mmu_alloc_page(vcpu, direct);
2103
4db35314
AK
2104 sp->gfn = gfn;
2105 sp->role = role;
ac101b7c 2106 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2107 if (!direct) {
56ca57f9
XG
2108 /*
2109 * we should do write protection before syncing pages
2110 * otherwise the content of the synced shadow page may
2111 * be inconsistent with guest page table.
2112 */
2113 account_shadowed(vcpu->kvm, sp);
3bae0459 2114 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2115 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2116
3bae0459 2117 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2118 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2119 }
f691fe1d 2120 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2121
2122 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2123out:
2124 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2125 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2126 return sp;
cea0f0e7
AK
2127}
2128
7eb77e9f
JS
2129static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2130 struct kvm_vcpu *vcpu, hpa_t root,
2131 u64 addr)
2d11123a
AK
2132{
2133 iterator->addr = addr;
7eb77e9f 2134 iterator->shadow_addr = root;
44dd3ffa 2135 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2136
2a7266a8 2137 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2138 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2139 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2140 --iterator->level;
2141
2d11123a 2142 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2143 /*
2144 * prev_root is currently only used for 64-bit hosts. So only
2145 * the active root_hpa is valid here.
2146 */
44dd3ffa 2147 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2148
2d11123a 2149 iterator->shadow_addr
44dd3ffa 2150 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2151 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2152 --iterator->level;
2153 if (!iterator->shadow_addr)
2154 iterator->level = 0;
2155 }
2156}
2157
7eb77e9f
JS
2158static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2159 struct kvm_vcpu *vcpu, u64 addr)
2160{
44dd3ffa 2161 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2162 addr);
2163}
2164
2d11123a
AK
2165static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2166{
3bae0459 2167 if (iterator->level < PG_LEVEL_4K)
2d11123a 2168 return false;
4d88954d 2169
2d11123a
AK
2170 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2171 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2172 return true;
2173}
2174
c2a2ac2b
XG
2175static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2176 u64 spte)
2d11123a 2177{
c2a2ac2b 2178 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2179 iterator->level = 0;
2180 return;
2181 }
2182
c2a2ac2b 2183 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2184 --iterator->level;
2185}
2186
c2a2ac2b
XG
2187static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2188{
bb606a9b 2189 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2190}
2191
cc4674d0
BG
2192static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2193 struct kvm_mmu_page *sp)
2194{
2195 u64 spte;
2196
2197 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2198
2199 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2200
1df9f2dc 2201 mmu_spte_set(sptep, spte);
98bba238
TY
2202
2203 mmu_page_add_parent_pte(vcpu, sp, sptep);
2204
2205 if (sp->unsync_children || sp->unsync)
2206 mark_unsync(sptep);
32ef26a3
AK
2207}
2208
a357bd22
AK
2209static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2210 unsigned direct_access)
2211{
2212 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2213 struct kvm_mmu_page *child;
2214
2215 /*
2216 * For the direct sp, if the guest pte's dirty bit
2217 * changed form clean to dirty, it will corrupt the
2218 * sp's access: allow writable in the read-only sp,
2219 * so we should update the spte at this point to get
2220 * a new sp with the correct access.
2221 */
e47c4aee 2222 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2223 if (child->role.access == direct_access)
2224 return;
2225
bcdd9a93 2226 drop_parent_pte(child, sptep);
c3134ce2 2227 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2228 }
2229}
2230
2de4085c
BG
2231/* Returns the number of zapped non-leaf child shadow pages. */
2232static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2233 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2234{
2235 u64 pte;
2236 struct kvm_mmu_page *child;
2237
2238 pte = *spte;
2239 if (is_shadow_present_pte(pte)) {
505aef8f 2240 if (is_last_spte(pte, sp->role.level)) {
c3707958 2241 drop_spte(kvm, spte);
505aef8f
XG
2242 if (is_large_pte(pte))
2243 --kvm->stat.lpages;
2244 } else {
e47c4aee 2245 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2246 drop_parent_pte(child, spte);
2de4085c
BG
2247
2248 /*
2249 * Recursively zap nested TDP SPs, parentless SPs are
2250 * unlikely to be used again in the near future. This
2251 * avoids retaining a large number of stale nested SPs.
2252 */
2253 if (tdp_enabled && invalid_list &&
2254 child->role.guest_mode && !child->parent_ptes.val)
2255 return kvm_mmu_prepare_zap_page(kvm, child,
2256 invalid_list);
38e3b2b2 2257 }
ace569e0 2258 } else if (is_mmio_spte(pte)) {
ce88decf 2259 mmu_spte_clear_no_track(spte);
ace569e0 2260 }
2de4085c 2261 return 0;
38e3b2b2
XG
2262}
2263
2de4085c
BG
2264static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2265 struct kvm_mmu_page *sp,
2266 struct list_head *invalid_list)
a436036b 2267{
2de4085c 2268 int zapped = 0;
697fe2e2 2269 unsigned i;
697fe2e2 2270
38e3b2b2 2271 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2272 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2273
2274 return zapped;
a436036b
AK
2275}
2276
31aa2b44 2277static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2278{
1e3f42f0
TY
2279 u64 *sptep;
2280 struct rmap_iterator iter;
a436036b 2281
018aabb5 2282 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2283 drop_parent_pte(sp, sptep);
31aa2b44
AK
2284}
2285
60c8aec6 2286static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2287 struct kvm_mmu_page *parent,
2288 struct list_head *invalid_list)
4731d4c7 2289{
60c8aec6
MT
2290 int i, zapped = 0;
2291 struct mmu_page_path parents;
2292 struct kvm_mmu_pages pages;
4731d4c7 2293
3bae0459 2294 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2295 return 0;
60c8aec6 2296
60c8aec6
MT
2297 while (mmu_unsync_walk(parent, &pages)) {
2298 struct kvm_mmu_page *sp;
2299
2300 for_each_sp(pages, sp, parents, i) {
7775834a 2301 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2302 mmu_pages_clear_parents(&parents);
77662e00 2303 zapped++;
60c8aec6 2304 }
60c8aec6
MT
2305 }
2306
2307 return zapped;
4731d4c7
MT
2308}
2309
83cdb568
SC
2310static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2311 struct kvm_mmu_page *sp,
2312 struct list_head *invalid_list,
2313 int *nr_zapped)
31aa2b44 2314{
83cdb568 2315 bool list_unstable;
f691fe1d 2316
7775834a 2317 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2318 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2319 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2320 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2321 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2322
83cdb568
SC
2323 /* Zapping children means active_mmu_pages has become unstable. */
2324 list_unstable = *nr_zapped;
2325
f6e2c02b 2326 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2327 unaccount_shadowed(kvm, sp);
5304b8d3 2328
4731d4c7
MT
2329 if (sp->unsync)
2330 kvm_unlink_unsync_page(kvm, sp);
4db35314 2331 if (!sp->root_count) {
54a4f023 2332 /* Count self */
83cdb568 2333 (*nr_zapped)++;
f95eec9b
SC
2334
2335 /*
2336 * Already invalid pages (previously active roots) are not on
2337 * the active page list. See list_del() in the "else" case of
2338 * !sp->root_count.
2339 */
2340 if (sp->role.invalid)
2341 list_add(&sp->link, invalid_list);
2342 else
2343 list_move(&sp->link, invalid_list);
aa6bd187 2344 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2345 } else {
f95eec9b
SC
2346 /*
2347 * Remove the active root from the active page list, the root
2348 * will be explicitly freed when the root_count hits zero.
2349 */
2350 list_del(&sp->link);
05988d72 2351
10605204
SC
2352 /*
2353 * Obsolete pages cannot be used on any vCPUs, see the comment
2354 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2355 * treats invalid shadow pages as being obsolete.
2356 */
2357 if (!is_obsolete_sp(kvm, sp))
05988d72 2358 kvm_reload_remote_mmus(kvm);
2e53d63a 2359 }
7775834a 2360
b8e8c830
PB
2361 if (sp->lpage_disallowed)
2362 unaccount_huge_nx_page(kvm, sp);
2363
7775834a 2364 sp->role.invalid = 1;
83cdb568
SC
2365 return list_unstable;
2366}
2367
2368static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2369 struct list_head *invalid_list)
2370{
2371 int nr_zapped;
2372
2373 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2374 return nr_zapped;
a436036b
AK
2375}
2376
7775834a
XG
2377static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2378 struct list_head *invalid_list)
2379{
945315b9 2380 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2381
2382 if (list_empty(invalid_list))
2383 return;
2384
c142786c 2385 /*
9753f529
LT
2386 * We need to make sure everyone sees our modifications to
2387 * the page tables and see changes to vcpu->mode here. The barrier
2388 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2389 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2390 *
2391 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2392 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2393 */
2394 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2395
945315b9 2396 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2397 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2398 kvm_mmu_free_page(sp);
945315b9 2399 }
7775834a
XG
2400}
2401
6b82ef2c
SC
2402static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2403 unsigned long nr_to_zap)
5da59607 2404{
6b82ef2c
SC
2405 unsigned long total_zapped = 0;
2406 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2407 LIST_HEAD(invalid_list);
6b82ef2c
SC
2408 bool unstable;
2409 int nr_zapped;
5da59607
TY
2410
2411 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2412 return 0;
2413
6b82ef2c 2414restart:
8fc51726 2415 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
6b82ef2c
SC
2416 /*
2417 * Don't zap active root pages, the page itself can't be freed
2418 * and zapping it will just force vCPUs to realloc and reload.
2419 */
2420 if (sp->root_count)
2421 continue;
2422
2423 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2424 &nr_zapped);
2425 total_zapped += nr_zapped;
2426 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2427 break;
2428
6b82ef2c
SC
2429 if (unstable)
2430 goto restart;
ba7888dd 2431 }
5da59607 2432
6b82ef2c
SC
2433 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2434
2435 kvm->stat.mmu_recycled += total_zapped;
2436 return total_zapped;
2437}
2438
afe8d7e6
SC
2439static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2440{
2441 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2442 return kvm->arch.n_max_mmu_pages -
2443 kvm->arch.n_used_mmu_pages;
2444
2445 return 0;
5da59607
TY
2446}
2447
ba7888dd
SC
2448static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2449{
6b82ef2c 2450 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2451
6b82ef2c 2452 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2453 return 0;
2454
6b82ef2c 2455 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2456
2457 if (!kvm_mmu_available_pages(vcpu->kvm))
2458 return -ENOSPC;
2459 return 0;
2460}
2461
82ce2c96
IE
2462/*
2463 * Changing the number of mmu pages allocated to the vm
49d5ca26 2464 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2465 */
bc8a3d89 2466void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2467{
531810ca 2468 write_lock(&kvm->mmu_lock);
b34cb590 2469
49d5ca26 2470 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2471 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2472 goal_nr_mmu_pages);
82ce2c96 2473
49d5ca26 2474 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2475 }
82ce2c96 2476
49d5ca26 2477 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590 2478
531810ca 2479 write_unlock(&kvm->mmu_lock);
82ce2c96
IE
2480}
2481
1cb3f3ae 2482int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2483{
4db35314 2484 struct kvm_mmu_page *sp;
d98ba053 2485 LIST_HEAD(invalid_list);
a436036b
AK
2486 int r;
2487
9ad17b10 2488 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2489 r = 0;
531810ca 2490 write_lock(&kvm->mmu_lock);
b67bfe0d 2491 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2492 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2493 sp->role.word);
2494 r = 1;
f41d335a 2495 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2496 }
d98ba053 2497 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 2498 write_unlock(&kvm->mmu_lock);
1cb3f3ae 2499
a436036b 2500 return r;
cea0f0e7 2501}
1cb3f3ae 2502EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2503
5c520e90 2504static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2505{
2506 trace_kvm_mmu_unsync_page(sp);
2507 ++vcpu->kvm->stat.mmu_unsync;
2508 sp->unsync = 1;
2509
2510 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2511}
2512
5a9624af
PB
2513bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2514 bool can_unsync)
4731d4c7 2515{
5c520e90 2516 struct kvm_mmu_page *sp;
4731d4c7 2517
3d0c27ad
XG
2518 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2519 return true;
9cf5cf5a 2520
5c520e90 2521 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2522 if (!can_unsync)
3d0c27ad 2523 return true;
36a2e677 2524
5c520e90
XG
2525 if (sp->unsync)
2526 continue;
9cf5cf5a 2527
3bae0459 2528 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2529 kvm_unsync_page(vcpu, sp);
4731d4c7 2530 }
3d0c27ad 2531
578e1c4d
JS
2532 /*
2533 * We need to ensure that the marking of unsync pages is visible
2534 * before the SPTE is updated to allow writes because
2535 * kvm_mmu_sync_roots() checks the unsync flags without holding
2536 * the MMU lock and so can race with this. If the SPTE was updated
2537 * before the page had been marked as unsync-ed, something like the
2538 * following could happen:
2539 *
2540 * CPU 1 CPU 2
2541 * ---------------------------------------------------------------------
2542 * 1.2 Host updates SPTE
2543 * to be writable
2544 * 2.1 Guest writes a GPTE for GVA X.
2545 * (GPTE being in the guest page table shadowed
2546 * by the SP from CPU 1.)
2547 * This reads SPTE during the page table walk.
2548 * Since SPTE.W is read as 1, there is no
2549 * fault.
2550 *
2551 * 2.2 Guest issues TLB flush.
2552 * That causes a VM Exit.
2553 *
2554 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2555 * Since it is false, so it just returns.
2556 *
2557 * 2.4 Guest accesses GVA X.
2558 * Since the mapping in the SP was not updated,
2559 * so the old mapping for GVA X incorrectly
2560 * gets used.
2561 * 1.1 Host marks SP
2562 * as unsync
2563 * (sp->unsync = true)
2564 *
2565 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2566 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2567 * pairs with this write barrier.
2568 */
2569 smp_wmb();
2570
3d0c27ad 2571 return false;
4731d4c7
MT
2572}
2573
799a4190
BG
2574static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2575 unsigned int pte_access, int level,
2576 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2577 bool can_unsync, bool host_writable)
2578{
2579 u64 spte;
2580 struct kvm_mmu_page *sp;
2581 int ret;
2582
2583 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2584 return 0;
2585
2586 sp = sptep_to_sp(sptep);
2587
2588 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2589 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2590
2591 if (spte & PT_WRITABLE_MASK)
2592 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2593
12703759
SC
2594 if (*sptep == spte)
2595 ret |= SET_SPTE_SPURIOUS;
2596 else if (mmu_spte_update(sptep, spte))
5ce4786f 2597 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2598 return ret;
2599}
2600
0a2b64c5 2601static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2602 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2603 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2604 bool host_writable)
1e73f9dd
MT
2605{
2606 int was_rmapped = 0;
53a27b39 2607 int rmap_count;
5ce4786f 2608 int set_spte_ret;
c4371c2a 2609 int ret = RET_PF_FIXED;
c2a4eadf 2610 bool flush = false;
1e73f9dd 2611
f7616203
XG
2612 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2613 *sptep, write_fault, gfn);
1e73f9dd 2614
afd28fe1 2615 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2616 /*
2617 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2618 * the parent of the now unreachable PTE.
2619 */
3bae0459 2620 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2621 struct kvm_mmu_page *child;
d555c333 2622 u64 pte = *sptep;
1e73f9dd 2623
e47c4aee 2624 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2625 drop_parent_pte(child, sptep);
c2a4eadf 2626 flush = true;
d555c333 2627 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2628 pgprintk("hfn old %llx new %llx\n",
d555c333 2629 spte_to_pfn(*sptep), pfn);
c3707958 2630 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2631 flush = true;
6bed6b9e
JR
2632 } else
2633 was_rmapped = 1;
1e73f9dd 2634 }
852e3c19 2635
5ce4786f
JS
2636 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2637 speculative, true, host_writable);
2638 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2639 if (write_fault)
9b8ebbdb 2640 ret = RET_PF_EMULATE;
8c8560b8 2641 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2642 }
c3134ce2 2643
c2a4eadf 2644 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2645 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2646 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2647
029499b4 2648 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2649 ret = RET_PF_EMULATE;
ce88decf 2650
12703759
SC
2651 /*
2652 * The fault is fully spurious if and only if the new SPTE and old SPTE
2653 * are identical, and emulation is not required.
2654 */
2655 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2656 WARN_ON_ONCE(!was_rmapped);
2657 return RET_PF_SPURIOUS;
2658 }
2659
d555c333 2660 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2661 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2662 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2663 ++vcpu->kvm->stat.lpages;
2664
ffb61bb3 2665 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2666 if (!was_rmapped) {
2667 rmap_count = rmap_add(vcpu, sptep, gfn);
2668 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2669 rmap_recycle(vcpu, sptep, gfn);
2670 }
1c4f1fd6 2671 }
cb9aaa30 2672
9b8ebbdb 2673 return ret;
1c4f1fd6
AK
2674}
2675
ba049e93 2676static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2677 bool no_dirty_log)
2678{
2679 struct kvm_memory_slot *slot;
957ed9ef 2680
5d163b1c 2681 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2682 if (!slot)
6c8ee57b 2683 return KVM_PFN_ERR_FAULT;
957ed9ef 2684
037d92dc 2685 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2686}
2687
2688static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2689 struct kvm_mmu_page *sp,
2690 u64 *start, u64 *end)
2691{
2692 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2693 struct kvm_memory_slot *slot;
0a2b64c5 2694 unsigned int access = sp->role.access;
957ed9ef
XG
2695 int i, ret;
2696 gfn_t gfn;
2697
2698 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2699 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2700 if (!slot)
957ed9ef
XG
2701 return -1;
2702
d9ef13c2 2703 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2704 if (ret <= 0)
2705 return -1;
2706
43fdcda9 2707 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2708 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2709 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2710 put_page(pages[i]);
2711 }
957ed9ef
XG
2712
2713 return 0;
2714}
2715
2716static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2717 struct kvm_mmu_page *sp, u64 *sptep)
2718{
2719 u64 *spte, *start = NULL;
2720 int i;
2721
2722 WARN_ON(!sp->role.direct);
2723
2724 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2725 spte = sp->spt + i;
2726
2727 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2728 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2729 if (!start)
2730 continue;
2731 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2732 break;
2733 start = NULL;
2734 } else if (!start)
2735 start = spte;
2736 }
2737}
2738
2739static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2740{
2741 struct kvm_mmu_page *sp;
2742
57354682 2743 sp = sptep_to_sp(sptep);
ac8d57e5 2744
957ed9ef 2745 /*
ac8d57e5
PF
2746 * Without accessed bits, there's no way to distinguish between
2747 * actually accessed translations and prefetched, so disable pte
2748 * prefetch if accessed bits aren't available.
957ed9ef 2749 */
ac8d57e5 2750 if (sp_ad_disabled(sp))
957ed9ef
XG
2751 return;
2752
3bae0459 2753 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2754 return;
2755
2756 __direct_pte_prefetch(vcpu, sp, sptep);
2757}
2758
1b6d9d9e
SC
2759static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2760 struct kvm_memory_slot *slot)
db543216 2761{
db543216
SC
2762 unsigned long hva;
2763 pte_t *pte;
2764 int level;
2765
e851265a 2766 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2767 return PG_LEVEL_4K;
db543216 2768
293e306e
SC
2769 /*
2770 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2771 * is not solely for performance, it's also necessary to avoid the
2772 * "writable" check in __gfn_to_hva_many(), which will always fail on
2773 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2774 * page fault steps have already verified the guest isn't writing a
2775 * read-only memslot.
2776 */
db543216
SC
2777 hva = __gfn_to_hva_memslot(slot, gfn);
2778
1b6d9d9e 2779 pte = lookup_address_in_mm(kvm->mm, hva, &level);
db543216 2780 if (unlikely(!pte))
3bae0459 2781 return PG_LEVEL_4K;
db543216
SC
2782
2783 return level;
2784}
2785
1b6d9d9e
SC
2786int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
2787 gfn_t gfn, kvm_pfn_t pfn, int max_level)
2788{
2789 struct kvm_lpage_info *linfo;
2790
2791 max_level = min(max_level, max_huge_page_level);
2792 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2793 linfo = lpage_info_slot(gfn, slot, max_level);
2794 if (!linfo->disallow_lpage)
2795 break;
2796 }
2797
2798 if (max_level == PG_LEVEL_4K)
2799 return PG_LEVEL_4K;
2800
2801 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2802}
2803
bb18842e
BG
2804int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2805 int max_level, kvm_pfn_t *pfnp,
2806 bool huge_page_disallowed, int *req_level)
0885904d 2807{
293e306e 2808 struct kvm_memory_slot *slot;
0885904d 2809 kvm_pfn_t pfn = *pfnp;
17eff019 2810 kvm_pfn_t mask;
83f06fa7 2811 int level;
17eff019 2812
3cf06612
SC
2813 *req_level = PG_LEVEL_4K;
2814
3bae0459
SC
2815 if (unlikely(max_level == PG_LEVEL_4K))
2816 return PG_LEVEL_4K;
17eff019 2817
e851265a 2818 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2819 return PG_LEVEL_4K;
17eff019 2820
293e306e
SC
2821 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2822 if (!slot)
3bae0459 2823 return PG_LEVEL_4K;
293e306e 2824
1b6d9d9e 2825 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
3bae0459 2826 if (level == PG_LEVEL_4K)
83f06fa7 2827 return level;
17eff019 2828
3cf06612
SC
2829 *req_level = level = min(level, max_level);
2830
2831 /*
2832 * Enforce the iTLB multihit workaround after capturing the requested
2833 * level, which will be used to do precise, accurate accounting.
2834 */
2835 if (huge_page_disallowed)
2836 return PG_LEVEL_4K;
0885904d
SC
2837
2838 /*
17eff019
SC
2839 * mmu_notifier_retry() was successful and mmu_lock is held, so
2840 * the pmd can't be split from under us.
0885904d 2841 */
17eff019
SC
2842 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2843 VM_BUG_ON((gfn & mask) != (pfn & mask));
2844 *pfnp = pfn & ~mask;
83f06fa7
SC
2845
2846 return level;
0885904d
SC
2847}
2848
bb18842e
BG
2849void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2850 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2851{
bb18842e 2852 int level = *goal_levelp;
b8e8c830 2853
7d945312 2854 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2855 is_shadow_present_pte(spte) &&
2856 !is_large_pte(spte)) {
2857 /*
2858 * A small SPTE exists for this pfn, but FNAME(fetch)
2859 * and __direct_map would like to create a large PTE
2860 * instead: just force them to go down another level,
2861 * patching back for them into pfn the next 9 bits of
2862 * the address.
2863 */
7d945312
BG
2864 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2865 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2866 *pfnp |= gfn & page_mask;
bb18842e 2867 (*goal_levelp)--;
b8e8c830
PB
2868 }
2869}
2870
6c2fd34f 2871static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2872 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2873 bool prefault, bool is_tdp)
140754bc 2874{
6c2fd34f
SC
2875 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2876 bool write = error_code & PFERR_WRITE_MASK;
2877 bool exec = error_code & PFERR_FETCH_MASK;
2878 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2879 struct kvm_shadow_walk_iterator it;
140754bc 2880 struct kvm_mmu_page *sp;
3cf06612 2881 int level, req_level, ret;
3fcf2d1b
PB
2882 gfn_t gfn = gpa >> PAGE_SHIFT;
2883 gfn_t base_gfn = gfn;
6aa8b732 2884
0c7a98e3 2885 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2886 return RET_PF_RETRY;
989c6b34 2887
3cf06612
SC
2888 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2889 huge_page_disallowed, &req_level);
4cd071d1 2890
335e192a 2891 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2892 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2893 /*
2894 * We cannot overwrite existing page tables with an NX
2895 * large page, as the leaf could be executable.
2896 */
dcc70651 2897 if (nx_huge_page_workaround_enabled)
7d945312
BG
2898 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2899 &pfn, &level);
b8e8c830 2900
3fcf2d1b
PB
2901 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2902 if (it.level == level)
9f652d21 2903 break;
6aa8b732 2904
3fcf2d1b
PB
2905 drop_large_spte(vcpu, it.sptep);
2906 if (!is_shadow_present_pte(*it.sptep)) {
2907 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2908 it.level - 1, true, ACC_ALL);
c9fa0b3b 2909
3fcf2d1b 2910 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2911 if (is_tdp && huge_page_disallowed &&
2912 req_level >= it.level)
b8e8c830 2913 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2914 }
2915 }
3fcf2d1b
PB
2916
2917 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2918 write, level, base_gfn, pfn, prefault,
2919 map_writable);
12703759
SC
2920 if (ret == RET_PF_SPURIOUS)
2921 return ret;
2922
3fcf2d1b
PB
2923 direct_pte_prefetch(vcpu, it.sptep);
2924 ++vcpu->stat.pf_fixed;
2925 return ret;
6aa8b732
AK
2926}
2927
77db5cbd 2928static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2929{
585a8b9b 2930 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2931}
2932
ba049e93 2933static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2934{
4d8b81ab
XG
2935 /*
2936 * Do not cache the mmio info caused by writing the readonly gfn
2937 * into the spte otherwise read access on readonly gfn also can
2938 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2939 */
2940 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2941 return RET_PF_EMULATE;
4d8b81ab 2942
e6c1502b 2943 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2944 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2945 return RET_PF_RETRY;
d7c55201 2946 }
edba23e5 2947
2c151b25 2948 return -EFAULT;
bf998156
HY
2949}
2950
d7c55201 2951static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2952 kvm_pfn_t pfn, unsigned int access,
2953 int *ret_val)
d7c55201 2954{
d7c55201 2955 /* The pfn is invalid, report the error! */
81c52c56 2956 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2957 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2958 return true;
d7c55201
XG
2959 }
2960
ce88decf 2961 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
2962 vcpu_cache_mmio_info(vcpu, gva, gfn,
2963 access & shadow_mmio_access_mask);
d7c55201 2964
798e88b3 2965 return false;
d7c55201
XG
2966}
2967
e5552fd2 2968static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2969{
1c118b82
XG
2970 /*
2971 * Do not fix the mmio spte with invalid generation number which
2972 * need to be updated by slow page fault path.
2973 */
2974 if (unlikely(error_code & PFERR_RSVD_MASK))
2975 return false;
2976
f160c7b7
JS
2977 /* See if the page fault is due to an NX violation */
2978 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2979 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2980 return false;
2981
c7ba5b48 2982 /*
f160c7b7
JS
2983 * #PF can be fast if:
2984 * 1. The shadow page table entry is not present, which could mean that
2985 * the fault is potentially caused by access tracking (if enabled).
2986 * 2. The shadow page table entry is present and the fault
2987 * is caused by write-protect, that means we just need change the W
2988 * bit of the spte which can be done out of mmu-lock.
2989 *
2990 * However, if access tracking is disabled we know that a non-present
2991 * page must be a genuine page fault where we have to create a new SPTE.
2992 * So, if access tracking is disabled, we return true only for write
2993 * accesses to a present page.
c7ba5b48 2994 */
c7ba5b48 2995
f160c7b7
JS
2996 return shadow_acc_track_mask != 0 ||
2997 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2998 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2999}
3000
97dceba2
JS
3001/*
3002 * Returns true if the SPTE was fixed successfully. Otherwise,
3003 * someone else modified the SPTE from its original value.
3004 */
c7ba5b48 3005static bool
92a476cb 3006fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3007 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3008{
c7ba5b48
XG
3009 gfn_t gfn;
3010
3011 WARN_ON(!sp->role.direct);
3012
9b51a630
KH
3013 /*
3014 * Theoretically we could also set dirty bit (and flush TLB) here in
3015 * order to eliminate unnecessary PML logging. See comments in
3016 * set_spte. But fast_page_fault is very unlikely to happen with PML
3017 * enabled, so we do not do this. This might result in the same GPA
3018 * to be logged in PML buffer again when the write really happens, and
3019 * eventually to be called by mark_page_dirty twice. But it's also no
3020 * harm. This also avoids the TLB flush needed after setting dirty bit
3021 * so non-PML cases won't be impacted.
3022 *
3023 * Compare with set_spte where instead shadow_dirty_mask is set.
3024 */
f160c7b7 3025 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3026 return false;
3027
d3e328f2 3028 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3029 /*
3030 * The gfn of direct spte is stable since it is
3031 * calculated by sp->gfn.
3032 */
3033 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3034 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3035 }
c7ba5b48
XG
3036
3037 return true;
3038}
3039
d3e328f2
JS
3040static bool is_access_allowed(u32 fault_err_code, u64 spte)
3041{
3042 if (fault_err_code & PFERR_FETCH_MASK)
3043 return is_executable_pte(spte);
3044
3045 if (fault_err_code & PFERR_WRITE_MASK)
3046 return is_writable_pte(spte);
3047
3048 /* Fault was on Read access */
3049 return spte & PT_PRESENT_MASK;
3050}
3051
c7ba5b48 3052/*
c4371c2a 3053 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3054 */
c4371c2a
SC
3055static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3056 u32 error_code)
c7ba5b48
XG
3057{
3058 struct kvm_shadow_walk_iterator iterator;
92a476cb 3059 struct kvm_mmu_page *sp;
c4371c2a 3060 int ret = RET_PF_INVALID;
c7ba5b48 3061 u64 spte = 0ull;
97dceba2 3062 uint retry_count = 0;
c7ba5b48 3063
e5552fd2 3064 if (!page_fault_can_be_fast(error_code))
c4371c2a 3065 return ret;
c7ba5b48
XG
3066
3067 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3068
97dceba2 3069 do {
d3e328f2 3070 u64 new_spte;
c7ba5b48 3071
736c291c 3072 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3073 if (!is_shadow_present_pte(spte))
d162f30a
JS
3074 break;
3075
57354682 3076 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3077 if (!is_last_spte(spte, sp->role.level))
3078 break;
c7ba5b48 3079
97dceba2 3080 /*
f160c7b7
JS
3081 * Check whether the memory access that caused the fault would
3082 * still cause it if it were to be performed right now. If not,
3083 * then this is a spurious fault caused by TLB lazily flushed,
3084 * or some other CPU has already fixed the PTE after the
3085 * current CPU took the fault.
97dceba2
JS
3086 *
3087 * Need not check the access of upper level table entries since
3088 * they are always ACC_ALL.
3089 */
d3e328f2 3090 if (is_access_allowed(error_code, spte)) {
c4371c2a 3091 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3092 break;
3093 }
f160c7b7 3094
d3e328f2
JS
3095 new_spte = spte;
3096
3097 if (is_access_track_spte(spte))
3098 new_spte = restore_acc_track_spte(new_spte);
3099
3100 /*
3101 * Currently, to simplify the code, write-protection can
3102 * be removed in the fast path only if the SPTE was
3103 * write-protected for dirty-logging or access tracking.
3104 */
3105 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3106 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3107 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3108
3109 /*
d3e328f2
JS
3110 * Do not fix write-permission on the large spte. Since
3111 * we only dirty the first page into the dirty-bitmap in
3112 * fast_pf_fix_direct_spte(), other pages are missed
3113 * if its slot has dirty logging enabled.
3114 *
3115 * Instead, we let the slow page fault path create a
3116 * normal spte to fix the access.
3117 *
3118 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3119 */
3bae0459 3120 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3121 break;
97dceba2 3122 }
c7ba5b48 3123
f160c7b7 3124 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3125 if (new_spte == spte ||
3126 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3127 break;
3128
3129 /*
3130 * Currently, fast page fault only works for direct mapping
3131 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3132 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3133 */
c4371c2a
SC
3134 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3135 new_spte)) {
3136 ret = RET_PF_FIXED;
97dceba2 3137 break;
c4371c2a 3138 }
97dceba2
JS
3139
3140 if (++retry_count > 4) {
3141 printk_once(KERN_WARNING
3142 "kvm: Fast #PF retrying more than 4 times.\n");
3143 break;
3144 }
3145
97dceba2 3146 } while (true);
c126d94f 3147
736c291c 3148 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3149 spte, ret);
c7ba5b48
XG
3150 walk_shadow_page_lockless_end(vcpu);
3151
c4371c2a 3152 return ret;
c7ba5b48
XG
3153}
3154
74b566e6
JS
3155static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3156 struct list_head *invalid_list)
17ac10ad 3157{
4db35314 3158 struct kvm_mmu_page *sp;
17ac10ad 3159
74b566e6 3160 if (!VALID_PAGE(*root_hpa))
7b53aa56 3161 return;
35af577a 3162
e47c4aee 3163 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3164
3165 if (kvm_mmu_put_root(kvm, sp)) {
897218ff 3166 if (is_tdp_mmu_page(sp))
02c00b3a
BG
3167 kvm_tdp_mmu_free_root(kvm, sp);
3168 else if (sp->role.invalid)
3169 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3170 }
17ac10ad 3171
74b566e6
JS
3172 *root_hpa = INVALID_PAGE;
3173}
3174
08fb59d8 3175/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3176void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3177 ulong roots_to_free)
74b566e6 3178{
4d710de9 3179 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3180 int i;
3181 LIST_HEAD(invalid_list);
08fb59d8 3182 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3183
b94742c9 3184 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3185
08fb59d8 3186 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3187 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3188 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3189 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3190 VALID_PAGE(mmu->prev_roots[i].hpa))
3191 break;
3192
3193 if (i == KVM_MMU_NUM_PREV_ROOTS)
3194 return;
3195 }
35af577a 3196
531810ca 3197 write_lock(&kvm->mmu_lock);
17ac10ad 3198
b94742c9
JS
3199 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3200 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3201 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3202 &invalid_list);
7c390d35 3203
08fb59d8
JS
3204 if (free_active_root) {
3205 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3206 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3207 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
08fb59d8
JS
3208 } else {
3209 for (i = 0; i < 4; ++i)
3210 if (mmu->pae_root[i] != 0)
4d710de9 3211 mmu_free_root_page(kvm,
08fb59d8
JS
3212 &mmu->pae_root[i],
3213 &invalid_list);
3214 mmu->root_hpa = INVALID_PAGE;
3215 }
be01e8e2 3216 mmu->root_pgd = 0;
17ac10ad 3217 }
74b566e6 3218
4d710de9 3219 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 3220 write_unlock(&kvm->mmu_lock);
17ac10ad 3221}
74b566e6 3222EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3223
8986ecc0
MT
3224static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3225{
3226 int ret = 0;
3227
995decb6 3228 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3229 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3230 ret = 1;
3231 }
3232
3233 return ret;
3234}
3235
8123f265
SC
3236static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3237 u8 level, bool direct)
651dd37a
JR
3238{
3239 struct kvm_mmu_page *sp;
8123f265 3240
531810ca 3241 write_lock(&vcpu->kvm->mmu_lock);
8123f265
SC
3242
3243 if (make_mmu_pages_available(vcpu)) {
531810ca 3244 write_unlock(&vcpu->kvm->mmu_lock);
8123f265
SC
3245 return INVALID_PAGE;
3246 }
3247 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3248 ++sp->root_count;
3249
531810ca 3250 write_unlock(&vcpu->kvm->mmu_lock);
8123f265
SC
3251 return __pa(sp->spt);
3252}
3253
3254static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3255{
3256 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3257 hpa_t root;
7ebaf15e 3258 unsigned i;
651dd37a 3259
897218ff 3260 if (is_tdp_mmu_enabled(vcpu->kvm)) {
02c00b3a
BG
3261 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3262
3263 if (!VALID_PAGE(root))
3264 return -ENOSPC;
3265 vcpu->arch.mmu->root_hpa = root;
3266 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3267 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3268 true);
3269
8123f265 3270 if (!VALID_PAGE(root))
ed52870f 3271 return -ENOSPC;
8123f265
SC
3272 vcpu->arch.mmu->root_hpa = root;
3273 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3274 for (i = 0; i < 4; ++i) {
8123f265 3275 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3276
8123f265
SC
3277 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3278 i << 30, PT32_ROOT_LEVEL, true);
3279 if (!VALID_PAGE(root))
ed52870f 3280 return -ENOSPC;
44dd3ffa 3281 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3282 }
44dd3ffa 3283 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3284 } else
3285 BUG();
3651c7fc 3286
be01e8e2
SC
3287 /* root_pgd is ignored for direct MMUs. */
3288 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3289
3290 return 0;
3291}
3292
3293static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3294{
81407ca5 3295 u64 pdptr, pm_mask;
be01e8e2 3296 gfn_t root_gfn, root_pgd;
8123f265 3297 hpa_t root;
81407ca5 3298 int i;
3bb65a22 3299
be01e8e2
SC
3300 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3301 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3302
651dd37a
JR
3303 if (mmu_check_root(vcpu, root_gfn))
3304 return 1;
3305
3306 /*
3307 * Do we shadow a long mode page table? If so we need to
3308 * write-protect the guests page table root.
3309 */
44dd3ffa 3310 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3311 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3312
8123f265
SC
3313 root = mmu_alloc_root(vcpu, root_gfn, 0,
3314 vcpu->arch.mmu->shadow_root_level, false);
3315 if (!VALID_PAGE(root))
ed52870f 3316 return -ENOSPC;
44dd3ffa 3317 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3318 goto set_root_pgd;
17ac10ad 3319 }
f87f9288 3320
651dd37a
JR
3321 /*
3322 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3323 * or a PAE 3-level page table. In either case we need to be aware that
3324 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3325 */
81407ca5 3326 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3327 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3328 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3329
17ac10ad 3330 for (i = 0; i < 4; ++i) {
8123f265 3331 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3332 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3333 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3334 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3335 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3336 continue;
3337 }
6de4f3ad 3338 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3339 if (mmu_check_root(vcpu, root_gfn))
3340 return 1;
5a7388c2 3341 }
8facbbff 3342
8123f265
SC
3343 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3344 PT32_ROOT_LEVEL, false);
3345 if (!VALID_PAGE(root))
3346 return -ENOSPC;
44dd3ffa 3347 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3348 }
44dd3ffa 3349 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3350
3351 /*
3352 * If we shadow a 32 bit page table with a long mode page
3353 * table we enter this path.
3354 */
44dd3ffa
VK
3355 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3356 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3357 /*
3358 * The additional page necessary for this is only
3359 * allocated on demand.
3360 */
3361
3362 u64 *lm_root;
3363
254272ce 3364 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3365 if (lm_root == NULL)
3366 return 1;
3367
44dd3ffa 3368 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3369
44dd3ffa 3370 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3371 }
3372
44dd3ffa 3373 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3374 }
3375
be01e8e2
SC
3376set_root_pgd:
3377 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3378
8986ecc0 3379 return 0;
17ac10ad
AK
3380}
3381
651dd37a
JR
3382static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3383{
44dd3ffa 3384 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3385 return mmu_alloc_direct_roots(vcpu);
3386 else
3387 return mmu_alloc_shadow_roots(vcpu);
3388}
3389
578e1c4d 3390void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3391{
3392 int i;
3393 struct kvm_mmu_page *sp;
3394
44dd3ffa 3395 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3396 return;
3397
44dd3ffa 3398 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3399 return;
6903074c 3400
56f17dd3 3401 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3402
44dd3ffa
VK
3403 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3404 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3405 sp = to_shadow_page(root);
578e1c4d
JS
3406
3407 /*
3408 * Even if another CPU was marking the SP as unsync-ed
3409 * simultaneously, any guest page table changes are not
3410 * guaranteed to be visible anyway until this VCPU issues a TLB
3411 * flush strictly after those changes are made. We only need to
3412 * ensure that the other CPU sets these flags before any actual
3413 * changes to the page tables are made. The comments in
3414 * mmu_need_write_protect() describe what could go wrong if this
3415 * requirement isn't satisfied.
3416 */
3417 if (!smp_load_acquire(&sp->unsync) &&
3418 !smp_load_acquire(&sp->unsync_children))
3419 return;
3420
531810ca 3421 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3422 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3423
0ba73cda 3424 mmu_sync_children(vcpu, sp);
578e1c4d 3425
0375f7fa 3426 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3427 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3428 return;
3429 }
578e1c4d 3430
531810ca 3431 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3432 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3433
0ba73cda 3434 for (i = 0; i < 4; ++i) {
44dd3ffa 3435 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3436
8986ecc0 3437 if (root && VALID_PAGE(root)) {
0ba73cda 3438 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3439 sp = to_shadow_page(root);
0ba73cda
MT
3440 mmu_sync_children(vcpu, sp);
3441 }
3442 }
0ba73cda 3443
578e1c4d 3444 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3445 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3446}
bfd0a56b 3447EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3448
736c291c 3449static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3450 u32 access, struct x86_exception *exception)
6aa8b732 3451{
ab9ae313
AK
3452 if (exception)
3453 exception->error_code = 0;
6aa8b732
AK
3454 return vaddr;
3455}
3456
736c291c 3457static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3458 u32 access,
3459 struct x86_exception *exception)
6539e738 3460{
ab9ae313
AK
3461 if (exception)
3462 exception->error_code = 0;
54987b7a 3463 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3464}
3465
d625b155
XG
3466static bool
3467__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3468{
b5c3c1b3 3469 int bit7 = (pte >> 7) & 1;
d625b155 3470
b5c3c1b3 3471 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3472}
3473
b5c3c1b3 3474static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3475{
b5c3c1b3 3476 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3477}
3478
ded58749 3479static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3480{
9034e6e8
PB
3481 /*
3482 * A nested guest cannot use the MMIO cache if it is using nested
3483 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3484 */
3485 if (mmu_is_nested(vcpu))
3486 return false;
3487
ce88decf
XG
3488 if (direct)
3489 return vcpu_match_mmio_gpa(vcpu, addr);
3490
3491 return vcpu_match_mmio_gva(vcpu, addr);
3492}
3493
95fb5b02
BG
3494/*
3495 * Return the level of the lowest level SPTE added to sptes.
3496 * That SPTE may be non-present.
3497 */
39b4d43e 3498static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
ce88decf
XG
3499{
3500 struct kvm_shadow_walk_iterator iterator;
2aa07893 3501 int leaf = -1;
95fb5b02 3502 u64 spte;
ce88decf
XG
3503
3504 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3505
39b4d43e
SC
3506 for (shadow_walk_init(&iterator, vcpu, addr),
3507 *root_level = iterator.level;
47ab8751
XG
3508 shadow_walk_okay(&iterator);
3509 __shadow_walk_next(&iterator, spte)) {
95fb5b02 3510 leaf = iterator.level;
47ab8751
XG
3511 spte = mmu_spte_get_lockless(iterator.sptep);
3512
dde81f94 3513 sptes[leaf] = spte;
47ab8751 3514
ce88decf
XG
3515 if (!is_shadow_present_pte(spte))
3516 break;
95fb5b02
BG
3517 }
3518
3519 walk_shadow_page_lockless_end(vcpu);
3520
3521 return leaf;
3522}
3523
9aa41879 3524/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
95fb5b02
BG
3525static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3526{
dde81f94 3527 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
95fb5b02 3528 struct rsvd_bits_validate *rsvd_check;
39b4d43e 3529 int root, leaf, level;
95fb5b02
BG
3530 bool reserved = false;
3531
3532 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3533 *sptep = 0ull;
3534 return reserved;
3535 }
3536
3537 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
39b4d43e 3538 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
95fb5b02 3539 else
39b4d43e 3540 leaf = get_walk(vcpu, addr, sptes, &root);
95fb5b02 3541
2aa07893
SC
3542 if (unlikely(leaf < 0)) {
3543 *sptep = 0ull;
3544 return reserved;
3545 }
3546
9aa41879
SC
3547 *sptep = sptes[leaf];
3548
3549 /*
3550 * Skip reserved bits checks on the terminal leaf if it's not a valid
3551 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3552 * design, always have reserved bits set. The purpose of the checks is
3553 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3554 */
3555 if (!is_shadow_present_pte(sptes[leaf]))
3556 leaf++;
95fb5b02
BG
3557
3558 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3559
9aa41879 3560 for (level = root; level >= leaf; level--)
b5c3c1b3
SC
3561 /*
3562 * Use a bitwise-OR instead of a logical-OR to aggregate the
3563 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3564 * adding a Jcc in the loop.
3565 */
dde81f94
SC
3566 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3567 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
47ab8751 3568
47ab8751
XG
3569 if (reserved) {
3570 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3571 __func__, addr);
95fb5b02 3572 for (level = root; level >= leaf; level--)
47ab8751 3573 pr_err("------ spte 0x%llx level %d.\n",
dde81f94 3574 sptes[level], level);
47ab8751 3575 }
ddce6208 3576
47ab8751 3577 return reserved;
ce88decf
XG
3578}
3579
e08d26f0 3580static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3581{
3582 u64 spte;
47ab8751 3583 bool reserved;
ce88decf 3584
ded58749 3585 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3586 return RET_PF_EMULATE;
ce88decf 3587
95fb5b02 3588 reserved = get_mmio_spte(vcpu, addr, &spte);
450869d6 3589 if (WARN_ON(reserved))
9b8ebbdb 3590 return -EINVAL;
ce88decf
XG
3591
3592 if (is_mmio_spte(spte)) {
3593 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3594 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3595
54bf36aa 3596 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3597 return RET_PF_INVALID;
f8f55942 3598
ce88decf
XG
3599 if (direct)
3600 addr = 0;
4f022648
XG
3601
3602 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3603 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3604 return RET_PF_EMULATE;
ce88decf
XG
3605 }
3606
ce88decf
XG
3607 /*
3608 * If the page table is zapped by other cpus, let CPU fault again on
3609 * the address.
3610 */
9b8ebbdb 3611 return RET_PF_RETRY;
ce88decf 3612}
ce88decf 3613
3d0c27ad
XG
3614static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3615 u32 error_code, gfn_t gfn)
3616{
3617 if (unlikely(error_code & PFERR_RSVD_MASK))
3618 return false;
3619
3620 if (!(error_code & PFERR_PRESENT_MASK) ||
3621 !(error_code & PFERR_WRITE_MASK))
3622 return false;
3623
3624 /*
3625 * guest is writing the page which is write tracked which can
3626 * not be fixed by page fault handler.
3627 */
3628 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3629 return true;
3630
3631 return false;
3632}
3633
e5691a81
XG
3634static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3635{
3636 struct kvm_shadow_walk_iterator iterator;
3637 u64 spte;
3638
e5691a81
XG
3639 walk_shadow_page_lockless_begin(vcpu);
3640 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3641 clear_sp_write_flooding_count(iterator.sptep);
3642 if (!is_shadow_present_pte(spte))
3643 break;
3644 }
3645 walk_shadow_page_lockless_end(vcpu);
3646}
3647
e8c22266
VK
3648static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3649 gfn_t gfn)
af585b92
GN
3650{
3651 struct kvm_arch_async_pf arch;
fb67e14f 3652
7c90705b 3653 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3654 arch.gfn = gfn;
44dd3ffa 3655 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3656 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3657
9f1a8526
SC
3658 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3659 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3660}
3661
78b2c54a 3662static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
3663 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3664 bool *writable)
af585b92 3665{
c36b7150 3666 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3667 bool async;
3668
c36b7150
PB
3669 /* Don't expose private memslots to L2. */
3670 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3671 *pfn = KVM_PFN_NOSLOT;
c583eed6 3672 *writable = false;
3a2936de
JM
3673 return false;
3674 }
3675
3520469d
PB
3676 async = false;
3677 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3678 if (!async)
3679 return false; /* *pfn has correct page already */
3680
9bc1f09f 3681 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3682 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3683 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3684 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3685 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3686 return true;
9f1a8526 3687 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3688 return true;
3689 }
3690
3520469d 3691 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3692 return false;
3693}
3694
0f90e1c1
SC
3695static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3696 bool prefault, int max_level, bool is_tdp)
6aa8b732 3697{
367fd790 3698 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3699 bool map_writable;
6aa8b732 3700
0f90e1c1
SC
3701 gfn_t gfn = gpa >> PAGE_SHIFT;
3702 unsigned long mmu_seq;
3703 kvm_pfn_t pfn;
83f06fa7 3704 int r;
ce88decf 3705
3d0c27ad 3706 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3707 return RET_PF_EMULATE;
ce88decf 3708
bb18842e
BG
3709 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3710 r = fast_page_fault(vcpu, gpa, error_code);
3711 if (r != RET_PF_INVALID)
3712 return r;
3713 }
83291445 3714
378f5cd6 3715 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3716 if (r)
3717 return r;
714b93da 3718
367fd790
SC
3719 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3720 smp_rmb();
3721
3722 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3723 return RET_PF_RETRY;
3724
0f90e1c1 3725 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3726 return r;
6aa8b732 3727
367fd790 3728 r = RET_PF_RETRY;
a2855afc
BG
3729
3730 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3731 read_lock(&vcpu->kvm->mmu_lock);
3732 else
3733 write_lock(&vcpu->kvm->mmu_lock);
3734
367fd790
SC
3735 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3736 goto out_unlock;
7bd7ded6
SC
3737 r = make_mmu_pages_available(vcpu);
3738 if (r)
367fd790 3739 goto out_unlock;
bb18842e
BG
3740
3741 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3742 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3743 pfn, prefault);
3744 else
3745 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3746 prefault, is_tdp);
0f90e1c1 3747
367fd790 3748out_unlock:
a2855afc
BG
3749 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3750 read_unlock(&vcpu->kvm->mmu_lock);
3751 else
3752 write_unlock(&vcpu->kvm->mmu_lock);
367fd790
SC
3753 kvm_release_pfn_clean(pfn);
3754 return r;
6aa8b732
AK
3755}
3756
0f90e1c1
SC
3757static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3758 u32 error_code, bool prefault)
3759{
3760 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3761
3762 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3763 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3764 PG_LEVEL_2M, false);
0f90e1c1
SC
3765}
3766
1261bfa3 3767int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3768 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3769{
3770 int r = 1;
9ce372b3 3771 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3772
736c291c
SC
3773#ifndef CONFIG_X86_64
3774 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3775 if (WARN_ON_ONCE(fault_address >> 32))
3776 return -EFAULT;
3777#endif
3778
c595ceee 3779 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3780 if (!flags) {
1261bfa3
WL
3781 trace_kvm_page_fault(fault_address, error_code);
3782
d0006530 3783 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3784 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3785 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3786 insn_len);
9ce372b3 3787 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3788 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3789 local_irq_disable();
6bca69ad 3790 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3791 local_irq_enable();
9ce372b3
VK
3792 } else {
3793 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3794 }
9ce372b3 3795
1261bfa3
WL
3796 return r;
3797}
3798EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3799
7a02674d
SC
3800int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3801 bool prefault)
fb72d167 3802{
cb9b88c6 3803 int max_level;
fb72d167 3804
e662ec3e 3805 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3806 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3807 max_level--) {
3808 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3809 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3810
cb9b88c6
SC
3811 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3812 break;
fd136902 3813 }
852e3c19 3814
0f90e1c1
SC
3815 return direct_page_fault(vcpu, gpa, error_code, prefault,
3816 max_level, true);
fb72d167
JR
3817}
3818
8a3c1a33
PB
3819static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3820 struct kvm_mmu *context)
6aa8b732 3821{
6aa8b732 3822 context->page_fault = nonpaging_page_fault;
6aa8b732 3823 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3824 context->sync_page = nonpaging_sync_page;
5efac074 3825 context->invlpg = NULL;
cea0f0e7 3826 context->root_level = 0;
6aa8b732 3827 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3828 context->direct_map = true;
2d48a985 3829 context->nx = false;
6aa8b732
AK
3830}
3831
be01e8e2 3832static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3833 union kvm_mmu_page_role role)
3834{
be01e8e2 3835 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3836 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3837 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3838}
3839
b94742c9 3840/*
be01e8e2 3841 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3842 * The current root is also inserted into the cache.
3843 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3844 * returned.
3845 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3846 * false is returned. This root should now be freed by the caller.
3847 */
be01e8e2 3848static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3849 union kvm_mmu_page_role new_role)
3850{
3851 uint i;
3852 struct kvm_mmu_root_info root;
44dd3ffa 3853 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3854
be01e8e2 3855 root.pgd = mmu->root_pgd;
b94742c9
JS
3856 root.hpa = mmu->root_hpa;
3857
be01e8e2 3858 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3859 return true;
3860
b94742c9
JS
3861 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3862 swap(root, mmu->prev_roots[i]);
3863
be01e8e2 3864 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3865 break;
3866 }
3867
3868 mmu->root_hpa = root.hpa;
be01e8e2 3869 mmu->root_pgd = root.pgd;
b94742c9
JS
3870
3871 return i < KVM_MMU_NUM_PREV_ROOTS;
3872}
3873
be01e8e2 3874static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3875 union kvm_mmu_page_role new_role)
6aa8b732 3876{
44dd3ffa 3877 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3878
3879 /*
3880 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3881 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3882 * later if necessary.
3883 */
3884 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3885 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3886 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3887
3888 return false;
6aa8b732
AK
3889}
3890
be01e8e2 3891static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3892 union kvm_mmu_page_role new_role,
4a632ac6 3893 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3894{
be01e8e2 3895 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3896 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3897 return;
3898 }
3899
3900 /*
3901 * It's possible that the cached previous root page is obsolete because
3902 * of a change in the MMU generation number. However, changing the
3903 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3904 * free the root set here and allocate a new one.
3905 */
3906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3907
71fe7013 3908 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3909 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3910 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3911 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3912
3913 /*
3914 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3915 * switching to a new CR3, that GVA->GPA mapping may no longer be
3916 * valid. So clear any cached MMIO info even when we don't need to sync
3917 * the shadow page tables.
3918 */
3919 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3920
daa5b6c1
BG
3921 /*
3922 * If this is a direct root page, it doesn't have a write flooding
3923 * count. Otherwise, clear the write flooding count.
3924 */
3925 if (!new_role.direct)
3926 __clear_sp_write_flooding_count(
3927 to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3928}
3929
be01e8e2 3930void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3931 bool skip_mmu_sync)
0aab33e4 3932{
be01e8e2 3933 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3934 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3935}
be01e8e2 3936EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3937
5777ed34
JR
3938static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3939{
9f8fe504 3940 return kvm_read_cr3(vcpu);
5777ed34
JR
3941}
3942
54bf36aa 3943static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3944 unsigned int access, int *nr_present)
ce88decf
XG
3945{
3946 if (unlikely(is_mmio_spte(*sptep))) {
3947 if (gfn != get_mmio_spte_gfn(*sptep)) {
3948 mmu_spte_clear_no_track(sptep);
3949 return true;
3950 }
3951
3952 (*nr_present)++;
54bf36aa 3953 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3954 return true;
3955 }
3956
3957 return false;
3958}
3959
6bb69c9b
PB
3960static inline bool is_last_gpte(struct kvm_mmu *mmu,
3961 unsigned level, unsigned gpte)
6fd01b71 3962{
6bb69c9b
PB
3963 /*
3964 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3965 * If it is clear, there are no large pages at this level, so clear
3966 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3967 */
3968 gpte &= level - mmu->last_nonleaf_level;
3969
829ee279 3970 /*
3bae0459
SC
3971 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3972 * iff level <= PG_LEVEL_4K, which for our purpose means
3973 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3974 */
3bae0459 3975 gpte |= level - PG_LEVEL_4K - 1;
829ee279 3976
6bb69c9b 3977 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3978}
3979
37406aaa
NHE
3980#define PTTYPE_EPT 18 /* arbitrary */
3981#define PTTYPE PTTYPE_EPT
3982#include "paging_tmpl.h"
3983#undef PTTYPE
3984
6aa8b732
AK
3985#define PTTYPE 64
3986#include "paging_tmpl.h"
3987#undef PTTYPE
3988
3989#define PTTYPE 32
3990#include "paging_tmpl.h"
3991#undef PTTYPE
3992
6dc98b86
XG
3993static void
3994__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3995 struct rsvd_bits_validate *rsvd_check,
5b7f575c 3996 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
6fec2144 3997 bool pse, bool amd)
82725b20 3998{
5f7dde7b 3999 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4000 u64 nonleaf_bit8_rsvd = 0;
5b7f575c 4001 u64 high_bits_rsvd;
82725b20 4002
a0a64f50 4003 rsvd_check->bad_mt_xwr = 0;
25d92081 4004
6dc98b86 4005 if (!gbpages)
5f7dde7b 4006 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5 4007
5b7f575c
SC
4008 if (level == PT32E_ROOT_LEVEL)
4009 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4010 else
4011 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4012
4013 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4014 if (!nx)
4015 high_bits_rsvd |= rsvd_bits(63, 63);
4016
a0c0feb5
PB
4017 /*
4018 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4019 * leaf entries) on AMD CPUs only.
4020 */
6fec2144 4021 if (amd)
a0c0feb5
PB
4022 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4023
6dc98b86 4024 switch (level) {
82725b20
DE
4025 case PT32_ROOT_LEVEL:
4026 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4027 rsvd_check->rsvd_bits_mask[0][1] = 0;
4028 rsvd_check->rsvd_bits_mask[0][0] = 0;
4029 rsvd_check->rsvd_bits_mask[1][0] =
4030 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4031
6dc98b86 4032 if (!pse) {
a0a64f50 4033 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4034 break;
4035 }
4036
82725b20
DE
4037 if (is_cpuid_PSE36())
4038 /* 36bits PSE 4MB page */
a0a64f50 4039 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4040 else
4041 /* 32 bits PSE 4MB page */
a0a64f50 4042 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4043 break;
4044 case PT32E_ROOT_LEVEL:
5b7f575c
SC
4045 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4046 high_bits_rsvd |
4047 rsvd_bits(5, 8) |
4048 rsvd_bits(1, 2); /* PDPTE */
4049 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4050 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4051 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4052 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4053 rsvd_check->rsvd_bits_mask[1][0] =
4054 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4055 break;
855feb67 4056 case PT64_ROOT_5LEVEL:
5b7f575c
SC
4057 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4058 nonleaf_bit8_rsvd |
4059 rsvd_bits(7, 7);
855feb67
YZ
4060 rsvd_check->rsvd_bits_mask[1][4] =
4061 rsvd_check->rsvd_bits_mask[0][4];
df561f66 4062 fallthrough;
2a7266a8 4063 case PT64_ROOT_4LEVEL:
5b7f575c
SC
4064 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4065 nonleaf_bit8_rsvd |
4066 rsvd_bits(7, 7);
4067 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4068 gbpages_bit_rsvd;
4069 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4070 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
a0a64f50
XG
4071 rsvd_check->rsvd_bits_mask[1][3] =
4072 rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4073 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4074 gbpages_bit_rsvd |
4075 rsvd_bits(13, 29);
4076 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4077 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4078 rsvd_check->rsvd_bits_mask[1][0] =
4079 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4080 break;
4081 }
4082}
4083
6dc98b86
XG
4084static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4085 struct kvm_mmu *context)
4086{
4087 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
5b7f575c
SC
4088 vcpu->arch.reserved_gpa_bits,
4089 context->root_level, context->nx,
d6321d49 4090 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4091 is_pse(vcpu),
4092 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4093}
4094
81b8eebb
XG
4095static void
4096__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5b7f575c 4097 u64 pa_bits_rsvd, bool execonly)
25d92081 4098{
5b7f575c 4099 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
951f9fd7 4100 u64 bad_mt_xwr;
25d92081 4101
5b7f575c
SC
4102 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4103 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4104 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4105 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4106 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
25d92081
YZ
4107
4108 /* large page */
855feb67 4109 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50 4110 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4111 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4112 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
a0a64f50 4113 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4114
951f9fd7
PB
4115 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4116 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4117 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4118 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4119 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4120 if (!execonly) {
4121 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4122 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4123 }
951f9fd7 4124 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4125}
4126
81b8eebb
XG
4127static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4128 struct kvm_mmu *context, bool execonly)
4129{
4130 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5b7f575c 4131 vcpu->arch.reserved_gpa_bits, execonly);
81b8eebb
XG
4132}
4133
6f8e65a6
SC
4134static inline u64 reserved_hpa_bits(void)
4135{
4136 return rsvd_bits(shadow_phys_bits, 63);
4137}
4138
c258b62b
XG
4139/*
4140 * the page table on host is the shadow page table for the page
4141 * table in guest or amd nested guest, its mmu features completely
4142 * follow the features in guest.
4143 */
4144void
4145reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4146{
36d9594d
VK
4147 bool uses_nx = context->nx ||
4148 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4149 struct rsvd_bits_validate *shadow_zero_check;
4150 int i;
5f0b8199 4151
6fec2144
PB
4152 /*
4153 * Passing "true" to the last argument is okay; it adds a check
4154 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4155 */
ea2800dd
BS
4156 shadow_zero_check = &context->shadow_zero_check;
4157 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4158 reserved_hpa_bits(),
5f0b8199 4159 context->shadow_root_level, uses_nx,
d6321d49
RK
4160 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4161 is_pse(vcpu), true);
ea2800dd
BS
4162
4163 if (!shadow_me_mask)
4164 return;
4165
4166 for (i = context->shadow_root_level; --i >= 0;) {
4167 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4168 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4169 }
4170
c258b62b
XG
4171}
4172EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4173
6fec2144
PB
4174static inline bool boot_cpu_is_amd(void)
4175{
4176 WARN_ON_ONCE(!tdp_enabled);
4177 return shadow_x_mask == 0;
4178}
4179
c258b62b
XG
4180/*
4181 * the direct page table on host, use as much mmu features as
4182 * possible, however, kvm currently does not do execution-protection.
4183 */
4184static void
4185reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4186 struct kvm_mmu *context)
4187{
ea2800dd
BS
4188 struct rsvd_bits_validate *shadow_zero_check;
4189 int i;
4190
4191 shadow_zero_check = &context->shadow_zero_check;
4192
6fec2144 4193 if (boot_cpu_is_amd())
ea2800dd 4194 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4195 reserved_hpa_bits(),
c258b62b 4196 context->shadow_root_level, false,
b8291adc
BP
4197 boot_cpu_has(X86_FEATURE_GBPAGES),
4198 true, true);
c258b62b 4199 else
ea2800dd 4200 __reset_rsvds_bits_mask_ept(shadow_zero_check,
6f8e65a6 4201 reserved_hpa_bits(), false);
c258b62b 4202
ea2800dd
BS
4203 if (!shadow_me_mask)
4204 return;
4205
4206 for (i = context->shadow_root_level; --i >= 0;) {
4207 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4208 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4209 }
c258b62b
XG
4210}
4211
4212/*
4213 * as the comments in reset_shadow_zero_bits_mask() except it
4214 * is the shadow page table for intel nested guest.
4215 */
4216static void
4217reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4218 struct kvm_mmu *context, bool execonly)
4219{
4220 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
6f8e65a6 4221 reserved_hpa_bits(), execonly);
c258b62b
XG
4222}
4223
09f037aa
PB
4224#define BYTE_MASK(access) \
4225 ((1 & (access) ? 2 : 0) | \
4226 (2 & (access) ? 4 : 0) | \
4227 (3 & (access) ? 8 : 0) | \
4228 (4 & (access) ? 16 : 0) | \
4229 (5 & (access) ? 32 : 0) | \
4230 (6 & (access) ? 64 : 0) | \
4231 (7 & (access) ? 128 : 0))
4232
4233
edc90b7d
XG
4234static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4235 struct kvm_mmu *mmu, bool ept)
97d64b78 4236{
09f037aa
PB
4237 unsigned byte;
4238
4239 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4240 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4241 const u8 u = BYTE_MASK(ACC_USER_MASK);
4242
4243 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4244 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4245 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4246
97d64b78 4247 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4248 unsigned pfec = byte << 1;
4249
97ec8c06 4250 /*
09f037aa
PB
4251 * Each "*f" variable has a 1 bit for each UWX value
4252 * that causes a fault with the given PFEC.
97ec8c06 4253 */
97d64b78 4254
09f037aa 4255 /* Faults from writes to non-writable pages */
a6a6d3b1 4256 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4257 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4258 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4259 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4260 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4261 /* Faults from kernel mode fetches of user pages */
4262 u8 smepf = 0;
4263 /* Faults from kernel mode accesses of user pages */
4264 u8 smapf = 0;
4265
4266 if (!ept) {
4267 /* Faults from kernel mode accesses to user pages */
4268 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4269
4270 /* Not really needed: !nx will cause pte.nx to fault */
4271 if (!mmu->nx)
4272 ff = 0;
4273
4274 /* Allow supervisor writes if !cr0.wp */
4275 if (!cr0_wp)
4276 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4277
4278 /* Disallow supervisor fetches of user code if cr4.smep */
4279 if (cr4_smep)
4280 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4281
4282 /*
4283 * SMAP:kernel-mode data accesses from user-mode
4284 * mappings should fault. A fault is considered
4285 * as a SMAP violation if all of the following
39337ad1 4286 * conditions are true:
09f037aa
PB
4287 * - X86_CR4_SMAP is set in CR4
4288 * - A user page is accessed
4289 * - The access is not a fetch
4290 * - Page fault in kernel mode
4291 * - if CPL = 3 or X86_EFLAGS_AC is clear
4292 *
4293 * Here, we cover the first three conditions.
4294 * The fourth is computed dynamically in permission_fault();
4295 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4296 * *not* subject to SMAP restrictions.
4297 */
4298 if (cr4_smap)
4299 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4300 }
09f037aa
PB
4301
4302 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4303 }
4304}
4305
2d344105
HH
4306/*
4307* PKU is an additional mechanism by which the paging controls access to
4308* user-mode addresses based on the value in the PKRU register. Protection
4309* key violations are reported through a bit in the page fault error code.
4310* Unlike other bits of the error code, the PK bit is not known at the
4311* call site of e.g. gva_to_gpa; it must be computed directly in
4312* permission_fault based on two bits of PKRU, on some machine state (CR4,
4313* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4314*
4315* In particular the following conditions come from the error code, the
4316* page tables and the machine state:
4317* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4318* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4319* - PK is always zero if U=0 in the page tables
4320* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4321*
4322* The PKRU bitmask caches the result of these four conditions. The error
4323* code (minus the P bit) and the page table's U bit form an index into the
4324* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4325* with the two bits of the PKRU register corresponding to the protection key.
4326* For the first three conditions above the bits will be 00, thus masking
4327* away both AD and WD. For all reads or if the last condition holds, WD
4328* only will be masked away.
4329*/
4330static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4331 bool ept)
4332{
4333 unsigned bit;
4334 bool wp;
4335
4336 if (ept) {
4337 mmu->pkru_mask = 0;
4338 return;
4339 }
4340
4341 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4342 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4343 mmu->pkru_mask = 0;
4344 return;
4345 }
4346
4347 wp = is_write_protection(vcpu);
4348
4349 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4350 unsigned pfec, pkey_bits;
4351 bool check_pkey, check_write, ff, uf, wf, pte_user;
4352
4353 pfec = bit << 1;
4354 ff = pfec & PFERR_FETCH_MASK;
4355 uf = pfec & PFERR_USER_MASK;
4356 wf = pfec & PFERR_WRITE_MASK;
4357
4358 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4359 pte_user = pfec & PFERR_RSVD_MASK;
4360
4361 /*
4362 * Only need to check the access which is not an
4363 * instruction fetch and is to a user page.
4364 */
4365 check_pkey = (!ff && pte_user);
4366 /*
4367 * write access is controlled by PKRU if it is a
4368 * user access or CR0.WP = 1.
4369 */
4370 check_write = check_pkey && wf && (uf || wp);
4371
4372 /* PKRU.AD stops both read and write access. */
4373 pkey_bits = !!check_pkey;
4374 /* PKRU.WD stops write access. */
4375 pkey_bits |= (!!check_write) << 1;
4376
4377 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4378 }
4379}
4380
6bb69c9b 4381static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4382{
6bb69c9b
PB
4383 unsigned root_level = mmu->root_level;
4384
4385 mmu->last_nonleaf_level = root_level;
4386 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4387 mmu->last_nonleaf_level++;
6fd01b71
AK
4388}
4389
8a3c1a33
PB
4390static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4391 struct kvm_mmu *context,
4392 int level)
6aa8b732 4393{
2d48a985 4394 context->nx = is_nx(vcpu);
4d6931c3 4395 context->root_level = level;
2d48a985 4396
4d6931c3 4397 reset_rsvds_bits_mask(vcpu, context);
25d92081 4398 update_permission_bitmask(vcpu, context, false);
2d344105 4399 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4400 update_last_nonleaf_level(vcpu, context);
6aa8b732 4401
fa4a2c08 4402 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4403 context->page_fault = paging64_page_fault;
6aa8b732 4404 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4405 context->sync_page = paging64_sync_page;
a7052897 4406 context->invlpg = paging64_invlpg;
17ac10ad 4407 context->shadow_root_level = level;
c5a78f2b 4408 context->direct_map = false;
6aa8b732
AK
4409}
4410
8a3c1a33
PB
4411static void paging64_init_context(struct kvm_vcpu *vcpu,
4412 struct kvm_mmu *context)
17ac10ad 4413{
855feb67
YZ
4414 int root_level = is_la57_mode(vcpu) ?
4415 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4416
4417 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4418}
4419
8a3c1a33
PB
4420static void paging32_init_context(struct kvm_vcpu *vcpu,
4421 struct kvm_mmu *context)
6aa8b732 4422{
2d48a985 4423 context->nx = false;
4d6931c3 4424 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4425
4d6931c3 4426 reset_rsvds_bits_mask(vcpu, context);
25d92081 4427 update_permission_bitmask(vcpu, context, false);
2d344105 4428 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4429 update_last_nonleaf_level(vcpu, context);
6aa8b732 4430
6aa8b732 4431 context->page_fault = paging32_page_fault;
6aa8b732 4432 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4433 context->sync_page = paging32_sync_page;
a7052897 4434 context->invlpg = paging32_invlpg;
6aa8b732 4435 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4436 context->direct_map = false;
6aa8b732
AK
4437}
4438
8a3c1a33
PB
4439static void paging32E_init_context(struct kvm_vcpu *vcpu,
4440 struct kvm_mmu *context)
6aa8b732 4441{
8a3c1a33 4442 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4443}
4444
a336282d
VK
4445static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4446{
4447 union kvm_mmu_extended_role ext = {0};
4448
7dcd5755 4449 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4450 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4451 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4452 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4453 ext.cr4_pse = !!is_pse(vcpu);
4454 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4455 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4456
4457 ext.valid = 1;
4458
4459 return ext;
4460}
4461
7dcd5755
VK
4462static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4463 bool base_only)
4464{
4465 union kvm_mmu_role role = {0};
4466
4467 role.base.access = ACC_ALL;
4468 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4469 role.base.cr0_wp = is_write_protection(vcpu);
4470 role.base.smm = is_smm(vcpu);
4471 role.base.guest_mode = is_guest_mode(vcpu);
4472
4473 if (base_only)
4474 return role;
4475
4476 role.ext = kvm_calc_mmu_role_ext(vcpu);
4477
4478 return role;
4479}
4480
d468d94b
SC
4481static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4482{
4483 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4484 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4485 return 4;
4486
83013059 4487 return max_tdp_level;
d468d94b
SC
4488}
4489
7dcd5755
VK
4490static union kvm_mmu_role
4491kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4492{
7dcd5755 4493 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4494
7dcd5755 4495 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4496 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4497 role.base.direct = true;
47c42e6b 4498 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4499
4500 return role;
4501}
4502
8a3c1a33 4503static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4504{
8c008659 4505 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4506 union kvm_mmu_role new_role =
4507 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4508
7dcd5755
VK
4509 if (new_role.as_u64 == context->mmu_role.as_u64)
4510 return;
4511
4512 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4513 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4514 context->sync_page = nonpaging_sync_page;
5efac074 4515 context->invlpg = NULL;
d468d94b 4516 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4517 context->direct_map = true;
d8dd54e0 4518 context->get_guest_pgd = get_cr3;
e4e517b4 4519 context->get_pdptr = kvm_pdptr_read;
cb659db8 4520 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4521
4522 if (!is_paging(vcpu)) {
2d48a985 4523 context->nx = false;
fb72d167
JR
4524 context->gva_to_gpa = nonpaging_gva_to_gpa;
4525 context->root_level = 0;
4526 } else if (is_long_mode(vcpu)) {
2d48a985 4527 context->nx = is_nx(vcpu);
855feb67
YZ
4528 context->root_level = is_la57_mode(vcpu) ?
4529 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4530 reset_rsvds_bits_mask(vcpu, context);
4531 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4532 } else if (is_pae(vcpu)) {
2d48a985 4533 context->nx = is_nx(vcpu);
fb72d167 4534 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4535 reset_rsvds_bits_mask(vcpu, context);
4536 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4537 } else {
2d48a985 4538 context->nx = false;
fb72d167 4539 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4540 reset_rsvds_bits_mask(vcpu, context);
4541 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4542 }
4543
25d92081 4544 update_permission_bitmask(vcpu, context, false);
2d344105 4545 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4546 update_last_nonleaf_level(vcpu, context);
c258b62b 4547 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4548}
4549
7dcd5755 4550static union kvm_mmu_role
59505b55 4551kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4552{
4553 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4554
4555 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4556 !is_write_protection(vcpu);
4557 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4558 !is_write_protection(vcpu);
47c42e6b 4559 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4560
59505b55
SC
4561 return role;
4562}
4563
4564static union kvm_mmu_role
4565kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4566{
4567 union kvm_mmu_role role =
4568 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4569
4570 role.base.direct = !is_paging(vcpu);
4571
9fa72119 4572 if (!is_long_mode(vcpu))
7dcd5755 4573 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4574 else if (is_la57_mode(vcpu))
7dcd5755 4575 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4576 else
7dcd5755 4577 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4578
4579 return role;
4580}
4581
8c008659
PB
4582static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4583 u32 cr0, u32 cr4, u32 efer,
4584 union kvm_mmu_role new_role)
9fa72119 4585{
929d1cfa 4586 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4587 nonpaging_init_context(vcpu, context);
929d1cfa 4588 else if (efer & EFER_LMA)
8a3c1a33 4589 paging64_init_context(vcpu, context);
929d1cfa 4590 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4591 paging32E_init_context(vcpu, context);
6aa8b732 4592 else
8a3c1a33 4593 paging32_init_context(vcpu, context);
a770f6f2 4594
7dcd5755 4595 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4596 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4597}
0f04a2ac
VK
4598
4599static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4600{
8c008659 4601 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4602 union kvm_mmu_role new_role =
4603 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4604
4605 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4606 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4607}
4608
59505b55
SC
4609static union kvm_mmu_role
4610kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4611{
4612 union kvm_mmu_role role =
4613 kvm_calc_shadow_root_page_role_common(vcpu, false);
4614
4615 role.base.direct = false;
d468d94b 4616 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4617
4618 return role;
4619}
4620
0f04a2ac
VK
4621void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4622 gpa_t nested_cr3)
4623{
8c008659 4624 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4625 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4626
096586fd
SC
4627 context->shadow_root_level = new_role.base.level;
4628
a506fdd2
VK
4629 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4630
0f04a2ac 4631 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4632 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4633}
4634EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4635
a336282d
VK
4636static union kvm_mmu_role
4637kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4638 bool execonly, u8 level)
9fa72119 4639{
552c69b1 4640 union kvm_mmu_role role = {0};
14c07ad8 4641
47c42e6b
SC
4642 /* SMM flag is inherited from root_mmu */
4643 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4644
bb1fcc70 4645 role.base.level = level;
47c42e6b 4646 role.base.gpte_is_8_bytes = true;
a336282d
VK
4647 role.base.direct = false;
4648 role.base.ad_disabled = !accessed_dirty;
4649 role.base.guest_mode = true;
4650 role.base.access = ACC_ALL;
9fa72119 4651
47c42e6b
SC
4652 /*
4653 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4654 * SMAP variation to denote shadow EPT entries.
4655 */
4656 role.base.cr0_wp = true;
4657 role.base.smap_andnot_wp = true;
4658
552c69b1 4659 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4660 role.ext.execonly = execonly;
9fa72119
JS
4661
4662 return role;
4663}
4664
ae1e2d10 4665void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4666 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4667{
8c008659 4668 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4669 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4670 union kvm_mmu_role new_role =
4671 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4672 execonly, level);
a336282d 4673
be01e8e2 4674 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4675
a336282d
VK
4676 if (new_role.as_u64 == context->mmu_role.as_u64)
4677 return;
ad896af0 4678
bb1fcc70 4679 context->shadow_root_level = level;
155a97a3
NHE
4680
4681 context->nx = true;
ae1e2d10 4682 context->ept_ad = accessed_dirty;
155a97a3
NHE
4683 context->page_fault = ept_page_fault;
4684 context->gva_to_gpa = ept_gva_to_gpa;
4685 context->sync_page = ept_sync_page;
4686 context->invlpg = ept_invlpg;
bb1fcc70 4687 context->root_level = level;
155a97a3 4688 context->direct_map = false;
a336282d 4689 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4690
155a97a3 4691 update_permission_bitmask(vcpu, context, true);
2d344105 4692 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4693 update_last_nonleaf_level(vcpu, context);
155a97a3 4694 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4695 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4696}
4697EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4698
8a3c1a33 4699static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4700{
8c008659 4701 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4702
929d1cfa
PB
4703 kvm_init_shadow_mmu(vcpu,
4704 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4705 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4706 vcpu->arch.efer);
4707
d8dd54e0 4708 context->get_guest_pgd = get_cr3;
ad896af0
PB
4709 context->get_pdptr = kvm_pdptr_read;
4710 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4711}
4712
8a3c1a33 4713static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4714{
bf627a92 4715 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4716 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4717
bf627a92
VK
4718 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4719 return;
4720
4721 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4722 g_context->get_guest_pgd = get_cr3;
e4e517b4 4723 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4724 g_context->inject_page_fault = kvm_inject_page_fault;
4725
5efac074
PB
4726 /*
4727 * L2 page tables are never shadowed, so there is no need to sync
4728 * SPTEs.
4729 */
4730 g_context->invlpg = NULL;
4731
02f59dc9 4732 /*
44dd3ffa 4733 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4734 * L1's nested page tables (e.g. EPT12). The nested translation
4735 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4736 * L2's page tables as the first level of translation and L1's
4737 * nested page tables as the second level of translation. Basically
4738 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4739 */
4740 if (!is_paging(vcpu)) {
2d48a985 4741 g_context->nx = false;
02f59dc9
JR
4742 g_context->root_level = 0;
4743 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4744 } else if (is_long_mode(vcpu)) {
2d48a985 4745 g_context->nx = is_nx(vcpu);
855feb67
YZ
4746 g_context->root_level = is_la57_mode(vcpu) ?
4747 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4748 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4749 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4750 } else if (is_pae(vcpu)) {
2d48a985 4751 g_context->nx = is_nx(vcpu);
02f59dc9 4752 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4753 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4754 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4755 } else {
2d48a985 4756 g_context->nx = false;
02f59dc9 4757 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4758 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4759 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4760 }
4761
25d92081 4762 update_permission_bitmask(vcpu, g_context, false);
2d344105 4763 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4764 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4765}
4766
1c53da3f 4767void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4768{
1c53da3f 4769 if (reset_roots) {
b94742c9
JS
4770 uint i;
4771
44dd3ffa 4772 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4773
4774 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4775 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4776 }
4777
02f59dc9 4778 if (mmu_is_nested(vcpu))
e0c6db3e 4779 init_kvm_nested_mmu(vcpu);
02f59dc9 4780 else if (tdp_enabled)
e0c6db3e 4781 init_kvm_tdp_mmu(vcpu);
fb72d167 4782 else
e0c6db3e 4783 init_kvm_softmmu(vcpu);
fb72d167 4784}
1c53da3f 4785EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4786
9fa72119
JS
4787static union kvm_mmu_page_role
4788kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4789{
7dcd5755
VK
4790 union kvm_mmu_role role;
4791
9fa72119 4792 if (tdp_enabled)
7dcd5755 4793 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4794 else
7dcd5755
VK
4795 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4796
4797 return role.base;
9fa72119 4798}
fb72d167 4799
8a3c1a33 4800void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4801{
95f93af4 4802 kvm_mmu_unload(vcpu);
1c53da3f 4803 kvm_init_mmu(vcpu, true);
17c3ba9d 4804}
8668a3c4 4805EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4806
4807int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4808{
714b93da
AK
4809 int r;
4810
378f5cd6 4811 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4812 if (r)
4813 goto out;
8986ecc0 4814 r = mmu_alloc_roots(vcpu);
e2858b4a 4815 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4816 if (r)
4817 goto out;
727a7e27 4818 kvm_mmu_load_pgd(vcpu);
b3646477 4819 static_call(kvm_x86_tlb_flush_current)(vcpu);
714b93da
AK
4820out:
4821 return r;
6aa8b732 4822}
17c3ba9d
AK
4823EXPORT_SYMBOL_GPL(kvm_mmu_load);
4824
4825void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4826{
14c07ad8
VK
4827 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4828 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4829 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4830 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4831}
4b16184c 4832EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4833
79539cec
AK
4834static bool need_remote_flush(u64 old, u64 new)
4835{
4836 if (!is_shadow_present_pte(old))
4837 return false;
4838 if (!is_shadow_present_pte(new))
4839 return true;
4840 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4841 return true;
53166229
GN
4842 old ^= shadow_nx_mask;
4843 new ^= shadow_nx_mask;
79539cec
AK
4844 return (old & ~new & PT64_PERM_MASK) != 0;
4845}
4846
889e5cbc 4847static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4848 int *bytes)
da4a00f0 4849{
0e0fee5c 4850 u64 gentry = 0;
889e5cbc 4851 int r;
72016f3a 4852
72016f3a
AK
4853 /*
4854 * Assume that the pte write on a page table of the same type
49b26e26
XG
4855 * as the current vcpu paging mode since we update the sptes only
4856 * when they have the same mode.
72016f3a 4857 */
889e5cbc 4858 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4859 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4860 *gpa &= ~(gpa_t)7;
4861 *bytes = 8;
08e850c6
AK
4862 }
4863
0e0fee5c
JS
4864 if (*bytes == 4 || *bytes == 8) {
4865 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4866 if (r)
4867 gentry = 0;
72016f3a
AK
4868 }
4869
889e5cbc
XG
4870 return gentry;
4871}
4872
4873/*
4874 * If we're seeing too many writes to a page, it may no longer be a page table,
4875 * or we may be forking, in which case it is better to unmap the page.
4876 */
a138fe75 4877static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4878{
a30f47cb
XG
4879 /*
4880 * Skip write-flooding detected for the sp whose level is 1, because
4881 * it can become unsync, then the guest page is not write-protected.
4882 */
3bae0459 4883 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4884 return false;
3246af0e 4885
e5691a81
XG
4886 atomic_inc(&sp->write_flooding_count);
4887 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4888}
4889
4890/*
4891 * Misaligned accesses are too much trouble to fix up; also, they usually
4892 * indicate a page is not used as a page table.
4893 */
4894static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4895 int bytes)
4896{
4897 unsigned offset, pte_size, misaligned;
4898
4899 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4900 gpa, bytes, sp->role.word);
4901
4902 offset = offset_in_page(gpa);
47c42e6b 4903 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4904
4905 /*
4906 * Sometimes, the OS only writes the last one bytes to update status
4907 * bits, for example, in linux, andb instruction is used in clear_bit().
4908 */
4909 if (!(offset & (pte_size - 1)) && bytes == 1)
4910 return false;
4911
889e5cbc
XG
4912 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4913 misaligned |= bytes < 4;
4914
4915 return misaligned;
4916}
4917
4918static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4919{
4920 unsigned page_offset, quadrant;
4921 u64 *spte;
4922 int level;
4923
4924 page_offset = offset_in_page(gpa);
4925 level = sp->role.level;
4926 *nspte = 1;
47c42e6b 4927 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4928 page_offset <<= 1; /* 32->64 */
4929 /*
4930 * A 32-bit pde maps 4MB while the shadow pdes map
4931 * only 2MB. So we need to double the offset again
4932 * and zap two pdes instead of one.
4933 */
4934 if (level == PT32_ROOT_LEVEL) {
4935 page_offset &= ~7; /* kill rounding error */
4936 page_offset <<= 1;
4937 *nspte = 2;
4938 }
4939 quadrant = page_offset >> PAGE_SHIFT;
4940 page_offset &= ~PAGE_MASK;
4941 if (quadrant != sp->role.quadrant)
4942 return NULL;
4943 }
4944
4945 spte = &sp->spt[page_offset / sizeof(*spte)];
4946 return spte;
4947}
4948
13d268ca 4949static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4950 const u8 *new, int bytes,
4951 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4952{
4953 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4954 struct kvm_mmu_page *sp;
889e5cbc
XG
4955 LIST_HEAD(invalid_list);
4956 u64 entry, gentry, *spte;
4957 int npte;
b8c67b7a 4958 bool remote_flush, local_flush;
889e5cbc
XG
4959
4960 /*
4961 * If we don't have indirect shadow pages, it means no page is
4962 * write-protected, so we can exit simply.
4963 */
6aa7de05 4964 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4965 return;
4966
b8c67b7a 4967 remote_flush = local_flush = false;
889e5cbc
XG
4968
4969 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4970
889e5cbc
XG
4971 /*
4972 * No need to care whether allocation memory is successful
4973 * or not since pte prefetch is skiped if it does not have
4974 * enough objects in the cache.
4975 */
378f5cd6 4976 mmu_topup_memory_caches(vcpu, true);
889e5cbc 4977
531810ca 4978 write_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
4979
4980 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4981
889e5cbc 4982 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4983 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4984
b67bfe0d 4985 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4986 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4987 detect_write_flooding(sp)) {
b8c67b7a 4988 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4989 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4990 continue;
4991 }
889e5cbc
XG
4992
4993 spte = get_written_sptes(sp, gpa, &npte);
4994 if (!spte)
4995 continue;
4996
0671a8e7 4997 local_flush = true;
ac1b714e 4998 while (npte--) {
79539cec 4999 entry = *spte;
2de4085c 5000 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
c5e2184d
SC
5001 if (gentry && sp->role.level != PG_LEVEL_4K)
5002 ++vcpu->kvm->stat.mmu_pde_zapped;
9bb4f6b1 5003 if (need_remote_flush(entry, *spte))
0671a8e7 5004 remote_flush = true;
ac1b714e 5005 ++spte;
9b7a0325 5006 }
9b7a0325 5007 }
b8c67b7a 5008 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5009 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
531810ca 5010 write_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5011}
5012
a436036b
AK
5013int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5014{
10589a46
MT
5015 gpa_t gpa;
5016 int r;
a436036b 5017
44dd3ffa 5018 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5019 return 0;
5020
1871c602 5021 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5022
10589a46 5023 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5024
10589a46 5025 return r;
a436036b 5026}
577bdc49 5027EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5028
736c291c 5029int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5030 void *insn, int insn_len)
3067714c 5031{
92daa48b 5032 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5033 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5034
6948199a 5035 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5036 return RET_PF_RETRY;
5037
9b8ebbdb 5038 r = RET_PF_INVALID;
e9ee956e 5039 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5040 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5041 if (r == RET_PF_EMULATE)
e9ee956e 5042 goto emulate;
e9ee956e 5043 }
3067714c 5044
9b8ebbdb 5045 if (r == RET_PF_INVALID) {
7a02674d
SC
5046 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5047 lower_32_bits(error_code), false);
7b367bc9
SC
5048 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5049 return -EIO;
9b8ebbdb
PB
5050 }
5051
3067714c 5052 if (r < 0)
e9ee956e 5053 return r;
83a2ba4c
SC
5054 if (r != RET_PF_EMULATE)
5055 return 1;
3067714c 5056
14727754
TL
5057 /*
5058 * Before emulating the instruction, check if the error code
5059 * was due to a RO violation while translating the guest page.
5060 * This can occur when using nested virtualization with nested
5061 * paging in both guests. If true, we simply unprotect the page
5062 * and resume the guest.
14727754 5063 */
44dd3ffa 5064 if (vcpu->arch.mmu->direct_map &&
eebed243 5065 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5066 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5067 return 1;
5068 }
5069
472faffa
SC
5070 /*
5071 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5072 * optimistically try to just unprotect the page and let the processor
5073 * re-execute the instruction that caused the page fault. Do not allow
5074 * retrying MMIO emulation, as it's not only pointless but could also
5075 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5076 * faulting on the non-existent MMIO address. Retrying an instruction
5077 * from a nested guest is also pointless and dangerous as we are only
5078 * explicitly shadowing L1's page tables, i.e. unprotecting something
5079 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5080 */
736c291c 5081 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5082 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5083emulate:
736c291c 5084 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5085 insn_len);
3067714c
AK
5086}
5087EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5088
5efac074
PB
5089void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5090 gva_t gva, hpa_t root_hpa)
a7052897 5091{
b94742c9 5092 int i;
7eb77e9f 5093
5efac074
PB
5094 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5095 if (mmu != &vcpu->arch.guest_mmu) {
5096 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5097 if (is_noncanonical_address(gva, vcpu))
5098 return;
5099
b3646477 5100 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5efac074
PB
5101 }
5102
5103 if (!mmu->invlpg)
faff8758
JS
5104 return;
5105
5efac074
PB
5106 if (root_hpa == INVALID_PAGE) {
5107 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5108
5efac074
PB
5109 /*
5110 * INVLPG is required to invalidate any global mappings for the VA,
5111 * irrespective of PCID. Since it would take us roughly similar amount
5112 * of work to determine whether any of the prev_root mappings of the VA
5113 * is marked global, or to just sync it blindly, so we might as well
5114 * just always sync it.
5115 *
5116 * Mappings not reachable via the current cr3 or the prev_roots will be
5117 * synced when switching to that cr3, so nothing needs to be done here
5118 * for them.
5119 */
5120 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5121 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5122 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5123 } else {
5124 mmu->invlpg(vcpu, gva, root_hpa);
5125 }
5126}
5127EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5128
5efac074
PB
5129void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5130{
5131 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5132 ++vcpu->stat.invlpg;
5133}
5134EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5135
5efac074 5136
eb4b248e
JS
5137void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5138{
44dd3ffa 5139 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5140 bool tlb_flush = false;
b94742c9 5141 uint i;
eb4b248e
JS
5142
5143 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5144 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5145 tlb_flush = true;
eb4b248e
JS
5146 }
5147
b94742c9
JS
5148 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5149 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5150 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5151 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5152 tlb_flush = true;
5153 }
956bf353 5154 }
ade61e28 5155
faff8758 5156 if (tlb_flush)
b3646477 5157 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
faff8758 5158
eb4b248e
JS
5159 ++vcpu->stat.invlpg;
5160
5161 /*
b94742c9
JS
5162 * Mappings not reachable via the current cr3 or the prev_roots will be
5163 * synced when switching to that cr3, so nothing needs to be done here
5164 * for them.
eb4b248e
JS
5165 */
5166}
5167EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5168
83013059
SC
5169void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5170 int tdp_huge_page_level)
18552672 5171{
bde77235 5172 tdp_enabled = enable_tdp;
83013059 5173 max_tdp_level = tdp_max_root_level;
703c335d
SC
5174
5175 /*
1d92d2e8 5176 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5177 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5178 * the kernel is not. But, KVM never creates a page size greater than
5179 * what is used by the kernel for any given HVA, i.e. the kernel's
5180 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5181 */
5182 if (tdp_enabled)
1d92d2e8 5183 max_huge_page_level = tdp_huge_page_level;
703c335d 5184 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5185 max_huge_page_level = PG_LEVEL_1G;
703c335d 5186 else
1d92d2e8 5187 max_huge_page_level = PG_LEVEL_2M;
18552672 5188}
bde77235 5189EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5190
5191/* The return value indicates if tlb flush on all vcpus is needed. */
0a234f5d
SC
5192typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5193 struct kvm_memory_slot *slot);
85875a13
SC
5194
5195/* The caller should hold mmu-lock before calling this function. */
5196static __always_inline bool
5197slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5198 slot_level_handler fn, int start_level, int end_level,
5199 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5200{
5201 struct slot_rmap_walk_iterator iterator;
5202 bool flush = false;
5203
5204 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5205 end_gfn, &iterator) {
5206 if (iterator.rmap)
0a234f5d 5207 flush |= fn(kvm, iterator.rmap, memslot);
85875a13 5208
531810ca 5209 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
85875a13 5210 if (flush && lock_flush_tlb) {
f285c633
BG
5211 kvm_flush_remote_tlbs_with_address(kvm,
5212 start_gfn,
5213 iterator.gfn - start_gfn + 1);
85875a13
SC
5214 flush = false;
5215 }
531810ca 5216 cond_resched_rwlock_write(&kvm->mmu_lock);
85875a13
SC
5217 }
5218 }
5219
5220 if (flush && lock_flush_tlb) {
f285c633
BG
5221 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5222 end_gfn - start_gfn + 1);
85875a13
SC
5223 flush = false;
5224 }
5225
5226 return flush;
5227}
5228
5229static __always_inline bool
5230slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5231 slot_level_handler fn, int start_level, int end_level,
5232 bool lock_flush_tlb)
5233{
5234 return slot_handle_level_range(kvm, memslot, fn, start_level,
5235 end_level, memslot->base_gfn,
5236 memslot->base_gfn + memslot->npages - 1,
5237 lock_flush_tlb);
5238}
5239
5240static __always_inline bool
5241slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5242 slot_level_handler fn, bool lock_flush_tlb)
5243{
3bae0459 5244 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5245 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5246}
5247
5248static __always_inline bool
5249slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5250 slot_level_handler fn, bool lock_flush_tlb)
5251{
3bae0459 5252 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5253 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5254}
5255
5256static __always_inline bool
5257slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5258 slot_level_handler fn, bool lock_flush_tlb)
5259{
3bae0459
SC
5260 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5261 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5262}
5263
1cfff4d9 5264static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5265{
1cfff4d9
JP
5266 free_page((unsigned long)mmu->pae_root);
5267 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5268}
5269
04d28e37 5270static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5271{
17ac10ad 5272 struct page *page;
6aa8b732
AK
5273 int i;
5274
04d28e37
SC
5275 mmu->root_hpa = INVALID_PAGE;
5276 mmu->root_pgd = 0;
5277 mmu->translate_gpa = translate_gpa;
5278 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5279 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5280
17ac10ad 5281 /*
b6b80c78
SC
5282 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5283 * while the PDP table is a per-vCPU construct that's allocated at MMU
5284 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5285 * x86_64. Therefore we need to allocate the PDP table in the first
5286 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5287 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5288 * skip allocating the PDP table.
17ac10ad 5289 */
d468d94b 5290 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5291 return 0;
5292
254272ce 5293 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5294 if (!page)
d7fa6ab2
WY
5295 return -ENOMEM;
5296
1cfff4d9 5297 mmu->pae_root = page_address(page);
17ac10ad 5298 for (i = 0; i < 4; ++i)
1cfff4d9 5299 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5300
6aa8b732 5301 return 0;
6aa8b732
AK
5302}
5303
8018c27b 5304int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5305{
1cfff4d9 5306 int ret;
b94742c9 5307
5962bfb7 5308 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5309 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5310
5962bfb7 5311 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5312 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5313
96880883
SC
5314 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5315
44dd3ffa
VK
5316 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5317 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5318
14c07ad8 5319 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5320
04d28e37 5321 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5322 if (ret)
5323 return ret;
5324
04d28e37 5325 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5326 if (ret)
5327 goto fail_allocate_root;
5328
5329 return ret;
5330 fail_allocate_root:
5331 free_mmu_pages(&vcpu->arch.guest_mmu);
5332 return ret;
6aa8b732
AK
5333}
5334
fbb158cb 5335#define BATCH_ZAP_PAGES 10
002c5f73
SC
5336static void kvm_zap_obsolete_pages(struct kvm *kvm)
5337{
5338 struct kvm_mmu_page *sp, *node;
fbb158cb 5339 int nr_zapped, batch = 0;
002c5f73
SC
5340
5341restart:
5342 list_for_each_entry_safe_reverse(sp, node,
5343 &kvm->arch.active_mmu_pages, link) {
5344 /*
5345 * No obsolete valid page exists before a newly created page
5346 * since active_mmu_pages is a FIFO list.
5347 */
5348 if (!is_obsolete_sp(kvm, sp))
5349 break;
5350
5351 /*
f95eec9b
SC
5352 * Invalid pages should never land back on the list of active
5353 * pages. Skip the bogus page, otherwise we'll get stuck in an
5354 * infinite loop if the page gets put back on the list (again).
002c5f73 5355 */
f95eec9b 5356 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5357 continue;
5358
4506ecf4
SC
5359 /*
5360 * No need to flush the TLB since we're only zapping shadow
5361 * pages with an obsolete generation number and all vCPUS have
5362 * loaded a new root, i.e. the shadow pages being zapped cannot
5363 * be in active use by the guest.
5364 */
fbb158cb 5365 if (batch >= BATCH_ZAP_PAGES &&
531810ca 5366 cond_resched_rwlock_write(&kvm->mmu_lock)) {
fbb158cb 5367 batch = 0;
002c5f73
SC
5368 goto restart;
5369 }
5370
10605204
SC
5371 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5372 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5373 batch += nr_zapped;
002c5f73 5374 goto restart;
fbb158cb 5375 }
002c5f73
SC
5376 }
5377
4506ecf4
SC
5378 /*
5379 * Trigger a remote TLB flush before freeing the page tables to ensure
5380 * KVM is not in the middle of a lockless shadow page table walk, which
5381 * may reference the pages.
5382 */
10605204 5383 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5384}
5385
5386/*
5387 * Fast invalidate all shadow pages and use lock-break technique
5388 * to zap obsolete pages.
5389 *
5390 * It's required when memslot is being deleted or VM is being
5391 * destroyed, in these cases, we should ensure that KVM MMU does
5392 * not use any resource of the being-deleted slot or all slots
5393 * after calling the function.
5394 */
5395static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5396{
ca333add
SC
5397 lockdep_assert_held(&kvm->slots_lock);
5398
531810ca 5399 write_lock(&kvm->mmu_lock);
14a3c4f4 5400 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5401
5402 /*
5403 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5404 * held for the entire duration of zapping obsolete pages, it's
5405 * impossible for there to be multiple invalid generations associated
5406 * with *valid* shadow pages at any given time, i.e. there is exactly
5407 * one valid generation and (at most) one invalid generation.
5408 */
5409 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5410
4506ecf4
SC
5411 /*
5412 * Notify all vcpus to reload its shadow page table and flush TLB.
5413 * Then all vcpus will switch to new shadow page table with the new
5414 * mmu_valid_gen.
5415 *
5416 * Note: we need to do this under the protection of mmu_lock,
5417 * otherwise, vcpu would purge shadow page but miss tlb flush.
5418 */
5419 kvm_reload_remote_mmus(kvm);
5420
002c5f73 5421 kvm_zap_obsolete_pages(kvm);
faaf05b0 5422
897218ff 5423 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5424 kvm_tdp_mmu_zap_all(kvm);
5425
531810ca 5426 write_unlock(&kvm->mmu_lock);
002c5f73
SC
5427}
5428
10605204
SC
5429static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5430{
5431 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5432}
5433
b5f5fdca 5434static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5435 struct kvm_memory_slot *slot,
5436 struct kvm_page_track_notifier_node *node)
b5f5fdca 5437{
002c5f73 5438 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5439}
5440
13d268ca 5441void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5442{
13d268ca 5443 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5444
fe5db27d
BG
5445 kvm_mmu_init_tdp_mmu(kvm);
5446
13d268ca 5447 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5448 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5449 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5450}
5451
13d268ca 5452void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5453{
13d268ca 5454 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5455
13d268ca 5456 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5457
5458 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5459}
5460
efdfe536
XG
5461void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5462{
5463 struct kvm_memslots *slots;
5464 struct kvm_memory_slot *memslot;
9da0e4d5 5465 int i;
faaf05b0 5466 bool flush;
efdfe536 5467
531810ca 5468 write_lock(&kvm->mmu_lock);
9da0e4d5
PB
5469 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5470 slots = __kvm_memslots(kvm, i);
5471 kvm_for_each_memslot(memslot, slots) {
5472 gfn_t start, end;
5473
5474 start = max(gfn_start, memslot->base_gfn);
5475 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5476 if (start >= end)
5477 continue;
efdfe536 5478
92da008f 5479 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5480 PG_LEVEL_4K,
e662ec3e 5481 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5482 start, end - 1, true);
9da0e4d5 5483 }
efdfe536
XG
5484 }
5485
897218ff 5486 if (is_tdp_mmu_enabled(kvm)) {
faaf05b0
BG
5487 flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5488 if (flush)
5489 kvm_flush_remote_tlbs(kvm);
5490 }
5491
531810ca 5492 write_unlock(&kvm->mmu_lock);
efdfe536
XG
5493}
5494
018aabb5 5495static bool slot_rmap_write_protect(struct kvm *kvm,
0a234f5d
SC
5496 struct kvm_rmap_head *rmap_head,
5497 struct kvm_memory_slot *slot)
d77aa73c 5498{
018aabb5 5499 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5500}
5501
1c91cad4 5502void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5503 struct kvm_memory_slot *memslot,
5504 int start_level)
6aa8b732 5505{
d77aa73c 5506 bool flush;
6aa8b732 5507
531810ca 5508 write_lock(&kvm->mmu_lock);
3c9bd400 5509 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5510 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
897218ff 5511 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5512 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
531810ca 5513 write_unlock(&kvm->mmu_lock);
198c74f4 5514
198c74f4
XG
5515 /*
5516 * We can flush all the TLBs out of the mmu lock without TLB
5517 * corruption since we just change the spte from writable to
5518 * readonly so that we only need to care the case of changing
5519 * spte from present to present (changing the spte from present
5520 * to nonpresent will flush all the TLBs immediately), in other
5521 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5522 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5523 * instead of PT_WRITABLE_MASK, that means it does not depend
5524 * on PT_WRITABLE_MASK anymore.
5525 */
d91ffee9 5526 if (flush)
7f42aa76 5527 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5528}
37a7d8b0 5529
3ea3b7fa 5530static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
0a234f5d
SC
5531 struct kvm_rmap_head *rmap_head,
5532 struct kvm_memory_slot *slot)
3ea3b7fa
WL
5533{
5534 u64 *sptep;
5535 struct rmap_iterator iter;
5536 int need_tlb_flush = 0;
ba049e93 5537 kvm_pfn_t pfn;
3ea3b7fa
WL
5538 struct kvm_mmu_page *sp;
5539
0d536790 5540restart:
018aabb5 5541 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5542 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5543 pfn = spte_to_pfn(*sptep);
5544
5545 /*
decf6333
XG
5546 * We cannot do huge page mapping for indirect shadow pages,
5547 * which are found on the last rmap (level = 1) when not using
5548 * tdp; such shadow pages are synced with the page table in
5549 * the guest, and the guest page table is using 4K page size
5550 * mapping if the indirect sp has level = 1.
3ea3b7fa 5551 */
a78986aa 5552 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
9eba50f8
SC
5553 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5554 pfn, PG_LEVEL_NUM)) {
e7912386 5555 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5556
5557 if (kvm_available_flush_tlb_with_range())
5558 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5559 KVM_PAGES_PER_HPAGE(sp->role.level));
5560 else
5561 need_tlb_flush = 1;
5562
0d536790
XG
5563 goto restart;
5564 }
3ea3b7fa
WL
5565 }
5566
5567 return need_tlb_flush;
5568}
5569
5570void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5571 const struct kvm_memory_slot *memslot)
3ea3b7fa 5572{
f36f3f28 5573 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
9eba50f8
SC
5574 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5575
531810ca 5576 write_lock(&kvm->mmu_lock);
9eba50f8 5577 slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
14881998 5578
897218ff 5579 if (is_tdp_mmu_enabled(kvm))
9eba50f8 5580 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
531810ca 5581 write_unlock(&kvm->mmu_lock);
3ea3b7fa
WL
5582}
5583
b3594ffb
SC
5584void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5585 struct kvm_memory_slot *memslot)
5586{
5587 /*
7f42aa76
SC
5588 * All current use cases for flushing the TLBs for a specific memslot
5589 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5590 * The interaction between the various operations on memslot must be
5591 * serialized by slots_locks to ensure the TLB flush from one operation
5592 * is observed by any other operation on the same memslot.
b3594ffb
SC
5593 */
5594 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5595 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5596 memslot->npages);
b3594ffb
SC
5597}
5598
f4b4b180
KH
5599void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5600 struct kvm_memory_slot *memslot)
5601{
d77aa73c 5602 bool flush;
f4b4b180 5603
531810ca 5604 write_lock(&kvm->mmu_lock);
d77aa73c 5605 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
897218ff 5606 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5607 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
531810ca 5608 write_unlock(&kvm->mmu_lock);
f4b4b180 5609
f4b4b180
KH
5610 /*
5611 * It's also safe to flush TLBs out of mmu lock here as currently this
5612 * function is only used for dirty logging, in which case flushing TLB
5613 * out of mmu lock also guarantees no dirty pages will be lost in
5614 * dirty_bitmap.
5615 */
5616 if (flush)
7f42aa76 5617 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5618}
5619EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5620
5621void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5622 struct kvm_memory_slot *memslot)
5623{
d77aa73c 5624 bool flush;
f4b4b180 5625
531810ca 5626 write_lock(&kvm->mmu_lock);
d77aa73c
XG
5627 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5628 false);
897218ff 5629 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5630 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
531810ca 5631 write_unlock(&kvm->mmu_lock);
f4b4b180 5632
f4b4b180 5633 if (flush)
7f42aa76 5634 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5635}
5636EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5637
5638void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5639 struct kvm_memory_slot *memslot)
5640{
d77aa73c 5641 bool flush;
f4b4b180 5642
531810ca 5643 write_lock(&kvm->mmu_lock);
d77aa73c 5644 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
897218ff 5645 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5646 flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
531810ca 5647 write_unlock(&kvm->mmu_lock);
f4b4b180 5648
f4b4b180 5649 if (flush)
7f42aa76 5650 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5651}
5652EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5653
92f58b5c 5654void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5655{
5656 struct kvm_mmu_page *sp, *node;
7390de1e 5657 LIST_HEAD(invalid_list);
83cdb568 5658 int ign;
5304b8d3 5659
531810ca 5660 write_lock(&kvm->mmu_lock);
5304b8d3 5661restart:
8a674adc 5662 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5663 if (WARN_ON(sp->role.invalid))
4771450c 5664 continue;
92f58b5c 5665 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5666 goto restart;
531810ca 5667 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5304b8d3
XG
5668 goto restart;
5669 }
5670
4771450c 5671 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0 5672
897218ff 5673 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5674 kvm_tdp_mmu_zap_all(kvm);
5675
531810ca 5676 write_unlock(&kvm->mmu_lock);
5304b8d3
XG
5677}
5678
15248258 5679void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5680{
164bf7e5 5681 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5682
164bf7e5 5683 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5684
f8f55942 5685 /*
e1359e2b
SC
5686 * Generation numbers are incremented in multiples of the number of
5687 * address spaces in order to provide unique generations across all
5688 * address spaces. Strip what is effectively the address space
5689 * modifier prior to checking for a wrap of the MMIO generation so
5690 * that a wrap in any address space is detected.
5691 */
5692 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5693
f8f55942 5694 /*
e1359e2b 5695 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5696 * zap all shadow pages.
f8f55942 5697 */
e1359e2b 5698 if (unlikely(gen == 0)) {
ae0f5499 5699 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5700 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5701 }
f8f55942
XG
5702}
5703
70534a73
DC
5704static unsigned long
5705mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5706{
5707 struct kvm *kvm;
1495f230 5708 int nr_to_scan = sc->nr_to_scan;
70534a73 5709 unsigned long freed = 0;
3ee16c81 5710
0d9ce162 5711 mutex_lock(&kvm_lock);
3ee16c81
IE
5712
5713 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5714 int idx;
d98ba053 5715 LIST_HEAD(invalid_list);
3ee16c81 5716
35f2d16b
TY
5717 /*
5718 * Never scan more than sc->nr_to_scan VM instances.
5719 * Will not hit this condition practically since we do not try
5720 * to shrink more than one VM and it is very unlikely to see
5721 * !n_used_mmu_pages so many times.
5722 */
5723 if (!nr_to_scan--)
5724 break;
19526396
GN
5725 /*
5726 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5727 * here. We may skip a VM instance errorneosly, but we do not
5728 * want to shrink a VM that only started to populate its MMU
5729 * anyway.
5730 */
10605204
SC
5731 if (!kvm->arch.n_used_mmu_pages &&
5732 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5733 continue;
19526396 5734
f656ce01 5735 idx = srcu_read_lock(&kvm->srcu);
531810ca 5736 write_lock(&kvm->mmu_lock);
3ee16c81 5737
10605204
SC
5738 if (kvm_has_zapped_obsolete_pages(kvm)) {
5739 kvm_mmu_commit_zap_page(kvm,
5740 &kvm->arch.zapped_obsolete_pages);
5741 goto unlock;
5742 }
5743
ebdb292d 5744 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5745
10605204 5746unlock:
531810ca 5747 write_unlock(&kvm->mmu_lock);
f656ce01 5748 srcu_read_unlock(&kvm->srcu, idx);
19526396 5749
70534a73
DC
5750 /*
5751 * unfair on small ones
5752 * per-vm shrinkers cry out
5753 * sadness comes quickly
5754 */
19526396
GN
5755 list_move_tail(&kvm->vm_list, &vm_list);
5756 break;
3ee16c81 5757 }
3ee16c81 5758
0d9ce162 5759 mutex_unlock(&kvm_lock);
70534a73 5760 return freed;
70534a73
DC
5761}
5762
5763static unsigned long
5764mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5765{
45221ab6 5766 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5767}
5768
5769static struct shrinker mmu_shrinker = {
70534a73
DC
5770 .count_objects = mmu_shrink_count,
5771 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5772 .seeks = DEFAULT_SEEKS * 10,
5773};
5774
2ddfd20e 5775static void mmu_destroy_caches(void)
b5a33a75 5776{
c1bd743e
TH
5777 kmem_cache_destroy(pte_list_desc_cache);
5778 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5779}
5780
7b6f8a06
KH
5781static void kvm_set_mmio_spte_mask(void)
5782{
5783 u64 mask;
7b6f8a06
KH
5784
5785 /*
6129ed87
SC
5786 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5787 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5788 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5789 * 52-bit physical addresses then there are no reserved PA bits in the
5790 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 5791 */
6129ed87
SC
5792 if (shadow_phys_bits < 52)
5793 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5794 else
5795 mask = 0;
7b6f8a06 5796
e7581cac 5797 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
5798}
5799
b8e8c830
PB
5800static bool get_nx_auto_mode(void)
5801{
5802 /* Return true when CPU has the bug, and mitigations are ON */
5803 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5804}
5805
5806static void __set_nx_huge_pages(bool val)
5807{
5808 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5809}
5810
5811static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5812{
5813 bool old_val = nx_huge_pages;
5814 bool new_val;
5815
5816 /* In "auto" mode deploy workaround only if CPU has the bug. */
5817 if (sysfs_streq(val, "off"))
5818 new_val = 0;
5819 else if (sysfs_streq(val, "force"))
5820 new_val = 1;
5821 else if (sysfs_streq(val, "auto"))
5822 new_val = get_nx_auto_mode();
5823 else if (strtobool(val, &new_val) < 0)
5824 return -EINVAL;
5825
5826 __set_nx_huge_pages(new_val);
5827
5828 if (new_val != old_val) {
5829 struct kvm *kvm;
b8e8c830
PB
5830
5831 mutex_lock(&kvm_lock);
5832
5833 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5834 mutex_lock(&kvm->slots_lock);
b8e8c830 5835 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5836 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5837
5838 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5839 }
5840 mutex_unlock(&kvm_lock);
5841 }
5842
5843 return 0;
5844}
5845
b5a33a75
AK
5846int kvm_mmu_module_init(void)
5847{
ab271bd4
AB
5848 int ret = -ENOMEM;
5849
b8e8c830
PB
5850 if (nx_huge_pages == -1)
5851 __set_nx_huge_pages(get_nx_auto_mode());
5852
36d9594d
VK
5853 /*
5854 * MMU roles use union aliasing which is, generally speaking, an
5855 * undefined behavior. However, we supposedly know how compilers behave
5856 * and the current status quo is unlikely to change. Guardians below are
5857 * supposed to let us know if the assumption becomes false.
5858 */
5859 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5860 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5861 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5862
28a1f3ac 5863 kvm_mmu_reset_all_pte_masks();
f160c7b7 5864
7b6f8a06
KH
5865 kvm_set_mmio_spte_mask();
5866
53c07b18
XG
5867 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5868 sizeof(struct pte_list_desc),
46bea48a 5869 0, SLAB_ACCOUNT, NULL);
53c07b18 5870 if (!pte_list_desc_cache)
ab271bd4 5871 goto out;
b5a33a75 5872
d3d25b04
AK
5873 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5874 sizeof(struct kvm_mmu_page),
46bea48a 5875 0, SLAB_ACCOUNT, NULL);
d3d25b04 5876 if (!mmu_page_header_cache)
ab271bd4 5877 goto out;
d3d25b04 5878
908c7f19 5879 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5880 goto out;
45bf21a8 5881
ab271bd4
AB
5882 ret = register_shrinker(&mmu_shrinker);
5883 if (ret)
5884 goto out;
3ee16c81 5885
b5a33a75
AK
5886 return 0;
5887
ab271bd4 5888out:
3ee16c81 5889 mmu_destroy_caches();
ab271bd4 5890 return ret;
b5a33a75
AK
5891}
5892
3ad82a7e 5893/*
39337ad1 5894 * Calculate mmu pages needed for kvm.
3ad82a7e 5895 */
bc8a3d89 5896unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5897{
bc8a3d89
BG
5898 unsigned long nr_mmu_pages;
5899 unsigned long nr_pages = 0;
bc6678a3 5900 struct kvm_memslots *slots;
be6ba0f0 5901 struct kvm_memory_slot *memslot;
9da0e4d5 5902 int i;
3ad82a7e 5903
9da0e4d5
PB
5904 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5905 slots = __kvm_memslots(kvm, i);
90d83dc3 5906
9da0e4d5
PB
5907 kvm_for_each_memslot(memslot, slots)
5908 nr_pages += memslot->npages;
5909 }
3ad82a7e
ZX
5910
5911 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5912 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5913
5914 return nr_mmu_pages;
5915}
5916
c42fffe3
XG
5917void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5918{
95f93af4 5919 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5920 free_mmu_pages(&vcpu->arch.root_mmu);
5921 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5922 mmu_free_memory_caches(vcpu);
b034cf01
XG
5923}
5924
b034cf01
XG
5925void kvm_mmu_module_exit(void)
5926{
5927 mmu_destroy_caches();
5928 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5929 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5930 mmu_audit_disable();
5931}
1aa9b957
JS
5932
5933static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5934{
5935 unsigned int old_val;
5936 int err;
5937
5938 old_val = nx_huge_pages_recovery_ratio;
5939 err = param_set_uint(val, kp);
5940 if (err)
5941 return err;
5942
5943 if (READ_ONCE(nx_huge_pages) &&
5944 !old_val && nx_huge_pages_recovery_ratio) {
5945 struct kvm *kvm;
5946
5947 mutex_lock(&kvm_lock);
5948
5949 list_for_each_entry(kvm, &vm_list, vm_list)
5950 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5951
5952 mutex_unlock(&kvm_lock);
5953 }
5954
5955 return err;
5956}
5957
5958static void kvm_recover_nx_lpages(struct kvm *kvm)
5959{
5960 int rcu_idx;
5961 struct kvm_mmu_page *sp;
5962 unsigned int ratio;
5963 LIST_HEAD(invalid_list);
5964 ulong to_zap;
5965
5966 rcu_idx = srcu_read_lock(&kvm->srcu);
531810ca 5967 write_lock(&kvm->mmu_lock);
1aa9b957
JS
5968
5969 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5970 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5971 for ( ; to_zap; --to_zap) {
5972 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5973 break;
5974
1aa9b957
JS
5975 /*
5976 * We use a separate list instead of just using active_mmu_pages
5977 * because the number of lpage_disallowed pages is expected to
5978 * be relatively small compared to the total.
5979 */
5980 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5981 struct kvm_mmu_page,
5982 lpage_disallowed_link);
5983 WARN_ON_ONCE(!sp->lpage_disallowed);
897218ff 5984 if (is_tdp_mmu_page(sp)) {
29cf0f50
BG
5985 kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5986 sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
8d1a182e 5987 } else {
29cf0f50
BG
5988 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5989 WARN_ON_ONCE(sp->lpage_disallowed);
5990 }
1aa9b957 5991
531810ca 5992 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
1aa9b957 5993 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 5994 cond_resched_rwlock_write(&kvm->mmu_lock);
1aa9b957
JS
5995 }
5996 }
e8950569 5997 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1aa9b957 5998
531810ca 5999 write_unlock(&kvm->mmu_lock);
1aa9b957
JS
6000 srcu_read_unlock(&kvm->srcu, rcu_idx);
6001}
6002
6003static long get_nx_lpage_recovery_timeout(u64 start_time)
6004{
6005 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6006 ? start_time + 60 * HZ - get_jiffies_64()
6007 : MAX_SCHEDULE_TIMEOUT;
6008}
6009
6010static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6011{
6012 u64 start_time;
6013 long remaining_time;
6014
6015 while (true) {
6016 start_time = get_jiffies_64();
6017 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6018
6019 set_current_state(TASK_INTERRUPTIBLE);
6020 while (!kthread_should_stop() && remaining_time > 0) {
6021 schedule_timeout(remaining_time);
6022 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6023 set_current_state(TASK_INTERRUPTIBLE);
6024 }
6025
6026 set_current_state(TASK_RUNNING);
6027
6028 if (kthread_should_stop())
6029 return 0;
6030
6031 kvm_recover_nx_lpages(kvm);
6032 }
6033}
6034
6035int kvm_mmu_post_init_vm(struct kvm *kvm)
6036{
6037 int err;
6038
6039 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6040 "kvm-nx-lpage-recovery",
6041 &kvm->arch.nx_lpage_recovery_thread);
6042 if (!err)
6043 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6044
6045 return err;
6046}
6047
6048void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6049{
6050 if (kvm->arch.nx_lpage_recovery_thread)
6051 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6052}