]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: get rid of var page in kvm_set_pfn_dirty()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
1d737c8a 19#include "mmu.h"
836a1b3c 20#include "x86.h"
6de4f3ad 21#include "kvm_cache_regs.h"
5f7dde7b 22#include "cpuid.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732
AK
25#include <linux/types.h>
26#include <linux/string.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
1767e931
PG
29#include <linux/moduleparam.h>
30#include <linux/export.h>
448353ca 31#include <linux/swap.h>
05da4558 32#include <linux/hugetlb.h>
2f333bcb 33#include <linux/compiler.h>
bc6678a3 34#include <linux/srcu.h>
5a0e3ad6 35#include <linux/slab.h>
3f07c014 36#include <linux/sched/signal.h>
bf998156 37#include <linux/uaccess.h>
114df303 38#include <linux/hash.h>
f160c7b7 39#include <linux/kern_levels.h>
1aa9b957 40#include <linux/kthread.h>
6aa8b732 41
e495606d 42#include <asm/page.h>
aa2e063a 43#include <asm/pat.h>
e495606d 44#include <asm/cmpxchg.h>
0c55671f 45#include <asm/e820/api.h>
4e542370 46#include <asm/io.h>
13673a90 47#include <asm/vmx.h>
3d0c27ad 48#include <asm/kvm_page_track.h>
1261bfa3 49#include "trace.h"
6aa8b732 50
b8e8c830
PB
51extern bool itlb_multihit_kvm_mitigation;
52
53static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
54#ifdef CONFIG_PREEMPT_RT
55/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
56static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57#else
1aa9b957 58static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 59#endif
b8e8c830
PB
60
61static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 62static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830
PB
63
64static struct kernel_param_ops nx_huge_pages_ops = {
65 .set = set_nx_huge_pages,
66 .get = param_get_bool,
67};
68
1aa9b957
JS
69static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70 .set = set_nx_huge_pages_recovery_ratio,
71 .get = param_get_uint,
72};
73
b8e8c830
PB
74module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
76module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77 &nx_huge_pages_recovery_ratio, 0644);
78__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 79
18552672
JR
80/*
81 * When setting this variable to true it enables Two-Dimensional-Paging
82 * where the hardware walks 2 page tables:
83 * 1. the guest-virtual to guest-physical
84 * 2. while doing 1. it walks guest-physical to host-physical
85 * If the hardware supports that we don't need to do shadow paging.
86 */
2f333bcb 87bool tdp_enabled = false;
18552672 88
8b1fe17c
XG
89enum {
90 AUDIT_PRE_PAGE_FAULT,
91 AUDIT_POST_PAGE_FAULT,
92 AUDIT_PRE_PTE_WRITE,
6903074c
XG
93 AUDIT_POST_PTE_WRITE,
94 AUDIT_PRE_SYNC,
95 AUDIT_POST_SYNC
8b1fe17c 96};
37a7d8b0 97
8b1fe17c 98#undef MMU_DEBUG
37a7d8b0
AK
99
100#ifdef MMU_DEBUG
fa4a2c08
PB
101static bool dbg = 0;
102module_param(dbg, bool, 0644);
37a7d8b0
AK
103
104#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 106#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 107#else
37a7d8b0
AK
108#define pgprintk(x...) do { } while (0)
109#define rmap_printk(x...) do { } while (0)
fa4a2c08 110#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 111#endif
6aa8b732 112
957ed9ef
XG
113#define PTE_PREFETCH_NUM 8
114
00763e41 115#define PT_FIRST_AVAIL_BITS_SHIFT 10
6eeb4ef0
PB
116#define PT64_SECOND_AVAIL_BITS_SHIFT 54
117
118/*
119 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120 * Access Tracking SPTEs.
121 */
122#define SPTE_SPECIAL_MASK (3ULL << 52)
123#define SPTE_AD_ENABLED_MASK (0ULL << 52)
124#define SPTE_AD_DISABLED_MASK (1ULL << 52)
1f4e5fc8 125#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
6eeb4ef0 126#define SPTE_MMIO_MASK (3ULL << 52)
6aa8b732 127
6aa8b732
AK
128#define PT64_LEVEL_BITS 9
129
130#define PT64_LEVEL_SHIFT(level) \
d77c26fc 131 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 132
6aa8b732
AK
133#define PT64_INDEX(address, level)\
134 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135
136
137#define PT32_LEVEL_BITS 10
138
139#define PT32_LEVEL_SHIFT(level) \
d77c26fc 140 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 141
e04da980
JR
142#define PT32_LVL_OFFSET_MASK(level) \
143 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
145
146#define PT32_INDEX(address, level)\
147 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148
149
8acc0993
KH
150#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152#else
153#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154#endif
e04da980
JR
155#define PT64_LVL_ADDR_MASK(level) \
156 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157 * PT64_LEVEL_BITS))) - 1))
158#define PT64_LVL_OFFSET_MASK(level) \
159 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
161
162#define PT32_BASE_ADDR_MASK PAGE_MASK
163#define PT32_DIR_BASE_ADDR_MASK \
164 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
165#define PT32_LVL_ADDR_MASK(level) \
166 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167 * PT32_LEVEL_BITS))) - 1))
6aa8b732 168
53166229 169#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 170 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 171
fe135d2c
AK
172#define ACC_EXEC_MASK 1
173#define ACC_WRITE_MASK PT_WRITABLE_MASK
174#define ACC_USER_MASK PT_USER_MASK
175#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176
f160c7b7
JS
177/* The mask for the R/X bits in EPT PTEs */
178#define PT64_EPT_READABLE_MASK 0x1ull
179#define PT64_EPT_EXECUTABLE_MASK 0x4ull
180
90bb6fc5
AK
181#include <trace/events/kvm.h>
182
49fde340
XG
183#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 185
135f8c2b
AK
186#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187
220f773a
TY
188/* make pte_list_desc fit well in cache line */
189#define PTE_LIST_EXT 3
190
9b8ebbdb
PB
191/*
192 * Return values of handle_mmio_page_fault and mmu.page_fault:
193 * RET_PF_RETRY: let CPU fault again on the address.
194 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195 *
196 * For handle_mmio_page_fault only:
197 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198 */
199enum {
200 RET_PF_RETRY = 0,
201 RET_PF_EMULATE = 1,
202 RET_PF_INVALID = 2,
203};
204
53c07b18
XG
205struct pte_list_desc {
206 u64 *sptes[PTE_LIST_EXT];
207 struct pte_list_desc *more;
cd4a4e53
AK
208};
209
2d11123a
AK
210struct kvm_shadow_walk_iterator {
211 u64 addr;
212 hpa_t shadow_addr;
2d11123a 213 u64 *sptep;
dd3bfd59 214 int level;
2d11123a
AK
215 unsigned index;
216};
217
9fa72119
JS
218static const union kvm_mmu_page_role mmu_base_role_mask = {
219 .cr0_wp = 1,
47c42e6b 220 .gpte_is_8_bytes = 1,
9fa72119
JS
221 .nxe = 1,
222 .smep_andnot_wp = 1,
223 .smap_andnot_wp = 1,
224 .smm = 1,
225 .guest_mode = 1,
226 .ad_disabled = 1,
227};
228
7eb77e9f
JS
229#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
230 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
231 (_root), (_addr)); \
232 shadow_walk_okay(&(_walker)); \
233 shadow_walk_next(&(_walker)))
234
235#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
236 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
237 shadow_walk_okay(&(_walker)); \
238 shadow_walk_next(&(_walker)))
239
c2a2ac2b
XG
240#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
241 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
242 shadow_walk_okay(&(_walker)) && \
243 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
244 __shadow_walk_next(&(_walker), spte))
245
53c07b18 246static struct kmem_cache *pte_list_desc_cache;
d3d25b04 247static struct kmem_cache *mmu_page_header_cache;
45221ab6 248static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 249
7b52345e
SY
250static u64 __read_mostly shadow_nx_mask;
251static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
252static u64 __read_mostly shadow_user_mask;
253static u64 __read_mostly shadow_accessed_mask;
254static u64 __read_mostly shadow_dirty_mask;
ce88decf 255static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 256static u64 __read_mostly shadow_mmio_value;
4af77151 257static u64 __read_mostly shadow_mmio_access_mask;
ffb128c8 258static u64 __read_mostly shadow_present_mask;
d0ec49d4 259static u64 __read_mostly shadow_me_mask;
ce88decf 260
f160c7b7 261/*
6eeb4ef0
PB
262 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264 * pages.
f160c7b7
JS
265 */
266static u64 __read_mostly shadow_acc_track_mask;
f160c7b7
JS
267
268/*
269 * The mask/shift to use for saving the original R/X bits when marking the PTE
270 * as not-present for access tracking purposes. We do not save the W bit as the
271 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272 * restored only when a write is attempted to the page.
273 */
274static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275 PT64_EPT_EXECUTABLE_MASK;
276static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
277
28a1f3ac
JS
278/*
279 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280 * to guard against L1TF attacks.
281 */
282static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
283
284/*
285 * The number of high-order 1 bits to use in the mask above.
286 */
287static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
288
daa07cbc
SC
289/*
290 * In some cases, we need to preserve the GFN of a non-present or reserved
291 * SPTE when we usurp the upper five bits of the physical address space to
292 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
293 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295 * high and low parts. This mask covers the lower bits of the GFN.
296 */
297static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
298
f3ecb59d
KH
299/*
300 * The number of non-reserved physical address bits irrespective of features
301 * that repurpose legal bits, e.g. MKTME.
302 */
303static u8 __read_mostly shadow_phys_bits;
daa07cbc 304
ce88decf 305static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 306static bool is_executable_pte(u64 spte);
9fa72119
JS
307static union kvm_mmu_page_role
308kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 309
335e192a
PB
310#define CREATE_TRACE_POINTS
311#include "mmutrace.h"
312
40ef75a7
LT
313
314static inline bool kvm_available_flush_tlb_with_range(void)
315{
316 return kvm_x86_ops->tlb_remote_flush_with_range;
317}
318
319static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320 struct kvm_tlb_range *range)
321{
322 int ret = -ENOTSUPP;
323
324 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
326
327 if (ret)
328 kvm_flush_remote_tlbs(kvm);
329}
330
331static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332 u64 start_gfn, u64 pages)
333{
334 struct kvm_tlb_range range;
335
336 range.start_gfn = start_gfn;
337 range.pages = pages;
338
339 kvm_flush_remote_tlbs_with_range(kvm, &range);
340}
341
4af77151 342void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
ce88decf 343{
4af77151 344 BUG_ON((u64)(unsigned)access_mask != access_mask);
dcdca5fe 345 BUG_ON((mmio_mask & mmio_value) != mmio_value);
6eeb4ef0 346 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
312b616b 347 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
4af77151 348 shadow_mmio_access_mask = access_mask;
ce88decf
XG
349}
350EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
351
26c44a63
SC
352static bool is_mmio_spte(u64 spte)
353{
354 return (spte & shadow_mmio_mask) == shadow_mmio_value;
355}
356
ac8d57e5
PF
357static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
358{
359 return sp->role.ad_disabled;
360}
361
1f4e5fc8
PB
362static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
363{
364 /*
365 * When using the EPT page-modification log, the GPAs in the log
366 * would come from L2 rather than L1. Therefore, we need to rely
367 * on write protection to record dirty pages. This also bypasses
368 * PML, since writes now result in a vmexit.
369 */
370 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
371}
372
ac8d57e5
PF
373static inline bool spte_ad_enabled(u64 spte)
374{
26c44a63 375 MMU_WARN_ON(is_mmio_spte(spte));
1f4e5fc8
PB
376 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
377}
378
379static inline bool spte_ad_need_write_protect(u64 spte)
380{
381 MMU_WARN_ON(is_mmio_spte(spte));
382 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
ac8d57e5
PF
383}
384
b8e8c830
PB
385static bool is_nx_huge_page_enabled(void)
386{
387 return READ_ONCE(nx_huge_pages);
388}
389
ac8d57e5
PF
390static inline u64 spte_shadow_accessed_mask(u64 spte)
391{
26c44a63 392 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
393 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
394}
395
396static inline u64 spte_shadow_dirty_mask(u64 spte)
397{
26c44a63 398 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
399 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
400}
401
f160c7b7
JS
402static inline bool is_access_track_spte(u64 spte)
403{
ac8d57e5 404 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
405}
406
f2fd125d 407/*
cae7ed3c
SC
408 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
409 * the memslots generation and is derived as follows:
ee3d1570 410 *
164bf7e5
SC
411 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
412 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 413 *
164bf7e5
SC
414 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
415 * the MMIO generation number, as doing so would require stealing a bit from
416 * the "real" generation number and thus effectively halve the maximum number
417 * of MMIO generations that can be handled before encountering a wrap (which
418 * requires a full MMU zap). The flag is instead explicitly queried when
419 * checking for MMIO spte cache hits.
f2fd125d 420 */
164bf7e5 421#define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0)
f2fd125d 422
cae7ed3c
SC
423#define MMIO_SPTE_GEN_LOW_START 3
424#define MMIO_SPTE_GEN_LOW_END 11
425#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
426 MMIO_SPTE_GEN_LOW_START)
f2fd125d 427
cae7ed3c
SC
428#define MMIO_SPTE_GEN_HIGH_START 52
429#define MMIO_SPTE_GEN_HIGH_END 61
430#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
431 MMIO_SPTE_GEN_HIGH_START)
5192f9b9 432static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
433{
434 u64 mask;
435
cae7ed3c 436 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
f2fd125d 437
cae7ed3c
SC
438 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
439 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
440 return mask;
441}
442
5192f9b9 443static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 444{
5192f9b9 445 u64 gen;
f2fd125d
XG
446
447 spte &= ~shadow_mmio_mask;
448
cae7ed3c
SC
449 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
450 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
451 return gen;
452}
453
54bf36aa 454static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 455 unsigned access)
ce88decf 456{
cae7ed3c 457 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 458 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 459 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 460
4af77151 461 access &= shadow_mmio_access_mask;
28a1f3ac
JS
462 mask |= shadow_mmio_value | access;
463 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
464 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
465 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 466
f8f55942 467 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 468 mmu_spte_set(sptep, mask);
ce88decf
XG
469}
470
ce88decf
XG
471static gfn_t get_mmio_spte_gfn(u64 spte)
472{
daa07cbc 473 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
474
475 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
476 & shadow_nonpresent_or_rsvd_mask;
477
478 return gpa >> PAGE_SHIFT;
ce88decf
XG
479}
480
481static unsigned get_mmio_spte_access(u64 spte)
482{
4af77151 483 return spte & shadow_mmio_access_mask;
ce88decf
XG
484}
485
54bf36aa 486static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 487 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
488{
489 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 490 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
491 return true;
492 }
493
494 return false;
495}
c7addb90 496
54bf36aa 497static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 498{
cae7ed3c 499 u64 kvm_gen, spte_gen, gen;
089504c0 500
cae7ed3c
SC
501 gen = kvm_vcpu_memslots(vcpu)->generation;
502 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
503 return false;
089504c0 504
cae7ed3c 505 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
506 spte_gen = get_mmio_spte_generation(spte);
507
508 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
509 return likely(kvm_gen == spte_gen);
f8f55942
XG
510}
511
ce00053b
PF
512/*
513 * Sets the shadow PTE masks used by the MMU.
514 *
515 * Assumptions:
516 * - Setting either @accessed_mask or @dirty_mask requires setting both
517 * - At least one of @accessed_mask or @acc_track_mask must be set
518 */
7b52345e 519void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 520 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 521 u64 acc_track_mask, u64 me_mask)
7b52345e 522{
ce00053b
PF
523 BUG_ON(!dirty_mask != !accessed_mask);
524 BUG_ON(!accessed_mask && !acc_track_mask);
6eeb4ef0 525 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
312b616b 526
7b52345e
SY
527 shadow_user_mask = user_mask;
528 shadow_accessed_mask = accessed_mask;
529 shadow_dirty_mask = dirty_mask;
530 shadow_nx_mask = nx_mask;
531 shadow_x_mask = x_mask;
ffb128c8 532 shadow_present_mask = p_mask;
f160c7b7 533 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 534 shadow_me_mask = me_mask;
7b52345e
SY
535}
536EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
537
f3ecb59d
KH
538static u8 kvm_get_shadow_phys_bits(void)
539{
540 /*
7adacf5e
PB
541 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
542 * in CPU detection code, but the processor treats those reduced bits as
543 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
544 * the physical address bits reported by CPUID.
f3ecb59d 545 */
7adacf5e
PB
546 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
547 return cpuid_eax(0x80000008) & 0xff;
f3ecb59d 548
7adacf5e
PB
549 /*
550 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
551 * custom CPUID. Proceed with whatever the kernel found since these features
552 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
553 */
554 return boot_cpu_data.x86_phys_bits;
f3ecb59d
KH
555}
556
28a1f3ac 557static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 558{
daa07cbc
SC
559 u8 low_phys_bits;
560
f160c7b7
JS
561 shadow_user_mask = 0;
562 shadow_accessed_mask = 0;
563 shadow_dirty_mask = 0;
564 shadow_nx_mask = 0;
565 shadow_x_mask = 0;
566 shadow_mmio_mask = 0;
567 shadow_present_mask = 0;
568 shadow_acc_track_mask = 0;
28a1f3ac 569
f3ecb59d
KH
570 shadow_phys_bits = kvm_get_shadow_phys_bits();
571
28a1f3ac
JS
572 /*
573 * If the CPU has 46 or less physical address bits, then set an
574 * appropriate mask to guard against L1TF attacks. Otherwise, it is
575 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
576 *
577 * Some Intel CPUs address the L1 cache using more PA bits than are
578 * reported by CPUID. Use the PA width of the L1 cache when possible
579 * to achieve more effective mitigation, e.g. if system RAM overlaps
580 * the most significant bits of legal physical address space.
28a1f3ac 581 */
61455bf2
KH
582 shadow_nonpresent_or_rsvd_mask = 0;
583 low_phys_bits = boot_cpu_data.x86_cache_bits;
584 if (boot_cpu_data.x86_cache_bits <
daa07cbc 585 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac 586 shadow_nonpresent_or_rsvd_mask =
61455bf2 587 rsvd_bits(boot_cpu_data.x86_cache_bits -
28a1f3ac 588 shadow_nonpresent_or_rsvd_mask_len,
61455bf2 589 boot_cpu_data.x86_cache_bits - 1);
daa07cbc 590 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
61455bf2
KH
591 } else
592 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
593
daa07cbc
SC
594 shadow_nonpresent_or_rsvd_lower_gfn_mask =
595 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
596}
597
6aa8b732
AK
598static int is_cpuid_PSE36(void)
599{
600 return 1;
601}
602
73b1087e
AK
603static int is_nx(struct kvm_vcpu *vcpu)
604{
f6801dff 605 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
606}
607
c7addb90
AK
608static int is_shadow_present_pte(u64 pte)
609{
f160c7b7 610 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
611}
612
05da4558
MT
613static int is_large_pte(u64 pte)
614{
615 return pte & PT_PAGE_SIZE_MASK;
616}
617
776e6633
MT
618static int is_last_spte(u64 pte, int level)
619{
620 if (level == PT_PAGE_TABLE_LEVEL)
621 return 1;
852e3c19 622 if (is_large_pte(pte))
776e6633
MT
623 return 1;
624 return 0;
625}
626
d3e328f2
JS
627static bool is_executable_pte(u64 spte)
628{
629 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
630}
631
ba049e93 632static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 633{
35149e21 634 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
635}
636
da928521
AK
637static gfn_t pse36_gfn_delta(u32 gpte)
638{
639 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
640
641 return (gpte & PT32_DIR_PSE36_MASK) << shift;
642}
643
603e0651 644#ifdef CONFIG_X86_64
d555c333 645static void __set_spte(u64 *sptep, u64 spte)
e663ee64 646{
b19ee2ff 647 WRITE_ONCE(*sptep, spte);
e663ee64
AK
648}
649
603e0651 650static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 651{
b19ee2ff 652 WRITE_ONCE(*sptep, spte);
603e0651
XG
653}
654
655static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
656{
657 return xchg(sptep, spte);
658}
c2a2ac2b
XG
659
660static u64 __get_spte_lockless(u64 *sptep)
661{
6aa7de05 662 return READ_ONCE(*sptep);
c2a2ac2b 663}
a9221dd5 664#else
603e0651
XG
665union split_spte {
666 struct {
667 u32 spte_low;
668 u32 spte_high;
669 };
670 u64 spte;
671};
a9221dd5 672
c2a2ac2b
XG
673static void count_spte_clear(u64 *sptep, u64 spte)
674{
675 struct kvm_mmu_page *sp = page_header(__pa(sptep));
676
677 if (is_shadow_present_pte(spte))
678 return;
679
680 /* Ensure the spte is completely set before we increase the count */
681 smp_wmb();
682 sp->clear_spte_count++;
683}
684
603e0651
XG
685static void __set_spte(u64 *sptep, u64 spte)
686{
687 union split_spte *ssptep, sspte;
a9221dd5 688
603e0651
XG
689 ssptep = (union split_spte *)sptep;
690 sspte = (union split_spte)spte;
691
692 ssptep->spte_high = sspte.spte_high;
693
694 /*
695 * If we map the spte from nonpresent to present, We should store
696 * the high bits firstly, then set present bit, so cpu can not
697 * fetch this spte while we are setting the spte.
698 */
699 smp_wmb();
700
b19ee2ff 701 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
702}
703
603e0651
XG
704static void __update_clear_spte_fast(u64 *sptep, u64 spte)
705{
706 union split_spte *ssptep, sspte;
707
708 ssptep = (union split_spte *)sptep;
709 sspte = (union split_spte)spte;
710
b19ee2ff 711 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
712
713 /*
714 * If we map the spte from present to nonpresent, we should clear
715 * present bit firstly to avoid vcpu fetch the old high bits.
716 */
717 smp_wmb();
718
719 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 720 count_spte_clear(sptep, spte);
603e0651
XG
721}
722
723static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
724{
725 union split_spte *ssptep, sspte, orig;
726
727 ssptep = (union split_spte *)sptep;
728 sspte = (union split_spte)spte;
729
730 /* xchg acts as a barrier before the setting of the high bits */
731 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
732 orig.spte_high = ssptep->spte_high;
733 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 734 count_spte_clear(sptep, spte);
603e0651
XG
735
736 return orig.spte;
737}
c2a2ac2b
XG
738
739/*
740 * The idea using the light way get the spte on x86_32 guest is from
39656e83 741 * gup_get_pte (mm/gup.c).
accaefe0
XG
742 *
743 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
744 * coalesces them and we are running out of the MMU lock. Therefore
745 * we need to protect against in-progress updates of the spte.
746 *
747 * Reading the spte while an update is in progress may get the old value
748 * for the high part of the spte. The race is fine for a present->non-present
749 * change (because the high part of the spte is ignored for non-present spte),
750 * but for a present->present change we must reread the spte.
751 *
752 * All such changes are done in two steps (present->non-present and
753 * non-present->present), hence it is enough to count the number of
754 * present->non-present updates: if it changed while reading the spte,
755 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
756 */
757static u64 __get_spte_lockless(u64 *sptep)
758{
759 struct kvm_mmu_page *sp = page_header(__pa(sptep));
760 union split_spte spte, *orig = (union split_spte *)sptep;
761 int count;
762
763retry:
764 count = sp->clear_spte_count;
765 smp_rmb();
766
767 spte.spte_low = orig->spte_low;
768 smp_rmb();
769
770 spte.spte_high = orig->spte_high;
771 smp_rmb();
772
773 if (unlikely(spte.spte_low != orig->spte_low ||
774 count != sp->clear_spte_count))
775 goto retry;
776
777 return spte.spte;
778}
603e0651
XG
779#endif
780
ea4114bc 781static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 782{
feb3eb70
GN
783 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
784 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
785}
786
8672b721
XG
787static bool spte_has_volatile_bits(u64 spte)
788{
f160c7b7
JS
789 if (!is_shadow_present_pte(spte))
790 return false;
791
c7ba5b48 792 /*
6a6256f9 793 * Always atomically update spte if it can be updated
c7ba5b48
XG
794 * out of mmu-lock, it can ensure dirty bit is not lost,
795 * also, it can help us to get a stable is_writable_pte()
796 * to ensure tlb flush is not missed.
797 */
f160c7b7
JS
798 if (spte_can_locklessly_be_made_writable(spte) ||
799 is_access_track_spte(spte))
c7ba5b48
XG
800 return true;
801
ac8d57e5 802 if (spte_ad_enabled(spte)) {
f160c7b7
JS
803 if ((spte & shadow_accessed_mask) == 0 ||
804 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
805 return true;
806 }
8672b721 807
f160c7b7 808 return false;
8672b721
XG
809}
810
83ef6c81 811static bool is_accessed_spte(u64 spte)
4132779b 812{
ac8d57e5
PF
813 u64 accessed_mask = spte_shadow_accessed_mask(spte);
814
815 return accessed_mask ? spte & accessed_mask
816 : !is_access_track_spte(spte);
4132779b
XG
817}
818
83ef6c81 819static bool is_dirty_spte(u64 spte)
7e71a59b 820{
ac8d57e5
PF
821 u64 dirty_mask = spte_shadow_dirty_mask(spte);
822
823 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
824}
825
1df9f2dc
XG
826/* Rules for using mmu_spte_set:
827 * Set the sptep from nonpresent to present.
828 * Note: the sptep being assigned *must* be either not present
829 * or in a state where the hardware will not attempt to update
830 * the spte.
831 */
832static void mmu_spte_set(u64 *sptep, u64 new_spte)
833{
834 WARN_ON(is_shadow_present_pte(*sptep));
835 __set_spte(sptep, new_spte);
836}
837
f39a058d
JS
838/*
839 * Update the SPTE (excluding the PFN), but do not track changes in its
840 * accessed/dirty status.
1df9f2dc 841 */
f39a058d 842static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 843{
c7ba5b48 844 u64 old_spte = *sptep;
4132779b 845
afd28fe1 846 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 847
6e7d0354
XG
848 if (!is_shadow_present_pte(old_spte)) {
849 mmu_spte_set(sptep, new_spte);
f39a058d 850 return old_spte;
6e7d0354 851 }
4132779b 852
c7ba5b48 853 if (!spte_has_volatile_bits(old_spte))
603e0651 854 __update_clear_spte_fast(sptep, new_spte);
4132779b 855 else
603e0651 856 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 857
83ef6c81
JS
858 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
859
f39a058d
JS
860 return old_spte;
861}
862
863/* Rules for using mmu_spte_update:
864 * Update the state bits, it means the mapped pfn is not changed.
865 *
866 * Whenever we overwrite a writable spte with a read-only one we
867 * should flush remote TLBs. Otherwise rmap_write_protect
868 * will find a read-only spte, even though the writable spte
869 * might be cached on a CPU's TLB, the return value indicates this
870 * case.
871 *
872 * Returns true if the TLB needs to be flushed
873 */
874static bool mmu_spte_update(u64 *sptep, u64 new_spte)
875{
876 bool flush = false;
877 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
878
879 if (!is_shadow_present_pte(old_spte))
880 return false;
881
c7ba5b48
XG
882 /*
883 * For the spte updated out of mmu-lock is safe, since
6a6256f9 884 * we always atomically update it, see the comments in
c7ba5b48
XG
885 * spte_has_volatile_bits().
886 */
ea4114bc 887 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 888 !is_writable_pte(new_spte))
83ef6c81 889 flush = true;
4132779b 890
7e71a59b 891 /*
83ef6c81 892 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
893 * to guarantee consistency between TLB and page tables.
894 */
7e71a59b 895
83ef6c81
JS
896 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
897 flush = true;
4132779b 898 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
899 }
900
901 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
902 flush = true;
4132779b 903 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 904 }
6e7d0354 905
83ef6c81 906 return flush;
b79b93f9
AK
907}
908
1df9f2dc
XG
909/*
910 * Rules for using mmu_spte_clear_track_bits:
911 * It sets the sptep from present to nonpresent, and track the
912 * state bits, it is used to clear the last level sptep.
83ef6c81 913 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
914 */
915static int mmu_spte_clear_track_bits(u64 *sptep)
916{
ba049e93 917 kvm_pfn_t pfn;
1df9f2dc
XG
918 u64 old_spte = *sptep;
919
920 if (!spte_has_volatile_bits(old_spte))
603e0651 921 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 922 else
603e0651 923 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 924
afd28fe1 925 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
926 return 0;
927
928 pfn = spte_to_pfn(old_spte);
86fde74c
XG
929
930 /*
931 * KVM does not hold the refcount of the page used by
932 * kvm mmu, before reclaiming the page, we should
933 * unmap it from mmu first.
934 */
bf4bea8e 935 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 936
83ef6c81 937 if (is_accessed_spte(old_spte))
1df9f2dc 938 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
939
940 if (is_dirty_spte(old_spte))
1df9f2dc 941 kvm_set_pfn_dirty(pfn);
83ef6c81 942
1df9f2dc
XG
943 return 1;
944}
945
946/*
947 * Rules for using mmu_spte_clear_no_track:
948 * Directly clear spte without caring the state bits of sptep,
949 * it is used to set the upper level spte.
950 */
951static void mmu_spte_clear_no_track(u64 *sptep)
952{
603e0651 953 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
954}
955
c2a2ac2b
XG
956static u64 mmu_spte_get_lockless(u64 *sptep)
957{
958 return __get_spte_lockless(sptep);
959}
960
f160c7b7
JS
961static u64 mark_spte_for_access_track(u64 spte)
962{
ac8d57e5 963 if (spte_ad_enabled(spte))
f160c7b7
JS
964 return spte & ~shadow_accessed_mask;
965
ac8d57e5 966 if (is_access_track_spte(spte))
f160c7b7
JS
967 return spte;
968
969 /*
20d65236
JS
970 * Making an Access Tracking PTE will result in removal of write access
971 * from the PTE. So, verify that we will be able to restore the write
972 * access in the fast page fault path later on.
f160c7b7
JS
973 */
974 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
975 !spte_can_locklessly_be_made_writable(spte),
976 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
977
978 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
979 shadow_acc_track_saved_bits_shift),
980 "kvm: Access Tracking saved bit locations are not zero\n");
981
982 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
983 shadow_acc_track_saved_bits_shift;
984 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
985
986 return spte;
987}
988
d3e328f2
JS
989/* Restore an acc-track PTE back to a regular PTE */
990static u64 restore_acc_track_spte(u64 spte)
991{
992 u64 new_spte = spte;
993 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
994 & shadow_acc_track_saved_bits_mask;
995
ac8d57e5 996 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
997 WARN_ON_ONCE(!is_access_track_spte(spte));
998
999 new_spte &= ~shadow_acc_track_mask;
1000 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1001 shadow_acc_track_saved_bits_shift);
1002 new_spte |= saved_bits;
1003
1004 return new_spte;
1005}
1006
f160c7b7
JS
1007/* Returns the Accessed status of the PTE and resets it at the same time. */
1008static bool mmu_spte_age(u64 *sptep)
1009{
1010 u64 spte = mmu_spte_get_lockless(sptep);
1011
1012 if (!is_accessed_spte(spte))
1013 return false;
1014
ac8d57e5 1015 if (spte_ad_enabled(spte)) {
f160c7b7
JS
1016 clear_bit((ffs(shadow_accessed_mask) - 1),
1017 (unsigned long *)sptep);
1018 } else {
1019 /*
1020 * Capture the dirty status of the page, so that it doesn't get
1021 * lost when the SPTE is marked for access tracking.
1022 */
1023 if (is_writable_pte(spte))
1024 kvm_set_pfn_dirty(spte_to_pfn(spte));
1025
1026 spte = mark_spte_for_access_track(spte);
1027 mmu_spte_update_no_track(sptep, spte);
1028 }
1029
1030 return true;
1031}
1032
c2a2ac2b
XG
1033static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1034{
c142786c
AK
1035 /*
1036 * Prevent page table teardown by making any free-er wait during
1037 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1038 */
1039 local_irq_disable();
36ca7e0a 1040
c142786c
AK
1041 /*
1042 * Make sure a following spte read is not reordered ahead of the write
1043 * to vcpu->mode.
1044 */
36ca7e0a 1045 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
1046}
1047
1048static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1049{
c142786c
AK
1050 /*
1051 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 1052 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
1053 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1054 */
36ca7e0a 1055 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 1056 local_irq_enable();
c2a2ac2b
XG
1057}
1058
e2dec939 1059static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 1060 struct kmem_cache *base_cache, int min)
714b93da
AK
1061{
1062 void *obj;
1063
1064 if (cache->nobjs >= min)
e2dec939 1065 return 0;
714b93da 1066 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 1067 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 1068 if (!obj)
daefb794 1069 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
1070 cache->objects[cache->nobjs++] = obj;
1071 }
e2dec939 1072 return 0;
714b93da
AK
1073}
1074
f759e2b4
XG
1075static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1076{
1077 return cache->nobjs;
1078}
1079
e8ad9a70
XG
1080static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1081 struct kmem_cache *cache)
714b93da
AK
1082{
1083 while (mc->nobjs)
e8ad9a70 1084 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1085}
1086
c1158e63 1087static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1088 int min)
c1158e63 1089{
842f22ed 1090 void *page;
c1158e63
AK
1091
1092 if (cache->nobjs >= min)
1093 return 0;
1094 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1095 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1096 if (!page)
daefb794 1097 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1098 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1099 }
1100 return 0;
1101}
1102
1103static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1104{
1105 while (mc->nobjs)
c4d198d5 1106 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1107}
1108
2e3e5882 1109static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1110{
e2dec939
AK
1111 int r;
1112
53c07b18 1113 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1114 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1115 if (r)
1116 goto out;
ad312c7c 1117 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1118 if (r)
1119 goto out;
ad312c7c 1120 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1121 mmu_page_header_cache, 4);
e2dec939
AK
1122out:
1123 return r;
714b93da
AK
1124}
1125
1126static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1127{
53c07b18
XG
1128 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1129 pte_list_desc_cache);
ad312c7c 1130 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1131 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1132 mmu_page_header_cache);
714b93da
AK
1133}
1134
80feb89a 1135static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1136{
1137 void *p;
1138
1139 BUG_ON(!mc->nobjs);
1140 p = mc->objects[--mc->nobjs];
714b93da
AK
1141 return p;
1142}
1143
53c07b18 1144static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1145{
80feb89a 1146 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1147}
1148
53c07b18 1149static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1150{
53c07b18 1151 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1152}
1153
2032a93d
LJ
1154static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1155{
1156 if (!sp->role.direct)
1157 return sp->gfns[index];
1158
1159 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1160}
1161
1162static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1163{
e9f2a760 1164 if (!sp->role.direct) {
2032a93d 1165 sp->gfns[index] = gfn;
e9f2a760
PB
1166 return;
1167 }
1168
1169 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1170 pr_err_ratelimited("gfn mismatch under direct page %llx "
1171 "(expected %llx, got %llx)\n",
1172 sp->gfn,
1173 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1174}
1175
05da4558 1176/*
d4dbf470
TY
1177 * Return the pointer to the large page information for a given gfn,
1178 * handling slots that are not large page aligned.
05da4558 1179 */
d4dbf470
TY
1180static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1181 struct kvm_memory_slot *slot,
1182 int level)
05da4558
MT
1183{
1184 unsigned long idx;
1185
fb03cb6f 1186 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1187 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1188}
1189
547ffaed
XG
1190static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1191 gfn_t gfn, int count)
1192{
1193 struct kvm_lpage_info *linfo;
1194 int i;
1195
1196 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1197 linfo = lpage_info_slot(gfn, slot, i);
1198 linfo->disallow_lpage += count;
1199 WARN_ON(linfo->disallow_lpage < 0);
1200 }
1201}
1202
1203void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1204{
1205 update_gfn_disallow_lpage_count(slot, gfn, 1);
1206}
1207
1208void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1209{
1210 update_gfn_disallow_lpage_count(slot, gfn, -1);
1211}
1212
3ed1a478 1213static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1214{
699023e2 1215 struct kvm_memslots *slots;
d25797b2 1216 struct kvm_memory_slot *slot;
3ed1a478 1217 gfn_t gfn;
05da4558 1218
56ca57f9 1219 kvm->arch.indirect_shadow_pages++;
3ed1a478 1220 gfn = sp->gfn;
699023e2
PB
1221 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1222 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1223
1224 /* the non-leaf shadow pages are keeping readonly. */
1225 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1226 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1227 KVM_PAGE_TRACK_WRITE);
1228
547ffaed 1229 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1230}
1231
b8e8c830
PB
1232static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1233{
1234 if (sp->lpage_disallowed)
1235 return;
1236
1237 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
1238 list_add_tail(&sp->lpage_disallowed_link,
1239 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
1240 sp->lpage_disallowed = true;
1241}
1242
3ed1a478 1243static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1244{
699023e2 1245 struct kvm_memslots *slots;
d25797b2 1246 struct kvm_memory_slot *slot;
3ed1a478 1247 gfn_t gfn;
05da4558 1248
56ca57f9 1249 kvm->arch.indirect_shadow_pages--;
3ed1a478 1250 gfn = sp->gfn;
699023e2
PB
1251 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1252 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1253 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1254 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1255 KVM_PAGE_TRACK_WRITE);
1256
547ffaed 1257 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1258}
1259
b8e8c830
PB
1260static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1261{
1262 --kvm->stat.nx_lpage_splits;
1263 sp->lpage_disallowed = false;
1aa9b957 1264 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
1265}
1266
92f94f1e
XG
1267static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1268 struct kvm_memory_slot *slot)
05da4558 1269{
d4dbf470 1270 struct kvm_lpage_info *linfo;
05da4558
MT
1271
1272 if (slot) {
d4dbf470 1273 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1274 return !!linfo->disallow_lpage;
05da4558
MT
1275 }
1276
92f94f1e 1277 return true;
05da4558
MT
1278}
1279
92f94f1e
XG
1280static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1281 int level)
5225fdf8
TY
1282{
1283 struct kvm_memory_slot *slot;
1284
1285 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1286 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1287}
1288
d25797b2 1289static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1290{
8f0b1ab6 1291 unsigned long page_size;
d25797b2 1292 int i, ret = 0;
05da4558 1293
8f0b1ab6 1294 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1295
8a3d08f1 1296 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1297 if (page_size >= KVM_HPAGE_SIZE(i))
1298 ret = i;
1299 else
1300 break;
1301 }
1302
4c2155ce 1303 return ret;
05da4558
MT
1304}
1305
d8aacf5d
TY
1306static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1307 bool no_dirty_log)
1308{
1309 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1310 return false;
1311 if (no_dirty_log && slot->dirty_bitmap)
1312 return false;
1313
1314 return true;
1315}
1316
5d163b1c
XG
1317static struct kvm_memory_slot *
1318gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1319 bool no_dirty_log)
05da4558
MT
1320{
1321 struct kvm_memory_slot *slot;
5d163b1c 1322
54bf36aa 1323 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1324 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1325 slot = NULL;
1326
1327 return slot;
1328}
1329
fd136902
TY
1330static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1331 bool *force_pt_level)
936a5fe6
AA
1332{
1333 int host_level, level, max_level;
d8aacf5d
TY
1334 struct kvm_memory_slot *slot;
1335
8c85ac1c
TY
1336 if (unlikely(*force_pt_level))
1337 return PT_PAGE_TABLE_LEVEL;
05da4558 1338
8c85ac1c
TY
1339 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1340 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1341 if (unlikely(*force_pt_level))
1342 return PT_PAGE_TABLE_LEVEL;
1343
d25797b2
JR
1344 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1345
1346 if (host_level == PT_PAGE_TABLE_LEVEL)
1347 return host_level;
1348
55dd98c3 1349 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1350
1351 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1352 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1353 break;
d25797b2
JR
1354
1355 return level - 1;
05da4558
MT
1356}
1357
290fc38d 1358/*
018aabb5 1359 * About rmap_head encoding:
cd4a4e53 1360 *
018aabb5
TY
1361 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1362 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1363 * pte_list_desc containing more mappings.
018aabb5
TY
1364 */
1365
1366/*
1367 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1368 */
53c07b18 1369static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1370 struct kvm_rmap_head *rmap_head)
cd4a4e53 1371{
53c07b18 1372 struct pte_list_desc *desc;
53a27b39 1373 int i, count = 0;
cd4a4e53 1374
018aabb5 1375 if (!rmap_head->val) {
53c07b18 1376 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1377 rmap_head->val = (unsigned long)spte;
1378 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1379 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1380 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1381 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1382 desc->sptes[1] = spte;
018aabb5 1383 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1384 ++count;
cd4a4e53 1385 } else {
53c07b18 1386 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1387 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1388 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1389 desc = desc->more;
53c07b18 1390 count += PTE_LIST_EXT;
53a27b39 1391 }
53c07b18
XG
1392 if (desc->sptes[PTE_LIST_EXT-1]) {
1393 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1394 desc = desc->more;
1395 }
d555c333 1396 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1397 ++count;
d555c333 1398 desc->sptes[i] = spte;
cd4a4e53 1399 }
53a27b39 1400 return count;
cd4a4e53
AK
1401}
1402
53c07b18 1403static void
018aabb5
TY
1404pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1405 struct pte_list_desc *desc, int i,
1406 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1407{
1408 int j;
1409
53c07b18 1410 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1411 ;
d555c333
AK
1412 desc->sptes[i] = desc->sptes[j];
1413 desc->sptes[j] = NULL;
cd4a4e53
AK
1414 if (j != 0)
1415 return;
1416 if (!prev_desc && !desc->more)
018aabb5 1417 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1418 else
1419 if (prev_desc)
1420 prev_desc->more = desc->more;
1421 else
018aabb5 1422 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1423 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1424}
1425
8daf3462 1426static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1427{
53c07b18
XG
1428 struct pte_list_desc *desc;
1429 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1430 int i;
1431
018aabb5 1432 if (!rmap_head->val) {
8daf3462 1433 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1434 BUG();
018aabb5 1435 } else if (!(rmap_head->val & 1)) {
8daf3462 1436 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1437 if ((u64 *)rmap_head->val != spte) {
8daf3462 1438 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1439 BUG();
1440 }
018aabb5 1441 rmap_head->val = 0;
cd4a4e53 1442 } else {
8daf3462 1443 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1444 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1445 prev_desc = NULL;
1446 while (desc) {
018aabb5 1447 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1448 if (desc->sptes[i] == spte) {
018aabb5
TY
1449 pte_list_desc_remove_entry(rmap_head,
1450 desc, i, prev_desc);
cd4a4e53
AK
1451 return;
1452 }
018aabb5 1453 }
cd4a4e53
AK
1454 prev_desc = desc;
1455 desc = desc->more;
1456 }
8daf3462 1457 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1458 BUG();
1459 }
1460}
1461
e7912386
WY
1462static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1463{
1464 mmu_spte_clear_track_bits(sptep);
1465 __pte_list_remove(sptep, rmap_head);
1466}
1467
018aabb5
TY
1468static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1469 struct kvm_memory_slot *slot)
53c07b18 1470{
77d11309 1471 unsigned long idx;
53c07b18 1472
77d11309 1473 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1474 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1475}
1476
018aabb5
TY
1477static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1478 struct kvm_mmu_page *sp)
9b9b1492 1479{
699023e2 1480 struct kvm_memslots *slots;
9b9b1492
TY
1481 struct kvm_memory_slot *slot;
1482
699023e2
PB
1483 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1484 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1485 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1486}
1487
f759e2b4
XG
1488static bool rmap_can_add(struct kvm_vcpu *vcpu)
1489{
1490 struct kvm_mmu_memory_cache *cache;
1491
1492 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1493 return mmu_memory_cache_free_objects(cache);
1494}
1495
53c07b18
XG
1496static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1497{
1498 struct kvm_mmu_page *sp;
018aabb5 1499 struct kvm_rmap_head *rmap_head;
53c07b18 1500
53c07b18
XG
1501 sp = page_header(__pa(spte));
1502 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1503 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1504 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1505}
1506
53c07b18
XG
1507static void rmap_remove(struct kvm *kvm, u64 *spte)
1508{
1509 struct kvm_mmu_page *sp;
1510 gfn_t gfn;
018aabb5 1511 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1512
1513 sp = page_header(__pa(spte));
1514 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1515 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1516 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1517}
1518
1e3f42f0
TY
1519/*
1520 * Used by the following functions to iterate through the sptes linked by a
1521 * rmap. All fields are private and not assumed to be used outside.
1522 */
1523struct rmap_iterator {
1524 /* private fields */
1525 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1526 int pos; /* index of the sptep */
1527};
1528
1529/*
1530 * Iteration must be started by this function. This should also be used after
1531 * removing/dropping sptes from the rmap link because in such cases the
1532 * information in the itererator may not be valid.
1533 *
1534 * Returns sptep if found, NULL otherwise.
1535 */
018aabb5
TY
1536static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1537 struct rmap_iterator *iter)
1e3f42f0 1538{
77fbbbd2
TY
1539 u64 *sptep;
1540
018aabb5 1541 if (!rmap_head->val)
1e3f42f0
TY
1542 return NULL;
1543
018aabb5 1544 if (!(rmap_head->val & 1)) {
1e3f42f0 1545 iter->desc = NULL;
77fbbbd2
TY
1546 sptep = (u64 *)rmap_head->val;
1547 goto out;
1e3f42f0
TY
1548 }
1549
018aabb5 1550 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1551 iter->pos = 0;
77fbbbd2
TY
1552 sptep = iter->desc->sptes[iter->pos];
1553out:
1554 BUG_ON(!is_shadow_present_pte(*sptep));
1555 return sptep;
1e3f42f0
TY
1556}
1557
1558/*
1559 * Must be used with a valid iterator: e.g. after rmap_get_first().
1560 *
1561 * Returns sptep if found, NULL otherwise.
1562 */
1563static u64 *rmap_get_next(struct rmap_iterator *iter)
1564{
77fbbbd2
TY
1565 u64 *sptep;
1566
1e3f42f0
TY
1567 if (iter->desc) {
1568 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1569 ++iter->pos;
1570 sptep = iter->desc->sptes[iter->pos];
1571 if (sptep)
77fbbbd2 1572 goto out;
1e3f42f0
TY
1573 }
1574
1575 iter->desc = iter->desc->more;
1576
1577 if (iter->desc) {
1578 iter->pos = 0;
1579 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1580 sptep = iter->desc->sptes[iter->pos];
1581 goto out;
1e3f42f0
TY
1582 }
1583 }
1584
1585 return NULL;
77fbbbd2
TY
1586out:
1587 BUG_ON(!is_shadow_present_pte(*sptep));
1588 return sptep;
1e3f42f0
TY
1589}
1590
018aabb5
TY
1591#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1592 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1593 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1594
c3707958 1595static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1596{
1df9f2dc 1597 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1598 rmap_remove(kvm, sptep);
be38d276
AK
1599}
1600
8e22f955
XG
1601
1602static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1603{
1604 if (is_large_pte(*sptep)) {
1605 WARN_ON(page_header(__pa(sptep))->role.level ==
1606 PT_PAGE_TABLE_LEVEL);
1607 drop_spte(kvm, sptep);
1608 --kvm->stat.lpages;
1609 return true;
1610 }
1611
1612 return false;
1613}
1614
1615static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1616{
c3134ce2
LT
1617 if (__drop_large_spte(vcpu->kvm, sptep)) {
1618 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1619
1620 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1621 KVM_PAGES_PER_HPAGE(sp->role.level));
1622 }
8e22f955
XG
1623}
1624
1625/*
49fde340 1626 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1627 * spte write-protection is caused by protecting shadow page table.
49fde340 1628 *
b4619660 1629 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1630 * protection:
1631 * - for dirty logging, the spte can be set to writable at anytime if
1632 * its dirty bitmap is properly set.
1633 * - for spte protection, the spte can be writable only after unsync-ing
1634 * shadow page.
8e22f955 1635 *
c126d94f 1636 * Return true if tlb need be flushed.
8e22f955 1637 */
c4f138b4 1638static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1639{
1640 u64 spte = *sptep;
1641
49fde340 1642 if (!is_writable_pte(spte) &&
ea4114bc 1643 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1644 return false;
1645
1646 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1647
49fde340
XG
1648 if (pt_protect)
1649 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1650 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1651
c126d94f 1652 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1653}
1654
018aabb5
TY
1655static bool __rmap_write_protect(struct kvm *kvm,
1656 struct kvm_rmap_head *rmap_head,
245c3912 1657 bool pt_protect)
98348e95 1658{
1e3f42f0
TY
1659 u64 *sptep;
1660 struct rmap_iterator iter;
d13bc5b5 1661 bool flush = false;
374cbac0 1662
018aabb5 1663 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1664 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1665
d13bc5b5 1666 return flush;
a0ed4607
TY
1667}
1668
c4f138b4 1669static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1670{
1671 u64 spte = *sptep;
1672
1673 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1674
1f4e5fc8 1675 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1676 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1677 return mmu_spte_update(sptep, spte);
1678}
1679
1f4e5fc8 1680static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1681{
1682 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1683 (unsigned long *)sptep);
1f4e5fc8 1684 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1685 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1686
1687 return was_writable;
1688}
1689
1690/*
1691 * Gets the GFN ready for another round of dirty logging by clearing the
1692 * - D bit on ad-enabled SPTEs, and
1693 * - W bit on ad-disabled SPTEs.
1694 * Returns true iff any D or W bits were cleared.
1695 */
018aabb5 1696static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1697{
1698 u64 *sptep;
1699 struct rmap_iterator iter;
1700 bool flush = false;
1701
018aabb5 1702 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1703 if (spte_ad_need_write_protect(*sptep))
1704 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1705 else
1f4e5fc8 1706 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1707
1708 return flush;
1709}
1710
c4f138b4 1711static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1712{
1713 u64 spte = *sptep;
1714
1715 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1716
1f4e5fc8
PB
1717 /*
1718 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1719 * do not bother adding back write access to pages marked
1720 * SPTE_AD_WRPROT_ONLY_MASK.
1721 */
f4b4b180
KH
1722 spte |= shadow_dirty_mask;
1723
1724 return mmu_spte_update(sptep, spte);
1725}
1726
018aabb5 1727static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1728{
1729 u64 *sptep;
1730 struct rmap_iterator iter;
1731 bool flush = false;
1732
018aabb5 1733 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1734 if (spte_ad_enabled(*sptep))
1735 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1736
1737 return flush;
1738}
1739
5dc99b23 1740/**
3b0f1d01 1741 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1742 * @kvm: kvm instance
1743 * @slot: slot to protect
1744 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1745 * @mask: indicates which pages we should protect
1746 *
1747 * Used when we do not need to care about huge page mappings: e.g. during dirty
1748 * logging we do not have any such mappings.
1749 */
3b0f1d01 1750static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1751 struct kvm_memory_slot *slot,
1752 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1753{
018aabb5 1754 struct kvm_rmap_head *rmap_head;
a0ed4607 1755
5dc99b23 1756 while (mask) {
018aabb5
TY
1757 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1758 PT_PAGE_TABLE_LEVEL, slot);
1759 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1760
5dc99b23
TY
1761 /* clear the first set bit */
1762 mask &= mask - 1;
1763 }
374cbac0
AK
1764}
1765
f4b4b180 1766/**
ac8d57e5
PF
1767 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1768 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1769 * @kvm: kvm instance
1770 * @slot: slot to clear D-bit
1771 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1772 * @mask: indicates which pages we should clear D-bit
1773 *
1774 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1775 */
1776void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1777 struct kvm_memory_slot *slot,
1778 gfn_t gfn_offset, unsigned long mask)
1779{
018aabb5 1780 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1781
1782 while (mask) {
018aabb5
TY
1783 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1784 PT_PAGE_TABLE_LEVEL, slot);
1785 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1786
1787 /* clear the first set bit */
1788 mask &= mask - 1;
1789 }
1790}
1791EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1792
3b0f1d01
KH
1793/**
1794 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1795 * PT level pages.
1796 *
1797 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1798 * enable dirty logging for them.
1799 *
1800 * Used when we do not need to care about huge page mappings: e.g. during dirty
1801 * logging we do not have any such mappings.
1802 */
1803void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1804 struct kvm_memory_slot *slot,
1805 gfn_t gfn_offset, unsigned long mask)
1806{
88178fd4
KH
1807 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1808 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1809 mask);
1810 else
1811 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1812}
1813
bab4165e
BD
1814/**
1815 * kvm_arch_write_log_dirty - emulate dirty page logging
1816 * @vcpu: Guest mode vcpu
1817 *
1818 * Emulate arch specific page modification logging for the
1819 * nested hypervisor
1820 */
1821int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1822{
1823 if (kvm_x86_ops->write_log_dirty)
1824 return kvm_x86_ops->write_log_dirty(vcpu);
1825
1826 return 0;
1827}
1828
aeecee2e
XG
1829bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1830 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1831{
018aabb5 1832 struct kvm_rmap_head *rmap_head;
5dc99b23 1833 int i;
2f84569f 1834 bool write_protected = false;
95d4c16c 1835
8a3d08f1 1836 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1837 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1838 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1839 }
1840
1841 return write_protected;
95d4c16c
TY
1842}
1843
aeecee2e
XG
1844static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1845{
1846 struct kvm_memory_slot *slot;
1847
1848 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1849 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1850}
1851
018aabb5 1852static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1853{
1e3f42f0
TY
1854 u64 *sptep;
1855 struct rmap_iterator iter;
6a49f85c 1856 bool flush = false;
e930bffe 1857
018aabb5 1858 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1859 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1860
e7912386 1861 pte_list_remove(rmap_head, sptep);
6a49f85c 1862 flush = true;
e930bffe 1863 }
1e3f42f0 1864
6a49f85c
XG
1865 return flush;
1866}
1867
018aabb5 1868static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1869 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1870 unsigned long data)
1871{
018aabb5 1872 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1873}
1874
018aabb5 1875static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1876 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1877 unsigned long data)
3da0dd43 1878{
1e3f42f0
TY
1879 u64 *sptep;
1880 struct rmap_iterator iter;
3da0dd43 1881 int need_flush = 0;
1e3f42f0 1882 u64 new_spte;
3da0dd43 1883 pte_t *ptep = (pte_t *)data;
ba049e93 1884 kvm_pfn_t new_pfn;
3da0dd43
IE
1885
1886 WARN_ON(pte_huge(*ptep));
1887 new_pfn = pte_pfn(*ptep);
1e3f42f0 1888
0d536790 1889restart:
018aabb5 1890 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1891 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1892 sptep, *sptep, gfn, level);
1e3f42f0 1893
3da0dd43 1894 need_flush = 1;
1e3f42f0 1895
3da0dd43 1896 if (pte_write(*ptep)) {
e7912386 1897 pte_list_remove(rmap_head, sptep);
0d536790 1898 goto restart;
3da0dd43 1899 } else {
1e3f42f0 1900 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1901 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1902
1903 new_spte &= ~PT_WRITABLE_MASK;
1904 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1905
1906 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1907
1908 mmu_spte_clear_track_bits(sptep);
1909 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1910 }
1911 }
1e3f42f0 1912
3cc5ea94
LT
1913 if (need_flush && kvm_available_flush_tlb_with_range()) {
1914 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1915 return 0;
1916 }
1917
0cf853c5 1918 return need_flush;
3da0dd43
IE
1919}
1920
6ce1f4e2
XG
1921struct slot_rmap_walk_iterator {
1922 /* input fields. */
1923 struct kvm_memory_slot *slot;
1924 gfn_t start_gfn;
1925 gfn_t end_gfn;
1926 int start_level;
1927 int end_level;
1928
1929 /* output fields. */
1930 gfn_t gfn;
018aabb5 1931 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1932 int level;
1933
1934 /* private field. */
018aabb5 1935 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1936};
1937
1938static void
1939rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1940{
1941 iterator->level = level;
1942 iterator->gfn = iterator->start_gfn;
1943 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1944 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1945 iterator->slot);
1946}
1947
1948static void
1949slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1950 struct kvm_memory_slot *slot, int start_level,
1951 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1952{
1953 iterator->slot = slot;
1954 iterator->start_level = start_level;
1955 iterator->end_level = end_level;
1956 iterator->start_gfn = start_gfn;
1957 iterator->end_gfn = end_gfn;
1958
1959 rmap_walk_init_level(iterator, iterator->start_level);
1960}
1961
1962static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1963{
1964 return !!iterator->rmap;
1965}
1966
1967static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1968{
1969 if (++iterator->rmap <= iterator->end_rmap) {
1970 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1971 return;
1972 }
1973
1974 if (++iterator->level > iterator->end_level) {
1975 iterator->rmap = NULL;
1976 return;
1977 }
1978
1979 rmap_walk_init_level(iterator, iterator->level);
1980}
1981
1982#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1983 _start_gfn, _end_gfn, _iter_) \
1984 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1985 _end_level_, _start_gfn, _end_gfn); \
1986 slot_rmap_walk_okay(_iter_); \
1987 slot_rmap_walk_next(_iter_))
1988
84504ef3
TY
1989static int kvm_handle_hva_range(struct kvm *kvm,
1990 unsigned long start,
1991 unsigned long end,
1992 unsigned long data,
1993 int (*handler)(struct kvm *kvm,
018aabb5 1994 struct kvm_rmap_head *rmap_head,
048212d0 1995 struct kvm_memory_slot *slot,
8a9522d2
ALC
1996 gfn_t gfn,
1997 int level,
84504ef3 1998 unsigned long data))
e930bffe 1999{
bc6678a3 2000 struct kvm_memslots *slots;
be6ba0f0 2001 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
2002 struct slot_rmap_walk_iterator iterator;
2003 int ret = 0;
9da0e4d5 2004 int i;
bc6678a3 2005
9da0e4d5
PB
2006 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2007 slots = __kvm_memslots(kvm, i);
2008 kvm_for_each_memslot(memslot, slots) {
2009 unsigned long hva_start, hva_end;
2010 gfn_t gfn_start, gfn_end;
e930bffe 2011
9da0e4d5
PB
2012 hva_start = max(start, memslot->userspace_addr);
2013 hva_end = min(end, memslot->userspace_addr +
2014 (memslot->npages << PAGE_SHIFT));
2015 if (hva_start >= hva_end)
2016 continue;
2017 /*
2018 * {gfn(page) | page intersects with [hva_start, hva_end)} =
2019 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2020 */
2021 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2022 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2023
2024 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2025 PT_MAX_HUGEPAGE_LEVEL,
2026 gfn_start, gfn_end - 1,
2027 &iterator)
2028 ret |= handler(kvm, iterator.rmap, memslot,
2029 iterator.gfn, iterator.level, data);
2030 }
e930bffe
AA
2031 }
2032
f395302e 2033 return ret;
e930bffe
AA
2034}
2035
84504ef3
TY
2036static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2037 unsigned long data,
018aabb5
TY
2038 int (*handler)(struct kvm *kvm,
2039 struct kvm_rmap_head *rmap_head,
048212d0 2040 struct kvm_memory_slot *slot,
8a9522d2 2041 gfn_t gfn, int level,
84504ef3
TY
2042 unsigned long data))
2043{
2044 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
2045}
2046
b3ae2096
TY
2047int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
2048{
2049 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2050}
2051
748c0e31 2052int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 2053{
0cf853c5 2054 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
2055}
2056
018aabb5 2057static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
2058 struct kvm_memory_slot *slot, gfn_t gfn, int level,
2059 unsigned long data)
e930bffe 2060{
1e3f42f0 2061 u64 *sptep;
79f702a6 2062 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
2063 int young = 0;
2064
f160c7b7
JS
2065 for_each_rmap_spte(rmap_head, &iter, sptep)
2066 young |= mmu_spte_age(sptep);
0d536790 2067
8a9522d2 2068 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
2069 return young;
2070}
2071
018aabb5 2072static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
2073 struct kvm_memory_slot *slot, gfn_t gfn,
2074 int level, unsigned long data)
8ee53820 2075{
1e3f42f0
TY
2076 u64 *sptep;
2077 struct rmap_iterator iter;
8ee53820 2078
83ef6c81
JS
2079 for_each_rmap_spte(rmap_head, &iter, sptep)
2080 if (is_accessed_spte(*sptep))
2081 return 1;
83ef6c81 2082 return 0;
8ee53820
AA
2083}
2084
53a27b39
MT
2085#define RMAP_RECYCLE_THRESHOLD 1000
2086
852e3c19 2087static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 2088{
018aabb5 2089 struct kvm_rmap_head *rmap_head;
852e3c19
JR
2090 struct kvm_mmu_page *sp;
2091
2092 sp = page_header(__pa(spte));
53a27b39 2093
018aabb5 2094 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 2095
018aabb5 2096 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
2097 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2098 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
2099}
2100
57128468 2101int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2102{
57128468 2103 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2104}
2105
8ee53820
AA
2106int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2107{
2108 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2109}
2110
d6c69ee9 2111#ifdef MMU_DEBUG
47ad8e68 2112static int is_empty_shadow_page(u64 *spt)
6aa8b732 2113{
139bdb2d
AK
2114 u64 *pos;
2115 u64 *end;
2116
47ad8e68 2117 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2118 if (is_shadow_present_pte(*pos)) {
b8688d51 2119 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2120 pos, *pos);
6aa8b732 2121 return 0;
139bdb2d 2122 }
6aa8b732
AK
2123 return 1;
2124}
d6c69ee9 2125#endif
6aa8b732 2126
45221ab6
DH
2127/*
2128 * This value is the sum of all of the kvm instances's
2129 * kvm->arch.n_used_mmu_pages values. We need a global,
2130 * aggregate version in order to make the slab shrinker
2131 * faster
2132 */
bc8a3d89 2133static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2134{
2135 kvm->arch.n_used_mmu_pages += nr;
2136 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2137}
2138
834be0d8 2139static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2140{
fa4a2c08 2141 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2142 hlist_del(&sp->hash_link);
bd4c86ea
XG
2143 list_del(&sp->link);
2144 free_page((unsigned long)sp->spt);
834be0d8
GN
2145 if (!sp->role.direct)
2146 free_page((unsigned long)sp->gfns);
e8ad9a70 2147 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2148}
2149
cea0f0e7
AK
2150static unsigned kvm_page_table_hashfn(gfn_t gfn)
2151{
114df303 2152 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2153}
2154
714b93da 2155static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2156 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2157{
cea0f0e7
AK
2158 if (!parent_pte)
2159 return;
cea0f0e7 2160
67052b35 2161 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2162}
2163
4db35314 2164static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2165 u64 *parent_pte)
2166{
8daf3462 2167 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2168}
2169
bcdd9a93
XG
2170static void drop_parent_pte(struct kvm_mmu_page *sp,
2171 u64 *parent_pte)
2172{
2173 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2174 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2175}
2176
47005792 2177static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2178{
67052b35 2179 struct kvm_mmu_page *sp;
7ddca7e4 2180
80feb89a
TY
2181 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2182 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2183 if (!direct)
80feb89a 2184 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2185 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
2186
2187 /*
2188 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2189 * depends on valid pages being added to the head of the list. See
2190 * comments in kvm_zap_obsolete_pages().
2191 */
ca333add 2192 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 2193 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2194 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2195 return sp;
ad8cfbe3
MT
2196}
2197
67052b35 2198static void mark_unsync(u64 *spte);
1047df1f 2199static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2200{
74c4e63a
TY
2201 u64 *sptep;
2202 struct rmap_iterator iter;
2203
2204 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2205 mark_unsync(sptep);
2206 }
0074ff63
MT
2207}
2208
67052b35 2209static void mark_unsync(u64 *spte)
0074ff63 2210{
67052b35 2211 struct kvm_mmu_page *sp;
1047df1f 2212 unsigned int index;
0074ff63 2213
67052b35 2214 sp = page_header(__pa(spte));
1047df1f
XG
2215 index = spte - sp->spt;
2216 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2217 return;
1047df1f 2218 if (sp->unsync_children++)
0074ff63 2219 return;
1047df1f 2220 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2221}
2222
e8bc217a 2223static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2224 struct kvm_mmu_page *sp)
e8bc217a 2225{
1f50f1b3 2226 return 0;
e8bc217a
MT
2227}
2228
7eb77e9f 2229static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2230{
2231}
2232
0f53b5b1
XG
2233static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2234 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2235 const void *pte)
0f53b5b1
XG
2236{
2237 WARN_ON(1);
2238}
2239
60c8aec6
MT
2240#define KVM_PAGE_ARRAY_NR 16
2241
2242struct kvm_mmu_pages {
2243 struct mmu_page_and_offset {
2244 struct kvm_mmu_page *sp;
2245 unsigned int idx;
2246 } page[KVM_PAGE_ARRAY_NR];
2247 unsigned int nr;
2248};
2249
cded19f3
HE
2250static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2251 int idx)
4731d4c7 2252{
60c8aec6 2253 int i;
4731d4c7 2254
60c8aec6
MT
2255 if (sp->unsync)
2256 for (i=0; i < pvec->nr; i++)
2257 if (pvec->page[i].sp == sp)
2258 return 0;
2259
2260 pvec->page[pvec->nr].sp = sp;
2261 pvec->page[pvec->nr].idx = idx;
2262 pvec->nr++;
2263 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2264}
2265
fd951457
TY
2266static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2267{
2268 --sp->unsync_children;
2269 WARN_ON((int)sp->unsync_children < 0);
2270 __clear_bit(idx, sp->unsync_child_bitmap);
2271}
2272
60c8aec6
MT
2273static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2274 struct kvm_mmu_pages *pvec)
2275{
2276 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2277
37178b8b 2278 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2279 struct kvm_mmu_page *child;
4731d4c7
MT
2280 u64 ent = sp->spt[i];
2281
fd951457
TY
2282 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2283 clear_unsync_child_bit(sp, i);
2284 continue;
2285 }
7a8f1a74
XG
2286
2287 child = page_header(ent & PT64_BASE_ADDR_MASK);
2288
2289 if (child->unsync_children) {
2290 if (mmu_pages_add(pvec, child, i))
2291 return -ENOSPC;
2292
2293 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2294 if (!ret) {
2295 clear_unsync_child_bit(sp, i);
2296 continue;
2297 } else if (ret > 0) {
7a8f1a74 2298 nr_unsync_leaf += ret;
fd951457 2299 } else
7a8f1a74
XG
2300 return ret;
2301 } else if (child->unsync) {
2302 nr_unsync_leaf++;
2303 if (mmu_pages_add(pvec, child, i))
2304 return -ENOSPC;
2305 } else
fd951457 2306 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2307 }
2308
60c8aec6
MT
2309 return nr_unsync_leaf;
2310}
2311
e23d3fef
XG
2312#define INVALID_INDEX (-1)
2313
60c8aec6
MT
2314static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2315 struct kvm_mmu_pages *pvec)
2316{
0a47cd85 2317 pvec->nr = 0;
60c8aec6
MT
2318 if (!sp->unsync_children)
2319 return 0;
2320
e23d3fef 2321 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2322 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2323}
2324
4731d4c7
MT
2325static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2326{
2327 WARN_ON(!sp->unsync);
5e1b3ddb 2328 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2329 sp->unsync = 0;
2330 --kvm->stat.mmu_unsync;
2331}
2332
83cdb568
SC
2333static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2334 struct list_head *invalid_list);
7775834a
XG
2335static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2336 struct list_head *invalid_list);
4731d4c7 2337
47c42e6b 2338
f3414bc7 2339#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2340 hlist_for_each_entry(_sp, \
2341 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
fac026da 2342 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 2343 } else
1044b030
TY
2344
2345#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2346 for_each_valid_sp(_kvm, _sp, _gfn) \
2347 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2348
47c42e6b
SC
2349static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2350{
2351 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2352}
2353
f918b443 2354/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2355static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2356 struct list_head *invalid_list)
4731d4c7 2357{
47c42e6b
SC
2358 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2359 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2360 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2361 return false;
4731d4c7
MT
2362 }
2363
1f50f1b3 2364 return true;
4731d4c7
MT
2365}
2366
a2113634
SC
2367static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2368 struct list_head *invalid_list,
2369 bool remote_flush)
2370{
cfd32acf 2371 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2372 return false;
2373
2374 if (!list_empty(invalid_list))
2375 kvm_mmu_commit_zap_page(kvm, invalid_list);
2376 else
2377 kvm_flush_remote_tlbs(kvm);
2378 return true;
2379}
2380
35a70510
PB
2381static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2382 struct list_head *invalid_list,
2383 bool remote_flush, bool local_flush)
1d9dc7e0 2384{
a2113634 2385 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2386 return;
d98ba053 2387
a2113634 2388 if (local_flush)
35a70510 2389 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2390}
2391
e37fa785
XG
2392#ifdef CONFIG_KVM_MMU_AUDIT
2393#include "mmu_audit.c"
2394#else
2395static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2396static void mmu_audit_disable(void) { }
2397#endif
2398
002c5f73
SC
2399static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2400{
fac026da
SC
2401 return sp->role.invalid ||
2402 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
2403}
2404
1f50f1b3 2405static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2406 struct list_head *invalid_list)
1d9dc7e0 2407{
9a43c5d9
PB
2408 kvm_unlink_unsync_page(vcpu->kvm, sp);
2409 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2410}
2411
9f1a122f 2412/* @gfn should be write-protected at the call site */
2a74003a
PB
2413static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2414 struct list_head *invalid_list)
9f1a122f 2415{
9f1a122f 2416 struct kvm_mmu_page *s;
2a74003a 2417 bool ret = false;
9f1a122f 2418
b67bfe0d 2419 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2420 if (!s->unsync)
9f1a122f
XG
2421 continue;
2422
2423 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2424 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2425 }
2426
2a74003a 2427 return ret;
9f1a122f
XG
2428}
2429
60c8aec6 2430struct mmu_page_path {
2a7266a8
YZ
2431 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2432 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2433};
2434
60c8aec6 2435#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2436 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2437 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2438 i = mmu_pages_next(&pvec, &parents, i))
2439
cded19f3
HE
2440static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2441 struct mmu_page_path *parents,
2442 int i)
60c8aec6
MT
2443{
2444 int n;
2445
2446 for (n = i+1; n < pvec->nr; n++) {
2447 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2448 unsigned idx = pvec->page[n].idx;
2449 int level = sp->role.level;
60c8aec6 2450
0a47cd85
PB
2451 parents->idx[level-1] = idx;
2452 if (level == PT_PAGE_TABLE_LEVEL)
2453 break;
60c8aec6 2454
0a47cd85 2455 parents->parent[level-2] = sp;
60c8aec6
MT
2456 }
2457
2458 return n;
2459}
2460
0a47cd85
PB
2461static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2462 struct mmu_page_path *parents)
2463{
2464 struct kvm_mmu_page *sp;
2465 int level;
2466
2467 if (pvec->nr == 0)
2468 return 0;
2469
e23d3fef
XG
2470 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2471
0a47cd85
PB
2472 sp = pvec->page[0].sp;
2473 level = sp->role.level;
2474 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2475
2476 parents->parent[level-2] = sp;
2477
2478 /* Also set up a sentinel. Further entries in pvec are all
2479 * children of sp, so this element is never overwritten.
2480 */
2481 parents->parent[level-1] = NULL;
2482 return mmu_pages_next(pvec, parents, 0);
2483}
2484
cded19f3 2485static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2486{
60c8aec6
MT
2487 struct kvm_mmu_page *sp;
2488 unsigned int level = 0;
2489
2490 do {
2491 unsigned int idx = parents->idx[level];
60c8aec6
MT
2492 sp = parents->parent[level];
2493 if (!sp)
2494 return;
2495
e23d3fef 2496 WARN_ON(idx == INVALID_INDEX);
fd951457 2497 clear_unsync_child_bit(sp, idx);
60c8aec6 2498 level++;
0a47cd85 2499 } while (!sp->unsync_children);
60c8aec6 2500}
4731d4c7 2501
60c8aec6
MT
2502static void mmu_sync_children(struct kvm_vcpu *vcpu,
2503 struct kvm_mmu_page *parent)
2504{
2505 int i;
2506 struct kvm_mmu_page *sp;
2507 struct mmu_page_path parents;
2508 struct kvm_mmu_pages pages;
d98ba053 2509 LIST_HEAD(invalid_list);
50c9e6f3 2510 bool flush = false;
60c8aec6 2511
60c8aec6 2512 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2513 bool protected = false;
b1a36821
MT
2514
2515 for_each_sp(pages, sp, parents, i)
54bf36aa 2516 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2517
50c9e6f3 2518 if (protected) {
b1a36821 2519 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2520 flush = false;
2521 }
b1a36821 2522
60c8aec6 2523 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2524 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2525 mmu_pages_clear_parents(&parents);
2526 }
50c9e6f3
PB
2527 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2528 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2529 cond_resched_lock(&vcpu->kvm->mmu_lock);
2530 flush = false;
2531 }
60c8aec6 2532 }
50c9e6f3
PB
2533
2534 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2535}
2536
a30f47cb
XG
2537static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2538{
e5691a81 2539 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2540}
2541
2542static void clear_sp_write_flooding_count(u64 *spte)
2543{
2544 struct kvm_mmu_page *sp = page_header(__pa(spte));
2545
2546 __clear_sp_write_flooding_count(sp);
2547}
2548
cea0f0e7
AK
2549static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2550 gfn_t gfn,
2551 gva_t gaddr,
2552 unsigned level,
f6e2c02b 2553 int direct,
bb11c6c9 2554 unsigned access)
cea0f0e7
AK
2555{
2556 union kvm_mmu_page_role role;
cea0f0e7 2557 unsigned quadrant;
9f1a122f 2558 struct kvm_mmu_page *sp;
9f1a122f 2559 bool need_sync = false;
2a74003a 2560 bool flush = false;
f3414bc7 2561 int collisions = 0;
2a74003a 2562 LIST_HEAD(invalid_list);
cea0f0e7 2563
36d9594d 2564 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2565 role.level = level;
f6e2c02b 2566 role.direct = direct;
84b0c8c6 2567 if (role.direct)
47c42e6b 2568 role.gpte_is_8_bytes = true;
41074d07 2569 role.access = access;
44dd3ffa
VK
2570 if (!vcpu->arch.mmu->direct_map
2571 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2572 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2573 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2574 role.quadrant = quadrant;
2575 }
f3414bc7
DM
2576 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2577 if (sp->gfn != gfn) {
2578 collisions++;
2579 continue;
2580 }
2581
7ae680eb
XG
2582 if (!need_sync && sp->unsync)
2583 need_sync = true;
4731d4c7 2584
7ae680eb
XG
2585 if (sp->role.word != role.word)
2586 continue;
4731d4c7 2587
2a74003a
PB
2588 if (sp->unsync) {
2589 /* The page is good, but __kvm_sync_page might still end
2590 * up zapping it. If so, break in order to rebuild it.
2591 */
2592 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2593 break;
2594
2595 WARN_ON(!list_empty(&invalid_list));
2596 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2597 }
e02aa901 2598
98bba238 2599 if (sp->unsync_children)
a8eeb04a 2600 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2601
a30f47cb 2602 __clear_sp_write_flooding_count(sp);
7ae680eb 2603 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2604 goto out;
7ae680eb 2605 }
47005792 2606
dfc5aa00 2607 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2608
2609 sp = kvm_mmu_alloc_page(vcpu, direct);
2610
4db35314
AK
2611 sp->gfn = gfn;
2612 sp->role = role;
7ae680eb
XG
2613 hlist_add_head(&sp->hash_link,
2614 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2615 if (!direct) {
56ca57f9
XG
2616 /*
2617 * we should do write protection before syncing pages
2618 * otherwise the content of the synced shadow page may
2619 * be inconsistent with guest page table.
2620 */
2621 account_shadowed(vcpu->kvm, sp);
2622 if (level == PT_PAGE_TABLE_LEVEL &&
2623 rmap_write_protect(vcpu, gfn))
c3134ce2 2624 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2625
9f1a122f 2626 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2627 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2628 }
77492664 2629 clear_page(sp->spt);
f691fe1d 2630 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2631
2632 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2633out:
2634 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2635 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2636 return sp;
cea0f0e7
AK
2637}
2638
7eb77e9f
JS
2639static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2640 struct kvm_vcpu *vcpu, hpa_t root,
2641 u64 addr)
2d11123a
AK
2642{
2643 iterator->addr = addr;
7eb77e9f 2644 iterator->shadow_addr = root;
44dd3ffa 2645 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2646
2a7266a8 2647 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2648 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2649 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2650 --iterator->level;
2651
2d11123a 2652 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2653 /*
2654 * prev_root is currently only used for 64-bit hosts. So only
2655 * the active root_hpa is valid here.
2656 */
44dd3ffa 2657 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2658
2d11123a 2659 iterator->shadow_addr
44dd3ffa 2660 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2661 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2662 --iterator->level;
2663 if (!iterator->shadow_addr)
2664 iterator->level = 0;
2665 }
2666}
2667
7eb77e9f
JS
2668static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2669 struct kvm_vcpu *vcpu, u64 addr)
2670{
44dd3ffa 2671 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2672 addr);
2673}
2674
2d11123a
AK
2675static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2676{
2677 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2678 return false;
4d88954d 2679
2d11123a
AK
2680 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2681 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2682 return true;
2683}
2684
c2a2ac2b
XG
2685static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2686 u64 spte)
2d11123a 2687{
c2a2ac2b 2688 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2689 iterator->level = 0;
2690 return;
2691 }
2692
c2a2ac2b 2693 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2694 --iterator->level;
2695}
2696
c2a2ac2b
XG
2697static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2698{
bb606a9b 2699 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2700}
2701
98bba238
TY
2702static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2703 struct kvm_mmu_page *sp)
32ef26a3
AK
2704{
2705 u64 spte;
2706
ffb128c8 2707 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2708
ffb128c8 2709 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2710 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2711
2712 if (sp_ad_disabled(sp))
6eeb4ef0 2713 spte |= SPTE_AD_DISABLED_MASK;
ac8d57e5
PF
2714 else
2715 spte |= shadow_accessed_mask;
24db2734 2716
1df9f2dc 2717 mmu_spte_set(sptep, spte);
98bba238
TY
2718
2719 mmu_page_add_parent_pte(vcpu, sp, sptep);
2720
2721 if (sp->unsync_children || sp->unsync)
2722 mark_unsync(sptep);
32ef26a3
AK
2723}
2724
a357bd22
AK
2725static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2726 unsigned direct_access)
2727{
2728 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2729 struct kvm_mmu_page *child;
2730
2731 /*
2732 * For the direct sp, if the guest pte's dirty bit
2733 * changed form clean to dirty, it will corrupt the
2734 * sp's access: allow writable in the read-only sp,
2735 * so we should update the spte at this point to get
2736 * a new sp with the correct access.
2737 */
2738 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2739 if (child->role.access == direct_access)
2740 return;
2741
bcdd9a93 2742 drop_parent_pte(child, sptep);
c3134ce2 2743 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2744 }
2745}
2746
505aef8f 2747static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2748 u64 *spte)
2749{
2750 u64 pte;
2751 struct kvm_mmu_page *child;
2752
2753 pte = *spte;
2754 if (is_shadow_present_pte(pte)) {
505aef8f 2755 if (is_last_spte(pte, sp->role.level)) {
c3707958 2756 drop_spte(kvm, spte);
505aef8f
XG
2757 if (is_large_pte(pte))
2758 --kvm->stat.lpages;
2759 } else {
38e3b2b2 2760 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2761 drop_parent_pte(child, spte);
38e3b2b2 2762 }
505aef8f
XG
2763 return true;
2764 }
2765
2766 if (is_mmio_spte(pte))
ce88decf 2767 mmu_spte_clear_no_track(spte);
c3707958 2768
505aef8f 2769 return false;
38e3b2b2
XG
2770}
2771
90cb0529 2772static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2773 struct kvm_mmu_page *sp)
a436036b 2774{
697fe2e2 2775 unsigned i;
697fe2e2 2776
38e3b2b2
XG
2777 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2778 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2779}
2780
31aa2b44 2781static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2782{
1e3f42f0
TY
2783 u64 *sptep;
2784 struct rmap_iterator iter;
a436036b 2785
018aabb5 2786 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2787 drop_parent_pte(sp, sptep);
31aa2b44
AK
2788}
2789
60c8aec6 2790static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2791 struct kvm_mmu_page *parent,
2792 struct list_head *invalid_list)
4731d4c7 2793{
60c8aec6
MT
2794 int i, zapped = 0;
2795 struct mmu_page_path parents;
2796 struct kvm_mmu_pages pages;
4731d4c7 2797
60c8aec6 2798 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2799 return 0;
60c8aec6 2800
60c8aec6
MT
2801 while (mmu_unsync_walk(parent, &pages)) {
2802 struct kvm_mmu_page *sp;
2803
2804 for_each_sp(pages, sp, parents, i) {
7775834a 2805 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2806 mmu_pages_clear_parents(&parents);
77662e00 2807 zapped++;
60c8aec6 2808 }
60c8aec6
MT
2809 }
2810
2811 return zapped;
4731d4c7
MT
2812}
2813
83cdb568
SC
2814static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2815 struct kvm_mmu_page *sp,
2816 struct list_head *invalid_list,
2817 int *nr_zapped)
31aa2b44 2818{
83cdb568 2819 bool list_unstable;
f691fe1d 2820
7775834a 2821 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2822 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2823 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2824 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2825 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2826
83cdb568
SC
2827 /* Zapping children means active_mmu_pages has become unstable. */
2828 list_unstable = *nr_zapped;
2829
f6e2c02b 2830 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2831 unaccount_shadowed(kvm, sp);
5304b8d3 2832
4731d4c7
MT
2833 if (sp->unsync)
2834 kvm_unlink_unsync_page(kvm, sp);
4db35314 2835 if (!sp->root_count) {
54a4f023 2836 /* Count self */
83cdb568 2837 (*nr_zapped)++;
7775834a 2838 list_move(&sp->link, invalid_list);
aa6bd187 2839 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2840 } else {
5b5c6a5a 2841 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2842
10605204
SC
2843 /*
2844 * Obsolete pages cannot be used on any vCPUs, see the comment
2845 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2846 * treats invalid shadow pages as being obsolete.
2847 */
2848 if (!is_obsolete_sp(kvm, sp))
05988d72 2849 kvm_reload_remote_mmus(kvm);
2e53d63a 2850 }
7775834a 2851
b8e8c830
PB
2852 if (sp->lpage_disallowed)
2853 unaccount_huge_nx_page(kvm, sp);
2854
7775834a 2855 sp->role.invalid = 1;
83cdb568
SC
2856 return list_unstable;
2857}
2858
2859static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2860 struct list_head *invalid_list)
2861{
2862 int nr_zapped;
2863
2864 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2865 return nr_zapped;
a436036b
AK
2866}
2867
7775834a
XG
2868static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2869 struct list_head *invalid_list)
2870{
945315b9 2871 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2872
2873 if (list_empty(invalid_list))
2874 return;
2875
c142786c 2876 /*
9753f529
LT
2877 * We need to make sure everyone sees our modifications to
2878 * the page tables and see changes to vcpu->mode here. The barrier
2879 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2880 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2881 *
2882 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2883 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2884 */
2885 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2886
945315b9 2887 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2888 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2889 kvm_mmu_free_page(sp);
945315b9 2890 }
7775834a
XG
2891}
2892
5da59607
TY
2893static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2894 struct list_head *invalid_list)
2895{
2896 struct kvm_mmu_page *sp;
2897
2898 if (list_empty(&kvm->arch.active_mmu_pages))
2899 return false;
2900
d74c0e6b
GT
2901 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2902 struct kvm_mmu_page, link);
42bcbebf 2903 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2904}
2905
82ce2c96
IE
2906/*
2907 * Changing the number of mmu pages allocated to the vm
49d5ca26 2908 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2909 */
bc8a3d89 2910void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2911{
d98ba053 2912 LIST_HEAD(invalid_list);
82ce2c96 2913
b34cb590
TY
2914 spin_lock(&kvm->mmu_lock);
2915
49d5ca26 2916 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2917 /* Need to free some mmu pages to achieve the goal. */
2918 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2919 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2920 break;
82ce2c96 2921
aa6bd187 2922 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2923 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2924 }
82ce2c96 2925
49d5ca26 2926 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2927
2928 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2929}
2930
1cb3f3ae 2931int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2932{
4db35314 2933 struct kvm_mmu_page *sp;
d98ba053 2934 LIST_HEAD(invalid_list);
a436036b
AK
2935 int r;
2936
9ad17b10 2937 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2938 r = 0;
1cb3f3ae 2939 spin_lock(&kvm->mmu_lock);
b67bfe0d 2940 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2941 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2942 sp->role.word);
2943 r = 1;
f41d335a 2944 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2945 }
d98ba053 2946 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2947 spin_unlock(&kvm->mmu_lock);
2948
a436036b 2949 return r;
cea0f0e7 2950}
1cb3f3ae 2951EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2952
5c520e90 2953static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2954{
2955 trace_kvm_mmu_unsync_page(sp);
2956 ++vcpu->kvm->stat.mmu_unsync;
2957 sp->unsync = 1;
2958
2959 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2960}
2961
3d0c27ad
XG
2962static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2963 bool can_unsync)
4731d4c7 2964{
5c520e90 2965 struct kvm_mmu_page *sp;
4731d4c7 2966
3d0c27ad
XG
2967 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2968 return true;
9cf5cf5a 2969
5c520e90 2970 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2971 if (!can_unsync)
3d0c27ad 2972 return true;
36a2e677 2973
5c520e90
XG
2974 if (sp->unsync)
2975 continue;
9cf5cf5a 2976
5c520e90
XG
2977 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2978 kvm_unsync_page(vcpu, sp);
4731d4c7 2979 }
3d0c27ad 2980
578e1c4d
JS
2981 /*
2982 * We need to ensure that the marking of unsync pages is visible
2983 * before the SPTE is updated to allow writes because
2984 * kvm_mmu_sync_roots() checks the unsync flags without holding
2985 * the MMU lock and so can race with this. If the SPTE was updated
2986 * before the page had been marked as unsync-ed, something like the
2987 * following could happen:
2988 *
2989 * CPU 1 CPU 2
2990 * ---------------------------------------------------------------------
2991 * 1.2 Host updates SPTE
2992 * to be writable
2993 * 2.1 Guest writes a GPTE for GVA X.
2994 * (GPTE being in the guest page table shadowed
2995 * by the SP from CPU 1.)
2996 * This reads SPTE during the page table walk.
2997 * Since SPTE.W is read as 1, there is no
2998 * fault.
2999 *
3000 * 2.2 Guest issues TLB flush.
3001 * That causes a VM Exit.
3002 *
3003 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
3004 * Since it is false, so it just returns.
3005 *
3006 * 2.4 Guest accesses GVA X.
3007 * Since the mapping in the SP was not updated,
3008 * so the old mapping for GVA X incorrectly
3009 * gets used.
3010 * 1.1 Host marks SP
3011 * as unsync
3012 * (sp->unsync = true)
3013 *
3014 * The write barrier below ensures that 1.1 happens before 1.2 and thus
3015 * the situation in 2.4 does not arise. The implicit barrier in 2.2
3016 * pairs with this write barrier.
3017 */
3018 smp_wmb();
3019
3d0c27ad 3020 return false;
4731d4c7
MT
3021}
3022
ba049e93 3023static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
3024{
3025 if (pfn_valid(pfn))
aa2e063a
HZ
3026 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3027 /*
3028 * Some reserved pages, such as those from NVDIMM
3029 * DAX devices, are not for MMIO, and can be mapped
3030 * with cached memory type for better performance.
3031 * However, the above check misconceives those pages
3032 * as MMIO, and results in KVM mapping them with UC
3033 * memory type, which would hurt the performance.
3034 * Therefore, we check the host memory type in addition
3035 * and only treat UC/UC-/WC pages as MMIO.
3036 */
3037 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 3038
0c55671f
KA
3039 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3040 pfn_to_hpa(pfn + 1) - 1,
3041 E820_TYPE_RAM);
d1fe9219
PB
3042}
3043
5ce4786f
JS
3044/* Bits which may be returned by set_spte() */
3045#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
3046#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
3047
d555c333 3048static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 3049 unsigned pte_access, int level,
ba049e93 3050 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 3051 bool can_unsync, bool host_writable)
1c4f1fd6 3052{
ffb128c8 3053 u64 spte = 0;
1e73f9dd 3054 int ret = 0;
ac8d57e5 3055 struct kvm_mmu_page *sp;
64d4d521 3056
54bf36aa 3057 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
3058 return 0;
3059
ac8d57e5
PF
3060 sp = page_header(__pa(sptep));
3061 if (sp_ad_disabled(sp))
6eeb4ef0 3062 spte |= SPTE_AD_DISABLED_MASK;
1f4e5fc8
PB
3063 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3064 spte |= SPTE_AD_WRPROT_ONLY_MASK;
ac8d57e5 3065
d95c5568
BD
3066 /*
3067 * For the EPT case, shadow_present_mask is 0 if hardware
3068 * supports exec-only page table entries. In that case,
3069 * ACC_USER_MASK and shadow_user_mask are used to represent
3070 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3071 */
ffb128c8 3072 spte |= shadow_present_mask;
947da538 3073 if (!speculative)
ac8d57e5 3074 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 3075
b8e8c830
PB
3076 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3077 is_nx_huge_page_enabled()) {
3078 pte_access &= ~ACC_EXEC_MASK;
3079 }
3080
7b52345e
SY
3081 if (pte_access & ACC_EXEC_MASK)
3082 spte |= shadow_x_mask;
3083 else
3084 spte |= shadow_nx_mask;
49fde340 3085
1c4f1fd6 3086 if (pte_access & ACC_USER_MASK)
7b52345e 3087 spte |= shadow_user_mask;
49fde340 3088
852e3c19 3089 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 3090 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 3091 if (tdp_enabled)
4b12f0de 3092 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 3093 kvm_is_mmio_pfn(pfn));
1c4f1fd6 3094
9bdbba13 3095 if (host_writable)
1403283a 3096 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
3097 else
3098 pte_access &= ~ACC_WRITE_MASK;
1403283a 3099
daaf216c
TL
3100 if (!kvm_is_mmio_pfn(pfn))
3101 spte |= shadow_me_mask;
3102
35149e21 3103 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 3104
c2288505 3105 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 3106
c2193463 3107 /*
7751babd
XG
3108 * Other vcpu creates new sp in the window between
3109 * mapping_level() and acquiring mmu-lock. We can
3110 * allow guest to retry the access, the mapping can
3111 * be fixed if guest refault.
c2193463 3112 */
852e3c19 3113 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 3114 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 3115 goto done;
38187c83 3116
49fde340 3117 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3118
ecc5589f
MT
3119 /*
3120 * Optimization: for pte sync, if spte was writable the hash
3121 * lookup is unnecessary (and expensive). Write protection
3122 * is responsibility of mmu_get_page / kvm_sync_page.
3123 * Same reasoning can be applied to dirty page accounting.
3124 */
8dae4445 3125 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3126 goto set_pte;
3127
4731d4c7 3128 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3129 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3130 __func__, gfn);
5ce4786f 3131 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3132 pte_access &= ~ACC_WRITE_MASK;
49fde340 3133 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3134 }
3135 }
3136
9b51a630 3137 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3138 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3139 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3140 }
1c4f1fd6 3141
f160c7b7
JS
3142 if (speculative)
3143 spte = mark_spte_for_access_track(spte);
3144
38187c83 3145set_pte:
6e7d0354 3146 if (mmu_spte_update(sptep, spte))
5ce4786f 3147 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 3148done:
1e73f9dd
MT
3149 return ret;
3150}
3151
9b8ebbdb
PB
3152static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3153 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3154 bool speculative, bool host_writable)
1e73f9dd
MT
3155{
3156 int was_rmapped = 0;
53a27b39 3157 int rmap_count;
5ce4786f 3158 int set_spte_ret;
9b8ebbdb 3159 int ret = RET_PF_RETRY;
c2a4eadf 3160 bool flush = false;
1e73f9dd 3161
f7616203
XG
3162 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3163 *sptep, write_fault, gfn);
1e73f9dd 3164
afd28fe1 3165 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3166 /*
3167 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3168 * the parent of the now unreachable PTE.
3169 */
852e3c19
JR
3170 if (level > PT_PAGE_TABLE_LEVEL &&
3171 !is_large_pte(*sptep)) {
1e73f9dd 3172 struct kvm_mmu_page *child;
d555c333 3173 u64 pte = *sptep;
1e73f9dd
MT
3174
3175 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3176 drop_parent_pte(child, sptep);
c2a4eadf 3177 flush = true;
d555c333 3178 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3179 pgprintk("hfn old %llx new %llx\n",
d555c333 3180 spte_to_pfn(*sptep), pfn);
c3707958 3181 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3182 flush = true;
6bed6b9e
JR
3183 } else
3184 was_rmapped = 1;
1e73f9dd 3185 }
852e3c19 3186
5ce4786f
JS
3187 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3188 speculative, true, host_writable);
3189 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3190 if (write_fault)
9b8ebbdb 3191 ret = RET_PF_EMULATE;
77c3913b 3192 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3193 }
c3134ce2 3194
c2a4eadf 3195 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3196 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3197 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3198
029499b4 3199 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3200 ret = RET_PF_EMULATE;
ce88decf 3201
d555c333 3202 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3203 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3204 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3205 ++vcpu->kvm->stat.lpages;
3206
ffb61bb3 3207 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3208 if (!was_rmapped) {
3209 rmap_count = rmap_add(vcpu, sptep, gfn);
3210 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3211 rmap_recycle(vcpu, sptep, gfn);
3212 }
1c4f1fd6 3213 }
cb9aaa30 3214
9b8ebbdb 3215 return ret;
1c4f1fd6
AK
3216}
3217
ba049e93 3218static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3219 bool no_dirty_log)
3220{
3221 struct kvm_memory_slot *slot;
957ed9ef 3222
5d163b1c 3223 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3224 if (!slot)
6c8ee57b 3225 return KVM_PFN_ERR_FAULT;
957ed9ef 3226
037d92dc 3227 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3228}
3229
3230static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3231 struct kvm_mmu_page *sp,
3232 u64 *start, u64 *end)
3233{
3234 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3235 struct kvm_memory_slot *slot;
957ed9ef
XG
3236 unsigned access = sp->role.access;
3237 int i, ret;
3238 gfn_t gfn;
3239
3240 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3241 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3242 if (!slot)
957ed9ef
XG
3243 return -1;
3244
d9ef13c2 3245 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3246 if (ret <= 0)
3247 return -1;
3248
43fdcda9 3249 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3250 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3251 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3252 put_page(pages[i]);
3253 }
957ed9ef
XG
3254
3255 return 0;
3256}
3257
3258static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3259 struct kvm_mmu_page *sp, u64 *sptep)
3260{
3261 u64 *spte, *start = NULL;
3262 int i;
3263
3264 WARN_ON(!sp->role.direct);
3265
3266 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3267 spte = sp->spt + i;
3268
3269 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3270 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3271 if (!start)
3272 continue;
3273 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3274 break;
3275 start = NULL;
3276 } else if (!start)
3277 start = spte;
3278 }
3279}
3280
3281static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3282{
3283 struct kvm_mmu_page *sp;
3284
ac8d57e5
PF
3285 sp = page_header(__pa(sptep));
3286
957ed9ef 3287 /*
ac8d57e5
PF
3288 * Without accessed bits, there's no way to distinguish between
3289 * actually accessed translations and prefetched, so disable pte
3290 * prefetch if accessed bits aren't available.
957ed9ef 3291 */
ac8d57e5 3292 if (sp_ad_disabled(sp))
957ed9ef
XG
3293 return;
3294
957ed9ef
XG
3295 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3296 return;
3297
3298 __direct_pte_prefetch(vcpu, sp, sptep);
3299}
3300
b8e8c830
PB
3301static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3302 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3303{
3304 int level = *levelp;
3305 u64 spte = *it.sptep;
3306
3307 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3308 is_nx_huge_page_enabled() &&
3309 is_shadow_present_pte(spte) &&
3310 !is_large_pte(spte)) {
3311 /*
3312 * A small SPTE exists for this pfn, but FNAME(fetch)
3313 * and __direct_map would like to create a large PTE
3314 * instead: just force them to go down another level,
3315 * patching back for them into pfn the next 9 bits of
3316 * the address.
3317 */
3318 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3319 *pfnp |= gfn & page_mask;
3320 (*levelp)--;
3321 }
3322}
3323
3fcf2d1b
PB
3324static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3325 int map_writable, int level, kvm_pfn_t pfn,
b8e8c830 3326 bool prefault, bool lpage_disallowed)
140754bc 3327{
3fcf2d1b 3328 struct kvm_shadow_walk_iterator it;
140754bc 3329 struct kvm_mmu_page *sp;
3fcf2d1b
PB
3330 int ret;
3331 gfn_t gfn = gpa >> PAGE_SHIFT;
3332 gfn_t base_gfn = gfn;
6aa8b732 3333
44dd3ffa 3334 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3fcf2d1b 3335 return RET_PF_RETRY;
989c6b34 3336
335e192a 3337 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 3338 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
3339 /*
3340 * We cannot overwrite existing page tables with an NX
3341 * large page, as the leaf could be executable.
3342 */
3343 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3344
3fcf2d1b
PB
3345 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3346 if (it.level == level)
9f652d21 3347 break;
6aa8b732 3348
3fcf2d1b
PB
3349 drop_large_spte(vcpu, it.sptep);
3350 if (!is_shadow_present_pte(*it.sptep)) {
3351 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3352 it.level - 1, true, ACC_ALL);
c9fa0b3b 3353
3fcf2d1b 3354 link_shadow_page(vcpu, it.sptep, sp);
b8e8c830
PB
3355 if (lpage_disallowed)
3356 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
3357 }
3358 }
3fcf2d1b
PB
3359
3360 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3361 write, level, base_gfn, pfn, prefault,
3362 map_writable);
3363 direct_pte_prefetch(vcpu, it.sptep);
3364 ++vcpu->stat.pf_fixed;
3365 return ret;
6aa8b732
AK
3366}
3367
77db5cbd 3368static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3369{
585a8b9b 3370 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3371}
3372
ba049e93 3373static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3374{
4d8b81ab
XG
3375 /*
3376 * Do not cache the mmio info caused by writing the readonly gfn
3377 * into the spte otherwise read access on readonly gfn also can
3378 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3379 */
3380 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3381 return RET_PF_EMULATE;
4d8b81ab 3382
e6c1502b 3383 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3384 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3385 return RET_PF_RETRY;
d7c55201 3386 }
edba23e5 3387
2c151b25 3388 return -EFAULT;
bf998156
HY
3389}
3390
936a5fe6 3391static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
d679b326 3392 gfn_t gfn, kvm_pfn_t *pfnp,
ba049e93 3393 int *levelp)
936a5fe6 3394{
ba049e93 3395 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3396 int level = *levelp;
3397
3398 /*
3399 * Check if it's a transparent hugepage. If this would be an
3400 * hugetlbfs page, level wouldn't be set to
3401 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3402 * here.
3403 */
bf4bea8e 3404 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
a78986aa 3405 !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
127393fb 3406 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3407 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3408 unsigned long mask;
3409 /*
3410 * mmu_notifier_retry was successful and we hold the
3411 * mmu_lock here, so the pmd can't become splitting
3412 * from under us, and in turn
3413 * __split_huge_page_refcount() can't run from under
3414 * us and we can safely transfer the refcount from
3415 * PG_tail to PG_head as we switch the pfn to tail to
3416 * head.
3417 */
3418 *levelp = level = PT_DIRECTORY_LEVEL;
3419 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3420 VM_BUG_ON((gfn & mask) != (pfn & mask));
3421 if (pfn & mask) {
936a5fe6
AA
3422 kvm_release_pfn_clean(pfn);
3423 pfn &= ~mask;
c3586667 3424 kvm_get_pfn(pfn);
936a5fe6
AA
3425 *pfnp = pfn;
3426 }
3427 }
3428}
3429
d7c55201 3430static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3431 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3432{
d7c55201 3433 /* The pfn is invalid, report the error! */
81c52c56 3434 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3435 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3436 return true;
d7c55201
XG
3437 }
3438
ce88decf 3439 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
3440 vcpu_cache_mmio_info(vcpu, gva, gfn,
3441 access & shadow_mmio_access_mask);
d7c55201 3442
798e88b3 3443 return false;
d7c55201
XG
3444}
3445
e5552fd2 3446static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3447{
1c118b82
XG
3448 /*
3449 * Do not fix the mmio spte with invalid generation number which
3450 * need to be updated by slow page fault path.
3451 */
3452 if (unlikely(error_code & PFERR_RSVD_MASK))
3453 return false;
3454
f160c7b7
JS
3455 /* See if the page fault is due to an NX violation */
3456 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3457 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3458 return false;
3459
c7ba5b48 3460 /*
f160c7b7
JS
3461 * #PF can be fast if:
3462 * 1. The shadow page table entry is not present, which could mean that
3463 * the fault is potentially caused by access tracking (if enabled).
3464 * 2. The shadow page table entry is present and the fault
3465 * is caused by write-protect, that means we just need change the W
3466 * bit of the spte which can be done out of mmu-lock.
3467 *
3468 * However, if access tracking is disabled we know that a non-present
3469 * page must be a genuine page fault where we have to create a new SPTE.
3470 * So, if access tracking is disabled, we return true only for write
3471 * accesses to a present page.
c7ba5b48 3472 */
c7ba5b48 3473
f160c7b7
JS
3474 return shadow_acc_track_mask != 0 ||
3475 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3476 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3477}
3478
97dceba2
JS
3479/*
3480 * Returns true if the SPTE was fixed successfully. Otherwise,
3481 * someone else modified the SPTE from its original value.
3482 */
c7ba5b48 3483static bool
92a476cb 3484fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3485 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3486{
c7ba5b48
XG
3487 gfn_t gfn;
3488
3489 WARN_ON(!sp->role.direct);
3490
9b51a630
KH
3491 /*
3492 * Theoretically we could also set dirty bit (and flush TLB) here in
3493 * order to eliminate unnecessary PML logging. See comments in
3494 * set_spte. But fast_page_fault is very unlikely to happen with PML
3495 * enabled, so we do not do this. This might result in the same GPA
3496 * to be logged in PML buffer again when the write really happens, and
3497 * eventually to be called by mark_page_dirty twice. But it's also no
3498 * harm. This also avoids the TLB flush needed after setting dirty bit
3499 * so non-PML cases won't be impacted.
3500 *
3501 * Compare with set_spte where instead shadow_dirty_mask is set.
3502 */
f160c7b7 3503 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3504 return false;
3505
d3e328f2 3506 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3507 /*
3508 * The gfn of direct spte is stable since it is
3509 * calculated by sp->gfn.
3510 */
3511 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3512 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3513 }
c7ba5b48
XG
3514
3515 return true;
3516}
3517
d3e328f2
JS
3518static bool is_access_allowed(u32 fault_err_code, u64 spte)
3519{
3520 if (fault_err_code & PFERR_FETCH_MASK)
3521 return is_executable_pte(spte);
3522
3523 if (fault_err_code & PFERR_WRITE_MASK)
3524 return is_writable_pte(spte);
3525
3526 /* Fault was on Read access */
3527 return spte & PT_PRESENT_MASK;
3528}
3529
c7ba5b48
XG
3530/*
3531 * Return value:
3532 * - true: let the vcpu to access on the same address again.
3533 * - false: let the real page fault path to fix it.
3534 */
3535static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3536 u32 error_code)
3537{
3538 struct kvm_shadow_walk_iterator iterator;
92a476cb 3539 struct kvm_mmu_page *sp;
97dceba2 3540 bool fault_handled = false;
c7ba5b48 3541 u64 spte = 0ull;
97dceba2 3542 uint retry_count = 0;
c7ba5b48 3543
44dd3ffa 3544 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3545 return false;
3546
e5552fd2 3547 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3548 return false;
3549
3550 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3551
97dceba2 3552 do {
d3e328f2 3553 u64 new_spte;
c7ba5b48 3554
d162f30a
JS
3555 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3556 if (!is_shadow_present_pte(spte) ||
3557 iterator.level < level)
3558 break;
3559
97dceba2
JS
3560 sp = page_header(__pa(iterator.sptep));
3561 if (!is_last_spte(spte, sp->role.level))
3562 break;
c7ba5b48 3563
97dceba2 3564 /*
f160c7b7
JS
3565 * Check whether the memory access that caused the fault would
3566 * still cause it if it were to be performed right now. If not,
3567 * then this is a spurious fault caused by TLB lazily flushed,
3568 * or some other CPU has already fixed the PTE after the
3569 * current CPU took the fault.
97dceba2
JS
3570 *
3571 * Need not check the access of upper level table entries since
3572 * they are always ACC_ALL.
3573 */
d3e328f2
JS
3574 if (is_access_allowed(error_code, spte)) {
3575 fault_handled = true;
3576 break;
3577 }
f160c7b7 3578
d3e328f2
JS
3579 new_spte = spte;
3580
3581 if (is_access_track_spte(spte))
3582 new_spte = restore_acc_track_spte(new_spte);
3583
3584 /*
3585 * Currently, to simplify the code, write-protection can
3586 * be removed in the fast path only if the SPTE was
3587 * write-protected for dirty-logging or access tracking.
3588 */
3589 if ((error_code & PFERR_WRITE_MASK) &&
3590 spte_can_locklessly_be_made_writable(spte))
3591 {
3592 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3593
3594 /*
d3e328f2
JS
3595 * Do not fix write-permission on the large spte. Since
3596 * we only dirty the first page into the dirty-bitmap in
3597 * fast_pf_fix_direct_spte(), other pages are missed
3598 * if its slot has dirty logging enabled.
3599 *
3600 * Instead, we let the slow page fault path create a
3601 * normal spte to fix the access.
3602 *
3603 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3604 */
d3e328f2 3605 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3606 break;
97dceba2 3607 }
c7ba5b48 3608
f160c7b7 3609 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3610 if (new_spte == spte ||
3611 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3612 break;
3613
3614 /*
3615 * Currently, fast page fault only works for direct mapping
3616 * since the gfn is not stable for indirect shadow page. See
2f5947df 3617 * Documentation/virt/kvm/locking.txt to get more detail.
97dceba2
JS
3618 */
3619 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3620 iterator.sptep, spte,
d3e328f2 3621 new_spte);
97dceba2
JS
3622 if (fault_handled)
3623 break;
3624
3625 if (++retry_count > 4) {
3626 printk_once(KERN_WARNING
3627 "kvm: Fast #PF retrying more than 4 times.\n");
3628 break;
3629 }
3630
97dceba2 3631 } while (true);
c126d94f 3632
a72faf25 3633 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3634 spte, fault_handled);
c7ba5b48
XG
3635 walk_shadow_page_lockless_end(vcpu);
3636
97dceba2 3637 return fault_handled;
c7ba5b48
XG
3638}
3639
78b2c54a 3640static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3641 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3642static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3643
c7ba5b48
XG
3644static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3645 gfn_t gfn, bool prefault)
10589a46
MT
3646{
3647 int r;
852e3c19 3648 int level;
b8e8c830 3649 bool force_pt_level;
ba049e93 3650 kvm_pfn_t pfn;
e930bffe 3651 unsigned long mmu_seq;
c7ba5b48 3652 bool map_writable, write = error_code & PFERR_WRITE_MASK;
b8e8c830
PB
3653 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3654 is_nx_huge_page_enabled();
aaee2c94 3655
b8e8c830 3656 force_pt_level = lpage_disallowed;
fd136902 3657 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3658 if (likely(!force_pt_level)) {
936a5fe6
AA
3659 /*
3660 * This path builds a PAE pagetable - so we can map
3661 * 2mb pages at maximum. Therefore check if the level
3662 * is larger than that.
3663 */
3664 if (level > PT_DIRECTORY_LEVEL)
3665 level = PT_DIRECTORY_LEVEL;
852e3c19 3666
936a5fe6 3667 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3668 }
05da4558 3669
c7ba5b48 3670 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3671 return RET_PF_RETRY;
c7ba5b48 3672
e930bffe 3673 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3674 smp_rmb();
060c2abe 3675
78b2c54a 3676 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3677 return RET_PF_RETRY;
aaee2c94 3678
d7c55201
XG
3679 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3680 return r;
d196e343 3681
43fdcda9 3682 r = RET_PF_RETRY;
aaee2c94 3683 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3684 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3685 goto out_unlock;
26eeb53c
WL
3686 if (make_mmu_pages_available(vcpu) < 0)
3687 goto out_unlock;
936a5fe6 3688 if (likely(!force_pt_level))
d679b326 3689 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
b8e8c830
PB
3690 r = __direct_map(vcpu, v, write, map_writable, level, pfn,
3691 prefault, false);
e930bffe
AA
3692out_unlock:
3693 spin_unlock(&vcpu->kvm->mmu_lock);
3694 kvm_release_pfn_clean(pfn);
43fdcda9 3695 return r;
10589a46
MT
3696}
3697
74b566e6
JS
3698static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3699 struct list_head *invalid_list)
17ac10ad 3700{
4db35314 3701 struct kvm_mmu_page *sp;
17ac10ad 3702
74b566e6 3703 if (!VALID_PAGE(*root_hpa))
7b53aa56 3704 return;
35af577a 3705
74b566e6
JS
3706 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3707 --sp->root_count;
3708 if (!sp->root_count && sp->role.invalid)
3709 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3710
74b566e6
JS
3711 *root_hpa = INVALID_PAGE;
3712}
3713
08fb59d8 3714/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3715void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3716 ulong roots_to_free)
74b566e6
JS
3717{
3718 int i;
3719 LIST_HEAD(invalid_list);
08fb59d8 3720 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3721
b94742c9 3722 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3723
08fb59d8 3724 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3725 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3726 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3727 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3728 VALID_PAGE(mmu->prev_roots[i].hpa))
3729 break;
3730
3731 if (i == KVM_MMU_NUM_PREV_ROOTS)
3732 return;
3733 }
35af577a
GN
3734
3735 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3736
b94742c9
JS
3737 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3738 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3739 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3740 &invalid_list);
7c390d35 3741
08fb59d8
JS
3742 if (free_active_root) {
3743 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3744 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3745 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3746 &invalid_list);
3747 } else {
3748 for (i = 0; i < 4; ++i)
3749 if (mmu->pae_root[i] != 0)
3750 mmu_free_root_page(vcpu->kvm,
3751 &mmu->pae_root[i],
3752 &invalid_list);
3753 mmu->root_hpa = INVALID_PAGE;
3754 }
ad7dc69a 3755 mmu->root_cr3 = 0;
17ac10ad 3756 }
74b566e6 3757
d98ba053 3758 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3759 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3760}
74b566e6 3761EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3762
8986ecc0
MT
3763static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3764{
3765 int ret = 0;
3766
3767 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3768 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3769 ret = 1;
3770 }
3771
3772 return ret;
3773}
3774
651dd37a
JR
3775static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3776{
3777 struct kvm_mmu_page *sp;
7ebaf15e 3778 unsigned i;
651dd37a 3779
44dd3ffa 3780 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3781 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3782 if(make_mmu_pages_available(vcpu) < 0) {
3783 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3784 return -ENOSPC;
26eeb53c 3785 }
855feb67 3786 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3787 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3788 ++sp->root_count;
3789 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3790 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3791 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3792 for (i = 0; i < 4; ++i) {
44dd3ffa 3793 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3794
fa4a2c08 3795 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3796 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3797 if (make_mmu_pages_available(vcpu) < 0) {
3798 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3799 return -ENOSPC;
26eeb53c 3800 }
649497d1 3801 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3802 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3803 root = __pa(sp->spt);
3804 ++sp->root_count;
3805 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3806 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3807 }
44dd3ffa 3808 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3809 } else
3810 BUG();
ad7dc69a 3811 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
651dd37a
JR
3812
3813 return 0;
3814}
3815
3816static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3817{
4db35314 3818 struct kvm_mmu_page *sp;
81407ca5 3819 u64 pdptr, pm_mask;
ad7dc69a 3820 gfn_t root_gfn, root_cr3;
81407ca5 3821 int i;
3bb65a22 3822
ad7dc69a
VK
3823 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3824 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3825
651dd37a
JR
3826 if (mmu_check_root(vcpu, root_gfn))
3827 return 1;
3828
3829 /*
3830 * Do we shadow a long mode page table? If so we need to
3831 * write-protect the guests page table root.
3832 */
44dd3ffa
VK
3833 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3834 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3835
fa4a2c08 3836 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3837
8facbbff 3838 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3839 if (make_mmu_pages_available(vcpu) < 0) {
3840 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3841 return -ENOSPC;
26eeb53c 3842 }
855feb67 3843 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3844 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3845 root = __pa(sp->spt);
3846 ++sp->root_count;
8facbbff 3847 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3848 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3849 goto set_root_cr3;
17ac10ad 3850 }
f87f9288 3851
651dd37a
JR
3852 /*
3853 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3854 * or a PAE 3-level page table. In either case we need to be aware that
3855 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3856 */
81407ca5 3857 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3858 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3859 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3860
17ac10ad 3861 for (i = 0; i < 4; ++i) {
44dd3ffa 3862 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3863
fa4a2c08 3864 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3865 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3866 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3867 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3868 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3869 continue;
3870 }
6de4f3ad 3871 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3872 if (mmu_check_root(vcpu, root_gfn))
3873 return 1;
5a7388c2 3874 }
8facbbff 3875 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3876 if (make_mmu_pages_available(vcpu) < 0) {
3877 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3878 return -ENOSPC;
26eeb53c 3879 }
bb11c6c9
TY
3880 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3881 0, ACC_ALL);
4db35314
AK
3882 root = __pa(sp->spt);
3883 ++sp->root_count;
8facbbff
AK
3884 spin_unlock(&vcpu->kvm->mmu_lock);
3885
44dd3ffa 3886 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3887 }
44dd3ffa 3888 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3889
3890 /*
3891 * If we shadow a 32 bit page table with a long mode page
3892 * table we enter this path.
3893 */
44dd3ffa
VK
3894 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3895 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3896 /*
3897 * The additional page necessary for this is only
3898 * allocated on demand.
3899 */
3900
3901 u64 *lm_root;
3902
254272ce 3903 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3904 if (lm_root == NULL)
3905 return 1;
3906
44dd3ffa 3907 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3908
44dd3ffa 3909 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3910 }
3911
44dd3ffa 3912 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3913 }
3914
ad7dc69a
VK
3915set_root_cr3:
3916 vcpu->arch.mmu->root_cr3 = root_cr3;
3917
8986ecc0 3918 return 0;
17ac10ad
AK
3919}
3920
651dd37a
JR
3921static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3922{
44dd3ffa 3923 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3924 return mmu_alloc_direct_roots(vcpu);
3925 else
3926 return mmu_alloc_shadow_roots(vcpu);
3927}
3928
578e1c4d 3929void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3930{
3931 int i;
3932 struct kvm_mmu_page *sp;
3933
44dd3ffa 3934 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3935 return;
3936
44dd3ffa 3937 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3938 return;
6903074c 3939
56f17dd3 3940 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3941
44dd3ffa
VK
3942 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3943 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3944 sp = page_header(root);
578e1c4d
JS
3945
3946 /*
3947 * Even if another CPU was marking the SP as unsync-ed
3948 * simultaneously, any guest page table changes are not
3949 * guaranteed to be visible anyway until this VCPU issues a TLB
3950 * flush strictly after those changes are made. We only need to
3951 * ensure that the other CPU sets these flags before any actual
3952 * changes to the page tables are made. The comments in
3953 * mmu_need_write_protect() describe what could go wrong if this
3954 * requirement isn't satisfied.
3955 */
3956 if (!smp_load_acquire(&sp->unsync) &&
3957 !smp_load_acquire(&sp->unsync_children))
3958 return;
3959
3960 spin_lock(&vcpu->kvm->mmu_lock);
3961 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3962
0ba73cda 3963 mmu_sync_children(vcpu, sp);
578e1c4d 3964
0375f7fa 3965 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3966 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3967 return;
3968 }
578e1c4d
JS
3969
3970 spin_lock(&vcpu->kvm->mmu_lock);
3971 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3972
0ba73cda 3973 for (i = 0; i < 4; ++i) {
44dd3ffa 3974 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3975
8986ecc0 3976 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3977 root &= PT64_BASE_ADDR_MASK;
3978 sp = page_header(root);
3979 mmu_sync_children(vcpu, sp);
3980 }
3981 }
0ba73cda 3982
578e1c4d 3983 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3984 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3985}
bfd0a56b 3986EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3987
1871c602 3988static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3989 u32 access, struct x86_exception *exception)
6aa8b732 3990{
ab9ae313
AK
3991 if (exception)
3992 exception->error_code = 0;
6aa8b732
AK
3993 return vaddr;
3994}
3995
6539e738 3996static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3997 u32 access,
3998 struct x86_exception *exception)
6539e738 3999{
ab9ae313
AK
4000 if (exception)
4001 exception->error_code = 0;
54987b7a 4002 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
4003}
4004
d625b155
XG
4005static bool
4006__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
4007{
4008 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
4009
4010 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
4011 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
4012}
4013
4014static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
4015{
4016 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
4017}
4018
4019static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
4020{
4021 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
4022}
4023
ded58749 4024static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 4025{
9034e6e8
PB
4026 /*
4027 * A nested guest cannot use the MMIO cache if it is using nested
4028 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4029 */
4030 if (mmu_is_nested(vcpu))
4031 return false;
4032
ce88decf
XG
4033 if (direct)
4034 return vcpu_match_mmio_gpa(vcpu, addr);
4035
4036 return vcpu_match_mmio_gva(vcpu, addr);
4037}
4038
47ab8751
XG
4039/* return true if reserved bit is detected on spte. */
4040static bool
4041walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
4042{
4043 struct kvm_shadow_walk_iterator iterator;
2a7266a8 4044 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
4045 int root, leaf;
4046 bool reserved = false;
ce88decf 4047
44dd3ffa 4048 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 4049 goto exit;
37f6a4e2 4050
ce88decf 4051 walk_shadow_page_lockless_begin(vcpu);
47ab8751 4052
29ecd660
PB
4053 for (shadow_walk_init(&iterator, vcpu, addr),
4054 leaf = root = iterator.level;
47ab8751
XG
4055 shadow_walk_okay(&iterator);
4056 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
4057 spte = mmu_spte_get_lockless(iterator.sptep);
4058
4059 sptes[leaf - 1] = spte;
29ecd660 4060 leaf--;
47ab8751 4061
ce88decf
XG
4062 if (!is_shadow_present_pte(spte))
4063 break;
47ab8751 4064
44dd3ffa 4065 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 4066 iterator.level);
47ab8751
XG
4067 }
4068
ce88decf
XG
4069 walk_shadow_page_lockless_end(vcpu);
4070
47ab8751
XG
4071 if (reserved) {
4072 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4073 __func__, addr);
29ecd660 4074 while (root > leaf) {
47ab8751
XG
4075 pr_err("------ spte 0x%llx level %d.\n",
4076 sptes[root - 1], root);
4077 root--;
4078 }
4079 }
4080exit:
4081 *sptep = spte;
4082 return reserved;
ce88decf
XG
4083}
4084
e08d26f0 4085static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
4086{
4087 u64 spte;
47ab8751 4088 bool reserved;
ce88decf 4089
ded58749 4090 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 4091 return RET_PF_EMULATE;
ce88decf 4092
47ab8751 4093 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 4094 if (WARN_ON(reserved))
9b8ebbdb 4095 return -EINVAL;
ce88decf
XG
4096
4097 if (is_mmio_spte(spte)) {
4098 gfn_t gfn = get_mmio_spte_gfn(spte);
4099 unsigned access = get_mmio_spte_access(spte);
4100
54bf36aa 4101 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 4102 return RET_PF_INVALID;
f8f55942 4103
ce88decf
XG
4104 if (direct)
4105 addr = 0;
4f022648
XG
4106
4107 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 4108 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 4109 return RET_PF_EMULATE;
ce88decf
XG
4110 }
4111
ce88decf
XG
4112 /*
4113 * If the page table is zapped by other cpus, let CPU fault again on
4114 * the address.
4115 */
9b8ebbdb 4116 return RET_PF_RETRY;
ce88decf 4117}
ce88decf 4118
3d0c27ad
XG
4119static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4120 u32 error_code, gfn_t gfn)
4121{
4122 if (unlikely(error_code & PFERR_RSVD_MASK))
4123 return false;
4124
4125 if (!(error_code & PFERR_PRESENT_MASK) ||
4126 !(error_code & PFERR_WRITE_MASK))
4127 return false;
4128
4129 /*
4130 * guest is writing the page which is write tracked which can
4131 * not be fixed by page fault handler.
4132 */
4133 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4134 return true;
4135
4136 return false;
4137}
4138
e5691a81
XG
4139static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4140{
4141 struct kvm_shadow_walk_iterator iterator;
4142 u64 spte;
4143
44dd3ffa 4144 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
4145 return;
4146
4147 walk_shadow_page_lockless_begin(vcpu);
4148 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4149 clear_sp_write_flooding_count(iterator.sptep);
4150 if (!is_shadow_present_pte(spte))
4151 break;
4152 }
4153 walk_shadow_page_lockless_end(vcpu);
4154}
4155
6aa8b732 4156static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 4157 u32 error_code, bool prefault)
6aa8b732 4158{
3d0c27ad 4159 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 4160 int r;
6aa8b732 4161
b8688d51 4162 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 4163
3d0c27ad 4164 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4165 return RET_PF_EMULATE;
ce88decf 4166
e2dec939
AK
4167 r = mmu_topup_memory_caches(vcpu);
4168 if (r)
4169 return r;
714b93da 4170
44dd3ffa 4171 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 4172
6aa8b732 4173
e833240f 4174 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 4175 error_code, gfn, prefault);
6aa8b732
AK
4176}
4177
7e1fbeac 4178static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
4179{
4180 struct kvm_arch_async_pf arch;
fb67e14f 4181
7c90705b 4182 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4183 arch.gfn = gfn;
44dd3ffa
VK
4184 arch.direct_map = vcpu->arch.mmu->direct_map;
4185 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 4186
54bf36aa 4187 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4188}
4189
78b2c54a 4190static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 4191 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 4192{
3520469d 4193 struct kvm_memory_slot *slot;
af585b92
GN
4194 bool async;
4195
3a2936de
JM
4196 /*
4197 * Don't expose private memslots to L2.
4198 */
4199 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4200 *pfn = KVM_PFN_NOSLOT;
4201 return false;
4202 }
4203
54bf36aa 4204 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4205 async = false;
4206 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4207 if (!async)
4208 return false; /* *pfn has correct page already */
4209
9bc1f09f 4210 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 4211 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
4212 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4213 trace_kvm_async_pf_doublefault(gva, gfn);
4214 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4215 return true;
4216 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4217 return true;
4218 }
4219
3520469d 4220 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4221 return false;
4222}
4223
1261bfa3 4224int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4225 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4226{
4227 int r = 1;
4228
c595ceee 4229 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4230 switch (vcpu->arch.apf.host_apf_reason) {
4231 default:
4232 trace_kvm_page_fault(fault_address, error_code);
4233
d0006530 4234 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4235 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4236 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4237 insn_len);
4238 break;
4239 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4240 vcpu->arch.apf.host_apf_reason = 0;
4241 local_irq_disable();
a2b7861b 4242 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4243 local_irq_enable();
4244 break;
4245 case KVM_PV_REASON_PAGE_READY:
4246 vcpu->arch.apf.host_apf_reason = 0;
4247 local_irq_disable();
4248 kvm_async_pf_task_wake(fault_address);
4249 local_irq_enable();
4250 break;
4251 }
4252 return r;
4253}
4254EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4255
6a39bbc5
XG
4256static bool
4257check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4258{
4259 int page_num = KVM_PAGES_PER_HPAGE(level);
4260
4261 gfn &= ~(page_num - 1);
4262
4263 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4264}
4265
56028d08 4266static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4267 bool prefault)
fb72d167 4268{
ba049e93 4269 kvm_pfn_t pfn;
fb72d167 4270 int r;
852e3c19 4271 int level;
cd1872f0 4272 bool force_pt_level;
05da4558 4273 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4274 unsigned long mmu_seq;
612819c3
MT
4275 int write = error_code & PFERR_WRITE_MASK;
4276 bool map_writable;
b8e8c830
PB
4277 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4278 is_nx_huge_page_enabled();
fb72d167 4279
44dd3ffa 4280 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4281
3d0c27ad 4282 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4283 return RET_PF_EMULATE;
ce88decf 4284
fb72d167
JR
4285 r = mmu_topup_memory_caches(vcpu);
4286 if (r)
4287 return r;
4288
b8e8c830
PB
4289 force_pt_level =
4290 lpage_disallowed ||
4291 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
fd136902 4292 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4293 if (likely(!force_pt_level)) {
6a39bbc5
XG
4294 if (level > PT_DIRECTORY_LEVEL &&
4295 !check_hugepage_cache_consistency(vcpu, gfn, level))
4296 level = PT_DIRECTORY_LEVEL;
936a5fe6 4297 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4298 }
852e3c19 4299
c7ba5b48 4300 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4301 return RET_PF_RETRY;
c7ba5b48 4302
e930bffe 4303 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4304 smp_rmb();
af585b92 4305
78b2c54a 4306 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4307 return RET_PF_RETRY;
af585b92 4308
d7c55201
XG
4309 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4310 return r;
4311
43fdcda9 4312 r = RET_PF_RETRY;
fb72d167 4313 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4314 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4315 goto out_unlock;
26eeb53c
WL
4316 if (make_mmu_pages_available(vcpu) < 0)
4317 goto out_unlock;
936a5fe6 4318 if (likely(!force_pt_level))
d679b326 4319 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
b8e8c830
PB
4320 r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4321 prefault, lpage_disallowed);
e930bffe
AA
4322out_unlock:
4323 spin_unlock(&vcpu->kvm->mmu_lock);
4324 kvm_release_pfn_clean(pfn);
43fdcda9 4325 return r;
fb72d167
JR
4326}
4327
8a3c1a33
PB
4328static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4329 struct kvm_mmu *context)
6aa8b732 4330{
6aa8b732 4331 context->page_fault = nonpaging_page_fault;
6aa8b732 4332 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4333 context->sync_page = nonpaging_sync_page;
a7052897 4334 context->invlpg = nonpaging_invlpg;
0f53b5b1 4335 context->update_pte = nonpaging_update_pte;
cea0f0e7 4336 context->root_level = 0;
6aa8b732 4337 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4338 context->direct_map = true;
2d48a985 4339 context->nx = false;
6aa8b732
AK
4340}
4341
b94742c9
JS
4342/*
4343 * Find out if a previously cached root matching the new CR3/role is available.
4344 * The current root is also inserted into the cache.
4345 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4346 * returned.
4347 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4348 * false is returned. This root should now be freed by the caller.
4349 */
4350static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4351 union kvm_mmu_page_role new_role)
4352{
4353 uint i;
4354 struct kvm_mmu_root_info root;
44dd3ffa 4355 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4356
ad7dc69a 4357 root.cr3 = mmu->root_cr3;
b94742c9
JS
4358 root.hpa = mmu->root_hpa;
4359
4360 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4361 swap(root, mmu->prev_roots[i]);
4362
4363 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4364 page_header(root.hpa) != NULL &&
4365 new_role.word == page_header(root.hpa)->role.word)
4366 break;
4367 }
4368
4369 mmu->root_hpa = root.hpa;
ad7dc69a 4370 mmu->root_cr3 = root.cr3;
b94742c9
JS
4371
4372 return i < KVM_MMU_NUM_PREV_ROOTS;
4373}
4374
0aab33e4 4375static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4376 union kvm_mmu_page_role new_role,
4377 bool skip_tlb_flush)
6aa8b732 4378{
44dd3ffa 4379 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4380
4381 /*
4382 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4383 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4384 * later if necessary.
4385 */
4386 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4387 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4388 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4389 return false;
4390
b94742c9 4391 if (cached_root_available(vcpu, new_cr3, new_role)) {
002c5f73
SC
4392 /*
4393 * It is possible that the cached previous root page is
4394 * obsolete because of a change in the MMU generation
4395 * number. However, changing the generation number is
4396 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4397 * the root set here and allocate a new one.
4398 */
0aab33e4 4399 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4400 if (!skip_tlb_flush) {
4401 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1924242b 4402 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
956bf353
JS
4403 }
4404
4405 /*
4406 * The last MMIO access's GVA and GPA are cached in the
4407 * VCPU. When switching to a new CR3, that GVA->GPA
4408 * mapping may no longer be valid. So clear any cached
4409 * MMIO info even when we don't need to sync the shadow
4410 * page tables.
4411 */
4412 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4413
7c390d35
JS
4414 __clear_sp_write_flooding_count(
4415 page_header(mmu->root_hpa));
4416
7c390d35
JS
4417 return true;
4418 }
4419 }
4420
4421 return false;
6aa8b732
AK
4422}
4423
0aab33e4 4424static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4425 union kvm_mmu_page_role new_role,
4426 bool skip_tlb_flush)
6aa8b732 4427{
ade61e28 4428 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4429 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4430 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4431}
4432
ade61e28 4433void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4434{
ade61e28
JS
4435 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4436 skip_tlb_flush);
0aab33e4 4437}
50c28f21 4438EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4439
5777ed34
JR
4440static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4441{
9f8fe504 4442 return kvm_read_cr3(vcpu);
5777ed34
JR
4443}
4444
6389ee94
AK
4445static void inject_page_fault(struct kvm_vcpu *vcpu,
4446 struct x86_exception *fault)
6aa8b732 4447{
44dd3ffa 4448 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4449}
4450
54bf36aa 4451static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4452 unsigned access, int *nr_present)
ce88decf
XG
4453{
4454 if (unlikely(is_mmio_spte(*sptep))) {
4455 if (gfn != get_mmio_spte_gfn(*sptep)) {
4456 mmu_spte_clear_no_track(sptep);
4457 return true;
4458 }
4459
4460 (*nr_present)++;
54bf36aa 4461 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4462 return true;
4463 }
4464
4465 return false;
4466}
4467
6bb69c9b
PB
4468static inline bool is_last_gpte(struct kvm_mmu *mmu,
4469 unsigned level, unsigned gpte)
6fd01b71 4470{
6bb69c9b
PB
4471 /*
4472 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4473 * If it is clear, there are no large pages at this level, so clear
4474 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4475 */
4476 gpte &= level - mmu->last_nonleaf_level;
4477
829ee279
LP
4478 /*
4479 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4480 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4481 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4482 */
4483 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4484
6bb69c9b 4485 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4486}
4487
37406aaa
NHE
4488#define PTTYPE_EPT 18 /* arbitrary */
4489#define PTTYPE PTTYPE_EPT
4490#include "paging_tmpl.h"
4491#undef PTTYPE
4492
6aa8b732
AK
4493#define PTTYPE 64
4494#include "paging_tmpl.h"
4495#undef PTTYPE
4496
4497#define PTTYPE 32
4498#include "paging_tmpl.h"
4499#undef PTTYPE
4500
6dc98b86
XG
4501static void
4502__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4503 struct rsvd_bits_validate *rsvd_check,
4504 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4505 bool pse, bool amd)
82725b20 4506{
82725b20 4507 u64 exb_bit_rsvd = 0;
5f7dde7b 4508 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4509 u64 nonleaf_bit8_rsvd = 0;
82725b20 4510
a0a64f50 4511 rsvd_check->bad_mt_xwr = 0;
25d92081 4512
6dc98b86 4513 if (!nx)
82725b20 4514 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4515 if (!gbpages)
5f7dde7b 4516 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4517
4518 /*
4519 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4520 * leaf entries) on AMD CPUs only.
4521 */
6fec2144 4522 if (amd)
a0c0feb5
PB
4523 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4524
6dc98b86 4525 switch (level) {
82725b20
DE
4526 case PT32_ROOT_LEVEL:
4527 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4528 rsvd_check->rsvd_bits_mask[0][1] = 0;
4529 rsvd_check->rsvd_bits_mask[0][0] = 0;
4530 rsvd_check->rsvd_bits_mask[1][0] =
4531 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4532
6dc98b86 4533 if (!pse) {
a0a64f50 4534 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4535 break;
4536 }
4537
82725b20
DE
4538 if (is_cpuid_PSE36())
4539 /* 36bits PSE 4MB page */
a0a64f50 4540 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4541 else
4542 /* 32 bits PSE 4MB page */
a0a64f50 4543 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4544 break;
4545 case PT32E_ROOT_LEVEL:
a0a64f50 4546 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4547 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4548 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4549 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4550 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4551 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4552 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4553 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4554 rsvd_bits(maxphyaddr, 62) |
4555 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4556 rsvd_check->rsvd_bits_mask[1][0] =
4557 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4558 break;
855feb67
YZ
4559 case PT64_ROOT_5LEVEL:
4560 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4561 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4562 rsvd_bits(maxphyaddr, 51);
4563 rsvd_check->rsvd_bits_mask[1][4] =
4564 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4565 /* fall through */
2a7266a8 4566 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4567 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4568 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4569 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4570 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4571 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4572 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4573 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4574 rsvd_bits(maxphyaddr, 51);
4575 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4576 rsvd_bits(maxphyaddr, 51);
4577 rsvd_check->rsvd_bits_mask[1][3] =
4578 rsvd_check->rsvd_bits_mask[0][3];
4579 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4580 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4581 rsvd_bits(13, 29);
a0a64f50 4582 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4583 rsvd_bits(maxphyaddr, 51) |
4584 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4585 rsvd_check->rsvd_bits_mask[1][0] =
4586 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4587 break;
4588 }
4589}
4590
6dc98b86
XG
4591static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4592 struct kvm_mmu *context)
4593{
4594 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4595 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4596 context->nx,
4597 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4598 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4599}
4600
81b8eebb
XG
4601static void
4602__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4603 int maxphyaddr, bool execonly)
25d92081 4604{
951f9fd7 4605 u64 bad_mt_xwr;
25d92081 4606
855feb67
YZ
4607 rsvd_check->rsvd_bits_mask[0][4] =
4608 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4609 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4610 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4611 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4612 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4613 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4614 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4615 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4616
4617 /* large page */
855feb67 4618 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4619 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4620 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4621 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4622 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4623 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4624 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4625
951f9fd7
PB
4626 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4627 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4628 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4629 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4630 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4631 if (!execonly) {
4632 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4633 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4634 }
951f9fd7 4635 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4636}
4637
81b8eebb
XG
4638static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4639 struct kvm_mmu *context, bool execonly)
4640{
4641 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4642 cpuid_maxphyaddr(vcpu), execonly);
4643}
4644
c258b62b
XG
4645/*
4646 * the page table on host is the shadow page table for the page
4647 * table in guest or amd nested guest, its mmu features completely
4648 * follow the features in guest.
4649 */
4650void
4651reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4652{
36d9594d
VK
4653 bool uses_nx = context->nx ||
4654 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4655 struct rsvd_bits_validate *shadow_zero_check;
4656 int i;
5f0b8199 4657
6fec2144
PB
4658 /*
4659 * Passing "true" to the last argument is okay; it adds a check
4660 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4661 */
ea2800dd
BS
4662 shadow_zero_check = &context->shadow_zero_check;
4663 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4664 shadow_phys_bits,
5f0b8199 4665 context->shadow_root_level, uses_nx,
d6321d49
RK
4666 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4667 is_pse(vcpu), true);
ea2800dd
BS
4668
4669 if (!shadow_me_mask)
4670 return;
4671
4672 for (i = context->shadow_root_level; --i >= 0;) {
4673 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4674 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4675 }
4676
c258b62b
XG
4677}
4678EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4679
6fec2144
PB
4680static inline bool boot_cpu_is_amd(void)
4681{
4682 WARN_ON_ONCE(!tdp_enabled);
4683 return shadow_x_mask == 0;
4684}
4685
c258b62b
XG
4686/*
4687 * the direct page table on host, use as much mmu features as
4688 * possible, however, kvm currently does not do execution-protection.
4689 */
4690static void
4691reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4692 struct kvm_mmu *context)
4693{
ea2800dd
BS
4694 struct rsvd_bits_validate *shadow_zero_check;
4695 int i;
4696
4697 shadow_zero_check = &context->shadow_zero_check;
4698
6fec2144 4699 if (boot_cpu_is_amd())
ea2800dd 4700 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4701 shadow_phys_bits,
c258b62b 4702 context->shadow_root_level, false,
b8291adc
BP
4703 boot_cpu_has(X86_FEATURE_GBPAGES),
4704 true, true);
c258b62b 4705 else
ea2800dd 4706 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4707 shadow_phys_bits,
c258b62b
XG
4708 false);
4709
ea2800dd
BS
4710 if (!shadow_me_mask)
4711 return;
4712
4713 for (i = context->shadow_root_level; --i >= 0;) {
4714 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4715 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4716 }
c258b62b
XG
4717}
4718
4719/*
4720 * as the comments in reset_shadow_zero_bits_mask() except it
4721 * is the shadow page table for intel nested guest.
4722 */
4723static void
4724reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4725 struct kvm_mmu *context, bool execonly)
4726{
4727 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4728 shadow_phys_bits, execonly);
c258b62b
XG
4729}
4730
09f037aa
PB
4731#define BYTE_MASK(access) \
4732 ((1 & (access) ? 2 : 0) | \
4733 (2 & (access) ? 4 : 0) | \
4734 (3 & (access) ? 8 : 0) | \
4735 (4 & (access) ? 16 : 0) | \
4736 (5 & (access) ? 32 : 0) | \
4737 (6 & (access) ? 64 : 0) | \
4738 (7 & (access) ? 128 : 0))
4739
4740
edc90b7d
XG
4741static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4742 struct kvm_mmu *mmu, bool ept)
97d64b78 4743{
09f037aa
PB
4744 unsigned byte;
4745
4746 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4747 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4748 const u8 u = BYTE_MASK(ACC_USER_MASK);
4749
4750 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4751 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4752 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4753
97d64b78 4754 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4755 unsigned pfec = byte << 1;
4756
97ec8c06 4757 /*
09f037aa
PB
4758 * Each "*f" variable has a 1 bit for each UWX value
4759 * that causes a fault with the given PFEC.
97ec8c06 4760 */
97d64b78 4761
09f037aa 4762 /* Faults from writes to non-writable pages */
a6a6d3b1 4763 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4764 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4765 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4766 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4767 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4768 /* Faults from kernel mode fetches of user pages */
4769 u8 smepf = 0;
4770 /* Faults from kernel mode accesses of user pages */
4771 u8 smapf = 0;
4772
4773 if (!ept) {
4774 /* Faults from kernel mode accesses to user pages */
4775 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4776
4777 /* Not really needed: !nx will cause pte.nx to fault */
4778 if (!mmu->nx)
4779 ff = 0;
4780
4781 /* Allow supervisor writes if !cr0.wp */
4782 if (!cr0_wp)
4783 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4784
4785 /* Disallow supervisor fetches of user code if cr4.smep */
4786 if (cr4_smep)
4787 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4788
4789 /*
4790 * SMAP:kernel-mode data accesses from user-mode
4791 * mappings should fault. A fault is considered
4792 * as a SMAP violation if all of the following
39337ad1 4793 * conditions are true:
09f037aa
PB
4794 * - X86_CR4_SMAP is set in CR4
4795 * - A user page is accessed
4796 * - The access is not a fetch
4797 * - Page fault in kernel mode
4798 * - if CPL = 3 or X86_EFLAGS_AC is clear
4799 *
4800 * Here, we cover the first three conditions.
4801 * The fourth is computed dynamically in permission_fault();
4802 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4803 * *not* subject to SMAP restrictions.
4804 */
4805 if (cr4_smap)
4806 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4807 }
09f037aa
PB
4808
4809 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4810 }
4811}
4812
2d344105
HH
4813/*
4814* PKU is an additional mechanism by which the paging controls access to
4815* user-mode addresses based on the value in the PKRU register. Protection
4816* key violations are reported through a bit in the page fault error code.
4817* Unlike other bits of the error code, the PK bit is not known at the
4818* call site of e.g. gva_to_gpa; it must be computed directly in
4819* permission_fault based on two bits of PKRU, on some machine state (CR4,
4820* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4821*
4822* In particular the following conditions come from the error code, the
4823* page tables and the machine state:
4824* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4825* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4826* - PK is always zero if U=0 in the page tables
4827* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4828*
4829* The PKRU bitmask caches the result of these four conditions. The error
4830* code (minus the P bit) and the page table's U bit form an index into the
4831* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4832* with the two bits of the PKRU register corresponding to the protection key.
4833* For the first three conditions above the bits will be 00, thus masking
4834* away both AD and WD. For all reads or if the last condition holds, WD
4835* only will be masked away.
4836*/
4837static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4838 bool ept)
4839{
4840 unsigned bit;
4841 bool wp;
4842
4843 if (ept) {
4844 mmu->pkru_mask = 0;
4845 return;
4846 }
4847
4848 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4849 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4850 mmu->pkru_mask = 0;
4851 return;
4852 }
4853
4854 wp = is_write_protection(vcpu);
4855
4856 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4857 unsigned pfec, pkey_bits;
4858 bool check_pkey, check_write, ff, uf, wf, pte_user;
4859
4860 pfec = bit << 1;
4861 ff = pfec & PFERR_FETCH_MASK;
4862 uf = pfec & PFERR_USER_MASK;
4863 wf = pfec & PFERR_WRITE_MASK;
4864
4865 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4866 pte_user = pfec & PFERR_RSVD_MASK;
4867
4868 /*
4869 * Only need to check the access which is not an
4870 * instruction fetch and is to a user page.
4871 */
4872 check_pkey = (!ff && pte_user);
4873 /*
4874 * write access is controlled by PKRU if it is a
4875 * user access or CR0.WP = 1.
4876 */
4877 check_write = check_pkey && wf && (uf || wp);
4878
4879 /* PKRU.AD stops both read and write access. */
4880 pkey_bits = !!check_pkey;
4881 /* PKRU.WD stops write access. */
4882 pkey_bits |= (!!check_write) << 1;
4883
4884 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4885 }
4886}
4887
6bb69c9b 4888static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4889{
6bb69c9b
PB
4890 unsigned root_level = mmu->root_level;
4891
4892 mmu->last_nonleaf_level = root_level;
4893 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4894 mmu->last_nonleaf_level++;
6fd01b71
AK
4895}
4896
8a3c1a33
PB
4897static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4898 struct kvm_mmu *context,
4899 int level)
6aa8b732 4900{
2d48a985 4901 context->nx = is_nx(vcpu);
4d6931c3 4902 context->root_level = level;
2d48a985 4903
4d6931c3 4904 reset_rsvds_bits_mask(vcpu, context);
25d92081 4905 update_permission_bitmask(vcpu, context, false);
2d344105 4906 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4907 update_last_nonleaf_level(vcpu, context);
6aa8b732 4908
fa4a2c08 4909 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4910 context->page_fault = paging64_page_fault;
6aa8b732 4911 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4912 context->sync_page = paging64_sync_page;
a7052897 4913 context->invlpg = paging64_invlpg;
0f53b5b1 4914 context->update_pte = paging64_update_pte;
17ac10ad 4915 context->shadow_root_level = level;
c5a78f2b 4916 context->direct_map = false;
6aa8b732
AK
4917}
4918
8a3c1a33
PB
4919static void paging64_init_context(struct kvm_vcpu *vcpu,
4920 struct kvm_mmu *context)
17ac10ad 4921{
855feb67
YZ
4922 int root_level = is_la57_mode(vcpu) ?
4923 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4924
4925 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4926}
4927
8a3c1a33
PB
4928static void paging32_init_context(struct kvm_vcpu *vcpu,
4929 struct kvm_mmu *context)
6aa8b732 4930{
2d48a985 4931 context->nx = false;
4d6931c3 4932 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4933
4d6931c3 4934 reset_rsvds_bits_mask(vcpu, context);
25d92081 4935 update_permission_bitmask(vcpu, context, false);
2d344105 4936 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4937 update_last_nonleaf_level(vcpu, context);
6aa8b732 4938
6aa8b732 4939 context->page_fault = paging32_page_fault;
6aa8b732 4940 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4941 context->sync_page = paging32_sync_page;
a7052897 4942 context->invlpg = paging32_invlpg;
0f53b5b1 4943 context->update_pte = paging32_update_pte;
6aa8b732 4944 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4945 context->direct_map = false;
6aa8b732
AK
4946}
4947
8a3c1a33
PB
4948static void paging32E_init_context(struct kvm_vcpu *vcpu,
4949 struct kvm_mmu *context)
6aa8b732 4950{
8a3c1a33 4951 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4952}
4953
a336282d
VK
4954static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4955{
4956 union kvm_mmu_extended_role ext = {0};
4957
7dcd5755 4958 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4959 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4960 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4961 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4962 ext.cr4_pse = !!is_pse(vcpu);
4963 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4964 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
de3ccd26 4965 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4966
4967 ext.valid = 1;
4968
4969 return ext;
4970}
4971
7dcd5755
VK
4972static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4973 bool base_only)
4974{
4975 union kvm_mmu_role role = {0};
4976
4977 role.base.access = ACC_ALL;
4978 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4979 role.base.cr0_wp = is_write_protection(vcpu);
4980 role.base.smm = is_smm(vcpu);
4981 role.base.guest_mode = is_guest_mode(vcpu);
4982
4983 if (base_only)
4984 return role;
4985
4986 role.ext = kvm_calc_mmu_role_ext(vcpu);
4987
4988 return role;
4989}
4990
4991static union kvm_mmu_role
4992kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4993{
7dcd5755 4994 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4995
7dcd5755
VK
4996 role.base.ad_disabled = (shadow_accessed_mask == 0);
4997 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4998 role.base.direct = true;
47c42e6b 4999 role.base.gpte_is_8_bytes = true;
9fa72119
JS
5000
5001 return role;
5002}
5003
8a3c1a33 5004static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 5005{
44dd3ffa 5006 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
5007 union kvm_mmu_role new_role =
5008 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 5009
7dcd5755
VK
5010 new_role.base.word &= mmu_base_role_mask.word;
5011 if (new_role.as_u64 == context->mmu_role.as_u64)
5012 return;
5013
5014 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 5015 context->page_fault = tdp_page_fault;
e8bc217a 5016 context->sync_page = nonpaging_sync_page;
a7052897 5017 context->invlpg = nonpaging_invlpg;
0f53b5b1 5018 context->update_pte = nonpaging_update_pte;
855feb67 5019 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 5020 context->direct_map = true;
1c97f0a0 5021 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 5022 context->get_cr3 = get_cr3;
e4e517b4 5023 context->get_pdptr = kvm_pdptr_read;
cb659db8 5024 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
5025
5026 if (!is_paging(vcpu)) {
2d48a985 5027 context->nx = false;
fb72d167
JR
5028 context->gva_to_gpa = nonpaging_gva_to_gpa;
5029 context->root_level = 0;
5030 } else if (is_long_mode(vcpu)) {
2d48a985 5031 context->nx = is_nx(vcpu);
855feb67
YZ
5032 context->root_level = is_la57_mode(vcpu) ?
5033 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
5034 reset_rsvds_bits_mask(vcpu, context);
5035 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 5036 } else if (is_pae(vcpu)) {
2d48a985 5037 context->nx = is_nx(vcpu);
fb72d167 5038 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
5039 reset_rsvds_bits_mask(vcpu, context);
5040 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 5041 } else {
2d48a985 5042 context->nx = false;
fb72d167 5043 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
5044 reset_rsvds_bits_mask(vcpu, context);
5045 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
5046 }
5047
25d92081 5048 update_permission_bitmask(vcpu, context, false);
2d344105 5049 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 5050 update_last_nonleaf_level(vcpu, context);
c258b62b 5051 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
5052}
5053
7dcd5755
VK
5054static union kvm_mmu_role
5055kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5056{
5057 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5058
5059 role.base.smep_andnot_wp = role.ext.cr4_smep &&
5060 !is_write_protection(vcpu);
5061 role.base.smap_andnot_wp = role.ext.cr4_smap &&
5062 !is_write_protection(vcpu);
5063 role.base.direct = !is_paging(vcpu);
47c42e6b 5064 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
5065
5066 if (!is_long_mode(vcpu))
7dcd5755 5067 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 5068 else if (is_la57_mode(vcpu))
7dcd5755 5069 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 5070 else
7dcd5755 5071 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
5072
5073 return role;
5074}
5075
5076void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5077{
44dd3ffa 5078 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
5079 union kvm_mmu_role new_role =
5080 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5081
5082 new_role.base.word &= mmu_base_role_mask.word;
5083 if (new_role.as_u64 == context->mmu_role.as_u64)
5084 return;
6aa8b732
AK
5085
5086 if (!is_paging(vcpu))
8a3c1a33 5087 nonpaging_init_context(vcpu, context);
a9058ecd 5088 else if (is_long_mode(vcpu))
8a3c1a33 5089 paging64_init_context(vcpu, context);
6aa8b732 5090 else if (is_pae(vcpu))
8a3c1a33 5091 paging32E_init_context(vcpu, context);
6aa8b732 5092 else
8a3c1a33 5093 paging32_init_context(vcpu, context);
a770f6f2 5094
7dcd5755 5095 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 5096 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
5097}
5098EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5099
a336282d
VK
5100static union kvm_mmu_role
5101kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5102 bool execonly)
9fa72119 5103{
552c69b1 5104 union kvm_mmu_role role = {0};
14c07ad8 5105
47c42e6b
SC
5106 /* SMM flag is inherited from root_mmu */
5107 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 5108
a336282d 5109 role.base.level = PT64_ROOT_4LEVEL;
47c42e6b 5110 role.base.gpte_is_8_bytes = true;
a336282d
VK
5111 role.base.direct = false;
5112 role.base.ad_disabled = !accessed_dirty;
5113 role.base.guest_mode = true;
5114 role.base.access = ACC_ALL;
9fa72119 5115
47c42e6b
SC
5116 /*
5117 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5118 * SMAP variation to denote shadow EPT entries.
5119 */
5120 role.base.cr0_wp = true;
5121 role.base.smap_andnot_wp = true;
5122
552c69b1 5123 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 5124 role.ext.execonly = execonly;
9fa72119
JS
5125
5126 return role;
5127}
5128
ae1e2d10 5129void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 5130 bool accessed_dirty, gpa_t new_eptp)
155a97a3 5131{
44dd3ffa 5132 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
5133 union kvm_mmu_role new_role =
5134 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5135 execonly);
5136
5137 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5138
5139 new_role.base.word &= mmu_base_role_mask.word;
5140 if (new_role.as_u64 == context->mmu_role.as_u64)
5141 return;
ad896af0 5142
855feb67 5143 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
5144
5145 context->nx = true;
ae1e2d10 5146 context->ept_ad = accessed_dirty;
155a97a3
NHE
5147 context->page_fault = ept_page_fault;
5148 context->gva_to_gpa = ept_gva_to_gpa;
5149 context->sync_page = ept_sync_page;
5150 context->invlpg = ept_invlpg;
5151 context->update_pte = ept_update_pte;
855feb67 5152 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 5153 context->direct_map = false;
a336282d 5154 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 5155
155a97a3 5156 update_permission_bitmask(vcpu, context, true);
2d344105 5157 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 5158 update_last_nonleaf_level(vcpu, context);
155a97a3 5159 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 5160 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
5161}
5162EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5163
8a3c1a33 5164static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5165{
44dd3ffa 5166 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
5167
5168 kvm_init_shadow_mmu(vcpu);
5169 context->set_cr3 = kvm_x86_ops->set_cr3;
5170 context->get_cr3 = get_cr3;
5171 context->get_pdptr = kvm_pdptr_read;
5172 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5173}
5174
8a3c1a33 5175static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5176{
bf627a92 5177 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5178 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5179
bf627a92
VK
5180 new_role.base.word &= mmu_base_role_mask.word;
5181 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5182 return;
5183
5184 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 5185 g_context->get_cr3 = get_cr3;
e4e517b4 5186 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5187 g_context->inject_page_fault = kvm_inject_page_fault;
5188
5189 /*
44dd3ffa 5190 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5191 * L1's nested page tables (e.g. EPT12). The nested translation
5192 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5193 * L2's page tables as the first level of translation and L1's
5194 * nested page tables as the second level of translation. Basically
5195 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5196 */
5197 if (!is_paging(vcpu)) {
2d48a985 5198 g_context->nx = false;
02f59dc9
JR
5199 g_context->root_level = 0;
5200 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5201 } else if (is_long_mode(vcpu)) {
2d48a985 5202 g_context->nx = is_nx(vcpu);
855feb67
YZ
5203 g_context->root_level = is_la57_mode(vcpu) ?
5204 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5205 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5206 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5207 } else if (is_pae(vcpu)) {
2d48a985 5208 g_context->nx = is_nx(vcpu);
02f59dc9 5209 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5210 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5211 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5212 } else {
2d48a985 5213 g_context->nx = false;
02f59dc9 5214 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5215 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5216 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5217 }
5218
25d92081 5219 update_permission_bitmask(vcpu, g_context, false);
2d344105 5220 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5221 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5222}
5223
1c53da3f 5224void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5225{
1c53da3f 5226 if (reset_roots) {
b94742c9
JS
5227 uint i;
5228
44dd3ffa 5229 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5230
5231 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5232 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5233 }
5234
02f59dc9 5235 if (mmu_is_nested(vcpu))
e0c6db3e 5236 init_kvm_nested_mmu(vcpu);
02f59dc9 5237 else if (tdp_enabled)
e0c6db3e 5238 init_kvm_tdp_mmu(vcpu);
fb72d167 5239 else
e0c6db3e 5240 init_kvm_softmmu(vcpu);
fb72d167 5241}
1c53da3f 5242EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5243
9fa72119
JS
5244static union kvm_mmu_page_role
5245kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5246{
7dcd5755
VK
5247 union kvm_mmu_role role;
5248
9fa72119 5249 if (tdp_enabled)
7dcd5755 5250 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5251 else
7dcd5755
VK
5252 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5253
5254 return role.base;
9fa72119 5255}
fb72d167 5256
8a3c1a33 5257void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5258{
95f93af4 5259 kvm_mmu_unload(vcpu);
1c53da3f 5260 kvm_init_mmu(vcpu, true);
17c3ba9d 5261}
8668a3c4 5262EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5263
5264int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5265{
714b93da
AK
5266 int r;
5267
e2dec939 5268 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5269 if (r)
5270 goto out;
8986ecc0 5271 r = mmu_alloc_roots(vcpu);
e2858b4a 5272 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5273 if (r)
5274 goto out;
6e42782f 5275 kvm_mmu_load_cr3(vcpu);
afe828d1 5276 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5277out:
5278 return r;
6aa8b732 5279}
17c3ba9d
AK
5280EXPORT_SYMBOL_GPL(kvm_mmu_load);
5281
5282void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5283{
14c07ad8
VK
5284 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5285 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5286 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5287 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5288}
4b16184c 5289EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5290
0028425f 5291static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5292 struct kvm_mmu_page *sp, u64 *spte,
5293 const void *new)
0028425f 5294{
30945387 5295 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5296 ++vcpu->kvm->stat.mmu_pde_zapped;
5297 return;
30945387 5298 }
0028425f 5299
4cee5764 5300 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5301 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5302}
5303
79539cec
AK
5304static bool need_remote_flush(u64 old, u64 new)
5305{
5306 if (!is_shadow_present_pte(old))
5307 return false;
5308 if (!is_shadow_present_pte(new))
5309 return true;
5310 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5311 return true;
53166229
GN
5312 old ^= shadow_nx_mask;
5313 new ^= shadow_nx_mask;
79539cec
AK
5314 return (old & ~new & PT64_PERM_MASK) != 0;
5315}
5316
889e5cbc 5317static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5318 int *bytes)
da4a00f0 5319{
0e0fee5c 5320 u64 gentry = 0;
889e5cbc 5321 int r;
72016f3a 5322
72016f3a
AK
5323 /*
5324 * Assume that the pte write on a page table of the same type
49b26e26
XG
5325 * as the current vcpu paging mode since we update the sptes only
5326 * when they have the same mode.
72016f3a 5327 */
889e5cbc 5328 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5329 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5330 *gpa &= ~(gpa_t)7;
5331 *bytes = 8;
08e850c6
AK
5332 }
5333
0e0fee5c
JS
5334 if (*bytes == 4 || *bytes == 8) {
5335 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5336 if (r)
5337 gentry = 0;
72016f3a
AK
5338 }
5339
889e5cbc
XG
5340 return gentry;
5341}
5342
5343/*
5344 * If we're seeing too many writes to a page, it may no longer be a page table,
5345 * or we may be forking, in which case it is better to unmap the page.
5346 */
a138fe75 5347static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5348{
a30f47cb
XG
5349 /*
5350 * Skip write-flooding detected for the sp whose level is 1, because
5351 * it can become unsync, then the guest page is not write-protected.
5352 */
f71fa31f 5353 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5354 return false;
3246af0e 5355
e5691a81
XG
5356 atomic_inc(&sp->write_flooding_count);
5357 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5358}
5359
5360/*
5361 * Misaligned accesses are too much trouble to fix up; also, they usually
5362 * indicate a page is not used as a page table.
5363 */
5364static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5365 int bytes)
5366{
5367 unsigned offset, pte_size, misaligned;
5368
5369 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5370 gpa, bytes, sp->role.word);
5371
5372 offset = offset_in_page(gpa);
47c42e6b 5373 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5374
5375 /*
5376 * Sometimes, the OS only writes the last one bytes to update status
5377 * bits, for example, in linux, andb instruction is used in clear_bit().
5378 */
5379 if (!(offset & (pte_size - 1)) && bytes == 1)
5380 return false;
5381
889e5cbc
XG
5382 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5383 misaligned |= bytes < 4;
5384
5385 return misaligned;
5386}
5387
5388static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5389{
5390 unsigned page_offset, quadrant;
5391 u64 *spte;
5392 int level;
5393
5394 page_offset = offset_in_page(gpa);
5395 level = sp->role.level;
5396 *nspte = 1;
47c42e6b 5397 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5398 page_offset <<= 1; /* 32->64 */
5399 /*
5400 * A 32-bit pde maps 4MB while the shadow pdes map
5401 * only 2MB. So we need to double the offset again
5402 * and zap two pdes instead of one.
5403 */
5404 if (level == PT32_ROOT_LEVEL) {
5405 page_offset &= ~7; /* kill rounding error */
5406 page_offset <<= 1;
5407 *nspte = 2;
5408 }
5409 quadrant = page_offset >> PAGE_SHIFT;
5410 page_offset &= ~PAGE_MASK;
5411 if (quadrant != sp->role.quadrant)
5412 return NULL;
5413 }
5414
5415 spte = &sp->spt[page_offset / sizeof(*spte)];
5416 return spte;
5417}
5418
13d268ca 5419static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5420 const u8 *new, int bytes,
5421 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5422{
5423 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5424 struct kvm_mmu_page *sp;
889e5cbc
XG
5425 LIST_HEAD(invalid_list);
5426 u64 entry, gentry, *spte;
5427 int npte;
b8c67b7a 5428 bool remote_flush, local_flush;
889e5cbc
XG
5429
5430 /*
5431 * If we don't have indirect shadow pages, it means no page is
5432 * write-protected, so we can exit simply.
5433 */
6aa7de05 5434 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5435 return;
5436
b8c67b7a 5437 remote_flush = local_flush = false;
889e5cbc
XG
5438
5439 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5440
889e5cbc
XG
5441 /*
5442 * No need to care whether allocation memory is successful
5443 * or not since pte prefetch is skiped if it does not have
5444 * enough objects in the cache.
5445 */
5446 mmu_topup_memory_caches(vcpu);
5447
5448 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5449
5450 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5451
889e5cbc 5452 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5453 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5454
b67bfe0d 5455 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5456 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5457 detect_write_flooding(sp)) {
b8c67b7a 5458 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5459 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5460 continue;
5461 }
889e5cbc
XG
5462
5463 spte = get_written_sptes(sp, gpa, &npte);
5464 if (!spte)
5465 continue;
5466
0671a8e7 5467 local_flush = true;
ac1b714e 5468 while (npte--) {
36d9594d
VK
5469 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5470
79539cec 5471 entry = *spte;
38e3b2b2 5472 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5473 if (gentry &&
36d9594d 5474 !((sp->role.word ^ base_role)
9fa72119 5475 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5476 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5477 if (need_remote_flush(entry, *spte))
0671a8e7 5478 remote_flush = true;
ac1b714e 5479 ++spte;
9b7a0325 5480 }
9b7a0325 5481 }
b8c67b7a 5482 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5483 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5484 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5485}
5486
a436036b
AK
5487int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5488{
10589a46
MT
5489 gpa_t gpa;
5490 int r;
a436036b 5491
44dd3ffa 5492 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5493 return 0;
5494
1871c602 5495 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5496
10589a46 5497 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5498
10589a46 5499 return r;
a436036b 5500}
577bdc49 5501EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5502
26eeb53c 5503static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5504{
d98ba053 5505 LIST_HEAD(invalid_list);
103ad25a 5506
81f4f76b 5507 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5508 return 0;
81f4f76b 5509
5da59607
TY
5510 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5511 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5512 break;
ebeace86 5513
4cee5764 5514 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5515 }
aa6bd187 5516 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5517
5518 if (!kvm_mmu_available_pages(vcpu->kvm))
5519 return -ENOSPC;
5520 return 0;
ebeace86 5521}
ebeace86 5522
14727754 5523int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5524 void *insn, int insn_len)
3067714c 5525{
472faffa 5526 int r, emulation_type = 0;
44dd3ffa 5527 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5528
618232e2 5529 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5530 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5531 vcpu->arch.gpa_available = true;
5532 vcpu->arch.gpa_val = cr2;
5533 }
3067714c 5534
9b8ebbdb 5535 r = RET_PF_INVALID;
e9ee956e
TY
5536 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5537 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5538 if (r == RET_PF_EMULATE)
e9ee956e 5539 goto emulate;
e9ee956e 5540 }
3067714c 5541
9b8ebbdb 5542 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5543 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5544 lower_32_bits(error_code),
5545 false);
9b8ebbdb
PB
5546 WARN_ON(r == RET_PF_INVALID);
5547 }
5548
5549 if (r == RET_PF_RETRY)
5550 return 1;
3067714c 5551 if (r < 0)
e9ee956e 5552 return r;
3067714c 5553
14727754
TL
5554 /*
5555 * Before emulating the instruction, check if the error code
5556 * was due to a RO violation while translating the guest page.
5557 * This can occur when using nested virtualization with nested
5558 * paging in both guests. If true, we simply unprotect the page
5559 * and resume the guest.
14727754 5560 */
44dd3ffa 5561 if (vcpu->arch.mmu->direct_map &&
eebed243 5562 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5563 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5564 return 1;
5565 }
5566
472faffa
SC
5567 /*
5568 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5569 * optimistically try to just unprotect the page and let the processor
5570 * re-execute the instruction that caused the page fault. Do not allow
5571 * retrying MMIO emulation, as it's not only pointless but could also
5572 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5573 * faulting on the non-existent MMIO address. Retrying an instruction
5574 * from a nested guest is also pointless and dangerous as we are only
5575 * explicitly shadowing L1's page tables, i.e. unprotecting something
5576 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5577 */
6c3dfeb6 5578 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5579 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5580emulate:
00b10fe1
BS
5581 /*
5582 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5583 * This can happen if a guest gets a page-fault on data access but the HW
5584 * table walker is not able to read the instruction page (e.g instruction
5585 * page is not present in memory). In those cases we simply restart the
05d5a486 5586 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5587 */
05d5a486
SB
5588 if (unlikely(insn && !insn_len)) {
5589 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5590 return 1;
5591 }
00b10fe1 5592
60fc3d02
SC
5593 return x86_emulate_instruction(vcpu, cr2, emulation_type, insn,
5594 insn_len);
3067714c
AK
5595}
5596EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5597
a7052897
MT
5598void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5599{
44dd3ffa 5600 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5601 int i;
7eb77e9f 5602
faff8758
JS
5603 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5604 if (is_noncanonical_address(gva, vcpu))
5605 return;
5606
7eb77e9f 5607 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5608
5609 /*
5610 * INVLPG is required to invalidate any global mappings for the VA,
5611 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5612 * of work to determine whether any of the prev_root mappings of the VA
5613 * is marked global, or to just sync it blindly, so we might as well
5614 * just always sync it.
956bf353 5615 *
b94742c9
JS
5616 * Mappings not reachable via the current cr3 or the prev_roots will be
5617 * synced when switching to that cr3, so nothing needs to be done here
5618 * for them.
956bf353 5619 */
b94742c9
JS
5620 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5621 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5622 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5623
faff8758 5624 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5625 ++vcpu->stat.invlpg;
5626}
5627EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5628
eb4b248e
JS
5629void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5630{
44dd3ffa 5631 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5632 bool tlb_flush = false;
b94742c9 5633 uint i;
eb4b248e
JS
5634
5635 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5636 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5637 tlb_flush = true;
eb4b248e
JS
5638 }
5639
b94742c9
JS
5640 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5641 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5642 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5643 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5644 tlb_flush = true;
5645 }
956bf353 5646 }
ade61e28 5647
faff8758
JS
5648 if (tlb_flush)
5649 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5650
eb4b248e
JS
5651 ++vcpu->stat.invlpg;
5652
5653 /*
b94742c9
JS
5654 * Mappings not reachable via the current cr3 or the prev_roots will be
5655 * synced when switching to that cr3, so nothing needs to be done here
5656 * for them.
eb4b248e
JS
5657 */
5658}
5659EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5660
18552672
JR
5661void kvm_enable_tdp(void)
5662{
5663 tdp_enabled = true;
5664}
5665EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5666
5f4cb662
JR
5667void kvm_disable_tdp(void)
5668{
5669 tdp_enabled = false;
5670}
5671EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5672
85875a13
SC
5673
5674/* The return value indicates if tlb flush on all vcpus is needed. */
5675typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5676
5677/* The caller should hold mmu-lock before calling this function. */
5678static __always_inline bool
5679slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5680 slot_level_handler fn, int start_level, int end_level,
5681 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5682{
5683 struct slot_rmap_walk_iterator iterator;
5684 bool flush = false;
5685
5686 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5687 end_gfn, &iterator) {
5688 if (iterator.rmap)
5689 flush |= fn(kvm, iterator.rmap);
5690
5691 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5692 if (flush && lock_flush_tlb) {
f285c633
BG
5693 kvm_flush_remote_tlbs_with_address(kvm,
5694 start_gfn,
5695 iterator.gfn - start_gfn + 1);
85875a13
SC
5696 flush = false;
5697 }
5698 cond_resched_lock(&kvm->mmu_lock);
5699 }
5700 }
5701
5702 if (flush && lock_flush_tlb) {
f285c633
BG
5703 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5704 end_gfn - start_gfn + 1);
85875a13
SC
5705 flush = false;
5706 }
5707
5708 return flush;
5709}
5710
5711static __always_inline bool
5712slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5713 slot_level_handler fn, int start_level, int end_level,
5714 bool lock_flush_tlb)
5715{
5716 return slot_handle_level_range(kvm, memslot, fn, start_level,
5717 end_level, memslot->base_gfn,
5718 memslot->base_gfn + memslot->npages - 1,
5719 lock_flush_tlb);
5720}
5721
5722static __always_inline bool
5723slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5724 slot_level_handler fn, bool lock_flush_tlb)
5725{
5726 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5727 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5728}
5729
5730static __always_inline bool
5731slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5732 slot_level_handler fn, bool lock_flush_tlb)
5733{
5734 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5735 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5736}
5737
5738static __always_inline bool
5739slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5740 slot_level_handler fn, bool lock_flush_tlb)
5741{
5742 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5743 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5744}
5745
1cfff4d9 5746static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5747{
1cfff4d9
JP
5748 free_page((unsigned long)mmu->pae_root);
5749 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5750}
5751
1cfff4d9 5752static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5753{
17ac10ad 5754 struct page *page;
6aa8b732
AK
5755 int i;
5756
17ac10ad 5757 /*
b6b80c78
SC
5758 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5759 * while the PDP table is a per-vCPU construct that's allocated at MMU
5760 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5761 * x86_64. Therefore we need to allocate the PDP table in the first
5762 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5763 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5764 * skip allocating the PDP table.
17ac10ad 5765 */
b6b80c78
SC
5766 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5767 return 0;
5768
254272ce 5769 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5770 if (!page)
d7fa6ab2
WY
5771 return -ENOMEM;
5772
1cfff4d9 5773 mmu->pae_root = page_address(page);
17ac10ad 5774 for (i = 0; i < 4; ++i)
1cfff4d9 5775 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5776
6aa8b732 5777 return 0;
6aa8b732
AK
5778}
5779
8018c27b 5780int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5781{
b94742c9 5782 uint i;
1cfff4d9 5783 int ret;
b94742c9 5784
44dd3ffa
VK
5785 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5786 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5787
44dd3ffa 5788 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5789 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5790 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5791 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5792 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5793
14c07ad8 5794 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5795 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5796 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5797 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5798 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5799
14c07ad8 5800 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9
JP
5801
5802 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5803 if (ret)
5804 return ret;
5805
5806 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5807 if (ret)
5808 goto fail_allocate_root;
5809
5810 return ret;
5811 fail_allocate_root:
5812 free_mmu_pages(&vcpu->arch.guest_mmu);
5813 return ret;
6aa8b732
AK
5814}
5815
fbb158cb 5816#define BATCH_ZAP_PAGES 10
002c5f73
SC
5817static void kvm_zap_obsolete_pages(struct kvm *kvm)
5818{
5819 struct kvm_mmu_page *sp, *node;
fbb158cb 5820 int nr_zapped, batch = 0;
002c5f73
SC
5821
5822restart:
5823 list_for_each_entry_safe_reverse(sp, node,
5824 &kvm->arch.active_mmu_pages, link) {
5825 /*
5826 * No obsolete valid page exists before a newly created page
5827 * since active_mmu_pages is a FIFO list.
5828 */
5829 if (!is_obsolete_sp(kvm, sp))
5830 break;
5831
5832 /*
9a5c034c
SC
5833 * Skip invalid pages with a non-zero root count, zapping pages
5834 * with a non-zero root count will never succeed, i.e. the page
5835 * will get thrown back on active_mmu_pages and we'll get stuck
5836 * in an infinite loop.
002c5f73 5837 */
9a5c034c 5838 if (sp->role.invalid && sp->root_count)
002c5f73
SC
5839 continue;
5840
4506ecf4
SC
5841 /*
5842 * No need to flush the TLB since we're only zapping shadow
5843 * pages with an obsolete generation number and all vCPUS have
5844 * loaded a new root, i.e. the shadow pages being zapped cannot
5845 * be in active use by the guest.
5846 */
fbb158cb 5847 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5848 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5849 batch = 0;
002c5f73
SC
5850 goto restart;
5851 }
5852
10605204
SC
5853 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5854 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5855 batch += nr_zapped;
002c5f73 5856 goto restart;
fbb158cb 5857 }
002c5f73
SC
5858 }
5859
4506ecf4
SC
5860 /*
5861 * Trigger a remote TLB flush before freeing the page tables to ensure
5862 * KVM is not in the middle of a lockless shadow page table walk, which
5863 * may reference the pages.
5864 */
10605204 5865 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5866}
5867
5868/*
5869 * Fast invalidate all shadow pages and use lock-break technique
5870 * to zap obsolete pages.
5871 *
5872 * It's required when memslot is being deleted or VM is being
5873 * destroyed, in these cases, we should ensure that KVM MMU does
5874 * not use any resource of the being-deleted slot or all slots
5875 * after calling the function.
5876 */
5877static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5878{
ca333add
SC
5879 lockdep_assert_held(&kvm->slots_lock);
5880
002c5f73 5881 spin_lock(&kvm->mmu_lock);
14a3c4f4 5882 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5883
5884 /*
5885 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5886 * held for the entire duration of zapping obsolete pages, it's
5887 * impossible for there to be multiple invalid generations associated
5888 * with *valid* shadow pages at any given time, i.e. there is exactly
5889 * one valid generation and (at most) one invalid generation.
5890 */
5891 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5892
4506ecf4
SC
5893 /*
5894 * Notify all vcpus to reload its shadow page table and flush TLB.
5895 * Then all vcpus will switch to new shadow page table with the new
5896 * mmu_valid_gen.
5897 *
5898 * Note: we need to do this under the protection of mmu_lock,
5899 * otherwise, vcpu would purge shadow page but miss tlb flush.
5900 */
5901 kvm_reload_remote_mmus(kvm);
5902
002c5f73
SC
5903 kvm_zap_obsolete_pages(kvm);
5904 spin_unlock(&kvm->mmu_lock);
5905}
5906
10605204
SC
5907static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5908{
5909 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5910}
5911
b5f5fdca 5912static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5913 struct kvm_memory_slot *slot,
5914 struct kvm_page_track_notifier_node *node)
b5f5fdca 5915{
002c5f73 5916 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5917}
5918
13d268ca 5919void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5920{
13d268ca 5921 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5922
13d268ca 5923 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5924 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5925 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5926}
5927
13d268ca 5928void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5929{
13d268ca 5930 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5931
13d268ca 5932 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5933}
5934
efdfe536
XG
5935void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5936{
5937 struct kvm_memslots *slots;
5938 struct kvm_memory_slot *memslot;
9da0e4d5 5939 int i;
efdfe536
XG
5940
5941 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5942 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5943 slots = __kvm_memslots(kvm, i);
5944 kvm_for_each_memslot(memslot, slots) {
5945 gfn_t start, end;
5946
5947 start = max(gfn_start, memslot->base_gfn);
5948 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5949 if (start >= end)
5950 continue;
efdfe536 5951
92da008f
BG
5952 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5953 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5954 start, end - 1, true);
9da0e4d5 5955 }
efdfe536
XG
5956 }
5957
5958 spin_unlock(&kvm->mmu_lock);
5959}
5960
018aabb5
TY
5961static bool slot_rmap_write_protect(struct kvm *kvm,
5962 struct kvm_rmap_head *rmap_head)
d77aa73c 5963{
018aabb5 5964 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5965}
5966
1c91cad4
KH
5967void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5968 struct kvm_memory_slot *memslot)
6aa8b732 5969{
d77aa73c 5970 bool flush;
6aa8b732 5971
9d1beefb 5972 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5973 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5974 false);
9d1beefb 5975 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5976
5977 /*
5978 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5979 * which do tlb flush out of mmu-lock should be serialized by
5980 * kvm->slots_lock otherwise tlb flush would be missed.
5981 */
5982 lockdep_assert_held(&kvm->slots_lock);
5983
5984 /*
5985 * We can flush all the TLBs out of the mmu lock without TLB
5986 * corruption since we just change the spte from writable to
5987 * readonly so that we only need to care the case of changing
5988 * spte from present to present (changing the spte from present
5989 * to nonpresent will flush all the TLBs immediately), in other
5990 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5991 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5992 * instead of PT_WRITABLE_MASK, that means it does not depend
5993 * on PT_WRITABLE_MASK anymore.
5994 */
d91ffee9 5995 if (flush)
c3134ce2
LT
5996 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5997 memslot->npages);
6aa8b732 5998}
37a7d8b0 5999
3ea3b7fa 6000static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 6001 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
6002{
6003 u64 *sptep;
6004 struct rmap_iterator iter;
6005 int need_tlb_flush = 0;
ba049e93 6006 kvm_pfn_t pfn;
3ea3b7fa
WL
6007 struct kvm_mmu_page *sp;
6008
0d536790 6009restart:
018aabb5 6010 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
6011 sp = page_header(__pa(sptep));
6012 pfn = spte_to_pfn(*sptep);
6013
6014 /*
decf6333
XG
6015 * We cannot do huge page mapping for indirect shadow pages,
6016 * which are found on the last rmap (level = 1) when not using
6017 * tdp; such shadow pages are synced with the page table in
6018 * the guest, and the guest page table is using 4K page size
6019 * mapping if the indirect sp has level = 1.
3ea3b7fa 6020 */
a78986aa
SC
6021 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6022 !kvm_is_zone_device_pfn(pfn) &&
6023 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 6024 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
6025
6026 if (kvm_available_flush_tlb_with_range())
6027 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6028 KVM_PAGES_PER_HPAGE(sp->role.level));
6029 else
6030 need_tlb_flush = 1;
6031
0d536790
XG
6032 goto restart;
6033 }
3ea3b7fa
WL
6034 }
6035
6036 return need_tlb_flush;
6037}
6038
6039void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 6040 const struct kvm_memory_slot *memslot)
3ea3b7fa 6041{
f36f3f28 6042 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 6043 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
6044 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
6045 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
6046 spin_unlock(&kvm->mmu_lock);
6047}
6048
f4b4b180
KH
6049void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6050 struct kvm_memory_slot *memslot)
6051{
d77aa73c 6052 bool flush;
f4b4b180
KH
6053
6054 spin_lock(&kvm->mmu_lock);
d77aa73c 6055 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
6056 spin_unlock(&kvm->mmu_lock);
6057
6058 lockdep_assert_held(&kvm->slots_lock);
6059
6060 /*
6061 * It's also safe to flush TLBs out of mmu lock here as currently this
6062 * function is only used for dirty logging, in which case flushing TLB
6063 * out of mmu lock also guarantees no dirty pages will be lost in
6064 * dirty_bitmap.
6065 */
6066 if (flush)
c3134ce2
LT
6067 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6068 memslot->npages);
f4b4b180
KH
6069}
6070EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6071
6072void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6073 struct kvm_memory_slot *memslot)
6074{
d77aa73c 6075 bool flush;
f4b4b180
KH
6076
6077 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
6078 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6079 false);
f4b4b180
KH
6080 spin_unlock(&kvm->mmu_lock);
6081
6082 /* see kvm_mmu_slot_remove_write_access */
6083 lockdep_assert_held(&kvm->slots_lock);
6084
6085 if (flush)
c3134ce2
LT
6086 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6087 memslot->npages);
f4b4b180
KH
6088}
6089EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6090
6091void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6092 struct kvm_memory_slot *memslot)
6093{
d77aa73c 6094 bool flush;
f4b4b180
KH
6095
6096 spin_lock(&kvm->mmu_lock);
d77aa73c 6097 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
6098 spin_unlock(&kvm->mmu_lock);
6099
6100 lockdep_assert_held(&kvm->slots_lock);
6101
6102 /* see kvm_mmu_slot_leaf_clear_dirty */
6103 if (flush)
c3134ce2
LT
6104 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6105 memslot->npages);
f4b4b180
KH
6106}
6107EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6108
92f58b5c 6109void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
6110{
6111 struct kvm_mmu_page *sp, *node;
7390de1e 6112 LIST_HEAD(invalid_list);
83cdb568 6113 int ign;
5304b8d3 6114
7390de1e 6115 spin_lock(&kvm->mmu_lock);
5304b8d3 6116restart:
8a674adc 6117 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
8ab3c471 6118 if (sp->role.invalid && sp->root_count)
4771450c 6119 continue;
92f58b5c 6120 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 6121 goto restart;
24efe61f 6122 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
6123 goto restart;
6124 }
6125
4771450c 6126 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
6127 spin_unlock(&kvm->mmu_lock);
6128}
6129
15248258 6130void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 6131{
164bf7e5 6132 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 6133
164bf7e5 6134 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 6135
f8f55942 6136 /*
e1359e2b
SC
6137 * Generation numbers are incremented in multiples of the number of
6138 * address spaces in order to provide unique generations across all
6139 * address spaces. Strip what is effectively the address space
6140 * modifier prior to checking for a wrap of the MMIO generation so
6141 * that a wrap in any address space is detected.
6142 */
6143 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6144
f8f55942 6145 /*
e1359e2b 6146 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 6147 * zap all shadow pages.
f8f55942 6148 */
e1359e2b 6149 if (unlikely(gen == 0)) {
ae0f5499 6150 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 6151 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 6152 }
f8f55942
XG
6153}
6154
70534a73
DC
6155static unsigned long
6156mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
6157{
6158 struct kvm *kvm;
1495f230 6159 int nr_to_scan = sc->nr_to_scan;
70534a73 6160 unsigned long freed = 0;
3ee16c81 6161
0d9ce162 6162 mutex_lock(&kvm_lock);
3ee16c81
IE
6163
6164 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 6165 int idx;
d98ba053 6166 LIST_HEAD(invalid_list);
3ee16c81 6167
35f2d16b
TY
6168 /*
6169 * Never scan more than sc->nr_to_scan VM instances.
6170 * Will not hit this condition practically since we do not try
6171 * to shrink more than one VM and it is very unlikely to see
6172 * !n_used_mmu_pages so many times.
6173 */
6174 if (!nr_to_scan--)
6175 break;
19526396
GN
6176 /*
6177 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6178 * here. We may skip a VM instance errorneosly, but we do not
6179 * want to shrink a VM that only started to populate its MMU
6180 * anyway.
6181 */
10605204
SC
6182 if (!kvm->arch.n_used_mmu_pages &&
6183 !kvm_has_zapped_obsolete_pages(kvm))
19526396 6184 continue;
19526396 6185
f656ce01 6186 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 6187 spin_lock(&kvm->mmu_lock);
3ee16c81 6188
10605204
SC
6189 if (kvm_has_zapped_obsolete_pages(kvm)) {
6190 kvm_mmu_commit_zap_page(kvm,
6191 &kvm->arch.zapped_obsolete_pages);
6192 goto unlock;
6193 }
6194
70534a73
DC
6195 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6196 freed++;
d98ba053 6197 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 6198
10605204 6199unlock:
3ee16c81 6200 spin_unlock(&kvm->mmu_lock);
f656ce01 6201 srcu_read_unlock(&kvm->srcu, idx);
19526396 6202
70534a73
DC
6203 /*
6204 * unfair on small ones
6205 * per-vm shrinkers cry out
6206 * sadness comes quickly
6207 */
19526396
GN
6208 list_move_tail(&kvm->vm_list, &vm_list);
6209 break;
3ee16c81 6210 }
3ee16c81 6211
0d9ce162 6212 mutex_unlock(&kvm_lock);
70534a73 6213 return freed;
70534a73
DC
6214}
6215
6216static unsigned long
6217mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6218{
45221ab6 6219 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
6220}
6221
6222static struct shrinker mmu_shrinker = {
70534a73
DC
6223 .count_objects = mmu_shrink_count,
6224 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
6225 .seeks = DEFAULT_SEEKS * 10,
6226};
6227
2ddfd20e 6228static void mmu_destroy_caches(void)
b5a33a75 6229{
c1bd743e
TH
6230 kmem_cache_destroy(pte_list_desc_cache);
6231 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
6232}
6233
7b6f8a06
KH
6234static void kvm_set_mmio_spte_mask(void)
6235{
6236 u64 mask;
7b6f8a06
KH
6237
6238 /*
6239 * Set the reserved bits and the present bit of an paging-structure
6240 * entry to generate page fault with PFER.RSV = 1.
6241 */
6242
6243 /*
6244 * Mask the uppermost physical address bit, which would be reserved as
6245 * long as the supported physical address width is less than 52.
6246 */
6247 mask = 1ull << 51;
6248
6249 /* Set the present bit. */
6250 mask |= 1ull;
6251
6252 /*
6253 * If reserved bit is not supported, clear the present bit to disable
6254 * mmio page fault.
6255 */
f3ecb59d 6256 if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
7b6f8a06
KH
6257 mask &= ~1ull;
6258
4af77151 6259 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
6260}
6261
b8e8c830
PB
6262static bool get_nx_auto_mode(void)
6263{
6264 /* Return true when CPU has the bug, and mitigations are ON */
6265 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6266}
6267
6268static void __set_nx_huge_pages(bool val)
6269{
6270 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6271}
6272
6273static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6274{
6275 bool old_val = nx_huge_pages;
6276 bool new_val;
6277
6278 /* In "auto" mode deploy workaround only if CPU has the bug. */
6279 if (sysfs_streq(val, "off"))
6280 new_val = 0;
6281 else if (sysfs_streq(val, "force"))
6282 new_val = 1;
6283 else if (sysfs_streq(val, "auto"))
6284 new_val = get_nx_auto_mode();
6285 else if (strtobool(val, &new_val) < 0)
6286 return -EINVAL;
6287
6288 __set_nx_huge_pages(new_val);
6289
6290 if (new_val != old_val) {
6291 struct kvm *kvm;
b8e8c830
PB
6292
6293 mutex_lock(&kvm_lock);
6294
6295 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 6296 mutex_lock(&kvm->slots_lock);
b8e8c830 6297 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 6298 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
6299
6300 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
6301 }
6302 mutex_unlock(&kvm_lock);
6303 }
6304
6305 return 0;
6306}
6307
b5a33a75
AK
6308int kvm_mmu_module_init(void)
6309{
ab271bd4
AB
6310 int ret = -ENOMEM;
6311
b8e8c830
PB
6312 if (nx_huge_pages == -1)
6313 __set_nx_huge_pages(get_nx_auto_mode());
6314
36d9594d
VK
6315 /*
6316 * MMU roles use union aliasing which is, generally speaking, an
6317 * undefined behavior. However, we supposedly know how compilers behave
6318 * and the current status quo is unlikely to change. Guardians below are
6319 * supposed to let us know if the assumption becomes false.
6320 */
6321 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6322 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6323 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6324
28a1f3ac 6325 kvm_mmu_reset_all_pte_masks();
f160c7b7 6326
7b6f8a06
KH
6327 kvm_set_mmio_spte_mask();
6328
53c07b18
XG
6329 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6330 sizeof(struct pte_list_desc),
46bea48a 6331 0, SLAB_ACCOUNT, NULL);
53c07b18 6332 if (!pte_list_desc_cache)
ab271bd4 6333 goto out;
b5a33a75 6334
d3d25b04
AK
6335 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6336 sizeof(struct kvm_mmu_page),
46bea48a 6337 0, SLAB_ACCOUNT, NULL);
d3d25b04 6338 if (!mmu_page_header_cache)
ab271bd4 6339 goto out;
d3d25b04 6340
908c7f19 6341 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6342 goto out;
45bf21a8 6343
ab271bd4
AB
6344 ret = register_shrinker(&mmu_shrinker);
6345 if (ret)
6346 goto out;
3ee16c81 6347
b5a33a75
AK
6348 return 0;
6349
ab271bd4 6350out:
3ee16c81 6351 mmu_destroy_caches();
ab271bd4 6352 return ret;
b5a33a75
AK
6353}
6354
3ad82a7e 6355/*
39337ad1 6356 * Calculate mmu pages needed for kvm.
3ad82a7e 6357 */
bc8a3d89 6358unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6359{
bc8a3d89
BG
6360 unsigned long nr_mmu_pages;
6361 unsigned long nr_pages = 0;
bc6678a3 6362 struct kvm_memslots *slots;
be6ba0f0 6363 struct kvm_memory_slot *memslot;
9da0e4d5 6364 int i;
3ad82a7e 6365
9da0e4d5
PB
6366 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6367 slots = __kvm_memslots(kvm, i);
90d83dc3 6368
9da0e4d5
PB
6369 kvm_for_each_memslot(memslot, slots)
6370 nr_pages += memslot->npages;
6371 }
3ad82a7e
ZX
6372
6373 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6374 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6375
6376 return nr_mmu_pages;
6377}
6378
c42fffe3
XG
6379void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6380{
95f93af4 6381 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6382 free_mmu_pages(&vcpu->arch.root_mmu);
6383 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6384 mmu_free_memory_caches(vcpu);
b034cf01
XG
6385}
6386
b034cf01
XG
6387void kvm_mmu_module_exit(void)
6388{
6389 mmu_destroy_caches();
6390 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6391 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6392 mmu_audit_disable();
6393}
1aa9b957
JS
6394
6395static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6396{
6397 unsigned int old_val;
6398 int err;
6399
6400 old_val = nx_huge_pages_recovery_ratio;
6401 err = param_set_uint(val, kp);
6402 if (err)
6403 return err;
6404
6405 if (READ_ONCE(nx_huge_pages) &&
6406 !old_val && nx_huge_pages_recovery_ratio) {
6407 struct kvm *kvm;
6408
6409 mutex_lock(&kvm_lock);
6410
6411 list_for_each_entry(kvm, &vm_list, vm_list)
6412 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6413
6414 mutex_unlock(&kvm_lock);
6415 }
6416
6417 return err;
6418}
6419
6420static void kvm_recover_nx_lpages(struct kvm *kvm)
6421{
6422 int rcu_idx;
6423 struct kvm_mmu_page *sp;
6424 unsigned int ratio;
6425 LIST_HEAD(invalid_list);
6426 ulong to_zap;
6427
6428 rcu_idx = srcu_read_lock(&kvm->srcu);
6429 spin_lock(&kvm->mmu_lock);
6430
6431 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6432 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6433 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6434 /*
6435 * We use a separate list instead of just using active_mmu_pages
6436 * because the number of lpage_disallowed pages is expected to
6437 * be relatively small compared to the total.
6438 */
6439 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6440 struct kvm_mmu_page,
6441 lpage_disallowed_link);
6442 WARN_ON_ONCE(!sp->lpage_disallowed);
6443 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6444 WARN_ON_ONCE(sp->lpage_disallowed);
6445
6446 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6447 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6448 if (to_zap)
6449 cond_resched_lock(&kvm->mmu_lock);
6450 }
6451 }
6452
6453 spin_unlock(&kvm->mmu_lock);
6454 srcu_read_unlock(&kvm->srcu, rcu_idx);
6455}
6456
6457static long get_nx_lpage_recovery_timeout(u64 start_time)
6458{
6459 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6460 ? start_time + 60 * HZ - get_jiffies_64()
6461 : MAX_SCHEDULE_TIMEOUT;
6462}
6463
6464static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6465{
6466 u64 start_time;
6467 long remaining_time;
6468
6469 while (true) {
6470 start_time = get_jiffies_64();
6471 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6472
6473 set_current_state(TASK_INTERRUPTIBLE);
6474 while (!kthread_should_stop() && remaining_time > 0) {
6475 schedule_timeout(remaining_time);
6476 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6477 set_current_state(TASK_INTERRUPTIBLE);
6478 }
6479
6480 set_current_state(TASK_RUNNING);
6481
6482 if (kthread_should_stop())
6483 return 0;
6484
6485 kvm_recover_nx_lpages(kvm);
6486 }
6487}
6488
6489int kvm_mmu_post_init_vm(struct kvm *kvm)
6490{
6491 int err;
6492
6493 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6494 "kvm-nx-lpage-recovery",
6495 &kvm->arch.nx_lpage_recovery_thread);
6496 if (!err)
6497 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6498
6499 return err;
6500}
6501
6502void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6503{
6504 if (kvm->arch.nx_lpage_recovery_thread)
6505 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6506}