]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: Cache as_id in kvm_memory_slot
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
13673a90 51#include <asm/vmx.h>
3d0c27ad 52#include <asm/kvm_page_track.h>
1261bfa3 53#include "trace.h"
6aa8b732 54
b8e8c830
PB
55extern bool itlb_multihit_kvm_mitigation;
56
57static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
58#ifdef CONFIG_PREEMPT_RT
59/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
60static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61#else
1aa9b957 62static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 63#endif
b8e8c830
PB
64
65static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 66static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 67
d5d6c18d 68static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
69 .set = set_nx_huge_pages,
70 .get = param_get_bool,
71};
72
d5d6c18d 73static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
74 .set = set_nx_huge_pages_recovery_ratio,
75 .get = param_get_uint,
76};
77
b8e8c830
PB
78module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
80module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81 &nx_huge_pages_recovery_ratio, 0644);
82__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 83
71fe7013
SC
84static bool __read_mostly force_flush_and_sync_on_reuse;
85module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86
18552672
JR
87/*
88 * When setting this variable to true it enables Two-Dimensional-Paging
89 * where the hardware walks 2 page tables:
90 * 1. the guest-virtual to guest-physical
91 * 2. while doing 1. it walks guest-physical to host-physical
92 * If the hardware supports that we don't need to do shadow paging.
93 */
2f333bcb 94bool tdp_enabled = false;
18552672 95
1d92d2e8 96static int max_huge_page_level __read_mostly;
83013059 97static int max_tdp_level __read_mostly;
703c335d 98
8b1fe17c
XG
99enum {
100 AUDIT_PRE_PAGE_FAULT,
101 AUDIT_POST_PAGE_FAULT,
102 AUDIT_PRE_PTE_WRITE,
6903074c
XG
103 AUDIT_POST_PTE_WRITE,
104 AUDIT_PRE_SYNC,
105 AUDIT_POST_SYNC
8b1fe17c 106};
37a7d8b0 107
37a7d8b0 108#ifdef MMU_DEBUG
5a9624af 109bool dbg = 0;
fa4a2c08 110module_param(dbg, bool, 0644);
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
6aa8b732
AK
115#define PT32_LEVEL_BITS 10
116
117#define PT32_LEVEL_SHIFT(level) \
d77c26fc 118 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 119
e04da980
JR
120#define PT32_LVL_OFFSET_MASK(level) \
121 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
123
124#define PT32_INDEX(address, level)\
125 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126
127
6aa8b732
AK
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
90bb6fc5
AK
135#include <trace/events/kvm.h>
136
220f773a
TY
137/* make pte_list_desc fit well in cache line */
138#define PTE_LIST_EXT 3
139
9b8ebbdb 140/*
c4371c2a
SC
141 * Return values of handle_mmio_page_fault, mmu.page_fault, and fast_page_fault().
142 *
9b8ebbdb
PB
143 * RET_PF_RETRY: let CPU fault again on the address.
144 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
9b8ebbdb 145 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
c4371c2a
SC
146 * RET_PF_FIXED: The faulting entry has been fixed.
147 * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
9b8ebbdb
PB
148 */
149enum {
150 RET_PF_RETRY = 0,
c4371c2a
SC
151 RET_PF_EMULATE,
152 RET_PF_INVALID,
153 RET_PF_FIXED,
154 RET_PF_SPURIOUS,
9b8ebbdb
PB
155};
156
53c07b18
XG
157struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
cd4a4e53
AK
160};
161
2d11123a
AK
162struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
2d11123a 165 u64 *sptep;
dd3bfd59 166 int level;
2d11123a
AK
167 unsigned index;
168};
169
7eb77e9f
JS
170#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
171 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
172 (_root), (_addr)); \
173 shadow_walk_okay(&(_walker)); \
174 shadow_walk_next(&(_walker)))
175
176#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
177 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
178 shadow_walk_okay(&(_walker)); \
179 shadow_walk_next(&(_walker)))
180
c2a2ac2b
XG
181#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
182 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
183 shadow_walk_okay(&(_walker)) && \
184 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
185 __shadow_walk_next(&(_walker), spte))
186
53c07b18 187static struct kmem_cache *pte_list_desc_cache;
02c00b3a 188struct kmem_cache *mmu_page_header_cache;
45221ab6 189static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 190
ce88decf 191static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
192static union kvm_mmu_page_role
193kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 194
335e192a
PB
195#define CREATE_TRACE_POINTS
196#include "mmutrace.h"
197
40ef75a7
LT
198
199static inline bool kvm_available_flush_tlb_with_range(void)
200{
afaf0b2f 201 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
202}
203
204static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
205 struct kvm_tlb_range *range)
206{
207 int ret = -ENOTSUPP;
208
afaf0b2f
SC
209 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
210 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
211
212 if (ret)
213 kvm_flush_remote_tlbs(kvm);
214}
215
2f2fad08 216void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
217 u64 start_gfn, u64 pages)
218{
219 struct kvm_tlb_range range;
220
221 range.start_gfn = start_gfn;
222 range.pages = pages;
223
224 kvm_flush_remote_tlbs_with_range(kvm, &range);
225}
226
5a9624af 227bool is_nx_huge_page_enabled(void)
b8e8c830
PB
228{
229 return READ_ONCE(nx_huge_pages);
230}
231
8f79b064
BG
232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233 unsigned int access)
234{
235 u64 mask = make_mmio_spte(vcpu, gfn, access);
236 unsigned int gen = get_mmio_spte_generation(mask);
237
238 access = mask & ACC_ALL;
239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
ce88decf
XG
244static gfn_t get_mmio_spte_gfn(u64 spte)
245{
daa07cbc 246 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
247
248 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
249 & shadow_nonpresent_or_rsvd_mask;
250
251 return gpa >> PAGE_SHIFT;
ce88decf
XG
252}
253
254static unsigned get_mmio_spte_access(u64 spte)
255{
4af77151 256 return spte & shadow_mmio_access_mask;
ce88decf
XG
257}
258
54bf36aa 259static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 260 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
261{
262 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 263 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
264 return true;
265 }
266
267 return false;
268}
c7addb90 269
54bf36aa 270static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 271{
cae7ed3c 272 u64 kvm_gen, spte_gen, gen;
089504c0 273
cae7ed3c
SC
274 gen = kvm_vcpu_memslots(vcpu)->generation;
275 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
276 return false;
089504c0 277
cae7ed3c 278 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
279 spte_gen = get_mmio_spte_generation(spte);
280
281 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
282 return likely(kvm_gen == spte_gen);
f8f55942
XG
283}
284
cd313569
MG
285static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
286 struct x86_exception *exception)
287{
ec7771ab 288 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 289 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
290 exception->error_code |= PFERR_RSVD_MASK;
291 return UNMAPPED_GVA;
292 }
293
cd313569
MG
294 return gpa;
295}
296
6aa8b732
AK
297static int is_cpuid_PSE36(void)
298{
299 return 1;
300}
301
73b1087e
AK
302static int is_nx(struct kvm_vcpu *vcpu)
303{
f6801dff 304 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
305}
306
da928521
AK
307static gfn_t pse36_gfn_delta(u32 gpte)
308{
309 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
310
311 return (gpte & PT32_DIR_PSE36_MASK) << shift;
312}
313
603e0651 314#ifdef CONFIG_X86_64
d555c333 315static void __set_spte(u64 *sptep, u64 spte)
e663ee64 316{
b19ee2ff 317 WRITE_ONCE(*sptep, spte);
e663ee64
AK
318}
319
603e0651 320static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 321{
b19ee2ff 322 WRITE_ONCE(*sptep, spte);
603e0651
XG
323}
324
325static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
326{
327 return xchg(sptep, spte);
328}
c2a2ac2b
XG
329
330static u64 __get_spte_lockless(u64 *sptep)
331{
6aa7de05 332 return READ_ONCE(*sptep);
c2a2ac2b 333}
a9221dd5 334#else
603e0651
XG
335union split_spte {
336 struct {
337 u32 spte_low;
338 u32 spte_high;
339 };
340 u64 spte;
341};
a9221dd5 342
c2a2ac2b
XG
343static void count_spte_clear(u64 *sptep, u64 spte)
344{
57354682 345 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
346
347 if (is_shadow_present_pte(spte))
348 return;
349
350 /* Ensure the spte is completely set before we increase the count */
351 smp_wmb();
352 sp->clear_spte_count++;
353}
354
603e0651
XG
355static void __set_spte(u64 *sptep, u64 spte)
356{
357 union split_spte *ssptep, sspte;
a9221dd5 358
603e0651
XG
359 ssptep = (union split_spte *)sptep;
360 sspte = (union split_spte)spte;
361
362 ssptep->spte_high = sspte.spte_high;
363
364 /*
365 * If we map the spte from nonpresent to present, We should store
366 * the high bits firstly, then set present bit, so cpu can not
367 * fetch this spte while we are setting the spte.
368 */
369 smp_wmb();
370
b19ee2ff 371 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
372}
373
603e0651
XG
374static void __update_clear_spte_fast(u64 *sptep, u64 spte)
375{
376 union split_spte *ssptep, sspte;
377
378 ssptep = (union split_spte *)sptep;
379 sspte = (union split_spte)spte;
380
b19ee2ff 381 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
382
383 /*
384 * If we map the spte from present to nonpresent, we should clear
385 * present bit firstly to avoid vcpu fetch the old high bits.
386 */
387 smp_wmb();
388
389 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 390 count_spte_clear(sptep, spte);
603e0651
XG
391}
392
393static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
394{
395 union split_spte *ssptep, sspte, orig;
396
397 ssptep = (union split_spte *)sptep;
398 sspte = (union split_spte)spte;
399
400 /* xchg acts as a barrier before the setting of the high bits */
401 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
402 orig.spte_high = ssptep->spte_high;
403 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 404 count_spte_clear(sptep, spte);
603e0651
XG
405
406 return orig.spte;
407}
c2a2ac2b
XG
408
409/*
410 * The idea using the light way get the spte on x86_32 guest is from
39656e83 411 * gup_get_pte (mm/gup.c).
accaefe0
XG
412 *
413 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
414 * coalesces them and we are running out of the MMU lock. Therefore
415 * we need to protect against in-progress updates of the spte.
416 *
417 * Reading the spte while an update is in progress may get the old value
418 * for the high part of the spte. The race is fine for a present->non-present
419 * change (because the high part of the spte is ignored for non-present spte),
420 * but for a present->present change we must reread the spte.
421 *
422 * All such changes are done in two steps (present->non-present and
423 * non-present->present), hence it is enough to count the number of
424 * present->non-present updates: if it changed while reading the spte,
425 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
426 */
427static u64 __get_spte_lockless(u64 *sptep)
428{
57354682 429 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
430 union split_spte spte, *orig = (union split_spte *)sptep;
431 int count;
432
433retry:
434 count = sp->clear_spte_count;
435 smp_rmb();
436
437 spte.spte_low = orig->spte_low;
438 smp_rmb();
439
440 spte.spte_high = orig->spte_high;
441 smp_rmb();
442
443 if (unlikely(spte.spte_low != orig->spte_low ||
444 count != sp->clear_spte_count))
445 goto retry;
446
447 return spte.spte;
448}
603e0651
XG
449#endif
450
8672b721
XG
451static bool spte_has_volatile_bits(u64 spte)
452{
f160c7b7
JS
453 if (!is_shadow_present_pte(spte))
454 return false;
455
c7ba5b48 456 /*
6a6256f9 457 * Always atomically update spte if it can be updated
c7ba5b48
XG
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
f160c7b7
JS
462 if (spte_can_locklessly_be_made_writable(spte) ||
463 is_access_track_spte(spte))
c7ba5b48
XG
464 return true;
465
ac8d57e5 466 if (spte_ad_enabled(spte)) {
f160c7b7
JS
467 if ((spte & shadow_accessed_mask) == 0 ||
468 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
469 return true;
470 }
8672b721 471
f160c7b7 472 return false;
8672b721
XG
473}
474
1df9f2dc
XG
475/* Rules for using mmu_spte_set:
476 * Set the sptep from nonpresent to present.
477 * Note: the sptep being assigned *must* be either not present
478 * or in a state where the hardware will not attempt to update
479 * the spte.
480 */
481static void mmu_spte_set(u64 *sptep, u64 new_spte)
482{
483 WARN_ON(is_shadow_present_pte(*sptep));
484 __set_spte(sptep, new_spte);
485}
486
f39a058d
JS
487/*
488 * Update the SPTE (excluding the PFN), but do not track changes in its
489 * accessed/dirty status.
1df9f2dc 490 */
f39a058d 491static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 492{
c7ba5b48 493 u64 old_spte = *sptep;
4132779b 494
afd28fe1 495 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 496
6e7d0354
XG
497 if (!is_shadow_present_pte(old_spte)) {
498 mmu_spte_set(sptep, new_spte);
f39a058d 499 return old_spte;
6e7d0354 500 }
4132779b 501
c7ba5b48 502 if (!spte_has_volatile_bits(old_spte))
603e0651 503 __update_clear_spte_fast(sptep, new_spte);
4132779b 504 else
603e0651 505 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 506
83ef6c81
JS
507 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
508
f39a058d
JS
509 return old_spte;
510}
511
512/* Rules for using mmu_spte_update:
513 * Update the state bits, it means the mapped pfn is not changed.
514 *
515 * Whenever we overwrite a writable spte with a read-only one we
516 * should flush remote TLBs. Otherwise rmap_write_protect
517 * will find a read-only spte, even though the writable spte
518 * might be cached on a CPU's TLB, the return value indicates this
519 * case.
520 *
521 * Returns true if the TLB needs to be flushed
522 */
523static bool mmu_spte_update(u64 *sptep, u64 new_spte)
524{
525 bool flush = false;
526 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
527
528 if (!is_shadow_present_pte(old_spte))
529 return false;
530
c7ba5b48
XG
531 /*
532 * For the spte updated out of mmu-lock is safe, since
6a6256f9 533 * we always atomically update it, see the comments in
c7ba5b48
XG
534 * spte_has_volatile_bits().
535 */
ea4114bc 536 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 537 !is_writable_pte(new_spte))
83ef6c81 538 flush = true;
4132779b 539
7e71a59b 540 /*
83ef6c81 541 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
542 * to guarantee consistency between TLB and page tables.
543 */
7e71a59b 544
83ef6c81
JS
545 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
546 flush = true;
4132779b 547 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
548 }
549
550 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
551 flush = true;
4132779b 552 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 553 }
6e7d0354 554
83ef6c81 555 return flush;
b79b93f9
AK
556}
557
1df9f2dc
XG
558/*
559 * Rules for using mmu_spte_clear_track_bits:
560 * It sets the sptep from present to nonpresent, and track the
561 * state bits, it is used to clear the last level sptep.
83ef6c81 562 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
563 */
564static int mmu_spte_clear_track_bits(u64 *sptep)
565{
ba049e93 566 kvm_pfn_t pfn;
1df9f2dc
XG
567 u64 old_spte = *sptep;
568
569 if (!spte_has_volatile_bits(old_spte))
603e0651 570 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 571 else
603e0651 572 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 573
afd28fe1 574 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
575 return 0;
576
577 pfn = spte_to_pfn(old_spte);
86fde74c
XG
578
579 /*
580 * KVM does not hold the refcount of the page used by
581 * kvm mmu, before reclaiming the page, we should
582 * unmap it from mmu first.
583 */
bf4bea8e 584 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 585
83ef6c81 586 if (is_accessed_spte(old_spte))
1df9f2dc 587 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
588
589 if (is_dirty_spte(old_spte))
1df9f2dc 590 kvm_set_pfn_dirty(pfn);
83ef6c81 591
1df9f2dc
XG
592 return 1;
593}
594
595/*
596 * Rules for using mmu_spte_clear_no_track:
597 * Directly clear spte without caring the state bits of sptep,
598 * it is used to set the upper level spte.
599 */
600static void mmu_spte_clear_no_track(u64 *sptep)
601{
603e0651 602 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
603}
604
c2a2ac2b
XG
605static u64 mmu_spte_get_lockless(u64 *sptep)
606{
607 return __get_spte_lockless(sptep);
608}
609
d3e328f2
JS
610/* Restore an acc-track PTE back to a regular PTE */
611static u64 restore_acc_track_spte(u64 spte)
612{
613 u64 new_spte = spte;
614 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
615 & shadow_acc_track_saved_bits_mask;
616
ac8d57e5 617 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
618 WARN_ON_ONCE(!is_access_track_spte(spte));
619
620 new_spte &= ~shadow_acc_track_mask;
621 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
622 shadow_acc_track_saved_bits_shift);
623 new_spte |= saved_bits;
624
625 return new_spte;
626}
627
f160c7b7
JS
628/* Returns the Accessed status of the PTE and resets it at the same time. */
629static bool mmu_spte_age(u64 *sptep)
630{
631 u64 spte = mmu_spte_get_lockless(sptep);
632
633 if (!is_accessed_spte(spte))
634 return false;
635
ac8d57e5 636 if (spte_ad_enabled(spte)) {
f160c7b7
JS
637 clear_bit((ffs(shadow_accessed_mask) - 1),
638 (unsigned long *)sptep);
639 } else {
640 /*
641 * Capture the dirty status of the page, so that it doesn't get
642 * lost when the SPTE is marked for access tracking.
643 */
644 if (is_writable_pte(spte))
645 kvm_set_pfn_dirty(spte_to_pfn(spte));
646
647 spte = mark_spte_for_access_track(spte);
648 mmu_spte_update_no_track(sptep, spte);
649 }
650
651 return true;
652}
653
c2a2ac2b
XG
654static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
655{
c142786c
AK
656 /*
657 * Prevent page table teardown by making any free-er wait during
658 * kvm_flush_remote_tlbs() IPI to all active vcpus.
659 */
660 local_irq_disable();
36ca7e0a 661
c142786c
AK
662 /*
663 * Make sure a following spte read is not reordered ahead of the write
664 * to vcpu->mode.
665 */
36ca7e0a 666 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
667}
668
669static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
670{
c142786c
AK
671 /*
672 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 673 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
674 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
675 */
36ca7e0a 676 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 677 local_irq_enable();
c2a2ac2b
XG
678}
679
378f5cd6 680static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 681{
e2dec939
AK
682 int r;
683
531281ad 684 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
685 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 687 if (r)
284aa868 688 return r;
94ce87ef
SC
689 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
690 PT64_ROOT_MAX_LEVEL);
d3d25b04 691 if (r)
171a90d7 692 return r;
378f5cd6 693 if (maybe_indirect) {
94ce87ef
SC
694 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
695 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
696 if (r)
697 return r;
698 }
94ce87ef
SC
699 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
700 PT64_ROOT_MAX_LEVEL);
714b93da
AK
701}
702
703static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
704{
94ce87ef
SC
705 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
706 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
707 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
708 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
709}
710
53c07b18 711static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 712{
94ce87ef 713 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
714}
715
53c07b18 716static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 717{
53c07b18 718 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
719}
720
2032a93d
LJ
721static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
722{
723 if (!sp->role.direct)
724 return sp->gfns[index];
725
726 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
727}
728
729static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
730{
e9f2a760 731 if (!sp->role.direct) {
2032a93d 732 sp->gfns[index] = gfn;
e9f2a760
PB
733 return;
734 }
735
736 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
737 pr_err_ratelimited("gfn mismatch under direct page %llx "
738 "(expected %llx, got %llx)\n",
739 sp->gfn,
740 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
741}
742
05da4558 743/*
d4dbf470
TY
744 * Return the pointer to the large page information for a given gfn,
745 * handling slots that are not large page aligned.
05da4558 746 */
d4dbf470
TY
747static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
748 struct kvm_memory_slot *slot,
749 int level)
05da4558
MT
750{
751 unsigned long idx;
752
fb03cb6f 753 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 754 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
755}
756
547ffaed
XG
757static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
758 gfn_t gfn, int count)
759{
760 struct kvm_lpage_info *linfo;
761 int i;
762
3bae0459 763 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
764 linfo = lpage_info_slot(gfn, slot, i);
765 linfo->disallow_lpage += count;
766 WARN_ON(linfo->disallow_lpage < 0);
767 }
768}
769
770void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
771{
772 update_gfn_disallow_lpage_count(slot, gfn, 1);
773}
774
775void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
776{
777 update_gfn_disallow_lpage_count(slot, gfn, -1);
778}
779
3ed1a478 780static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 781{
699023e2 782 struct kvm_memslots *slots;
d25797b2 783 struct kvm_memory_slot *slot;
3ed1a478 784 gfn_t gfn;
05da4558 785
56ca57f9 786 kvm->arch.indirect_shadow_pages++;
3ed1a478 787 gfn = sp->gfn;
699023e2
PB
788 slots = kvm_memslots_for_spte_role(kvm, sp->role);
789 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
790
791 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 792 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
793 return kvm_slot_page_track_add_page(kvm, slot, gfn,
794 KVM_PAGE_TRACK_WRITE);
795
547ffaed 796 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
797}
798
b8e8c830
PB
799static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
800{
801 if (sp->lpage_disallowed)
802 return;
803
804 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
805 list_add_tail(&sp->lpage_disallowed_link,
806 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
807 sp->lpage_disallowed = true;
808}
809
3ed1a478 810static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 811{
699023e2 812 struct kvm_memslots *slots;
d25797b2 813 struct kvm_memory_slot *slot;
3ed1a478 814 gfn_t gfn;
05da4558 815
56ca57f9 816 kvm->arch.indirect_shadow_pages--;
3ed1a478 817 gfn = sp->gfn;
699023e2
PB
818 slots = kvm_memslots_for_spte_role(kvm, sp->role);
819 slot = __gfn_to_memslot(slots, gfn);
3bae0459 820 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
821 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
822 KVM_PAGE_TRACK_WRITE);
823
547ffaed 824 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
825}
826
b8e8c830
PB
827static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
828{
829 --kvm->stat.nx_lpage_splits;
830 sp->lpage_disallowed = false;
1aa9b957 831 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
832}
833
5d163b1c
XG
834static struct kvm_memory_slot *
835gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
836 bool no_dirty_log)
05da4558
MT
837{
838 struct kvm_memory_slot *slot;
5d163b1c 839
54bf36aa 840 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
841 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
842 return NULL;
843 if (no_dirty_log && slot->dirty_bitmap)
844 return NULL;
5d163b1c
XG
845
846 return slot;
847}
848
290fc38d 849/*
018aabb5 850 * About rmap_head encoding:
cd4a4e53 851 *
018aabb5
TY
852 * If the bit zero of rmap_head->val is clear, then it points to the only spte
853 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 854 * pte_list_desc containing more mappings.
018aabb5
TY
855 */
856
857/*
858 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 859 */
53c07b18 860static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 861 struct kvm_rmap_head *rmap_head)
cd4a4e53 862{
53c07b18 863 struct pte_list_desc *desc;
53a27b39 864 int i, count = 0;
cd4a4e53 865
018aabb5 866 if (!rmap_head->val) {
53c07b18 867 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
868 rmap_head->val = (unsigned long)spte;
869 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
870 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
871 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 872 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 873 desc->sptes[1] = spte;
018aabb5 874 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 875 ++count;
cd4a4e53 876 } else {
53c07b18 877 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 878 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 879 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 880 desc = desc->more;
53c07b18 881 count += PTE_LIST_EXT;
53a27b39 882 }
53c07b18
XG
883 if (desc->sptes[PTE_LIST_EXT-1]) {
884 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
885 desc = desc->more;
886 }
d555c333 887 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 888 ++count;
d555c333 889 desc->sptes[i] = spte;
cd4a4e53 890 }
53a27b39 891 return count;
cd4a4e53
AK
892}
893
53c07b18 894static void
018aabb5
TY
895pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
896 struct pte_list_desc *desc, int i,
897 struct pte_list_desc *prev_desc)
cd4a4e53
AK
898{
899 int j;
900
53c07b18 901 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 902 ;
d555c333
AK
903 desc->sptes[i] = desc->sptes[j];
904 desc->sptes[j] = NULL;
cd4a4e53
AK
905 if (j != 0)
906 return;
907 if (!prev_desc && !desc->more)
fe3c2b4c 908 rmap_head->val = 0;
cd4a4e53
AK
909 else
910 if (prev_desc)
911 prev_desc->more = desc->more;
912 else
018aabb5 913 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 914 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
915}
916
8daf3462 917static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 918{
53c07b18
XG
919 struct pte_list_desc *desc;
920 struct pte_list_desc *prev_desc;
cd4a4e53
AK
921 int i;
922
018aabb5 923 if (!rmap_head->val) {
8daf3462 924 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 925 BUG();
018aabb5 926 } else if (!(rmap_head->val & 1)) {
8daf3462 927 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 928 if ((u64 *)rmap_head->val != spte) {
8daf3462 929 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
930 BUG();
931 }
018aabb5 932 rmap_head->val = 0;
cd4a4e53 933 } else {
8daf3462 934 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 935 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
936 prev_desc = NULL;
937 while (desc) {
018aabb5 938 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 939 if (desc->sptes[i] == spte) {
018aabb5
TY
940 pte_list_desc_remove_entry(rmap_head,
941 desc, i, prev_desc);
cd4a4e53
AK
942 return;
943 }
018aabb5 944 }
cd4a4e53
AK
945 prev_desc = desc;
946 desc = desc->more;
947 }
8daf3462 948 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
949 BUG();
950 }
951}
952
e7912386
WY
953static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
954{
955 mmu_spte_clear_track_bits(sptep);
956 __pte_list_remove(sptep, rmap_head);
957}
958
018aabb5
TY
959static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
960 struct kvm_memory_slot *slot)
53c07b18 961{
77d11309 962 unsigned long idx;
53c07b18 963
77d11309 964 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 965 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
966}
967
018aabb5
TY
968static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
969 struct kvm_mmu_page *sp)
9b9b1492 970{
699023e2 971 struct kvm_memslots *slots;
9b9b1492
TY
972 struct kvm_memory_slot *slot;
973
699023e2
PB
974 slots = kvm_memslots_for_spte_role(kvm, sp->role);
975 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 976 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
977}
978
f759e2b4
XG
979static bool rmap_can_add(struct kvm_vcpu *vcpu)
980{
356ec69a 981 struct kvm_mmu_memory_cache *mc;
f759e2b4 982
356ec69a 983 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 984 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
985}
986
53c07b18
XG
987static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
988{
989 struct kvm_mmu_page *sp;
018aabb5 990 struct kvm_rmap_head *rmap_head;
53c07b18 991
57354682 992 sp = sptep_to_sp(spte);
53c07b18 993 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
994 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
995 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
996}
997
53c07b18
XG
998static void rmap_remove(struct kvm *kvm, u64 *spte)
999{
1000 struct kvm_mmu_page *sp;
1001 gfn_t gfn;
018aabb5 1002 struct kvm_rmap_head *rmap_head;
53c07b18 1003
57354682 1004 sp = sptep_to_sp(spte);
53c07b18 1005 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1006 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1007 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1008}
1009
1e3f42f0
TY
1010/*
1011 * Used by the following functions to iterate through the sptes linked by a
1012 * rmap. All fields are private and not assumed to be used outside.
1013 */
1014struct rmap_iterator {
1015 /* private fields */
1016 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1017 int pos; /* index of the sptep */
1018};
1019
1020/*
1021 * Iteration must be started by this function. This should also be used after
1022 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1023 * information in the iterator may not be valid.
1e3f42f0
TY
1024 *
1025 * Returns sptep if found, NULL otherwise.
1026 */
018aabb5
TY
1027static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1028 struct rmap_iterator *iter)
1e3f42f0 1029{
77fbbbd2
TY
1030 u64 *sptep;
1031
018aabb5 1032 if (!rmap_head->val)
1e3f42f0
TY
1033 return NULL;
1034
018aabb5 1035 if (!(rmap_head->val & 1)) {
1e3f42f0 1036 iter->desc = NULL;
77fbbbd2
TY
1037 sptep = (u64 *)rmap_head->val;
1038 goto out;
1e3f42f0
TY
1039 }
1040
018aabb5 1041 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1042 iter->pos = 0;
77fbbbd2
TY
1043 sptep = iter->desc->sptes[iter->pos];
1044out:
1045 BUG_ON(!is_shadow_present_pte(*sptep));
1046 return sptep;
1e3f42f0
TY
1047}
1048
1049/*
1050 * Must be used with a valid iterator: e.g. after rmap_get_first().
1051 *
1052 * Returns sptep if found, NULL otherwise.
1053 */
1054static u64 *rmap_get_next(struct rmap_iterator *iter)
1055{
77fbbbd2
TY
1056 u64 *sptep;
1057
1e3f42f0
TY
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1060 ++iter->pos;
1061 sptep = iter->desc->sptes[iter->pos];
1062 if (sptep)
77fbbbd2 1063 goto out;
1e3f42f0
TY
1064 }
1065
1066 iter->desc = iter->desc->more;
1067
1068 if (iter->desc) {
1069 iter->pos = 0;
1070 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1071 sptep = iter->desc->sptes[iter->pos];
1072 goto out;
1e3f42f0
TY
1073 }
1074 }
1075
1076 return NULL;
77fbbbd2
TY
1077out:
1078 BUG_ON(!is_shadow_present_pte(*sptep));
1079 return sptep;
1e3f42f0
TY
1080}
1081
018aabb5
TY
1082#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1083 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1084 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1085
c3707958 1086static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1087{
1df9f2dc 1088 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1089 rmap_remove(kvm, sptep);
be38d276
AK
1090}
1091
8e22f955
XG
1092
1093static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1094{
1095 if (is_large_pte(*sptep)) {
57354682 1096 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1097 drop_spte(kvm, sptep);
1098 --kvm->stat.lpages;
1099 return true;
1100 }
1101
1102 return false;
1103}
1104
1105static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1106{
c3134ce2 1107 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1108 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1109
1110 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1111 KVM_PAGES_PER_HPAGE(sp->role.level));
1112 }
8e22f955
XG
1113}
1114
1115/*
49fde340 1116 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1117 * spte write-protection is caused by protecting shadow page table.
49fde340 1118 *
b4619660 1119 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1120 * protection:
1121 * - for dirty logging, the spte can be set to writable at anytime if
1122 * its dirty bitmap is properly set.
1123 * - for spte protection, the spte can be writable only after unsync-ing
1124 * shadow page.
8e22f955 1125 *
c126d94f 1126 * Return true if tlb need be flushed.
8e22f955 1127 */
c4f138b4 1128static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1129{
1130 u64 spte = *sptep;
1131
49fde340 1132 if (!is_writable_pte(spte) &&
ea4114bc 1133 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1134 return false;
1135
1136 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1137
49fde340
XG
1138 if (pt_protect)
1139 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1140 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1141
c126d94f 1142 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1143}
1144
018aabb5
TY
1145static bool __rmap_write_protect(struct kvm *kvm,
1146 struct kvm_rmap_head *rmap_head,
245c3912 1147 bool pt_protect)
98348e95 1148{
1e3f42f0
TY
1149 u64 *sptep;
1150 struct rmap_iterator iter;
d13bc5b5 1151 bool flush = false;
374cbac0 1152
018aabb5 1153 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1154 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1155
d13bc5b5 1156 return flush;
a0ed4607
TY
1157}
1158
c4f138b4 1159static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1160{
1161 u64 spte = *sptep;
1162
1163 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1164
1f4e5fc8 1165 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1166 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1167 return mmu_spte_update(sptep, spte);
1168}
1169
1f4e5fc8 1170static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1171{
1172 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1173 (unsigned long *)sptep);
1f4e5fc8 1174 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1175 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1176
1177 return was_writable;
1178}
1179
1180/*
1181 * Gets the GFN ready for another round of dirty logging by clearing the
1182 * - D bit on ad-enabled SPTEs, and
1183 * - W bit on ad-disabled SPTEs.
1184 * Returns true iff any D or W bits were cleared.
1185 */
018aabb5 1186static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1187{
1188 u64 *sptep;
1189 struct rmap_iterator iter;
1190 bool flush = false;
1191
018aabb5 1192 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1193 if (spte_ad_need_write_protect(*sptep))
1194 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1195 else
1f4e5fc8 1196 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1197
1198 return flush;
1199}
1200
c4f138b4 1201static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1202{
1203 u64 spte = *sptep;
1204
1205 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1206
1f4e5fc8 1207 /*
afaf0b2f 1208 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1209 * do not bother adding back write access to pages marked
1210 * SPTE_AD_WRPROT_ONLY_MASK.
1211 */
f4b4b180
KH
1212 spte |= shadow_dirty_mask;
1213
1214 return mmu_spte_update(sptep, spte);
1215}
1216
018aabb5 1217static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1218{
1219 u64 *sptep;
1220 struct rmap_iterator iter;
1221 bool flush = false;
1222
018aabb5 1223 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1224 if (spte_ad_enabled(*sptep))
1225 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1226
1227 return flush;
1228}
1229
5dc99b23 1230/**
3b0f1d01 1231 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1232 * @kvm: kvm instance
1233 * @slot: slot to protect
1234 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1235 * @mask: indicates which pages we should protect
1236 *
1237 * Used when we do not need to care about huge page mappings: e.g. during dirty
1238 * logging we do not have any such mappings.
1239 */
3b0f1d01 1240static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1241 struct kvm_memory_slot *slot,
1242 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1243{
018aabb5 1244 struct kvm_rmap_head *rmap_head;
a0ed4607 1245
5dc99b23 1246 while (mask) {
018aabb5 1247 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1248 PG_LEVEL_4K, slot);
018aabb5 1249 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1250
5dc99b23
TY
1251 /* clear the first set bit */
1252 mask &= mask - 1;
1253 }
374cbac0
AK
1254}
1255
f4b4b180 1256/**
ac8d57e5
PF
1257 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1258 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1259 * @kvm: kvm instance
1260 * @slot: slot to clear D-bit
1261 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1262 * @mask: indicates which pages we should clear D-bit
1263 *
1264 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1265 */
1266void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1267 struct kvm_memory_slot *slot,
1268 gfn_t gfn_offset, unsigned long mask)
1269{
018aabb5 1270 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1271
1272 while (mask) {
018aabb5 1273 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1274 PG_LEVEL_4K, slot);
018aabb5 1275 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1276
1277 /* clear the first set bit */
1278 mask &= mask - 1;
1279 }
1280}
1281EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1282
3b0f1d01
KH
1283/**
1284 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1285 * PT level pages.
1286 *
1287 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1288 * enable dirty logging for them.
1289 *
1290 * Used when we do not need to care about huge page mappings: e.g. during dirty
1291 * logging we do not have any such mappings.
1292 */
1293void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1294 struct kvm_memory_slot *slot,
1295 gfn_t gfn_offset, unsigned long mask)
1296{
afaf0b2f
SC
1297 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1298 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1299 mask);
1300 else
1301 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1302}
1303
aeecee2e
XG
1304bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1305 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1306{
018aabb5 1307 struct kvm_rmap_head *rmap_head;
5dc99b23 1308 int i;
2f84569f 1309 bool write_protected = false;
95d4c16c 1310
3bae0459 1311 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1312 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1313 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1314 }
1315
1316 return write_protected;
95d4c16c
TY
1317}
1318
aeecee2e
XG
1319static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1320{
1321 struct kvm_memory_slot *slot;
1322
1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1325}
1326
018aabb5 1327static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1328{
1e3f42f0
TY
1329 u64 *sptep;
1330 struct rmap_iterator iter;
6a49f85c 1331 bool flush = false;
e930bffe 1332
018aabb5 1333 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1334 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1335
e7912386 1336 pte_list_remove(rmap_head, sptep);
6a49f85c 1337 flush = true;
e930bffe 1338 }
1e3f42f0 1339
6a49f85c
XG
1340 return flush;
1341}
1342
018aabb5 1343static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1344 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1345 unsigned long data)
1346{
018aabb5 1347 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1348}
1349
018aabb5 1350static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1351 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1352 unsigned long data)
3da0dd43 1353{
1e3f42f0
TY
1354 u64 *sptep;
1355 struct rmap_iterator iter;
3da0dd43 1356 int need_flush = 0;
1e3f42f0 1357 u64 new_spte;
3da0dd43 1358 pte_t *ptep = (pte_t *)data;
ba049e93 1359 kvm_pfn_t new_pfn;
3da0dd43
IE
1360
1361 WARN_ON(pte_huge(*ptep));
1362 new_pfn = pte_pfn(*ptep);
1e3f42f0 1363
0d536790 1364restart:
018aabb5 1365 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1366 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1367 sptep, *sptep, gfn, level);
1e3f42f0 1368
3da0dd43 1369 need_flush = 1;
1e3f42f0 1370
3da0dd43 1371 if (pte_write(*ptep)) {
e7912386 1372 pte_list_remove(rmap_head, sptep);
0d536790 1373 goto restart;
3da0dd43 1374 } else {
cb3eedab
PB
1375 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1376 *sptep, new_pfn);
1e3f42f0
TY
1377
1378 mmu_spte_clear_track_bits(sptep);
1379 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1380 }
1381 }
1e3f42f0 1382
3cc5ea94
LT
1383 if (need_flush && kvm_available_flush_tlb_with_range()) {
1384 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1385 return 0;
1386 }
1387
0cf853c5 1388 return need_flush;
3da0dd43
IE
1389}
1390
6ce1f4e2
XG
1391struct slot_rmap_walk_iterator {
1392 /* input fields. */
1393 struct kvm_memory_slot *slot;
1394 gfn_t start_gfn;
1395 gfn_t end_gfn;
1396 int start_level;
1397 int end_level;
1398
1399 /* output fields. */
1400 gfn_t gfn;
018aabb5 1401 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1402 int level;
1403
1404 /* private field. */
018aabb5 1405 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1406};
1407
1408static void
1409rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1410{
1411 iterator->level = level;
1412 iterator->gfn = iterator->start_gfn;
1413 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1414 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1415 iterator->slot);
1416}
1417
1418static void
1419slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1420 struct kvm_memory_slot *slot, int start_level,
1421 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1422{
1423 iterator->slot = slot;
1424 iterator->start_level = start_level;
1425 iterator->end_level = end_level;
1426 iterator->start_gfn = start_gfn;
1427 iterator->end_gfn = end_gfn;
1428
1429 rmap_walk_init_level(iterator, iterator->start_level);
1430}
1431
1432static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1433{
1434 return !!iterator->rmap;
1435}
1436
1437static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1438{
1439 if (++iterator->rmap <= iterator->end_rmap) {
1440 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1441 return;
1442 }
1443
1444 if (++iterator->level > iterator->end_level) {
1445 iterator->rmap = NULL;
1446 return;
1447 }
1448
1449 rmap_walk_init_level(iterator, iterator->level);
1450}
1451
1452#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1453 _start_gfn, _end_gfn, _iter_) \
1454 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1455 _end_level_, _start_gfn, _end_gfn); \
1456 slot_rmap_walk_okay(_iter_); \
1457 slot_rmap_walk_next(_iter_))
1458
84504ef3
TY
1459static int kvm_handle_hva_range(struct kvm *kvm,
1460 unsigned long start,
1461 unsigned long end,
1462 unsigned long data,
1463 int (*handler)(struct kvm *kvm,
018aabb5 1464 struct kvm_rmap_head *rmap_head,
048212d0 1465 struct kvm_memory_slot *slot,
8a9522d2
ALC
1466 gfn_t gfn,
1467 int level,
84504ef3 1468 unsigned long data))
e930bffe 1469{
bc6678a3 1470 struct kvm_memslots *slots;
be6ba0f0 1471 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1472 struct slot_rmap_walk_iterator iterator;
1473 int ret = 0;
9da0e4d5 1474 int i;
bc6678a3 1475
9da0e4d5
PB
1476 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1477 slots = __kvm_memslots(kvm, i);
1478 kvm_for_each_memslot(memslot, slots) {
1479 unsigned long hva_start, hva_end;
1480 gfn_t gfn_start, gfn_end;
e930bffe 1481
9da0e4d5
PB
1482 hva_start = max(start, memslot->userspace_addr);
1483 hva_end = min(end, memslot->userspace_addr +
1484 (memslot->npages << PAGE_SHIFT));
1485 if (hva_start >= hva_end)
1486 continue;
1487 /*
1488 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1489 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1490 */
1491 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1492 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1493
3bae0459 1494 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1495 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1496 gfn_start, gfn_end - 1,
1497 &iterator)
1498 ret |= handler(kvm, iterator.rmap, memslot,
1499 iterator.gfn, iterator.level, data);
1500 }
e930bffe
AA
1501 }
1502
f395302e 1503 return ret;
e930bffe
AA
1504}
1505
84504ef3
TY
1506static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1507 unsigned long data,
018aabb5
TY
1508 int (*handler)(struct kvm *kvm,
1509 struct kvm_rmap_head *rmap_head,
048212d0 1510 struct kvm_memory_slot *slot,
8a9522d2 1511 gfn_t gfn, int level,
84504ef3
TY
1512 unsigned long data))
1513{
1514 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1515}
1516
fdfe7cbd
WD
1517int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1518 unsigned flags)
b3ae2096
TY
1519{
1520 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1521}
1522
748c0e31 1523int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1524{
0cf853c5 1525 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1526}
1527
018aabb5 1528static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1529 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1530 unsigned long data)
e930bffe 1531{
1e3f42f0 1532 u64 *sptep;
3f649ab7 1533 struct rmap_iterator iter;
e930bffe
AA
1534 int young = 0;
1535
f160c7b7
JS
1536 for_each_rmap_spte(rmap_head, &iter, sptep)
1537 young |= mmu_spte_age(sptep);
0d536790 1538
8a9522d2 1539 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1540 return young;
1541}
1542
018aabb5 1543static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1544 struct kvm_memory_slot *slot, gfn_t gfn,
1545 int level, unsigned long data)
8ee53820 1546{
1e3f42f0
TY
1547 u64 *sptep;
1548 struct rmap_iterator iter;
8ee53820 1549
83ef6c81
JS
1550 for_each_rmap_spte(rmap_head, &iter, sptep)
1551 if (is_accessed_spte(*sptep))
1552 return 1;
83ef6c81 1553 return 0;
8ee53820
AA
1554}
1555
53a27b39
MT
1556#define RMAP_RECYCLE_THRESHOLD 1000
1557
852e3c19 1558static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1559{
018aabb5 1560 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1561 struct kvm_mmu_page *sp;
1562
57354682 1563 sp = sptep_to_sp(spte);
53a27b39 1564
018aabb5 1565 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1566
018aabb5 1567 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1568 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1569 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1570}
1571
57128468 1572int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1573{
57128468 1574 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1575}
1576
8ee53820
AA
1577int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1578{
1579 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1580}
1581
d6c69ee9 1582#ifdef MMU_DEBUG
47ad8e68 1583static int is_empty_shadow_page(u64 *spt)
6aa8b732 1584{
139bdb2d
AK
1585 u64 *pos;
1586 u64 *end;
1587
47ad8e68 1588 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1589 if (is_shadow_present_pte(*pos)) {
b8688d51 1590 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1591 pos, *pos);
6aa8b732 1592 return 0;
139bdb2d 1593 }
6aa8b732
AK
1594 return 1;
1595}
d6c69ee9 1596#endif
6aa8b732 1597
45221ab6
DH
1598/*
1599 * This value is the sum of all of the kvm instances's
1600 * kvm->arch.n_used_mmu_pages values. We need a global,
1601 * aggregate version in order to make the slab shrinker
1602 * faster
1603 */
bc8a3d89 1604static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1605{
1606 kvm->arch.n_used_mmu_pages += nr;
1607 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1608}
1609
834be0d8 1610static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1611{
fa4a2c08 1612 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1613 hlist_del(&sp->hash_link);
bd4c86ea
XG
1614 list_del(&sp->link);
1615 free_page((unsigned long)sp->spt);
834be0d8
GN
1616 if (!sp->role.direct)
1617 free_page((unsigned long)sp->gfns);
e8ad9a70 1618 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1619}
1620
cea0f0e7
AK
1621static unsigned kvm_page_table_hashfn(gfn_t gfn)
1622{
114df303 1623 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1624}
1625
714b93da 1626static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1627 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1628{
cea0f0e7
AK
1629 if (!parent_pte)
1630 return;
cea0f0e7 1631
67052b35 1632 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1633}
1634
4db35314 1635static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1636 u64 *parent_pte)
1637{
8daf3462 1638 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1639}
1640
bcdd9a93
XG
1641static void drop_parent_pte(struct kvm_mmu_page *sp,
1642 u64 *parent_pte)
1643{
1644 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1645 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1646}
1647
47005792 1648static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1649{
67052b35 1650 struct kvm_mmu_page *sp;
7ddca7e4 1651
94ce87ef
SC
1652 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1653 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1654 if (!direct)
94ce87ef 1655 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1656 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1657
1658 /*
1659 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1660 * depends on valid pages being added to the head of the list. See
1661 * comments in kvm_zap_obsolete_pages().
1662 */
ca333add 1663 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1664 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1665 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1666 return sp;
ad8cfbe3
MT
1667}
1668
67052b35 1669static void mark_unsync(u64 *spte);
1047df1f 1670static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1671{
74c4e63a
TY
1672 u64 *sptep;
1673 struct rmap_iterator iter;
1674
1675 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1676 mark_unsync(sptep);
1677 }
0074ff63
MT
1678}
1679
67052b35 1680static void mark_unsync(u64 *spte)
0074ff63 1681{
67052b35 1682 struct kvm_mmu_page *sp;
1047df1f 1683 unsigned int index;
0074ff63 1684
57354682 1685 sp = sptep_to_sp(spte);
1047df1f
XG
1686 index = spte - sp->spt;
1687 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1688 return;
1047df1f 1689 if (sp->unsync_children++)
0074ff63 1690 return;
1047df1f 1691 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1692}
1693
e8bc217a 1694static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1695 struct kvm_mmu_page *sp)
e8bc217a 1696{
1f50f1b3 1697 return 0;
e8bc217a
MT
1698}
1699
0f53b5b1
XG
1700static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1701 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1702 const void *pte)
0f53b5b1
XG
1703{
1704 WARN_ON(1);
1705}
1706
60c8aec6
MT
1707#define KVM_PAGE_ARRAY_NR 16
1708
1709struct kvm_mmu_pages {
1710 struct mmu_page_and_offset {
1711 struct kvm_mmu_page *sp;
1712 unsigned int idx;
1713 } page[KVM_PAGE_ARRAY_NR];
1714 unsigned int nr;
1715};
1716
cded19f3
HE
1717static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1718 int idx)
4731d4c7 1719{
60c8aec6 1720 int i;
4731d4c7 1721
60c8aec6
MT
1722 if (sp->unsync)
1723 for (i=0; i < pvec->nr; i++)
1724 if (pvec->page[i].sp == sp)
1725 return 0;
1726
1727 pvec->page[pvec->nr].sp = sp;
1728 pvec->page[pvec->nr].idx = idx;
1729 pvec->nr++;
1730 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1731}
1732
fd951457
TY
1733static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1734{
1735 --sp->unsync_children;
1736 WARN_ON((int)sp->unsync_children < 0);
1737 __clear_bit(idx, sp->unsync_child_bitmap);
1738}
1739
60c8aec6
MT
1740static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1741 struct kvm_mmu_pages *pvec)
1742{
1743 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1744
37178b8b 1745 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1746 struct kvm_mmu_page *child;
4731d4c7
MT
1747 u64 ent = sp->spt[i];
1748
fd951457
TY
1749 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1750 clear_unsync_child_bit(sp, i);
1751 continue;
1752 }
7a8f1a74 1753
e47c4aee 1754 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1755
1756 if (child->unsync_children) {
1757 if (mmu_pages_add(pvec, child, i))
1758 return -ENOSPC;
1759
1760 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1761 if (!ret) {
1762 clear_unsync_child_bit(sp, i);
1763 continue;
1764 } else if (ret > 0) {
7a8f1a74 1765 nr_unsync_leaf += ret;
fd951457 1766 } else
7a8f1a74
XG
1767 return ret;
1768 } else if (child->unsync) {
1769 nr_unsync_leaf++;
1770 if (mmu_pages_add(pvec, child, i))
1771 return -ENOSPC;
1772 } else
fd951457 1773 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1774 }
1775
60c8aec6
MT
1776 return nr_unsync_leaf;
1777}
1778
e23d3fef
XG
1779#define INVALID_INDEX (-1)
1780
60c8aec6
MT
1781static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1782 struct kvm_mmu_pages *pvec)
1783{
0a47cd85 1784 pvec->nr = 0;
60c8aec6
MT
1785 if (!sp->unsync_children)
1786 return 0;
1787
e23d3fef 1788 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1789 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1790}
1791
4731d4c7
MT
1792static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1793{
1794 WARN_ON(!sp->unsync);
5e1b3ddb 1795 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1796 sp->unsync = 0;
1797 --kvm->stat.mmu_unsync;
1798}
1799
83cdb568
SC
1800static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1801 struct list_head *invalid_list);
7775834a
XG
1802static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1803 struct list_head *invalid_list);
4731d4c7 1804
ac101b7c
SC
1805#define for_each_valid_sp(_kvm, _sp, _list) \
1806 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1807 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1808 } else
1044b030
TY
1809
1810#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1811 for_each_valid_sp(_kvm, _sp, \
1812 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1813 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1814
47c42e6b
SC
1815static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1816{
1817 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1818}
1819
f918b443 1820/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1821static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1822 struct list_head *invalid_list)
4731d4c7 1823{
47c42e6b
SC
1824 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1825 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1826 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1827 return false;
4731d4c7
MT
1828 }
1829
1f50f1b3 1830 return true;
4731d4c7
MT
1831}
1832
a2113634
SC
1833static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1834 struct list_head *invalid_list,
1835 bool remote_flush)
1836{
cfd32acf 1837 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1838 return false;
1839
1840 if (!list_empty(invalid_list))
1841 kvm_mmu_commit_zap_page(kvm, invalid_list);
1842 else
1843 kvm_flush_remote_tlbs(kvm);
1844 return true;
1845}
1846
35a70510
PB
1847static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1848 struct list_head *invalid_list,
1849 bool remote_flush, bool local_flush)
1d9dc7e0 1850{
a2113634 1851 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1852 return;
d98ba053 1853
a2113634 1854 if (local_flush)
8c8560b8 1855 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1856}
1857
e37fa785
XG
1858#ifdef CONFIG_KVM_MMU_AUDIT
1859#include "mmu_audit.c"
1860#else
1861static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1862static void mmu_audit_disable(void) { }
1863#endif
1864
002c5f73
SC
1865static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1866{
fac026da
SC
1867 return sp->role.invalid ||
1868 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1869}
1870
1f50f1b3 1871static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1872 struct list_head *invalid_list)
1d9dc7e0 1873{
9a43c5d9
PB
1874 kvm_unlink_unsync_page(vcpu->kvm, sp);
1875 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1876}
1877
9f1a122f 1878/* @gfn should be write-protected at the call site */
2a74003a
PB
1879static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1880 struct list_head *invalid_list)
9f1a122f 1881{
9f1a122f 1882 struct kvm_mmu_page *s;
2a74003a 1883 bool ret = false;
9f1a122f 1884
b67bfe0d 1885 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1886 if (!s->unsync)
9f1a122f
XG
1887 continue;
1888
3bae0459 1889 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1890 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1891 }
1892
2a74003a 1893 return ret;
9f1a122f
XG
1894}
1895
60c8aec6 1896struct mmu_page_path {
2a7266a8
YZ
1897 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1898 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1899};
1900
60c8aec6 1901#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1902 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1903 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1904 i = mmu_pages_next(&pvec, &parents, i))
1905
cded19f3
HE
1906static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1907 struct mmu_page_path *parents,
1908 int i)
60c8aec6
MT
1909{
1910 int n;
1911
1912 for (n = i+1; n < pvec->nr; n++) {
1913 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1914 unsigned idx = pvec->page[n].idx;
1915 int level = sp->role.level;
60c8aec6 1916
0a47cd85 1917 parents->idx[level-1] = idx;
3bae0459 1918 if (level == PG_LEVEL_4K)
0a47cd85 1919 break;
60c8aec6 1920
0a47cd85 1921 parents->parent[level-2] = sp;
60c8aec6
MT
1922 }
1923
1924 return n;
1925}
1926
0a47cd85
PB
1927static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1928 struct mmu_page_path *parents)
1929{
1930 struct kvm_mmu_page *sp;
1931 int level;
1932
1933 if (pvec->nr == 0)
1934 return 0;
1935
e23d3fef
XG
1936 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1937
0a47cd85
PB
1938 sp = pvec->page[0].sp;
1939 level = sp->role.level;
3bae0459 1940 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1941
1942 parents->parent[level-2] = sp;
1943
1944 /* Also set up a sentinel. Further entries in pvec are all
1945 * children of sp, so this element is never overwritten.
1946 */
1947 parents->parent[level-1] = NULL;
1948 return mmu_pages_next(pvec, parents, 0);
1949}
1950
cded19f3 1951static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1952{
60c8aec6
MT
1953 struct kvm_mmu_page *sp;
1954 unsigned int level = 0;
1955
1956 do {
1957 unsigned int idx = parents->idx[level];
60c8aec6
MT
1958 sp = parents->parent[level];
1959 if (!sp)
1960 return;
1961
e23d3fef 1962 WARN_ON(idx == INVALID_INDEX);
fd951457 1963 clear_unsync_child_bit(sp, idx);
60c8aec6 1964 level++;
0a47cd85 1965 } while (!sp->unsync_children);
60c8aec6 1966}
4731d4c7 1967
60c8aec6
MT
1968static void mmu_sync_children(struct kvm_vcpu *vcpu,
1969 struct kvm_mmu_page *parent)
1970{
1971 int i;
1972 struct kvm_mmu_page *sp;
1973 struct mmu_page_path parents;
1974 struct kvm_mmu_pages pages;
d98ba053 1975 LIST_HEAD(invalid_list);
50c9e6f3 1976 bool flush = false;
60c8aec6 1977
60c8aec6 1978 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1979 bool protected = false;
b1a36821
MT
1980
1981 for_each_sp(pages, sp, parents, i)
54bf36aa 1982 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 1983
50c9e6f3 1984 if (protected) {
b1a36821 1985 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
1986 flush = false;
1987 }
b1a36821 1988
60c8aec6 1989 for_each_sp(pages, sp, parents, i) {
1f50f1b3 1990 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1991 mmu_pages_clear_parents(&parents);
1992 }
50c9e6f3
PB
1993 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
1994 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1995 cond_resched_lock(&vcpu->kvm->mmu_lock);
1996 flush = false;
1997 }
60c8aec6 1998 }
50c9e6f3
PB
1999
2000 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2001}
2002
a30f47cb
XG
2003static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2004{
e5691a81 2005 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2006}
2007
2008static void clear_sp_write_flooding_count(u64 *spte)
2009{
57354682 2010 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2011}
2012
cea0f0e7
AK
2013static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2014 gfn_t gfn,
2015 gva_t gaddr,
2016 unsigned level,
f6e2c02b 2017 int direct,
0a2b64c5 2018 unsigned int access)
cea0f0e7 2019{
fb58a9c3 2020 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2021 union kvm_mmu_page_role role;
ac101b7c 2022 struct hlist_head *sp_list;
cea0f0e7 2023 unsigned quadrant;
9f1a122f 2024 struct kvm_mmu_page *sp;
9f1a122f 2025 bool need_sync = false;
2a74003a 2026 bool flush = false;
f3414bc7 2027 int collisions = 0;
2a74003a 2028 LIST_HEAD(invalid_list);
cea0f0e7 2029
36d9594d 2030 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2031 role.level = level;
f6e2c02b 2032 role.direct = direct;
84b0c8c6 2033 if (role.direct)
47c42e6b 2034 role.gpte_is_8_bytes = true;
41074d07 2035 role.access = access;
fb58a9c3 2036 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2037 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2038 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2039 role.quadrant = quadrant;
2040 }
ac101b7c
SC
2041
2042 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2043 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2044 if (sp->gfn != gfn) {
2045 collisions++;
2046 continue;
2047 }
2048
7ae680eb
XG
2049 if (!need_sync && sp->unsync)
2050 need_sync = true;
4731d4c7 2051
7ae680eb
XG
2052 if (sp->role.word != role.word)
2053 continue;
4731d4c7 2054
fb58a9c3
SC
2055 if (direct_mmu)
2056 goto trace_get_page;
2057
2a74003a
PB
2058 if (sp->unsync) {
2059 /* The page is good, but __kvm_sync_page might still end
2060 * up zapping it. If so, break in order to rebuild it.
2061 */
2062 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2063 break;
2064
2065 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2066 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2067 }
e02aa901 2068
98bba238 2069 if (sp->unsync_children)
f6f6195b 2070 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2071
a30f47cb 2072 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2073
2074trace_get_page:
7ae680eb 2075 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2076 goto out;
7ae680eb 2077 }
47005792 2078
dfc5aa00 2079 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2080
2081 sp = kvm_mmu_alloc_page(vcpu, direct);
2082
4db35314
AK
2083 sp->gfn = gfn;
2084 sp->role = role;
ac101b7c 2085 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2086 if (!direct) {
56ca57f9
XG
2087 /*
2088 * we should do write protection before syncing pages
2089 * otherwise the content of the synced shadow page may
2090 * be inconsistent with guest page table.
2091 */
2092 account_shadowed(vcpu->kvm, sp);
3bae0459 2093 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2094 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2095
3bae0459 2096 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2097 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2098 }
f691fe1d 2099 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2100
2101 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2102out:
2103 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2104 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2105 return sp;
cea0f0e7
AK
2106}
2107
7eb77e9f
JS
2108static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2109 struct kvm_vcpu *vcpu, hpa_t root,
2110 u64 addr)
2d11123a
AK
2111{
2112 iterator->addr = addr;
7eb77e9f 2113 iterator->shadow_addr = root;
44dd3ffa 2114 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2115
2a7266a8 2116 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2117 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2118 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2119 --iterator->level;
2120
2d11123a 2121 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2122 /*
2123 * prev_root is currently only used for 64-bit hosts. So only
2124 * the active root_hpa is valid here.
2125 */
44dd3ffa 2126 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2127
2d11123a 2128 iterator->shadow_addr
44dd3ffa 2129 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2130 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2131 --iterator->level;
2132 if (!iterator->shadow_addr)
2133 iterator->level = 0;
2134 }
2135}
2136
7eb77e9f
JS
2137static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2138 struct kvm_vcpu *vcpu, u64 addr)
2139{
44dd3ffa 2140 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2141 addr);
2142}
2143
2d11123a
AK
2144static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2145{
3bae0459 2146 if (iterator->level < PG_LEVEL_4K)
2d11123a 2147 return false;
4d88954d 2148
2d11123a
AK
2149 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2150 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2151 return true;
2152}
2153
c2a2ac2b
XG
2154static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2155 u64 spte)
2d11123a 2156{
c2a2ac2b 2157 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2158 iterator->level = 0;
2159 return;
2160 }
2161
c2a2ac2b 2162 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2163 --iterator->level;
2164}
2165
c2a2ac2b
XG
2166static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2167{
bb606a9b 2168 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2169}
2170
cc4674d0
BG
2171static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2172 struct kvm_mmu_page *sp)
2173{
2174 u64 spte;
2175
2176 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2177
2178 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2179
1df9f2dc 2180 mmu_spte_set(sptep, spte);
98bba238
TY
2181
2182 mmu_page_add_parent_pte(vcpu, sp, sptep);
2183
2184 if (sp->unsync_children || sp->unsync)
2185 mark_unsync(sptep);
32ef26a3
AK
2186}
2187
a357bd22
AK
2188static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2189 unsigned direct_access)
2190{
2191 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2192 struct kvm_mmu_page *child;
2193
2194 /*
2195 * For the direct sp, if the guest pte's dirty bit
2196 * changed form clean to dirty, it will corrupt the
2197 * sp's access: allow writable in the read-only sp,
2198 * so we should update the spte at this point to get
2199 * a new sp with the correct access.
2200 */
e47c4aee 2201 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2202 if (child->role.access == direct_access)
2203 return;
2204
bcdd9a93 2205 drop_parent_pte(child, sptep);
c3134ce2 2206 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2207 }
2208}
2209
2de4085c
BG
2210/* Returns the number of zapped non-leaf child shadow pages. */
2211static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2212 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2213{
2214 u64 pte;
2215 struct kvm_mmu_page *child;
2216
2217 pte = *spte;
2218 if (is_shadow_present_pte(pte)) {
505aef8f 2219 if (is_last_spte(pte, sp->role.level)) {
c3707958 2220 drop_spte(kvm, spte);
505aef8f
XG
2221 if (is_large_pte(pte))
2222 --kvm->stat.lpages;
2223 } else {
e47c4aee 2224 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2225 drop_parent_pte(child, spte);
2de4085c
BG
2226
2227 /*
2228 * Recursively zap nested TDP SPs, parentless SPs are
2229 * unlikely to be used again in the near future. This
2230 * avoids retaining a large number of stale nested SPs.
2231 */
2232 if (tdp_enabled && invalid_list &&
2233 child->role.guest_mode && !child->parent_ptes.val)
2234 return kvm_mmu_prepare_zap_page(kvm, child,
2235 invalid_list);
38e3b2b2 2236 }
ace569e0 2237 } else if (is_mmio_spte(pte)) {
ce88decf 2238 mmu_spte_clear_no_track(spte);
ace569e0 2239 }
2de4085c 2240 return 0;
38e3b2b2
XG
2241}
2242
2de4085c
BG
2243static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2244 struct kvm_mmu_page *sp,
2245 struct list_head *invalid_list)
a436036b 2246{
2de4085c 2247 int zapped = 0;
697fe2e2 2248 unsigned i;
697fe2e2 2249
38e3b2b2 2250 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2251 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2252
2253 return zapped;
a436036b
AK
2254}
2255
31aa2b44 2256static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2257{
1e3f42f0
TY
2258 u64 *sptep;
2259 struct rmap_iterator iter;
a436036b 2260
018aabb5 2261 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2262 drop_parent_pte(sp, sptep);
31aa2b44
AK
2263}
2264
60c8aec6 2265static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2266 struct kvm_mmu_page *parent,
2267 struct list_head *invalid_list)
4731d4c7 2268{
60c8aec6
MT
2269 int i, zapped = 0;
2270 struct mmu_page_path parents;
2271 struct kvm_mmu_pages pages;
4731d4c7 2272
3bae0459 2273 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2274 return 0;
60c8aec6 2275
60c8aec6
MT
2276 while (mmu_unsync_walk(parent, &pages)) {
2277 struct kvm_mmu_page *sp;
2278
2279 for_each_sp(pages, sp, parents, i) {
7775834a 2280 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2281 mmu_pages_clear_parents(&parents);
77662e00 2282 zapped++;
60c8aec6 2283 }
60c8aec6
MT
2284 }
2285
2286 return zapped;
4731d4c7
MT
2287}
2288
83cdb568
SC
2289static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2290 struct kvm_mmu_page *sp,
2291 struct list_head *invalid_list,
2292 int *nr_zapped)
31aa2b44 2293{
83cdb568 2294 bool list_unstable;
f691fe1d 2295
7775834a 2296 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2297 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2298 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2299 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2300 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2301
83cdb568
SC
2302 /* Zapping children means active_mmu_pages has become unstable. */
2303 list_unstable = *nr_zapped;
2304
f6e2c02b 2305 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2306 unaccount_shadowed(kvm, sp);
5304b8d3 2307
4731d4c7
MT
2308 if (sp->unsync)
2309 kvm_unlink_unsync_page(kvm, sp);
4db35314 2310 if (!sp->root_count) {
54a4f023 2311 /* Count self */
83cdb568 2312 (*nr_zapped)++;
f95eec9b
SC
2313
2314 /*
2315 * Already invalid pages (previously active roots) are not on
2316 * the active page list. See list_del() in the "else" case of
2317 * !sp->root_count.
2318 */
2319 if (sp->role.invalid)
2320 list_add(&sp->link, invalid_list);
2321 else
2322 list_move(&sp->link, invalid_list);
aa6bd187 2323 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2324 } else {
f95eec9b
SC
2325 /*
2326 * Remove the active root from the active page list, the root
2327 * will be explicitly freed when the root_count hits zero.
2328 */
2329 list_del(&sp->link);
05988d72 2330
10605204
SC
2331 /*
2332 * Obsolete pages cannot be used on any vCPUs, see the comment
2333 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2334 * treats invalid shadow pages as being obsolete.
2335 */
2336 if (!is_obsolete_sp(kvm, sp))
05988d72 2337 kvm_reload_remote_mmus(kvm);
2e53d63a 2338 }
7775834a 2339
b8e8c830
PB
2340 if (sp->lpage_disallowed)
2341 unaccount_huge_nx_page(kvm, sp);
2342
7775834a 2343 sp->role.invalid = 1;
83cdb568
SC
2344 return list_unstable;
2345}
2346
2347static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2348 struct list_head *invalid_list)
2349{
2350 int nr_zapped;
2351
2352 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2353 return nr_zapped;
a436036b
AK
2354}
2355
7775834a
XG
2356static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2357 struct list_head *invalid_list)
2358{
945315b9 2359 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2360
2361 if (list_empty(invalid_list))
2362 return;
2363
c142786c 2364 /*
9753f529
LT
2365 * We need to make sure everyone sees our modifications to
2366 * the page tables and see changes to vcpu->mode here. The barrier
2367 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2368 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2369 *
2370 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2371 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2372 */
2373 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2374
945315b9 2375 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2376 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2377 kvm_mmu_free_page(sp);
945315b9 2378 }
7775834a
XG
2379}
2380
6b82ef2c
SC
2381static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2382 unsigned long nr_to_zap)
5da59607 2383{
6b82ef2c
SC
2384 unsigned long total_zapped = 0;
2385 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2386 LIST_HEAD(invalid_list);
6b82ef2c
SC
2387 bool unstable;
2388 int nr_zapped;
5da59607
TY
2389
2390 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2391 return 0;
2392
6b82ef2c
SC
2393restart:
2394 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2395 /*
2396 * Don't zap active root pages, the page itself can't be freed
2397 * and zapping it will just force vCPUs to realloc and reload.
2398 */
2399 if (sp->root_count)
2400 continue;
2401
2402 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2403 &nr_zapped);
2404 total_zapped += nr_zapped;
2405 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2406 break;
2407
6b82ef2c
SC
2408 if (unstable)
2409 goto restart;
ba7888dd 2410 }
5da59607 2411
6b82ef2c
SC
2412 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2413
2414 kvm->stat.mmu_recycled += total_zapped;
2415 return total_zapped;
2416}
2417
afe8d7e6
SC
2418static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2419{
2420 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2421 return kvm->arch.n_max_mmu_pages -
2422 kvm->arch.n_used_mmu_pages;
2423
2424 return 0;
5da59607
TY
2425}
2426
ba7888dd
SC
2427static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2428{
6b82ef2c 2429 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2430
6b82ef2c 2431 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2432 return 0;
2433
6b82ef2c 2434 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2435
2436 if (!kvm_mmu_available_pages(vcpu->kvm))
2437 return -ENOSPC;
2438 return 0;
2439}
2440
82ce2c96
IE
2441/*
2442 * Changing the number of mmu pages allocated to the vm
49d5ca26 2443 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2444 */
bc8a3d89 2445void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2446{
b34cb590
TY
2447 spin_lock(&kvm->mmu_lock);
2448
49d5ca26 2449 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2450 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2451 goal_nr_mmu_pages);
82ce2c96 2452
49d5ca26 2453 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2454 }
82ce2c96 2455
49d5ca26 2456 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2457
2458 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2459}
2460
1cb3f3ae 2461int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2462{
4db35314 2463 struct kvm_mmu_page *sp;
d98ba053 2464 LIST_HEAD(invalid_list);
a436036b
AK
2465 int r;
2466
9ad17b10 2467 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2468 r = 0;
1cb3f3ae 2469 spin_lock(&kvm->mmu_lock);
b67bfe0d 2470 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2471 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2472 sp->role.word);
2473 r = 1;
f41d335a 2474 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2475 }
d98ba053 2476 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2477 spin_unlock(&kvm->mmu_lock);
2478
a436036b 2479 return r;
cea0f0e7 2480}
1cb3f3ae 2481EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2482
5c520e90 2483static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2484{
2485 trace_kvm_mmu_unsync_page(sp);
2486 ++vcpu->kvm->stat.mmu_unsync;
2487 sp->unsync = 1;
2488
2489 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2490}
2491
5a9624af
PB
2492bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2493 bool can_unsync)
4731d4c7 2494{
5c520e90 2495 struct kvm_mmu_page *sp;
4731d4c7 2496
3d0c27ad
XG
2497 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2498 return true;
9cf5cf5a 2499
5c520e90 2500 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2501 if (!can_unsync)
3d0c27ad 2502 return true;
36a2e677 2503
5c520e90
XG
2504 if (sp->unsync)
2505 continue;
9cf5cf5a 2506
3bae0459 2507 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2508 kvm_unsync_page(vcpu, sp);
4731d4c7 2509 }
3d0c27ad 2510
578e1c4d
JS
2511 /*
2512 * We need to ensure that the marking of unsync pages is visible
2513 * before the SPTE is updated to allow writes because
2514 * kvm_mmu_sync_roots() checks the unsync flags without holding
2515 * the MMU lock and so can race with this. If the SPTE was updated
2516 * before the page had been marked as unsync-ed, something like the
2517 * following could happen:
2518 *
2519 * CPU 1 CPU 2
2520 * ---------------------------------------------------------------------
2521 * 1.2 Host updates SPTE
2522 * to be writable
2523 * 2.1 Guest writes a GPTE for GVA X.
2524 * (GPTE being in the guest page table shadowed
2525 * by the SP from CPU 1.)
2526 * This reads SPTE during the page table walk.
2527 * Since SPTE.W is read as 1, there is no
2528 * fault.
2529 *
2530 * 2.2 Guest issues TLB flush.
2531 * That causes a VM Exit.
2532 *
2533 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2534 * Since it is false, so it just returns.
2535 *
2536 * 2.4 Guest accesses GVA X.
2537 * Since the mapping in the SP was not updated,
2538 * so the old mapping for GVA X incorrectly
2539 * gets used.
2540 * 1.1 Host marks SP
2541 * as unsync
2542 * (sp->unsync = true)
2543 *
2544 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2545 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2546 * pairs with this write barrier.
2547 */
2548 smp_wmb();
2549
3d0c27ad 2550 return false;
4731d4c7
MT
2551}
2552
799a4190
BG
2553static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2554 unsigned int pte_access, int level,
2555 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2556 bool can_unsync, bool host_writable)
2557{
2558 u64 spte;
2559 struct kvm_mmu_page *sp;
2560 int ret;
2561
2562 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2563 return 0;
2564
2565 sp = sptep_to_sp(sptep);
2566
2567 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2568 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2569
2570 if (spte & PT_WRITABLE_MASK)
2571 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2572
12703759
SC
2573 if (*sptep == spte)
2574 ret |= SET_SPTE_SPURIOUS;
2575 else if (mmu_spte_update(sptep, spte))
5ce4786f 2576 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2577 return ret;
2578}
2579
0a2b64c5 2580static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2581 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2582 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2583 bool host_writable)
1e73f9dd
MT
2584{
2585 int was_rmapped = 0;
53a27b39 2586 int rmap_count;
5ce4786f 2587 int set_spte_ret;
c4371c2a 2588 int ret = RET_PF_FIXED;
c2a4eadf 2589 bool flush = false;
1e73f9dd 2590
f7616203
XG
2591 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2592 *sptep, write_fault, gfn);
1e73f9dd 2593
afd28fe1 2594 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2595 /*
2596 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2597 * the parent of the now unreachable PTE.
2598 */
3bae0459 2599 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2600 struct kvm_mmu_page *child;
d555c333 2601 u64 pte = *sptep;
1e73f9dd 2602
e47c4aee 2603 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2604 drop_parent_pte(child, sptep);
c2a4eadf 2605 flush = true;
d555c333 2606 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2607 pgprintk("hfn old %llx new %llx\n",
d555c333 2608 spte_to_pfn(*sptep), pfn);
c3707958 2609 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2610 flush = true;
6bed6b9e
JR
2611 } else
2612 was_rmapped = 1;
1e73f9dd 2613 }
852e3c19 2614
5ce4786f
JS
2615 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2616 speculative, true, host_writable);
2617 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2618 if (write_fault)
9b8ebbdb 2619 ret = RET_PF_EMULATE;
8c8560b8 2620 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2621 }
c3134ce2 2622
c2a4eadf 2623 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2624 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2625 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2626
029499b4 2627 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 2628 ret = RET_PF_EMULATE;
ce88decf 2629
12703759
SC
2630 /*
2631 * The fault is fully spurious if and only if the new SPTE and old SPTE
2632 * are identical, and emulation is not required.
2633 */
2634 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2635 WARN_ON_ONCE(!was_rmapped);
2636 return RET_PF_SPURIOUS;
2637 }
2638
d555c333 2639 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2640 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2641 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2642 ++vcpu->kvm->stat.lpages;
2643
ffb61bb3 2644 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2645 if (!was_rmapped) {
2646 rmap_count = rmap_add(vcpu, sptep, gfn);
2647 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2648 rmap_recycle(vcpu, sptep, gfn);
2649 }
1c4f1fd6 2650 }
cb9aaa30 2651
9b8ebbdb 2652 return ret;
1c4f1fd6
AK
2653}
2654
ba049e93 2655static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2656 bool no_dirty_log)
2657{
2658 struct kvm_memory_slot *slot;
957ed9ef 2659
5d163b1c 2660 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2661 if (!slot)
6c8ee57b 2662 return KVM_PFN_ERR_FAULT;
957ed9ef 2663
037d92dc 2664 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2665}
2666
2667static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2668 struct kvm_mmu_page *sp,
2669 u64 *start, u64 *end)
2670{
2671 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2672 struct kvm_memory_slot *slot;
0a2b64c5 2673 unsigned int access = sp->role.access;
957ed9ef
XG
2674 int i, ret;
2675 gfn_t gfn;
2676
2677 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2678 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2679 if (!slot)
957ed9ef
XG
2680 return -1;
2681
d9ef13c2 2682 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2683 if (ret <= 0)
2684 return -1;
2685
43fdcda9 2686 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2687 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2688 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2689 put_page(pages[i]);
2690 }
957ed9ef
XG
2691
2692 return 0;
2693}
2694
2695static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2696 struct kvm_mmu_page *sp, u64 *sptep)
2697{
2698 u64 *spte, *start = NULL;
2699 int i;
2700
2701 WARN_ON(!sp->role.direct);
2702
2703 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2704 spte = sp->spt + i;
2705
2706 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2707 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2708 if (!start)
2709 continue;
2710 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2711 break;
2712 start = NULL;
2713 } else if (!start)
2714 start = spte;
2715 }
2716}
2717
2718static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2719{
2720 struct kvm_mmu_page *sp;
2721
57354682 2722 sp = sptep_to_sp(sptep);
ac8d57e5 2723
957ed9ef 2724 /*
ac8d57e5
PF
2725 * Without accessed bits, there's no way to distinguish between
2726 * actually accessed translations and prefetched, so disable pte
2727 * prefetch if accessed bits aren't available.
957ed9ef 2728 */
ac8d57e5 2729 if (sp_ad_disabled(sp))
957ed9ef
XG
2730 return;
2731
3bae0459 2732 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2733 return;
2734
2735 __direct_pte_prefetch(vcpu, sp, sptep);
2736}
2737
db543216 2738static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 2739 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 2740{
db543216
SC
2741 unsigned long hva;
2742 pte_t *pte;
2743 int level;
2744
e851265a 2745 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2746 return PG_LEVEL_4K;
db543216 2747
293e306e
SC
2748 /*
2749 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2750 * is not solely for performance, it's also necessary to avoid the
2751 * "writable" check in __gfn_to_hva_many(), which will always fail on
2752 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2753 * page fault steps have already verified the guest isn't writing a
2754 * read-only memslot.
2755 */
db543216
SC
2756 hva = __gfn_to_hva_memslot(slot, gfn);
2757
2758 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2759 if (unlikely(!pte))
3bae0459 2760 return PG_LEVEL_4K;
db543216
SC
2761
2762 return level;
2763}
2764
83f06fa7 2765static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3cf06612
SC
2766 int max_level, kvm_pfn_t *pfnp,
2767 bool huge_page_disallowed, int *req_level)
0885904d 2768{
293e306e 2769 struct kvm_memory_slot *slot;
2c0629f4 2770 struct kvm_lpage_info *linfo;
0885904d 2771 kvm_pfn_t pfn = *pfnp;
17eff019 2772 kvm_pfn_t mask;
83f06fa7 2773 int level;
17eff019 2774
3cf06612
SC
2775 *req_level = PG_LEVEL_4K;
2776
3bae0459
SC
2777 if (unlikely(max_level == PG_LEVEL_4K))
2778 return PG_LEVEL_4K;
17eff019 2779
e851265a 2780 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2781 return PG_LEVEL_4K;
17eff019 2782
293e306e
SC
2783 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2784 if (!slot)
3bae0459 2785 return PG_LEVEL_4K;
293e306e 2786
1d92d2e8 2787 max_level = min(max_level, max_huge_page_level);
3bae0459 2788 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
2789 linfo = lpage_info_slot(gfn, slot, max_level);
2790 if (!linfo->disallow_lpage)
293e306e
SC
2791 break;
2792 }
2793
3bae0459
SC
2794 if (max_level == PG_LEVEL_4K)
2795 return PG_LEVEL_4K;
293e306e
SC
2796
2797 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 2798 if (level == PG_LEVEL_4K)
83f06fa7 2799 return level;
17eff019 2800
3cf06612
SC
2801 *req_level = level = min(level, max_level);
2802
2803 /*
2804 * Enforce the iTLB multihit workaround after capturing the requested
2805 * level, which will be used to do precise, accurate accounting.
2806 */
2807 if (huge_page_disallowed)
2808 return PG_LEVEL_4K;
0885904d
SC
2809
2810 /*
17eff019
SC
2811 * mmu_notifier_retry() was successful and mmu_lock is held, so
2812 * the pmd can't be split from under us.
0885904d 2813 */
17eff019
SC
2814 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2815 VM_BUG_ON((gfn & mask) != (pfn & mask));
2816 *pfnp = pfn & ~mask;
83f06fa7
SC
2817
2818 return level;
0885904d
SC
2819}
2820
b8e8c830
PB
2821static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
2822 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
2823{
2824 int level = *levelp;
2825 u64 spte = *it.sptep;
2826
3bae0459 2827 if (it.level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2828 is_shadow_present_pte(spte) &&
2829 !is_large_pte(spte)) {
2830 /*
2831 * A small SPTE exists for this pfn, but FNAME(fetch)
2832 * and __direct_map would like to create a large PTE
2833 * instead: just force them to go down another level,
2834 * patching back for them into pfn the next 9 bits of
2835 * the address.
2836 */
2837 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
2838 *pfnp |= gfn & page_mask;
2839 (*levelp)--;
2840 }
2841}
2842
6c2fd34f 2843static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2844 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2845 bool prefault, bool is_tdp)
140754bc 2846{
6c2fd34f
SC
2847 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2848 bool write = error_code & PFERR_WRITE_MASK;
2849 bool exec = error_code & PFERR_FETCH_MASK;
2850 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2851 struct kvm_shadow_walk_iterator it;
140754bc 2852 struct kvm_mmu_page *sp;
3cf06612 2853 int level, req_level, ret;
3fcf2d1b
PB
2854 gfn_t gfn = gpa >> PAGE_SHIFT;
2855 gfn_t base_gfn = gfn;
6aa8b732 2856
0c7a98e3 2857 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2858 return RET_PF_RETRY;
989c6b34 2859
3cf06612
SC
2860 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2861 huge_page_disallowed, &req_level);
4cd071d1 2862
335e192a 2863 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2864 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2865 /*
2866 * We cannot overwrite existing page tables with an NX
2867 * large page, as the leaf could be executable.
2868 */
dcc70651
SC
2869 if (nx_huge_page_workaround_enabled)
2870 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
b8e8c830 2871
3fcf2d1b
PB
2872 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2873 if (it.level == level)
9f652d21 2874 break;
6aa8b732 2875
3fcf2d1b
PB
2876 drop_large_spte(vcpu, it.sptep);
2877 if (!is_shadow_present_pte(*it.sptep)) {
2878 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2879 it.level - 1, true, ACC_ALL);
c9fa0b3b 2880
3fcf2d1b 2881 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2882 if (is_tdp && huge_page_disallowed &&
2883 req_level >= it.level)
b8e8c830 2884 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2885 }
2886 }
3fcf2d1b
PB
2887
2888 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2889 write, level, base_gfn, pfn, prefault,
2890 map_writable);
12703759
SC
2891 if (ret == RET_PF_SPURIOUS)
2892 return ret;
2893
3fcf2d1b
PB
2894 direct_pte_prefetch(vcpu, it.sptep);
2895 ++vcpu->stat.pf_fixed;
2896 return ret;
6aa8b732
AK
2897}
2898
77db5cbd 2899static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2900{
585a8b9b 2901 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2902}
2903
ba049e93 2904static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2905{
4d8b81ab
XG
2906 /*
2907 * Do not cache the mmio info caused by writing the readonly gfn
2908 * into the spte otherwise read access on readonly gfn also can
2909 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2910 */
2911 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2912 return RET_PF_EMULATE;
4d8b81ab 2913
e6c1502b 2914 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2915 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2916 return RET_PF_RETRY;
d7c55201 2917 }
edba23e5 2918
2c151b25 2919 return -EFAULT;
bf998156
HY
2920}
2921
d7c55201 2922static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2923 kvm_pfn_t pfn, unsigned int access,
2924 int *ret_val)
d7c55201 2925{
d7c55201 2926 /* The pfn is invalid, report the error! */
81c52c56 2927 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2928 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2929 return true;
d7c55201
XG
2930 }
2931
ce88decf 2932 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
2933 vcpu_cache_mmio_info(vcpu, gva, gfn,
2934 access & shadow_mmio_access_mask);
d7c55201 2935
798e88b3 2936 return false;
d7c55201
XG
2937}
2938
e5552fd2 2939static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2940{
1c118b82
XG
2941 /*
2942 * Do not fix the mmio spte with invalid generation number which
2943 * need to be updated by slow page fault path.
2944 */
2945 if (unlikely(error_code & PFERR_RSVD_MASK))
2946 return false;
2947
f160c7b7
JS
2948 /* See if the page fault is due to an NX violation */
2949 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2950 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2951 return false;
2952
c7ba5b48 2953 /*
f160c7b7
JS
2954 * #PF can be fast if:
2955 * 1. The shadow page table entry is not present, which could mean that
2956 * the fault is potentially caused by access tracking (if enabled).
2957 * 2. The shadow page table entry is present and the fault
2958 * is caused by write-protect, that means we just need change the W
2959 * bit of the spte which can be done out of mmu-lock.
2960 *
2961 * However, if access tracking is disabled we know that a non-present
2962 * page must be a genuine page fault where we have to create a new SPTE.
2963 * So, if access tracking is disabled, we return true only for write
2964 * accesses to a present page.
c7ba5b48 2965 */
c7ba5b48 2966
f160c7b7
JS
2967 return shadow_acc_track_mask != 0 ||
2968 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2969 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2970}
2971
97dceba2
JS
2972/*
2973 * Returns true if the SPTE was fixed successfully. Otherwise,
2974 * someone else modified the SPTE from its original value.
2975 */
c7ba5b48 2976static bool
92a476cb 2977fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 2978 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 2979{
c7ba5b48
XG
2980 gfn_t gfn;
2981
2982 WARN_ON(!sp->role.direct);
2983
9b51a630
KH
2984 /*
2985 * Theoretically we could also set dirty bit (and flush TLB) here in
2986 * order to eliminate unnecessary PML logging. See comments in
2987 * set_spte. But fast_page_fault is very unlikely to happen with PML
2988 * enabled, so we do not do this. This might result in the same GPA
2989 * to be logged in PML buffer again when the write really happens, and
2990 * eventually to be called by mark_page_dirty twice. But it's also no
2991 * harm. This also avoids the TLB flush needed after setting dirty bit
2992 * so non-PML cases won't be impacted.
2993 *
2994 * Compare with set_spte where instead shadow_dirty_mask is set.
2995 */
f160c7b7 2996 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
2997 return false;
2998
d3e328f2 2999 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3000 /*
3001 * The gfn of direct spte is stable since it is
3002 * calculated by sp->gfn.
3003 */
3004 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3005 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3006 }
c7ba5b48
XG
3007
3008 return true;
3009}
3010
d3e328f2
JS
3011static bool is_access_allowed(u32 fault_err_code, u64 spte)
3012{
3013 if (fault_err_code & PFERR_FETCH_MASK)
3014 return is_executable_pte(spte);
3015
3016 if (fault_err_code & PFERR_WRITE_MASK)
3017 return is_writable_pte(spte);
3018
3019 /* Fault was on Read access */
3020 return spte & PT_PRESENT_MASK;
3021}
3022
c7ba5b48 3023/*
c4371c2a 3024 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3025 */
c4371c2a
SC
3026static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3027 u32 error_code)
c7ba5b48
XG
3028{
3029 struct kvm_shadow_walk_iterator iterator;
92a476cb 3030 struct kvm_mmu_page *sp;
c4371c2a 3031 int ret = RET_PF_INVALID;
c7ba5b48 3032 u64 spte = 0ull;
97dceba2 3033 uint retry_count = 0;
c7ba5b48 3034
e5552fd2 3035 if (!page_fault_can_be_fast(error_code))
c4371c2a 3036 return ret;
c7ba5b48
XG
3037
3038 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3039
97dceba2 3040 do {
d3e328f2 3041 u64 new_spte;
c7ba5b48 3042
736c291c 3043 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3044 if (!is_shadow_present_pte(spte))
d162f30a
JS
3045 break;
3046
57354682 3047 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3048 if (!is_last_spte(spte, sp->role.level))
3049 break;
c7ba5b48 3050
97dceba2 3051 /*
f160c7b7
JS
3052 * Check whether the memory access that caused the fault would
3053 * still cause it if it were to be performed right now. If not,
3054 * then this is a spurious fault caused by TLB lazily flushed,
3055 * or some other CPU has already fixed the PTE after the
3056 * current CPU took the fault.
97dceba2
JS
3057 *
3058 * Need not check the access of upper level table entries since
3059 * they are always ACC_ALL.
3060 */
d3e328f2 3061 if (is_access_allowed(error_code, spte)) {
c4371c2a 3062 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3063 break;
3064 }
f160c7b7 3065
d3e328f2
JS
3066 new_spte = spte;
3067
3068 if (is_access_track_spte(spte))
3069 new_spte = restore_acc_track_spte(new_spte);
3070
3071 /*
3072 * Currently, to simplify the code, write-protection can
3073 * be removed in the fast path only if the SPTE was
3074 * write-protected for dirty-logging or access tracking.
3075 */
3076 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3077 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3078 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3079
3080 /*
d3e328f2
JS
3081 * Do not fix write-permission on the large spte. Since
3082 * we only dirty the first page into the dirty-bitmap in
3083 * fast_pf_fix_direct_spte(), other pages are missed
3084 * if its slot has dirty logging enabled.
3085 *
3086 * Instead, we let the slow page fault path create a
3087 * normal spte to fix the access.
3088 *
3089 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3090 */
3bae0459 3091 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3092 break;
97dceba2 3093 }
c7ba5b48 3094
f160c7b7 3095 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3096 if (new_spte == spte ||
3097 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3098 break;
3099
3100 /*
3101 * Currently, fast page fault only works for direct mapping
3102 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3103 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3104 */
c4371c2a
SC
3105 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3106 new_spte)) {
3107 ret = RET_PF_FIXED;
97dceba2 3108 break;
c4371c2a 3109 }
97dceba2
JS
3110
3111 if (++retry_count > 4) {
3112 printk_once(KERN_WARNING
3113 "kvm: Fast #PF retrying more than 4 times.\n");
3114 break;
3115 }
3116
97dceba2 3117 } while (true);
c126d94f 3118
736c291c 3119 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3120 spte, ret);
c7ba5b48
XG
3121 walk_shadow_page_lockless_end(vcpu);
3122
c4371c2a 3123 return ret;
c7ba5b48
XG
3124}
3125
74b566e6
JS
3126static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3127 struct list_head *invalid_list)
17ac10ad 3128{
4db35314 3129 struct kvm_mmu_page *sp;
17ac10ad 3130
74b566e6 3131 if (!VALID_PAGE(*root_hpa))
7b53aa56 3132 return;
35af577a 3133
e47c4aee 3134 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3135
3136 if (kvm_mmu_put_root(kvm, sp)) {
3137 if (sp->tdp_mmu_page)
3138 kvm_tdp_mmu_free_root(kvm, sp);
3139 else if (sp->role.invalid)
3140 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3141 }
17ac10ad 3142
74b566e6
JS
3143 *root_hpa = INVALID_PAGE;
3144}
3145
08fb59d8 3146/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3147void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3148 ulong roots_to_free)
74b566e6 3149{
4d710de9 3150 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3151 int i;
3152 LIST_HEAD(invalid_list);
08fb59d8 3153 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3154
b94742c9 3155 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3156
08fb59d8 3157 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3158 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3159 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3160 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3161 VALID_PAGE(mmu->prev_roots[i].hpa))
3162 break;
3163
3164 if (i == KVM_MMU_NUM_PREV_ROOTS)
3165 return;
3166 }
35af577a 3167
4d710de9 3168 spin_lock(&kvm->mmu_lock);
17ac10ad 3169
b94742c9
JS
3170 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3171 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3172 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3173 &invalid_list);
7c390d35 3174
08fb59d8
JS
3175 if (free_active_root) {
3176 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3177 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3178 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
08fb59d8
JS
3179 } else {
3180 for (i = 0; i < 4; ++i)
3181 if (mmu->pae_root[i] != 0)
4d710de9 3182 mmu_free_root_page(kvm,
08fb59d8
JS
3183 &mmu->pae_root[i],
3184 &invalid_list);
3185 mmu->root_hpa = INVALID_PAGE;
3186 }
be01e8e2 3187 mmu->root_pgd = 0;
17ac10ad 3188 }
74b566e6 3189
4d710de9
SC
3190 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3191 spin_unlock(&kvm->mmu_lock);
17ac10ad 3192}
74b566e6 3193EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3194
8986ecc0
MT
3195static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3196{
3197 int ret = 0;
3198
995decb6 3199 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3200 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3201 ret = 1;
3202 }
3203
3204 return ret;
3205}
3206
8123f265
SC
3207static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3208 u8 level, bool direct)
651dd37a
JR
3209{
3210 struct kvm_mmu_page *sp;
8123f265
SC
3211
3212 spin_lock(&vcpu->kvm->mmu_lock);
3213
3214 if (make_mmu_pages_available(vcpu)) {
3215 spin_unlock(&vcpu->kvm->mmu_lock);
3216 return INVALID_PAGE;
3217 }
3218 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3219 ++sp->root_count;
3220
3221 spin_unlock(&vcpu->kvm->mmu_lock);
3222 return __pa(sp->spt);
3223}
3224
3225static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3226{
3227 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3228 hpa_t root;
7ebaf15e 3229 unsigned i;
651dd37a 3230
02c00b3a
BG
3231 if (vcpu->kvm->arch.tdp_mmu_enabled) {
3232 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3233
3234 if (!VALID_PAGE(root))
3235 return -ENOSPC;
3236 vcpu->arch.mmu->root_hpa = root;
3237 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3238 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3239 true);
3240
8123f265 3241 if (!VALID_PAGE(root))
ed52870f 3242 return -ENOSPC;
8123f265
SC
3243 vcpu->arch.mmu->root_hpa = root;
3244 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3245 for (i = 0; i < 4; ++i) {
8123f265 3246 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3247
8123f265
SC
3248 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3249 i << 30, PT32_ROOT_LEVEL, true);
3250 if (!VALID_PAGE(root))
ed52870f 3251 return -ENOSPC;
44dd3ffa 3252 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3253 }
44dd3ffa 3254 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3255 } else
3256 BUG();
3651c7fc 3257
be01e8e2
SC
3258 /* root_pgd is ignored for direct MMUs. */
3259 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3260
3261 return 0;
3262}
3263
3264static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3265{
81407ca5 3266 u64 pdptr, pm_mask;
be01e8e2 3267 gfn_t root_gfn, root_pgd;
8123f265 3268 hpa_t root;
81407ca5 3269 int i;
3bb65a22 3270
be01e8e2
SC
3271 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3272 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3273
651dd37a
JR
3274 if (mmu_check_root(vcpu, root_gfn))
3275 return 1;
3276
3277 /*
3278 * Do we shadow a long mode page table? If so we need to
3279 * write-protect the guests page table root.
3280 */
44dd3ffa 3281 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3282 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3283
8123f265
SC
3284 root = mmu_alloc_root(vcpu, root_gfn, 0,
3285 vcpu->arch.mmu->shadow_root_level, false);
3286 if (!VALID_PAGE(root))
ed52870f 3287 return -ENOSPC;
44dd3ffa 3288 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3289 goto set_root_pgd;
17ac10ad 3290 }
f87f9288 3291
651dd37a
JR
3292 /*
3293 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3294 * or a PAE 3-level page table. In either case we need to be aware that
3295 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3296 */
81407ca5 3297 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3298 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3299 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3300
17ac10ad 3301 for (i = 0; i < 4; ++i) {
8123f265 3302 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3303 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3304 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3305 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3306 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3307 continue;
3308 }
6de4f3ad 3309 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3310 if (mmu_check_root(vcpu, root_gfn))
3311 return 1;
5a7388c2 3312 }
8facbbff 3313
8123f265
SC
3314 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3315 PT32_ROOT_LEVEL, false);
3316 if (!VALID_PAGE(root))
3317 return -ENOSPC;
44dd3ffa 3318 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3319 }
44dd3ffa 3320 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3321
3322 /*
3323 * If we shadow a 32 bit page table with a long mode page
3324 * table we enter this path.
3325 */
44dd3ffa
VK
3326 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3327 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3328 /*
3329 * The additional page necessary for this is only
3330 * allocated on demand.
3331 */
3332
3333 u64 *lm_root;
3334
254272ce 3335 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3336 if (lm_root == NULL)
3337 return 1;
3338
44dd3ffa 3339 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3340
44dd3ffa 3341 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3342 }
3343
44dd3ffa 3344 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3345 }
3346
be01e8e2
SC
3347set_root_pgd:
3348 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3349
8986ecc0 3350 return 0;
17ac10ad
AK
3351}
3352
651dd37a
JR
3353static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3354{
44dd3ffa 3355 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3356 return mmu_alloc_direct_roots(vcpu);
3357 else
3358 return mmu_alloc_shadow_roots(vcpu);
3359}
3360
578e1c4d 3361void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3362{
3363 int i;
3364 struct kvm_mmu_page *sp;
3365
44dd3ffa 3366 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3367 return;
3368
44dd3ffa 3369 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3370 return;
6903074c 3371
56f17dd3 3372 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3373
44dd3ffa
VK
3374 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3375 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3376 sp = to_shadow_page(root);
578e1c4d
JS
3377
3378 /*
3379 * Even if another CPU was marking the SP as unsync-ed
3380 * simultaneously, any guest page table changes are not
3381 * guaranteed to be visible anyway until this VCPU issues a TLB
3382 * flush strictly after those changes are made. We only need to
3383 * ensure that the other CPU sets these flags before any actual
3384 * changes to the page tables are made. The comments in
3385 * mmu_need_write_protect() describe what could go wrong if this
3386 * requirement isn't satisfied.
3387 */
3388 if (!smp_load_acquire(&sp->unsync) &&
3389 !smp_load_acquire(&sp->unsync_children))
3390 return;
3391
3392 spin_lock(&vcpu->kvm->mmu_lock);
3393 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3394
0ba73cda 3395 mmu_sync_children(vcpu, sp);
578e1c4d 3396
0375f7fa 3397 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3398 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3399 return;
3400 }
578e1c4d
JS
3401
3402 spin_lock(&vcpu->kvm->mmu_lock);
3403 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3404
0ba73cda 3405 for (i = 0; i < 4; ++i) {
44dd3ffa 3406 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3407
8986ecc0 3408 if (root && VALID_PAGE(root)) {
0ba73cda 3409 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3410 sp = to_shadow_page(root);
0ba73cda
MT
3411 mmu_sync_children(vcpu, sp);
3412 }
3413 }
0ba73cda 3414
578e1c4d 3415 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3416 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3417}
bfd0a56b 3418EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3419
736c291c 3420static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3421 u32 access, struct x86_exception *exception)
6aa8b732 3422{
ab9ae313
AK
3423 if (exception)
3424 exception->error_code = 0;
6aa8b732
AK
3425 return vaddr;
3426}
3427
736c291c 3428static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3429 u32 access,
3430 struct x86_exception *exception)
6539e738 3431{
ab9ae313
AK
3432 if (exception)
3433 exception->error_code = 0;
54987b7a 3434 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3435}
3436
d625b155
XG
3437static bool
3438__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3439{
b5c3c1b3 3440 int bit7 = (pte >> 7) & 1;
d625b155 3441
b5c3c1b3 3442 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3443}
3444
b5c3c1b3 3445static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3446{
b5c3c1b3 3447 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3448}
3449
ded58749 3450static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3451{
9034e6e8
PB
3452 /*
3453 * A nested guest cannot use the MMIO cache if it is using nested
3454 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3455 */
3456 if (mmu_is_nested(vcpu))
3457 return false;
3458
ce88decf
XG
3459 if (direct)
3460 return vcpu_match_mmio_gpa(vcpu, addr);
3461
3462 return vcpu_match_mmio_gva(vcpu, addr);
3463}
3464
47ab8751
XG
3465/* return true if reserved bit is detected on spte. */
3466static bool
3467walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3468{
3469 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3470 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3471 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3472 int root, leaf;
3473 bool reserved = false;
ce88decf 3474
b5c3c1b3 3475 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3476
ce88decf 3477 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3478
29ecd660
PB
3479 for (shadow_walk_init(&iterator, vcpu, addr),
3480 leaf = root = iterator.level;
47ab8751
XG
3481 shadow_walk_okay(&iterator);
3482 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3483 spte = mmu_spte_get_lockless(iterator.sptep);
3484
3485 sptes[leaf - 1] = spte;
29ecd660 3486 leaf--;
47ab8751 3487
ce88decf
XG
3488 if (!is_shadow_present_pte(spte))
3489 break;
47ab8751 3490
b5c3c1b3
SC
3491 /*
3492 * Use a bitwise-OR instead of a logical-OR to aggregate the
3493 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3494 * adding a Jcc in the loop.
3495 */
3496 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3497 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3498 }
3499
ce88decf
XG
3500 walk_shadow_page_lockless_end(vcpu);
3501
47ab8751
XG
3502 if (reserved) {
3503 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3504 __func__, addr);
29ecd660 3505 while (root > leaf) {
47ab8751
XG
3506 pr_err("------ spte 0x%llx level %d.\n",
3507 sptes[root - 1], root);
3508 root--;
3509 }
3510 }
ddce6208 3511
47ab8751
XG
3512 *sptep = spte;
3513 return reserved;
ce88decf
XG
3514}
3515
e08d26f0 3516static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3517{
3518 u64 spte;
47ab8751 3519 bool reserved;
ce88decf 3520
ded58749 3521 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3522 return RET_PF_EMULATE;
ce88decf 3523
47ab8751 3524 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3525 if (WARN_ON(reserved))
9b8ebbdb 3526 return -EINVAL;
ce88decf
XG
3527
3528 if (is_mmio_spte(spte)) {
3529 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3530 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3531
54bf36aa 3532 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3533 return RET_PF_INVALID;
f8f55942 3534
ce88decf
XG
3535 if (direct)
3536 addr = 0;
4f022648
XG
3537
3538 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3539 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3540 return RET_PF_EMULATE;
ce88decf
XG
3541 }
3542
ce88decf
XG
3543 /*
3544 * If the page table is zapped by other cpus, let CPU fault again on
3545 * the address.
3546 */
9b8ebbdb 3547 return RET_PF_RETRY;
ce88decf 3548}
ce88decf 3549
3d0c27ad
XG
3550static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3551 u32 error_code, gfn_t gfn)
3552{
3553 if (unlikely(error_code & PFERR_RSVD_MASK))
3554 return false;
3555
3556 if (!(error_code & PFERR_PRESENT_MASK) ||
3557 !(error_code & PFERR_WRITE_MASK))
3558 return false;
3559
3560 /*
3561 * guest is writing the page which is write tracked which can
3562 * not be fixed by page fault handler.
3563 */
3564 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3565 return true;
3566
3567 return false;
3568}
3569
e5691a81
XG
3570static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3571{
3572 struct kvm_shadow_walk_iterator iterator;
3573 u64 spte;
3574
e5691a81
XG
3575 walk_shadow_page_lockless_begin(vcpu);
3576 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3577 clear_sp_write_flooding_count(iterator.sptep);
3578 if (!is_shadow_present_pte(spte))
3579 break;
3580 }
3581 walk_shadow_page_lockless_end(vcpu);
3582}
3583
e8c22266
VK
3584static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3585 gfn_t gfn)
af585b92
GN
3586{
3587 struct kvm_arch_async_pf arch;
fb67e14f 3588
7c90705b 3589 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3590 arch.gfn = gfn;
44dd3ffa 3591 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3592 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3593
9f1a8526
SC
3594 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3595 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3596}
3597
78b2c54a 3598static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
3599 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3600 bool *writable)
af585b92 3601{
c36b7150 3602 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3603 bool async;
3604
c36b7150
PB
3605 /* Don't expose private memslots to L2. */
3606 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3607 *pfn = KVM_PFN_NOSLOT;
c583eed6 3608 *writable = false;
3a2936de
JM
3609 return false;
3610 }
3611
3520469d
PB
3612 async = false;
3613 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3614 if (!async)
3615 return false; /* *pfn has correct page already */
3616
9bc1f09f 3617 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3618 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3619 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3620 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3621 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3622 return true;
9f1a8526 3623 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3624 return true;
3625 }
3626
3520469d 3627 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3628 return false;
3629}
3630
0f90e1c1
SC
3631static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3632 bool prefault, int max_level, bool is_tdp)
6aa8b732 3633{
367fd790 3634 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3635 bool map_writable;
6aa8b732 3636
0f90e1c1
SC
3637 gfn_t gfn = gpa >> PAGE_SHIFT;
3638 unsigned long mmu_seq;
3639 kvm_pfn_t pfn;
83f06fa7 3640 int r;
ce88decf 3641
3d0c27ad 3642 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3643 return RET_PF_EMULATE;
ce88decf 3644
c4371c2a
SC
3645 r = fast_page_fault(vcpu, gpa, error_code);
3646 if (r != RET_PF_INVALID)
3647 return r;
83291445 3648
378f5cd6 3649 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3650 if (r)
3651 return r;
714b93da 3652
367fd790
SC
3653 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3654 smp_rmb();
3655
3656 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3657 return RET_PF_RETRY;
3658
0f90e1c1 3659 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3660 return r;
6aa8b732 3661
367fd790
SC
3662 r = RET_PF_RETRY;
3663 spin_lock(&vcpu->kvm->mmu_lock);
3664 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3665 goto out_unlock;
7bd7ded6
SC
3666 r = make_mmu_pages_available(vcpu);
3667 if (r)
367fd790 3668 goto out_unlock;
6c2fd34f
SC
3669 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3670 prefault, is_tdp);
0f90e1c1 3671
367fd790
SC
3672out_unlock:
3673 spin_unlock(&vcpu->kvm->mmu_lock);
3674 kvm_release_pfn_clean(pfn);
3675 return r;
6aa8b732
AK
3676}
3677
0f90e1c1
SC
3678static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3679 u32 error_code, bool prefault)
3680{
3681 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3682
3683 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3684 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3685 PG_LEVEL_2M, false);
0f90e1c1
SC
3686}
3687
1261bfa3 3688int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3689 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3690{
3691 int r = 1;
9ce372b3 3692 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3693
736c291c
SC
3694#ifndef CONFIG_X86_64
3695 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3696 if (WARN_ON_ONCE(fault_address >> 32))
3697 return -EFAULT;
3698#endif
3699
c595ceee 3700 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3701 if (!flags) {
1261bfa3
WL
3702 trace_kvm_page_fault(fault_address, error_code);
3703
d0006530 3704 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3705 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3706 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3707 insn_len);
9ce372b3 3708 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3709 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3710 local_irq_disable();
6bca69ad 3711 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3712 local_irq_enable();
9ce372b3
VK
3713 } else {
3714 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3715 }
9ce372b3 3716
1261bfa3
WL
3717 return r;
3718}
3719EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3720
7a02674d
SC
3721int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3722 bool prefault)
fb72d167 3723{
cb9b88c6 3724 int max_level;
fb72d167 3725
e662ec3e 3726 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3727 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3728 max_level--) {
3729 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3730 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3731
cb9b88c6
SC
3732 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3733 break;
fd136902 3734 }
852e3c19 3735
0f90e1c1
SC
3736 return direct_page_fault(vcpu, gpa, error_code, prefault,
3737 max_level, true);
fb72d167
JR
3738}
3739
8a3c1a33
PB
3740static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3741 struct kvm_mmu *context)
6aa8b732 3742{
6aa8b732 3743 context->page_fault = nonpaging_page_fault;
6aa8b732 3744 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3745 context->sync_page = nonpaging_sync_page;
5efac074 3746 context->invlpg = NULL;
0f53b5b1 3747 context->update_pte = nonpaging_update_pte;
cea0f0e7 3748 context->root_level = 0;
6aa8b732 3749 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3750 context->direct_map = true;
2d48a985 3751 context->nx = false;
6aa8b732
AK
3752}
3753
be01e8e2 3754static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3755 union kvm_mmu_page_role role)
3756{
be01e8e2 3757 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3758 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3759 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3760}
3761
b94742c9 3762/*
be01e8e2 3763 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3764 * The current root is also inserted into the cache.
3765 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3766 * returned.
3767 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3768 * false is returned. This root should now be freed by the caller.
3769 */
be01e8e2 3770static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3771 union kvm_mmu_page_role new_role)
3772{
3773 uint i;
3774 struct kvm_mmu_root_info root;
44dd3ffa 3775 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3776
be01e8e2 3777 root.pgd = mmu->root_pgd;
b94742c9
JS
3778 root.hpa = mmu->root_hpa;
3779
be01e8e2 3780 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3781 return true;
3782
b94742c9
JS
3783 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3784 swap(root, mmu->prev_roots[i]);
3785
be01e8e2 3786 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3787 break;
3788 }
3789
3790 mmu->root_hpa = root.hpa;
be01e8e2 3791 mmu->root_pgd = root.pgd;
b94742c9
JS
3792
3793 return i < KVM_MMU_NUM_PREV_ROOTS;
3794}
3795
be01e8e2 3796static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3797 union kvm_mmu_page_role new_role)
6aa8b732 3798{
44dd3ffa 3799 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3800
3801 /*
3802 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3803 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3804 * later if necessary.
3805 */
3806 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3807 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3808 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3809
3810 return false;
6aa8b732
AK
3811}
3812
be01e8e2 3813static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3814 union kvm_mmu_page_role new_role,
4a632ac6 3815 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3816{
be01e8e2 3817 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3818 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3819 return;
3820 }
3821
3822 /*
3823 * It's possible that the cached previous root page is obsolete because
3824 * of a change in the MMU generation number. However, changing the
3825 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3826 * free the root set here and allocate a new one.
3827 */
3828 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3829
71fe7013 3830 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3831 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3832 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3833 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3834
3835 /*
3836 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3837 * switching to a new CR3, that GVA->GPA mapping may no longer be
3838 * valid. So clear any cached MMIO info even when we don't need to sync
3839 * the shadow page tables.
3840 */
3841 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3842
e47c4aee 3843 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3844}
3845
be01e8e2 3846void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3847 bool skip_mmu_sync)
0aab33e4 3848{
be01e8e2 3849 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3850 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3851}
be01e8e2 3852EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3853
5777ed34
JR
3854static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3855{
9f8fe504 3856 return kvm_read_cr3(vcpu);
5777ed34
JR
3857}
3858
54bf36aa 3859static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 3860 unsigned int access, int *nr_present)
ce88decf
XG
3861{
3862 if (unlikely(is_mmio_spte(*sptep))) {
3863 if (gfn != get_mmio_spte_gfn(*sptep)) {
3864 mmu_spte_clear_no_track(sptep);
3865 return true;
3866 }
3867
3868 (*nr_present)++;
54bf36aa 3869 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3870 return true;
3871 }
3872
3873 return false;
3874}
3875
6bb69c9b
PB
3876static inline bool is_last_gpte(struct kvm_mmu *mmu,
3877 unsigned level, unsigned gpte)
6fd01b71 3878{
6bb69c9b
PB
3879 /*
3880 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3881 * If it is clear, there are no large pages at this level, so clear
3882 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3883 */
3884 gpte &= level - mmu->last_nonleaf_level;
3885
829ee279 3886 /*
3bae0459
SC
3887 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
3888 * iff level <= PG_LEVEL_4K, which for our purpose means
3889 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 3890 */
3bae0459 3891 gpte |= level - PG_LEVEL_4K - 1;
829ee279 3892
6bb69c9b 3893 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3894}
3895
37406aaa
NHE
3896#define PTTYPE_EPT 18 /* arbitrary */
3897#define PTTYPE PTTYPE_EPT
3898#include "paging_tmpl.h"
3899#undef PTTYPE
3900
6aa8b732
AK
3901#define PTTYPE 64
3902#include "paging_tmpl.h"
3903#undef PTTYPE
3904
3905#define PTTYPE 32
3906#include "paging_tmpl.h"
3907#undef PTTYPE
3908
6dc98b86
XG
3909static void
3910__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3911 struct rsvd_bits_validate *rsvd_check,
3912 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3913 bool pse, bool amd)
82725b20 3914{
82725b20 3915 u64 exb_bit_rsvd = 0;
5f7dde7b 3916 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3917 u64 nonleaf_bit8_rsvd = 0;
82725b20 3918
a0a64f50 3919 rsvd_check->bad_mt_xwr = 0;
25d92081 3920
6dc98b86 3921 if (!nx)
82725b20 3922 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3923 if (!gbpages)
5f7dde7b 3924 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3925
3926 /*
3927 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3928 * leaf entries) on AMD CPUs only.
3929 */
6fec2144 3930 if (amd)
a0c0feb5
PB
3931 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3932
6dc98b86 3933 switch (level) {
82725b20
DE
3934 case PT32_ROOT_LEVEL:
3935 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3936 rsvd_check->rsvd_bits_mask[0][1] = 0;
3937 rsvd_check->rsvd_bits_mask[0][0] = 0;
3938 rsvd_check->rsvd_bits_mask[1][0] =
3939 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3940
6dc98b86 3941 if (!pse) {
a0a64f50 3942 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3943 break;
3944 }
3945
82725b20
DE
3946 if (is_cpuid_PSE36())
3947 /* 36bits PSE 4MB page */
a0a64f50 3948 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3949 else
3950 /* 32 bits PSE 4MB page */
a0a64f50 3951 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3952 break;
3953 case PT32E_ROOT_LEVEL:
a0a64f50 3954 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3955 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3956 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3957 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3958 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3959 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3960 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3961 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3962 rsvd_bits(maxphyaddr, 62) |
3963 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3964 rsvd_check->rsvd_bits_mask[1][0] =
3965 rsvd_check->rsvd_bits_mask[0][0];
82725b20 3966 break;
855feb67
YZ
3967 case PT64_ROOT_5LEVEL:
3968 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
3969 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3970 rsvd_bits(maxphyaddr, 51);
3971 rsvd_check->rsvd_bits_mask[1][4] =
3972 rsvd_check->rsvd_bits_mask[0][4];
df561f66 3973 fallthrough;
2a7266a8 3974 case PT64_ROOT_4LEVEL:
a0a64f50
XG
3975 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3976 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3977 rsvd_bits(maxphyaddr, 51);
a0a64f50 3978 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5ecad245 3979 gbpages_bit_rsvd |
82725b20 3980 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3981 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3982 rsvd_bits(maxphyaddr, 51);
3983 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3984 rsvd_bits(maxphyaddr, 51);
3985 rsvd_check->rsvd_bits_mask[1][3] =
3986 rsvd_check->rsvd_bits_mask[0][3];
3987 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3988 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3989 rsvd_bits(13, 29);
a0a64f50 3990 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3991 rsvd_bits(maxphyaddr, 51) |
3992 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3993 rsvd_check->rsvd_bits_mask[1][0] =
3994 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3995 break;
3996 }
3997}
3998
6dc98b86
XG
3999static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4000 struct kvm_mmu *context)
4001{
4002 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4003 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4004 context->nx,
4005 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4006 is_pse(vcpu),
4007 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4008}
4009
81b8eebb
XG
4010static void
4011__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4012 int maxphyaddr, bool execonly)
25d92081 4013{
951f9fd7 4014 u64 bad_mt_xwr;
25d92081 4015
855feb67
YZ
4016 rsvd_check->rsvd_bits_mask[0][4] =
4017 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4018 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4019 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4020 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4021 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4022 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4023 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4024 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4025
4026 /* large page */
855feb67 4027 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4028 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4029 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4030 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4031 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4032 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4033 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4034
951f9fd7
PB
4035 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4036 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4037 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4038 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4039 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4040 if (!execonly) {
4041 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4042 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4043 }
951f9fd7 4044 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4045}
4046
81b8eebb
XG
4047static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4048 struct kvm_mmu *context, bool execonly)
4049{
4050 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4051 cpuid_maxphyaddr(vcpu), execonly);
4052}
4053
c258b62b
XG
4054/*
4055 * the page table on host is the shadow page table for the page
4056 * table in guest or amd nested guest, its mmu features completely
4057 * follow the features in guest.
4058 */
4059void
4060reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4061{
36d9594d
VK
4062 bool uses_nx = context->nx ||
4063 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4064 struct rsvd_bits_validate *shadow_zero_check;
4065 int i;
5f0b8199 4066
6fec2144
PB
4067 /*
4068 * Passing "true" to the last argument is okay; it adds a check
4069 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4070 */
ea2800dd
BS
4071 shadow_zero_check = &context->shadow_zero_check;
4072 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4073 shadow_phys_bits,
5f0b8199 4074 context->shadow_root_level, uses_nx,
d6321d49
RK
4075 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4076 is_pse(vcpu), true);
ea2800dd
BS
4077
4078 if (!shadow_me_mask)
4079 return;
4080
4081 for (i = context->shadow_root_level; --i >= 0;) {
4082 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4083 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4084 }
4085
c258b62b
XG
4086}
4087EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4088
6fec2144
PB
4089static inline bool boot_cpu_is_amd(void)
4090{
4091 WARN_ON_ONCE(!tdp_enabled);
4092 return shadow_x_mask == 0;
4093}
4094
c258b62b
XG
4095/*
4096 * the direct page table on host, use as much mmu features as
4097 * possible, however, kvm currently does not do execution-protection.
4098 */
4099static void
4100reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4101 struct kvm_mmu *context)
4102{
ea2800dd
BS
4103 struct rsvd_bits_validate *shadow_zero_check;
4104 int i;
4105
4106 shadow_zero_check = &context->shadow_zero_check;
4107
6fec2144 4108 if (boot_cpu_is_amd())
ea2800dd 4109 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4110 shadow_phys_bits,
c258b62b 4111 context->shadow_root_level, false,
b8291adc
BP
4112 boot_cpu_has(X86_FEATURE_GBPAGES),
4113 true, true);
c258b62b 4114 else
ea2800dd 4115 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4116 shadow_phys_bits,
c258b62b
XG
4117 false);
4118
ea2800dd
BS
4119 if (!shadow_me_mask)
4120 return;
4121
4122 for (i = context->shadow_root_level; --i >= 0;) {
4123 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4124 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4125 }
c258b62b
XG
4126}
4127
4128/*
4129 * as the comments in reset_shadow_zero_bits_mask() except it
4130 * is the shadow page table for intel nested guest.
4131 */
4132static void
4133reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4134 struct kvm_mmu *context, bool execonly)
4135{
4136 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4137 shadow_phys_bits, execonly);
c258b62b
XG
4138}
4139
09f037aa
PB
4140#define BYTE_MASK(access) \
4141 ((1 & (access) ? 2 : 0) | \
4142 (2 & (access) ? 4 : 0) | \
4143 (3 & (access) ? 8 : 0) | \
4144 (4 & (access) ? 16 : 0) | \
4145 (5 & (access) ? 32 : 0) | \
4146 (6 & (access) ? 64 : 0) | \
4147 (7 & (access) ? 128 : 0))
4148
4149
edc90b7d
XG
4150static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4151 struct kvm_mmu *mmu, bool ept)
97d64b78 4152{
09f037aa
PB
4153 unsigned byte;
4154
4155 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4156 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4157 const u8 u = BYTE_MASK(ACC_USER_MASK);
4158
4159 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4160 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4161 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4162
97d64b78 4163 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4164 unsigned pfec = byte << 1;
4165
97ec8c06 4166 /*
09f037aa
PB
4167 * Each "*f" variable has a 1 bit for each UWX value
4168 * that causes a fault with the given PFEC.
97ec8c06 4169 */
97d64b78 4170
09f037aa 4171 /* Faults from writes to non-writable pages */
a6a6d3b1 4172 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4173 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4174 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4175 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4176 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4177 /* Faults from kernel mode fetches of user pages */
4178 u8 smepf = 0;
4179 /* Faults from kernel mode accesses of user pages */
4180 u8 smapf = 0;
4181
4182 if (!ept) {
4183 /* Faults from kernel mode accesses to user pages */
4184 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4185
4186 /* Not really needed: !nx will cause pte.nx to fault */
4187 if (!mmu->nx)
4188 ff = 0;
4189
4190 /* Allow supervisor writes if !cr0.wp */
4191 if (!cr0_wp)
4192 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4193
4194 /* Disallow supervisor fetches of user code if cr4.smep */
4195 if (cr4_smep)
4196 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4197
4198 /*
4199 * SMAP:kernel-mode data accesses from user-mode
4200 * mappings should fault. A fault is considered
4201 * as a SMAP violation if all of the following
39337ad1 4202 * conditions are true:
09f037aa
PB
4203 * - X86_CR4_SMAP is set in CR4
4204 * - A user page is accessed
4205 * - The access is not a fetch
4206 * - Page fault in kernel mode
4207 * - if CPL = 3 or X86_EFLAGS_AC is clear
4208 *
4209 * Here, we cover the first three conditions.
4210 * The fourth is computed dynamically in permission_fault();
4211 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4212 * *not* subject to SMAP restrictions.
4213 */
4214 if (cr4_smap)
4215 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4216 }
09f037aa
PB
4217
4218 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4219 }
4220}
4221
2d344105
HH
4222/*
4223* PKU is an additional mechanism by which the paging controls access to
4224* user-mode addresses based on the value in the PKRU register. Protection
4225* key violations are reported through a bit in the page fault error code.
4226* Unlike other bits of the error code, the PK bit is not known at the
4227* call site of e.g. gva_to_gpa; it must be computed directly in
4228* permission_fault based on two bits of PKRU, on some machine state (CR4,
4229* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4230*
4231* In particular the following conditions come from the error code, the
4232* page tables and the machine state:
4233* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4234* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4235* - PK is always zero if U=0 in the page tables
4236* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4237*
4238* The PKRU bitmask caches the result of these four conditions. The error
4239* code (minus the P bit) and the page table's U bit form an index into the
4240* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4241* with the two bits of the PKRU register corresponding to the protection key.
4242* For the first three conditions above the bits will be 00, thus masking
4243* away both AD and WD. For all reads or if the last condition holds, WD
4244* only will be masked away.
4245*/
4246static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4247 bool ept)
4248{
4249 unsigned bit;
4250 bool wp;
4251
4252 if (ept) {
4253 mmu->pkru_mask = 0;
4254 return;
4255 }
4256
4257 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4258 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4259 mmu->pkru_mask = 0;
4260 return;
4261 }
4262
4263 wp = is_write_protection(vcpu);
4264
4265 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4266 unsigned pfec, pkey_bits;
4267 bool check_pkey, check_write, ff, uf, wf, pte_user;
4268
4269 pfec = bit << 1;
4270 ff = pfec & PFERR_FETCH_MASK;
4271 uf = pfec & PFERR_USER_MASK;
4272 wf = pfec & PFERR_WRITE_MASK;
4273
4274 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4275 pte_user = pfec & PFERR_RSVD_MASK;
4276
4277 /*
4278 * Only need to check the access which is not an
4279 * instruction fetch and is to a user page.
4280 */
4281 check_pkey = (!ff && pte_user);
4282 /*
4283 * write access is controlled by PKRU if it is a
4284 * user access or CR0.WP = 1.
4285 */
4286 check_write = check_pkey && wf && (uf || wp);
4287
4288 /* PKRU.AD stops both read and write access. */
4289 pkey_bits = !!check_pkey;
4290 /* PKRU.WD stops write access. */
4291 pkey_bits |= (!!check_write) << 1;
4292
4293 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4294 }
4295}
4296
6bb69c9b 4297static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4298{
6bb69c9b
PB
4299 unsigned root_level = mmu->root_level;
4300
4301 mmu->last_nonleaf_level = root_level;
4302 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4303 mmu->last_nonleaf_level++;
6fd01b71
AK
4304}
4305
8a3c1a33
PB
4306static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4307 struct kvm_mmu *context,
4308 int level)
6aa8b732 4309{
2d48a985 4310 context->nx = is_nx(vcpu);
4d6931c3 4311 context->root_level = level;
2d48a985 4312
4d6931c3 4313 reset_rsvds_bits_mask(vcpu, context);
25d92081 4314 update_permission_bitmask(vcpu, context, false);
2d344105 4315 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4316 update_last_nonleaf_level(vcpu, context);
6aa8b732 4317
fa4a2c08 4318 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4319 context->page_fault = paging64_page_fault;
6aa8b732 4320 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4321 context->sync_page = paging64_sync_page;
a7052897 4322 context->invlpg = paging64_invlpg;
0f53b5b1 4323 context->update_pte = paging64_update_pte;
17ac10ad 4324 context->shadow_root_level = level;
c5a78f2b 4325 context->direct_map = false;
6aa8b732
AK
4326}
4327
8a3c1a33
PB
4328static void paging64_init_context(struct kvm_vcpu *vcpu,
4329 struct kvm_mmu *context)
17ac10ad 4330{
855feb67
YZ
4331 int root_level = is_la57_mode(vcpu) ?
4332 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4333
4334 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4335}
4336
8a3c1a33
PB
4337static void paging32_init_context(struct kvm_vcpu *vcpu,
4338 struct kvm_mmu *context)
6aa8b732 4339{
2d48a985 4340 context->nx = false;
4d6931c3 4341 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4342
4d6931c3 4343 reset_rsvds_bits_mask(vcpu, context);
25d92081 4344 update_permission_bitmask(vcpu, context, false);
2d344105 4345 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4346 update_last_nonleaf_level(vcpu, context);
6aa8b732 4347
6aa8b732 4348 context->page_fault = paging32_page_fault;
6aa8b732 4349 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4350 context->sync_page = paging32_sync_page;
a7052897 4351 context->invlpg = paging32_invlpg;
0f53b5b1 4352 context->update_pte = paging32_update_pte;
6aa8b732 4353 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4354 context->direct_map = false;
6aa8b732
AK
4355}
4356
8a3c1a33
PB
4357static void paging32E_init_context(struct kvm_vcpu *vcpu,
4358 struct kvm_mmu *context)
6aa8b732 4359{
8a3c1a33 4360 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4361}
4362
a336282d
VK
4363static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4364{
4365 union kvm_mmu_extended_role ext = {0};
4366
7dcd5755 4367 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4368 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4369 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4370 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4371 ext.cr4_pse = !!is_pse(vcpu);
4372 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4373 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4374
4375 ext.valid = 1;
4376
4377 return ext;
4378}
4379
7dcd5755
VK
4380static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4381 bool base_only)
4382{
4383 union kvm_mmu_role role = {0};
4384
4385 role.base.access = ACC_ALL;
4386 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4387 role.base.cr0_wp = is_write_protection(vcpu);
4388 role.base.smm = is_smm(vcpu);
4389 role.base.guest_mode = is_guest_mode(vcpu);
4390
4391 if (base_only)
4392 return role;
4393
4394 role.ext = kvm_calc_mmu_role_ext(vcpu);
4395
4396 return role;
4397}
4398
d468d94b
SC
4399static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4400{
4401 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4402 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4403 return 4;
4404
83013059 4405 return max_tdp_level;
d468d94b
SC
4406}
4407
7dcd5755
VK
4408static union kvm_mmu_role
4409kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4410{
7dcd5755 4411 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4412
7dcd5755 4413 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4414 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4415 role.base.direct = true;
47c42e6b 4416 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4417
4418 return role;
4419}
4420
8a3c1a33 4421static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4422{
8c008659 4423 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4424 union kvm_mmu_role new_role =
4425 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4426
7dcd5755
VK
4427 if (new_role.as_u64 == context->mmu_role.as_u64)
4428 return;
4429
4430 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4431 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4432 context->sync_page = nonpaging_sync_page;
5efac074 4433 context->invlpg = NULL;
0f53b5b1 4434 context->update_pte = nonpaging_update_pte;
d468d94b 4435 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4436 context->direct_map = true;
d8dd54e0 4437 context->get_guest_pgd = get_cr3;
e4e517b4 4438 context->get_pdptr = kvm_pdptr_read;
cb659db8 4439 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4440
4441 if (!is_paging(vcpu)) {
2d48a985 4442 context->nx = false;
fb72d167
JR
4443 context->gva_to_gpa = nonpaging_gva_to_gpa;
4444 context->root_level = 0;
4445 } else if (is_long_mode(vcpu)) {
2d48a985 4446 context->nx = is_nx(vcpu);
855feb67
YZ
4447 context->root_level = is_la57_mode(vcpu) ?
4448 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4449 reset_rsvds_bits_mask(vcpu, context);
4450 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4451 } else if (is_pae(vcpu)) {
2d48a985 4452 context->nx = is_nx(vcpu);
fb72d167 4453 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4454 reset_rsvds_bits_mask(vcpu, context);
4455 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4456 } else {
2d48a985 4457 context->nx = false;
fb72d167 4458 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4459 reset_rsvds_bits_mask(vcpu, context);
4460 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4461 }
4462
25d92081 4463 update_permission_bitmask(vcpu, context, false);
2d344105 4464 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4465 update_last_nonleaf_level(vcpu, context);
c258b62b 4466 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4467}
4468
7dcd5755 4469static union kvm_mmu_role
59505b55 4470kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4471{
4472 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4473
4474 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4475 !is_write_protection(vcpu);
4476 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4477 !is_write_protection(vcpu);
47c42e6b 4478 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4479
59505b55
SC
4480 return role;
4481}
4482
4483static union kvm_mmu_role
4484kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4485{
4486 union kvm_mmu_role role =
4487 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4488
4489 role.base.direct = !is_paging(vcpu);
4490
9fa72119 4491 if (!is_long_mode(vcpu))
7dcd5755 4492 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4493 else if (is_la57_mode(vcpu))
7dcd5755 4494 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4495 else
7dcd5755 4496 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4497
4498 return role;
4499}
4500
8c008659
PB
4501static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4502 u32 cr0, u32 cr4, u32 efer,
4503 union kvm_mmu_role new_role)
9fa72119 4504{
929d1cfa 4505 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4506 nonpaging_init_context(vcpu, context);
929d1cfa 4507 else if (efer & EFER_LMA)
8a3c1a33 4508 paging64_init_context(vcpu, context);
929d1cfa 4509 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4510 paging32E_init_context(vcpu, context);
6aa8b732 4511 else
8a3c1a33 4512 paging32_init_context(vcpu, context);
a770f6f2 4513
7dcd5755 4514 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4515 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4516}
0f04a2ac
VK
4517
4518static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4519{
8c008659 4520 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4521 union kvm_mmu_role new_role =
4522 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4523
4524 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4525 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4526}
4527
59505b55
SC
4528static union kvm_mmu_role
4529kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4530{
4531 union kvm_mmu_role role =
4532 kvm_calc_shadow_root_page_role_common(vcpu, false);
4533
4534 role.base.direct = false;
d468d94b 4535 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4536
4537 return role;
4538}
4539
0f04a2ac
VK
4540void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4541 gpa_t nested_cr3)
4542{
8c008659 4543 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4544 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4545
096586fd
SC
4546 context->shadow_root_level = new_role.base.level;
4547
a506fdd2
VK
4548 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4549
0f04a2ac 4550 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4551 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4552}
4553EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4554
a336282d
VK
4555static union kvm_mmu_role
4556kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4557 bool execonly, u8 level)
9fa72119 4558{
552c69b1 4559 union kvm_mmu_role role = {0};
14c07ad8 4560
47c42e6b
SC
4561 /* SMM flag is inherited from root_mmu */
4562 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4563
bb1fcc70 4564 role.base.level = level;
47c42e6b 4565 role.base.gpte_is_8_bytes = true;
a336282d
VK
4566 role.base.direct = false;
4567 role.base.ad_disabled = !accessed_dirty;
4568 role.base.guest_mode = true;
4569 role.base.access = ACC_ALL;
9fa72119 4570
47c42e6b
SC
4571 /*
4572 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4573 * SMAP variation to denote shadow EPT entries.
4574 */
4575 role.base.cr0_wp = true;
4576 role.base.smap_andnot_wp = true;
4577
552c69b1 4578 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4579 role.ext.execonly = execonly;
9fa72119
JS
4580
4581 return role;
4582}
4583
ae1e2d10 4584void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4585 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4586{
8c008659 4587 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4588 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4589 union kvm_mmu_role new_role =
4590 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4591 execonly, level);
a336282d 4592
be01e8e2 4593 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4594
a336282d
VK
4595 if (new_role.as_u64 == context->mmu_role.as_u64)
4596 return;
ad896af0 4597
bb1fcc70 4598 context->shadow_root_level = level;
155a97a3
NHE
4599
4600 context->nx = true;
ae1e2d10 4601 context->ept_ad = accessed_dirty;
155a97a3
NHE
4602 context->page_fault = ept_page_fault;
4603 context->gva_to_gpa = ept_gva_to_gpa;
4604 context->sync_page = ept_sync_page;
4605 context->invlpg = ept_invlpg;
4606 context->update_pte = ept_update_pte;
bb1fcc70 4607 context->root_level = level;
155a97a3 4608 context->direct_map = false;
a336282d 4609 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4610
155a97a3 4611 update_permission_bitmask(vcpu, context, true);
2d344105 4612 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4613 update_last_nonleaf_level(vcpu, context);
155a97a3 4614 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4615 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4616}
4617EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4618
8a3c1a33 4619static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4620{
8c008659 4621 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4622
929d1cfa
PB
4623 kvm_init_shadow_mmu(vcpu,
4624 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4625 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4626 vcpu->arch.efer);
4627
d8dd54e0 4628 context->get_guest_pgd = get_cr3;
ad896af0
PB
4629 context->get_pdptr = kvm_pdptr_read;
4630 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4631}
4632
8a3c1a33 4633static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4634{
bf627a92 4635 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4636 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4637
bf627a92
VK
4638 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4639 return;
4640
4641 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4642 g_context->get_guest_pgd = get_cr3;
e4e517b4 4643 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4644 g_context->inject_page_fault = kvm_inject_page_fault;
4645
5efac074
PB
4646 /*
4647 * L2 page tables are never shadowed, so there is no need to sync
4648 * SPTEs.
4649 */
4650 g_context->invlpg = NULL;
4651
02f59dc9 4652 /*
44dd3ffa 4653 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4654 * L1's nested page tables (e.g. EPT12). The nested translation
4655 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4656 * L2's page tables as the first level of translation and L1's
4657 * nested page tables as the second level of translation. Basically
4658 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4659 */
4660 if (!is_paging(vcpu)) {
2d48a985 4661 g_context->nx = false;
02f59dc9
JR
4662 g_context->root_level = 0;
4663 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4664 } else if (is_long_mode(vcpu)) {
2d48a985 4665 g_context->nx = is_nx(vcpu);
855feb67
YZ
4666 g_context->root_level = is_la57_mode(vcpu) ?
4667 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4668 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4669 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4670 } else if (is_pae(vcpu)) {
2d48a985 4671 g_context->nx = is_nx(vcpu);
02f59dc9 4672 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4673 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4674 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4675 } else {
2d48a985 4676 g_context->nx = false;
02f59dc9 4677 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4678 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4679 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4680 }
4681
25d92081 4682 update_permission_bitmask(vcpu, g_context, false);
2d344105 4683 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4684 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4685}
4686
1c53da3f 4687void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4688{
1c53da3f 4689 if (reset_roots) {
b94742c9
JS
4690 uint i;
4691
44dd3ffa 4692 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4693
4694 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4695 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4696 }
4697
02f59dc9 4698 if (mmu_is_nested(vcpu))
e0c6db3e 4699 init_kvm_nested_mmu(vcpu);
02f59dc9 4700 else if (tdp_enabled)
e0c6db3e 4701 init_kvm_tdp_mmu(vcpu);
fb72d167 4702 else
e0c6db3e 4703 init_kvm_softmmu(vcpu);
fb72d167 4704}
1c53da3f 4705EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4706
9fa72119
JS
4707static union kvm_mmu_page_role
4708kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4709{
7dcd5755
VK
4710 union kvm_mmu_role role;
4711
9fa72119 4712 if (tdp_enabled)
7dcd5755 4713 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4714 else
7dcd5755
VK
4715 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4716
4717 return role.base;
9fa72119 4718}
fb72d167 4719
8a3c1a33 4720void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4721{
95f93af4 4722 kvm_mmu_unload(vcpu);
1c53da3f 4723 kvm_init_mmu(vcpu, true);
17c3ba9d 4724}
8668a3c4 4725EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4726
4727int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4728{
714b93da
AK
4729 int r;
4730
378f5cd6 4731 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
4732 if (r)
4733 goto out;
8986ecc0 4734 r = mmu_alloc_roots(vcpu);
e2858b4a 4735 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4736 if (r)
4737 goto out;
727a7e27 4738 kvm_mmu_load_pgd(vcpu);
8c8560b8 4739 kvm_x86_ops.tlb_flush_current(vcpu);
714b93da
AK
4740out:
4741 return r;
6aa8b732 4742}
17c3ba9d
AK
4743EXPORT_SYMBOL_GPL(kvm_mmu_load);
4744
4745void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4746{
14c07ad8
VK
4747 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4748 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4749 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4750 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4751}
4b16184c 4752EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4753
0028425f 4754static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4755 struct kvm_mmu_page *sp, u64 *spte,
4756 const void *new)
0028425f 4757{
3bae0459 4758 if (sp->role.level != PG_LEVEL_4K) {
7e4e4056
JR
4759 ++vcpu->kvm->stat.mmu_pde_zapped;
4760 return;
30945387 4761 }
0028425f 4762
4cee5764 4763 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 4764 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
4765}
4766
79539cec
AK
4767static bool need_remote_flush(u64 old, u64 new)
4768{
4769 if (!is_shadow_present_pte(old))
4770 return false;
4771 if (!is_shadow_present_pte(new))
4772 return true;
4773 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4774 return true;
53166229
GN
4775 old ^= shadow_nx_mask;
4776 new ^= shadow_nx_mask;
79539cec
AK
4777 return (old & ~new & PT64_PERM_MASK) != 0;
4778}
4779
889e5cbc 4780static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4781 int *bytes)
da4a00f0 4782{
0e0fee5c 4783 u64 gentry = 0;
889e5cbc 4784 int r;
72016f3a 4785
72016f3a
AK
4786 /*
4787 * Assume that the pte write on a page table of the same type
49b26e26
XG
4788 * as the current vcpu paging mode since we update the sptes only
4789 * when they have the same mode.
72016f3a 4790 */
889e5cbc 4791 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4792 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4793 *gpa &= ~(gpa_t)7;
4794 *bytes = 8;
08e850c6
AK
4795 }
4796
0e0fee5c
JS
4797 if (*bytes == 4 || *bytes == 8) {
4798 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4799 if (r)
4800 gentry = 0;
72016f3a
AK
4801 }
4802
889e5cbc
XG
4803 return gentry;
4804}
4805
4806/*
4807 * If we're seeing too many writes to a page, it may no longer be a page table,
4808 * or we may be forking, in which case it is better to unmap the page.
4809 */
a138fe75 4810static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4811{
a30f47cb
XG
4812 /*
4813 * Skip write-flooding detected for the sp whose level is 1, because
4814 * it can become unsync, then the guest page is not write-protected.
4815 */
3bae0459 4816 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4817 return false;
3246af0e 4818
e5691a81
XG
4819 atomic_inc(&sp->write_flooding_count);
4820 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4821}
4822
4823/*
4824 * Misaligned accesses are too much trouble to fix up; also, they usually
4825 * indicate a page is not used as a page table.
4826 */
4827static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4828 int bytes)
4829{
4830 unsigned offset, pte_size, misaligned;
4831
4832 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4833 gpa, bytes, sp->role.word);
4834
4835 offset = offset_in_page(gpa);
47c42e6b 4836 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4837
4838 /*
4839 * Sometimes, the OS only writes the last one bytes to update status
4840 * bits, for example, in linux, andb instruction is used in clear_bit().
4841 */
4842 if (!(offset & (pte_size - 1)) && bytes == 1)
4843 return false;
4844
889e5cbc
XG
4845 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4846 misaligned |= bytes < 4;
4847
4848 return misaligned;
4849}
4850
4851static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4852{
4853 unsigned page_offset, quadrant;
4854 u64 *spte;
4855 int level;
4856
4857 page_offset = offset_in_page(gpa);
4858 level = sp->role.level;
4859 *nspte = 1;
47c42e6b 4860 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4861 page_offset <<= 1; /* 32->64 */
4862 /*
4863 * A 32-bit pde maps 4MB while the shadow pdes map
4864 * only 2MB. So we need to double the offset again
4865 * and zap two pdes instead of one.
4866 */
4867 if (level == PT32_ROOT_LEVEL) {
4868 page_offset &= ~7; /* kill rounding error */
4869 page_offset <<= 1;
4870 *nspte = 2;
4871 }
4872 quadrant = page_offset >> PAGE_SHIFT;
4873 page_offset &= ~PAGE_MASK;
4874 if (quadrant != sp->role.quadrant)
4875 return NULL;
4876 }
4877
4878 spte = &sp->spt[page_offset / sizeof(*spte)];
4879 return spte;
4880}
4881
a102a674
SC
4882/*
4883 * Ignore various flags when determining if a SPTE can be immediately
4884 * overwritten for the current MMU.
4885 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4886 * match the current MMU role, as MMU's level tracks the root level.
4887 * - access: updated based on the new guest PTE
4888 * - quadrant: handled by get_written_sptes()
4889 * - invalid: always false (loop only walks valid shadow pages)
4890 */
4891static const union kvm_mmu_page_role role_ign = {
4892 .level = 0xf,
4893 .access = 0x7,
4894 .quadrant = 0x3,
4895 .invalid = 0x1,
4896};
4897
13d268ca 4898static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
4899 const u8 *new, int bytes,
4900 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
4901{
4902 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4903 struct kvm_mmu_page *sp;
889e5cbc
XG
4904 LIST_HEAD(invalid_list);
4905 u64 entry, gentry, *spte;
4906 int npte;
b8c67b7a 4907 bool remote_flush, local_flush;
889e5cbc
XG
4908
4909 /*
4910 * If we don't have indirect shadow pages, it means no page is
4911 * write-protected, so we can exit simply.
4912 */
6aa7de05 4913 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
4914 return;
4915
b8c67b7a 4916 remote_flush = local_flush = false;
889e5cbc
XG
4917
4918 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4919
889e5cbc
XG
4920 /*
4921 * No need to care whether allocation memory is successful
4922 * or not since pte prefetch is skiped if it does not have
4923 * enough objects in the cache.
4924 */
378f5cd6 4925 mmu_topup_memory_caches(vcpu, true);
889e5cbc
XG
4926
4927 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
4928
4929 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4930
889e5cbc 4931 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4932 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4933
b67bfe0d 4934 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4935 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4936 detect_write_flooding(sp)) {
b8c67b7a 4937 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4938 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4939 continue;
4940 }
889e5cbc
XG
4941
4942 spte = get_written_sptes(sp, gpa, &npte);
4943 if (!spte)
4944 continue;
4945
0671a8e7 4946 local_flush = true;
ac1b714e 4947 while (npte--) {
36d9594d
VK
4948 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
4949
79539cec 4950 entry = *spte;
2de4085c 4951 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
fa1de2bf 4952 if (gentry &&
a102a674
SC
4953 !((sp->role.word ^ base_role) & ~role_ign.word) &&
4954 rmap_can_add(vcpu))
7c562522 4955 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4956 if (need_remote_flush(entry, *spte))
0671a8e7 4957 remote_flush = true;
ac1b714e 4958 ++spte;
9b7a0325 4959 }
9b7a0325 4960 }
b8c67b7a 4961 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4962 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4963 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4964}
4965
a436036b
AK
4966int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4967{
10589a46
MT
4968 gpa_t gpa;
4969 int r;
a436036b 4970
44dd3ffa 4971 if (vcpu->arch.mmu->direct_map)
60f24784
AK
4972 return 0;
4973
1871c602 4974 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4975
10589a46 4976 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4977
10589a46 4978 return r;
a436036b 4979}
577bdc49 4980EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4981
736c291c 4982int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 4983 void *insn, int insn_len)
3067714c 4984{
92daa48b 4985 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 4986 bool direct = vcpu->arch.mmu->direct_map;
3067714c 4987
6948199a 4988 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
4989 return RET_PF_RETRY;
4990
9b8ebbdb 4991 r = RET_PF_INVALID;
e9ee956e 4992 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 4993 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 4994 if (r == RET_PF_EMULATE)
e9ee956e 4995 goto emulate;
e9ee956e 4996 }
3067714c 4997
9b8ebbdb 4998 if (r == RET_PF_INVALID) {
7a02674d
SC
4999 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5000 lower_32_bits(error_code), false);
7b367bc9
SC
5001 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5002 return -EIO;
9b8ebbdb
PB
5003 }
5004
3067714c 5005 if (r < 0)
e9ee956e 5006 return r;
83a2ba4c
SC
5007 if (r != RET_PF_EMULATE)
5008 return 1;
3067714c 5009
14727754
TL
5010 /*
5011 * Before emulating the instruction, check if the error code
5012 * was due to a RO violation while translating the guest page.
5013 * This can occur when using nested virtualization with nested
5014 * paging in both guests. If true, we simply unprotect the page
5015 * and resume the guest.
14727754 5016 */
44dd3ffa 5017 if (vcpu->arch.mmu->direct_map &&
eebed243 5018 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5019 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5020 return 1;
5021 }
5022
472faffa
SC
5023 /*
5024 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5025 * optimistically try to just unprotect the page and let the processor
5026 * re-execute the instruction that caused the page fault. Do not allow
5027 * retrying MMIO emulation, as it's not only pointless but could also
5028 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5029 * faulting on the non-existent MMIO address. Retrying an instruction
5030 * from a nested guest is also pointless and dangerous as we are only
5031 * explicitly shadowing L1's page tables, i.e. unprotecting something
5032 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5033 */
736c291c 5034 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5035 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5036emulate:
736c291c 5037 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5038 insn_len);
3067714c
AK
5039}
5040EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5041
5efac074
PB
5042void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5043 gva_t gva, hpa_t root_hpa)
a7052897 5044{
b94742c9 5045 int i;
7eb77e9f 5046
5efac074
PB
5047 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5048 if (mmu != &vcpu->arch.guest_mmu) {
5049 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5050 if (is_noncanonical_address(gva, vcpu))
5051 return;
5052
5053 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5054 }
5055
5056 if (!mmu->invlpg)
faff8758
JS
5057 return;
5058
5efac074
PB
5059 if (root_hpa == INVALID_PAGE) {
5060 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5061
5efac074
PB
5062 /*
5063 * INVLPG is required to invalidate any global mappings for the VA,
5064 * irrespective of PCID. Since it would take us roughly similar amount
5065 * of work to determine whether any of the prev_root mappings of the VA
5066 * is marked global, or to just sync it blindly, so we might as well
5067 * just always sync it.
5068 *
5069 * Mappings not reachable via the current cr3 or the prev_roots will be
5070 * synced when switching to that cr3, so nothing needs to be done here
5071 * for them.
5072 */
5073 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5074 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5075 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5076 } else {
5077 mmu->invlpg(vcpu, gva, root_hpa);
5078 }
5079}
5080EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5081
5efac074
PB
5082void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5083{
5084 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5085 ++vcpu->stat.invlpg;
5086}
5087EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5088
5efac074 5089
eb4b248e
JS
5090void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5091{
44dd3ffa 5092 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5093 bool tlb_flush = false;
b94742c9 5094 uint i;
eb4b248e
JS
5095
5096 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5097 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5098 tlb_flush = true;
eb4b248e
JS
5099 }
5100
b94742c9
JS
5101 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5102 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5103 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5104 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5105 tlb_flush = true;
5106 }
956bf353 5107 }
ade61e28 5108
faff8758 5109 if (tlb_flush)
afaf0b2f 5110 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5111
eb4b248e
JS
5112 ++vcpu->stat.invlpg;
5113
5114 /*
b94742c9
JS
5115 * Mappings not reachable via the current cr3 or the prev_roots will be
5116 * synced when switching to that cr3, so nothing needs to be done here
5117 * for them.
eb4b248e
JS
5118 */
5119}
5120EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5121
83013059
SC
5122void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5123 int tdp_huge_page_level)
18552672 5124{
bde77235 5125 tdp_enabled = enable_tdp;
83013059 5126 max_tdp_level = tdp_max_root_level;
703c335d
SC
5127
5128 /*
1d92d2e8 5129 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5130 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5131 * the kernel is not. But, KVM never creates a page size greater than
5132 * what is used by the kernel for any given HVA, i.e. the kernel's
5133 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5134 */
5135 if (tdp_enabled)
1d92d2e8 5136 max_huge_page_level = tdp_huge_page_level;
703c335d 5137 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5138 max_huge_page_level = PG_LEVEL_1G;
703c335d 5139 else
1d92d2e8 5140 max_huge_page_level = PG_LEVEL_2M;
18552672 5141}
bde77235 5142EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5143
5144/* The return value indicates if tlb flush on all vcpus is needed. */
5145typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5146
5147/* The caller should hold mmu-lock before calling this function. */
5148static __always_inline bool
5149slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5150 slot_level_handler fn, int start_level, int end_level,
5151 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5152{
5153 struct slot_rmap_walk_iterator iterator;
5154 bool flush = false;
5155
5156 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5157 end_gfn, &iterator) {
5158 if (iterator.rmap)
5159 flush |= fn(kvm, iterator.rmap);
5160
5161 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5162 if (flush && lock_flush_tlb) {
f285c633
BG
5163 kvm_flush_remote_tlbs_with_address(kvm,
5164 start_gfn,
5165 iterator.gfn - start_gfn + 1);
85875a13
SC
5166 flush = false;
5167 }
5168 cond_resched_lock(&kvm->mmu_lock);
5169 }
5170 }
5171
5172 if (flush && lock_flush_tlb) {
f285c633
BG
5173 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5174 end_gfn - start_gfn + 1);
85875a13
SC
5175 flush = false;
5176 }
5177
5178 return flush;
5179}
5180
5181static __always_inline bool
5182slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5183 slot_level_handler fn, int start_level, int end_level,
5184 bool lock_flush_tlb)
5185{
5186 return slot_handle_level_range(kvm, memslot, fn, start_level,
5187 end_level, memslot->base_gfn,
5188 memslot->base_gfn + memslot->npages - 1,
5189 lock_flush_tlb);
5190}
5191
5192static __always_inline bool
5193slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5194 slot_level_handler fn, bool lock_flush_tlb)
5195{
3bae0459 5196 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5197 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5198}
5199
5200static __always_inline bool
5201slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5202 slot_level_handler fn, bool lock_flush_tlb)
5203{
3bae0459 5204 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5205 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5206}
5207
5208static __always_inline bool
5209slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5210 slot_level_handler fn, bool lock_flush_tlb)
5211{
3bae0459
SC
5212 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5213 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5214}
5215
1cfff4d9 5216static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5217{
1cfff4d9
JP
5218 free_page((unsigned long)mmu->pae_root);
5219 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5220}
5221
04d28e37 5222static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5223{
17ac10ad 5224 struct page *page;
6aa8b732
AK
5225 int i;
5226
04d28e37
SC
5227 mmu->root_hpa = INVALID_PAGE;
5228 mmu->root_pgd = 0;
5229 mmu->translate_gpa = translate_gpa;
5230 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5231 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5232
17ac10ad 5233 /*
b6b80c78
SC
5234 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5235 * while the PDP table is a per-vCPU construct that's allocated at MMU
5236 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5237 * x86_64. Therefore we need to allocate the PDP table in the first
5238 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5239 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5240 * skip allocating the PDP table.
17ac10ad 5241 */
d468d94b 5242 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5243 return 0;
5244
254272ce 5245 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5246 if (!page)
d7fa6ab2
WY
5247 return -ENOMEM;
5248
1cfff4d9 5249 mmu->pae_root = page_address(page);
17ac10ad 5250 for (i = 0; i < 4; ++i)
1cfff4d9 5251 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5252
6aa8b732 5253 return 0;
6aa8b732
AK
5254}
5255
8018c27b 5256int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5257{
1cfff4d9 5258 int ret;
b94742c9 5259
5962bfb7 5260 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5261 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5262
5962bfb7 5263 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5264 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5265
96880883
SC
5266 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5267
44dd3ffa
VK
5268 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5269 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5270
14c07ad8 5271 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5272
04d28e37 5273 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5274 if (ret)
5275 return ret;
5276
04d28e37 5277 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5278 if (ret)
5279 goto fail_allocate_root;
5280
5281 return ret;
5282 fail_allocate_root:
5283 free_mmu_pages(&vcpu->arch.guest_mmu);
5284 return ret;
6aa8b732
AK
5285}
5286
fbb158cb 5287#define BATCH_ZAP_PAGES 10
002c5f73
SC
5288static void kvm_zap_obsolete_pages(struct kvm *kvm)
5289{
5290 struct kvm_mmu_page *sp, *node;
fbb158cb 5291 int nr_zapped, batch = 0;
002c5f73
SC
5292
5293restart:
5294 list_for_each_entry_safe_reverse(sp, node,
5295 &kvm->arch.active_mmu_pages, link) {
5296 /*
5297 * No obsolete valid page exists before a newly created page
5298 * since active_mmu_pages is a FIFO list.
5299 */
5300 if (!is_obsolete_sp(kvm, sp))
5301 break;
5302
5303 /*
f95eec9b
SC
5304 * Invalid pages should never land back on the list of active
5305 * pages. Skip the bogus page, otherwise we'll get stuck in an
5306 * infinite loop if the page gets put back on the list (again).
002c5f73 5307 */
f95eec9b 5308 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5309 continue;
5310
4506ecf4
SC
5311 /*
5312 * No need to flush the TLB since we're only zapping shadow
5313 * pages with an obsolete generation number and all vCPUS have
5314 * loaded a new root, i.e. the shadow pages being zapped cannot
5315 * be in active use by the guest.
5316 */
fbb158cb 5317 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5318 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5319 batch = 0;
002c5f73
SC
5320 goto restart;
5321 }
5322
10605204
SC
5323 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5324 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5325 batch += nr_zapped;
002c5f73 5326 goto restart;
fbb158cb 5327 }
002c5f73
SC
5328 }
5329
4506ecf4
SC
5330 /*
5331 * Trigger a remote TLB flush before freeing the page tables to ensure
5332 * KVM is not in the middle of a lockless shadow page table walk, which
5333 * may reference the pages.
5334 */
10605204 5335 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5336}
5337
5338/*
5339 * Fast invalidate all shadow pages and use lock-break technique
5340 * to zap obsolete pages.
5341 *
5342 * It's required when memslot is being deleted or VM is being
5343 * destroyed, in these cases, we should ensure that KVM MMU does
5344 * not use any resource of the being-deleted slot or all slots
5345 * after calling the function.
5346 */
5347static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5348{
ca333add
SC
5349 lockdep_assert_held(&kvm->slots_lock);
5350
002c5f73 5351 spin_lock(&kvm->mmu_lock);
14a3c4f4 5352 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5353
5354 /*
5355 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5356 * held for the entire duration of zapping obsolete pages, it's
5357 * impossible for there to be multiple invalid generations associated
5358 * with *valid* shadow pages at any given time, i.e. there is exactly
5359 * one valid generation and (at most) one invalid generation.
5360 */
5361 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5362
4506ecf4
SC
5363 /*
5364 * Notify all vcpus to reload its shadow page table and flush TLB.
5365 * Then all vcpus will switch to new shadow page table with the new
5366 * mmu_valid_gen.
5367 *
5368 * Note: we need to do this under the protection of mmu_lock,
5369 * otherwise, vcpu would purge shadow page but miss tlb flush.
5370 */
5371 kvm_reload_remote_mmus(kvm);
5372
002c5f73
SC
5373 kvm_zap_obsolete_pages(kvm);
5374 spin_unlock(&kvm->mmu_lock);
5375}
5376
10605204
SC
5377static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5378{
5379 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5380}
5381
b5f5fdca 5382static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5383 struct kvm_memory_slot *slot,
5384 struct kvm_page_track_notifier_node *node)
b5f5fdca 5385{
002c5f73 5386 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5387}
5388
13d268ca 5389void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5390{
13d268ca 5391 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5392
fe5db27d
BG
5393 kvm_mmu_init_tdp_mmu(kvm);
5394
13d268ca 5395 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5396 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5397 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5398}
5399
13d268ca 5400void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5401{
13d268ca 5402 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5403
13d268ca 5404 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5405
5406 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5407}
5408
efdfe536
XG
5409void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5410{
5411 struct kvm_memslots *slots;
5412 struct kvm_memory_slot *memslot;
9da0e4d5 5413 int i;
efdfe536
XG
5414
5415 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5416 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5417 slots = __kvm_memslots(kvm, i);
5418 kvm_for_each_memslot(memslot, slots) {
5419 gfn_t start, end;
5420
5421 start = max(gfn_start, memslot->base_gfn);
5422 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5423 if (start >= end)
5424 continue;
efdfe536 5425
92da008f 5426 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5427 PG_LEVEL_4K,
e662ec3e 5428 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5429 start, end - 1, true);
9da0e4d5 5430 }
efdfe536
XG
5431 }
5432
5433 spin_unlock(&kvm->mmu_lock);
5434}
5435
018aabb5
TY
5436static bool slot_rmap_write_protect(struct kvm *kvm,
5437 struct kvm_rmap_head *rmap_head)
d77aa73c 5438{
018aabb5 5439 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5440}
5441
1c91cad4 5442void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5443 struct kvm_memory_slot *memslot,
5444 int start_level)
6aa8b732 5445{
d77aa73c 5446 bool flush;
6aa8b732 5447
9d1beefb 5448 spin_lock(&kvm->mmu_lock);
3c9bd400 5449 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5450 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
9d1beefb 5451 spin_unlock(&kvm->mmu_lock);
198c74f4 5452
198c74f4
XG
5453 /*
5454 * We can flush all the TLBs out of the mmu lock without TLB
5455 * corruption since we just change the spte from writable to
5456 * readonly so that we only need to care the case of changing
5457 * spte from present to present (changing the spte from present
5458 * to nonpresent will flush all the TLBs immediately), in other
5459 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5460 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5461 * instead of PT_WRITABLE_MASK, that means it does not depend
5462 * on PT_WRITABLE_MASK anymore.
5463 */
d91ffee9 5464 if (flush)
7f42aa76 5465 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5466}
37a7d8b0 5467
3ea3b7fa 5468static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5469 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5470{
5471 u64 *sptep;
5472 struct rmap_iterator iter;
5473 int need_tlb_flush = 0;
ba049e93 5474 kvm_pfn_t pfn;
3ea3b7fa
WL
5475 struct kvm_mmu_page *sp;
5476
0d536790 5477restart:
018aabb5 5478 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5479 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5480 pfn = spte_to_pfn(*sptep);
5481
5482 /*
decf6333
XG
5483 * We cannot do huge page mapping for indirect shadow pages,
5484 * which are found on the last rmap (level = 1) when not using
5485 * tdp; such shadow pages are synced with the page table in
5486 * the guest, and the guest page table is using 4K page size
5487 * mapping if the indirect sp has level = 1.
3ea3b7fa 5488 */
a78986aa 5489 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5490 (kvm_is_zone_device_pfn(pfn) ||
5491 PageCompound(pfn_to_page(pfn)))) {
e7912386 5492 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5493
5494 if (kvm_available_flush_tlb_with_range())
5495 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5496 KVM_PAGES_PER_HPAGE(sp->role.level));
5497 else
5498 need_tlb_flush = 1;
5499
0d536790
XG
5500 goto restart;
5501 }
3ea3b7fa
WL
5502 }
5503
5504 return need_tlb_flush;
5505}
5506
5507void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5508 const struct kvm_memory_slot *memslot)
3ea3b7fa 5509{
f36f3f28 5510 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5511 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5512 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5513 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5514 spin_unlock(&kvm->mmu_lock);
5515}
5516
b3594ffb
SC
5517void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5518 struct kvm_memory_slot *memslot)
5519{
5520 /*
7f42aa76
SC
5521 * All current use cases for flushing the TLBs for a specific memslot
5522 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5523 * The interaction between the various operations on memslot must be
5524 * serialized by slots_locks to ensure the TLB flush from one operation
5525 * is observed by any other operation on the same memslot.
b3594ffb
SC
5526 */
5527 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5528 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5529 memslot->npages);
b3594ffb
SC
5530}
5531
f4b4b180
KH
5532void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5533 struct kvm_memory_slot *memslot)
5534{
d77aa73c 5535 bool flush;
f4b4b180
KH
5536
5537 spin_lock(&kvm->mmu_lock);
d77aa73c 5538 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5539 spin_unlock(&kvm->mmu_lock);
5540
f4b4b180
KH
5541 /*
5542 * It's also safe to flush TLBs out of mmu lock here as currently this
5543 * function is only used for dirty logging, in which case flushing TLB
5544 * out of mmu lock also guarantees no dirty pages will be lost in
5545 * dirty_bitmap.
5546 */
5547 if (flush)
7f42aa76 5548 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5549}
5550EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5551
5552void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5553 struct kvm_memory_slot *memslot)
5554{
d77aa73c 5555 bool flush;
f4b4b180
KH
5556
5557 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5558 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5559 false);
f4b4b180
KH
5560 spin_unlock(&kvm->mmu_lock);
5561
f4b4b180 5562 if (flush)
7f42aa76 5563 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5564}
5565EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5566
5567void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5568 struct kvm_memory_slot *memslot)
5569{
d77aa73c 5570 bool flush;
f4b4b180
KH
5571
5572 spin_lock(&kvm->mmu_lock);
d77aa73c 5573 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5574 spin_unlock(&kvm->mmu_lock);
5575
f4b4b180 5576 if (flush)
7f42aa76 5577 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5578}
5579EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5580
92f58b5c 5581void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5582{
5583 struct kvm_mmu_page *sp, *node;
7390de1e 5584 LIST_HEAD(invalid_list);
83cdb568 5585 int ign;
5304b8d3 5586
7390de1e 5587 spin_lock(&kvm->mmu_lock);
5304b8d3 5588restart:
8a674adc 5589 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5590 if (WARN_ON(sp->role.invalid))
4771450c 5591 continue;
92f58b5c 5592 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5593 goto restart;
24efe61f 5594 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5595 goto restart;
5596 }
5597
4771450c 5598 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
5599 spin_unlock(&kvm->mmu_lock);
5600}
5601
15248258 5602void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5603{
164bf7e5 5604 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5605
164bf7e5 5606 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5607
f8f55942 5608 /*
e1359e2b
SC
5609 * Generation numbers are incremented in multiples of the number of
5610 * address spaces in order to provide unique generations across all
5611 * address spaces. Strip what is effectively the address space
5612 * modifier prior to checking for a wrap of the MMIO generation so
5613 * that a wrap in any address space is detected.
5614 */
5615 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5616
f8f55942 5617 /*
e1359e2b 5618 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5619 * zap all shadow pages.
f8f55942 5620 */
e1359e2b 5621 if (unlikely(gen == 0)) {
ae0f5499 5622 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5623 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5624 }
f8f55942
XG
5625}
5626
70534a73
DC
5627static unsigned long
5628mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5629{
5630 struct kvm *kvm;
1495f230 5631 int nr_to_scan = sc->nr_to_scan;
70534a73 5632 unsigned long freed = 0;
3ee16c81 5633
0d9ce162 5634 mutex_lock(&kvm_lock);
3ee16c81
IE
5635
5636 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5637 int idx;
d98ba053 5638 LIST_HEAD(invalid_list);
3ee16c81 5639
35f2d16b
TY
5640 /*
5641 * Never scan more than sc->nr_to_scan VM instances.
5642 * Will not hit this condition practically since we do not try
5643 * to shrink more than one VM and it is very unlikely to see
5644 * !n_used_mmu_pages so many times.
5645 */
5646 if (!nr_to_scan--)
5647 break;
19526396
GN
5648 /*
5649 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5650 * here. We may skip a VM instance errorneosly, but we do not
5651 * want to shrink a VM that only started to populate its MMU
5652 * anyway.
5653 */
10605204
SC
5654 if (!kvm->arch.n_used_mmu_pages &&
5655 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5656 continue;
19526396 5657
f656ce01 5658 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5659 spin_lock(&kvm->mmu_lock);
3ee16c81 5660
10605204
SC
5661 if (kvm_has_zapped_obsolete_pages(kvm)) {
5662 kvm_mmu_commit_zap_page(kvm,
5663 &kvm->arch.zapped_obsolete_pages);
5664 goto unlock;
5665 }
5666
ebdb292d 5667 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5668
10605204 5669unlock:
3ee16c81 5670 spin_unlock(&kvm->mmu_lock);
f656ce01 5671 srcu_read_unlock(&kvm->srcu, idx);
19526396 5672
70534a73
DC
5673 /*
5674 * unfair on small ones
5675 * per-vm shrinkers cry out
5676 * sadness comes quickly
5677 */
19526396
GN
5678 list_move_tail(&kvm->vm_list, &vm_list);
5679 break;
3ee16c81 5680 }
3ee16c81 5681
0d9ce162 5682 mutex_unlock(&kvm_lock);
70534a73 5683 return freed;
70534a73
DC
5684}
5685
5686static unsigned long
5687mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5688{
45221ab6 5689 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5690}
5691
5692static struct shrinker mmu_shrinker = {
70534a73
DC
5693 .count_objects = mmu_shrink_count,
5694 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5695 .seeks = DEFAULT_SEEKS * 10,
5696};
5697
2ddfd20e 5698static void mmu_destroy_caches(void)
b5a33a75 5699{
c1bd743e
TH
5700 kmem_cache_destroy(pte_list_desc_cache);
5701 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5702}
5703
7b6f8a06
KH
5704static void kvm_set_mmio_spte_mask(void)
5705{
5706 u64 mask;
7b6f8a06
KH
5707
5708 /*
6129ed87
SC
5709 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5710 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
5711 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5712 * 52-bit physical addresses then there are no reserved PA bits in the
5713 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 5714 */
6129ed87
SC
5715 if (shadow_phys_bits < 52)
5716 mask = BIT_ULL(51) | PT_PRESENT_MASK;
5717 else
5718 mask = 0;
7b6f8a06 5719
e7581cac 5720 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
5721}
5722
b8e8c830
PB
5723static bool get_nx_auto_mode(void)
5724{
5725 /* Return true when CPU has the bug, and mitigations are ON */
5726 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5727}
5728
5729static void __set_nx_huge_pages(bool val)
5730{
5731 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5732}
5733
5734static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5735{
5736 bool old_val = nx_huge_pages;
5737 bool new_val;
5738
5739 /* In "auto" mode deploy workaround only if CPU has the bug. */
5740 if (sysfs_streq(val, "off"))
5741 new_val = 0;
5742 else if (sysfs_streq(val, "force"))
5743 new_val = 1;
5744 else if (sysfs_streq(val, "auto"))
5745 new_val = get_nx_auto_mode();
5746 else if (strtobool(val, &new_val) < 0)
5747 return -EINVAL;
5748
5749 __set_nx_huge_pages(new_val);
5750
5751 if (new_val != old_val) {
5752 struct kvm *kvm;
b8e8c830
PB
5753
5754 mutex_lock(&kvm_lock);
5755
5756 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5757 mutex_lock(&kvm->slots_lock);
b8e8c830 5758 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5759 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5760
5761 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5762 }
5763 mutex_unlock(&kvm_lock);
5764 }
5765
5766 return 0;
5767}
5768
b5a33a75
AK
5769int kvm_mmu_module_init(void)
5770{
ab271bd4
AB
5771 int ret = -ENOMEM;
5772
b8e8c830
PB
5773 if (nx_huge_pages == -1)
5774 __set_nx_huge_pages(get_nx_auto_mode());
5775
36d9594d
VK
5776 /*
5777 * MMU roles use union aliasing which is, generally speaking, an
5778 * undefined behavior. However, we supposedly know how compilers behave
5779 * and the current status quo is unlikely to change. Guardians below are
5780 * supposed to let us know if the assumption becomes false.
5781 */
5782 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5783 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5784 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5785
28a1f3ac 5786 kvm_mmu_reset_all_pte_masks();
f160c7b7 5787
7b6f8a06
KH
5788 kvm_set_mmio_spte_mask();
5789
53c07b18
XG
5790 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5791 sizeof(struct pte_list_desc),
46bea48a 5792 0, SLAB_ACCOUNT, NULL);
53c07b18 5793 if (!pte_list_desc_cache)
ab271bd4 5794 goto out;
b5a33a75 5795
d3d25b04
AK
5796 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5797 sizeof(struct kvm_mmu_page),
46bea48a 5798 0, SLAB_ACCOUNT, NULL);
d3d25b04 5799 if (!mmu_page_header_cache)
ab271bd4 5800 goto out;
d3d25b04 5801
908c7f19 5802 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5803 goto out;
45bf21a8 5804
ab271bd4
AB
5805 ret = register_shrinker(&mmu_shrinker);
5806 if (ret)
5807 goto out;
3ee16c81 5808
b5a33a75
AK
5809 return 0;
5810
ab271bd4 5811out:
3ee16c81 5812 mmu_destroy_caches();
ab271bd4 5813 return ret;
b5a33a75
AK
5814}
5815
3ad82a7e 5816/*
39337ad1 5817 * Calculate mmu pages needed for kvm.
3ad82a7e 5818 */
bc8a3d89 5819unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5820{
bc8a3d89
BG
5821 unsigned long nr_mmu_pages;
5822 unsigned long nr_pages = 0;
bc6678a3 5823 struct kvm_memslots *slots;
be6ba0f0 5824 struct kvm_memory_slot *memslot;
9da0e4d5 5825 int i;
3ad82a7e 5826
9da0e4d5
PB
5827 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5828 slots = __kvm_memslots(kvm, i);
90d83dc3 5829
9da0e4d5
PB
5830 kvm_for_each_memslot(memslot, slots)
5831 nr_pages += memslot->npages;
5832 }
3ad82a7e
ZX
5833
5834 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5835 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5836
5837 return nr_mmu_pages;
5838}
5839
c42fffe3
XG
5840void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5841{
95f93af4 5842 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5843 free_mmu_pages(&vcpu->arch.root_mmu);
5844 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5845 mmu_free_memory_caches(vcpu);
b034cf01
XG
5846}
5847
b034cf01
XG
5848void kvm_mmu_module_exit(void)
5849{
5850 mmu_destroy_caches();
5851 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5852 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5853 mmu_audit_disable();
5854}
1aa9b957
JS
5855
5856static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5857{
5858 unsigned int old_val;
5859 int err;
5860
5861 old_val = nx_huge_pages_recovery_ratio;
5862 err = param_set_uint(val, kp);
5863 if (err)
5864 return err;
5865
5866 if (READ_ONCE(nx_huge_pages) &&
5867 !old_val && nx_huge_pages_recovery_ratio) {
5868 struct kvm *kvm;
5869
5870 mutex_lock(&kvm_lock);
5871
5872 list_for_each_entry(kvm, &vm_list, vm_list)
5873 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5874
5875 mutex_unlock(&kvm_lock);
5876 }
5877
5878 return err;
5879}
5880
5881static void kvm_recover_nx_lpages(struct kvm *kvm)
5882{
5883 int rcu_idx;
5884 struct kvm_mmu_page *sp;
5885 unsigned int ratio;
5886 LIST_HEAD(invalid_list);
5887 ulong to_zap;
5888
5889 rcu_idx = srcu_read_lock(&kvm->srcu);
5890 spin_lock(&kvm->mmu_lock);
5891
5892 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5893 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5894 for ( ; to_zap; --to_zap) {
5895 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5896 break;
5897
1aa9b957
JS
5898 /*
5899 * We use a separate list instead of just using active_mmu_pages
5900 * because the number of lpage_disallowed pages is expected to
5901 * be relatively small compared to the total.
5902 */
5903 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5904 struct kvm_mmu_page,
5905 lpage_disallowed_link);
5906 WARN_ON_ONCE(!sp->lpage_disallowed);
5907 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5908 WARN_ON_ONCE(sp->lpage_disallowed);
5909
7d919c7a 5910 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
1aa9b957 5911 kvm_mmu_commit_zap_page(kvm, &invalid_list);
7d919c7a 5912 cond_resched_lock(&kvm->mmu_lock);
1aa9b957
JS
5913 }
5914 }
e8950569 5915 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1aa9b957
JS
5916
5917 spin_unlock(&kvm->mmu_lock);
5918 srcu_read_unlock(&kvm->srcu, rcu_idx);
5919}
5920
5921static long get_nx_lpage_recovery_timeout(u64 start_time)
5922{
5923 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
5924 ? start_time + 60 * HZ - get_jiffies_64()
5925 : MAX_SCHEDULE_TIMEOUT;
5926}
5927
5928static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
5929{
5930 u64 start_time;
5931 long remaining_time;
5932
5933 while (true) {
5934 start_time = get_jiffies_64();
5935 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5936
5937 set_current_state(TASK_INTERRUPTIBLE);
5938 while (!kthread_should_stop() && remaining_time > 0) {
5939 schedule_timeout(remaining_time);
5940 remaining_time = get_nx_lpage_recovery_timeout(start_time);
5941 set_current_state(TASK_INTERRUPTIBLE);
5942 }
5943
5944 set_current_state(TASK_RUNNING);
5945
5946 if (kthread_should_stop())
5947 return 0;
5948
5949 kvm_recover_nx_lpages(kvm);
5950 }
5951}
5952
5953int kvm_mmu_post_init_vm(struct kvm *kvm)
5954{
5955 int err;
5956
5957 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
5958 "kvm-nx-lpage-recovery",
5959 &kvm->arch.nx_lpage_recovery_thread);
5960 if (!err)
5961 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
5962
5963 return err;
5964}
5965
5966void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
5967{
5968 if (kvm->arch.nx_lpage_recovery_thread)
5969 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
5970}