]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: nVMX: Rename EPTP validity helper and associated variables
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
1d737c8a 19#include "mmu.h"
836a1b3c 20#include "x86.h"
6de4f3ad 21#include "kvm_cache_regs.h"
5f7dde7b 22#include "cpuid.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732
AK
25#include <linux/types.h>
26#include <linux/string.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
1767e931
PG
29#include <linux/moduleparam.h>
30#include <linux/export.h>
448353ca 31#include <linux/swap.h>
05da4558 32#include <linux/hugetlb.h>
2f333bcb 33#include <linux/compiler.h>
bc6678a3 34#include <linux/srcu.h>
5a0e3ad6 35#include <linux/slab.h>
3f07c014 36#include <linux/sched/signal.h>
bf998156 37#include <linux/uaccess.h>
114df303 38#include <linux/hash.h>
f160c7b7 39#include <linux/kern_levels.h>
1aa9b957 40#include <linux/kthread.h>
6aa8b732 41
e495606d 42#include <asm/page.h>
eb243d1d 43#include <asm/memtype.h>
e495606d 44#include <asm/cmpxchg.h>
0c55671f 45#include <asm/e820/api.h>
4e542370 46#include <asm/io.h>
13673a90 47#include <asm/vmx.h>
3d0c27ad 48#include <asm/kvm_page_track.h>
1261bfa3 49#include "trace.h"
6aa8b732 50
b8e8c830
PB
51extern bool itlb_multihit_kvm_mitigation;
52
53static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
54#ifdef CONFIG_PREEMPT_RT
55/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
56static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57#else
1aa9b957 58static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 59#endif
b8e8c830
PB
60
61static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 62static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830
PB
63
64static struct kernel_param_ops nx_huge_pages_ops = {
65 .set = set_nx_huge_pages,
66 .get = param_get_bool,
67};
68
1aa9b957
JS
69static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70 .set = set_nx_huge_pages_recovery_ratio,
71 .get = param_get_uint,
72};
73
b8e8c830
PB
74module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
76module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77 &nx_huge_pages_recovery_ratio, 0644);
78__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 79
18552672
JR
80/*
81 * When setting this variable to true it enables Two-Dimensional-Paging
82 * where the hardware walks 2 page tables:
83 * 1. the guest-virtual to guest-physical
84 * 2. while doing 1. it walks guest-physical to host-physical
85 * If the hardware supports that we don't need to do shadow paging.
86 */
2f333bcb 87bool tdp_enabled = false;
18552672 88
8b1fe17c
XG
89enum {
90 AUDIT_PRE_PAGE_FAULT,
91 AUDIT_POST_PAGE_FAULT,
92 AUDIT_PRE_PTE_WRITE,
6903074c
XG
93 AUDIT_POST_PTE_WRITE,
94 AUDIT_PRE_SYNC,
95 AUDIT_POST_SYNC
8b1fe17c 96};
37a7d8b0 97
8b1fe17c 98#undef MMU_DEBUG
37a7d8b0
AK
99
100#ifdef MMU_DEBUG
fa4a2c08
PB
101static bool dbg = 0;
102module_param(dbg, bool, 0644);
37a7d8b0
AK
103
104#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 106#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 107#else
37a7d8b0
AK
108#define pgprintk(x...) do { } while (0)
109#define rmap_printk(x...) do { } while (0)
fa4a2c08 110#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
00763e41 115#define PT_FIRST_AVAIL_BITS_SHIFT 10
6eeb4ef0
PB
116#define PT64_SECOND_AVAIL_BITS_SHIFT 54
117
118/*
119 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120 * Access Tracking SPTEs.
121 */
122#define SPTE_SPECIAL_MASK (3ULL << 52)
123#define SPTE_AD_ENABLED_MASK (0ULL << 52)
124#define SPTE_AD_DISABLED_MASK (1ULL << 52)
1f4e5fc8 125#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
6eeb4ef0 126#define SPTE_MMIO_MASK (3ULL << 52)
6aa8b732 127
6aa8b732
AK
128#define PT64_LEVEL_BITS 9
129
130#define PT64_LEVEL_SHIFT(level) \
d77c26fc 131 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 132
6aa8b732
AK
133#define PT64_INDEX(address, level)\
134 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135
136
137#define PT32_LEVEL_BITS 10
138
139#define PT32_LEVEL_SHIFT(level) \
d77c26fc 140 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 141
e04da980
JR
142#define PT32_LVL_OFFSET_MASK(level) \
143 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
145
146#define PT32_INDEX(address, level)\
147 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148
149
8acc0993
KH
150#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152#else
153#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154#endif
e04da980
JR
155#define PT64_LVL_ADDR_MASK(level) \
156 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157 * PT64_LEVEL_BITS))) - 1))
158#define PT64_LVL_OFFSET_MASK(level) \
159 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
161
162#define PT32_BASE_ADDR_MASK PAGE_MASK
163#define PT32_DIR_BASE_ADDR_MASK \
164 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
165#define PT32_LVL_ADDR_MASK(level) \
166 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167 * PT32_LEVEL_BITS))) - 1))
6aa8b732 168
53166229 169#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 170 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 171
fe135d2c
AK
172#define ACC_EXEC_MASK 1
173#define ACC_WRITE_MASK PT_WRITABLE_MASK
174#define ACC_USER_MASK PT_USER_MASK
175#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176
f160c7b7
JS
177/* The mask for the R/X bits in EPT PTEs */
178#define PT64_EPT_READABLE_MASK 0x1ull
179#define PT64_EPT_EXECUTABLE_MASK 0x4ull
180
90bb6fc5
AK
181#include <trace/events/kvm.h>
182
49fde340
XG
183#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 185
135f8c2b
AK
186#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187
220f773a
TY
188/* make pte_list_desc fit well in cache line */
189#define PTE_LIST_EXT 3
190
9b8ebbdb
PB
191/*
192 * Return values of handle_mmio_page_fault and mmu.page_fault:
193 * RET_PF_RETRY: let CPU fault again on the address.
194 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195 *
196 * For handle_mmio_page_fault only:
197 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198 */
199enum {
200 RET_PF_RETRY = 0,
201 RET_PF_EMULATE = 1,
202 RET_PF_INVALID = 2,
203};
204
53c07b18
XG
205struct pte_list_desc {
206 u64 *sptes[PTE_LIST_EXT];
207 struct pte_list_desc *more;
cd4a4e53
AK
208};
209
2d11123a
AK
210struct kvm_shadow_walk_iterator {
211 u64 addr;
212 hpa_t shadow_addr;
2d11123a 213 u64 *sptep;
dd3bfd59 214 int level;
2d11123a
AK
215 unsigned index;
216};
217
7eb77e9f
JS
218#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
219 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
220 (_root), (_addr)); \
221 shadow_walk_okay(&(_walker)); \
222 shadow_walk_next(&(_walker)))
223
224#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
225 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
226 shadow_walk_okay(&(_walker)); \
227 shadow_walk_next(&(_walker)))
228
c2a2ac2b
XG
229#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
230 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
231 shadow_walk_okay(&(_walker)) && \
232 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
233 __shadow_walk_next(&(_walker), spte))
234
53c07b18 235static struct kmem_cache *pte_list_desc_cache;
d3d25b04 236static struct kmem_cache *mmu_page_header_cache;
45221ab6 237static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 238
7b52345e
SY
239static u64 __read_mostly shadow_nx_mask;
240static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
241static u64 __read_mostly shadow_user_mask;
242static u64 __read_mostly shadow_accessed_mask;
243static u64 __read_mostly shadow_dirty_mask;
ce88decf 244static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 245static u64 __read_mostly shadow_mmio_value;
4af77151 246static u64 __read_mostly shadow_mmio_access_mask;
ffb128c8 247static u64 __read_mostly shadow_present_mask;
d0ec49d4 248static u64 __read_mostly shadow_me_mask;
ce88decf 249
f160c7b7 250/*
6eeb4ef0
PB
251 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
252 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
253 * pages.
f160c7b7
JS
254 */
255static u64 __read_mostly shadow_acc_track_mask;
f160c7b7
JS
256
257/*
258 * The mask/shift to use for saving the original R/X bits when marking the PTE
259 * as not-present for access tracking purposes. We do not save the W bit as the
260 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
261 * restored only when a write is attempted to the page.
262 */
263static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
264 PT64_EPT_EXECUTABLE_MASK;
265static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
266
28a1f3ac
JS
267/*
268 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
269 * to guard against L1TF attacks.
270 */
271static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
272
273/*
274 * The number of high-order 1 bits to use in the mask above.
275 */
276static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
277
daa07cbc
SC
278/*
279 * In some cases, we need to preserve the GFN of a non-present or reserved
280 * SPTE when we usurp the upper five bits of the physical address space to
281 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
282 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
283 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
284 * high and low parts. This mask covers the lower bits of the GFN.
285 */
286static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
287
f3ecb59d
KH
288/*
289 * The number of non-reserved physical address bits irrespective of features
290 * that repurpose legal bits, e.g. MKTME.
291 */
292static u8 __read_mostly shadow_phys_bits;
daa07cbc 293
ce88decf 294static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 295static bool is_executable_pte(u64 spte);
9fa72119
JS
296static union kvm_mmu_page_role
297kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 298
335e192a
PB
299#define CREATE_TRACE_POINTS
300#include "mmutrace.h"
301
40ef75a7
LT
302
303static inline bool kvm_available_flush_tlb_with_range(void)
304{
305 return kvm_x86_ops->tlb_remote_flush_with_range;
306}
307
308static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
309 struct kvm_tlb_range *range)
310{
311 int ret = -ENOTSUPP;
312
313 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
314 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
315
316 if (ret)
317 kvm_flush_remote_tlbs(kvm);
318}
319
320static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
321 u64 start_gfn, u64 pages)
322{
323 struct kvm_tlb_range range;
324
325 range.start_gfn = start_gfn;
326 range.pages = pages;
327
328 kvm_flush_remote_tlbs_with_range(kvm, &range);
329}
330
4af77151 331void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
ce88decf 332{
4af77151 333 BUG_ON((u64)(unsigned)access_mask != access_mask);
dcdca5fe 334 BUG_ON((mmio_mask & mmio_value) != mmio_value);
6eeb4ef0 335 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
312b616b 336 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
4af77151 337 shadow_mmio_access_mask = access_mask;
ce88decf
XG
338}
339EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
340
26c44a63
SC
341static bool is_mmio_spte(u64 spte)
342{
343 return (spte & shadow_mmio_mask) == shadow_mmio_value;
344}
345
ac8d57e5
PF
346static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
347{
348 return sp->role.ad_disabled;
349}
350
1f4e5fc8
PB
351static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
352{
353 /*
354 * When using the EPT page-modification log, the GPAs in the log
355 * would come from L2 rather than L1. Therefore, we need to rely
356 * on write protection to record dirty pages. This also bypasses
357 * PML, since writes now result in a vmexit.
358 */
359 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
360}
361
ac8d57e5
PF
362static inline bool spte_ad_enabled(u64 spte)
363{
26c44a63 364 MMU_WARN_ON(is_mmio_spte(spte));
1f4e5fc8
PB
365 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
366}
367
368static inline bool spte_ad_need_write_protect(u64 spte)
369{
370 MMU_WARN_ON(is_mmio_spte(spte));
371 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
ac8d57e5
PF
372}
373
b8e8c830
PB
374static bool is_nx_huge_page_enabled(void)
375{
376 return READ_ONCE(nx_huge_pages);
377}
378
ac8d57e5
PF
379static inline u64 spte_shadow_accessed_mask(u64 spte)
380{
26c44a63 381 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
382 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
383}
384
385static inline u64 spte_shadow_dirty_mask(u64 spte)
386{
26c44a63 387 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
388 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
389}
390
f160c7b7
JS
391static inline bool is_access_track_spte(u64 spte)
392{
ac8d57e5 393 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
394}
395
f2fd125d 396/*
cae7ed3c
SC
397 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
398 * the memslots generation and is derived as follows:
ee3d1570 399 *
164bf7e5
SC
400 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
401 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 402 *
164bf7e5
SC
403 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
404 * the MMIO generation number, as doing so would require stealing a bit from
405 * the "real" generation number and thus effectively halve the maximum number
406 * of MMIO generations that can be handled before encountering a wrap (which
407 * requires a full MMU zap). The flag is instead explicitly queried when
408 * checking for MMIO spte cache hits.
f2fd125d 409 */
56871d44 410#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
f2fd125d 411
cae7ed3c
SC
412#define MMIO_SPTE_GEN_LOW_START 3
413#define MMIO_SPTE_GEN_LOW_END 11
414#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
415 MMIO_SPTE_GEN_LOW_START)
f2fd125d 416
56871d44
PB
417#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
418#define MMIO_SPTE_GEN_HIGH_END 62
cae7ed3c
SC
419#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
420 MMIO_SPTE_GEN_HIGH_START)
56871d44 421
5192f9b9 422static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
423{
424 u64 mask;
425
cae7ed3c 426 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
56871d44 427 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
f2fd125d 428
cae7ed3c
SC
429 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
430 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
431 return mask;
432}
433
5192f9b9 434static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 435{
5192f9b9 436 u64 gen;
f2fd125d 437
cae7ed3c
SC
438 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
439 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
440 return gen;
441}
442
8f79b064 443static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
ce88decf 444{
8f79b064 445
cae7ed3c 446 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 447 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 448 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 449
4af77151 450 access &= shadow_mmio_access_mask;
28a1f3ac
JS
451 mask |= shadow_mmio_value | access;
452 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
453 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
454 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 455
8f79b064
BG
456 return mask;
457}
458
459static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
460 unsigned int access)
461{
462 u64 mask = make_mmio_spte(vcpu, gfn, access);
463 unsigned int gen = get_mmio_spte_generation(mask);
464
465 access = mask & ACC_ALL;
466
f8f55942 467 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 468 mmu_spte_set(sptep, mask);
ce88decf
XG
469}
470
ce88decf
XG
471static gfn_t get_mmio_spte_gfn(u64 spte)
472{
daa07cbc 473 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
474
475 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476 & shadow_nonpresent_or_rsvd_mask;
477
478 return gpa >> PAGE_SHIFT;
ce88decf
XG
479}
480
481static unsigned get_mmio_spte_access(u64 spte)
482{
4af77151 483 return spte & shadow_mmio_access_mask;
ce88decf
XG
484}
485
54bf36aa 486static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 487 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
488{
489 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 490 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
491 return true;
492 }
493
494 return false;
495}
c7addb90 496
54bf36aa 497static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 498{
cae7ed3c 499 u64 kvm_gen, spte_gen, gen;
089504c0 500
cae7ed3c
SC
501 gen = kvm_vcpu_memslots(vcpu)->generation;
502 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503 return false;
089504c0 504
cae7ed3c 505 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
506 spte_gen = get_mmio_spte_generation(spte);
507
508 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509 return likely(kvm_gen == spte_gen);
f8f55942
XG
510}
511
ce00053b
PF
512/*
513 * Sets the shadow PTE masks used by the MMU.
514 *
515 * Assumptions:
516 * - Setting either @accessed_mask or @dirty_mask requires setting both
517 * - At least one of @accessed_mask or @acc_track_mask must be set
518 */
7b52345e 519void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 520 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 521 u64 acc_track_mask, u64 me_mask)
7b52345e 522{
ce00053b
PF
523 BUG_ON(!dirty_mask != !accessed_mask);
524 BUG_ON(!accessed_mask && !acc_track_mask);
6eeb4ef0 525 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
312b616b 526
7b52345e
SY
527 shadow_user_mask = user_mask;
528 shadow_accessed_mask = accessed_mask;
529 shadow_dirty_mask = dirty_mask;
530 shadow_nx_mask = nx_mask;
531 shadow_x_mask = x_mask;
ffb128c8 532 shadow_present_mask = p_mask;
f160c7b7 533 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 534 shadow_me_mask = me_mask;
7b52345e
SY
535}
536EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
537
f3ecb59d
KH
538static u8 kvm_get_shadow_phys_bits(void)
539{
540 /*
7adacf5e
PB
541 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
542 * in CPU detection code, but the processor treats those reduced bits as
543 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
544 * the physical address bits reported by CPUID.
f3ecb59d 545 */
7adacf5e
PB
546 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
547 return cpuid_eax(0x80000008) & 0xff;
f3ecb59d 548
7adacf5e
PB
549 /*
550 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
551 * custom CPUID. Proceed with whatever the kernel found since these features
552 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
553 */
554 return boot_cpu_data.x86_phys_bits;
f3ecb59d
KH
555}
556
28a1f3ac 557static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 558{
daa07cbc
SC
559 u8 low_phys_bits;
560
f160c7b7
JS
561 shadow_user_mask = 0;
562 shadow_accessed_mask = 0;
563 shadow_dirty_mask = 0;
564 shadow_nx_mask = 0;
565 shadow_x_mask = 0;
566 shadow_mmio_mask = 0;
567 shadow_present_mask = 0;
568 shadow_acc_track_mask = 0;
28a1f3ac 569
f3ecb59d
KH
570 shadow_phys_bits = kvm_get_shadow_phys_bits();
571
28a1f3ac
JS
572 /*
573 * If the CPU has 46 or less physical address bits, then set an
574 * appropriate mask to guard against L1TF attacks. Otherwise, it is
575 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
576 *
577 * Some Intel CPUs address the L1 cache using more PA bits than are
578 * reported by CPUID. Use the PA width of the L1 cache when possible
579 * to achieve more effective mitigation, e.g. if system RAM overlaps
580 * the most significant bits of legal physical address space.
28a1f3ac 581 */
61455bf2
KH
582 shadow_nonpresent_or_rsvd_mask = 0;
583 low_phys_bits = boot_cpu_data.x86_cache_bits;
584 if (boot_cpu_data.x86_cache_bits <
daa07cbc 585 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac 586 shadow_nonpresent_or_rsvd_mask =
61455bf2 587 rsvd_bits(boot_cpu_data.x86_cache_bits -
28a1f3ac 588 shadow_nonpresent_or_rsvd_mask_len,
61455bf2 589 boot_cpu_data.x86_cache_bits - 1);
daa07cbc 590 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
61455bf2
KH
591 } else
592 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
593
daa07cbc
SC
594 shadow_nonpresent_or_rsvd_lower_gfn_mask =
595 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
596}
597
6aa8b732
AK
598static int is_cpuid_PSE36(void)
599{
600 return 1;
601}
602
73b1087e
AK
603static int is_nx(struct kvm_vcpu *vcpu)
604{
f6801dff 605 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
606}
607
c7addb90
AK
608static int is_shadow_present_pte(u64 pte)
609{
f160c7b7 610 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
611}
612
05da4558
MT
613static int is_large_pte(u64 pte)
614{
615 return pte & PT_PAGE_SIZE_MASK;
616}
617
776e6633
MT
618static int is_last_spte(u64 pte, int level)
619{
620 if (level == PT_PAGE_TABLE_LEVEL)
621 return 1;
852e3c19 622 if (is_large_pte(pte))
776e6633
MT
623 return 1;
624 return 0;
625}
626
d3e328f2
JS
627static bool is_executable_pte(u64 spte)
628{
629 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
630}
631
ba049e93 632static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 633{
35149e21 634 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
635}
636
da928521
AK
637static gfn_t pse36_gfn_delta(u32 gpte)
638{
639 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
640
641 return (gpte & PT32_DIR_PSE36_MASK) << shift;
642}
643
603e0651 644#ifdef CONFIG_X86_64
d555c333 645static void __set_spte(u64 *sptep, u64 spte)
e663ee64 646{
b19ee2ff 647 WRITE_ONCE(*sptep, spte);
e663ee64
AK
648}
649
603e0651 650static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 651{
b19ee2ff 652 WRITE_ONCE(*sptep, spte);
603e0651
XG
653}
654
655static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
656{
657 return xchg(sptep, spte);
658}
c2a2ac2b
XG
659
660static u64 __get_spte_lockless(u64 *sptep)
661{
6aa7de05 662 return READ_ONCE(*sptep);
c2a2ac2b 663}
a9221dd5 664#else
603e0651
XG
665union split_spte {
666 struct {
667 u32 spte_low;
668 u32 spte_high;
669 };
670 u64 spte;
671};
a9221dd5 672
c2a2ac2b
XG
673static void count_spte_clear(u64 *sptep, u64 spte)
674{
675 struct kvm_mmu_page *sp = page_header(__pa(sptep));
676
677 if (is_shadow_present_pte(spte))
678 return;
679
680 /* Ensure the spte is completely set before we increase the count */
681 smp_wmb();
682 sp->clear_spte_count++;
683}
684
603e0651
XG
685static void __set_spte(u64 *sptep, u64 spte)
686{
687 union split_spte *ssptep, sspte;
a9221dd5 688
603e0651
XG
689 ssptep = (union split_spte *)sptep;
690 sspte = (union split_spte)spte;
691
692 ssptep->spte_high = sspte.spte_high;
693
694 /*
695 * If we map the spte from nonpresent to present, We should store
696 * the high bits firstly, then set present bit, so cpu can not
697 * fetch this spte while we are setting the spte.
698 */
699 smp_wmb();
700
b19ee2ff 701 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
702}
703
603e0651
XG
704static void __update_clear_spte_fast(u64 *sptep, u64 spte)
705{
706 union split_spte *ssptep, sspte;
707
708 ssptep = (union split_spte *)sptep;
709 sspte = (union split_spte)spte;
710
b19ee2ff 711 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
712
713 /*
714 * If we map the spte from present to nonpresent, we should clear
715 * present bit firstly to avoid vcpu fetch the old high bits.
716 */
717 smp_wmb();
718
719 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 720 count_spte_clear(sptep, spte);
603e0651
XG
721}
722
723static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
724{
725 union split_spte *ssptep, sspte, orig;
726
727 ssptep = (union split_spte *)sptep;
728 sspte = (union split_spte)spte;
729
730 /* xchg acts as a barrier before the setting of the high bits */
731 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
732 orig.spte_high = ssptep->spte_high;
733 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 734 count_spte_clear(sptep, spte);
603e0651
XG
735
736 return orig.spte;
737}
c2a2ac2b
XG
738
739/*
740 * The idea using the light way get the spte on x86_32 guest is from
39656e83 741 * gup_get_pte (mm/gup.c).
accaefe0
XG
742 *
743 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
744 * coalesces them and we are running out of the MMU lock. Therefore
745 * we need to protect against in-progress updates of the spte.
746 *
747 * Reading the spte while an update is in progress may get the old value
748 * for the high part of the spte. The race is fine for a present->non-present
749 * change (because the high part of the spte is ignored for non-present spte),
750 * but for a present->present change we must reread the spte.
751 *
752 * All such changes are done in two steps (present->non-present and
753 * non-present->present), hence it is enough to count the number of
754 * present->non-present updates: if it changed while reading the spte,
755 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
756 */
757static u64 __get_spte_lockless(u64 *sptep)
758{
759 struct kvm_mmu_page *sp = page_header(__pa(sptep));
760 union split_spte spte, *orig = (union split_spte *)sptep;
761 int count;
762
763retry:
764 count = sp->clear_spte_count;
765 smp_rmb();
766
767 spte.spte_low = orig->spte_low;
768 smp_rmb();
769
770 spte.spte_high = orig->spte_high;
771 smp_rmb();
772
773 if (unlikely(spte.spte_low != orig->spte_low ||
774 count != sp->clear_spte_count))
775 goto retry;
776
777 return spte.spte;
778}
603e0651
XG
779#endif
780
ea4114bc 781static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 782{
feb3eb70
GN
783 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
784 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
785}
786
8672b721
XG
787static bool spte_has_volatile_bits(u64 spte)
788{
f160c7b7
JS
789 if (!is_shadow_present_pte(spte))
790 return false;
791
c7ba5b48 792 /*
6a6256f9 793 * Always atomically update spte if it can be updated
c7ba5b48
XG
794 * out of mmu-lock, it can ensure dirty bit is not lost,
795 * also, it can help us to get a stable is_writable_pte()
796 * to ensure tlb flush is not missed.
797 */
f160c7b7
JS
798 if (spte_can_locklessly_be_made_writable(spte) ||
799 is_access_track_spte(spte))
c7ba5b48
XG
800 return true;
801
ac8d57e5 802 if (spte_ad_enabled(spte)) {
f160c7b7
JS
803 if ((spte & shadow_accessed_mask) == 0 ||
804 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
805 return true;
806 }
8672b721 807
f160c7b7 808 return false;
8672b721
XG
809}
810
83ef6c81 811static bool is_accessed_spte(u64 spte)
4132779b 812{
ac8d57e5
PF
813 u64 accessed_mask = spte_shadow_accessed_mask(spte);
814
815 return accessed_mask ? spte & accessed_mask
816 : !is_access_track_spte(spte);
4132779b
XG
817}
818
83ef6c81 819static bool is_dirty_spte(u64 spte)
7e71a59b 820{
ac8d57e5
PF
821 u64 dirty_mask = spte_shadow_dirty_mask(spte);
822
823 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
824}
825
1df9f2dc
XG
826/* Rules for using mmu_spte_set:
827 * Set the sptep from nonpresent to present.
828 * Note: the sptep being assigned *must* be either not present
829 * or in a state where the hardware will not attempt to update
830 * the spte.
831 */
832static void mmu_spte_set(u64 *sptep, u64 new_spte)
833{
834 WARN_ON(is_shadow_present_pte(*sptep));
835 __set_spte(sptep, new_spte);
836}
837
f39a058d
JS
838/*
839 * Update the SPTE (excluding the PFN), but do not track changes in its
840 * accessed/dirty status.
1df9f2dc 841 */
f39a058d 842static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 843{
c7ba5b48 844 u64 old_spte = *sptep;
4132779b 845
afd28fe1 846 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 847
6e7d0354
XG
848 if (!is_shadow_present_pte(old_spte)) {
849 mmu_spte_set(sptep, new_spte);
f39a058d 850 return old_spte;
6e7d0354 851 }
4132779b 852
c7ba5b48 853 if (!spte_has_volatile_bits(old_spte))
603e0651 854 __update_clear_spte_fast(sptep, new_spte);
4132779b 855 else
603e0651 856 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 857
83ef6c81
JS
858 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
859
f39a058d
JS
860 return old_spte;
861}
862
863/* Rules for using mmu_spte_update:
864 * Update the state bits, it means the mapped pfn is not changed.
865 *
866 * Whenever we overwrite a writable spte with a read-only one we
867 * should flush remote TLBs. Otherwise rmap_write_protect
868 * will find a read-only spte, even though the writable spte
869 * might be cached on a CPU's TLB, the return value indicates this
870 * case.
871 *
872 * Returns true if the TLB needs to be flushed
873 */
874static bool mmu_spte_update(u64 *sptep, u64 new_spte)
875{
876 bool flush = false;
877 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
878
879 if (!is_shadow_present_pte(old_spte))
880 return false;
881
c7ba5b48
XG
882 /*
883 * For the spte updated out of mmu-lock is safe, since
6a6256f9 884 * we always atomically update it, see the comments in
c7ba5b48
XG
885 * spte_has_volatile_bits().
886 */
ea4114bc 887 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 888 !is_writable_pte(new_spte))
83ef6c81 889 flush = true;
4132779b 890
7e71a59b 891 /*
83ef6c81 892 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
893 * to guarantee consistency between TLB and page tables.
894 */
7e71a59b 895
83ef6c81
JS
896 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
897 flush = true;
4132779b 898 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
899 }
900
901 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
902 flush = true;
4132779b 903 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 904 }
6e7d0354 905
83ef6c81 906 return flush;
b79b93f9
AK
907}
908
1df9f2dc
XG
909/*
910 * Rules for using mmu_spte_clear_track_bits:
911 * It sets the sptep from present to nonpresent, and track the
912 * state bits, it is used to clear the last level sptep.
83ef6c81 913 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
914 */
915static int mmu_spte_clear_track_bits(u64 *sptep)
916{
ba049e93 917 kvm_pfn_t pfn;
1df9f2dc
XG
918 u64 old_spte = *sptep;
919
920 if (!spte_has_volatile_bits(old_spte))
603e0651 921 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 922 else
603e0651 923 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 924
afd28fe1 925 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
926 return 0;
927
928 pfn = spte_to_pfn(old_spte);
86fde74c
XG
929
930 /*
931 * KVM does not hold the refcount of the page used by
932 * kvm mmu, before reclaiming the page, we should
933 * unmap it from mmu first.
934 */
bf4bea8e 935 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 936
83ef6c81 937 if (is_accessed_spte(old_spte))
1df9f2dc 938 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
939
940 if (is_dirty_spte(old_spte))
1df9f2dc 941 kvm_set_pfn_dirty(pfn);
83ef6c81 942
1df9f2dc
XG
943 return 1;
944}
945
946/*
947 * Rules for using mmu_spte_clear_no_track:
948 * Directly clear spte without caring the state bits of sptep,
949 * it is used to set the upper level spte.
950 */
951static void mmu_spte_clear_no_track(u64 *sptep)
952{
603e0651 953 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
954}
955
c2a2ac2b
XG
956static u64 mmu_spte_get_lockless(u64 *sptep)
957{
958 return __get_spte_lockless(sptep);
959}
960
f160c7b7
JS
961static u64 mark_spte_for_access_track(u64 spte)
962{
ac8d57e5 963 if (spte_ad_enabled(spte))
f160c7b7
JS
964 return spte & ~shadow_accessed_mask;
965
ac8d57e5 966 if (is_access_track_spte(spte))
f160c7b7
JS
967 return spte;
968
969 /*
20d65236
JS
970 * Making an Access Tracking PTE will result in removal of write access
971 * from the PTE. So, verify that we will be able to restore the write
972 * access in the fast page fault path later on.
f160c7b7
JS
973 */
974 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
975 !spte_can_locklessly_be_made_writable(spte),
976 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
977
978 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
979 shadow_acc_track_saved_bits_shift),
980 "kvm: Access Tracking saved bit locations are not zero\n");
981
982 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
983 shadow_acc_track_saved_bits_shift;
984 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
985
986 return spte;
987}
988
d3e328f2
JS
989/* Restore an acc-track PTE back to a regular PTE */
990static u64 restore_acc_track_spte(u64 spte)
991{
992 u64 new_spte = spte;
993 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
994 & shadow_acc_track_saved_bits_mask;
995
ac8d57e5 996 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
997 WARN_ON_ONCE(!is_access_track_spte(spte));
998
999 new_spte &= ~shadow_acc_track_mask;
1000 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1001 shadow_acc_track_saved_bits_shift);
1002 new_spte |= saved_bits;
1003
1004 return new_spte;
1005}
1006
f160c7b7
JS
1007/* Returns the Accessed status of the PTE and resets it at the same time. */
1008static bool mmu_spte_age(u64 *sptep)
1009{
1010 u64 spte = mmu_spte_get_lockless(sptep);
1011
1012 if (!is_accessed_spte(spte))
1013 return false;
1014
ac8d57e5 1015 if (spte_ad_enabled(spte)) {
f160c7b7
JS
1016 clear_bit((ffs(shadow_accessed_mask) - 1),
1017 (unsigned long *)sptep);
1018 } else {
1019 /*
1020 * Capture the dirty status of the page, so that it doesn't get
1021 * lost when the SPTE is marked for access tracking.
1022 */
1023 if (is_writable_pte(spte))
1024 kvm_set_pfn_dirty(spte_to_pfn(spte));
1025
1026 spte = mark_spte_for_access_track(spte);
1027 mmu_spte_update_no_track(sptep, spte);
1028 }
1029
1030 return true;
1031}
1032
c2a2ac2b
XG
1033static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1034{
c142786c
AK
1035 /*
1036 * Prevent page table teardown by making any free-er wait during
1037 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1038 */
1039 local_irq_disable();
36ca7e0a 1040
c142786c
AK
1041 /*
1042 * Make sure a following spte read is not reordered ahead of the write
1043 * to vcpu->mode.
1044 */
36ca7e0a 1045 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
1046}
1047
1048static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1049{
c142786c
AK
1050 /*
1051 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 1052 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
1053 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1054 */
36ca7e0a 1055 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 1056 local_irq_enable();
c2a2ac2b
XG
1057}
1058
e2dec939 1059static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 1060 struct kmem_cache *base_cache, int min)
714b93da
AK
1061{
1062 void *obj;
1063
1064 if (cache->nobjs >= min)
e2dec939 1065 return 0;
714b93da 1066 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 1067 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 1068 if (!obj)
daefb794 1069 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
1070 cache->objects[cache->nobjs++] = obj;
1071 }
e2dec939 1072 return 0;
714b93da
AK
1073}
1074
f759e2b4
XG
1075static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1076{
1077 return cache->nobjs;
1078}
1079
e8ad9a70
XG
1080static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1081 struct kmem_cache *cache)
714b93da
AK
1082{
1083 while (mc->nobjs)
e8ad9a70 1084 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1085}
1086
c1158e63 1087static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1088 int min)
c1158e63 1089{
842f22ed 1090 void *page;
c1158e63
AK
1091
1092 if (cache->nobjs >= min)
1093 return 0;
1094 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1095 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1096 if (!page)
daefb794 1097 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1098 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1099 }
1100 return 0;
1101}
1102
1103static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1104{
1105 while (mc->nobjs)
c4d198d5 1106 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1107}
1108
2e3e5882 1109static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1110{
e2dec939
AK
1111 int r;
1112
53c07b18 1113 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1114 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1115 if (r)
1116 goto out;
ad312c7c 1117 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1118 if (r)
1119 goto out;
ad312c7c 1120 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1121 mmu_page_header_cache, 4);
e2dec939
AK
1122out:
1123 return r;
714b93da
AK
1124}
1125
1126static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1127{
53c07b18
XG
1128 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1129 pte_list_desc_cache);
ad312c7c 1130 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1131 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1132 mmu_page_header_cache);
714b93da
AK
1133}
1134
80feb89a 1135static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1136{
1137 void *p;
1138
1139 BUG_ON(!mc->nobjs);
1140 p = mc->objects[--mc->nobjs];
714b93da
AK
1141 return p;
1142}
1143
53c07b18 1144static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1145{
80feb89a 1146 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1147}
1148
53c07b18 1149static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1150{
53c07b18 1151 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1152}
1153
2032a93d
LJ
1154static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1155{
1156 if (!sp->role.direct)
1157 return sp->gfns[index];
1158
1159 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1160}
1161
1162static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1163{
e9f2a760 1164 if (!sp->role.direct) {
2032a93d 1165 sp->gfns[index] = gfn;
e9f2a760
PB
1166 return;
1167 }
1168
1169 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1170 pr_err_ratelimited("gfn mismatch under direct page %llx "
1171 "(expected %llx, got %llx)\n",
1172 sp->gfn,
1173 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1174}
1175
05da4558 1176/*
d4dbf470
TY
1177 * Return the pointer to the large page information for a given gfn,
1178 * handling slots that are not large page aligned.
05da4558 1179 */
d4dbf470
TY
1180static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1181 struct kvm_memory_slot *slot,
1182 int level)
05da4558
MT
1183{
1184 unsigned long idx;
1185
fb03cb6f 1186 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1187 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1188}
1189
547ffaed
XG
1190static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1191 gfn_t gfn, int count)
1192{
1193 struct kvm_lpage_info *linfo;
1194 int i;
1195
1196 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1197 linfo = lpage_info_slot(gfn, slot, i);
1198 linfo->disallow_lpage += count;
1199 WARN_ON(linfo->disallow_lpage < 0);
1200 }
1201}
1202
1203void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1204{
1205 update_gfn_disallow_lpage_count(slot, gfn, 1);
1206}
1207
1208void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1209{
1210 update_gfn_disallow_lpage_count(slot, gfn, -1);
1211}
1212
3ed1a478 1213static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1214{
699023e2 1215 struct kvm_memslots *slots;
d25797b2 1216 struct kvm_memory_slot *slot;
3ed1a478 1217 gfn_t gfn;
05da4558 1218
56ca57f9 1219 kvm->arch.indirect_shadow_pages++;
3ed1a478 1220 gfn = sp->gfn;
699023e2
PB
1221 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1222 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1223
1224 /* the non-leaf shadow pages are keeping readonly. */
1225 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1226 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1227 KVM_PAGE_TRACK_WRITE);
1228
547ffaed 1229 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1230}
1231
b8e8c830
PB
1232static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1233{
1234 if (sp->lpage_disallowed)
1235 return;
1236
1237 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
1238 list_add_tail(&sp->lpage_disallowed_link,
1239 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
1240 sp->lpage_disallowed = true;
1241}
1242
3ed1a478 1243static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1244{
699023e2 1245 struct kvm_memslots *slots;
d25797b2 1246 struct kvm_memory_slot *slot;
3ed1a478 1247 gfn_t gfn;
05da4558 1248
56ca57f9 1249 kvm->arch.indirect_shadow_pages--;
3ed1a478 1250 gfn = sp->gfn;
699023e2
PB
1251 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1253 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1254 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1255 KVM_PAGE_TRACK_WRITE);
1256
547ffaed 1257 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1258}
1259
b8e8c830
PB
1260static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1261{
1262 --kvm->stat.nx_lpage_splits;
1263 sp->lpage_disallowed = false;
1aa9b957 1264 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
1265}
1266
5d163b1c
XG
1267static struct kvm_memory_slot *
1268gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1269 bool no_dirty_log)
05da4558
MT
1270{
1271 struct kvm_memory_slot *slot;
5d163b1c 1272
54bf36aa 1273 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
1274 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1275 return NULL;
1276 if (no_dirty_log && slot->dirty_bitmap)
1277 return NULL;
5d163b1c
XG
1278
1279 return slot;
1280}
1281
290fc38d 1282/*
018aabb5 1283 * About rmap_head encoding:
cd4a4e53 1284 *
018aabb5
TY
1285 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1286 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1287 * pte_list_desc containing more mappings.
018aabb5
TY
1288 */
1289
1290/*
1291 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1292 */
53c07b18 1293static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1294 struct kvm_rmap_head *rmap_head)
cd4a4e53 1295{
53c07b18 1296 struct pte_list_desc *desc;
53a27b39 1297 int i, count = 0;
cd4a4e53 1298
018aabb5 1299 if (!rmap_head->val) {
53c07b18 1300 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1301 rmap_head->val = (unsigned long)spte;
1302 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1303 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1304 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1305 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1306 desc->sptes[1] = spte;
018aabb5 1307 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1308 ++count;
cd4a4e53 1309 } else {
53c07b18 1310 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1311 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1312 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1313 desc = desc->more;
53c07b18 1314 count += PTE_LIST_EXT;
53a27b39 1315 }
53c07b18
XG
1316 if (desc->sptes[PTE_LIST_EXT-1]) {
1317 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1318 desc = desc->more;
1319 }
d555c333 1320 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1321 ++count;
d555c333 1322 desc->sptes[i] = spte;
cd4a4e53 1323 }
53a27b39 1324 return count;
cd4a4e53
AK
1325}
1326
53c07b18 1327static void
018aabb5
TY
1328pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1329 struct pte_list_desc *desc, int i,
1330 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1331{
1332 int j;
1333
53c07b18 1334 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1335 ;
d555c333
AK
1336 desc->sptes[i] = desc->sptes[j];
1337 desc->sptes[j] = NULL;
cd4a4e53
AK
1338 if (j != 0)
1339 return;
1340 if (!prev_desc && !desc->more)
fe3c2b4c 1341 rmap_head->val = 0;
cd4a4e53
AK
1342 else
1343 if (prev_desc)
1344 prev_desc->more = desc->more;
1345 else
018aabb5 1346 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1347 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1348}
1349
8daf3462 1350static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1351{
53c07b18
XG
1352 struct pte_list_desc *desc;
1353 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1354 int i;
1355
018aabb5 1356 if (!rmap_head->val) {
8daf3462 1357 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1358 BUG();
018aabb5 1359 } else if (!(rmap_head->val & 1)) {
8daf3462 1360 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1361 if ((u64 *)rmap_head->val != spte) {
8daf3462 1362 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1363 BUG();
1364 }
018aabb5 1365 rmap_head->val = 0;
cd4a4e53 1366 } else {
8daf3462 1367 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1368 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1369 prev_desc = NULL;
1370 while (desc) {
018aabb5 1371 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1372 if (desc->sptes[i] == spte) {
018aabb5
TY
1373 pte_list_desc_remove_entry(rmap_head,
1374 desc, i, prev_desc);
cd4a4e53
AK
1375 return;
1376 }
018aabb5 1377 }
cd4a4e53
AK
1378 prev_desc = desc;
1379 desc = desc->more;
1380 }
8daf3462 1381 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1382 BUG();
1383 }
1384}
1385
e7912386
WY
1386static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1387{
1388 mmu_spte_clear_track_bits(sptep);
1389 __pte_list_remove(sptep, rmap_head);
1390}
1391
018aabb5
TY
1392static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1393 struct kvm_memory_slot *slot)
53c07b18 1394{
77d11309 1395 unsigned long idx;
53c07b18 1396
77d11309 1397 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1398 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1399}
1400
018aabb5
TY
1401static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1402 struct kvm_mmu_page *sp)
9b9b1492 1403{
699023e2 1404 struct kvm_memslots *slots;
9b9b1492
TY
1405 struct kvm_memory_slot *slot;
1406
699023e2
PB
1407 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1408 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1409 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1410}
1411
f759e2b4
XG
1412static bool rmap_can_add(struct kvm_vcpu *vcpu)
1413{
1414 struct kvm_mmu_memory_cache *cache;
1415
1416 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1417 return mmu_memory_cache_free_objects(cache);
1418}
1419
53c07b18
XG
1420static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1421{
1422 struct kvm_mmu_page *sp;
018aabb5 1423 struct kvm_rmap_head *rmap_head;
53c07b18 1424
53c07b18
XG
1425 sp = page_header(__pa(spte));
1426 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1427 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1428 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1429}
1430
53c07b18
XG
1431static void rmap_remove(struct kvm *kvm, u64 *spte)
1432{
1433 struct kvm_mmu_page *sp;
1434 gfn_t gfn;
018aabb5 1435 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1436
1437 sp = page_header(__pa(spte));
1438 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1439 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1440 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1441}
1442
1e3f42f0
TY
1443/*
1444 * Used by the following functions to iterate through the sptes linked by a
1445 * rmap. All fields are private and not assumed to be used outside.
1446 */
1447struct rmap_iterator {
1448 /* private fields */
1449 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1450 int pos; /* index of the sptep */
1451};
1452
1453/*
1454 * Iteration must be started by this function. This should also be used after
1455 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1456 * information in the iterator may not be valid.
1e3f42f0
TY
1457 *
1458 * Returns sptep if found, NULL otherwise.
1459 */
018aabb5
TY
1460static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1461 struct rmap_iterator *iter)
1e3f42f0 1462{
77fbbbd2
TY
1463 u64 *sptep;
1464
018aabb5 1465 if (!rmap_head->val)
1e3f42f0
TY
1466 return NULL;
1467
018aabb5 1468 if (!(rmap_head->val & 1)) {
1e3f42f0 1469 iter->desc = NULL;
77fbbbd2
TY
1470 sptep = (u64 *)rmap_head->val;
1471 goto out;
1e3f42f0
TY
1472 }
1473
018aabb5 1474 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1475 iter->pos = 0;
77fbbbd2
TY
1476 sptep = iter->desc->sptes[iter->pos];
1477out:
1478 BUG_ON(!is_shadow_present_pte(*sptep));
1479 return sptep;
1e3f42f0
TY
1480}
1481
1482/*
1483 * Must be used with a valid iterator: e.g. after rmap_get_first().
1484 *
1485 * Returns sptep if found, NULL otherwise.
1486 */
1487static u64 *rmap_get_next(struct rmap_iterator *iter)
1488{
77fbbbd2
TY
1489 u64 *sptep;
1490
1e3f42f0
TY
1491 if (iter->desc) {
1492 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1493 ++iter->pos;
1494 sptep = iter->desc->sptes[iter->pos];
1495 if (sptep)
77fbbbd2 1496 goto out;
1e3f42f0
TY
1497 }
1498
1499 iter->desc = iter->desc->more;
1500
1501 if (iter->desc) {
1502 iter->pos = 0;
1503 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1504 sptep = iter->desc->sptes[iter->pos];
1505 goto out;
1e3f42f0
TY
1506 }
1507 }
1508
1509 return NULL;
77fbbbd2
TY
1510out:
1511 BUG_ON(!is_shadow_present_pte(*sptep));
1512 return sptep;
1e3f42f0
TY
1513}
1514
018aabb5
TY
1515#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1516 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1517 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1518
c3707958 1519static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1520{
1df9f2dc 1521 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1522 rmap_remove(kvm, sptep);
be38d276
AK
1523}
1524
8e22f955
XG
1525
1526static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1527{
1528 if (is_large_pte(*sptep)) {
1529 WARN_ON(page_header(__pa(sptep))->role.level ==
1530 PT_PAGE_TABLE_LEVEL);
1531 drop_spte(kvm, sptep);
1532 --kvm->stat.lpages;
1533 return true;
1534 }
1535
1536 return false;
1537}
1538
1539static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1540{
c3134ce2
LT
1541 if (__drop_large_spte(vcpu->kvm, sptep)) {
1542 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1543
1544 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1545 KVM_PAGES_PER_HPAGE(sp->role.level));
1546 }
8e22f955
XG
1547}
1548
1549/*
49fde340 1550 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1551 * spte write-protection is caused by protecting shadow page table.
49fde340 1552 *
b4619660 1553 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1554 * protection:
1555 * - for dirty logging, the spte can be set to writable at anytime if
1556 * its dirty bitmap is properly set.
1557 * - for spte protection, the spte can be writable only after unsync-ing
1558 * shadow page.
8e22f955 1559 *
c126d94f 1560 * Return true if tlb need be flushed.
8e22f955 1561 */
c4f138b4 1562static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1563{
1564 u64 spte = *sptep;
1565
49fde340 1566 if (!is_writable_pte(spte) &&
ea4114bc 1567 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1568 return false;
1569
1570 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1571
49fde340
XG
1572 if (pt_protect)
1573 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1574 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1575
c126d94f 1576 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1577}
1578
018aabb5
TY
1579static bool __rmap_write_protect(struct kvm *kvm,
1580 struct kvm_rmap_head *rmap_head,
245c3912 1581 bool pt_protect)
98348e95 1582{
1e3f42f0
TY
1583 u64 *sptep;
1584 struct rmap_iterator iter;
d13bc5b5 1585 bool flush = false;
374cbac0 1586
018aabb5 1587 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1588 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1589
d13bc5b5 1590 return flush;
a0ed4607
TY
1591}
1592
c4f138b4 1593static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1594{
1595 u64 spte = *sptep;
1596
1597 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1598
1f4e5fc8 1599 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1600 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1601 return mmu_spte_update(sptep, spte);
1602}
1603
1f4e5fc8 1604static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1605{
1606 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1607 (unsigned long *)sptep);
1f4e5fc8 1608 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1609 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1610
1611 return was_writable;
1612}
1613
1614/*
1615 * Gets the GFN ready for another round of dirty logging by clearing the
1616 * - D bit on ad-enabled SPTEs, and
1617 * - W bit on ad-disabled SPTEs.
1618 * Returns true iff any D or W bits were cleared.
1619 */
018aabb5 1620static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1621{
1622 u64 *sptep;
1623 struct rmap_iterator iter;
1624 bool flush = false;
1625
018aabb5 1626 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1627 if (spte_ad_need_write_protect(*sptep))
1628 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1629 else
1f4e5fc8 1630 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1631
1632 return flush;
1633}
1634
c4f138b4 1635static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1636{
1637 u64 spte = *sptep;
1638
1639 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1640
1f4e5fc8
PB
1641 /*
1642 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1643 * do not bother adding back write access to pages marked
1644 * SPTE_AD_WRPROT_ONLY_MASK.
1645 */
f4b4b180
KH
1646 spte |= shadow_dirty_mask;
1647
1648 return mmu_spte_update(sptep, spte);
1649}
1650
018aabb5 1651static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1652{
1653 u64 *sptep;
1654 struct rmap_iterator iter;
1655 bool flush = false;
1656
018aabb5 1657 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1658 if (spte_ad_enabled(*sptep))
1659 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1660
1661 return flush;
1662}
1663
5dc99b23 1664/**
3b0f1d01 1665 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1666 * @kvm: kvm instance
1667 * @slot: slot to protect
1668 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1669 * @mask: indicates which pages we should protect
1670 *
1671 * Used when we do not need to care about huge page mappings: e.g. during dirty
1672 * logging we do not have any such mappings.
1673 */
3b0f1d01 1674static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1675 struct kvm_memory_slot *slot,
1676 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1677{
018aabb5 1678 struct kvm_rmap_head *rmap_head;
a0ed4607 1679
5dc99b23 1680 while (mask) {
018aabb5
TY
1681 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1682 PT_PAGE_TABLE_LEVEL, slot);
1683 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1684
5dc99b23
TY
1685 /* clear the first set bit */
1686 mask &= mask - 1;
1687 }
374cbac0
AK
1688}
1689
f4b4b180 1690/**
ac8d57e5
PF
1691 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1692 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1693 * @kvm: kvm instance
1694 * @slot: slot to clear D-bit
1695 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1696 * @mask: indicates which pages we should clear D-bit
1697 *
1698 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1699 */
1700void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1701 struct kvm_memory_slot *slot,
1702 gfn_t gfn_offset, unsigned long mask)
1703{
018aabb5 1704 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1705
1706 while (mask) {
018aabb5
TY
1707 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1708 PT_PAGE_TABLE_LEVEL, slot);
1709 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1710
1711 /* clear the first set bit */
1712 mask &= mask - 1;
1713 }
1714}
1715EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1716
3b0f1d01
KH
1717/**
1718 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1719 * PT level pages.
1720 *
1721 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1722 * enable dirty logging for them.
1723 *
1724 * Used when we do not need to care about huge page mappings: e.g. during dirty
1725 * logging we do not have any such mappings.
1726 */
1727void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1728 struct kvm_memory_slot *slot,
1729 gfn_t gfn_offset, unsigned long mask)
1730{
88178fd4
KH
1731 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1732 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1733 mask);
1734 else
1735 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1736}
1737
bab4165e
BD
1738/**
1739 * kvm_arch_write_log_dirty - emulate dirty page logging
1740 * @vcpu: Guest mode vcpu
1741 *
1742 * Emulate arch specific page modification logging for the
1743 * nested hypervisor
1744 */
1745int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1746{
1747 if (kvm_x86_ops->write_log_dirty)
1748 return kvm_x86_ops->write_log_dirty(vcpu);
1749
1750 return 0;
1751}
1752
aeecee2e
XG
1753bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1754 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1755{
018aabb5 1756 struct kvm_rmap_head *rmap_head;
5dc99b23 1757 int i;
2f84569f 1758 bool write_protected = false;
95d4c16c 1759
8a3d08f1 1760 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1761 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1762 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1763 }
1764
1765 return write_protected;
95d4c16c
TY
1766}
1767
aeecee2e
XG
1768static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1769{
1770 struct kvm_memory_slot *slot;
1771
1772 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1773 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1774}
1775
018aabb5 1776static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1777{
1e3f42f0
TY
1778 u64 *sptep;
1779 struct rmap_iterator iter;
6a49f85c 1780 bool flush = false;
e930bffe 1781
018aabb5 1782 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1783 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1784
e7912386 1785 pte_list_remove(rmap_head, sptep);
6a49f85c 1786 flush = true;
e930bffe 1787 }
1e3f42f0 1788
6a49f85c
XG
1789 return flush;
1790}
1791
018aabb5 1792static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1793 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1794 unsigned long data)
1795{
018aabb5 1796 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1797}
1798
018aabb5 1799static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1800 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1801 unsigned long data)
3da0dd43 1802{
1e3f42f0
TY
1803 u64 *sptep;
1804 struct rmap_iterator iter;
3da0dd43 1805 int need_flush = 0;
1e3f42f0 1806 u64 new_spte;
3da0dd43 1807 pte_t *ptep = (pte_t *)data;
ba049e93 1808 kvm_pfn_t new_pfn;
3da0dd43
IE
1809
1810 WARN_ON(pte_huge(*ptep));
1811 new_pfn = pte_pfn(*ptep);
1e3f42f0 1812
0d536790 1813restart:
018aabb5 1814 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1815 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1816 sptep, *sptep, gfn, level);
1e3f42f0 1817
3da0dd43 1818 need_flush = 1;
1e3f42f0 1819
3da0dd43 1820 if (pte_write(*ptep)) {
e7912386 1821 pte_list_remove(rmap_head, sptep);
0d536790 1822 goto restart;
3da0dd43 1823 } else {
1e3f42f0 1824 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1825 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1826
1827 new_spte &= ~PT_WRITABLE_MASK;
1828 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1829
1830 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1831
1832 mmu_spte_clear_track_bits(sptep);
1833 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1834 }
1835 }
1e3f42f0 1836
3cc5ea94
LT
1837 if (need_flush && kvm_available_flush_tlb_with_range()) {
1838 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1839 return 0;
1840 }
1841
0cf853c5 1842 return need_flush;
3da0dd43
IE
1843}
1844
6ce1f4e2
XG
1845struct slot_rmap_walk_iterator {
1846 /* input fields. */
1847 struct kvm_memory_slot *slot;
1848 gfn_t start_gfn;
1849 gfn_t end_gfn;
1850 int start_level;
1851 int end_level;
1852
1853 /* output fields. */
1854 gfn_t gfn;
018aabb5 1855 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1856 int level;
1857
1858 /* private field. */
018aabb5 1859 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1860};
1861
1862static void
1863rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1864{
1865 iterator->level = level;
1866 iterator->gfn = iterator->start_gfn;
1867 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1868 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1869 iterator->slot);
1870}
1871
1872static void
1873slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1874 struct kvm_memory_slot *slot, int start_level,
1875 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1876{
1877 iterator->slot = slot;
1878 iterator->start_level = start_level;
1879 iterator->end_level = end_level;
1880 iterator->start_gfn = start_gfn;
1881 iterator->end_gfn = end_gfn;
1882
1883 rmap_walk_init_level(iterator, iterator->start_level);
1884}
1885
1886static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1887{
1888 return !!iterator->rmap;
1889}
1890
1891static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1892{
1893 if (++iterator->rmap <= iterator->end_rmap) {
1894 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1895 return;
1896 }
1897
1898 if (++iterator->level > iterator->end_level) {
1899 iterator->rmap = NULL;
1900 return;
1901 }
1902
1903 rmap_walk_init_level(iterator, iterator->level);
1904}
1905
1906#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1907 _start_gfn, _end_gfn, _iter_) \
1908 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1909 _end_level_, _start_gfn, _end_gfn); \
1910 slot_rmap_walk_okay(_iter_); \
1911 slot_rmap_walk_next(_iter_))
1912
84504ef3
TY
1913static int kvm_handle_hva_range(struct kvm *kvm,
1914 unsigned long start,
1915 unsigned long end,
1916 unsigned long data,
1917 int (*handler)(struct kvm *kvm,
018aabb5 1918 struct kvm_rmap_head *rmap_head,
048212d0 1919 struct kvm_memory_slot *slot,
8a9522d2
ALC
1920 gfn_t gfn,
1921 int level,
84504ef3 1922 unsigned long data))
e930bffe 1923{
bc6678a3 1924 struct kvm_memslots *slots;
be6ba0f0 1925 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1926 struct slot_rmap_walk_iterator iterator;
1927 int ret = 0;
9da0e4d5 1928 int i;
bc6678a3 1929
9da0e4d5
PB
1930 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1931 slots = __kvm_memslots(kvm, i);
1932 kvm_for_each_memslot(memslot, slots) {
1933 unsigned long hva_start, hva_end;
1934 gfn_t gfn_start, gfn_end;
e930bffe 1935
9da0e4d5
PB
1936 hva_start = max(start, memslot->userspace_addr);
1937 hva_end = min(end, memslot->userspace_addr +
1938 (memslot->npages << PAGE_SHIFT));
1939 if (hva_start >= hva_end)
1940 continue;
1941 /*
1942 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1943 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1944 */
1945 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1946 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1947
1948 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1949 PT_MAX_HUGEPAGE_LEVEL,
1950 gfn_start, gfn_end - 1,
1951 &iterator)
1952 ret |= handler(kvm, iterator.rmap, memslot,
1953 iterator.gfn, iterator.level, data);
1954 }
e930bffe
AA
1955 }
1956
f395302e 1957 return ret;
e930bffe
AA
1958}
1959
84504ef3
TY
1960static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1961 unsigned long data,
018aabb5
TY
1962 int (*handler)(struct kvm *kvm,
1963 struct kvm_rmap_head *rmap_head,
048212d0 1964 struct kvm_memory_slot *slot,
8a9522d2 1965 gfn_t gfn, int level,
84504ef3
TY
1966 unsigned long data))
1967{
1968 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1969}
1970
b3ae2096
TY
1971int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1972{
1973 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1974}
1975
748c0e31 1976int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1977{
0cf853c5 1978 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1979}
1980
018aabb5 1981static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1982 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1983 unsigned long data)
e930bffe 1984{
1e3f42f0 1985 u64 *sptep;
79f702a6 1986 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1987 int young = 0;
1988
f160c7b7
JS
1989 for_each_rmap_spte(rmap_head, &iter, sptep)
1990 young |= mmu_spte_age(sptep);
0d536790 1991
8a9522d2 1992 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1993 return young;
1994}
1995
018aabb5 1996static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1997 struct kvm_memory_slot *slot, gfn_t gfn,
1998 int level, unsigned long data)
8ee53820 1999{
1e3f42f0
TY
2000 u64 *sptep;
2001 struct rmap_iterator iter;
8ee53820 2002
83ef6c81
JS
2003 for_each_rmap_spte(rmap_head, &iter, sptep)
2004 if (is_accessed_spte(*sptep))
2005 return 1;
83ef6c81 2006 return 0;
8ee53820
AA
2007}
2008
53a27b39
MT
2009#define RMAP_RECYCLE_THRESHOLD 1000
2010
852e3c19 2011static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 2012{
018aabb5 2013 struct kvm_rmap_head *rmap_head;
852e3c19
JR
2014 struct kvm_mmu_page *sp;
2015
2016 sp = page_header(__pa(spte));
53a27b39 2017
018aabb5 2018 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 2019
018aabb5 2020 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
2021 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2022 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
2023}
2024
57128468 2025int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2026{
57128468 2027 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2028}
2029
8ee53820
AA
2030int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2031{
2032 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2033}
2034
d6c69ee9 2035#ifdef MMU_DEBUG
47ad8e68 2036static int is_empty_shadow_page(u64 *spt)
6aa8b732 2037{
139bdb2d
AK
2038 u64 *pos;
2039 u64 *end;
2040
47ad8e68 2041 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2042 if (is_shadow_present_pte(*pos)) {
b8688d51 2043 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2044 pos, *pos);
6aa8b732 2045 return 0;
139bdb2d 2046 }
6aa8b732
AK
2047 return 1;
2048}
d6c69ee9 2049#endif
6aa8b732 2050
45221ab6
DH
2051/*
2052 * This value is the sum of all of the kvm instances's
2053 * kvm->arch.n_used_mmu_pages values. We need a global,
2054 * aggregate version in order to make the slab shrinker
2055 * faster
2056 */
bc8a3d89 2057static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2058{
2059 kvm->arch.n_used_mmu_pages += nr;
2060 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2061}
2062
834be0d8 2063static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2064{
fa4a2c08 2065 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2066 hlist_del(&sp->hash_link);
bd4c86ea
XG
2067 list_del(&sp->link);
2068 free_page((unsigned long)sp->spt);
834be0d8
GN
2069 if (!sp->role.direct)
2070 free_page((unsigned long)sp->gfns);
e8ad9a70 2071 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2072}
2073
cea0f0e7
AK
2074static unsigned kvm_page_table_hashfn(gfn_t gfn)
2075{
114df303 2076 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2077}
2078
714b93da 2079static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2080 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2081{
cea0f0e7
AK
2082 if (!parent_pte)
2083 return;
cea0f0e7 2084
67052b35 2085 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2086}
2087
4db35314 2088static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2089 u64 *parent_pte)
2090{
8daf3462 2091 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2092}
2093
bcdd9a93
XG
2094static void drop_parent_pte(struct kvm_mmu_page *sp,
2095 u64 *parent_pte)
2096{
2097 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2098 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2099}
2100
47005792 2101static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2102{
67052b35 2103 struct kvm_mmu_page *sp;
7ddca7e4 2104
80feb89a
TY
2105 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2106 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2107 if (!direct)
80feb89a 2108 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2109 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
2110
2111 /*
2112 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2113 * depends on valid pages being added to the head of the list. See
2114 * comments in kvm_zap_obsolete_pages().
2115 */
ca333add 2116 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 2117 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2118 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2119 return sp;
ad8cfbe3
MT
2120}
2121
67052b35 2122static void mark_unsync(u64 *spte);
1047df1f 2123static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2124{
74c4e63a
TY
2125 u64 *sptep;
2126 struct rmap_iterator iter;
2127
2128 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2129 mark_unsync(sptep);
2130 }
0074ff63
MT
2131}
2132
67052b35 2133static void mark_unsync(u64 *spte)
0074ff63 2134{
67052b35 2135 struct kvm_mmu_page *sp;
1047df1f 2136 unsigned int index;
0074ff63 2137
67052b35 2138 sp = page_header(__pa(spte));
1047df1f
XG
2139 index = spte - sp->spt;
2140 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2141 return;
1047df1f 2142 if (sp->unsync_children++)
0074ff63 2143 return;
1047df1f 2144 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2145}
2146
e8bc217a 2147static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2148 struct kvm_mmu_page *sp)
e8bc217a 2149{
1f50f1b3 2150 return 0;
e8bc217a
MT
2151}
2152
7eb77e9f 2153static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2154{
2155}
2156
0f53b5b1
XG
2157static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2158 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2159 const void *pte)
0f53b5b1
XG
2160{
2161 WARN_ON(1);
2162}
2163
60c8aec6
MT
2164#define KVM_PAGE_ARRAY_NR 16
2165
2166struct kvm_mmu_pages {
2167 struct mmu_page_and_offset {
2168 struct kvm_mmu_page *sp;
2169 unsigned int idx;
2170 } page[KVM_PAGE_ARRAY_NR];
2171 unsigned int nr;
2172};
2173
cded19f3
HE
2174static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2175 int idx)
4731d4c7 2176{
60c8aec6 2177 int i;
4731d4c7 2178
60c8aec6
MT
2179 if (sp->unsync)
2180 for (i=0; i < pvec->nr; i++)
2181 if (pvec->page[i].sp == sp)
2182 return 0;
2183
2184 pvec->page[pvec->nr].sp = sp;
2185 pvec->page[pvec->nr].idx = idx;
2186 pvec->nr++;
2187 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2188}
2189
fd951457
TY
2190static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2191{
2192 --sp->unsync_children;
2193 WARN_ON((int)sp->unsync_children < 0);
2194 __clear_bit(idx, sp->unsync_child_bitmap);
2195}
2196
60c8aec6
MT
2197static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2198 struct kvm_mmu_pages *pvec)
2199{
2200 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2201
37178b8b 2202 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2203 struct kvm_mmu_page *child;
4731d4c7
MT
2204 u64 ent = sp->spt[i];
2205
fd951457
TY
2206 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2207 clear_unsync_child_bit(sp, i);
2208 continue;
2209 }
7a8f1a74
XG
2210
2211 child = page_header(ent & PT64_BASE_ADDR_MASK);
2212
2213 if (child->unsync_children) {
2214 if (mmu_pages_add(pvec, child, i))
2215 return -ENOSPC;
2216
2217 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2218 if (!ret) {
2219 clear_unsync_child_bit(sp, i);
2220 continue;
2221 } else if (ret > 0) {
7a8f1a74 2222 nr_unsync_leaf += ret;
fd951457 2223 } else
7a8f1a74
XG
2224 return ret;
2225 } else if (child->unsync) {
2226 nr_unsync_leaf++;
2227 if (mmu_pages_add(pvec, child, i))
2228 return -ENOSPC;
2229 } else
fd951457 2230 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2231 }
2232
60c8aec6
MT
2233 return nr_unsync_leaf;
2234}
2235
e23d3fef
XG
2236#define INVALID_INDEX (-1)
2237
60c8aec6
MT
2238static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2239 struct kvm_mmu_pages *pvec)
2240{
0a47cd85 2241 pvec->nr = 0;
60c8aec6
MT
2242 if (!sp->unsync_children)
2243 return 0;
2244
e23d3fef 2245 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2246 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2247}
2248
4731d4c7
MT
2249static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2250{
2251 WARN_ON(!sp->unsync);
5e1b3ddb 2252 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2253 sp->unsync = 0;
2254 --kvm->stat.mmu_unsync;
2255}
2256
83cdb568
SC
2257static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2258 struct list_head *invalid_list);
7775834a
XG
2259static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2260 struct list_head *invalid_list);
4731d4c7 2261
47c42e6b 2262
f3414bc7 2263#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2264 hlist_for_each_entry(_sp, \
2265 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
fac026da 2266 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 2267 } else
1044b030
TY
2268
2269#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2270 for_each_valid_sp(_kvm, _sp, _gfn) \
2271 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2272
47c42e6b
SC
2273static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2274{
2275 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2276}
2277
f918b443 2278/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2279static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2280 struct list_head *invalid_list)
4731d4c7 2281{
47c42e6b
SC
2282 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2283 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2284 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2285 return false;
4731d4c7
MT
2286 }
2287
1f50f1b3 2288 return true;
4731d4c7
MT
2289}
2290
a2113634
SC
2291static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2292 struct list_head *invalid_list,
2293 bool remote_flush)
2294{
cfd32acf 2295 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2296 return false;
2297
2298 if (!list_empty(invalid_list))
2299 kvm_mmu_commit_zap_page(kvm, invalid_list);
2300 else
2301 kvm_flush_remote_tlbs(kvm);
2302 return true;
2303}
2304
35a70510
PB
2305static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2306 struct list_head *invalid_list,
2307 bool remote_flush, bool local_flush)
1d9dc7e0 2308{
a2113634 2309 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2310 return;
d98ba053 2311
a2113634 2312 if (local_flush)
35a70510 2313 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2314}
2315
e37fa785
XG
2316#ifdef CONFIG_KVM_MMU_AUDIT
2317#include "mmu_audit.c"
2318#else
2319static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2320static void mmu_audit_disable(void) { }
2321#endif
2322
002c5f73
SC
2323static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2324{
fac026da
SC
2325 return sp->role.invalid ||
2326 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
2327}
2328
1f50f1b3 2329static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2330 struct list_head *invalid_list)
1d9dc7e0 2331{
9a43c5d9
PB
2332 kvm_unlink_unsync_page(vcpu->kvm, sp);
2333 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2334}
2335
9f1a122f 2336/* @gfn should be write-protected at the call site */
2a74003a
PB
2337static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2338 struct list_head *invalid_list)
9f1a122f 2339{
9f1a122f 2340 struct kvm_mmu_page *s;
2a74003a 2341 bool ret = false;
9f1a122f 2342
b67bfe0d 2343 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2344 if (!s->unsync)
9f1a122f
XG
2345 continue;
2346
2347 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2348 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2349 }
2350
2a74003a 2351 return ret;
9f1a122f
XG
2352}
2353
60c8aec6 2354struct mmu_page_path {
2a7266a8
YZ
2355 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2356 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2357};
2358
60c8aec6 2359#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2360 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2361 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2362 i = mmu_pages_next(&pvec, &parents, i))
2363
cded19f3
HE
2364static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2365 struct mmu_page_path *parents,
2366 int i)
60c8aec6
MT
2367{
2368 int n;
2369
2370 for (n = i+1; n < pvec->nr; n++) {
2371 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2372 unsigned idx = pvec->page[n].idx;
2373 int level = sp->role.level;
60c8aec6 2374
0a47cd85
PB
2375 parents->idx[level-1] = idx;
2376 if (level == PT_PAGE_TABLE_LEVEL)
2377 break;
60c8aec6 2378
0a47cd85 2379 parents->parent[level-2] = sp;
60c8aec6
MT
2380 }
2381
2382 return n;
2383}
2384
0a47cd85
PB
2385static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2386 struct mmu_page_path *parents)
2387{
2388 struct kvm_mmu_page *sp;
2389 int level;
2390
2391 if (pvec->nr == 0)
2392 return 0;
2393
e23d3fef
XG
2394 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2395
0a47cd85
PB
2396 sp = pvec->page[0].sp;
2397 level = sp->role.level;
2398 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2399
2400 parents->parent[level-2] = sp;
2401
2402 /* Also set up a sentinel. Further entries in pvec are all
2403 * children of sp, so this element is never overwritten.
2404 */
2405 parents->parent[level-1] = NULL;
2406 return mmu_pages_next(pvec, parents, 0);
2407}
2408
cded19f3 2409static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2410{
60c8aec6
MT
2411 struct kvm_mmu_page *sp;
2412 unsigned int level = 0;
2413
2414 do {
2415 unsigned int idx = parents->idx[level];
60c8aec6
MT
2416 sp = parents->parent[level];
2417 if (!sp)
2418 return;
2419
e23d3fef 2420 WARN_ON(idx == INVALID_INDEX);
fd951457 2421 clear_unsync_child_bit(sp, idx);
60c8aec6 2422 level++;
0a47cd85 2423 } while (!sp->unsync_children);
60c8aec6 2424}
4731d4c7 2425
60c8aec6
MT
2426static void mmu_sync_children(struct kvm_vcpu *vcpu,
2427 struct kvm_mmu_page *parent)
2428{
2429 int i;
2430 struct kvm_mmu_page *sp;
2431 struct mmu_page_path parents;
2432 struct kvm_mmu_pages pages;
d98ba053 2433 LIST_HEAD(invalid_list);
50c9e6f3 2434 bool flush = false;
60c8aec6 2435
60c8aec6 2436 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2437 bool protected = false;
b1a36821
MT
2438
2439 for_each_sp(pages, sp, parents, i)
54bf36aa 2440 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2441
50c9e6f3 2442 if (protected) {
b1a36821 2443 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2444 flush = false;
2445 }
b1a36821 2446
60c8aec6 2447 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2448 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2449 mmu_pages_clear_parents(&parents);
2450 }
50c9e6f3
PB
2451 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2452 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2453 cond_resched_lock(&vcpu->kvm->mmu_lock);
2454 flush = false;
2455 }
60c8aec6 2456 }
50c9e6f3
PB
2457
2458 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2459}
2460
a30f47cb
XG
2461static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2462{
e5691a81 2463 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2464}
2465
2466static void clear_sp_write_flooding_count(u64 *spte)
2467{
2468 struct kvm_mmu_page *sp = page_header(__pa(spte));
2469
2470 __clear_sp_write_flooding_count(sp);
2471}
2472
cea0f0e7
AK
2473static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2474 gfn_t gfn,
2475 gva_t gaddr,
2476 unsigned level,
f6e2c02b 2477 int direct,
0a2b64c5 2478 unsigned int access)
cea0f0e7
AK
2479{
2480 union kvm_mmu_page_role role;
cea0f0e7 2481 unsigned quadrant;
9f1a122f 2482 struct kvm_mmu_page *sp;
9f1a122f 2483 bool need_sync = false;
2a74003a 2484 bool flush = false;
f3414bc7 2485 int collisions = 0;
2a74003a 2486 LIST_HEAD(invalid_list);
cea0f0e7 2487
36d9594d 2488 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2489 role.level = level;
f6e2c02b 2490 role.direct = direct;
84b0c8c6 2491 if (role.direct)
47c42e6b 2492 role.gpte_is_8_bytes = true;
41074d07 2493 role.access = access;
44dd3ffa
VK
2494 if (!vcpu->arch.mmu->direct_map
2495 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2496 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2497 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2498 role.quadrant = quadrant;
2499 }
f3414bc7
DM
2500 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2501 if (sp->gfn != gfn) {
2502 collisions++;
2503 continue;
2504 }
2505
7ae680eb
XG
2506 if (!need_sync && sp->unsync)
2507 need_sync = true;
4731d4c7 2508
7ae680eb
XG
2509 if (sp->role.word != role.word)
2510 continue;
4731d4c7 2511
2a74003a
PB
2512 if (sp->unsync) {
2513 /* The page is good, but __kvm_sync_page might still end
2514 * up zapping it. If so, break in order to rebuild it.
2515 */
2516 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2517 break;
2518
2519 WARN_ON(!list_empty(&invalid_list));
2520 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2521 }
e02aa901 2522
98bba238 2523 if (sp->unsync_children)
a8eeb04a 2524 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2525
a30f47cb 2526 __clear_sp_write_flooding_count(sp);
7ae680eb 2527 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2528 goto out;
7ae680eb 2529 }
47005792 2530
dfc5aa00 2531 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2532
2533 sp = kvm_mmu_alloc_page(vcpu, direct);
2534
4db35314
AK
2535 sp->gfn = gfn;
2536 sp->role = role;
7ae680eb
XG
2537 hlist_add_head(&sp->hash_link,
2538 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2539 if (!direct) {
56ca57f9
XG
2540 /*
2541 * we should do write protection before syncing pages
2542 * otherwise the content of the synced shadow page may
2543 * be inconsistent with guest page table.
2544 */
2545 account_shadowed(vcpu->kvm, sp);
2546 if (level == PT_PAGE_TABLE_LEVEL &&
2547 rmap_write_protect(vcpu, gfn))
c3134ce2 2548 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2549
9f1a122f 2550 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2551 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2552 }
77492664 2553 clear_page(sp->spt);
f691fe1d 2554 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2555
2556 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2557out:
2558 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2559 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2560 return sp;
cea0f0e7
AK
2561}
2562
7eb77e9f
JS
2563static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2564 struct kvm_vcpu *vcpu, hpa_t root,
2565 u64 addr)
2d11123a
AK
2566{
2567 iterator->addr = addr;
7eb77e9f 2568 iterator->shadow_addr = root;
44dd3ffa 2569 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2570
2a7266a8 2571 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2572 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2573 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2574 --iterator->level;
2575
2d11123a 2576 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2577 /*
2578 * prev_root is currently only used for 64-bit hosts. So only
2579 * the active root_hpa is valid here.
2580 */
44dd3ffa 2581 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2582
2d11123a 2583 iterator->shadow_addr
44dd3ffa 2584 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2585 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2586 --iterator->level;
2587 if (!iterator->shadow_addr)
2588 iterator->level = 0;
2589 }
2590}
2591
7eb77e9f
JS
2592static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2593 struct kvm_vcpu *vcpu, u64 addr)
2594{
44dd3ffa 2595 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2596 addr);
2597}
2598
2d11123a
AK
2599static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2600{
2601 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2602 return false;
4d88954d 2603
2d11123a
AK
2604 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2605 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2606 return true;
2607}
2608
c2a2ac2b
XG
2609static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2610 u64 spte)
2d11123a 2611{
c2a2ac2b 2612 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2613 iterator->level = 0;
2614 return;
2615 }
2616
c2a2ac2b 2617 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2618 --iterator->level;
2619}
2620
c2a2ac2b
XG
2621static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2622{
bb606a9b 2623 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2624}
2625
98bba238
TY
2626static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2627 struct kvm_mmu_page *sp)
32ef26a3
AK
2628{
2629 u64 spte;
2630
ffb128c8 2631 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2632
ffb128c8 2633 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2634 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2635
2636 if (sp_ad_disabled(sp))
6eeb4ef0 2637 spte |= SPTE_AD_DISABLED_MASK;
ac8d57e5
PF
2638 else
2639 spte |= shadow_accessed_mask;
24db2734 2640
1df9f2dc 2641 mmu_spte_set(sptep, spte);
98bba238
TY
2642
2643 mmu_page_add_parent_pte(vcpu, sp, sptep);
2644
2645 if (sp->unsync_children || sp->unsync)
2646 mark_unsync(sptep);
32ef26a3
AK
2647}
2648
a357bd22
AK
2649static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2650 unsigned direct_access)
2651{
2652 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2653 struct kvm_mmu_page *child;
2654
2655 /*
2656 * For the direct sp, if the guest pte's dirty bit
2657 * changed form clean to dirty, it will corrupt the
2658 * sp's access: allow writable in the read-only sp,
2659 * so we should update the spte at this point to get
2660 * a new sp with the correct access.
2661 */
2662 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2663 if (child->role.access == direct_access)
2664 return;
2665
bcdd9a93 2666 drop_parent_pte(child, sptep);
c3134ce2 2667 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2668 }
2669}
2670
505aef8f 2671static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2672 u64 *spte)
2673{
2674 u64 pte;
2675 struct kvm_mmu_page *child;
2676
2677 pte = *spte;
2678 if (is_shadow_present_pte(pte)) {
505aef8f 2679 if (is_last_spte(pte, sp->role.level)) {
c3707958 2680 drop_spte(kvm, spte);
505aef8f
XG
2681 if (is_large_pte(pte))
2682 --kvm->stat.lpages;
2683 } else {
38e3b2b2 2684 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2685 drop_parent_pte(child, spte);
38e3b2b2 2686 }
505aef8f
XG
2687 return true;
2688 }
2689
2690 if (is_mmio_spte(pte))
ce88decf 2691 mmu_spte_clear_no_track(spte);
c3707958 2692
505aef8f 2693 return false;
38e3b2b2
XG
2694}
2695
90cb0529 2696static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2697 struct kvm_mmu_page *sp)
a436036b 2698{
697fe2e2 2699 unsigned i;
697fe2e2 2700
38e3b2b2
XG
2701 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2702 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2703}
2704
31aa2b44 2705static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2706{
1e3f42f0
TY
2707 u64 *sptep;
2708 struct rmap_iterator iter;
a436036b 2709
018aabb5 2710 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2711 drop_parent_pte(sp, sptep);
31aa2b44
AK
2712}
2713
60c8aec6 2714static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2715 struct kvm_mmu_page *parent,
2716 struct list_head *invalid_list)
4731d4c7 2717{
60c8aec6
MT
2718 int i, zapped = 0;
2719 struct mmu_page_path parents;
2720 struct kvm_mmu_pages pages;
4731d4c7 2721
60c8aec6 2722 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2723 return 0;
60c8aec6 2724
60c8aec6
MT
2725 while (mmu_unsync_walk(parent, &pages)) {
2726 struct kvm_mmu_page *sp;
2727
2728 for_each_sp(pages, sp, parents, i) {
7775834a 2729 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2730 mmu_pages_clear_parents(&parents);
77662e00 2731 zapped++;
60c8aec6 2732 }
60c8aec6
MT
2733 }
2734
2735 return zapped;
4731d4c7
MT
2736}
2737
83cdb568
SC
2738static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2739 struct kvm_mmu_page *sp,
2740 struct list_head *invalid_list,
2741 int *nr_zapped)
31aa2b44 2742{
83cdb568 2743 bool list_unstable;
f691fe1d 2744
7775834a 2745 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2746 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2747 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2748 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2749 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2750
83cdb568
SC
2751 /* Zapping children means active_mmu_pages has become unstable. */
2752 list_unstable = *nr_zapped;
2753
f6e2c02b 2754 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2755 unaccount_shadowed(kvm, sp);
5304b8d3 2756
4731d4c7
MT
2757 if (sp->unsync)
2758 kvm_unlink_unsync_page(kvm, sp);
4db35314 2759 if (!sp->root_count) {
54a4f023 2760 /* Count self */
83cdb568 2761 (*nr_zapped)++;
7775834a 2762 list_move(&sp->link, invalid_list);
aa6bd187 2763 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2764 } else {
5b5c6a5a 2765 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2766
10605204
SC
2767 /*
2768 * Obsolete pages cannot be used on any vCPUs, see the comment
2769 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2770 * treats invalid shadow pages as being obsolete.
2771 */
2772 if (!is_obsolete_sp(kvm, sp))
05988d72 2773 kvm_reload_remote_mmus(kvm);
2e53d63a 2774 }
7775834a 2775
b8e8c830
PB
2776 if (sp->lpage_disallowed)
2777 unaccount_huge_nx_page(kvm, sp);
2778
7775834a 2779 sp->role.invalid = 1;
83cdb568
SC
2780 return list_unstable;
2781}
2782
2783static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2784 struct list_head *invalid_list)
2785{
2786 int nr_zapped;
2787
2788 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2789 return nr_zapped;
a436036b
AK
2790}
2791
7775834a
XG
2792static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2793 struct list_head *invalid_list)
2794{
945315b9 2795 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2796
2797 if (list_empty(invalid_list))
2798 return;
2799
c142786c 2800 /*
9753f529
LT
2801 * We need to make sure everyone sees our modifications to
2802 * the page tables and see changes to vcpu->mode here. The barrier
2803 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2804 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2805 *
2806 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2807 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2808 */
2809 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2810
945315b9 2811 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2812 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2813 kvm_mmu_free_page(sp);
945315b9 2814 }
7775834a
XG
2815}
2816
5da59607
TY
2817static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2818 struct list_head *invalid_list)
2819{
2820 struct kvm_mmu_page *sp;
2821
2822 if (list_empty(&kvm->arch.active_mmu_pages))
2823 return false;
2824
d74c0e6b
GT
2825 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2826 struct kvm_mmu_page, link);
42bcbebf 2827 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2828}
2829
ba7888dd
SC
2830static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2831{
2832 LIST_HEAD(invalid_list);
2833
2834 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2835 return 0;
2836
2837 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2838 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2839 break;
2840
2841 ++vcpu->kvm->stat.mmu_recycled;
2842 }
2843 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2844
2845 if (!kvm_mmu_available_pages(vcpu->kvm))
2846 return -ENOSPC;
2847 return 0;
2848}
2849
82ce2c96
IE
2850/*
2851 * Changing the number of mmu pages allocated to the vm
49d5ca26 2852 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2853 */
bc8a3d89 2854void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2855{
d98ba053 2856 LIST_HEAD(invalid_list);
82ce2c96 2857
b34cb590
TY
2858 spin_lock(&kvm->mmu_lock);
2859
49d5ca26 2860 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2861 /* Need to free some mmu pages to achieve the goal. */
2862 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2863 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2864 break;
82ce2c96 2865
aa6bd187 2866 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2867 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2868 }
82ce2c96 2869
49d5ca26 2870 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2871
2872 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2873}
2874
1cb3f3ae 2875int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2876{
4db35314 2877 struct kvm_mmu_page *sp;
d98ba053 2878 LIST_HEAD(invalid_list);
a436036b
AK
2879 int r;
2880
9ad17b10 2881 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2882 r = 0;
1cb3f3ae 2883 spin_lock(&kvm->mmu_lock);
b67bfe0d 2884 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2885 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2886 sp->role.word);
2887 r = 1;
f41d335a 2888 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2889 }
d98ba053 2890 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2891 spin_unlock(&kvm->mmu_lock);
2892
a436036b 2893 return r;
cea0f0e7 2894}
1cb3f3ae 2895EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2896
5c520e90 2897static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2898{
2899 trace_kvm_mmu_unsync_page(sp);
2900 ++vcpu->kvm->stat.mmu_unsync;
2901 sp->unsync = 1;
2902
2903 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2904}
2905
3d0c27ad
XG
2906static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2907 bool can_unsync)
4731d4c7 2908{
5c520e90 2909 struct kvm_mmu_page *sp;
4731d4c7 2910
3d0c27ad
XG
2911 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2912 return true;
9cf5cf5a 2913
5c520e90 2914 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2915 if (!can_unsync)
3d0c27ad 2916 return true;
36a2e677 2917
5c520e90
XG
2918 if (sp->unsync)
2919 continue;
9cf5cf5a 2920
5c520e90
XG
2921 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2922 kvm_unsync_page(vcpu, sp);
4731d4c7 2923 }
3d0c27ad 2924
578e1c4d
JS
2925 /*
2926 * We need to ensure that the marking of unsync pages is visible
2927 * before the SPTE is updated to allow writes because
2928 * kvm_mmu_sync_roots() checks the unsync flags without holding
2929 * the MMU lock and so can race with this. If the SPTE was updated
2930 * before the page had been marked as unsync-ed, something like the
2931 * following could happen:
2932 *
2933 * CPU 1 CPU 2
2934 * ---------------------------------------------------------------------
2935 * 1.2 Host updates SPTE
2936 * to be writable
2937 * 2.1 Guest writes a GPTE for GVA X.
2938 * (GPTE being in the guest page table shadowed
2939 * by the SP from CPU 1.)
2940 * This reads SPTE during the page table walk.
2941 * Since SPTE.W is read as 1, there is no
2942 * fault.
2943 *
2944 * 2.2 Guest issues TLB flush.
2945 * That causes a VM Exit.
2946 *
2947 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2948 * Since it is false, so it just returns.
2949 *
2950 * 2.4 Guest accesses GVA X.
2951 * Since the mapping in the SP was not updated,
2952 * so the old mapping for GVA X incorrectly
2953 * gets used.
2954 * 1.1 Host marks SP
2955 * as unsync
2956 * (sp->unsync = true)
2957 *
2958 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2959 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2960 * pairs with this write barrier.
2961 */
2962 smp_wmb();
2963
3d0c27ad 2964 return false;
4731d4c7
MT
2965}
2966
ba049e93 2967static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2968{
2969 if (pfn_valid(pfn))
aa2e063a
HZ
2970 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2971 /*
2972 * Some reserved pages, such as those from NVDIMM
2973 * DAX devices, are not for MMIO, and can be mapped
2974 * with cached memory type for better performance.
2975 * However, the above check misconceives those pages
2976 * as MMIO, and results in KVM mapping them with UC
2977 * memory type, which would hurt the performance.
2978 * Therefore, we check the host memory type in addition
2979 * and only treat UC/UC-/WC pages as MMIO.
2980 */
2981 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 2982
0c55671f
KA
2983 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2984 pfn_to_hpa(pfn + 1) - 1,
2985 E820_TYPE_RAM);
d1fe9219
PB
2986}
2987
5ce4786f
JS
2988/* Bits which may be returned by set_spte() */
2989#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2990#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2991
d555c333 2992static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
0a2b64c5 2993 unsigned int pte_access, int level,
ba049e93 2994 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2995 bool can_unsync, bool host_writable)
1c4f1fd6 2996{
ffb128c8 2997 u64 spte = 0;
1e73f9dd 2998 int ret = 0;
ac8d57e5 2999 struct kvm_mmu_page *sp;
64d4d521 3000
54bf36aa 3001 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
3002 return 0;
3003
ac8d57e5
PF
3004 sp = page_header(__pa(sptep));
3005 if (sp_ad_disabled(sp))
6eeb4ef0 3006 spte |= SPTE_AD_DISABLED_MASK;
1f4e5fc8
PB
3007 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3008 spte |= SPTE_AD_WRPROT_ONLY_MASK;
ac8d57e5 3009
d95c5568
BD
3010 /*
3011 * For the EPT case, shadow_present_mask is 0 if hardware
3012 * supports exec-only page table entries. In that case,
3013 * ACC_USER_MASK and shadow_user_mask are used to represent
3014 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3015 */
ffb128c8 3016 spte |= shadow_present_mask;
947da538 3017 if (!speculative)
ac8d57e5 3018 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 3019
b8e8c830
PB
3020 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3021 is_nx_huge_page_enabled()) {
3022 pte_access &= ~ACC_EXEC_MASK;
3023 }
3024
7b52345e
SY
3025 if (pte_access & ACC_EXEC_MASK)
3026 spte |= shadow_x_mask;
3027 else
3028 spte |= shadow_nx_mask;
49fde340 3029
1c4f1fd6 3030 if (pte_access & ACC_USER_MASK)
7b52345e 3031 spte |= shadow_user_mask;
49fde340 3032
852e3c19 3033 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 3034 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 3035 if (tdp_enabled)
4b12f0de 3036 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 3037 kvm_is_mmio_pfn(pfn));
1c4f1fd6 3038
9bdbba13 3039 if (host_writable)
1403283a 3040 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
3041 else
3042 pte_access &= ~ACC_WRITE_MASK;
1403283a 3043
daaf216c
TL
3044 if (!kvm_is_mmio_pfn(pfn))
3045 spte |= shadow_me_mask;
3046
35149e21 3047 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 3048
c2288505 3049 if (pte_access & ACC_WRITE_MASK) {
49fde340 3050 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3051
ecc5589f
MT
3052 /*
3053 * Optimization: for pte sync, if spte was writable the hash
3054 * lookup is unnecessary (and expensive). Write protection
3055 * is responsibility of mmu_get_page / kvm_sync_page.
3056 * Same reasoning can be applied to dirty page accounting.
3057 */
8dae4445 3058 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3059 goto set_pte;
3060
4731d4c7 3061 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3062 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3063 __func__, gfn);
5ce4786f 3064 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3065 pte_access &= ~ACC_WRITE_MASK;
49fde340 3066 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3067 }
3068 }
3069
9b51a630 3070 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3071 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3072 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3073 }
1c4f1fd6 3074
f160c7b7
JS
3075 if (speculative)
3076 spte = mark_spte_for_access_track(spte);
3077
38187c83 3078set_pte:
6e7d0354 3079 if (mmu_spte_update(sptep, spte))
5ce4786f 3080 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
3081 return ret;
3082}
3083
0a2b64c5
BG
3084static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3085 unsigned int pte_access, int write_fault, int level,
3086 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3087 bool host_writable)
1e73f9dd
MT
3088{
3089 int was_rmapped = 0;
53a27b39 3090 int rmap_count;
5ce4786f 3091 int set_spte_ret;
9b8ebbdb 3092 int ret = RET_PF_RETRY;
c2a4eadf 3093 bool flush = false;
1e73f9dd 3094
f7616203
XG
3095 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3096 *sptep, write_fault, gfn);
1e73f9dd 3097
afd28fe1 3098 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3099 /*
3100 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3101 * the parent of the now unreachable PTE.
3102 */
852e3c19
JR
3103 if (level > PT_PAGE_TABLE_LEVEL &&
3104 !is_large_pte(*sptep)) {
1e73f9dd 3105 struct kvm_mmu_page *child;
d555c333 3106 u64 pte = *sptep;
1e73f9dd
MT
3107
3108 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3109 drop_parent_pte(child, sptep);
c2a4eadf 3110 flush = true;
d555c333 3111 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3112 pgprintk("hfn old %llx new %llx\n",
d555c333 3113 spte_to_pfn(*sptep), pfn);
c3707958 3114 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3115 flush = true;
6bed6b9e
JR
3116 } else
3117 was_rmapped = 1;
1e73f9dd 3118 }
852e3c19 3119
5ce4786f
JS
3120 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3121 speculative, true, host_writable);
3122 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3123 if (write_fault)
9b8ebbdb 3124 ret = RET_PF_EMULATE;
77c3913b 3125 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3126 }
c3134ce2 3127
c2a4eadf 3128 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3129 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3130 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3131
029499b4 3132 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3133 ret = RET_PF_EMULATE;
ce88decf 3134
d555c333 3135 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3136 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3137 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3138 ++vcpu->kvm->stat.lpages;
3139
ffb61bb3 3140 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3141 if (!was_rmapped) {
3142 rmap_count = rmap_add(vcpu, sptep, gfn);
3143 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3144 rmap_recycle(vcpu, sptep, gfn);
3145 }
1c4f1fd6 3146 }
cb9aaa30 3147
9b8ebbdb 3148 return ret;
1c4f1fd6
AK
3149}
3150
ba049e93 3151static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3152 bool no_dirty_log)
3153{
3154 struct kvm_memory_slot *slot;
957ed9ef 3155
5d163b1c 3156 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3157 if (!slot)
6c8ee57b 3158 return KVM_PFN_ERR_FAULT;
957ed9ef 3159
037d92dc 3160 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3161}
3162
3163static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3164 struct kvm_mmu_page *sp,
3165 u64 *start, u64 *end)
3166{
3167 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3168 struct kvm_memory_slot *slot;
0a2b64c5 3169 unsigned int access = sp->role.access;
957ed9ef
XG
3170 int i, ret;
3171 gfn_t gfn;
3172
3173 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3174 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3175 if (!slot)
957ed9ef
XG
3176 return -1;
3177
d9ef13c2 3178 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3179 if (ret <= 0)
3180 return -1;
3181
43fdcda9 3182 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3183 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3184 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3185 put_page(pages[i]);
3186 }
957ed9ef
XG
3187
3188 return 0;
3189}
3190
3191static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3192 struct kvm_mmu_page *sp, u64 *sptep)
3193{
3194 u64 *spte, *start = NULL;
3195 int i;
3196
3197 WARN_ON(!sp->role.direct);
3198
3199 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3200 spte = sp->spt + i;
3201
3202 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3203 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3204 if (!start)
3205 continue;
3206 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3207 break;
3208 start = NULL;
3209 } else if (!start)
3210 start = spte;
3211 }
3212}
3213
3214static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3215{
3216 struct kvm_mmu_page *sp;
3217
ac8d57e5
PF
3218 sp = page_header(__pa(sptep));
3219
957ed9ef 3220 /*
ac8d57e5
PF
3221 * Without accessed bits, there's no way to distinguish between
3222 * actually accessed translations and prefetched, so disable pte
3223 * prefetch if accessed bits aren't available.
957ed9ef 3224 */
ac8d57e5 3225 if (sp_ad_disabled(sp))
957ed9ef
XG
3226 return;
3227
957ed9ef
XG
3228 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3229 return;
3230
3231 __direct_pte_prefetch(vcpu, sp, sptep);
3232}
3233
db543216 3234static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 3235 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 3236{
db543216
SC
3237 unsigned long hva;
3238 pte_t *pte;
3239 int level;
3240
3241 BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
3242 PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
3243 PT_PDPE_LEVEL != (int)PG_LEVEL_1G);
3244
e851265a 3245 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
db543216
SC
3246 return PT_PAGE_TABLE_LEVEL;
3247
293e306e
SC
3248 /*
3249 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3250 * is not solely for performance, it's also necessary to avoid the
3251 * "writable" check in __gfn_to_hva_many(), which will always fail on
3252 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3253 * page fault steps have already verified the guest isn't writing a
3254 * read-only memslot.
3255 */
db543216
SC
3256 hva = __gfn_to_hva_memslot(slot, gfn);
3257
3258 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3259 if (unlikely(!pte))
3260 return PT_PAGE_TABLE_LEVEL;
3261
3262 return level;
3263}
3264
83f06fa7
SC
3265static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3266 int max_level, kvm_pfn_t *pfnp)
0885904d 3267{
293e306e 3268 struct kvm_memory_slot *slot;
2c0629f4 3269 struct kvm_lpage_info *linfo;
0885904d 3270 kvm_pfn_t pfn = *pfnp;
17eff019 3271 kvm_pfn_t mask;
83f06fa7 3272 int level;
17eff019 3273
293e306e 3274 if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
83f06fa7 3275 return PT_PAGE_TABLE_LEVEL;
17eff019 3276
e851265a 3277 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
83f06fa7 3278 return PT_PAGE_TABLE_LEVEL;
17eff019 3279
293e306e
SC
3280 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3281 if (!slot)
3282 return PT_PAGE_TABLE_LEVEL;
3283
3284 max_level = min(max_level, kvm_x86_ops->get_lpage_level());
3285 for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
2c0629f4
SC
3286 linfo = lpage_info_slot(gfn, slot, max_level);
3287 if (!linfo->disallow_lpage)
293e306e
SC
3288 break;
3289 }
3290
3291 if (max_level == PT_PAGE_TABLE_LEVEL)
3292 return PT_PAGE_TABLE_LEVEL;
3293
3294 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
db543216 3295 if (level == PT_PAGE_TABLE_LEVEL)
83f06fa7 3296 return level;
17eff019 3297
db543216 3298 level = min(level, max_level);
0885904d
SC
3299
3300 /*
17eff019
SC
3301 * mmu_notifier_retry() was successful and mmu_lock is held, so
3302 * the pmd can't be split from under us.
0885904d 3303 */
17eff019
SC
3304 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3305 VM_BUG_ON((gfn & mask) != (pfn & mask));
3306 *pfnp = pfn & ~mask;
83f06fa7
SC
3307
3308 return level;
0885904d
SC
3309}
3310
b8e8c830
PB
3311static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3312 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3313{
3314 int level = *levelp;
3315 u64 spte = *it.sptep;
3316
3317 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3318 is_nx_huge_page_enabled() &&
3319 is_shadow_present_pte(spte) &&
3320 !is_large_pte(spte)) {
3321 /*
3322 * A small SPTE exists for this pfn, but FNAME(fetch)
3323 * and __direct_map would like to create a large PTE
3324 * instead: just force them to go down another level,
3325 * patching back for them into pfn the next 9 bits of
3326 * the address.
3327 */
3328 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3329 *pfnp |= gfn & page_mask;
3330 (*levelp)--;
3331 }
3332}
3333
3fcf2d1b 3334static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
83f06fa7
SC
3335 int map_writable, int max_level, kvm_pfn_t pfn,
3336 bool prefault, bool account_disallowed_nx_lpage)
140754bc 3337{
3fcf2d1b 3338 struct kvm_shadow_walk_iterator it;
140754bc 3339 struct kvm_mmu_page *sp;
83f06fa7 3340 int level, ret;
3fcf2d1b
PB
3341 gfn_t gfn = gpa >> PAGE_SHIFT;
3342 gfn_t base_gfn = gfn;
6aa8b732 3343
0c7a98e3 3344 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 3345 return RET_PF_RETRY;
989c6b34 3346
83f06fa7 3347 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
4cd071d1 3348
335e192a 3349 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 3350 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
3351 /*
3352 * We cannot overwrite existing page tables with an NX
3353 * large page, as the leaf could be executable.
3354 */
3355 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3356
3fcf2d1b
PB
3357 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3358 if (it.level == level)
9f652d21 3359 break;
6aa8b732 3360
3fcf2d1b
PB
3361 drop_large_spte(vcpu, it.sptep);
3362 if (!is_shadow_present_pte(*it.sptep)) {
3363 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3364 it.level - 1, true, ACC_ALL);
c9fa0b3b 3365
3fcf2d1b 3366 link_shadow_page(vcpu, it.sptep, sp);
2cb70fd4 3367 if (account_disallowed_nx_lpage)
b8e8c830 3368 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
3369 }
3370 }
3fcf2d1b
PB
3371
3372 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3373 write, level, base_gfn, pfn, prefault,
3374 map_writable);
3375 direct_pte_prefetch(vcpu, it.sptep);
3376 ++vcpu->stat.pf_fixed;
3377 return ret;
6aa8b732
AK
3378}
3379
77db5cbd 3380static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3381{
585a8b9b 3382 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3383}
3384
ba049e93 3385static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3386{
4d8b81ab
XG
3387 /*
3388 * Do not cache the mmio info caused by writing the readonly gfn
3389 * into the spte otherwise read access on readonly gfn also can
3390 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3391 */
3392 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3393 return RET_PF_EMULATE;
4d8b81ab 3394
e6c1502b 3395 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3396 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3397 return RET_PF_RETRY;
d7c55201 3398 }
edba23e5 3399
2c151b25 3400 return -EFAULT;
bf998156
HY
3401}
3402
d7c55201 3403static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
3404 kvm_pfn_t pfn, unsigned int access,
3405 int *ret_val)
d7c55201 3406{
d7c55201 3407 /* The pfn is invalid, report the error! */
81c52c56 3408 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3409 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3410 return true;
d7c55201
XG
3411 }
3412
ce88decf 3413 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
3414 vcpu_cache_mmio_info(vcpu, gva, gfn,
3415 access & shadow_mmio_access_mask);
d7c55201 3416
798e88b3 3417 return false;
d7c55201
XG
3418}
3419
e5552fd2 3420static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3421{
1c118b82
XG
3422 /*
3423 * Do not fix the mmio spte with invalid generation number which
3424 * need to be updated by slow page fault path.
3425 */
3426 if (unlikely(error_code & PFERR_RSVD_MASK))
3427 return false;
3428
f160c7b7
JS
3429 /* See if the page fault is due to an NX violation */
3430 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3431 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3432 return false;
3433
c7ba5b48 3434 /*
f160c7b7
JS
3435 * #PF can be fast if:
3436 * 1. The shadow page table entry is not present, which could mean that
3437 * the fault is potentially caused by access tracking (if enabled).
3438 * 2. The shadow page table entry is present and the fault
3439 * is caused by write-protect, that means we just need change the W
3440 * bit of the spte which can be done out of mmu-lock.
3441 *
3442 * However, if access tracking is disabled we know that a non-present
3443 * page must be a genuine page fault where we have to create a new SPTE.
3444 * So, if access tracking is disabled, we return true only for write
3445 * accesses to a present page.
c7ba5b48 3446 */
c7ba5b48 3447
f160c7b7
JS
3448 return shadow_acc_track_mask != 0 ||
3449 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3450 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3451}
3452
97dceba2
JS
3453/*
3454 * Returns true if the SPTE was fixed successfully. Otherwise,
3455 * someone else modified the SPTE from its original value.
3456 */
c7ba5b48 3457static bool
92a476cb 3458fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3459 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3460{
c7ba5b48
XG
3461 gfn_t gfn;
3462
3463 WARN_ON(!sp->role.direct);
3464
9b51a630
KH
3465 /*
3466 * Theoretically we could also set dirty bit (and flush TLB) here in
3467 * order to eliminate unnecessary PML logging. See comments in
3468 * set_spte. But fast_page_fault is very unlikely to happen with PML
3469 * enabled, so we do not do this. This might result in the same GPA
3470 * to be logged in PML buffer again when the write really happens, and
3471 * eventually to be called by mark_page_dirty twice. But it's also no
3472 * harm. This also avoids the TLB flush needed after setting dirty bit
3473 * so non-PML cases won't be impacted.
3474 *
3475 * Compare with set_spte where instead shadow_dirty_mask is set.
3476 */
f160c7b7 3477 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3478 return false;
3479
d3e328f2 3480 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3481 /*
3482 * The gfn of direct spte is stable since it is
3483 * calculated by sp->gfn.
3484 */
3485 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3486 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3487 }
c7ba5b48
XG
3488
3489 return true;
3490}
3491
d3e328f2
JS
3492static bool is_access_allowed(u32 fault_err_code, u64 spte)
3493{
3494 if (fault_err_code & PFERR_FETCH_MASK)
3495 return is_executable_pte(spte);
3496
3497 if (fault_err_code & PFERR_WRITE_MASK)
3498 return is_writable_pte(spte);
3499
3500 /* Fault was on Read access */
3501 return spte & PT_PRESENT_MASK;
3502}
3503
c7ba5b48
XG
3504/*
3505 * Return value:
3506 * - true: let the vcpu to access on the same address again.
3507 * - false: let the real page fault path to fix it.
3508 */
f9fa2509 3509static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
c7ba5b48
XG
3510 u32 error_code)
3511{
3512 struct kvm_shadow_walk_iterator iterator;
92a476cb 3513 struct kvm_mmu_page *sp;
97dceba2 3514 bool fault_handled = false;
c7ba5b48 3515 u64 spte = 0ull;
97dceba2 3516 uint retry_count = 0;
c7ba5b48 3517
e5552fd2 3518 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3519 return false;
3520
3521 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3522
97dceba2 3523 do {
d3e328f2 3524 u64 new_spte;
c7ba5b48 3525
736c291c 3526 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3527 if (!is_shadow_present_pte(spte))
d162f30a
JS
3528 break;
3529
97dceba2
JS
3530 sp = page_header(__pa(iterator.sptep));
3531 if (!is_last_spte(spte, sp->role.level))
3532 break;
c7ba5b48 3533
97dceba2 3534 /*
f160c7b7
JS
3535 * Check whether the memory access that caused the fault would
3536 * still cause it if it were to be performed right now. If not,
3537 * then this is a spurious fault caused by TLB lazily flushed,
3538 * or some other CPU has already fixed the PTE after the
3539 * current CPU took the fault.
97dceba2
JS
3540 *
3541 * Need not check the access of upper level table entries since
3542 * they are always ACC_ALL.
3543 */
d3e328f2
JS
3544 if (is_access_allowed(error_code, spte)) {
3545 fault_handled = true;
3546 break;
3547 }
f160c7b7 3548
d3e328f2
JS
3549 new_spte = spte;
3550
3551 if (is_access_track_spte(spte))
3552 new_spte = restore_acc_track_spte(new_spte);
3553
3554 /*
3555 * Currently, to simplify the code, write-protection can
3556 * be removed in the fast path only if the SPTE was
3557 * write-protected for dirty-logging or access tracking.
3558 */
3559 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3560 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3561 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3562
3563 /*
d3e328f2
JS
3564 * Do not fix write-permission on the large spte. Since
3565 * we only dirty the first page into the dirty-bitmap in
3566 * fast_pf_fix_direct_spte(), other pages are missed
3567 * if its slot has dirty logging enabled.
3568 *
3569 * Instead, we let the slow page fault path create a
3570 * normal spte to fix the access.
3571 *
3572 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3573 */
d3e328f2 3574 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3575 break;
97dceba2 3576 }
c7ba5b48 3577
f160c7b7 3578 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3579 if (new_spte == spte ||
3580 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3581 break;
3582
3583 /*
3584 * Currently, fast page fault only works for direct mapping
3585 * since the gfn is not stable for indirect shadow page. See
2f5947df 3586 * Documentation/virt/kvm/locking.txt to get more detail.
97dceba2
JS
3587 */
3588 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3589 iterator.sptep, spte,
d3e328f2 3590 new_spte);
97dceba2
JS
3591 if (fault_handled)
3592 break;
3593
3594 if (++retry_count > 4) {
3595 printk_once(KERN_WARNING
3596 "kvm: Fast #PF retrying more than 4 times.\n");
3597 break;
3598 }
3599
97dceba2 3600 } while (true);
c126d94f 3601
736c291c 3602 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
97dceba2 3603 spte, fault_handled);
c7ba5b48
XG
3604 walk_shadow_page_lockless_end(vcpu);
3605
97dceba2 3606 return fault_handled;
c7ba5b48
XG
3607}
3608
74b566e6
JS
3609static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3610 struct list_head *invalid_list)
17ac10ad 3611{
4db35314 3612 struct kvm_mmu_page *sp;
17ac10ad 3613
74b566e6 3614 if (!VALID_PAGE(*root_hpa))
7b53aa56 3615 return;
35af577a 3616
74b566e6
JS
3617 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3618 --sp->root_count;
3619 if (!sp->root_count && sp->role.invalid)
3620 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3621
74b566e6
JS
3622 *root_hpa = INVALID_PAGE;
3623}
3624
08fb59d8 3625/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3626void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3627 ulong roots_to_free)
74b566e6
JS
3628{
3629 int i;
3630 LIST_HEAD(invalid_list);
08fb59d8 3631 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3632
b94742c9 3633 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3634
08fb59d8 3635 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3636 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3637 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3638 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3639 VALID_PAGE(mmu->prev_roots[i].hpa))
3640 break;
3641
3642 if (i == KVM_MMU_NUM_PREV_ROOTS)
3643 return;
3644 }
35af577a
GN
3645
3646 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3647
b94742c9
JS
3648 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3649 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3650 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3651 &invalid_list);
7c390d35 3652
08fb59d8
JS
3653 if (free_active_root) {
3654 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3655 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3656 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3657 &invalid_list);
3658 } else {
3659 for (i = 0; i < 4; ++i)
3660 if (mmu->pae_root[i] != 0)
3661 mmu_free_root_page(vcpu->kvm,
3662 &mmu->pae_root[i],
3663 &invalid_list);
3664 mmu->root_hpa = INVALID_PAGE;
3665 }
ad7dc69a 3666 mmu->root_cr3 = 0;
17ac10ad 3667 }
74b566e6 3668
d98ba053 3669 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3670 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3671}
74b566e6 3672EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3673
8986ecc0
MT
3674static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3675{
3676 int ret = 0;
3677
3678 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3679 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3680 ret = 1;
3681 }
3682
3683 return ret;
3684}
3685
651dd37a
JR
3686static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3687{
3688 struct kvm_mmu_page *sp;
7ebaf15e 3689 unsigned i;
651dd37a 3690
44dd3ffa 3691 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3692 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3693 if(make_mmu_pages_available(vcpu) < 0) {
3694 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3695 return -ENOSPC;
26eeb53c 3696 }
855feb67 3697 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3698 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3699 ++sp->root_count;
3700 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3701 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3702 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3703 for (i = 0; i < 4; ++i) {
44dd3ffa 3704 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3705
fa4a2c08 3706 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3707 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3708 if (make_mmu_pages_available(vcpu) < 0) {
3709 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3710 return -ENOSPC;
26eeb53c 3711 }
649497d1 3712 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3713 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3714 root = __pa(sp->spt);
3715 ++sp->root_count;
3716 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3717 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3718 }
44dd3ffa 3719 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3720 } else
3721 BUG();
3651c7fc
SC
3722
3723 /* root_cr3 is ignored for direct MMUs. */
3724 vcpu->arch.mmu->root_cr3 = 0;
651dd37a
JR
3725
3726 return 0;
3727}
3728
3729static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3730{
4db35314 3731 struct kvm_mmu_page *sp;
81407ca5 3732 u64 pdptr, pm_mask;
ad7dc69a 3733 gfn_t root_gfn, root_cr3;
81407ca5 3734 int i;
3bb65a22 3735
ad7dc69a
VK
3736 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3737 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3738
651dd37a
JR
3739 if (mmu_check_root(vcpu, root_gfn))
3740 return 1;
3741
3742 /*
3743 * Do we shadow a long mode page table? If so we need to
3744 * write-protect the guests page table root.
3745 */
44dd3ffa
VK
3746 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3747 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3748
fa4a2c08 3749 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3750
8facbbff 3751 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3752 if (make_mmu_pages_available(vcpu) < 0) {
3753 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3754 return -ENOSPC;
26eeb53c 3755 }
855feb67 3756 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3757 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3758 root = __pa(sp->spt);
3759 ++sp->root_count;
8facbbff 3760 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3761 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3762 goto set_root_cr3;
17ac10ad 3763 }
f87f9288 3764
651dd37a
JR
3765 /*
3766 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3767 * or a PAE 3-level page table. In either case we need to be aware that
3768 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3769 */
81407ca5 3770 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3771 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3772 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3773
17ac10ad 3774 for (i = 0; i < 4; ++i) {
44dd3ffa 3775 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3776
fa4a2c08 3777 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3778 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3779 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3780 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3781 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3782 continue;
3783 }
6de4f3ad 3784 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3785 if (mmu_check_root(vcpu, root_gfn))
3786 return 1;
5a7388c2 3787 }
8facbbff 3788 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3789 if (make_mmu_pages_available(vcpu) < 0) {
3790 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3791 return -ENOSPC;
26eeb53c 3792 }
bb11c6c9
TY
3793 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3794 0, ACC_ALL);
4db35314
AK
3795 root = __pa(sp->spt);
3796 ++sp->root_count;
8facbbff
AK
3797 spin_unlock(&vcpu->kvm->mmu_lock);
3798
44dd3ffa 3799 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3800 }
44dd3ffa 3801 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3802
3803 /*
3804 * If we shadow a 32 bit page table with a long mode page
3805 * table we enter this path.
3806 */
44dd3ffa
VK
3807 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3808 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3809 /*
3810 * The additional page necessary for this is only
3811 * allocated on demand.
3812 */
3813
3814 u64 *lm_root;
3815
254272ce 3816 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3817 if (lm_root == NULL)
3818 return 1;
3819
44dd3ffa 3820 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3821
44dd3ffa 3822 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3823 }
3824
44dd3ffa 3825 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3826 }
3827
ad7dc69a
VK
3828set_root_cr3:
3829 vcpu->arch.mmu->root_cr3 = root_cr3;
3830
8986ecc0 3831 return 0;
17ac10ad
AK
3832}
3833
651dd37a
JR
3834static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3835{
44dd3ffa 3836 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3837 return mmu_alloc_direct_roots(vcpu);
3838 else
3839 return mmu_alloc_shadow_roots(vcpu);
3840}
3841
578e1c4d 3842void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3843{
3844 int i;
3845 struct kvm_mmu_page *sp;
3846
44dd3ffa 3847 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3848 return;
3849
44dd3ffa 3850 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3851 return;
6903074c 3852
56f17dd3 3853 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3854
44dd3ffa
VK
3855 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3856 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3857 sp = page_header(root);
578e1c4d
JS
3858
3859 /*
3860 * Even if another CPU was marking the SP as unsync-ed
3861 * simultaneously, any guest page table changes are not
3862 * guaranteed to be visible anyway until this VCPU issues a TLB
3863 * flush strictly after those changes are made. We only need to
3864 * ensure that the other CPU sets these flags before any actual
3865 * changes to the page tables are made. The comments in
3866 * mmu_need_write_protect() describe what could go wrong if this
3867 * requirement isn't satisfied.
3868 */
3869 if (!smp_load_acquire(&sp->unsync) &&
3870 !smp_load_acquire(&sp->unsync_children))
3871 return;
3872
3873 spin_lock(&vcpu->kvm->mmu_lock);
3874 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3875
0ba73cda 3876 mmu_sync_children(vcpu, sp);
578e1c4d 3877
0375f7fa 3878 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3879 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3880 return;
3881 }
578e1c4d
JS
3882
3883 spin_lock(&vcpu->kvm->mmu_lock);
3884 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3885
0ba73cda 3886 for (i = 0; i < 4; ++i) {
44dd3ffa 3887 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3888
8986ecc0 3889 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3890 root &= PT64_BASE_ADDR_MASK;
3891 sp = page_header(root);
3892 mmu_sync_children(vcpu, sp);
3893 }
3894 }
0ba73cda 3895
578e1c4d 3896 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3897 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3898}
bfd0a56b 3899EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3900
736c291c 3901static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3902 u32 access, struct x86_exception *exception)
6aa8b732 3903{
ab9ae313
AK
3904 if (exception)
3905 exception->error_code = 0;
6aa8b732
AK
3906 return vaddr;
3907}
3908
736c291c 3909static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3910 u32 access,
3911 struct x86_exception *exception)
6539e738 3912{
ab9ae313
AK
3913 if (exception)
3914 exception->error_code = 0;
54987b7a 3915 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3916}
3917
d625b155
XG
3918static bool
3919__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3920{
b5c3c1b3 3921 int bit7 = (pte >> 7) & 1;
d625b155 3922
b5c3c1b3 3923 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3924}
3925
b5c3c1b3 3926static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3927{
b5c3c1b3 3928 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3929}
3930
ded58749 3931static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3932{
9034e6e8
PB
3933 /*
3934 * A nested guest cannot use the MMIO cache if it is using nested
3935 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3936 */
3937 if (mmu_is_nested(vcpu))
3938 return false;
3939
ce88decf
XG
3940 if (direct)
3941 return vcpu_match_mmio_gpa(vcpu, addr);
3942
3943 return vcpu_match_mmio_gva(vcpu, addr);
3944}
3945
47ab8751
XG
3946/* return true if reserved bit is detected on spte. */
3947static bool
3948walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3949{
3950 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3951 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3952 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3953 int root, leaf;
3954 bool reserved = false;
ce88decf 3955
b5c3c1b3 3956 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3957
ce88decf 3958 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3959
29ecd660
PB
3960 for (shadow_walk_init(&iterator, vcpu, addr),
3961 leaf = root = iterator.level;
47ab8751
XG
3962 shadow_walk_okay(&iterator);
3963 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3964 spte = mmu_spte_get_lockless(iterator.sptep);
3965
3966 sptes[leaf - 1] = spte;
29ecd660 3967 leaf--;
47ab8751 3968
ce88decf
XG
3969 if (!is_shadow_present_pte(spte))
3970 break;
47ab8751 3971
b5c3c1b3
SC
3972 /*
3973 * Use a bitwise-OR instead of a logical-OR to aggregate the
3974 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3975 * adding a Jcc in the loop.
3976 */
3977 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3978 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3979 }
3980
ce88decf
XG
3981 walk_shadow_page_lockless_end(vcpu);
3982
47ab8751
XG
3983 if (reserved) {
3984 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3985 __func__, addr);
29ecd660 3986 while (root > leaf) {
47ab8751
XG
3987 pr_err("------ spte 0x%llx level %d.\n",
3988 sptes[root - 1], root);
3989 root--;
3990 }
3991 }
ddce6208 3992
47ab8751
XG
3993 *sptep = spte;
3994 return reserved;
ce88decf
XG
3995}
3996
e08d26f0 3997static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3998{
3999 u64 spte;
47ab8751 4000 bool reserved;
ce88decf 4001
ded58749 4002 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 4003 return RET_PF_EMULATE;
ce88decf 4004
47ab8751 4005 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 4006 if (WARN_ON(reserved))
9b8ebbdb 4007 return -EINVAL;
ce88decf
XG
4008
4009 if (is_mmio_spte(spte)) {
4010 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 4011 unsigned int access = get_mmio_spte_access(spte);
ce88decf 4012
54bf36aa 4013 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 4014 return RET_PF_INVALID;
f8f55942 4015
ce88decf
XG
4016 if (direct)
4017 addr = 0;
4f022648
XG
4018
4019 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 4020 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 4021 return RET_PF_EMULATE;
ce88decf
XG
4022 }
4023
ce88decf
XG
4024 /*
4025 * If the page table is zapped by other cpus, let CPU fault again on
4026 * the address.
4027 */
9b8ebbdb 4028 return RET_PF_RETRY;
ce88decf 4029}
ce88decf 4030
3d0c27ad
XG
4031static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4032 u32 error_code, gfn_t gfn)
4033{
4034 if (unlikely(error_code & PFERR_RSVD_MASK))
4035 return false;
4036
4037 if (!(error_code & PFERR_PRESENT_MASK) ||
4038 !(error_code & PFERR_WRITE_MASK))
4039 return false;
4040
4041 /*
4042 * guest is writing the page which is write tracked which can
4043 * not be fixed by page fault handler.
4044 */
4045 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4046 return true;
4047
4048 return false;
4049}
4050
e5691a81
XG
4051static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4052{
4053 struct kvm_shadow_walk_iterator iterator;
4054 u64 spte;
4055
e5691a81
XG
4056 walk_shadow_page_lockless_begin(vcpu);
4057 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4058 clear_sp_write_flooding_count(iterator.sptep);
4059 if (!is_shadow_present_pte(spte))
4060 break;
4061 }
4062 walk_shadow_page_lockless_end(vcpu);
4063}
4064
9f1a8526
SC
4065static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4066 gfn_t gfn)
af585b92
GN
4067{
4068 struct kvm_arch_async_pf arch;
fb67e14f 4069
7c90705b 4070 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4071 arch.gfn = gfn;
44dd3ffa
VK
4072 arch.direct_map = vcpu->arch.mmu->direct_map;
4073 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 4074
9f1a8526
SC
4075 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4076 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4077}
4078
78b2c54a 4079static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
4080 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4081 bool *writable)
af585b92 4082{
3520469d 4083 struct kvm_memory_slot *slot;
af585b92
GN
4084 bool async;
4085
3a2936de
JM
4086 /*
4087 * Don't expose private memslots to L2.
4088 */
4089 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4090 *pfn = KVM_PFN_NOSLOT;
4091 return false;
4092 }
4093
54bf36aa 4094 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4095 async = false;
4096 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4097 if (!async)
4098 return false; /* *pfn has correct page already */
4099
9bc1f09f 4100 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 4101 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 4102 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 4103 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
4104 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4105 return true;
9f1a8526 4106 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
4107 return true;
4108 }
4109
3520469d 4110 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4111 return false;
4112}
4113
0f90e1c1
SC
4114static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4115 bool prefault, int max_level, bool is_tdp)
6aa8b732 4116{
367fd790 4117 bool write = error_code & PFERR_WRITE_MASK;
367fd790
SC
4118 bool exec = error_code & PFERR_FETCH_MASK;
4119 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
0f90e1c1 4120 bool map_writable;
6aa8b732 4121
0f90e1c1
SC
4122 gfn_t gfn = gpa >> PAGE_SHIFT;
4123 unsigned long mmu_seq;
4124 kvm_pfn_t pfn;
83f06fa7 4125 int r;
ce88decf 4126
3d0c27ad 4127 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4128 return RET_PF_EMULATE;
ce88decf 4129
e2dec939
AK
4130 r = mmu_topup_memory_caches(vcpu);
4131 if (r)
4132 return r;
714b93da 4133
0f90e1c1
SC
4134 if (lpage_disallowed)
4135 max_level = PT_PAGE_TABLE_LEVEL;
367fd790 4136
f9fa2509 4137 if (fast_page_fault(vcpu, gpa, error_code))
367fd790
SC
4138 return RET_PF_RETRY;
4139
4140 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4141 smp_rmb();
4142
4143 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4144 return RET_PF_RETRY;
4145
0f90e1c1 4146 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 4147 return r;
6aa8b732 4148
367fd790
SC
4149 r = RET_PF_RETRY;
4150 spin_lock(&vcpu->kvm->mmu_lock);
4151 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4152 goto out_unlock;
4153 if (make_mmu_pages_available(vcpu) < 0)
4154 goto out_unlock;
83f06fa7 4155 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4cd071d1 4156 prefault, is_tdp && lpage_disallowed);
0f90e1c1 4157
367fd790
SC
4158out_unlock:
4159 spin_unlock(&vcpu->kvm->mmu_lock);
4160 kvm_release_pfn_clean(pfn);
4161 return r;
6aa8b732
AK
4162}
4163
0f90e1c1
SC
4164static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4165 u32 error_code, bool prefault)
4166{
4167 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4168
4169 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4170 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4171 PT_DIRECTORY_LEVEL, false);
4172}
4173
1261bfa3 4174int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4175 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4176{
4177 int r = 1;
4178
736c291c
SC
4179#ifndef CONFIG_X86_64
4180 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4181 if (WARN_ON_ONCE(fault_address >> 32))
4182 return -EFAULT;
4183#endif
4184
c595ceee 4185 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4186 switch (vcpu->arch.apf.host_apf_reason) {
4187 default:
4188 trace_kvm_page_fault(fault_address, error_code);
4189
d0006530 4190 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4191 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4192 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4193 insn_len);
4194 break;
4195 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4196 vcpu->arch.apf.host_apf_reason = 0;
4197 local_irq_disable();
a2b7861b 4198 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4199 local_irq_enable();
4200 break;
4201 case KVM_PV_REASON_PAGE_READY:
4202 vcpu->arch.apf.host_apf_reason = 0;
4203 local_irq_disable();
4204 kvm_async_pf_task_wake(fault_address);
4205 local_irq_enable();
4206 break;
4207 }
4208 return r;
4209}
4210EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4211
7a02674d
SC
4212int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4213 bool prefault)
fb72d167 4214{
cb9b88c6 4215 int max_level;
fb72d167 4216
cb9b88c6
SC
4217 for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4218 max_level > PT_PAGE_TABLE_LEVEL;
4219 max_level--) {
4220 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 4221 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 4222
cb9b88c6
SC
4223 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4224 break;
fd136902 4225 }
852e3c19 4226
0f90e1c1
SC
4227 return direct_page_fault(vcpu, gpa, error_code, prefault,
4228 max_level, true);
fb72d167
JR
4229}
4230
8a3c1a33
PB
4231static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4232 struct kvm_mmu *context)
6aa8b732 4233{
6aa8b732 4234 context->page_fault = nonpaging_page_fault;
6aa8b732 4235 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4236 context->sync_page = nonpaging_sync_page;
a7052897 4237 context->invlpg = nonpaging_invlpg;
0f53b5b1 4238 context->update_pte = nonpaging_update_pte;
cea0f0e7 4239 context->root_level = 0;
6aa8b732 4240 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4241 context->direct_map = true;
2d48a985 4242 context->nx = false;
6aa8b732
AK
4243}
4244
0be44352
SC
4245static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t cr3,
4246 union kvm_mmu_page_role role)
4247{
4248 return (role.direct || cr3 == root->cr3) &&
4249 VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4250 role.word == page_header(root->hpa)->role.word;
4251}
4252
b94742c9
JS
4253/*
4254 * Find out if a previously cached root matching the new CR3/role is available.
4255 * The current root is also inserted into the cache.
4256 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4257 * returned.
4258 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4259 * false is returned. This root should now be freed by the caller.
4260 */
4261static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4262 union kvm_mmu_page_role new_role)
4263{
4264 uint i;
4265 struct kvm_mmu_root_info root;
44dd3ffa 4266 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4267
ad7dc69a 4268 root.cr3 = mmu->root_cr3;
b94742c9
JS
4269 root.hpa = mmu->root_hpa;
4270
0be44352
SC
4271 if (is_root_usable(&root, new_cr3, new_role))
4272 return true;
4273
b94742c9
JS
4274 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4275 swap(root, mmu->prev_roots[i]);
4276
0be44352 4277 if (is_root_usable(&root, new_cr3, new_role))
b94742c9
JS
4278 break;
4279 }
4280
4281 mmu->root_hpa = root.hpa;
ad7dc69a 4282 mmu->root_cr3 = root.cr3;
b94742c9
JS
4283
4284 return i < KVM_MMU_NUM_PREV_ROOTS;
4285}
4286
0aab33e4 4287static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4288 union kvm_mmu_page_role new_role,
4289 bool skip_tlb_flush)
6aa8b732 4290{
44dd3ffa 4291 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4292
4293 /*
4294 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4295 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4296 * later if necessary.
4297 */
4298 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4299 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4300 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4301 return false;
4302
b94742c9 4303 if (cached_root_available(vcpu, new_cr3, new_role)) {
002c5f73
SC
4304 /*
4305 * It is possible that the cached previous root page is
4306 * obsolete because of a change in the MMU generation
4307 * number. However, changing the generation number is
4308 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4309 * the root set here and allocate a new one.
4310 */
0aab33e4 4311 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4312 if (!skip_tlb_flush) {
4313 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1924242b 4314 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
956bf353
JS
4315 }
4316
4317 /*
4318 * The last MMIO access's GVA and GPA are cached in the
4319 * VCPU. When switching to a new CR3, that GVA->GPA
4320 * mapping may no longer be valid. So clear any cached
4321 * MMIO info even when we don't need to sync the shadow
4322 * page tables.
4323 */
4324 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4325
7c390d35
JS
4326 __clear_sp_write_flooding_count(
4327 page_header(mmu->root_hpa));
4328
7c390d35
JS
4329 return true;
4330 }
4331 }
4332
4333 return false;
6aa8b732
AK
4334}
4335
0aab33e4 4336static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4337 union kvm_mmu_page_role new_role,
4338 bool skip_tlb_flush)
6aa8b732 4339{
ade61e28 4340 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4341 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4342 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4343}
4344
ade61e28 4345void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4346{
ade61e28
JS
4347 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4348 skip_tlb_flush);
0aab33e4 4349}
50c28f21 4350EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4351
5777ed34
JR
4352static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4353{
9f8fe504 4354 return kvm_read_cr3(vcpu);
5777ed34
JR
4355}
4356
6389ee94
AK
4357static void inject_page_fault(struct kvm_vcpu *vcpu,
4358 struct x86_exception *fault)
6aa8b732 4359{
44dd3ffa 4360 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4361}
4362
54bf36aa 4363static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 4364 unsigned int access, int *nr_present)
ce88decf
XG
4365{
4366 if (unlikely(is_mmio_spte(*sptep))) {
4367 if (gfn != get_mmio_spte_gfn(*sptep)) {
4368 mmu_spte_clear_no_track(sptep);
4369 return true;
4370 }
4371
4372 (*nr_present)++;
54bf36aa 4373 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4374 return true;
4375 }
4376
4377 return false;
4378}
4379
6bb69c9b
PB
4380static inline bool is_last_gpte(struct kvm_mmu *mmu,
4381 unsigned level, unsigned gpte)
6fd01b71 4382{
6bb69c9b
PB
4383 /*
4384 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4385 * If it is clear, there are no large pages at this level, so clear
4386 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4387 */
4388 gpte &= level - mmu->last_nonleaf_level;
4389
829ee279
LP
4390 /*
4391 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4392 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4393 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4394 */
4395 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4396
6bb69c9b 4397 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4398}
4399
37406aaa
NHE
4400#define PTTYPE_EPT 18 /* arbitrary */
4401#define PTTYPE PTTYPE_EPT
4402#include "paging_tmpl.h"
4403#undef PTTYPE
4404
6aa8b732
AK
4405#define PTTYPE 64
4406#include "paging_tmpl.h"
4407#undef PTTYPE
4408
4409#define PTTYPE 32
4410#include "paging_tmpl.h"
4411#undef PTTYPE
4412
6dc98b86
XG
4413static void
4414__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4415 struct rsvd_bits_validate *rsvd_check,
4416 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4417 bool pse, bool amd)
82725b20 4418{
82725b20 4419 u64 exb_bit_rsvd = 0;
5f7dde7b 4420 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4421 u64 nonleaf_bit8_rsvd = 0;
82725b20 4422
a0a64f50 4423 rsvd_check->bad_mt_xwr = 0;
25d92081 4424
6dc98b86 4425 if (!nx)
82725b20 4426 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4427 if (!gbpages)
5f7dde7b 4428 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4429
4430 /*
4431 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4432 * leaf entries) on AMD CPUs only.
4433 */
6fec2144 4434 if (amd)
a0c0feb5
PB
4435 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4436
6dc98b86 4437 switch (level) {
82725b20
DE
4438 case PT32_ROOT_LEVEL:
4439 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4440 rsvd_check->rsvd_bits_mask[0][1] = 0;
4441 rsvd_check->rsvd_bits_mask[0][0] = 0;
4442 rsvd_check->rsvd_bits_mask[1][0] =
4443 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4444
6dc98b86 4445 if (!pse) {
a0a64f50 4446 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4447 break;
4448 }
4449
82725b20
DE
4450 if (is_cpuid_PSE36())
4451 /* 36bits PSE 4MB page */
a0a64f50 4452 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4453 else
4454 /* 32 bits PSE 4MB page */
a0a64f50 4455 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4456 break;
4457 case PT32E_ROOT_LEVEL:
a0a64f50 4458 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4459 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4460 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4461 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4462 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4463 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4464 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4465 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4466 rsvd_bits(maxphyaddr, 62) |
4467 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4468 rsvd_check->rsvd_bits_mask[1][0] =
4469 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4470 break;
855feb67
YZ
4471 case PT64_ROOT_5LEVEL:
4472 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4473 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4474 rsvd_bits(maxphyaddr, 51);
4475 rsvd_check->rsvd_bits_mask[1][4] =
4476 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4477 /* fall through */
2a7266a8 4478 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4479 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4480 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4481 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4482 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4483 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4484 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4485 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4486 rsvd_bits(maxphyaddr, 51);
4487 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4488 rsvd_bits(maxphyaddr, 51);
4489 rsvd_check->rsvd_bits_mask[1][3] =
4490 rsvd_check->rsvd_bits_mask[0][3];
4491 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4492 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4493 rsvd_bits(13, 29);
a0a64f50 4494 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4495 rsvd_bits(maxphyaddr, 51) |
4496 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4497 rsvd_check->rsvd_bits_mask[1][0] =
4498 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4499 break;
4500 }
4501}
4502
6dc98b86
XG
4503static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4504 struct kvm_mmu *context)
4505{
4506 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4507 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4508 context->nx,
4509 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4510 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4511}
4512
81b8eebb
XG
4513static void
4514__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4515 int maxphyaddr, bool execonly)
25d92081 4516{
951f9fd7 4517 u64 bad_mt_xwr;
25d92081 4518
855feb67
YZ
4519 rsvd_check->rsvd_bits_mask[0][4] =
4520 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4521 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4522 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4523 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4524 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4525 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4526 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4527 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4528
4529 /* large page */
855feb67 4530 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4531 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4532 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4533 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4534 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4535 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4536 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4537
951f9fd7
PB
4538 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4539 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4540 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4541 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4542 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4543 if (!execonly) {
4544 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4545 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4546 }
951f9fd7 4547 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4548}
4549
81b8eebb
XG
4550static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4551 struct kvm_mmu *context, bool execonly)
4552{
4553 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4554 cpuid_maxphyaddr(vcpu), execonly);
4555}
4556
c258b62b
XG
4557/*
4558 * the page table on host is the shadow page table for the page
4559 * table in guest or amd nested guest, its mmu features completely
4560 * follow the features in guest.
4561 */
4562void
4563reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4564{
36d9594d
VK
4565 bool uses_nx = context->nx ||
4566 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4567 struct rsvd_bits_validate *shadow_zero_check;
4568 int i;
5f0b8199 4569
6fec2144
PB
4570 /*
4571 * Passing "true" to the last argument is okay; it adds a check
4572 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4573 */
ea2800dd
BS
4574 shadow_zero_check = &context->shadow_zero_check;
4575 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4576 shadow_phys_bits,
5f0b8199 4577 context->shadow_root_level, uses_nx,
d6321d49
RK
4578 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4579 is_pse(vcpu), true);
ea2800dd
BS
4580
4581 if (!shadow_me_mask)
4582 return;
4583
4584 for (i = context->shadow_root_level; --i >= 0;) {
4585 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4586 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4587 }
4588
c258b62b
XG
4589}
4590EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4591
6fec2144
PB
4592static inline bool boot_cpu_is_amd(void)
4593{
4594 WARN_ON_ONCE(!tdp_enabled);
4595 return shadow_x_mask == 0;
4596}
4597
c258b62b
XG
4598/*
4599 * the direct page table on host, use as much mmu features as
4600 * possible, however, kvm currently does not do execution-protection.
4601 */
4602static void
4603reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4604 struct kvm_mmu *context)
4605{
ea2800dd
BS
4606 struct rsvd_bits_validate *shadow_zero_check;
4607 int i;
4608
4609 shadow_zero_check = &context->shadow_zero_check;
4610
6fec2144 4611 if (boot_cpu_is_amd())
ea2800dd 4612 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4613 shadow_phys_bits,
c258b62b 4614 context->shadow_root_level, false,
b8291adc
BP
4615 boot_cpu_has(X86_FEATURE_GBPAGES),
4616 true, true);
c258b62b 4617 else
ea2800dd 4618 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4619 shadow_phys_bits,
c258b62b
XG
4620 false);
4621
ea2800dd
BS
4622 if (!shadow_me_mask)
4623 return;
4624
4625 for (i = context->shadow_root_level; --i >= 0;) {
4626 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4627 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4628 }
c258b62b
XG
4629}
4630
4631/*
4632 * as the comments in reset_shadow_zero_bits_mask() except it
4633 * is the shadow page table for intel nested guest.
4634 */
4635static void
4636reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4637 struct kvm_mmu *context, bool execonly)
4638{
4639 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4640 shadow_phys_bits, execonly);
c258b62b
XG
4641}
4642
09f037aa
PB
4643#define BYTE_MASK(access) \
4644 ((1 & (access) ? 2 : 0) | \
4645 (2 & (access) ? 4 : 0) | \
4646 (3 & (access) ? 8 : 0) | \
4647 (4 & (access) ? 16 : 0) | \
4648 (5 & (access) ? 32 : 0) | \
4649 (6 & (access) ? 64 : 0) | \
4650 (7 & (access) ? 128 : 0))
4651
4652
edc90b7d
XG
4653static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4654 struct kvm_mmu *mmu, bool ept)
97d64b78 4655{
09f037aa
PB
4656 unsigned byte;
4657
4658 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4659 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4660 const u8 u = BYTE_MASK(ACC_USER_MASK);
4661
4662 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4663 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4664 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4665
97d64b78 4666 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4667 unsigned pfec = byte << 1;
4668
97ec8c06 4669 /*
09f037aa
PB
4670 * Each "*f" variable has a 1 bit for each UWX value
4671 * that causes a fault with the given PFEC.
97ec8c06 4672 */
97d64b78 4673
09f037aa 4674 /* Faults from writes to non-writable pages */
a6a6d3b1 4675 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4676 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4677 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4678 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4679 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4680 /* Faults from kernel mode fetches of user pages */
4681 u8 smepf = 0;
4682 /* Faults from kernel mode accesses of user pages */
4683 u8 smapf = 0;
4684
4685 if (!ept) {
4686 /* Faults from kernel mode accesses to user pages */
4687 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4688
4689 /* Not really needed: !nx will cause pte.nx to fault */
4690 if (!mmu->nx)
4691 ff = 0;
4692
4693 /* Allow supervisor writes if !cr0.wp */
4694 if (!cr0_wp)
4695 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4696
4697 /* Disallow supervisor fetches of user code if cr4.smep */
4698 if (cr4_smep)
4699 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4700
4701 /*
4702 * SMAP:kernel-mode data accesses from user-mode
4703 * mappings should fault. A fault is considered
4704 * as a SMAP violation if all of the following
39337ad1 4705 * conditions are true:
09f037aa
PB
4706 * - X86_CR4_SMAP is set in CR4
4707 * - A user page is accessed
4708 * - The access is not a fetch
4709 * - Page fault in kernel mode
4710 * - if CPL = 3 or X86_EFLAGS_AC is clear
4711 *
4712 * Here, we cover the first three conditions.
4713 * The fourth is computed dynamically in permission_fault();
4714 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4715 * *not* subject to SMAP restrictions.
4716 */
4717 if (cr4_smap)
4718 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4719 }
09f037aa
PB
4720
4721 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4722 }
4723}
4724
2d344105
HH
4725/*
4726* PKU is an additional mechanism by which the paging controls access to
4727* user-mode addresses based on the value in the PKRU register. Protection
4728* key violations are reported through a bit in the page fault error code.
4729* Unlike other bits of the error code, the PK bit is not known at the
4730* call site of e.g. gva_to_gpa; it must be computed directly in
4731* permission_fault based on two bits of PKRU, on some machine state (CR4,
4732* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4733*
4734* In particular the following conditions come from the error code, the
4735* page tables and the machine state:
4736* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4737* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4738* - PK is always zero if U=0 in the page tables
4739* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4740*
4741* The PKRU bitmask caches the result of these four conditions. The error
4742* code (minus the P bit) and the page table's U bit form an index into the
4743* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4744* with the two bits of the PKRU register corresponding to the protection key.
4745* For the first three conditions above the bits will be 00, thus masking
4746* away both AD and WD. For all reads or if the last condition holds, WD
4747* only will be masked away.
4748*/
4749static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4750 bool ept)
4751{
4752 unsigned bit;
4753 bool wp;
4754
4755 if (ept) {
4756 mmu->pkru_mask = 0;
4757 return;
4758 }
4759
4760 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4761 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4762 mmu->pkru_mask = 0;
4763 return;
4764 }
4765
4766 wp = is_write_protection(vcpu);
4767
4768 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4769 unsigned pfec, pkey_bits;
4770 bool check_pkey, check_write, ff, uf, wf, pte_user;
4771
4772 pfec = bit << 1;
4773 ff = pfec & PFERR_FETCH_MASK;
4774 uf = pfec & PFERR_USER_MASK;
4775 wf = pfec & PFERR_WRITE_MASK;
4776
4777 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4778 pte_user = pfec & PFERR_RSVD_MASK;
4779
4780 /*
4781 * Only need to check the access which is not an
4782 * instruction fetch and is to a user page.
4783 */
4784 check_pkey = (!ff && pte_user);
4785 /*
4786 * write access is controlled by PKRU if it is a
4787 * user access or CR0.WP = 1.
4788 */
4789 check_write = check_pkey && wf && (uf || wp);
4790
4791 /* PKRU.AD stops both read and write access. */
4792 pkey_bits = !!check_pkey;
4793 /* PKRU.WD stops write access. */
4794 pkey_bits |= (!!check_write) << 1;
4795
4796 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4797 }
4798}
4799
6bb69c9b 4800static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4801{
6bb69c9b
PB
4802 unsigned root_level = mmu->root_level;
4803
4804 mmu->last_nonleaf_level = root_level;
4805 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4806 mmu->last_nonleaf_level++;
6fd01b71
AK
4807}
4808
8a3c1a33
PB
4809static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4810 struct kvm_mmu *context,
4811 int level)
6aa8b732 4812{
2d48a985 4813 context->nx = is_nx(vcpu);
4d6931c3 4814 context->root_level = level;
2d48a985 4815
4d6931c3 4816 reset_rsvds_bits_mask(vcpu, context);
25d92081 4817 update_permission_bitmask(vcpu, context, false);
2d344105 4818 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4819 update_last_nonleaf_level(vcpu, context);
6aa8b732 4820
fa4a2c08 4821 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4822 context->page_fault = paging64_page_fault;
6aa8b732 4823 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4824 context->sync_page = paging64_sync_page;
a7052897 4825 context->invlpg = paging64_invlpg;
0f53b5b1 4826 context->update_pte = paging64_update_pte;
17ac10ad 4827 context->shadow_root_level = level;
c5a78f2b 4828 context->direct_map = false;
6aa8b732
AK
4829}
4830
8a3c1a33
PB
4831static void paging64_init_context(struct kvm_vcpu *vcpu,
4832 struct kvm_mmu *context)
17ac10ad 4833{
855feb67
YZ
4834 int root_level = is_la57_mode(vcpu) ?
4835 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4836
4837 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4838}
4839
8a3c1a33
PB
4840static void paging32_init_context(struct kvm_vcpu *vcpu,
4841 struct kvm_mmu *context)
6aa8b732 4842{
2d48a985 4843 context->nx = false;
4d6931c3 4844 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4845
4d6931c3 4846 reset_rsvds_bits_mask(vcpu, context);
25d92081 4847 update_permission_bitmask(vcpu, context, false);
2d344105 4848 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4849 update_last_nonleaf_level(vcpu, context);
6aa8b732 4850
6aa8b732 4851 context->page_fault = paging32_page_fault;
6aa8b732 4852 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4853 context->sync_page = paging32_sync_page;
a7052897 4854 context->invlpg = paging32_invlpg;
0f53b5b1 4855 context->update_pte = paging32_update_pte;
6aa8b732 4856 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4857 context->direct_map = false;
6aa8b732
AK
4858}
4859
8a3c1a33
PB
4860static void paging32E_init_context(struct kvm_vcpu *vcpu,
4861 struct kvm_mmu *context)
6aa8b732 4862{
8a3c1a33 4863 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4864}
4865
a336282d
VK
4866static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4867{
4868 union kvm_mmu_extended_role ext = {0};
4869
7dcd5755 4870 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4871 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4872 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4873 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4874 ext.cr4_pse = !!is_pse(vcpu);
4875 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4876 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4877
4878 ext.valid = 1;
4879
4880 return ext;
4881}
4882
7dcd5755
VK
4883static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4884 bool base_only)
4885{
4886 union kvm_mmu_role role = {0};
4887
4888 role.base.access = ACC_ALL;
4889 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4890 role.base.cr0_wp = is_write_protection(vcpu);
4891 role.base.smm = is_smm(vcpu);
4892 role.base.guest_mode = is_guest_mode(vcpu);
4893
4894 if (base_only)
4895 return role;
4896
4897 role.ext = kvm_calc_mmu_role_ext(vcpu);
4898
4899 return role;
4900}
4901
4902static union kvm_mmu_role
4903kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4904{
7dcd5755 4905 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4906
7dcd5755
VK
4907 role.base.ad_disabled = (shadow_accessed_mask == 0);
4908 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4909 role.base.direct = true;
47c42e6b 4910 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4911
4912 return role;
4913}
4914
8a3c1a33 4915static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4916{
44dd3ffa 4917 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4918 union kvm_mmu_role new_role =
4919 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4920
7dcd5755
VK
4921 if (new_role.as_u64 == context->mmu_role.as_u64)
4922 return;
4923
4924 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4925 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4926 context->sync_page = nonpaging_sync_page;
a7052897 4927 context->invlpg = nonpaging_invlpg;
0f53b5b1 4928 context->update_pte = nonpaging_update_pte;
855feb67 4929 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4930 context->direct_map = true;
1c97f0a0 4931 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4932 context->get_cr3 = get_cr3;
e4e517b4 4933 context->get_pdptr = kvm_pdptr_read;
cb659db8 4934 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4935
4936 if (!is_paging(vcpu)) {
2d48a985 4937 context->nx = false;
fb72d167
JR
4938 context->gva_to_gpa = nonpaging_gva_to_gpa;
4939 context->root_level = 0;
4940 } else if (is_long_mode(vcpu)) {
2d48a985 4941 context->nx = is_nx(vcpu);
855feb67
YZ
4942 context->root_level = is_la57_mode(vcpu) ?
4943 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4944 reset_rsvds_bits_mask(vcpu, context);
4945 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4946 } else if (is_pae(vcpu)) {
2d48a985 4947 context->nx = is_nx(vcpu);
fb72d167 4948 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4949 reset_rsvds_bits_mask(vcpu, context);
4950 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4951 } else {
2d48a985 4952 context->nx = false;
fb72d167 4953 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4954 reset_rsvds_bits_mask(vcpu, context);
4955 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4956 }
4957
25d92081 4958 update_permission_bitmask(vcpu, context, false);
2d344105 4959 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4960 update_last_nonleaf_level(vcpu, context);
c258b62b 4961 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4962}
4963
7dcd5755
VK
4964static union kvm_mmu_role
4965kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4966{
4967 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4968
4969 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4970 !is_write_protection(vcpu);
4971 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4972 !is_write_protection(vcpu);
4973 role.base.direct = !is_paging(vcpu);
47c42e6b 4974 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4975
4976 if (!is_long_mode(vcpu))
7dcd5755 4977 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4978 else if (is_la57_mode(vcpu))
7dcd5755 4979 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4980 else
7dcd5755 4981 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4982
4983 return role;
4984}
4985
4986void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4987{
44dd3ffa 4988 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4989 union kvm_mmu_role new_role =
4990 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4991
7dcd5755
VK
4992 if (new_role.as_u64 == context->mmu_role.as_u64)
4993 return;
6aa8b732
AK
4994
4995 if (!is_paging(vcpu))
8a3c1a33 4996 nonpaging_init_context(vcpu, context);
a9058ecd 4997 else if (is_long_mode(vcpu))
8a3c1a33 4998 paging64_init_context(vcpu, context);
6aa8b732 4999 else if (is_pae(vcpu))
8a3c1a33 5000 paging32E_init_context(vcpu, context);
6aa8b732 5001 else
8a3c1a33 5002 paging32_init_context(vcpu, context);
a770f6f2 5003
7dcd5755 5004 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 5005 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
5006}
5007EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5008
a336282d
VK
5009static union kvm_mmu_role
5010kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 5011 bool execonly, u8 level)
9fa72119 5012{
552c69b1 5013 union kvm_mmu_role role = {0};
14c07ad8 5014
47c42e6b
SC
5015 /* SMM flag is inherited from root_mmu */
5016 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 5017
bb1fcc70 5018 role.base.level = level;
47c42e6b 5019 role.base.gpte_is_8_bytes = true;
a336282d
VK
5020 role.base.direct = false;
5021 role.base.ad_disabled = !accessed_dirty;
5022 role.base.guest_mode = true;
5023 role.base.access = ACC_ALL;
9fa72119 5024
47c42e6b
SC
5025 /*
5026 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5027 * SMAP variation to denote shadow EPT entries.
5028 */
5029 role.base.cr0_wp = true;
5030 role.base.smap_andnot_wp = true;
5031
552c69b1 5032 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 5033 role.ext.execonly = execonly;
9fa72119
JS
5034
5035 return role;
5036}
5037
ae1e2d10 5038void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 5039 bool accessed_dirty, gpa_t new_eptp)
155a97a3 5040{
44dd3ffa 5041 struct kvm_mmu *context = vcpu->arch.mmu;
bb1fcc70 5042 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
5043 union kvm_mmu_role new_role =
5044 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 5045 execonly, level);
a336282d
VK
5046
5047 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5048
a336282d
VK
5049 if (new_role.as_u64 == context->mmu_role.as_u64)
5050 return;
ad896af0 5051
bb1fcc70 5052 context->shadow_root_level = level;
155a97a3
NHE
5053
5054 context->nx = true;
ae1e2d10 5055 context->ept_ad = accessed_dirty;
155a97a3
NHE
5056 context->page_fault = ept_page_fault;
5057 context->gva_to_gpa = ept_gva_to_gpa;
5058 context->sync_page = ept_sync_page;
5059 context->invlpg = ept_invlpg;
5060 context->update_pte = ept_update_pte;
bb1fcc70 5061 context->root_level = level;
155a97a3 5062 context->direct_map = false;
a336282d 5063 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 5064
155a97a3 5065 update_permission_bitmask(vcpu, context, true);
2d344105 5066 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 5067 update_last_nonleaf_level(vcpu, context);
155a97a3 5068 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 5069 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
5070}
5071EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5072
8a3c1a33 5073static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5074{
44dd3ffa 5075 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
5076
5077 kvm_init_shadow_mmu(vcpu);
5078 context->set_cr3 = kvm_x86_ops->set_cr3;
5079 context->get_cr3 = get_cr3;
5080 context->get_pdptr = kvm_pdptr_read;
5081 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5082}
5083
8a3c1a33 5084static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5085{
bf627a92 5086 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5087 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5088
bf627a92
VK
5089 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5090 return;
5091
5092 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 5093 g_context->get_cr3 = get_cr3;
e4e517b4 5094 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5095 g_context->inject_page_fault = kvm_inject_page_fault;
5096
5097 /*
44dd3ffa 5098 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5099 * L1's nested page tables (e.g. EPT12). The nested translation
5100 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5101 * L2's page tables as the first level of translation and L1's
5102 * nested page tables as the second level of translation. Basically
5103 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5104 */
5105 if (!is_paging(vcpu)) {
2d48a985 5106 g_context->nx = false;
02f59dc9
JR
5107 g_context->root_level = 0;
5108 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5109 } else if (is_long_mode(vcpu)) {
2d48a985 5110 g_context->nx = is_nx(vcpu);
855feb67
YZ
5111 g_context->root_level = is_la57_mode(vcpu) ?
5112 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5113 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5114 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5115 } else if (is_pae(vcpu)) {
2d48a985 5116 g_context->nx = is_nx(vcpu);
02f59dc9 5117 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5118 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5119 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5120 } else {
2d48a985 5121 g_context->nx = false;
02f59dc9 5122 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5123 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5124 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5125 }
5126
25d92081 5127 update_permission_bitmask(vcpu, g_context, false);
2d344105 5128 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5129 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5130}
5131
1c53da3f 5132void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5133{
1c53da3f 5134 if (reset_roots) {
b94742c9
JS
5135 uint i;
5136
44dd3ffa 5137 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5138
5139 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5140 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5141 }
5142
02f59dc9 5143 if (mmu_is_nested(vcpu))
e0c6db3e 5144 init_kvm_nested_mmu(vcpu);
02f59dc9 5145 else if (tdp_enabled)
e0c6db3e 5146 init_kvm_tdp_mmu(vcpu);
fb72d167 5147 else
e0c6db3e 5148 init_kvm_softmmu(vcpu);
fb72d167 5149}
1c53da3f 5150EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5151
9fa72119
JS
5152static union kvm_mmu_page_role
5153kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5154{
7dcd5755
VK
5155 union kvm_mmu_role role;
5156
9fa72119 5157 if (tdp_enabled)
7dcd5755 5158 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5159 else
7dcd5755
VK
5160 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5161
5162 return role.base;
9fa72119 5163}
fb72d167 5164
8a3c1a33 5165void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5166{
95f93af4 5167 kvm_mmu_unload(vcpu);
1c53da3f 5168 kvm_init_mmu(vcpu, true);
17c3ba9d 5169}
8668a3c4 5170EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5171
5172int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5173{
714b93da
AK
5174 int r;
5175
e2dec939 5176 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5177 if (r)
5178 goto out;
8986ecc0 5179 r = mmu_alloc_roots(vcpu);
e2858b4a 5180 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5181 if (r)
5182 goto out;
6e42782f 5183 kvm_mmu_load_cr3(vcpu);
afe828d1 5184 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5185out:
5186 return r;
6aa8b732 5187}
17c3ba9d
AK
5188EXPORT_SYMBOL_GPL(kvm_mmu_load);
5189
5190void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5191{
14c07ad8
VK
5192 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5193 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5194 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5195 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5196}
4b16184c 5197EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5198
0028425f 5199static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5200 struct kvm_mmu_page *sp, u64 *spte,
5201 const void *new)
0028425f 5202{
30945387 5203 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5204 ++vcpu->kvm->stat.mmu_pde_zapped;
5205 return;
30945387 5206 }
0028425f 5207
4cee5764 5208 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5209 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5210}
5211
79539cec
AK
5212static bool need_remote_flush(u64 old, u64 new)
5213{
5214 if (!is_shadow_present_pte(old))
5215 return false;
5216 if (!is_shadow_present_pte(new))
5217 return true;
5218 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5219 return true;
53166229
GN
5220 old ^= shadow_nx_mask;
5221 new ^= shadow_nx_mask;
79539cec
AK
5222 return (old & ~new & PT64_PERM_MASK) != 0;
5223}
5224
889e5cbc 5225static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5226 int *bytes)
da4a00f0 5227{
0e0fee5c 5228 u64 gentry = 0;
889e5cbc 5229 int r;
72016f3a 5230
72016f3a
AK
5231 /*
5232 * Assume that the pte write on a page table of the same type
49b26e26
XG
5233 * as the current vcpu paging mode since we update the sptes only
5234 * when they have the same mode.
72016f3a 5235 */
889e5cbc 5236 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5237 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5238 *gpa &= ~(gpa_t)7;
5239 *bytes = 8;
08e850c6
AK
5240 }
5241
0e0fee5c
JS
5242 if (*bytes == 4 || *bytes == 8) {
5243 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5244 if (r)
5245 gentry = 0;
72016f3a
AK
5246 }
5247
889e5cbc
XG
5248 return gentry;
5249}
5250
5251/*
5252 * If we're seeing too many writes to a page, it may no longer be a page table,
5253 * or we may be forking, in which case it is better to unmap the page.
5254 */
a138fe75 5255static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5256{
a30f47cb
XG
5257 /*
5258 * Skip write-flooding detected for the sp whose level is 1, because
5259 * it can become unsync, then the guest page is not write-protected.
5260 */
f71fa31f 5261 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5262 return false;
3246af0e 5263
e5691a81
XG
5264 atomic_inc(&sp->write_flooding_count);
5265 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5266}
5267
5268/*
5269 * Misaligned accesses are too much trouble to fix up; also, they usually
5270 * indicate a page is not used as a page table.
5271 */
5272static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5273 int bytes)
5274{
5275 unsigned offset, pte_size, misaligned;
5276
5277 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5278 gpa, bytes, sp->role.word);
5279
5280 offset = offset_in_page(gpa);
47c42e6b 5281 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5282
5283 /*
5284 * Sometimes, the OS only writes the last one bytes to update status
5285 * bits, for example, in linux, andb instruction is used in clear_bit().
5286 */
5287 if (!(offset & (pte_size - 1)) && bytes == 1)
5288 return false;
5289
889e5cbc
XG
5290 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5291 misaligned |= bytes < 4;
5292
5293 return misaligned;
5294}
5295
5296static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5297{
5298 unsigned page_offset, quadrant;
5299 u64 *spte;
5300 int level;
5301
5302 page_offset = offset_in_page(gpa);
5303 level = sp->role.level;
5304 *nspte = 1;
47c42e6b 5305 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5306 page_offset <<= 1; /* 32->64 */
5307 /*
5308 * A 32-bit pde maps 4MB while the shadow pdes map
5309 * only 2MB. So we need to double the offset again
5310 * and zap two pdes instead of one.
5311 */
5312 if (level == PT32_ROOT_LEVEL) {
5313 page_offset &= ~7; /* kill rounding error */
5314 page_offset <<= 1;
5315 *nspte = 2;
5316 }
5317 quadrant = page_offset >> PAGE_SHIFT;
5318 page_offset &= ~PAGE_MASK;
5319 if (quadrant != sp->role.quadrant)
5320 return NULL;
5321 }
5322
5323 spte = &sp->spt[page_offset / sizeof(*spte)];
5324 return spte;
5325}
5326
a102a674
SC
5327/*
5328 * Ignore various flags when determining if a SPTE can be immediately
5329 * overwritten for the current MMU.
5330 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5331 * match the current MMU role, as MMU's level tracks the root level.
5332 * - access: updated based on the new guest PTE
5333 * - quadrant: handled by get_written_sptes()
5334 * - invalid: always false (loop only walks valid shadow pages)
5335 */
5336static const union kvm_mmu_page_role role_ign = {
5337 .level = 0xf,
5338 .access = 0x7,
5339 .quadrant = 0x3,
5340 .invalid = 0x1,
5341};
5342
13d268ca 5343static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5344 const u8 *new, int bytes,
5345 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5346{
5347 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5348 struct kvm_mmu_page *sp;
889e5cbc
XG
5349 LIST_HEAD(invalid_list);
5350 u64 entry, gentry, *spte;
5351 int npte;
b8c67b7a 5352 bool remote_flush, local_flush;
889e5cbc
XG
5353
5354 /*
5355 * If we don't have indirect shadow pages, it means no page is
5356 * write-protected, so we can exit simply.
5357 */
6aa7de05 5358 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5359 return;
5360
b8c67b7a 5361 remote_flush = local_flush = false;
889e5cbc
XG
5362
5363 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5364
889e5cbc
XG
5365 /*
5366 * No need to care whether allocation memory is successful
5367 * or not since pte prefetch is skiped if it does not have
5368 * enough objects in the cache.
5369 */
5370 mmu_topup_memory_caches(vcpu);
5371
5372 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5373
5374 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5375
889e5cbc 5376 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5377 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5378
b67bfe0d 5379 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5380 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5381 detect_write_flooding(sp)) {
b8c67b7a 5382 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5383 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5384 continue;
5385 }
889e5cbc
XG
5386
5387 spte = get_written_sptes(sp, gpa, &npte);
5388 if (!spte)
5389 continue;
5390
0671a8e7 5391 local_flush = true;
ac1b714e 5392 while (npte--) {
36d9594d
VK
5393 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5394
79539cec 5395 entry = *spte;
38e3b2b2 5396 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5397 if (gentry &&
a102a674
SC
5398 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5399 rmap_can_add(vcpu))
7c562522 5400 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5401 if (need_remote_flush(entry, *spte))
0671a8e7 5402 remote_flush = true;
ac1b714e 5403 ++spte;
9b7a0325 5404 }
9b7a0325 5405 }
b8c67b7a 5406 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5407 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5408 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5409}
5410
a436036b
AK
5411int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5412{
10589a46
MT
5413 gpa_t gpa;
5414 int r;
a436036b 5415
44dd3ffa 5416 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5417 return 0;
5418
1871c602 5419 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5420
10589a46 5421 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5422
10589a46 5423 return r;
a436036b 5424}
577bdc49 5425EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5426
736c291c 5427int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5428 void *insn, int insn_len)
3067714c 5429{
92daa48b 5430 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5431 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5432
6948199a 5433 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5434 return RET_PF_RETRY;
5435
9b8ebbdb 5436 r = RET_PF_INVALID;
e9ee956e 5437 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5438 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5439 if (r == RET_PF_EMULATE)
e9ee956e 5440 goto emulate;
e9ee956e 5441 }
3067714c 5442
9b8ebbdb 5443 if (r == RET_PF_INVALID) {
7a02674d
SC
5444 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5445 lower_32_bits(error_code), false);
9b8ebbdb
PB
5446 WARN_ON(r == RET_PF_INVALID);
5447 }
5448
5449 if (r == RET_PF_RETRY)
5450 return 1;
3067714c 5451 if (r < 0)
e9ee956e 5452 return r;
3067714c 5453
14727754
TL
5454 /*
5455 * Before emulating the instruction, check if the error code
5456 * was due to a RO violation while translating the guest page.
5457 * This can occur when using nested virtualization with nested
5458 * paging in both guests. If true, we simply unprotect the page
5459 * and resume the guest.
14727754 5460 */
44dd3ffa 5461 if (vcpu->arch.mmu->direct_map &&
eebed243 5462 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5463 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5464 return 1;
5465 }
5466
472faffa
SC
5467 /*
5468 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5469 * optimistically try to just unprotect the page and let the processor
5470 * re-execute the instruction that caused the page fault. Do not allow
5471 * retrying MMIO emulation, as it's not only pointless but could also
5472 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5473 * faulting on the non-existent MMIO address. Retrying an instruction
5474 * from a nested guest is also pointless and dangerous as we are only
5475 * explicitly shadowing L1's page tables, i.e. unprotecting something
5476 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5477 */
736c291c 5478 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5479 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5480emulate:
00b10fe1
BS
5481 /*
5482 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5483 * This can happen if a guest gets a page-fault on data access but the HW
5484 * table walker is not able to read the instruction page (e.g instruction
5485 * page is not present in memory). In those cases we simply restart the
05d5a486 5486 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5487 */
05d5a486
SB
5488 if (unlikely(insn && !insn_len)) {
5489 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5490 return 1;
5491 }
00b10fe1 5492
736c291c 5493 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5494 insn_len);
3067714c
AK
5495}
5496EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5497
a7052897
MT
5498void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5499{
44dd3ffa 5500 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5501 int i;
7eb77e9f 5502
faff8758
JS
5503 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5504 if (is_noncanonical_address(gva, vcpu))
5505 return;
5506
7eb77e9f 5507 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5508
5509 /*
5510 * INVLPG is required to invalidate any global mappings for the VA,
5511 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5512 * of work to determine whether any of the prev_root mappings of the VA
5513 * is marked global, or to just sync it blindly, so we might as well
5514 * just always sync it.
956bf353 5515 *
b94742c9
JS
5516 * Mappings not reachable via the current cr3 or the prev_roots will be
5517 * synced when switching to that cr3, so nothing needs to be done here
5518 * for them.
956bf353 5519 */
b94742c9
JS
5520 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5521 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5522 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5523
faff8758 5524 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5525 ++vcpu->stat.invlpg;
5526}
5527EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5528
eb4b248e
JS
5529void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5530{
44dd3ffa 5531 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5532 bool tlb_flush = false;
b94742c9 5533 uint i;
eb4b248e
JS
5534
5535 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5536 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5537 tlb_flush = true;
eb4b248e
JS
5538 }
5539
b94742c9
JS
5540 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5541 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5542 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5543 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5544 tlb_flush = true;
5545 }
956bf353 5546 }
ade61e28 5547
faff8758
JS
5548 if (tlb_flush)
5549 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5550
eb4b248e
JS
5551 ++vcpu->stat.invlpg;
5552
5553 /*
b94742c9
JS
5554 * Mappings not reachable via the current cr3 or the prev_roots will be
5555 * synced when switching to that cr3, so nothing needs to be done here
5556 * for them.
eb4b248e
JS
5557 */
5558}
5559EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5560
18552672
JR
5561void kvm_enable_tdp(void)
5562{
5563 tdp_enabled = true;
5564}
5565EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5566
5f4cb662
JR
5567void kvm_disable_tdp(void)
5568{
5569 tdp_enabled = false;
5570}
5571EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5572
85875a13
SC
5573
5574/* The return value indicates if tlb flush on all vcpus is needed. */
5575typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5576
5577/* The caller should hold mmu-lock before calling this function. */
5578static __always_inline bool
5579slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5580 slot_level_handler fn, int start_level, int end_level,
5581 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5582{
5583 struct slot_rmap_walk_iterator iterator;
5584 bool flush = false;
5585
5586 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5587 end_gfn, &iterator) {
5588 if (iterator.rmap)
5589 flush |= fn(kvm, iterator.rmap);
5590
5591 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5592 if (flush && lock_flush_tlb) {
f285c633
BG
5593 kvm_flush_remote_tlbs_with_address(kvm,
5594 start_gfn,
5595 iterator.gfn - start_gfn + 1);
85875a13
SC
5596 flush = false;
5597 }
5598 cond_resched_lock(&kvm->mmu_lock);
5599 }
5600 }
5601
5602 if (flush && lock_flush_tlb) {
f285c633
BG
5603 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5604 end_gfn - start_gfn + 1);
85875a13
SC
5605 flush = false;
5606 }
5607
5608 return flush;
5609}
5610
5611static __always_inline bool
5612slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5613 slot_level_handler fn, int start_level, int end_level,
5614 bool lock_flush_tlb)
5615{
5616 return slot_handle_level_range(kvm, memslot, fn, start_level,
5617 end_level, memslot->base_gfn,
5618 memslot->base_gfn + memslot->npages - 1,
5619 lock_flush_tlb);
5620}
5621
5622static __always_inline bool
5623slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5624 slot_level_handler fn, bool lock_flush_tlb)
5625{
5626 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5627 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5628}
5629
5630static __always_inline bool
5631slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5632 slot_level_handler fn, bool lock_flush_tlb)
5633{
5634 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5635 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5636}
5637
5638static __always_inline bool
5639slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5640 slot_level_handler fn, bool lock_flush_tlb)
5641{
5642 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5643 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5644}
5645
1cfff4d9 5646static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5647{
1cfff4d9
JP
5648 free_page((unsigned long)mmu->pae_root);
5649 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5650}
5651
1cfff4d9 5652static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5653{
17ac10ad 5654 struct page *page;
6aa8b732
AK
5655 int i;
5656
17ac10ad 5657 /*
b6b80c78
SC
5658 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5659 * while the PDP table is a per-vCPU construct that's allocated at MMU
5660 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5661 * x86_64. Therefore we need to allocate the PDP table in the first
5662 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5663 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5664 * skip allocating the PDP table.
17ac10ad 5665 */
b6b80c78
SC
5666 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5667 return 0;
5668
254272ce 5669 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5670 if (!page)
d7fa6ab2
WY
5671 return -ENOMEM;
5672
1cfff4d9 5673 mmu->pae_root = page_address(page);
17ac10ad 5674 for (i = 0; i < 4; ++i)
1cfff4d9 5675 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5676
6aa8b732 5677 return 0;
6aa8b732
AK
5678}
5679
8018c27b 5680int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5681{
b94742c9 5682 uint i;
1cfff4d9 5683 int ret;
b94742c9 5684
44dd3ffa
VK
5685 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5686 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5687
44dd3ffa 5688 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5689 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5690 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5691 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5692 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5693
14c07ad8 5694 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5695 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5696 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5697 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5698 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5699
14c07ad8 5700 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9
JP
5701
5702 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5703 if (ret)
5704 return ret;
5705
5706 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5707 if (ret)
5708 goto fail_allocate_root;
5709
5710 return ret;
5711 fail_allocate_root:
5712 free_mmu_pages(&vcpu->arch.guest_mmu);
5713 return ret;
6aa8b732
AK
5714}
5715
fbb158cb 5716#define BATCH_ZAP_PAGES 10
002c5f73
SC
5717static void kvm_zap_obsolete_pages(struct kvm *kvm)
5718{
5719 struct kvm_mmu_page *sp, *node;
fbb158cb 5720 int nr_zapped, batch = 0;
002c5f73
SC
5721
5722restart:
5723 list_for_each_entry_safe_reverse(sp, node,
5724 &kvm->arch.active_mmu_pages, link) {
5725 /*
5726 * No obsolete valid page exists before a newly created page
5727 * since active_mmu_pages is a FIFO list.
5728 */
5729 if (!is_obsolete_sp(kvm, sp))
5730 break;
5731
5732 /*
9a5c034c
SC
5733 * Skip invalid pages with a non-zero root count, zapping pages
5734 * with a non-zero root count will never succeed, i.e. the page
5735 * will get thrown back on active_mmu_pages and we'll get stuck
5736 * in an infinite loop.
002c5f73 5737 */
9a5c034c 5738 if (sp->role.invalid && sp->root_count)
002c5f73
SC
5739 continue;
5740
4506ecf4
SC
5741 /*
5742 * No need to flush the TLB since we're only zapping shadow
5743 * pages with an obsolete generation number and all vCPUS have
5744 * loaded a new root, i.e. the shadow pages being zapped cannot
5745 * be in active use by the guest.
5746 */
fbb158cb 5747 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5748 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5749 batch = 0;
002c5f73
SC
5750 goto restart;
5751 }
5752
10605204
SC
5753 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5754 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5755 batch += nr_zapped;
002c5f73 5756 goto restart;
fbb158cb 5757 }
002c5f73
SC
5758 }
5759
4506ecf4
SC
5760 /*
5761 * Trigger a remote TLB flush before freeing the page tables to ensure
5762 * KVM is not in the middle of a lockless shadow page table walk, which
5763 * may reference the pages.
5764 */
10605204 5765 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5766}
5767
5768/*
5769 * Fast invalidate all shadow pages and use lock-break technique
5770 * to zap obsolete pages.
5771 *
5772 * It's required when memslot is being deleted or VM is being
5773 * destroyed, in these cases, we should ensure that KVM MMU does
5774 * not use any resource of the being-deleted slot or all slots
5775 * after calling the function.
5776 */
5777static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5778{
ca333add
SC
5779 lockdep_assert_held(&kvm->slots_lock);
5780
002c5f73 5781 spin_lock(&kvm->mmu_lock);
14a3c4f4 5782 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5783
5784 /*
5785 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5786 * held for the entire duration of zapping obsolete pages, it's
5787 * impossible for there to be multiple invalid generations associated
5788 * with *valid* shadow pages at any given time, i.e. there is exactly
5789 * one valid generation and (at most) one invalid generation.
5790 */
5791 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5792
4506ecf4
SC
5793 /*
5794 * Notify all vcpus to reload its shadow page table and flush TLB.
5795 * Then all vcpus will switch to new shadow page table with the new
5796 * mmu_valid_gen.
5797 *
5798 * Note: we need to do this under the protection of mmu_lock,
5799 * otherwise, vcpu would purge shadow page but miss tlb flush.
5800 */
5801 kvm_reload_remote_mmus(kvm);
5802
002c5f73
SC
5803 kvm_zap_obsolete_pages(kvm);
5804 spin_unlock(&kvm->mmu_lock);
5805}
5806
10605204
SC
5807static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5808{
5809 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5810}
5811
b5f5fdca 5812static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5813 struct kvm_memory_slot *slot,
5814 struct kvm_page_track_notifier_node *node)
b5f5fdca 5815{
002c5f73 5816 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5817}
5818
13d268ca 5819void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5820{
13d268ca 5821 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5822
13d268ca 5823 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5824 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5825 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5826}
5827
13d268ca 5828void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5829{
13d268ca 5830 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5831
13d268ca 5832 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5833}
5834
efdfe536
XG
5835void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5836{
5837 struct kvm_memslots *slots;
5838 struct kvm_memory_slot *memslot;
9da0e4d5 5839 int i;
efdfe536
XG
5840
5841 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5842 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5843 slots = __kvm_memslots(kvm, i);
5844 kvm_for_each_memslot(memslot, slots) {
5845 gfn_t start, end;
5846
5847 start = max(gfn_start, memslot->base_gfn);
5848 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5849 if (start >= end)
5850 continue;
efdfe536 5851
92da008f
BG
5852 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5853 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5854 start, end - 1, true);
9da0e4d5 5855 }
efdfe536
XG
5856 }
5857
5858 spin_unlock(&kvm->mmu_lock);
5859}
5860
018aabb5
TY
5861static bool slot_rmap_write_protect(struct kvm *kvm,
5862 struct kvm_rmap_head *rmap_head)
d77aa73c 5863{
018aabb5 5864 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5865}
5866
1c91cad4 5867void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5868 struct kvm_memory_slot *memslot,
5869 int start_level)
6aa8b732 5870{
d77aa73c 5871 bool flush;
6aa8b732 5872
9d1beefb 5873 spin_lock(&kvm->mmu_lock);
3c9bd400
JZ
5874 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5875 start_level, PT_MAX_HUGEPAGE_LEVEL, false);
9d1beefb 5876 spin_unlock(&kvm->mmu_lock);
198c74f4 5877
198c74f4
XG
5878 /*
5879 * We can flush all the TLBs out of the mmu lock without TLB
5880 * corruption since we just change the spte from writable to
5881 * readonly so that we only need to care the case of changing
5882 * spte from present to present (changing the spte from present
5883 * to nonpresent will flush all the TLBs immediately), in other
5884 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5885 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5886 * instead of PT_WRITABLE_MASK, that means it does not depend
5887 * on PT_WRITABLE_MASK anymore.
5888 */
d91ffee9 5889 if (flush)
7f42aa76 5890 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5891}
37a7d8b0 5892
3ea3b7fa 5893static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5894 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5895{
5896 u64 *sptep;
5897 struct rmap_iterator iter;
5898 int need_tlb_flush = 0;
ba049e93 5899 kvm_pfn_t pfn;
3ea3b7fa
WL
5900 struct kvm_mmu_page *sp;
5901
0d536790 5902restart:
018aabb5 5903 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5904 sp = page_header(__pa(sptep));
5905 pfn = spte_to_pfn(*sptep);
5906
5907 /*
decf6333
XG
5908 * We cannot do huge page mapping for indirect shadow pages,
5909 * which are found on the last rmap (level = 1) when not using
5910 * tdp; such shadow pages are synced with the page table in
5911 * the guest, and the guest page table is using 4K page size
5912 * mapping if the indirect sp has level = 1.
3ea3b7fa 5913 */
a78986aa 5914 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5915 (kvm_is_zone_device_pfn(pfn) ||
5916 PageCompound(pfn_to_page(pfn)))) {
e7912386 5917 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5918
5919 if (kvm_available_flush_tlb_with_range())
5920 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5921 KVM_PAGES_PER_HPAGE(sp->role.level));
5922 else
5923 need_tlb_flush = 1;
5924
0d536790
XG
5925 goto restart;
5926 }
3ea3b7fa
WL
5927 }
5928
5929 return need_tlb_flush;
5930}
5931
5932void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5933 const struct kvm_memory_slot *memslot)
3ea3b7fa 5934{
f36f3f28 5935 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5936 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5937 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5938 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5939 spin_unlock(&kvm->mmu_lock);
5940}
5941
b3594ffb
SC
5942void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5943 struct kvm_memory_slot *memslot)
5944{
5945 /*
7f42aa76
SC
5946 * All current use cases for flushing the TLBs for a specific memslot
5947 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5948 * The interaction between the various operations on memslot must be
5949 * serialized by slots_locks to ensure the TLB flush from one operation
5950 * is observed by any other operation on the same memslot.
b3594ffb
SC
5951 */
5952 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5953 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5954 memslot->npages);
b3594ffb
SC
5955}
5956
f4b4b180
KH
5957void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5958 struct kvm_memory_slot *memslot)
5959{
d77aa73c 5960 bool flush;
f4b4b180
KH
5961
5962 spin_lock(&kvm->mmu_lock);
d77aa73c 5963 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5964 spin_unlock(&kvm->mmu_lock);
5965
f4b4b180
KH
5966 /*
5967 * It's also safe to flush TLBs out of mmu lock here as currently this
5968 * function is only used for dirty logging, in which case flushing TLB
5969 * out of mmu lock also guarantees no dirty pages will be lost in
5970 * dirty_bitmap.
5971 */
5972 if (flush)
7f42aa76 5973 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5974}
5975EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5976
5977void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5978 struct kvm_memory_slot *memslot)
5979{
d77aa73c 5980 bool flush;
f4b4b180
KH
5981
5982 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5983 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5984 false);
f4b4b180
KH
5985 spin_unlock(&kvm->mmu_lock);
5986
f4b4b180 5987 if (flush)
7f42aa76 5988 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5989}
5990EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5991
5992void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5993 struct kvm_memory_slot *memslot)
5994{
d77aa73c 5995 bool flush;
f4b4b180
KH
5996
5997 spin_lock(&kvm->mmu_lock);
d77aa73c 5998 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5999 spin_unlock(&kvm->mmu_lock);
6000
f4b4b180 6001 if (flush)
7f42aa76 6002 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
6003}
6004EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6005
92f58b5c 6006void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
6007{
6008 struct kvm_mmu_page *sp, *node;
7390de1e 6009 LIST_HEAD(invalid_list);
83cdb568 6010 int ign;
5304b8d3 6011
7390de1e 6012 spin_lock(&kvm->mmu_lock);
5304b8d3 6013restart:
8a674adc 6014 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
8ab3c471 6015 if (sp->role.invalid && sp->root_count)
4771450c 6016 continue;
92f58b5c 6017 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 6018 goto restart;
24efe61f 6019 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
6020 goto restart;
6021 }
6022
4771450c 6023 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
6024 spin_unlock(&kvm->mmu_lock);
6025}
6026
15248258 6027void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 6028{
164bf7e5 6029 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 6030
164bf7e5 6031 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 6032
f8f55942 6033 /*
e1359e2b
SC
6034 * Generation numbers are incremented in multiples of the number of
6035 * address spaces in order to provide unique generations across all
6036 * address spaces. Strip what is effectively the address space
6037 * modifier prior to checking for a wrap of the MMIO generation so
6038 * that a wrap in any address space is detected.
6039 */
6040 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6041
f8f55942 6042 /*
e1359e2b 6043 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 6044 * zap all shadow pages.
f8f55942 6045 */
e1359e2b 6046 if (unlikely(gen == 0)) {
ae0f5499 6047 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 6048 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 6049 }
f8f55942
XG
6050}
6051
70534a73
DC
6052static unsigned long
6053mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
6054{
6055 struct kvm *kvm;
1495f230 6056 int nr_to_scan = sc->nr_to_scan;
70534a73 6057 unsigned long freed = 0;
3ee16c81 6058
0d9ce162 6059 mutex_lock(&kvm_lock);
3ee16c81
IE
6060
6061 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 6062 int idx;
d98ba053 6063 LIST_HEAD(invalid_list);
3ee16c81 6064
35f2d16b
TY
6065 /*
6066 * Never scan more than sc->nr_to_scan VM instances.
6067 * Will not hit this condition practically since we do not try
6068 * to shrink more than one VM and it is very unlikely to see
6069 * !n_used_mmu_pages so many times.
6070 */
6071 if (!nr_to_scan--)
6072 break;
19526396
GN
6073 /*
6074 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6075 * here. We may skip a VM instance errorneosly, but we do not
6076 * want to shrink a VM that only started to populate its MMU
6077 * anyway.
6078 */
10605204
SC
6079 if (!kvm->arch.n_used_mmu_pages &&
6080 !kvm_has_zapped_obsolete_pages(kvm))
19526396 6081 continue;
19526396 6082
f656ce01 6083 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 6084 spin_lock(&kvm->mmu_lock);
3ee16c81 6085
10605204
SC
6086 if (kvm_has_zapped_obsolete_pages(kvm)) {
6087 kvm_mmu_commit_zap_page(kvm,
6088 &kvm->arch.zapped_obsolete_pages);
6089 goto unlock;
6090 }
6091
70534a73
DC
6092 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6093 freed++;
d98ba053 6094 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 6095
10605204 6096unlock:
3ee16c81 6097 spin_unlock(&kvm->mmu_lock);
f656ce01 6098 srcu_read_unlock(&kvm->srcu, idx);
19526396 6099
70534a73
DC
6100 /*
6101 * unfair on small ones
6102 * per-vm shrinkers cry out
6103 * sadness comes quickly
6104 */
19526396
GN
6105 list_move_tail(&kvm->vm_list, &vm_list);
6106 break;
3ee16c81 6107 }
3ee16c81 6108
0d9ce162 6109 mutex_unlock(&kvm_lock);
70534a73 6110 return freed;
70534a73
DC
6111}
6112
6113static unsigned long
6114mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6115{
45221ab6 6116 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
6117}
6118
6119static struct shrinker mmu_shrinker = {
70534a73
DC
6120 .count_objects = mmu_shrink_count,
6121 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
6122 .seeks = DEFAULT_SEEKS * 10,
6123};
6124
2ddfd20e 6125static void mmu_destroy_caches(void)
b5a33a75 6126{
c1bd743e
TH
6127 kmem_cache_destroy(pte_list_desc_cache);
6128 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
6129}
6130
7b6f8a06
KH
6131static void kvm_set_mmio_spte_mask(void)
6132{
6133 u64 mask;
7b6f8a06
KH
6134
6135 /*
6136 * Set the reserved bits and the present bit of an paging-structure
6137 * entry to generate page fault with PFER.RSV = 1.
6138 */
6139
6140 /*
6141 * Mask the uppermost physical address bit, which would be reserved as
6142 * long as the supported physical address width is less than 52.
6143 */
6144 mask = 1ull << 51;
6145
6146 /* Set the present bit. */
6147 mask |= 1ull;
6148
6149 /*
6150 * If reserved bit is not supported, clear the present bit to disable
6151 * mmio page fault.
6152 */
e30a7d62 6153 if (shadow_phys_bits == 52)
7b6f8a06
KH
6154 mask &= ~1ull;
6155
4af77151 6156 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
6157}
6158
b8e8c830
PB
6159static bool get_nx_auto_mode(void)
6160{
6161 /* Return true when CPU has the bug, and mitigations are ON */
6162 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6163}
6164
6165static void __set_nx_huge_pages(bool val)
6166{
6167 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6168}
6169
6170static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6171{
6172 bool old_val = nx_huge_pages;
6173 bool new_val;
6174
6175 /* In "auto" mode deploy workaround only if CPU has the bug. */
6176 if (sysfs_streq(val, "off"))
6177 new_val = 0;
6178 else if (sysfs_streq(val, "force"))
6179 new_val = 1;
6180 else if (sysfs_streq(val, "auto"))
6181 new_val = get_nx_auto_mode();
6182 else if (strtobool(val, &new_val) < 0)
6183 return -EINVAL;
6184
6185 __set_nx_huge_pages(new_val);
6186
6187 if (new_val != old_val) {
6188 struct kvm *kvm;
b8e8c830
PB
6189
6190 mutex_lock(&kvm_lock);
6191
6192 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 6193 mutex_lock(&kvm->slots_lock);
b8e8c830 6194 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 6195 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
6196
6197 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
6198 }
6199 mutex_unlock(&kvm_lock);
6200 }
6201
6202 return 0;
6203}
6204
b5a33a75
AK
6205int kvm_mmu_module_init(void)
6206{
ab271bd4
AB
6207 int ret = -ENOMEM;
6208
b8e8c830
PB
6209 if (nx_huge_pages == -1)
6210 __set_nx_huge_pages(get_nx_auto_mode());
6211
36d9594d
VK
6212 /*
6213 * MMU roles use union aliasing which is, generally speaking, an
6214 * undefined behavior. However, we supposedly know how compilers behave
6215 * and the current status quo is unlikely to change. Guardians below are
6216 * supposed to let us know if the assumption becomes false.
6217 */
6218 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6219 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6220 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6221
28a1f3ac 6222 kvm_mmu_reset_all_pte_masks();
f160c7b7 6223
7b6f8a06
KH
6224 kvm_set_mmio_spte_mask();
6225
53c07b18
XG
6226 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6227 sizeof(struct pte_list_desc),
46bea48a 6228 0, SLAB_ACCOUNT, NULL);
53c07b18 6229 if (!pte_list_desc_cache)
ab271bd4 6230 goto out;
b5a33a75 6231
d3d25b04
AK
6232 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6233 sizeof(struct kvm_mmu_page),
46bea48a 6234 0, SLAB_ACCOUNT, NULL);
d3d25b04 6235 if (!mmu_page_header_cache)
ab271bd4 6236 goto out;
d3d25b04 6237
908c7f19 6238 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6239 goto out;
45bf21a8 6240
ab271bd4
AB
6241 ret = register_shrinker(&mmu_shrinker);
6242 if (ret)
6243 goto out;
3ee16c81 6244
b5a33a75
AK
6245 return 0;
6246
ab271bd4 6247out:
3ee16c81 6248 mmu_destroy_caches();
ab271bd4 6249 return ret;
b5a33a75
AK
6250}
6251
3ad82a7e 6252/*
39337ad1 6253 * Calculate mmu pages needed for kvm.
3ad82a7e 6254 */
bc8a3d89 6255unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6256{
bc8a3d89
BG
6257 unsigned long nr_mmu_pages;
6258 unsigned long nr_pages = 0;
bc6678a3 6259 struct kvm_memslots *slots;
be6ba0f0 6260 struct kvm_memory_slot *memslot;
9da0e4d5 6261 int i;
3ad82a7e 6262
9da0e4d5
PB
6263 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6264 slots = __kvm_memslots(kvm, i);
90d83dc3 6265
9da0e4d5
PB
6266 kvm_for_each_memslot(memslot, slots)
6267 nr_pages += memslot->npages;
6268 }
3ad82a7e
ZX
6269
6270 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6271 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6272
6273 return nr_mmu_pages;
6274}
6275
c42fffe3
XG
6276void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6277{
95f93af4 6278 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6279 free_mmu_pages(&vcpu->arch.root_mmu);
6280 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6281 mmu_free_memory_caches(vcpu);
b034cf01
XG
6282}
6283
b034cf01
XG
6284void kvm_mmu_module_exit(void)
6285{
6286 mmu_destroy_caches();
6287 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6288 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6289 mmu_audit_disable();
6290}
1aa9b957
JS
6291
6292static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6293{
6294 unsigned int old_val;
6295 int err;
6296
6297 old_val = nx_huge_pages_recovery_ratio;
6298 err = param_set_uint(val, kp);
6299 if (err)
6300 return err;
6301
6302 if (READ_ONCE(nx_huge_pages) &&
6303 !old_val && nx_huge_pages_recovery_ratio) {
6304 struct kvm *kvm;
6305
6306 mutex_lock(&kvm_lock);
6307
6308 list_for_each_entry(kvm, &vm_list, vm_list)
6309 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6310
6311 mutex_unlock(&kvm_lock);
6312 }
6313
6314 return err;
6315}
6316
6317static void kvm_recover_nx_lpages(struct kvm *kvm)
6318{
6319 int rcu_idx;
6320 struct kvm_mmu_page *sp;
6321 unsigned int ratio;
6322 LIST_HEAD(invalid_list);
6323 ulong to_zap;
6324
6325 rcu_idx = srcu_read_lock(&kvm->srcu);
6326 spin_lock(&kvm->mmu_lock);
6327
6328 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6329 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6330 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6331 /*
6332 * We use a separate list instead of just using active_mmu_pages
6333 * because the number of lpage_disallowed pages is expected to
6334 * be relatively small compared to the total.
6335 */
6336 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6337 struct kvm_mmu_page,
6338 lpage_disallowed_link);
6339 WARN_ON_ONCE(!sp->lpage_disallowed);
6340 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6341 WARN_ON_ONCE(sp->lpage_disallowed);
6342
6343 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6344 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6345 if (to_zap)
6346 cond_resched_lock(&kvm->mmu_lock);
6347 }
6348 }
6349
6350 spin_unlock(&kvm->mmu_lock);
6351 srcu_read_unlock(&kvm->srcu, rcu_idx);
6352}
6353
6354static long get_nx_lpage_recovery_timeout(u64 start_time)
6355{
6356 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6357 ? start_time + 60 * HZ - get_jiffies_64()
6358 : MAX_SCHEDULE_TIMEOUT;
6359}
6360
6361static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6362{
6363 u64 start_time;
6364 long remaining_time;
6365
6366 while (true) {
6367 start_time = get_jiffies_64();
6368 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6369
6370 set_current_state(TASK_INTERRUPTIBLE);
6371 while (!kthread_should_stop() && remaining_time > 0) {
6372 schedule_timeout(remaining_time);
6373 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6374 set_current_state(TASK_INTERRUPTIBLE);
6375 }
6376
6377 set_current_state(TASK_RUNNING);
6378
6379 if (kthread_should_stop())
6380 return 0;
6381
6382 kvm_recover_nx_lpages(kvm);
6383 }
6384}
6385
6386int kvm_mmu_post_init_vm(struct kvm *kvm)
6387{
6388 int err;
6389
6390 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6391 "kvm-nx-lpage-recovery",
6392 &kvm->arch.nx_lpage_recovery_thread);
6393 if (!err)
6394 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6395
6396 return err;
6397}
6398
6399void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6400{
6401 if (kvm->arch.nx_lpage_recovery_thread)
6402 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6403}