]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: x86: move MSR_IA32_PERF_CAPABILITIES emulation to common x86 code
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
836a1b3c 22#include "x86.h"
6de4f3ad 23#include "kvm_cache_regs.h"
2f728d66 24#include "kvm_emulate.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
1aa9b957 43#include <linux/kthread.h>
6aa8b732 44
e495606d 45#include <asm/page.h>
eb243d1d 46#include <asm/memtype.h>
e495606d 47#include <asm/cmpxchg.h>
0c55671f 48#include <asm/e820/api.h>
4e542370 49#include <asm/io.h>
13673a90 50#include <asm/vmx.h>
3d0c27ad 51#include <asm/kvm_page_track.h>
1261bfa3 52#include "trace.h"
6aa8b732 53
b8e8c830
PB
54extern bool itlb_multihit_kvm_mitigation;
55
56static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
57#ifdef CONFIG_PREEMPT_RT
58/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
59static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
60#else
1aa9b957 61static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 62#endif
b8e8c830
PB
63
64static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 65static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830
PB
66
67static struct kernel_param_ops nx_huge_pages_ops = {
68 .set = set_nx_huge_pages,
69 .get = param_get_bool,
70};
71
1aa9b957
JS
72static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
73 .set = set_nx_huge_pages_recovery_ratio,
74 .get = param_get_uint,
75};
76
b8e8c830
PB
77module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
78__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
79module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
80 &nx_huge_pages_recovery_ratio, 0644);
81__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 82
71fe7013
SC
83static bool __read_mostly force_flush_and_sync_on_reuse;
84module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
85
18552672
JR
86/*
87 * When setting this variable to true it enables Two-Dimensional-Paging
88 * where the hardware walks 2 page tables:
89 * 1. the guest-virtual to guest-physical
90 * 2. while doing 1. it walks guest-physical to host-physical
91 * If the hardware supports that we don't need to do shadow paging.
92 */
2f333bcb 93bool tdp_enabled = false;
18552672 94
703c335d
SC
95static int max_page_level __read_mostly;
96
8b1fe17c
XG
97enum {
98 AUDIT_PRE_PAGE_FAULT,
99 AUDIT_POST_PAGE_FAULT,
100 AUDIT_PRE_PTE_WRITE,
6903074c
XG
101 AUDIT_POST_PTE_WRITE,
102 AUDIT_PRE_SYNC,
103 AUDIT_POST_SYNC
8b1fe17c 104};
37a7d8b0 105
8b1fe17c 106#undef MMU_DEBUG
37a7d8b0
AK
107
108#ifdef MMU_DEBUG
fa4a2c08
PB
109static bool dbg = 0;
110module_param(dbg, bool, 0644);
37a7d8b0
AK
111
112#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
113#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 114#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 115#else
37a7d8b0
AK
116#define pgprintk(x...) do { } while (0)
117#define rmap_printk(x...) do { } while (0)
fa4a2c08 118#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 119#endif
6aa8b732 120
957ed9ef
XG
121#define PTE_PREFETCH_NUM 8
122
00763e41 123#define PT_FIRST_AVAIL_BITS_SHIFT 10
6eeb4ef0
PB
124#define PT64_SECOND_AVAIL_BITS_SHIFT 54
125
126/*
127 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
128 * Access Tracking SPTEs.
129 */
130#define SPTE_SPECIAL_MASK (3ULL << 52)
131#define SPTE_AD_ENABLED_MASK (0ULL << 52)
132#define SPTE_AD_DISABLED_MASK (1ULL << 52)
1f4e5fc8 133#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
6eeb4ef0 134#define SPTE_MMIO_MASK (3ULL << 52)
6aa8b732 135
6aa8b732
AK
136#define PT64_LEVEL_BITS 9
137
138#define PT64_LEVEL_SHIFT(level) \
d77c26fc 139 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 140
6aa8b732
AK
141#define PT64_INDEX(address, level)\
142 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
143
144
145#define PT32_LEVEL_BITS 10
146
147#define PT32_LEVEL_SHIFT(level) \
d77c26fc 148 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 149
e04da980
JR
150#define PT32_LVL_OFFSET_MASK(level) \
151 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
152 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
153
154#define PT32_INDEX(address, level)\
155 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
156
157
8acc0993
KH
158#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
159#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
160#else
161#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
162#endif
e04da980
JR
163#define PT64_LVL_ADDR_MASK(level) \
164 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
165 * PT64_LEVEL_BITS))) - 1))
166#define PT64_LVL_OFFSET_MASK(level) \
167 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
168 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
169
170#define PT32_BASE_ADDR_MASK PAGE_MASK
171#define PT32_DIR_BASE_ADDR_MASK \
172 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
173#define PT32_LVL_ADDR_MASK(level) \
174 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
175 * PT32_LEVEL_BITS))) - 1))
6aa8b732 176
53166229 177#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 178 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 179
fe135d2c
AK
180#define ACC_EXEC_MASK 1
181#define ACC_WRITE_MASK PT_WRITABLE_MASK
182#define ACC_USER_MASK PT_USER_MASK
183#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
184
f160c7b7
JS
185/* The mask for the R/X bits in EPT PTEs */
186#define PT64_EPT_READABLE_MASK 0x1ull
187#define PT64_EPT_EXECUTABLE_MASK 0x4ull
188
90bb6fc5
AK
189#include <trace/events/kvm.h>
190
49fde340
XG
191#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
192#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 193
135f8c2b
AK
194#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
195
220f773a
TY
196/* make pte_list_desc fit well in cache line */
197#define PTE_LIST_EXT 3
198
9b8ebbdb
PB
199/*
200 * Return values of handle_mmio_page_fault and mmu.page_fault:
201 * RET_PF_RETRY: let CPU fault again on the address.
202 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
203 *
204 * For handle_mmio_page_fault only:
205 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
206 */
207enum {
208 RET_PF_RETRY = 0,
209 RET_PF_EMULATE = 1,
210 RET_PF_INVALID = 2,
211};
212
53c07b18
XG
213struct pte_list_desc {
214 u64 *sptes[PTE_LIST_EXT];
215 struct pte_list_desc *more;
cd4a4e53
AK
216};
217
2d11123a
AK
218struct kvm_shadow_walk_iterator {
219 u64 addr;
220 hpa_t shadow_addr;
2d11123a 221 u64 *sptep;
dd3bfd59 222 int level;
2d11123a
AK
223 unsigned index;
224};
225
7eb77e9f
JS
226#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
227 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
228 (_root), (_addr)); \
229 shadow_walk_okay(&(_walker)); \
230 shadow_walk_next(&(_walker)))
231
232#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
233 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
234 shadow_walk_okay(&(_walker)); \
235 shadow_walk_next(&(_walker)))
236
c2a2ac2b
XG
237#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
238 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
239 shadow_walk_okay(&(_walker)) && \
240 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
241 __shadow_walk_next(&(_walker), spte))
242
53c07b18 243static struct kmem_cache *pte_list_desc_cache;
d3d25b04 244static struct kmem_cache *mmu_page_header_cache;
45221ab6 245static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 246
7b52345e
SY
247static u64 __read_mostly shadow_nx_mask;
248static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
249static u64 __read_mostly shadow_user_mask;
250static u64 __read_mostly shadow_accessed_mask;
251static u64 __read_mostly shadow_dirty_mask;
dcdca5fe 252static u64 __read_mostly shadow_mmio_value;
4af77151 253static u64 __read_mostly shadow_mmio_access_mask;
ffb128c8 254static u64 __read_mostly shadow_present_mask;
d0ec49d4 255static u64 __read_mostly shadow_me_mask;
ce88decf 256
f160c7b7 257/*
6eeb4ef0
PB
258 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
259 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
260 * pages.
f160c7b7
JS
261 */
262static u64 __read_mostly shadow_acc_track_mask;
f160c7b7
JS
263
264/*
265 * The mask/shift to use for saving the original R/X bits when marking the PTE
266 * as not-present for access tracking purposes. We do not save the W bit as the
267 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
268 * restored only when a write is attempted to the page.
269 */
270static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
271 PT64_EPT_EXECUTABLE_MASK;
272static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
273
28a1f3ac
JS
274/*
275 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
276 * to guard against L1TF attacks.
277 */
278static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
279
280/*
281 * The number of high-order 1 bits to use in the mask above.
282 */
283static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
284
daa07cbc
SC
285/*
286 * In some cases, we need to preserve the GFN of a non-present or reserved
287 * SPTE when we usurp the upper five bits of the physical address space to
288 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
289 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
290 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
291 * high and low parts. This mask covers the lower bits of the GFN.
292 */
293static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
294
f3ecb59d
KH
295/*
296 * The number of non-reserved physical address bits irrespective of features
297 * that repurpose legal bits, e.g. MKTME.
298 */
299static u8 __read_mostly shadow_phys_bits;
daa07cbc 300
ce88decf 301static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 302static bool is_executable_pte(u64 spte);
9fa72119
JS
303static union kvm_mmu_page_role
304kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 305
335e192a
PB
306#define CREATE_TRACE_POINTS
307#include "mmutrace.h"
308
40ef75a7
LT
309
310static inline bool kvm_available_flush_tlb_with_range(void)
311{
afaf0b2f 312 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
313}
314
315static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
316 struct kvm_tlb_range *range)
317{
318 int ret = -ENOTSUPP;
319
afaf0b2f
SC
320 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
321 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
322
323 if (ret)
324 kvm_flush_remote_tlbs(kvm);
325}
326
327static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
328 u64 start_gfn, u64 pages)
329{
330 struct kvm_tlb_range range;
331
332 range.start_gfn = start_gfn;
333 range.pages = pages;
334
335 kvm_flush_remote_tlbs_with_range(kvm, &range);
336}
337
e7581cac 338void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
ce88decf 339{
4af77151 340 BUG_ON((u64)(unsigned)access_mask != access_mask);
d43e2675
PB
341 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
342 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
6eeb4ef0 343 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
4af77151 344 shadow_mmio_access_mask = access_mask;
ce88decf
XG
345}
346EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
347
26c44a63
SC
348static bool is_mmio_spte(u64 spte)
349{
e7581cac 350 return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
26c44a63
SC
351}
352
ac8d57e5
PF
353static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
354{
355 return sp->role.ad_disabled;
356}
357
1f4e5fc8
PB
358static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
359{
360 /*
361 * When using the EPT page-modification log, the GPAs in the log
362 * would come from L2 rather than L1. Therefore, we need to rely
363 * on write protection to record dirty pages. This also bypasses
364 * PML, since writes now result in a vmexit.
365 */
366 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
367}
368
ac8d57e5
PF
369static inline bool spte_ad_enabled(u64 spte)
370{
26c44a63 371 MMU_WARN_ON(is_mmio_spte(spte));
1f4e5fc8
PB
372 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
373}
374
375static inline bool spte_ad_need_write_protect(u64 spte)
376{
377 MMU_WARN_ON(is_mmio_spte(spte));
378 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
ac8d57e5
PF
379}
380
b8e8c830
PB
381static bool is_nx_huge_page_enabled(void)
382{
383 return READ_ONCE(nx_huge_pages);
384}
385
ac8d57e5
PF
386static inline u64 spte_shadow_accessed_mask(u64 spte)
387{
26c44a63 388 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
389 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
390}
391
392static inline u64 spte_shadow_dirty_mask(u64 spte)
393{
26c44a63 394 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
395 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
396}
397
f160c7b7
JS
398static inline bool is_access_track_spte(u64 spte)
399{
ac8d57e5 400 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
401}
402
f2fd125d 403/*
cae7ed3c
SC
404 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
405 * the memslots generation and is derived as follows:
ee3d1570 406 *
164bf7e5
SC
407 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
408 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 409 *
164bf7e5
SC
410 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
411 * the MMIO generation number, as doing so would require stealing a bit from
412 * the "real" generation number and thus effectively halve the maximum number
413 * of MMIO generations that can be handled before encountering a wrap (which
414 * requires a full MMU zap). The flag is instead explicitly queried when
415 * checking for MMIO spte cache hits.
f2fd125d 416 */
56871d44 417#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
f2fd125d 418
cae7ed3c
SC
419#define MMIO_SPTE_GEN_LOW_START 3
420#define MMIO_SPTE_GEN_LOW_END 11
421#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
422 MMIO_SPTE_GEN_LOW_START)
f2fd125d 423
56871d44
PB
424#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
425#define MMIO_SPTE_GEN_HIGH_END 62
cae7ed3c
SC
426#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
427 MMIO_SPTE_GEN_HIGH_START)
56871d44 428
5192f9b9 429static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
430{
431 u64 mask;
432
cae7ed3c 433 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
56871d44 434 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
f2fd125d 435
cae7ed3c
SC
436 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
437 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
438 return mask;
439}
440
5192f9b9 441static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 442{
5192f9b9 443 u64 gen;
f2fd125d 444
cae7ed3c
SC
445 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
446 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
447 return gen;
448}
449
8f79b064 450static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
ce88decf 451{
8f79b064 452
cae7ed3c 453 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 454 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 455 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 456
4af77151 457 access &= shadow_mmio_access_mask;
28a1f3ac
JS
458 mask |= shadow_mmio_value | access;
459 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
460 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
461 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 462
8f79b064
BG
463 return mask;
464}
465
466static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
467 unsigned int access)
468{
469 u64 mask = make_mmio_spte(vcpu, gfn, access);
470 unsigned int gen = get_mmio_spte_generation(mask);
471
472 access = mask & ACC_ALL;
473
f8f55942 474 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 475 mmu_spte_set(sptep, mask);
ce88decf
XG
476}
477
ce88decf
XG
478static gfn_t get_mmio_spte_gfn(u64 spte)
479{
daa07cbc 480 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
481
482 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
483 & shadow_nonpresent_or_rsvd_mask;
484
485 return gpa >> PAGE_SHIFT;
ce88decf
XG
486}
487
488static unsigned get_mmio_spte_access(u64 spte)
489{
4af77151 490 return spte & shadow_mmio_access_mask;
ce88decf
XG
491}
492
54bf36aa 493static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 494 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
495{
496 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 497 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
498 return true;
499 }
500
501 return false;
502}
c7addb90 503
54bf36aa 504static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 505{
cae7ed3c 506 u64 kvm_gen, spte_gen, gen;
089504c0 507
cae7ed3c
SC
508 gen = kvm_vcpu_memslots(vcpu)->generation;
509 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
510 return false;
089504c0 511
cae7ed3c 512 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
513 spte_gen = get_mmio_spte_generation(spte);
514
515 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
516 return likely(kvm_gen == spte_gen);
f8f55942
XG
517}
518
ce00053b
PF
519/*
520 * Sets the shadow PTE masks used by the MMU.
521 *
522 * Assumptions:
523 * - Setting either @accessed_mask or @dirty_mask requires setting both
524 * - At least one of @accessed_mask or @acc_track_mask must be set
525 */
7b52345e 526void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 527 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 528 u64 acc_track_mask, u64 me_mask)
7b52345e 529{
ce00053b
PF
530 BUG_ON(!dirty_mask != !accessed_mask);
531 BUG_ON(!accessed_mask && !acc_track_mask);
6eeb4ef0 532 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
312b616b 533
7b52345e
SY
534 shadow_user_mask = user_mask;
535 shadow_accessed_mask = accessed_mask;
536 shadow_dirty_mask = dirty_mask;
537 shadow_nx_mask = nx_mask;
538 shadow_x_mask = x_mask;
ffb128c8 539 shadow_present_mask = p_mask;
f160c7b7 540 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 541 shadow_me_mask = me_mask;
7b52345e
SY
542}
543EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
544
f3ecb59d
KH
545static u8 kvm_get_shadow_phys_bits(void)
546{
547 /*
7adacf5e
PB
548 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
549 * in CPU detection code, but the processor treats those reduced bits as
550 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
551 * the physical address bits reported by CPUID.
f3ecb59d 552 */
7adacf5e
PB
553 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
554 return cpuid_eax(0x80000008) & 0xff;
f3ecb59d 555
7adacf5e
PB
556 /*
557 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
558 * custom CPUID. Proceed with whatever the kernel found since these features
559 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
560 */
561 return boot_cpu_data.x86_phys_bits;
f3ecb59d
KH
562}
563
28a1f3ac 564static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 565{
daa07cbc
SC
566 u8 low_phys_bits;
567
f160c7b7
JS
568 shadow_user_mask = 0;
569 shadow_accessed_mask = 0;
570 shadow_dirty_mask = 0;
571 shadow_nx_mask = 0;
572 shadow_x_mask = 0;
f160c7b7
JS
573 shadow_present_mask = 0;
574 shadow_acc_track_mask = 0;
28a1f3ac 575
f3ecb59d
KH
576 shadow_phys_bits = kvm_get_shadow_phys_bits();
577
28a1f3ac
JS
578 /*
579 * If the CPU has 46 or less physical address bits, then set an
580 * appropriate mask to guard against L1TF attacks. Otherwise, it is
581 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
582 *
583 * Some Intel CPUs address the L1 cache using more PA bits than are
584 * reported by CPUID. Use the PA width of the L1 cache when possible
585 * to achieve more effective mitigation, e.g. if system RAM overlaps
586 * the most significant bits of legal physical address space.
28a1f3ac 587 */
61455bf2 588 shadow_nonpresent_or_rsvd_mask = 0;
d43e2675
PB
589 low_phys_bits = boot_cpu_data.x86_phys_bits;
590 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
591 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
592 52 - shadow_nonpresent_or_rsvd_mask_len)) {
593 low_phys_bits = boot_cpu_data.x86_cache_bits
594 - shadow_nonpresent_or_rsvd_mask_len;
28a1f3ac 595 shadow_nonpresent_or_rsvd_mask =
d43e2675
PB
596 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
597 }
61455bf2 598
daa07cbc
SC
599 shadow_nonpresent_or_rsvd_lower_gfn_mask =
600 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
601}
602
6aa8b732
AK
603static int is_cpuid_PSE36(void)
604{
605 return 1;
606}
607
73b1087e
AK
608static int is_nx(struct kvm_vcpu *vcpu)
609{
f6801dff 610 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
611}
612
c7addb90
AK
613static int is_shadow_present_pte(u64 pte)
614{
f160c7b7 615 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
616}
617
05da4558
MT
618static int is_large_pte(u64 pte)
619{
620 return pte & PT_PAGE_SIZE_MASK;
621}
622
776e6633
MT
623static int is_last_spte(u64 pte, int level)
624{
3bae0459 625 if (level == PG_LEVEL_4K)
776e6633 626 return 1;
852e3c19 627 if (is_large_pte(pte))
776e6633
MT
628 return 1;
629 return 0;
630}
631
d3e328f2
JS
632static bool is_executable_pte(u64 spte)
633{
634 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
635}
636
ba049e93 637static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 638{
35149e21 639 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
640}
641
da928521
AK
642static gfn_t pse36_gfn_delta(u32 gpte)
643{
644 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
645
646 return (gpte & PT32_DIR_PSE36_MASK) << shift;
647}
648
603e0651 649#ifdef CONFIG_X86_64
d555c333 650static void __set_spte(u64 *sptep, u64 spte)
e663ee64 651{
b19ee2ff 652 WRITE_ONCE(*sptep, spte);
e663ee64
AK
653}
654
603e0651 655static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 656{
b19ee2ff 657 WRITE_ONCE(*sptep, spte);
603e0651
XG
658}
659
660static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
661{
662 return xchg(sptep, spte);
663}
c2a2ac2b
XG
664
665static u64 __get_spte_lockless(u64 *sptep)
666{
6aa7de05 667 return READ_ONCE(*sptep);
c2a2ac2b 668}
a9221dd5 669#else
603e0651
XG
670union split_spte {
671 struct {
672 u32 spte_low;
673 u32 spte_high;
674 };
675 u64 spte;
676};
a9221dd5 677
c2a2ac2b
XG
678static void count_spte_clear(u64 *sptep, u64 spte)
679{
57354682 680 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
681
682 if (is_shadow_present_pte(spte))
683 return;
684
685 /* Ensure the spte is completely set before we increase the count */
686 smp_wmb();
687 sp->clear_spte_count++;
688}
689
603e0651
XG
690static void __set_spte(u64 *sptep, u64 spte)
691{
692 union split_spte *ssptep, sspte;
a9221dd5 693
603e0651
XG
694 ssptep = (union split_spte *)sptep;
695 sspte = (union split_spte)spte;
696
697 ssptep->spte_high = sspte.spte_high;
698
699 /*
700 * If we map the spte from nonpresent to present, We should store
701 * the high bits firstly, then set present bit, so cpu can not
702 * fetch this spte while we are setting the spte.
703 */
704 smp_wmb();
705
b19ee2ff 706 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
707}
708
603e0651
XG
709static void __update_clear_spte_fast(u64 *sptep, u64 spte)
710{
711 union split_spte *ssptep, sspte;
712
713 ssptep = (union split_spte *)sptep;
714 sspte = (union split_spte)spte;
715
b19ee2ff 716 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
717
718 /*
719 * If we map the spte from present to nonpresent, we should clear
720 * present bit firstly to avoid vcpu fetch the old high bits.
721 */
722 smp_wmb();
723
724 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 725 count_spte_clear(sptep, spte);
603e0651
XG
726}
727
728static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
729{
730 union split_spte *ssptep, sspte, orig;
731
732 ssptep = (union split_spte *)sptep;
733 sspte = (union split_spte)spte;
734
735 /* xchg acts as a barrier before the setting of the high bits */
736 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
737 orig.spte_high = ssptep->spte_high;
738 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 739 count_spte_clear(sptep, spte);
603e0651
XG
740
741 return orig.spte;
742}
c2a2ac2b
XG
743
744/*
745 * The idea using the light way get the spte on x86_32 guest is from
39656e83 746 * gup_get_pte (mm/gup.c).
accaefe0
XG
747 *
748 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
749 * coalesces them and we are running out of the MMU lock. Therefore
750 * we need to protect against in-progress updates of the spte.
751 *
752 * Reading the spte while an update is in progress may get the old value
753 * for the high part of the spte. The race is fine for a present->non-present
754 * change (because the high part of the spte is ignored for non-present spte),
755 * but for a present->present change we must reread the spte.
756 *
757 * All such changes are done in two steps (present->non-present and
758 * non-present->present), hence it is enough to count the number of
759 * present->non-present updates: if it changed while reading the spte,
760 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
761 */
762static u64 __get_spte_lockless(u64 *sptep)
763{
57354682 764 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
765 union split_spte spte, *orig = (union split_spte *)sptep;
766 int count;
767
768retry:
769 count = sp->clear_spte_count;
770 smp_rmb();
771
772 spte.spte_low = orig->spte_low;
773 smp_rmb();
774
775 spte.spte_high = orig->spte_high;
776 smp_rmb();
777
778 if (unlikely(spte.spte_low != orig->spte_low ||
779 count != sp->clear_spte_count))
780 goto retry;
781
782 return spte.spte;
783}
603e0651
XG
784#endif
785
ea4114bc 786static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 787{
feb3eb70
GN
788 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
789 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
790}
791
8672b721
XG
792static bool spte_has_volatile_bits(u64 spte)
793{
f160c7b7
JS
794 if (!is_shadow_present_pte(spte))
795 return false;
796
c7ba5b48 797 /*
6a6256f9 798 * Always atomically update spte if it can be updated
c7ba5b48
XG
799 * out of mmu-lock, it can ensure dirty bit is not lost,
800 * also, it can help us to get a stable is_writable_pte()
801 * to ensure tlb flush is not missed.
802 */
f160c7b7
JS
803 if (spte_can_locklessly_be_made_writable(spte) ||
804 is_access_track_spte(spte))
c7ba5b48
XG
805 return true;
806
ac8d57e5 807 if (spte_ad_enabled(spte)) {
f160c7b7
JS
808 if ((spte & shadow_accessed_mask) == 0 ||
809 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
810 return true;
811 }
8672b721 812
f160c7b7 813 return false;
8672b721
XG
814}
815
83ef6c81 816static bool is_accessed_spte(u64 spte)
4132779b 817{
ac8d57e5
PF
818 u64 accessed_mask = spte_shadow_accessed_mask(spte);
819
820 return accessed_mask ? spte & accessed_mask
821 : !is_access_track_spte(spte);
4132779b
XG
822}
823
83ef6c81 824static bool is_dirty_spte(u64 spte)
7e71a59b 825{
ac8d57e5
PF
826 u64 dirty_mask = spte_shadow_dirty_mask(spte);
827
828 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
829}
830
1df9f2dc
XG
831/* Rules for using mmu_spte_set:
832 * Set the sptep from nonpresent to present.
833 * Note: the sptep being assigned *must* be either not present
834 * or in a state where the hardware will not attempt to update
835 * the spte.
836 */
837static void mmu_spte_set(u64 *sptep, u64 new_spte)
838{
839 WARN_ON(is_shadow_present_pte(*sptep));
840 __set_spte(sptep, new_spte);
841}
842
f39a058d
JS
843/*
844 * Update the SPTE (excluding the PFN), but do not track changes in its
845 * accessed/dirty status.
1df9f2dc 846 */
f39a058d 847static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 848{
c7ba5b48 849 u64 old_spte = *sptep;
4132779b 850
afd28fe1 851 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 852
6e7d0354
XG
853 if (!is_shadow_present_pte(old_spte)) {
854 mmu_spte_set(sptep, new_spte);
f39a058d 855 return old_spte;
6e7d0354 856 }
4132779b 857
c7ba5b48 858 if (!spte_has_volatile_bits(old_spte))
603e0651 859 __update_clear_spte_fast(sptep, new_spte);
4132779b 860 else
603e0651 861 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 862
83ef6c81
JS
863 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
864
f39a058d
JS
865 return old_spte;
866}
867
868/* Rules for using mmu_spte_update:
869 * Update the state bits, it means the mapped pfn is not changed.
870 *
871 * Whenever we overwrite a writable spte with a read-only one we
872 * should flush remote TLBs. Otherwise rmap_write_protect
873 * will find a read-only spte, even though the writable spte
874 * might be cached on a CPU's TLB, the return value indicates this
875 * case.
876 *
877 * Returns true if the TLB needs to be flushed
878 */
879static bool mmu_spte_update(u64 *sptep, u64 new_spte)
880{
881 bool flush = false;
882 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
883
884 if (!is_shadow_present_pte(old_spte))
885 return false;
886
c7ba5b48
XG
887 /*
888 * For the spte updated out of mmu-lock is safe, since
6a6256f9 889 * we always atomically update it, see the comments in
c7ba5b48
XG
890 * spte_has_volatile_bits().
891 */
ea4114bc 892 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 893 !is_writable_pte(new_spte))
83ef6c81 894 flush = true;
4132779b 895
7e71a59b 896 /*
83ef6c81 897 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
898 * to guarantee consistency between TLB and page tables.
899 */
7e71a59b 900
83ef6c81
JS
901 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
902 flush = true;
4132779b 903 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
904 }
905
906 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
907 flush = true;
4132779b 908 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 909 }
6e7d0354 910
83ef6c81 911 return flush;
b79b93f9
AK
912}
913
1df9f2dc
XG
914/*
915 * Rules for using mmu_spte_clear_track_bits:
916 * It sets the sptep from present to nonpresent, and track the
917 * state bits, it is used to clear the last level sptep.
83ef6c81 918 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
919 */
920static int mmu_spte_clear_track_bits(u64 *sptep)
921{
ba049e93 922 kvm_pfn_t pfn;
1df9f2dc
XG
923 u64 old_spte = *sptep;
924
925 if (!spte_has_volatile_bits(old_spte))
603e0651 926 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 927 else
603e0651 928 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 929
afd28fe1 930 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
931 return 0;
932
933 pfn = spte_to_pfn(old_spte);
86fde74c
XG
934
935 /*
936 * KVM does not hold the refcount of the page used by
937 * kvm mmu, before reclaiming the page, we should
938 * unmap it from mmu first.
939 */
bf4bea8e 940 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 941
83ef6c81 942 if (is_accessed_spte(old_spte))
1df9f2dc 943 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
944
945 if (is_dirty_spte(old_spte))
1df9f2dc 946 kvm_set_pfn_dirty(pfn);
83ef6c81 947
1df9f2dc
XG
948 return 1;
949}
950
951/*
952 * Rules for using mmu_spte_clear_no_track:
953 * Directly clear spte without caring the state bits of sptep,
954 * it is used to set the upper level spte.
955 */
956static void mmu_spte_clear_no_track(u64 *sptep)
957{
603e0651 958 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
959}
960
c2a2ac2b
XG
961static u64 mmu_spte_get_lockless(u64 *sptep)
962{
963 return __get_spte_lockless(sptep);
964}
965
f160c7b7
JS
966static u64 mark_spte_for_access_track(u64 spte)
967{
ac8d57e5 968 if (spte_ad_enabled(spte))
f160c7b7
JS
969 return spte & ~shadow_accessed_mask;
970
ac8d57e5 971 if (is_access_track_spte(spte))
f160c7b7
JS
972 return spte;
973
974 /*
20d65236
JS
975 * Making an Access Tracking PTE will result in removal of write access
976 * from the PTE. So, verify that we will be able to restore the write
977 * access in the fast page fault path later on.
f160c7b7
JS
978 */
979 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
980 !spte_can_locklessly_be_made_writable(spte),
981 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
982
983 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
984 shadow_acc_track_saved_bits_shift),
985 "kvm: Access Tracking saved bit locations are not zero\n");
986
987 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
988 shadow_acc_track_saved_bits_shift;
989 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
990
991 return spte;
992}
993
d3e328f2
JS
994/* Restore an acc-track PTE back to a regular PTE */
995static u64 restore_acc_track_spte(u64 spte)
996{
997 u64 new_spte = spte;
998 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
999 & shadow_acc_track_saved_bits_mask;
1000
ac8d57e5 1001 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
1002 WARN_ON_ONCE(!is_access_track_spte(spte));
1003
1004 new_spte &= ~shadow_acc_track_mask;
1005 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1006 shadow_acc_track_saved_bits_shift);
1007 new_spte |= saved_bits;
1008
1009 return new_spte;
1010}
1011
f160c7b7
JS
1012/* Returns the Accessed status of the PTE and resets it at the same time. */
1013static bool mmu_spte_age(u64 *sptep)
1014{
1015 u64 spte = mmu_spte_get_lockless(sptep);
1016
1017 if (!is_accessed_spte(spte))
1018 return false;
1019
ac8d57e5 1020 if (spte_ad_enabled(spte)) {
f160c7b7
JS
1021 clear_bit((ffs(shadow_accessed_mask) - 1),
1022 (unsigned long *)sptep);
1023 } else {
1024 /*
1025 * Capture the dirty status of the page, so that it doesn't get
1026 * lost when the SPTE is marked for access tracking.
1027 */
1028 if (is_writable_pte(spte))
1029 kvm_set_pfn_dirty(spte_to_pfn(spte));
1030
1031 spte = mark_spte_for_access_track(spte);
1032 mmu_spte_update_no_track(sptep, spte);
1033 }
1034
1035 return true;
1036}
1037
c2a2ac2b
XG
1038static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1039{
c142786c
AK
1040 /*
1041 * Prevent page table teardown by making any free-er wait during
1042 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1043 */
1044 local_irq_disable();
36ca7e0a 1045
c142786c
AK
1046 /*
1047 * Make sure a following spte read is not reordered ahead of the write
1048 * to vcpu->mode.
1049 */
36ca7e0a 1050 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
1051}
1052
1053static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1054{
c142786c
AK
1055 /*
1056 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 1057 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
1058 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1059 */
36ca7e0a 1060 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 1061 local_irq_enable();
c2a2ac2b
XG
1062}
1063
378f5cd6 1064static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 1065{
e2dec939
AK
1066 int r;
1067
531281ad 1068 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
1069 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1070 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 1071 if (r)
284aa868 1072 return r;
94ce87ef
SC
1073 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
1074 PT64_ROOT_MAX_LEVEL);
171a90d7
SC
1075 if (r)
1076 return r;
378f5cd6 1077 if (maybe_indirect) {
94ce87ef
SC
1078 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
1079 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
1080 if (r)
1081 return r;
1082 }
94ce87ef
SC
1083 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1084 PT64_ROOT_MAX_LEVEL);
714b93da
AK
1085}
1086
1087static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1088{
94ce87ef
SC
1089 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
1090 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
1091 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
1092 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
1093}
1094
53c07b18 1095static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1096{
94ce87ef 1097 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1098}
1099
53c07b18 1100static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1101{
53c07b18 1102 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1103}
1104
2032a93d
LJ
1105static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1106{
1107 if (!sp->role.direct)
1108 return sp->gfns[index];
1109
1110 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1111}
1112
1113static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1114{
e9f2a760 1115 if (!sp->role.direct) {
2032a93d 1116 sp->gfns[index] = gfn;
e9f2a760
PB
1117 return;
1118 }
1119
1120 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1121 pr_err_ratelimited("gfn mismatch under direct page %llx "
1122 "(expected %llx, got %llx)\n",
1123 sp->gfn,
1124 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1125}
1126
05da4558 1127/*
d4dbf470
TY
1128 * Return the pointer to the large page information for a given gfn,
1129 * handling slots that are not large page aligned.
05da4558 1130 */
d4dbf470
TY
1131static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1132 struct kvm_memory_slot *slot,
1133 int level)
05da4558
MT
1134{
1135 unsigned long idx;
1136
fb03cb6f 1137 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1138 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1139}
1140
547ffaed
XG
1141static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1142 gfn_t gfn, int count)
1143{
1144 struct kvm_lpage_info *linfo;
1145 int i;
1146
3bae0459 1147 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
1148 linfo = lpage_info_slot(gfn, slot, i);
1149 linfo->disallow_lpage += count;
1150 WARN_ON(linfo->disallow_lpage < 0);
1151 }
1152}
1153
1154void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1155{
1156 update_gfn_disallow_lpage_count(slot, gfn, 1);
1157}
1158
1159void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1160{
1161 update_gfn_disallow_lpage_count(slot, gfn, -1);
1162}
1163
3ed1a478 1164static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1165{
699023e2 1166 struct kvm_memslots *slots;
d25797b2 1167 struct kvm_memory_slot *slot;
3ed1a478 1168 gfn_t gfn;
05da4558 1169
56ca57f9 1170 kvm->arch.indirect_shadow_pages++;
3ed1a478 1171 gfn = sp->gfn;
699023e2
PB
1172 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1173 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1174
1175 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 1176 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
1177 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1178 KVM_PAGE_TRACK_WRITE);
1179
547ffaed 1180 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1181}
1182
b8e8c830
PB
1183static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1184{
1185 if (sp->lpage_disallowed)
1186 return;
1187
1188 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
1189 list_add_tail(&sp->lpage_disallowed_link,
1190 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
1191 sp->lpage_disallowed = true;
1192}
1193
3ed1a478 1194static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1195{
699023e2 1196 struct kvm_memslots *slots;
d25797b2 1197 struct kvm_memory_slot *slot;
3ed1a478 1198 gfn_t gfn;
05da4558 1199
56ca57f9 1200 kvm->arch.indirect_shadow_pages--;
3ed1a478 1201 gfn = sp->gfn;
699023e2
PB
1202 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1203 slot = __gfn_to_memslot(slots, gfn);
3bae0459 1204 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
1205 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1206 KVM_PAGE_TRACK_WRITE);
1207
547ffaed 1208 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1209}
1210
b8e8c830
PB
1211static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1212{
1213 --kvm->stat.nx_lpage_splits;
1214 sp->lpage_disallowed = false;
1aa9b957 1215 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
1216}
1217
5d163b1c
XG
1218static struct kvm_memory_slot *
1219gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1220 bool no_dirty_log)
05da4558
MT
1221{
1222 struct kvm_memory_slot *slot;
5d163b1c 1223
54bf36aa 1224 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
1225 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1226 return NULL;
1227 if (no_dirty_log && slot->dirty_bitmap)
1228 return NULL;
5d163b1c
XG
1229
1230 return slot;
1231}
1232
290fc38d 1233/*
018aabb5 1234 * About rmap_head encoding:
cd4a4e53 1235 *
018aabb5
TY
1236 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1237 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1238 * pte_list_desc containing more mappings.
018aabb5
TY
1239 */
1240
1241/*
1242 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1243 */
53c07b18 1244static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1245 struct kvm_rmap_head *rmap_head)
cd4a4e53 1246{
53c07b18 1247 struct pte_list_desc *desc;
53a27b39 1248 int i, count = 0;
cd4a4e53 1249
018aabb5 1250 if (!rmap_head->val) {
53c07b18 1251 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1252 rmap_head->val = (unsigned long)spte;
1253 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1254 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1255 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1256 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1257 desc->sptes[1] = spte;
018aabb5 1258 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1259 ++count;
cd4a4e53 1260 } else {
53c07b18 1261 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1262 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1263 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1264 desc = desc->more;
53c07b18 1265 count += PTE_LIST_EXT;
53a27b39 1266 }
53c07b18
XG
1267 if (desc->sptes[PTE_LIST_EXT-1]) {
1268 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1269 desc = desc->more;
1270 }
d555c333 1271 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1272 ++count;
d555c333 1273 desc->sptes[i] = spte;
cd4a4e53 1274 }
53a27b39 1275 return count;
cd4a4e53
AK
1276}
1277
53c07b18 1278static void
018aabb5
TY
1279pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1280 struct pte_list_desc *desc, int i,
1281 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1282{
1283 int j;
1284
53c07b18 1285 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1286 ;
d555c333
AK
1287 desc->sptes[i] = desc->sptes[j];
1288 desc->sptes[j] = NULL;
cd4a4e53
AK
1289 if (j != 0)
1290 return;
1291 if (!prev_desc && !desc->more)
fe3c2b4c 1292 rmap_head->val = 0;
cd4a4e53
AK
1293 else
1294 if (prev_desc)
1295 prev_desc->more = desc->more;
1296 else
018aabb5 1297 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1298 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1299}
1300
8daf3462 1301static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1302{
53c07b18
XG
1303 struct pte_list_desc *desc;
1304 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1305 int i;
1306
018aabb5 1307 if (!rmap_head->val) {
8daf3462 1308 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1309 BUG();
018aabb5 1310 } else if (!(rmap_head->val & 1)) {
8daf3462 1311 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1312 if ((u64 *)rmap_head->val != spte) {
8daf3462 1313 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1314 BUG();
1315 }
018aabb5 1316 rmap_head->val = 0;
cd4a4e53 1317 } else {
8daf3462 1318 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1319 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1320 prev_desc = NULL;
1321 while (desc) {
018aabb5 1322 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1323 if (desc->sptes[i] == spte) {
018aabb5
TY
1324 pte_list_desc_remove_entry(rmap_head,
1325 desc, i, prev_desc);
cd4a4e53
AK
1326 return;
1327 }
018aabb5 1328 }
cd4a4e53
AK
1329 prev_desc = desc;
1330 desc = desc->more;
1331 }
8daf3462 1332 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1333 BUG();
1334 }
1335}
1336
e7912386
WY
1337static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1338{
1339 mmu_spte_clear_track_bits(sptep);
1340 __pte_list_remove(sptep, rmap_head);
1341}
1342
018aabb5
TY
1343static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1344 struct kvm_memory_slot *slot)
53c07b18 1345{
77d11309 1346 unsigned long idx;
53c07b18 1347
77d11309 1348 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 1349 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
1350}
1351
018aabb5
TY
1352static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1353 struct kvm_mmu_page *sp)
9b9b1492 1354{
699023e2 1355 struct kvm_memslots *slots;
9b9b1492
TY
1356 struct kvm_memory_slot *slot;
1357
699023e2
PB
1358 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1359 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1360 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1361}
1362
f759e2b4
XG
1363static bool rmap_can_add(struct kvm_vcpu *vcpu)
1364{
356ec69a 1365 struct kvm_mmu_memory_cache *mc;
f759e2b4 1366
356ec69a 1367 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 1368 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
1369}
1370
53c07b18
XG
1371static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1372{
1373 struct kvm_mmu_page *sp;
018aabb5 1374 struct kvm_rmap_head *rmap_head;
53c07b18 1375
57354682 1376 sp = sptep_to_sp(spte);
53c07b18 1377 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1378 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1379 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1380}
1381
53c07b18
XG
1382static void rmap_remove(struct kvm *kvm, u64 *spte)
1383{
1384 struct kvm_mmu_page *sp;
1385 gfn_t gfn;
018aabb5 1386 struct kvm_rmap_head *rmap_head;
53c07b18 1387
57354682 1388 sp = sptep_to_sp(spte);
53c07b18 1389 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1390 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1391 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1392}
1393
1e3f42f0
TY
1394/*
1395 * Used by the following functions to iterate through the sptes linked by a
1396 * rmap. All fields are private and not assumed to be used outside.
1397 */
1398struct rmap_iterator {
1399 /* private fields */
1400 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1401 int pos; /* index of the sptep */
1402};
1403
1404/*
1405 * Iteration must be started by this function. This should also be used after
1406 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1407 * information in the iterator may not be valid.
1e3f42f0
TY
1408 *
1409 * Returns sptep if found, NULL otherwise.
1410 */
018aabb5
TY
1411static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1412 struct rmap_iterator *iter)
1e3f42f0 1413{
77fbbbd2
TY
1414 u64 *sptep;
1415
018aabb5 1416 if (!rmap_head->val)
1e3f42f0
TY
1417 return NULL;
1418
018aabb5 1419 if (!(rmap_head->val & 1)) {
1e3f42f0 1420 iter->desc = NULL;
77fbbbd2
TY
1421 sptep = (u64 *)rmap_head->val;
1422 goto out;
1e3f42f0
TY
1423 }
1424
018aabb5 1425 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1426 iter->pos = 0;
77fbbbd2
TY
1427 sptep = iter->desc->sptes[iter->pos];
1428out:
1429 BUG_ON(!is_shadow_present_pte(*sptep));
1430 return sptep;
1e3f42f0
TY
1431}
1432
1433/*
1434 * Must be used with a valid iterator: e.g. after rmap_get_first().
1435 *
1436 * Returns sptep if found, NULL otherwise.
1437 */
1438static u64 *rmap_get_next(struct rmap_iterator *iter)
1439{
77fbbbd2
TY
1440 u64 *sptep;
1441
1e3f42f0
TY
1442 if (iter->desc) {
1443 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1444 ++iter->pos;
1445 sptep = iter->desc->sptes[iter->pos];
1446 if (sptep)
77fbbbd2 1447 goto out;
1e3f42f0
TY
1448 }
1449
1450 iter->desc = iter->desc->more;
1451
1452 if (iter->desc) {
1453 iter->pos = 0;
1454 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1455 sptep = iter->desc->sptes[iter->pos];
1456 goto out;
1e3f42f0
TY
1457 }
1458 }
1459
1460 return NULL;
77fbbbd2
TY
1461out:
1462 BUG_ON(!is_shadow_present_pte(*sptep));
1463 return sptep;
1e3f42f0
TY
1464}
1465
018aabb5
TY
1466#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1467 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1468 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1469
c3707958 1470static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1471{
1df9f2dc 1472 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1473 rmap_remove(kvm, sptep);
be38d276
AK
1474}
1475
8e22f955
XG
1476
1477static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1478{
1479 if (is_large_pte(*sptep)) {
57354682 1480 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1481 drop_spte(kvm, sptep);
1482 --kvm->stat.lpages;
1483 return true;
1484 }
1485
1486 return false;
1487}
1488
1489static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1490{
c3134ce2 1491 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1492 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1493
1494 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1495 KVM_PAGES_PER_HPAGE(sp->role.level));
1496 }
8e22f955
XG
1497}
1498
1499/*
49fde340 1500 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1501 * spte write-protection is caused by protecting shadow page table.
49fde340 1502 *
b4619660 1503 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1504 * protection:
1505 * - for dirty logging, the spte can be set to writable at anytime if
1506 * its dirty bitmap is properly set.
1507 * - for spte protection, the spte can be writable only after unsync-ing
1508 * shadow page.
8e22f955 1509 *
c126d94f 1510 * Return true if tlb need be flushed.
8e22f955 1511 */
c4f138b4 1512static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1513{
1514 u64 spte = *sptep;
1515
49fde340 1516 if (!is_writable_pte(spte) &&
ea4114bc 1517 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1518 return false;
1519
1520 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1521
49fde340
XG
1522 if (pt_protect)
1523 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1524 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1525
c126d94f 1526 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1527}
1528
018aabb5
TY
1529static bool __rmap_write_protect(struct kvm *kvm,
1530 struct kvm_rmap_head *rmap_head,
245c3912 1531 bool pt_protect)
98348e95 1532{
1e3f42f0
TY
1533 u64 *sptep;
1534 struct rmap_iterator iter;
d13bc5b5 1535 bool flush = false;
374cbac0 1536
018aabb5 1537 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1538 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1539
d13bc5b5 1540 return flush;
a0ed4607
TY
1541}
1542
c4f138b4 1543static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1544{
1545 u64 spte = *sptep;
1546
1547 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1548
1f4e5fc8 1549 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1550 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1551 return mmu_spte_update(sptep, spte);
1552}
1553
1f4e5fc8 1554static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1555{
1556 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1557 (unsigned long *)sptep);
1f4e5fc8 1558 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1559 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1560
1561 return was_writable;
1562}
1563
1564/*
1565 * Gets the GFN ready for another round of dirty logging by clearing the
1566 * - D bit on ad-enabled SPTEs, and
1567 * - W bit on ad-disabled SPTEs.
1568 * Returns true iff any D or W bits were cleared.
1569 */
018aabb5 1570static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1571{
1572 u64 *sptep;
1573 struct rmap_iterator iter;
1574 bool flush = false;
1575
018aabb5 1576 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1577 if (spte_ad_need_write_protect(*sptep))
1578 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1579 else
1f4e5fc8 1580 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1581
1582 return flush;
1583}
1584
c4f138b4 1585static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1586{
1587 u64 spte = *sptep;
1588
1589 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1590
1f4e5fc8 1591 /*
afaf0b2f 1592 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1593 * do not bother adding back write access to pages marked
1594 * SPTE_AD_WRPROT_ONLY_MASK.
1595 */
f4b4b180
KH
1596 spte |= shadow_dirty_mask;
1597
1598 return mmu_spte_update(sptep, spte);
1599}
1600
018aabb5 1601static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1602{
1603 u64 *sptep;
1604 struct rmap_iterator iter;
1605 bool flush = false;
1606
018aabb5 1607 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1608 if (spte_ad_enabled(*sptep))
1609 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1610
1611 return flush;
1612}
1613
5dc99b23 1614/**
3b0f1d01 1615 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1616 * @kvm: kvm instance
1617 * @slot: slot to protect
1618 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1619 * @mask: indicates which pages we should protect
1620 *
1621 * Used when we do not need to care about huge page mappings: e.g. during dirty
1622 * logging we do not have any such mappings.
1623 */
3b0f1d01 1624static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1625 struct kvm_memory_slot *slot,
1626 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1627{
018aabb5 1628 struct kvm_rmap_head *rmap_head;
a0ed4607 1629
5dc99b23 1630 while (mask) {
018aabb5 1631 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1632 PG_LEVEL_4K, slot);
018aabb5 1633 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1634
5dc99b23
TY
1635 /* clear the first set bit */
1636 mask &= mask - 1;
1637 }
374cbac0
AK
1638}
1639
f4b4b180 1640/**
ac8d57e5
PF
1641 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1642 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1643 * @kvm: kvm instance
1644 * @slot: slot to clear D-bit
1645 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1646 * @mask: indicates which pages we should clear D-bit
1647 *
1648 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1649 */
1650void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1651 struct kvm_memory_slot *slot,
1652 gfn_t gfn_offset, unsigned long mask)
1653{
018aabb5 1654 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1655
1656 while (mask) {
018aabb5 1657 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1658 PG_LEVEL_4K, slot);
018aabb5 1659 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1660
1661 /* clear the first set bit */
1662 mask &= mask - 1;
1663 }
1664}
1665EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1666
3b0f1d01
KH
1667/**
1668 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1669 * PT level pages.
1670 *
1671 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1672 * enable dirty logging for them.
1673 *
1674 * Used when we do not need to care about huge page mappings: e.g. during dirty
1675 * logging we do not have any such mappings.
1676 */
1677void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1678 struct kvm_memory_slot *slot,
1679 gfn_t gfn_offset, unsigned long mask)
1680{
afaf0b2f
SC
1681 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1682 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1683 mask);
1684 else
1685 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1686}
1687
aeecee2e
XG
1688bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1689 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1690{
018aabb5 1691 struct kvm_rmap_head *rmap_head;
5dc99b23 1692 int i;
2f84569f 1693 bool write_protected = false;
95d4c16c 1694
3bae0459 1695 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1696 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1697 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1698 }
1699
1700 return write_protected;
95d4c16c
TY
1701}
1702
aeecee2e
XG
1703static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1704{
1705 struct kvm_memory_slot *slot;
1706
1707 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1708 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1709}
1710
018aabb5 1711static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1712{
1e3f42f0
TY
1713 u64 *sptep;
1714 struct rmap_iterator iter;
6a49f85c 1715 bool flush = false;
e930bffe 1716
018aabb5 1717 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1718 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1719
e7912386 1720 pte_list_remove(rmap_head, sptep);
6a49f85c 1721 flush = true;
e930bffe 1722 }
1e3f42f0 1723
6a49f85c
XG
1724 return flush;
1725}
1726
018aabb5 1727static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1728 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1729 unsigned long data)
1730{
018aabb5 1731 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1732}
1733
018aabb5 1734static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1735 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1736 unsigned long data)
3da0dd43 1737{
1e3f42f0
TY
1738 u64 *sptep;
1739 struct rmap_iterator iter;
3da0dd43 1740 int need_flush = 0;
1e3f42f0 1741 u64 new_spte;
3da0dd43 1742 pte_t *ptep = (pte_t *)data;
ba049e93 1743 kvm_pfn_t new_pfn;
3da0dd43
IE
1744
1745 WARN_ON(pte_huge(*ptep));
1746 new_pfn = pte_pfn(*ptep);
1e3f42f0 1747
0d536790 1748restart:
018aabb5 1749 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1750 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1751 sptep, *sptep, gfn, level);
1e3f42f0 1752
3da0dd43 1753 need_flush = 1;
1e3f42f0 1754
3da0dd43 1755 if (pte_write(*ptep)) {
e7912386 1756 pte_list_remove(rmap_head, sptep);
0d536790 1757 goto restart;
3da0dd43 1758 } else {
1e3f42f0 1759 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1760 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1761
1762 new_spte &= ~PT_WRITABLE_MASK;
1763 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1764
1765 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1766
1767 mmu_spte_clear_track_bits(sptep);
1768 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1769 }
1770 }
1e3f42f0 1771
3cc5ea94
LT
1772 if (need_flush && kvm_available_flush_tlb_with_range()) {
1773 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1774 return 0;
1775 }
1776
0cf853c5 1777 return need_flush;
3da0dd43
IE
1778}
1779
6ce1f4e2
XG
1780struct slot_rmap_walk_iterator {
1781 /* input fields. */
1782 struct kvm_memory_slot *slot;
1783 gfn_t start_gfn;
1784 gfn_t end_gfn;
1785 int start_level;
1786 int end_level;
1787
1788 /* output fields. */
1789 gfn_t gfn;
018aabb5 1790 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1791 int level;
1792
1793 /* private field. */
018aabb5 1794 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1795};
1796
1797static void
1798rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1799{
1800 iterator->level = level;
1801 iterator->gfn = iterator->start_gfn;
1802 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1803 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1804 iterator->slot);
1805}
1806
1807static void
1808slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1809 struct kvm_memory_slot *slot, int start_level,
1810 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1811{
1812 iterator->slot = slot;
1813 iterator->start_level = start_level;
1814 iterator->end_level = end_level;
1815 iterator->start_gfn = start_gfn;
1816 iterator->end_gfn = end_gfn;
1817
1818 rmap_walk_init_level(iterator, iterator->start_level);
1819}
1820
1821static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1822{
1823 return !!iterator->rmap;
1824}
1825
1826static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1827{
1828 if (++iterator->rmap <= iterator->end_rmap) {
1829 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1830 return;
1831 }
1832
1833 if (++iterator->level > iterator->end_level) {
1834 iterator->rmap = NULL;
1835 return;
1836 }
1837
1838 rmap_walk_init_level(iterator, iterator->level);
1839}
1840
1841#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1842 _start_gfn, _end_gfn, _iter_) \
1843 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1844 _end_level_, _start_gfn, _end_gfn); \
1845 slot_rmap_walk_okay(_iter_); \
1846 slot_rmap_walk_next(_iter_))
1847
84504ef3
TY
1848static int kvm_handle_hva_range(struct kvm *kvm,
1849 unsigned long start,
1850 unsigned long end,
1851 unsigned long data,
1852 int (*handler)(struct kvm *kvm,
018aabb5 1853 struct kvm_rmap_head *rmap_head,
048212d0 1854 struct kvm_memory_slot *slot,
8a9522d2
ALC
1855 gfn_t gfn,
1856 int level,
84504ef3 1857 unsigned long data))
e930bffe 1858{
bc6678a3 1859 struct kvm_memslots *slots;
be6ba0f0 1860 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1861 struct slot_rmap_walk_iterator iterator;
1862 int ret = 0;
9da0e4d5 1863 int i;
bc6678a3 1864
9da0e4d5
PB
1865 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1866 slots = __kvm_memslots(kvm, i);
1867 kvm_for_each_memslot(memslot, slots) {
1868 unsigned long hva_start, hva_end;
1869 gfn_t gfn_start, gfn_end;
e930bffe 1870
9da0e4d5
PB
1871 hva_start = max(start, memslot->userspace_addr);
1872 hva_end = min(end, memslot->userspace_addr +
1873 (memslot->npages << PAGE_SHIFT));
1874 if (hva_start >= hva_end)
1875 continue;
1876 /*
1877 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1878 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1879 */
1880 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1881 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1882
3bae0459 1883 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1884 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1885 gfn_start, gfn_end - 1,
1886 &iterator)
1887 ret |= handler(kvm, iterator.rmap, memslot,
1888 iterator.gfn, iterator.level, data);
1889 }
e930bffe
AA
1890 }
1891
f395302e 1892 return ret;
e930bffe
AA
1893}
1894
84504ef3
TY
1895static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1896 unsigned long data,
018aabb5
TY
1897 int (*handler)(struct kvm *kvm,
1898 struct kvm_rmap_head *rmap_head,
048212d0 1899 struct kvm_memory_slot *slot,
8a9522d2 1900 gfn_t gfn, int level,
84504ef3
TY
1901 unsigned long data))
1902{
1903 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1904}
1905
b3ae2096
TY
1906int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1907{
1908 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1909}
1910
748c0e31 1911int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1912{
0cf853c5 1913 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1914}
1915
018aabb5 1916static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1917 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1918 unsigned long data)
e930bffe 1919{
1e3f42f0 1920 u64 *sptep;
79f702a6 1921 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1922 int young = 0;
1923
f160c7b7
JS
1924 for_each_rmap_spte(rmap_head, &iter, sptep)
1925 young |= mmu_spte_age(sptep);
0d536790 1926
8a9522d2 1927 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1928 return young;
1929}
1930
018aabb5 1931static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1932 struct kvm_memory_slot *slot, gfn_t gfn,
1933 int level, unsigned long data)
8ee53820 1934{
1e3f42f0
TY
1935 u64 *sptep;
1936 struct rmap_iterator iter;
8ee53820 1937
83ef6c81
JS
1938 for_each_rmap_spte(rmap_head, &iter, sptep)
1939 if (is_accessed_spte(*sptep))
1940 return 1;
83ef6c81 1941 return 0;
8ee53820
AA
1942}
1943
53a27b39
MT
1944#define RMAP_RECYCLE_THRESHOLD 1000
1945
852e3c19 1946static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1947{
018aabb5 1948 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1949 struct kvm_mmu_page *sp;
1950
57354682 1951 sp = sptep_to_sp(spte);
53a27b39 1952
018aabb5 1953 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1954
018aabb5 1955 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1956 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1957 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1958}
1959
57128468 1960int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1961{
57128468 1962 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1963}
1964
8ee53820
AA
1965int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1966{
1967 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1968}
1969
d6c69ee9 1970#ifdef MMU_DEBUG
47ad8e68 1971static int is_empty_shadow_page(u64 *spt)
6aa8b732 1972{
139bdb2d
AK
1973 u64 *pos;
1974 u64 *end;
1975
47ad8e68 1976 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1977 if (is_shadow_present_pte(*pos)) {
b8688d51 1978 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1979 pos, *pos);
6aa8b732 1980 return 0;
139bdb2d 1981 }
6aa8b732
AK
1982 return 1;
1983}
d6c69ee9 1984#endif
6aa8b732 1985
45221ab6
DH
1986/*
1987 * This value is the sum of all of the kvm instances's
1988 * kvm->arch.n_used_mmu_pages values. We need a global,
1989 * aggregate version in order to make the slab shrinker
1990 * faster
1991 */
bc8a3d89 1992static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1993{
1994 kvm->arch.n_used_mmu_pages += nr;
1995 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1996}
1997
834be0d8 1998static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1999{
fa4a2c08 2000 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2001 hlist_del(&sp->hash_link);
bd4c86ea
XG
2002 list_del(&sp->link);
2003 free_page((unsigned long)sp->spt);
834be0d8
GN
2004 if (!sp->role.direct)
2005 free_page((unsigned long)sp->gfns);
e8ad9a70 2006 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2007}
2008
cea0f0e7
AK
2009static unsigned kvm_page_table_hashfn(gfn_t gfn)
2010{
114df303 2011 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2012}
2013
714b93da 2014static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2015 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2016{
cea0f0e7
AK
2017 if (!parent_pte)
2018 return;
cea0f0e7 2019
67052b35 2020 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2021}
2022
4db35314 2023static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2024 u64 *parent_pte)
2025{
8daf3462 2026 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2027}
2028
bcdd9a93
XG
2029static void drop_parent_pte(struct kvm_mmu_page *sp,
2030 u64 *parent_pte)
2031{
2032 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2033 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2034}
2035
47005792 2036static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2037{
67052b35 2038 struct kvm_mmu_page *sp;
7ddca7e4 2039
94ce87ef
SC
2040 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2041 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 2042 if (!direct)
94ce87ef 2043 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 2044 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
2045
2046 /*
2047 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2048 * depends on valid pages being added to the head of the list. See
2049 * comments in kvm_zap_obsolete_pages().
2050 */
ca333add 2051 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 2052 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2053 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2054 return sp;
ad8cfbe3
MT
2055}
2056
67052b35 2057static void mark_unsync(u64 *spte);
1047df1f 2058static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2059{
74c4e63a
TY
2060 u64 *sptep;
2061 struct rmap_iterator iter;
2062
2063 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2064 mark_unsync(sptep);
2065 }
0074ff63
MT
2066}
2067
67052b35 2068static void mark_unsync(u64 *spte)
0074ff63 2069{
67052b35 2070 struct kvm_mmu_page *sp;
1047df1f 2071 unsigned int index;
0074ff63 2072
57354682 2073 sp = sptep_to_sp(spte);
1047df1f
XG
2074 index = spte - sp->spt;
2075 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2076 return;
1047df1f 2077 if (sp->unsync_children++)
0074ff63 2078 return;
1047df1f 2079 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2080}
2081
e8bc217a 2082static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2083 struct kvm_mmu_page *sp)
e8bc217a 2084{
1f50f1b3 2085 return 0;
e8bc217a
MT
2086}
2087
0f53b5b1
XG
2088static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2089 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2090 const void *pte)
0f53b5b1
XG
2091{
2092 WARN_ON(1);
2093}
2094
60c8aec6
MT
2095#define KVM_PAGE_ARRAY_NR 16
2096
2097struct kvm_mmu_pages {
2098 struct mmu_page_and_offset {
2099 struct kvm_mmu_page *sp;
2100 unsigned int idx;
2101 } page[KVM_PAGE_ARRAY_NR];
2102 unsigned int nr;
2103};
2104
cded19f3
HE
2105static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2106 int idx)
4731d4c7 2107{
60c8aec6 2108 int i;
4731d4c7 2109
60c8aec6
MT
2110 if (sp->unsync)
2111 for (i=0; i < pvec->nr; i++)
2112 if (pvec->page[i].sp == sp)
2113 return 0;
2114
2115 pvec->page[pvec->nr].sp = sp;
2116 pvec->page[pvec->nr].idx = idx;
2117 pvec->nr++;
2118 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2119}
2120
fd951457
TY
2121static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2122{
2123 --sp->unsync_children;
2124 WARN_ON((int)sp->unsync_children < 0);
2125 __clear_bit(idx, sp->unsync_child_bitmap);
2126}
2127
60c8aec6
MT
2128static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2129 struct kvm_mmu_pages *pvec)
2130{
2131 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2132
37178b8b 2133 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2134 struct kvm_mmu_page *child;
4731d4c7
MT
2135 u64 ent = sp->spt[i];
2136
fd951457
TY
2137 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2138 clear_unsync_child_bit(sp, i);
2139 continue;
2140 }
7a8f1a74 2141
e47c4aee 2142 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
2143
2144 if (child->unsync_children) {
2145 if (mmu_pages_add(pvec, child, i))
2146 return -ENOSPC;
2147
2148 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2149 if (!ret) {
2150 clear_unsync_child_bit(sp, i);
2151 continue;
2152 } else if (ret > 0) {
7a8f1a74 2153 nr_unsync_leaf += ret;
fd951457 2154 } else
7a8f1a74
XG
2155 return ret;
2156 } else if (child->unsync) {
2157 nr_unsync_leaf++;
2158 if (mmu_pages_add(pvec, child, i))
2159 return -ENOSPC;
2160 } else
fd951457 2161 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2162 }
2163
60c8aec6
MT
2164 return nr_unsync_leaf;
2165}
2166
e23d3fef
XG
2167#define INVALID_INDEX (-1)
2168
60c8aec6
MT
2169static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2170 struct kvm_mmu_pages *pvec)
2171{
0a47cd85 2172 pvec->nr = 0;
60c8aec6
MT
2173 if (!sp->unsync_children)
2174 return 0;
2175
e23d3fef 2176 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2177 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2178}
2179
4731d4c7
MT
2180static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2181{
2182 WARN_ON(!sp->unsync);
5e1b3ddb 2183 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2184 sp->unsync = 0;
2185 --kvm->stat.mmu_unsync;
2186}
2187
83cdb568
SC
2188static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2189 struct list_head *invalid_list);
7775834a
XG
2190static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2191 struct list_head *invalid_list);
4731d4c7 2192
ac101b7c
SC
2193#define for_each_valid_sp(_kvm, _sp, _list) \
2194 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 2195 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 2196 } else
1044b030
TY
2197
2198#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
2199 for_each_valid_sp(_kvm, _sp, \
2200 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 2201 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2202
47c42e6b
SC
2203static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2204{
2205 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2206}
2207
f918b443 2208/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2209static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2210 struct list_head *invalid_list)
4731d4c7 2211{
47c42e6b
SC
2212 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2213 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2214 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2215 return false;
4731d4c7
MT
2216 }
2217
1f50f1b3 2218 return true;
4731d4c7
MT
2219}
2220
a2113634
SC
2221static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2222 struct list_head *invalid_list,
2223 bool remote_flush)
2224{
cfd32acf 2225 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2226 return false;
2227
2228 if (!list_empty(invalid_list))
2229 kvm_mmu_commit_zap_page(kvm, invalid_list);
2230 else
2231 kvm_flush_remote_tlbs(kvm);
2232 return true;
2233}
2234
35a70510
PB
2235static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2236 struct list_head *invalid_list,
2237 bool remote_flush, bool local_flush)
1d9dc7e0 2238{
a2113634 2239 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2240 return;
d98ba053 2241
a2113634 2242 if (local_flush)
8c8560b8 2243 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
2244}
2245
e37fa785
XG
2246#ifdef CONFIG_KVM_MMU_AUDIT
2247#include "mmu_audit.c"
2248#else
2249static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2250static void mmu_audit_disable(void) { }
2251#endif
2252
002c5f73
SC
2253static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2254{
fac026da
SC
2255 return sp->role.invalid ||
2256 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
2257}
2258
1f50f1b3 2259static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2260 struct list_head *invalid_list)
1d9dc7e0 2261{
9a43c5d9
PB
2262 kvm_unlink_unsync_page(vcpu->kvm, sp);
2263 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2264}
2265
9f1a122f 2266/* @gfn should be write-protected at the call site */
2a74003a
PB
2267static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2268 struct list_head *invalid_list)
9f1a122f 2269{
9f1a122f 2270 struct kvm_mmu_page *s;
2a74003a 2271 bool ret = false;
9f1a122f 2272
b67bfe0d 2273 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2274 if (!s->unsync)
9f1a122f
XG
2275 continue;
2276
3bae0459 2277 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 2278 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2279 }
2280
2a74003a 2281 return ret;
9f1a122f
XG
2282}
2283
60c8aec6 2284struct mmu_page_path {
2a7266a8
YZ
2285 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2286 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2287};
2288
60c8aec6 2289#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2290 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2291 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2292 i = mmu_pages_next(&pvec, &parents, i))
2293
cded19f3
HE
2294static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2295 struct mmu_page_path *parents,
2296 int i)
60c8aec6
MT
2297{
2298 int n;
2299
2300 for (n = i+1; n < pvec->nr; n++) {
2301 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2302 unsigned idx = pvec->page[n].idx;
2303 int level = sp->role.level;
60c8aec6 2304
0a47cd85 2305 parents->idx[level-1] = idx;
3bae0459 2306 if (level == PG_LEVEL_4K)
0a47cd85 2307 break;
60c8aec6 2308
0a47cd85 2309 parents->parent[level-2] = sp;
60c8aec6
MT
2310 }
2311
2312 return n;
2313}
2314
0a47cd85
PB
2315static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2316 struct mmu_page_path *parents)
2317{
2318 struct kvm_mmu_page *sp;
2319 int level;
2320
2321 if (pvec->nr == 0)
2322 return 0;
2323
e23d3fef
XG
2324 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2325
0a47cd85
PB
2326 sp = pvec->page[0].sp;
2327 level = sp->role.level;
3bae0459 2328 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
2329
2330 parents->parent[level-2] = sp;
2331
2332 /* Also set up a sentinel. Further entries in pvec are all
2333 * children of sp, so this element is never overwritten.
2334 */
2335 parents->parent[level-1] = NULL;
2336 return mmu_pages_next(pvec, parents, 0);
2337}
2338
cded19f3 2339static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2340{
60c8aec6
MT
2341 struct kvm_mmu_page *sp;
2342 unsigned int level = 0;
2343
2344 do {
2345 unsigned int idx = parents->idx[level];
60c8aec6
MT
2346 sp = parents->parent[level];
2347 if (!sp)
2348 return;
2349
e23d3fef 2350 WARN_ON(idx == INVALID_INDEX);
fd951457 2351 clear_unsync_child_bit(sp, idx);
60c8aec6 2352 level++;
0a47cd85 2353 } while (!sp->unsync_children);
60c8aec6 2354}
4731d4c7 2355
60c8aec6
MT
2356static void mmu_sync_children(struct kvm_vcpu *vcpu,
2357 struct kvm_mmu_page *parent)
2358{
2359 int i;
2360 struct kvm_mmu_page *sp;
2361 struct mmu_page_path parents;
2362 struct kvm_mmu_pages pages;
d98ba053 2363 LIST_HEAD(invalid_list);
50c9e6f3 2364 bool flush = false;
60c8aec6 2365
60c8aec6 2366 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2367 bool protected = false;
b1a36821
MT
2368
2369 for_each_sp(pages, sp, parents, i)
54bf36aa 2370 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2371
50c9e6f3 2372 if (protected) {
b1a36821 2373 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2374 flush = false;
2375 }
b1a36821 2376
60c8aec6 2377 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2378 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2379 mmu_pages_clear_parents(&parents);
2380 }
50c9e6f3
PB
2381 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2382 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2383 cond_resched_lock(&vcpu->kvm->mmu_lock);
2384 flush = false;
2385 }
60c8aec6 2386 }
50c9e6f3
PB
2387
2388 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2389}
2390
a30f47cb
XG
2391static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2392{
e5691a81 2393 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2394}
2395
2396static void clear_sp_write_flooding_count(u64 *spte)
2397{
57354682 2398 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2399}
2400
cea0f0e7
AK
2401static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2402 gfn_t gfn,
2403 gva_t gaddr,
2404 unsigned level,
f6e2c02b 2405 int direct,
0a2b64c5 2406 unsigned int access)
cea0f0e7 2407{
fb58a9c3 2408 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2409 union kvm_mmu_page_role role;
ac101b7c 2410 struct hlist_head *sp_list;
cea0f0e7 2411 unsigned quadrant;
9f1a122f 2412 struct kvm_mmu_page *sp;
9f1a122f 2413 bool need_sync = false;
2a74003a 2414 bool flush = false;
f3414bc7 2415 int collisions = 0;
2a74003a 2416 LIST_HEAD(invalid_list);
cea0f0e7 2417
36d9594d 2418 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2419 role.level = level;
f6e2c02b 2420 role.direct = direct;
84b0c8c6 2421 if (role.direct)
47c42e6b 2422 role.gpte_is_8_bytes = true;
41074d07 2423 role.access = access;
fb58a9c3 2424 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2425 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2426 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2427 role.quadrant = quadrant;
2428 }
ac101b7c
SC
2429
2430 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2431 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2432 if (sp->gfn != gfn) {
2433 collisions++;
2434 continue;
2435 }
2436
7ae680eb
XG
2437 if (!need_sync && sp->unsync)
2438 need_sync = true;
4731d4c7 2439
7ae680eb
XG
2440 if (sp->role.word != role.word)
2441 continue;
4731d4c7 2442
fb58a9c3
SC
2443 if (direct_mmu)
2444 goto trace_get_page;
2445
2a74003a
PB
2446 if (sp->unsync) {
2447 /* The page is good, but __kvm_sync_page might still end
2448 * up zapping it. If so, break in order to rebuild it.
2449 */
2450 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2451 break;
2452
2453 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2454 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2455 }
e02aa901 2456
98bba238 2457 if (sp->unsync_children)
8c8560b8 2458 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
e02aa901 2459
a30f47cb 2460 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2461
2462trace_get_page:
7ae680eb 2463 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2464 goto out;
7ae680eb 2465 }
47005792 2466
dfc5aa00 2467 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2468
2469 sp = kvm_mmu_alloc_page(vcpu, direct);
2470
4db35314
AK
2471 sp->gfn = gfn;
2472 sp->role = role;
ac101b7c 2473 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2474 if (!direct) {
56ca57f9
XG
2475 /*
2476 * we should do write protection before syncing pages
2477 * otherwise the content of the synced shadow page may
2478 * be inconsistent with guest page table.
2479 */
2480 account_shadowed(vcpu->kvm, sp);
3bae0459 2481 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2482 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2483
3bae0459 2484 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2485 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2486 }
f691fe1d 2487 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2488
2489 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2490out:
2491 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2492 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2493 return sp;
cea0f0e7
AK
2494}
2495
7eb77e9f
JS
2496static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2497 struct kvm_vcpu *vcpu, hpa_t root,
2498 u64 addr)
2d11123a
AK
2499{
2500 iterator->addr = addr;
7eb77e9f 2501 iterator->shadow_addr = root;
44dd3ffa 2502 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2503
2a7266a8 2504 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2505 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2506 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2507 --iterator->level;
2508
2d11123a 2509 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2510 /*
2511 * prev_root is currently only used for 64-bit hosts. So only
2512 * the active root_hpa is valid here.
2513 */
44dd3ffa 2514 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2515
2d11123a 2516 iterator->shadow_addr
44dd3ffa 2517 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2518 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2519 --iterator->level;
2520 if (!iterator->shadow_addr)
2521 iterator->level = 0;
2522 }
2523}
2524
7eb77e9f
JS
2525static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2526 struct kvm_vcpu *vcpu, u64 addr)
2527{
44dd3ffa 2528 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2529 addr);
2530}
2531
2d11123a
AK
2532static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2533{
3bae0459 2534 if (iterator->level < PG_LEVEL_4K)
2d11123a 2535 return false;
4d88954d 2536
2d11123a
AK
2537 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2538 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2539 return true;
2540}
2541
c2a2ac2b
XG
2542static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2543 u64 spte)
2d11123a 2544{
c2a2ac2b 2545 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2546 iterator->level = 0;
2547 return;
2548 }
2549
c2a2ac2b 2550 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2551 --iterator->level;
2552}
2553
c2a2ac2b
XG
2554static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2555{
bb606a9b 2556 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2557}
2558
98bba238
TY
2559static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2560 struct kvm_mmu_page *sp)
32ef26a3
AK
2561{
2562 u64 spte;
2563
ffb128c8 2564 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2565
ffb128c8 2566 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2567 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2568
2569 if (sp_ad_disabled(sp))
6eeb4ef0 2570 spte |= SPTE_AD_DISABLED_MASK;
ac8d57e5
PF
2571 else
2572 spte |= shadow_accessed_mask;
24db2734 2573
1df9f2dc 2574 mmu_spte_set(sptep, spte);
98bba238
TY
2575
2576 mmu_page_add_parent_pte(vcpu, sp, sptep);
2577
2578 if (sp->unsync_children || sp->unsync)
2579 mark_unsync(sptep);
32ef26a3
AK
2580}
2581
a357bd22
AK
2582static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2583 unsigned direct_access)
2584{
2585 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2586 struct kvm_mmu_page *child;
2587
2588 /*
2589 * For the direct sp, if the guest pte's dirty bit
2590 * changed form clean to dirty, it will corrupt the
2591 * sp's access: allow writable in the read-only sp,
2592 * so we should update the spte at this point to get
2593 * a new sp with the correct access.
2594 */
e47c4aee 2595 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2596 if (child->role.access == direct_access)
2597 return;
2598
bcdd9a93 2599 drop_parent_pte(child, sptep);
c3134ce2 2600 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2601 }
2602}
2603
505aef8f 2604static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2605 u64 *spte)
2606{
2607 u64 pte;
2608 struct kvm_mmu_page *child;
2609
2610 pte = *spte;
2611 if (is_shadow_present_pte(pte)) {
505aef8f 2612 if (is_last_spte(pte, sp->role.level)) {
c3707958 2613 drop_spte(kvm, spte);
505aef8f
XG
2614 if (is_large_pte(pte))
2615 --kvm->stat.lpages;
2616 } else {
e47c4aee 2617 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2618 drop_parent_pte(child, spte);
38e3b2b2 2619 }
505aef8f
XG
2620 return true;
2621 }
2622
2623 if (is_mmio_spte(pte))
ce88decf 2624 mmu_spte_clear_no_track(spte);
c3707958 2625
505aef8f 2626 return false;
38e3b2b2
XG
2627}
2628
90cb0529 2629static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2630 struct kvm_mmu_page *sp)
a436036b 2631{
697fe2e2 2632 unsigned i;
697fe2e2 2633
38e3b2b2
XG
2634 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2635 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2636}
2637
31aa2b44 2638static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2639{
1e3f42f0
TY
2640 u64 *sptep;
2641 struct rmap_iterator iter;
a436036b 2642
018aabb5 2643 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2644 drop_parent_pte(sp, sptep);
31aa2b44
AK
2645}
2646
60c8aec6 2647static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2648 struct kvm_mmu_page *parent,
2649 struct list_head *invalid_list)
4731d4c7 2650{
60c8aec6
MT
2651 int i, zapped = 0;
2652 struct mmu_page_path parents;
2653 struct kvm_mmu_pages pages;
4731d4c7 2654
3bae0459 2655 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2656 return 0;
60c8aec6 2657
60c8aec6
MT
2658 while (mmu_unsync_walk(parent, &pages)) {
2659 struct kvm_mmu_page *sp;
2660
2661 for_each_sp(pages, sp, parents, i) {
7775834a 2662 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2663 mmu_pages_clear_parents(&parents);
77662e00 2664 zapped++;
60c8aec6 2665 }
60c8aec6
MT
2666 }
2667
2668 return zapped;
4731d4c7
MT
2669}
2670
83cdb568
SC
2671static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2672 struct kvm_mmu_page *sp,
2673 struct list_head *invalid_list,
2674 int *nr_zapped)
31aa2b44 2675{
83cdb568 2676 bool list_unstable;
f691fe1d 2677
7775834a 2678 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2679 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2680 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2681 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2682 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2683
83cdb568
SC
2684 /* Zapping children means active_mmu_pages has become unstable. */
2685 list_unstable = *nr_zapped;
2686
f6e2c02b 2687 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2688 unaccount_shadowed(kvm, sp);
5304b8d3 2689
4731d4c7
MT
2690 if (sp->unsync)
2691 kvm_unlink_unsync_page(kvm, sp);
4db35314 2692 if (!sp->root_count) {
54a4f023 2693 /* Count self */
83cdb568 2694 (*nr_zapped)++;
f95eec9b
SC
2695
2696 /*
2697 * Already invalid pages (previously active roots) are not on
2698 * the active page list. See list_del() in the "else" case of
2699 * !sp->root_count.
2700 */
2701 if (sp->role.invalid)
2702 list_add(&sp->link, invalid_list);
2703 else
2704 list_move(&sp->link, invalid_list);
aa6bd187 2705 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2706 } else {
f95eec9b
SC
2707 /*
2708 * Remove the active root from the active page list, the root
2709 * will be explicitly freed when the root_count hits zero.
2710 */
2711 list_del(&sp->link);
05988d72 2712
10605204
SC
2713 /*
2714 * Obsolete pages cannot be used on any vCPUs, see the comment
2715 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2716 * treats invalid shadow pages as being obsolete.
2717 */
2718 if (!is_obsolete_sp(kvm, sp))
05988d72 2719 kvm_reload_remote_mmus(kvm);
2e53d63a 2720 }
7775834a 2721
b8e8c830
PB
2722 if (sp->lpage_disallowed)
2723 unaccount_huge_nx_page(kvm, sp);
2724
7775834a 2725 sp->role.invalid = 1;
83cdb568
SC
2726 return list_unstable;
2727}
2728
2729static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2730 struct list_head *invalid_list)
2731{
2732 int nr_zapped;
2733
2734 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2735 return nr_zapped;
a436036b
AK
2736}
2737
7775834a
XG
2738static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2739 struct list_head *invalid_list)
2740{
945315b9 2741 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2742
2743 if (list_empty(invalid_list))
2744 return;
2745
c142786c 2746 /*
9753f529
LT
2747 * We need to make sure everyone sees our modifications to
2748 * the page tables and see changes to vcpu->mode here. The barrier
2749 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2750 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2751 *
2752 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2753 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2754 */
2755 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2756
945315b9 2757 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2758 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2759 kvm_mmu_free_page(sp);
945315b9 2760 }
7775834a
XG
2761}
2762
6b82ef2c
SC
2763static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2764 unsigned long nr_to_zap)
ba7888dd 2765{
6b82ef2c
SC
2766 unsigned long total_zapped = 0;
2767 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2768 LIST_HEAD(invalid_list);
6b82ef2c
SC
2769 bool unstable;
2770 int nr_zapped;
ba7888dd 2771
6b82ef2c 2772 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2773 return 0;
2774
6b82ef2c
SC
2775restart:
2776 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2777 /*
2778 * Don't zap active root pages, the page itself can't be freed
2779 * and zapping it will just force vCPUs to realloc and reload.
2780 */
2781 if (sp->root_count)
2782 continue;
2783
2784 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2785 &nr_zapped);
2786 total_zapped += nr_zapped;
2787 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2788 break;
2789
6b82ef2c
SC
2790 if (unstable)
2791 goto restart;
ba7888dd 2792 }
6b82ef2c
SC
2793
2794 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2795
2796 kvm->stat.mmu_recycled += total_zapped;
2797 return total_zapped;
2798}
2799
afe8d7e6
SC
2800static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2801{
2802 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2803 return kvm->arch.n_max_mmu_pages -
2804 kvm->arch.n_used_mmu_pages;
2805
2806 return 0;
2807}
2808
6b82ef2c
SC
2809static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2810{
2811 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2812
2813 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2814 return 0;
2815
2816 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2817
2818 if (!kvm_mmu_available_pages(vcpu->kvm))
2819 return -ENOSPC;
2820 return 0;
2821}
2822
82ce2c96
IE
2823/*
2824 * Changing the number of mmu pages allocated to the vm
49d5ca26 2825 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2826 */
bc8a3d89 2827void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2828{
b34cb590
TY
2829 spin_lock(&kvm->mmu_lock);
2830
49d5ca26 2831 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2832 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2833 goal_nr_mmu_pages);
82ce2c96 2834
49d5ca26 2835 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2836 }
82ce2c96 2837
49d5ca26 2838 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2839
2840 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2841}
2842
1cb3f3ae 2843int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2844{
4db35314 2845 struct kvm_mmu_page *sp;
d98ba053 2846 LIST_HEAD(invalid_list);
a436036b
AK
2847 int r;
2848
9ad17b10 2849 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2850 r = 0;
1cb3f3ae 2851 spin_lock(&kvm->mmu_lock);
b67bfe0d 2852 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2853 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2854 sp->role.word);
2855 r = 1;
f41d335a 2856 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2857 }
d98ba053 2858 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2859 spin_unlock(&kvm->mmu_lock);
2860
a436036b 2861 return r;
cea0f0e7 2862}
1cb3f3ae 2863EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2864
5c520e90 2865static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2866{
2867 trace_kvm_mmu_unsync_page(sp);
2868 ++vcpu->kvm->stat.mmu_unsync;
2869 sp->unsync = 1;
2870
2871 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2872}
2873
3d0c27ad
XG
2874static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2875 bool can_unsync)
4731d4c7 2876{
5c520e90 2877 struct kvm_mmu_page *sp;
4731d4c7 2878
3d0c27ad
XG
2879 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2880 return true;
9cf5cf5a 2881
5c520e90 2882 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2883 if (!can_unsync)
3d0c27ad 2884 return true;
36a2e677 2885
5c520e90
XG
2886 if (sp->unsync)
2887 continue;
9cf5cf5a 2888
3bae0459 2889 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2890 kvm_unsync_page(vcpu, sp);
4731d4c7 2891 }
3d0c27ad 2892
578e1c4d
JS
2893 /*
2894 * We need to ensure that the marking of unsync pages is visible
2895 * before the SPTE is updated to allow writes because
2896 * kvm_mmu_sync_roots() checks the unsync flags without holding
2897 * the MMU lock and so can race with this. If the SPTE was updated
2898 * before the page had been marked as unsync-ed, something like the
2899 * following could happen:
2900 *
2901 * CPU 1 CPU 2
2902 * ---------------------------------------------------------------------
2903 * 1.2 Host updates SPTE
2904 * to be writable
2905 * 2.1 Guest writes a GPTE for GVA X.
2906 * (GPTE being in the guest page table shadowed
2907 * by the SP from CPU 1.)
2908 * This reads SPTE during the page table walk.
2909 * Since SPTE.W is read as 1, there is no
2910 * fault.
2911 *
2912 * 2.2 Guest issues TLB flush.
2913 * That causes a VM Exit.
2914 *
2915 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2916 * Since it is false, so it just returns.
2917 *
2918 * 2.4 Guest accesses GVA X.
2919 * Since the mapping in the SP was not updated,
2920 * so the old mapping for GVA X incorrectly
2921 * gets used.
2922 * 1.1 Host marks SP
2923 * as unsync
2924 * (sp->unsync = true)
2925 *
2926 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2927 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2928 * pairs with this write barrier.
2929 */
2930 smp_wmb();
2931
3d0c27ad 2932 return false;
4731d4c7
MT
2933}
2934
ba049e93 2935static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2936{
2937 if (pfn_valid(pfn))
aa2e063a
HZ
2938 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2939 /*
2940 * Some reserved pages, such as those from NVDIMM
2941 * DAX devices, are not for MMIO, and can be mapped
2942 * with cached memory type for better performance.
2943 * However, the above check misconceives those pages
2944 * as MMIO, and results in KVM mapping them with UC
2945 * memory type, which would hurt the performance.
2946 * Therefore, we check the host memory type in addition
2947 * and only treat UC/UC-/WC pages as MMIO.
2948 */
2949 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 2950
0c55671f
KA
2951 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2952 pfn_to_hpa(pfn + 1) - 1,
2953 E820_TYPE_RAM);
d1fe9219
PB
2954}
2955
5ce4786f
JS
2956/* Bits which may be returned by set_spte() */
2957#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2958#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2959
d555c333 2960static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
0a2b64c5 2961 unsigned int pte_access, int level,
ba049e93 2962 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2963 bool can_unsync, bool host_writable)
1c4f1fd6 2964{
ffb128c8 2965 u64 spte = 0;
1e73f9dd 2966 int ret = 0;
ac8d57e5 2967 struct kvm_mmu_page *sp;
64d4d521 2968
54bf36aa 2969 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2970 return 0;
2971
57354682 2972 sp = sptep_to_sp(sptep);
ac8d57e5 2973 if (sp_ad_disabled(sp))
6eeb4ef0 2974 spte |= SPTE_AD_DISABLED_MASK;
1f4e5fc8
PB
2975 else if (kvm_vcpu_ad_need_write_protect(vcpu))
2976 spte |= SPTE_AD_WRPROT_ONLY_MASK;
ac8d57e5 2977
d95c5568
BD
2978 /*
2979 * For the EPT case, shadow_present_mask is 0 if hardware
2980 * supports exec-only page table entries. In that case,
2981 * ACC_USER_MASK and shadow_user_mask are used to represent
2982 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2983 */
ffb128c8 2984 spte |= shadow_present_mask;
947da538 2985 if (!speculative)
ac8d57e5 2986 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2987
3bae0459 2988 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
b8e8c830
PB
2989 is_nx_huge_page_enabled()) {
2990 pte_access &= ~ACC_EXEC_MASK;
2991 }
2992
7b52345e
SY
2993 if (pte_access & ACC_EXEC_MASK)
2994 spte |= shadow_x_mask;
2995 else
2996 spte |= shadow_nx_mask;
49fde340 2997
1c4f1fd6 2998 if (pte_access & ACC_USER_MASK)
7b52345e 2999 spte |= shadow_user_mask;
49fde340 3000
3bae0459 3001 if (level > PG_LEVEL_4K)
05da4558 3002 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 3003 if (tdp_enabled)
afaf0b2f 3004 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
d1fe9219 3005 kvm_is_mmio_pfn(pfn));
1c4f1fd6 3006
9bdbba13 3007 if (host_writable)
1403283a 3008 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
3009 else
3010 pte_access &= ~ACC_WRITE_MASK;
1403283a 3011
daaf216c
TL
3012 if (!kvm_is_mmio_pfn(pfn))
3013 spte |= shadow_me_mask;
3014
35149e21 3015 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 3016
c2288505 3017 if (pte_access & ACC_WRITE_MASK) {
49fde340 3018 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3019
ecc5589f
MT
3020 /*
3021 * Optimization: for pte sync, if spte was writable the hash
3022 * lookup is unnecessary (and expensive). Write protection
3023 * is responsibility of mmu_get_page / kvm_sync_page.
3024 * Same reasoning can be applied to dirty page accounting.
3025 */
8dae4445 3026 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3027 goto set_pte;
3028
4731d4c7 3029 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3030 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3031 __func__, gfn);
5ce4786f 3032 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3033 pte_access &= ~ACC_WRITE_MASK;
49fde340 3034 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3035 }
3036 }
3037
9b51a630 3038 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3039 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3040 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3041 }
1c4f1fd6 3042
f160c7b7
JS
3043 if (speculative)
3044 spte = mark_spte_for_access_track(spte);
3045
38187c83 3046set_pte:
6e7d0354 3047 if (mmu_spte_update(sptep, spte))
5ce4786f 3048 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
3049 return ret;
3050}
3051
0a2b64c5
BG
3052static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3053 unsigned int pte_access, int write_fault, int level,
3054 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3055 bool host_writable)
1e73f9dd
MT
3056{
3057 int was_rmapped = 0;
53a27b39 3058 int rmap_count;
5ce4786f 3059 int set_spte_ret;
9b8ebbdb 3060 int ret = RET_PF_RETRY;
c2a4eadf 3061 bool flush = false;
1e73f9dd 3062
f7616203
XG
3063 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3064 *sptep, write_fault, gfn);
1e73f9dd 3065
afd28fe1 3066 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3067 /*
3068 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3069 * the parent of the now unreachable PTE.
3070 */
3bae0459 3071 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 3072 struct kvm_mmu_page *child;
d555c333 3073 u64 pte = *sptep;
1e73f9dd 3074
e47c4aee 3075 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3076 drop_parent_pte(child, sptep);
c2a4eadf 3077 flush = true;
d555c333 3078 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3079 pgprintk("hfn old %llx new %llx\n",
d555c333 3080 spte_to_pfn(*sptep), pfn);
c3707958 3081 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3082 flush = true;
6bed6b9e
JR
3083 } else
3084 was_rmapped = 1;
1e73f9dd 3085 }
852e3c19 3086
5ce4786f
JS
3087 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3088 speculative, true, host_writable);
3089 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3090 if (write_fault)
9b8ebbdb 3091 ret = RET_PF_EMULATE;
8c8560b8 3092 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 3093 }
c3134ce2 3094
c2a4eadf 3095 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3096 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3097 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3098
029499b4 3099 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3100 ret = RET_PF_EMULATE;
ce88decf 3101
d555c333 3102 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3103 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3104 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3105 ++vcpu->kvm->stat.lpages;
3106
ffb61bb3 3107 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3108 if (!was_rmapped) {
3109 rmap_count = rmap_add(vcpu, sptep, gfn);
3110 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3111 rmap_recycle(vcpu, sptep, gfn);
3112 }
1c4f1fd6 3113 }
cb9aaa30 3114
9b8ebbdb 3115 return ret;
1c4f1fd6
AK
3116}
3117
ba049e93 3118static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3119 bool no_dirty_log)
3120{
3121 struct kvm_memory_slot *slot;
957ed9ef 3122
5d163b1c 3123 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3124 if (!slot)
6c8ee57b 3125 return KVM_PFN_ERR_FAULT;
957ed9ef 3126
037d92dc 3127 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3128}
3129
3130static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3131 struct kvm_mmu_page *sp,
3132 u64 *start, u64 *end)
3133{
3134 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3135 struct kvm_memory_slot *slot;
0a2b64c5 3136 unsigned int access = sp->role.access;
957ed9ef
XG
3137 int i, ret;
3138 gfn_t gfn;
3139
3140 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3141 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3142 if (!slot)
957ed9ef
XG
3143 return -1;
3144
d9ef13c2 3145 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3146 if (ret <= 0)
3147 return -1;
3148
43fdcda9 3149 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3150 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3151 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3152 put_page(pages[i]);
3153 }
957ed9ef
XG
3154
3155 return 0;
3156}
3157
3158static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3159 struct kvm_mmu_page *sp, u64 *sptep)
3160{
3161 u64 *spte, *start = NULL;
3162 int i;
3163
3164 WARN_ON(!sp->role.direct);
3165
3166 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3167 spte = sp->spt + i;
3168
3169 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3170 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3171 if (!start)
3172 continue;
3173 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3174 break;
3175 start = NULL;
3176 } else if (!start)
3177 start = spte;
3178 }
3179}
3180
3181static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3182{
3183 struct kvm_mmu_page *sp;
3184
57354682 3185 sp = sptep_to_sp(sptep);
ac8d57e5 3186
957ed9ef 3187 /*
ac8d57e5
PF
3188 * Without accessed bits, there's no way to distinguish between
3189 * actually accessed translations and prefetched, so disable pte
3190 * prefetch if accessed bits aren't available.
957ed9ef 3191 */
ac8d57e5 3192 if (sp_ad_disabled(sp))
957ed9ef
XG
3193 return;
3194
3bae0459 3195 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
3196 return;
3197
3198 __direct_pte_prefetch(vcpu, sp, sptep);
3199}
3200
db543216 3201static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 3202 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 3203{
db543216
SC
3204 unsigned long hva;
3205 pte_t *pte;
3206 int level;
3207
e851265a 3208 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 3209 return PG_LEVEL_4K;
db543216 3210
293e306e
SC
3211 /*
3212 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3213 * is not solely for performance, it's also necessary to avoid the
3214 * "writable" check in __gfn_to_hva_many(), which will always fail on
3215 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3216 * page fault steps have already verified the guest isn't writing a
3217 * read-only memslot.
3218 */
db543216
SC
3219 hva = __gfn_to_hva_memslot(slot, gfn);
3220
3221 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3222 if (unlikely(!pte))
3bae0459 3223 return PG_LEVEL_4K;
db543216
SC
3224
3225 return level;
3226}
3227
83f06fa7
SC
3228static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3229 int max_level, kvm_pfn_t *pfnp)
0885904d 3230{
293e306e 3231 struct kvm_memory_slot *slot;
2c0629f4 3232 struct kvm_lpage_info *linfo;
0885904d 3233 kvm_pfn_t pfn = *pfnp;
17eff019 3234 kvm_pfn_t mask;
83f06fa7 3235 int level;
17eff019 3236
3bae0459
SC
3237 if (unlikely(max_level == PG_LEVEL_4K))
3238 return PG_LEVEL_4K;
17eff019 3239
e851265a 3240 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 3241 return PG_LEVEL_4K;
17eff019 3242
293e306e
SC
3243 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3244 if (!slot)
3bae0459 3245 return PG_LEVEL_4K;
293e306e 3246
703c335d 3247 max_level = min(max_level, max_page_level);
3bae0459 3248 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
3249 linfo = lpage_info_slot(gfn, slot, max_level);
3250 if (!linfo->disallow_lpage)
293e306e
SC
3251 break;
3252 }
3253
3bae0459
SC
3254 if (max_level == PG_LEVEL_4K)
3255 return PG_LEVEL_4K;
293e306e
SC
3256
3257 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 3258 if (level == PG_LEVEL_4K)
83f06fa7 3259 return level;
17eff019 3260
db543216 3261 level = min(level, max_level);
0885904d
SC
3262
3263 /*
17eff019
SC
3264 * mmu_notifier_retry() was successful and mmu_lock is held, so
3265 * the pmd can't be split from under us.
0885904d 3266 */
17eff019
SC
3267 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3268 VM_BUG_ON((gfn & mask) != (pfn & mask));
3269 *pfnp = pfn & ~mask;
83f06fa7
SC
3270
3271 return level;
0885904d
SC
3272}
3273
b8e8c830
PB
3274static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3275 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3276{
3277 int level = *levelp;
3278 u64 spte = *it.sptep;
3279
3bae0459 3280 if (it.level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
3281 is_nx_huge_page_enabled() &&
3282 is_shadow_present_pte(spte) &&
3283 !is_large_pte(spte)) {
3284 /*
3285 * A small SPTE exists for this pfn, but FNAME(fetch)
3286 * and __direct_map would like to create a large PTE
3287 * instead: just force them to go down another level,
3288 * patching back for them into pfn the next 9 bits of
3289 * the address.
3290 */
3291 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3292 *pfnp |= gfn & page_mask;
3293 (*levelp)--;
3294 }
3295}
3296
3fcf2d1b 3297static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
83f06fa7
SC
3298 int map_writable, int max_level, kvm_pfn_t pfn,
3299 bool prefault, bool account_disallowed_nx_lpage)
140754bc 3300{
3fcf2d1b 3301 struct kvm_shadow_walk_iterator it;
140754bc 3302 struct kvm_mmu_page *sp;
83f06fa7 3303 int level, ret;
3fcf2d1b
PB
3304 gfn_t gfn = gpa >> PAGE_SHIFT;
3305 gfn_t base_gfn = gfn;
6aa8b732 3306
0c7a98e3 3307 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 3308 return RET_PF_RETRY;
989c6b34 3309
83f06fa7 3310 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
4cd071d1 3311
335e192a 3312 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 3313 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
3314 /*
3315 * We cannot overwrite existing page tables with an NX
3316 * large page, as the leaf could be executable.
3317 */
3318 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3319
3fcf2d1b
PB
3320 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3321 if (it.level == level)
9f652d21 3322 break;
6aa8b732 3323
3fcf2d1b
PB
3324 drop_large_spte(vcpu, it.sptep);
3325 if (!is_shadow_present_pte(*it.sptep)) {
3326 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3327 it.level - 1, true, ACC_ALL);
c9fa0b3b 3328
3fcf2d1b 3329 link_shadow_page(vcpu, it.sptep, sp);
2cb70fd4 3330 if (account_disallowed_nx_lpage)
b8e8c830 3331 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
3332 }
3333 }
3fcf2d1b
PB
3334
3335 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3336 write, level, base_gfn, pfn, prefault,
3337 map_writable);
3338 direct_pte_prefetch(vcpu, it.sptep);
3339 ++vcpu->stat.pf_fixed;
3340 return ret;
6aa8b732
AK
3341}
3342
77db5cbd 3343static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3344{
585a8b9b 3345 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3346}
3347
ba049e93 3348static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3349{
4d8b81ab
XG
3350 /*
3351 * Do not cache the mmio info caused by writing the readonly gfn
3352 * into the spte otherwise read access on readonly gfn also can
3353 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3354 */
3355 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3356 return RET_PF_EMULATE;
4d8b81ab 3357
e6c1502b 3358 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3359 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3360 return RET_PF_RETRY;
d7c55201 3361 }
edba23e5 3362
2c151b25 3363 return -EFAULT;
bf998156
HY
3364}
3365
d7c55201 3366static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
3367 kvm_pfn_t pfn, unsigned int access,
3368 int *ret_val)
d7c55201 3369{
d7c55201 3370 /* The pfn is invalid, report the error! */
81c52c56 3371 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3372 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3373 return true;
d7c55201
XG
3374 }
3375
ce88decf 3376 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
3377 vcpu_cache_mmio_info(vcpu, gva, gfn,
3378 access & shadow_mmio_access_mask);
d7c55201 3379
798e88b3 3380 return false;
d7c55201
XG
3381}
3382
e5552fd2 3383static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3384{
1c118b82
XG
3385 /*
3386 * Do not fix the mmio spte with invalid generation number which
3387 * need to be updated by slow page fault path.
3388 */
3389 if (unlikely(error_code & PFERR_RSVD_MASK))
3390 return false;
3391
f160c7b7
JS
3392 /* See if the page fault is due to an NX violation */
3393 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3394 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3395 return false;
3396
c7ba5b48 3397 /*
f160c7b7
JS
3398 * #PF can be fast if:
3399 * 1. The shadow page table entry is not present, which could mean that
3400 * the fault is potentially caused by access tracking (if enabled).
3401 * 2. The shadow page table entry is present and the fault
3402 * is caused by write-protect, that means we just need change the W
3403 * bit of the spte which can be done out of mmu-lock.
3404 *
3405 * However, if access tracking is disabled we know that a non-present
3406 * page must be a genuine page fault where we have to create a new SPTE.
3407 * So, if access tracking is disabled, we return true only for write
3408 * accesses to a present page.
c7ba5b48 3409 */
c7ba5b48 3410
f160c7b7
JS
3411 return shadow_acc_track_mask != 0 ||
3412 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3413 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3414}
3415
97dceba2
JS
3416/*
3417 * Returns true if the SPTE was fixed successfully. Otherwise,
3418 * someone else modified the SPTE from its original value.
3419 */
c7ba5b48 3420static bool
92a476cb 3421fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3422 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3423{
c7ba5b48
XG
3424 gfn_t gfn;
3425
3426 WARN_ON(!sp->role.direct);
3427
9b51a630
KH
3428 /*
3429 * Theoretically we could also set dirty bit (and flush TLB) here in
3430 * order to eliminate unnecessary PML logging. See comments in
3431 * set_spte. But fast_page_fault is very unlikely to happen with PML
3432 * enabled, so we do not do this. This might result in the same GPA
3433 * to be logged in PML buffer again when the write really happens, and
3434 * eventually to be called by mark_page_dirty twice. But it's also no
3435 * harm. This also avoids the TLB flush needed after setting dirty bit
3436 * so non-PML cases won't be impacted.
3437 *
3438 * Compare with set_spte where instead shadow_dirty_mask is set.
3439 */
f160c7b7 3440 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3441 return false;
3442
d3e328f2 3443 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3444 /*
3445 * The gfn of direct spte is stable since it is
3446 * calculated by sp->gfn.
3447 */
3448 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3449 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3450 }
c7ba5b48
XG
3451
3452 return true;
3453}
3454
d3e328f2
JS
3455static bool is_access_allowed(u32 fault_err_code, u64 spte)
3456{
3457 if (fault_err_code & PFERR_FETCH_MASK)
3458 return is_executable_pte(spte);
3459
3460 if (fault_err_code & PFERR_WRITE_MASK)
3461 return is_writable_pte(spte);
3462
3463 /* Fault was on Read access */
3464 return spte & PT_PRESENT_MASK;
3465}
3466
c7ba5b48
XG
3467/*
3468 * Return value:
3469 * - true: let the vcpu to access on the same address again.
3470 * - false: let the real page fault path to fix it.
3471 */
f9fa2509 3472static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
c7ba5b48
XG
3473 u32 error_code)
3474{
3475 struct kvm_shadow_walk_iterator iterator;
92a476cb 3476 struct kvm_mmu_page *sp;
97dceba2 3477 bool fault_handled = false;
c7ba5b48 3478 u64 spte = 0ull;
97dceba2 3479 uint retry_count = 0;
c7ba5b48 3480
e5552fd2 3481 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3482 return false;
3483
3484 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3485
97dceba2 3486 do {
d3e328f2 3487 u64 new_spte;
c7ba5b48 3488
736c291c 3489 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3490 if (!is_shadow_present_pte(spte))
d162f30a
JS
3491 break;
3492
57354682 3493 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3494 if (!is_last_spte(spte, sp->role.level))
3495 break;
c7ba5b48 3496
97dceba2 3497 /*
f160c7b7
JS
3498 * Check whether the memory access that caused the fault would
3499 * still cause it if it were to be performed right now. If not,
3500 * then this is a spurious fault caused by TLB lazily flushed,
3501 * or some other CPU has already fixed the PTE after the
3502 * current CPU took the fault.
97dceba2
JS
3503 *
3504 * Need not check the access of upper level table entries since
3505 * they are always ACC_ALL.
3506 */
d3e328f2
JS
3507 if (is_access_allowed(error_code, spte)) {
3508 fault_handled = true;
3509 break;
3510 }
f160c7b7 3511
d3e328f2
JS
3512 new_spte = spte;
3513
3514 if (is_access_track_spte(spte))
3515 new_spte = restore_acc_track_spte(new_spte);
3516
3517 /*
3518 * Currently, to simplify the code, write-protection can
3519 * be removed in the fast path only if the SPTE was
3520 * write-protected for dirty-logging or access tracking.
3521 */
3522 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3523 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3524 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3525
3526 /*
d3e328f2
JS
3527 * Do not fix write-permission on the large spte. Since
3528 * we only dirty the first page into the dirty-bitmap in
3529 * fast_pf_fix_direct_spte(), other pages are missed
3530 * if its slot has dirty logging enabled.
3531 *
3532 * Instead, we let the slow page fault path create a
3533 * normal spte to fix the access.
3534 *
3535 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3536 */
3bae0459 3537 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3538 break;
97dceba2 3539 }
c7ba5b48 3540
f160c7b7 3541 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3542 if (new_spte == spte ||
3543 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3544 break;
3545
3546 /*
3547 * Currently, fast page fault only works for direct mapping
3548 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3549 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2
JS
3550 */
3551 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3552 iterator.sptep, spte,
d3e328f2 3553 new_spte);
97dceba2
JS
3554 if (fault_handled)
3555 break;
3556
3557 if (++retry_count > 4) {
3558 printk_once(KERN_WARNING
3559 "kvm: Fast #PF retrying more than 4 times.\n");
3560 break;
3561 }
3562
97dceba2 3563 } while (true);
c126d94f 3564
736c291c 3565 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
97dceba2 3566 spte, fault_handled);
c7ba5b48
XG
3567 walk_shadow_page_lockless_end(vcpu);
3568
97dceba2 3569 return fault_handled;
c7ba5b48
XG
3570}
3571
74b566e6
JS
3572static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3573 struct list_head *invalid_list)
17ac10ad 3574{
4db35314 3575 struct kvm_mmu_page *sp;
17ac10ad 3576
74b566e6 3577 if (!VALID_PAGE(*root_hpa))
7b53aa56 3578 return;
35af577a 3579
e47c4aee 3580 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
74b566e6
JS
3581 --sp->root_count;
3582 if (!sp->root_count && sp->role.invalid)
3583 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3584
74b566e6
JS
3585 *root_hpa = INVALID_PAGE;
3586}
3587
08fb59d8 3588/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3589void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3590 ulong roots_to_free)
74b566e6
JS
3591{
3592 int i;
3593 LIST_HEAD(invalid_list);
08fb59d8 3594 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3595
b94742c9 3596 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3597
08fb59d8 3598 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3599 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3600 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3601 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3602 VALID_PAGE(mmu->prev_roots[i].hpa))
3603 break;
3604
3605 if (i == KVM_MMU_NUM_PREV_ROOTS)
3606 return;
3607 }
35af577a
GN
3608
3609 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3610
b94742c9
JS
3611 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3612 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3613 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3614 &invalid_list);
7c390d35 3615
08fb59d8
JS
3616 if (free_active_root) {
3617 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3618 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3619 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3620 &invalid_list);
3621 } else {
3622 for (i = 0; i < 4; ++i)
3623 if (mmu->pae_root[i] != 0)
3624 mmu_free_root_page(vcpu->kvm,
3625 &mmu->pae_root[i],
3626 &invalid_list);
3627 mmu->root_hpa = INVALID_PAGE;
3628 }
be01e8e2 3629 mmu->root_pgd = 0;
17ac10ad 3630 }
74b566e6 3631
d98ba053 3632 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3633 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3634}
74b566e6 3635EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3636
8986ecc0
MT
3637static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3638{
3639 int ret = 0;
3640
995decb6 3641 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3642 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3643 ret = 1;
3644 }
3645
3646 return ret;
3647}
3648
8123f265
SC
3649static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3650 u8 level, bool direct)
651dd37a
JR
3651{
3652 struct kvm_mmu_page *sp;
8123f265
SC
3653
3654 spin_lock(&vcpu->kvm->mmu_lock);
3655
3656 if (make_mmu_pages_available(vcpu)) {
3657 spin_unlock(&vcpu->kvm->mmu_lock);
3658 return INVALID_PAGE;
3659 }
3660 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3661 ++sp->root_count;
3662
3663 spin_unlock(&vcpu->kvm->mmu_lock);
3664 return __pa(sp->spt);
3665}
3666
3667static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3668{
3669 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3670 hpa_t root;
7ebaf15e 3671 unsigned i;
651dd37a 3672
8123f265
SC
3673 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3674 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3675 if (!VALID_PAGE(root))
ed52870f 3676 return -ENOSPC;
8123f265
SC
3677 vcpu->arch.mmu->root_hpa = root;
3678 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3679 for (i = 0; i < 4; ++i) {
8123f265 3680 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3681
8123f265
SC
3682 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3683 i << 30, PT32_ROOT_LEVEL, true);
3684 if (!VALID_PAGE(root))
ed52870f 3685 return -ENOSPC;
44dd3ffa 3686 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3687 }
44dd3ffa 3688 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3689 } else
3690 BUG();
3651c7fc 3691
be01e8e2
SC
3692 /* root_pgd is ignored for direct MMUs. */
3693 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3694
3695 return 0;
3696}
3697
3698static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3699{
81407ca5 3700 u64 pdptr, pm_mask;
be01e8e2 3701 gfn_t root_gfn, root_pgd;
8123f265 3702 hpa_t root;
81407ca5 3703 int i;
3bb65a22 3704
be01e8e2
SC
3705 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3706 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3707
651dd37a
JR
3708 if (mmu_check_root(vcpu, root_gfn))
3709 return 1;
3710
3711 /*
3712 * Do we shadow a long mode page table? If so we need to
3713 * write-protect the guests page table root.
3714 */
44dd3ffa 3715 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3716 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3717
8123f265
SC
3718 root = mmu_alloc_root(vcpu, root_gfn, 0,
3719 vcpu->arch.mmu->shadow_root_level, false);
3720 if (!VALID_PAGE(root))
ed52870f 3721 return -ENOSPC;
44dd3ffa 3722 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3723 goto set_root_pgd;
17ac10ad 3724 }
f87f9288 3725
651dd37a
JR
3726 /*
3727 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3728 * or a PAE 3-level page table. In either case we need to be aware that
3729 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3730 */
81407ca5 3731 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3732 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3733 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3734
17ac10ad 3735 for (i = 0; i < 4; ++i) {
8123f265 3736 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3737 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3738 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3739 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3740 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3741 continue;
3742 }
6de4f3ad 3743 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3744 if (mmu_check_root(vcpu, root_gfn))
3745 return 1;
5a7388c2 3746 }
8facbbff 3747
8123f265
SC
3748 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3749 PT32_ROOT_LEVEL, false);
3750 if (!VALID_PAGE(root))
3751 return -ENOSPC;
44dd3ffa 3752 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3753 }
44dd3ffa 3754 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3755
3756 /*
3757 * If we shadow a 32 bit page table with a long mode page
3758 * table we enter this path.
3759 */
44dd3ffa
VK
3760 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3761 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3762 /*
3763 * The additional page necessary for this is only
3764 * allocated on demand.
3765 */
3766
3767 u64 *lm_root;
3768
254272ce 3769 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3770 if (lm_root == NULL)
3771 return 1;
3772
44dd3ffa 3773 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3774
44dd3ffa 3775 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3776 }
3777
44dd3ffa 3778 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3779 }
3780
be01e8e2
SC
3781set_root_pgd:
3782 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3783
8986ecc0 3784 return 0;
17ac10ad
AK
3785}
3786
651dd37a
JR
3787static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3788{
44dd3ffa 3789 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3790 return mmu_alloc_direct_roots(vcpu);
3791 else
3792 return mmu_alloc_shadow_roots(vcpu);
3793}
3794
578e1c4d 3795void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3796{
3797 int i;
3798 struct kvm_mmu_page *sp;
3799
44dd3ffa 3800 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3801 return;
3802
44dd3ffa 3803 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3804 return;
6903074c 3805
56f17dd3 3806 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3807
44dd3ffa
VK
3808 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3809 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3810 sp = to_shadow_page(root);
578e1c4d
JS
3811
3812 /*
3813 * Even if another CPU was marking the SP as unsync-ed
3814 * simultaneously, any guest page table changes are not
3815 * guaranteed to be visible anyway until this VCPU issues a TLB
3816 * flush strictly after those changes are made. We only need to
3817 * ensure that the other CPU sets these flags before any actual
3818 * changes to the page tables are made. The comments in
3819 * mmu_need_write_protect() describe what could go wrong if this
3820 * requirement isn't satisfied.
3821 */
3822 if (!smp_load_acquire(&sp->unsync) &&
3823 !smp_load_acquire(&sp->unsync_children))
3824 return;
3825
3826 spin_lock(&vcpu->kvm->mmu_lock);
3827 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3828
0ba73cda 3829 mmu_sync_children(vcpu, sp);
578e1c4d 3830
0375f7fa 3831 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3832 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3833 return;
3834 }
578e1c4d
JS
3835
3836 spin_lock(&vcpu->kvm->mmu_lock);
3837 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3838
0ba73cda 3839 for (i = 0; i < 4; ++i) {
44dd3ffa 3840 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3841
8986ecc0 3842 if (root && VALID_PAGE(root)) {
0ba73cda 3843 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3844 sp = to_shadow_page(root);
0ba73cda
MT
3845 mmu_sync_children(vcpu, sp);
3846 }
3847 }
0ba73cda 3848
578e1c4d 3849 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3850 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3851}
bfd0a56b 3852EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3853
736c291c 3854static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3855 u32 access, struct x86_exception *exception)
6aa8b732 3856{
ab9ae313
AK
3857 if (exception)
3858 exception->error_code = 0;
6aa8b732
AK
3859 return vaddr;
3860}
3861
736c291c 3862static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3863 u32 access,
3864 struct x86_exception *exception)
6539e738 3865{
ab9ae313
AK
3866 if (exception)
3867 exception->error_code = 0;
54987b7a 3868 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3869}
3870
d625b155
XG
3871static bool
3872__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3873{
b5c3c1b3 3874 int bit7 = (pte >> 7) & 1;
d625b155 3875
b5c3c1b3 3876 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3877}
3878
b5c3c1b3 3879static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3880{
b5c3c1b3 3881 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3882}
3883
ded58749 3884static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3885{
9034e6e8
PB
3886 /*
3887 * A nested guest cannot use the MMIO cache if it is using nested
3888 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3889 */
3890 if (mmu_is_nested(vcpu))
3891 return false;
3892
ce88decf
XG
3893 if (direct)
3894 return vcpu_match_mmio_gpa(vcpu, addr);
3895
3896 return vcpu_match_mmio_gva(vcpu, addr);
3897}
3898
47ab8751
XG
3899/* return true if reserved bit is detected on spte. */
3900static bool
3901walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3902{
3903 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3904 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3905 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3906 int root, leaf;
3907 bool reserved = false;
ce88decf 3908
b5c3c1b3 3909 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3910
ce88decf 3911 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3912
29ecd660
PB
3913 for (shadow_walk_init(&iterator, vcpu, addr),
3914 leaf = root = iterator.level;
47ab8751
XG
3915 shadow_walk_okay(&iterator);
3916 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3917 spte = mmu_spte_get_lockless(iterator.sptep);
3918
3919 sptes[leaf - 1] = spte;
29ecd660 3920 leaf--;
47ab8751 3921
ce88decf
XG
3922 if (!is_shadow_present_pte(spte))
3923 break;
47ab8751 3924
b5c3c1b3
SC
3925 /*
3926 * Use a bitwise-OR instead of a logical-OR to aggregate the
3927 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3928 * adding a Jcc in the loop.
3929 */
3930 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3931 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3932 }
3933
ce88decf
XG
3934 walk_shadow_page_lockless_end(vcpu);
3935
47ab8751
XG
3936 if (reserved) {
3937 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3938 __func__, addr);
29ecd660 3939 while (root > leaf) {
47ab8751
XG
3940 pr_err("------ spte 0x%llx level %d.\n",
3941 sptes[root - 1], root);
3942 root--;
3943 }
3944 }
ddce6208 3945
47ab8751
XG
3946 *sptep = spte;
3947 return reserved;
ce88decf
XG
3948}
3949
e08d26f0 3950static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3951{
3952 u64 spte;
47ab8751 3953 bool reserved;
ce88decf 3954
ded58749 3955 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3956 return RET_PF_EMULATE;
ce88decf 3957
47ab8751 3958 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3959 if (WARN_ON(reserved))
9b8ebbdb 3960 return -EINVAL;
ce88decf
XG
3961
3962 if (is_mmio_spte(spte)) {
3963 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3964 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3965
54bf36aa 3966 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3967 return RET_PF_INVALID;
f8f55942 3968
ce88decf
XG
3969 if (direct)
3970 addr = 0;
4f022648
XG
3971
3972 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3973 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3974 return RET_PF_EMULATE;
ce88decf
XG
3975 }
3976
ce88decf
XG
3977 /*
3978 * If the page table is zapped by other cpus, let CPU fault again on
3979 * the address.
3980 */
9b8ebbdb 3981 return RET_PF_RETRY;
ce88decf 3982}
ce88decf 3983
3d0c27ad
XG
3984static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3985 u32 error_code, gfn_t gfn)
3986{
3987 if (unlikely(error_code & PFERR_RSVD_MASK))
3988 return false;
3989
3990 if (!(error_code & PFERR_PRESENT_MASK) ||
3991 !(error_code & PFERR_WRITE_MASK))
3992 return false;
3993
3994 /*
3995 * guest is writing the page which is write tracked which can
3996 * not be fixed by page fault handler.
3997 */
3998 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3999 return true;
4000
4001 return false;
4002}
4003
e5691a81
XG
4004static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4005{
4006 struct kvm_shadow_walk_iterator iterator;
4007 u64 spte;
4008
e5691a81
XG
4009 walk_shadow_page_lockless_begin(vcpu);
4010 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4011 clear_sp_write_flooding_count(iterator.sptep);
4012 if (!is_shadow_present_pte(spte))
4013 break;
4014 }
4015 walk_shadow_page_lockless_end(vcpu);
4016}
4017
e8c22266
VK
4018static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4019 gfn_t gfn)
af585b92
GN
4020{
4021 struct kvm_arch_async_pf arch;
fb67e14f 4022
7c90705b 4023 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4024 arch.gfn = gfn;
44dd3ffa 4025 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 4026 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 4027
9f1a8526
SC
4028 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4029 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4030}
4031
78b2c54a 4032static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
4033 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4034 bool *writable)
af585b92 4035{
c36b7150 4036 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
4037 bool async;
4038
c36b7150
PB
4039 /* Don't expose private memslots to L2. */
4040 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 4041 *pfn = KVM_PFN_NOSLOT;
c583eed6 4042 *writable = false;
3a2936de
JM
4043 return false;
4044 }
4045
3520469d
PB
4046 async = false;
4047 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4048 if (!async)
4049 return false; /* *pfn has correct page already */
4050
9bc1f09f 4051 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 4052 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 4053 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 4054 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
4055 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4056 return true;
9f1a8526 4057 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
4058 return true;
4059 }
4060
3520469d 4061 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4062 return false;
4063}
4064
0f90e1c1
SC
4065static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4066 bool prefault, int max_level, bool is_tdp)
6aa8b732 4067{
367fd790 4068 bool write = error_code & PFERR_WRITE_MASK;
367fd790
SC
4069 bool exec = error_code & PFERR_FETCH_MASK;
4070 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
0f90e1c1 4071 bool map_writable;
6aa8b732 4072
0f90e1c1
SC
4073 gfn_t gfn = gpa >> PAGE_SHIFT;
4074 unsigned long mmu_seq;
4075 kvm_pfn_t pfn;
83f06fa7 4076 int r;
ce88decf 4077
3d0c27ad 4078 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4079 return RET_PF_EMULATE;
ce88decf 4080
83291445
SC
4081 if (fast_page_fault(vcpu, gpa, error_code))
4082 return RET_PF_RETRY;
4083
378f5cd6 4084 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
4085 if (r)
4086 return r;
714b93da 4087
0f90e1c1 4088 if (lpage_disallowed)
3bae0459 4089 max_level = PG_LEVEL_4K;
367fd790 4090
367fd790
SC
4091 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4092 smp_rmb();
4093
4094 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4095 return RET_PF_RETRY;
4096
0f90e1c1 4097 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 4098 return r;
6aa8b732 4099
367fd790
SC
4100 r = RET_PF_RETRY;
4101 spin_lock(&vcpu->kvm->mmu_lock);
4102 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4103 goto out_unlock;
7bd7ded6
SC
4104 r = make_mmu_pages_available(vcpu);
4105 if (r)
367fd790 4106 goto out_unlock;
83f06fa7 4107 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4cd071d1 4108 prefault, is_tdp && lpage_disallowed);
0f90e1c1 4109
367fd790
SC
4110out_unlock:
4111 spin_unlock(&vcpu->kvm->mmu_lock);
4112 kvm_release_pfn_clean(pfn);
4113 return r;
6aa8b732
AK
4114}
4115
0f90e1c1
SC
4116static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4117 u32 error_code, bool prefault)
4118{
4119 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4120
4121 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4122 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 4123 PG_LEVEL_2M, false);
0f90e1c1
SC
4124}
4125
1261bfa3 4126int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4127 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4128{
4129 int r = 1;
9ce372b3 4130 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 4131
736c291c
SC
4132#ifndef CONFIG_X86_64
4133 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4134 if (WARN_ON_ONCE(fault_address >> 32))
4135 return -EFAULT;
4136#endif
4137
c595ceee 4138 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 4139 if (!flags) {
1261bfa3
WL
4140 trace_kvm_page_fault(fault_address, error_code);
4141
d0006530 4142 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4143 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4144 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4145 insn_len);
9ce372b3 4146 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 4147 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 4148 local_irq_disable();
6bca69ad 4149 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 4150 local_irq_enable();
9ce372b3
VK
4151 } else {
4152 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 4153 }
9ce372b3 4154
1261bfa3
WL
4155 return r;
4156}
4157EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4158
7a02674d
SC
4159int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4160 bool prefault)
fb72d167 4161{
cb9b88c6 4162 int max_level;
fb72d167 4163
e662ec3e 4164 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 4165 max_level > PG_LEVEL_4K;
cb9b88c6
SC
4166 max_level--) {
4167 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 4168 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 4169
cb9b88c6
SC
4170 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4171 break;
fd136902 4172 }
852e3c19 4173
0f90e1c1
SC
4174 return direct_page_fault(vcpu, gpa, error_code, prefault,
4175 max_level, true);
fb72d167
JR
4176}
4177
8a3c1a33
PB
4178static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4179 struct kvm_mmu *context)
6aa8b732 4180{
6aa8b732 4181 context->page_fault = nonpaging_page_fault;
6aa8b732 4182 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4183 context->sync_page = nonpaging_sync_page;
5efac074 4184 context->invlpg = NULL;
0f53b5b1 4185 context->update_pte = nonpaging_update_pte;
cea0f0e7 4186 context->root_level = 0;
6aa8b732 4187 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4188 context->direct_map = true;
2d48a985 4189 context->nx = false;
6aa8b732
AK
4190}
4191
be01e8e2 4192static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
4193 union kvm_mmu_page_role role)
4194{
be01e8e2 4195 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
4196 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4197 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
4198}
4199
b94742c9 4200/*
be01e8e2 4201 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
4202 * The current root is also inserted into the cache.
4203 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4204 * returned.
4205 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4206 * false is returned. This root should now be freed by the caller.
4207 */
be01e8e2 4208static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
4209 union kvm_mmu_page_role new_role)
4210{
4211 uint i;
4212 struct kvm_mmu_root_info root;
44dd3ffa 4213 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4214
be01e8e2 4215 root.pgd = mmu->root_pgd;
b94742c9
JS
4216 root.hpa = mmu->root_hpa;
4217
be01e8e2 4218 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
4219 return true;
4220
b94742c9
JS
4221 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4222 swap(root, mmu->prev_roots[i]);
4223
be01e8e2 4224 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
4225 break;
4226 }
4227
4228 mmu->root_hpa = root.hpa;
be01e8e2 4229 mmu->root_pgd = root.pgd;
b94742c9
JS
4230
4231 return i < KVM_MMU_NUM_PREV_ROOTS;
4232}
4233
be01e8e2 4234static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 4235 union kvm_mmu_page_role new_role)
6aa8b732 4236{
44dd3ffa 4237 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4238
4239 /*
4240 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4241 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4242 * later if necessary.
4243 */
4244 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 4245 mmu->root_level >= PT64_ROOT_4LEVEL)
be01e8e2
SC
4246 return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
4247 cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
4248
4249 return false;
6aa8b732
AK
4250}
4251
be01e8e2 4252static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 4253 union kvm_mmu_page_role new_role,
4a632ac6 4254 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 4255{
be01e8e2 4256 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
4257 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4258 return;
4259 }
4260
4261 /*
4262 * It's possible that the cached previous root page is obsolete because
4263 * of a change in the MMU generation number. However, changing the
4264 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4265 * free the root set here and allocate a new one.
4266 */
4267 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4268
71fe7013 4269 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 4270 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 4271 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 4272 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
4273
4274 /*
4275 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4276 * switching to a new CR3, that GVA->GPA mapping may no longer be
4277 * valid. So clear any cached MMIO info even when we don't need to sync
4278 * the shadow page tables.
4279 */
4280 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4281
e47c4aee 4282 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
4283}
4284
be01e8e2 4285void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 4286 bool skip_mmu_sync)
0aab33e4 4287{
be01e8e2 4288 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 4289 skip_tlb_flush, skip_mmu_sync);
0aab33e4 4290}
be01e8e2 4291EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 4292
5777ed34
JR
4293static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4294{
9f8fe504 4295 return kvm_read_cr3(vcpu);
5777ed34
JR
4296}
4297
54bf36aa 4298static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 4299 unsigned int access, int *nr_present)
ce88decf
XG
4300{
4301 if (unlikely(is_mmio_spte(*sptep))) {
4302 if (gfn != get_mmio_spte_gfn(*sptep)) {
4303 mmu_spte_clear_no_track(sptep);
4304 return true;
4305 }
4306
4307 (*nr_present)++;
54bf36aa 4308 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4309 return true;
4310 }
4311
4312 return false;
4313}
4314
6bb69c9b
PB
4315static inline bool is_last_gpte(struct kvm_mmu *mmu,
4316 unsigned level, unsigned gpte)
6fd01b71 4317{
6bb69c9b
PB
4318 /*
4319 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4320 * If it is clear, there are no large pages at this level, so clear
4321 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4322 */
4323 gpte &= level - mmu->last_nonleaf_level;
4324
829ee279 4325 /*
3bae0459
SC
4326 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
4327 * iff level <= PG_LEVEL_4K, which for our purpose means
4328 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 4329 */
3bae0459 4330 gpte |= level - PG_LEVEL_4K - 1;
829ee279 4331
6bb69c9b 4332 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4333}
4334
37406aaa
NHE
4335#define PTTYPE_EPT 18 /* arbitrary */
4336#define PTTYPE PTTYPE_EPT
4337#include "paging_tmpl.h"
4338#undef PTTYPE
4339
6aa8b732
AK
4340#define PTTYPE 64
4341#include "paging_tmpl.h"
4342#undef PTTYPE
4343
4344#define PTTYPE 32
4345#include "paging_tmpl.h"
4346#undef PTTYPE
4347
6dc98b86
XG
4348static void
4349__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4350 struct rsvd_bits_validate *rsvd_check,
4351 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4352 bool pse, bool amd)
82725b20 4353{
82725b20 4354 u64 exb_bit_rsvd = 0;
5f7dde7b 4355 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4356 u64 nonleaf_bit8_rsvd = 0;
82725b20 4357
a0a64f50 4358 rsvd_check->bad_mt_xwr = 0;
25d92081 4359
6dc98b86 4360 if (!nx)
82725b20 4361 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4362 if (!gbpages)
5f7dde7b 4363 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4364
4365 /*
4366 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4367 * leaf entries) on AMD CPUs only.
4368 */
6fec2144 4369 if (amd)
a0c0feb5
PB
4370 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4371
6dc98b86 4372 switch (level) {
82725b20
DE
4373 case PT32_ROOT_LEVEL:
4374 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4375 rsvd_check->rsvd_bits_mask[0][1] = 0;
4376 rsvd_check->rsvd_bits_mask[0][0] = 0;
4377 rsvd_check->rsvd_bits_mask[1][0] =
4378 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4379
6dc98b86 4380 if (!pse) {
a0a64f50 4381 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4382 break;
4383 }
4384
82725b20
DE
4385 if (is_cpuid_PSE36())
4386 /* 36bits PSE 4MB page */
a0a64f50 4387 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4388 else
4389 /* 32 bits PSE 4MB page */
a0a64f50 4390 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4391 break;
4392 case PT32E_ROOT_LEVEL:
a0a64f50 4393 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4394 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4395 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4396 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4397 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4398 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4399 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4400 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4401 rsvd_bits(maxphyaddr, 62) |
4402 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4403 rsvd_check->rsvd_bits_mask[1][0] =
4404 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4405 break;
855feb67
YZ
4406 case PT64_ROOT_5LEVEL:
4407 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4408 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4409 rsvd_bits(maxphyaddr, 51);
4410 rsvd_check->rsvd_bits_mask[1][4] =
4411 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4412 /* fall through */
2a7266a8 4413 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4414 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4415 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4416 rsvd_bits(maxphyaddr, 51);
a0a64f50 4417 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5ecad245 4418 gbpages_bit_rsvd |
82725b20 4419 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4420 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4421 rsvd_bits(maxphyaddr, 51);
4422 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4423 rsvd_bits(maxphyaddr, 51);
4424 rsvd_check->rsvd_bits_mask[1][3] =
4425 rsvd_check->rsvd_bits_mask[0][3];
4426 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4427 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4428 rsvd_bits(13, 29);
a0a64f50 4429 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4430 rsvd_bits(maxphyaddr, 51) |
4431 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4432 rsvd_check->rsvd_bits_mask[1][0] =
4433 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4434 break;
4435 }
4436}
4437
6dc98b86
XG
4438static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4439 struct kvm_mmu *context)
4440{
4441 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4442 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4443 context->nx,
4444 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4445 is_pse(vcpu),
4446 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4447}
4448
81b8eebb
XG
4449static void
4450__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4451 int maxphyaddr, bool execonly)
25d92081 4452{
951f9fd7 4453 u64 bad_mt_xwr;
25d92081 4454
855feb67
YZ
4455 rsvd_check->rsvd_bits_mask[0][4] =
4456 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4457 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4458 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4459 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4460 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4461 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4462 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4463 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4464
4465 /* large page */
855feb67 4466 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4467 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4468 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4469 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4470 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4471 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4472 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4473
951f9fd7
PB
4474 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4475 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4476 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4477 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4478 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4479 if (!execonly) {
4480 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4481 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4482 }
951f9fd7 4483 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4484}
4485
81b8eebb
XG
4486static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4487 struct kvm_mmu *context, bool execonly)
4488{
4489 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4490 cpuid_maxphyaddr(vcpu), execonly);
4491}
4492
c258b62b
XG
4493/*
4494 * the page table on host is the shadow page table for the page
4495 * table in guest or amd nested guest, its mmu features completely
4496 * follow the features in guest.
4497 */
4498void
4499reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4500{
36d9594d
VK
4501 bool uses_nx = context->nx ||
4502 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4503 struct rsvd_bits_validate *shadow_zero_check;
4504 int i;
5f0b8199 4505
6fec2144
PB
4506 /*
4507 * Passing "true" to the last argument is okay; it adds a check
4508 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4509 */
ea2800dd
BS
4510 shadow_zero_check = &context->shadow_zero_check;
4511 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4512 shadow_phys_bits,
5f0b8199 4513 context->shadow_root_level, uses_nx,
d6321d49
RK
4514 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4515 is_pse(vcpu), true);
ea2800dd
BS
4516
4517 if (!shadow_me_mask)
4518 return;
4519
4520 for (i = context->shadow_root_level; --i >= 0;) {
4521 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4522 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4523 }
4524
c258b62b
XG
4525}
4526EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4527
6fec2144
PB
4528static inline bool boot_cpu_is_amd(void)
4529{
4530 WARN_ON_ONCE(!tdp_enabled);
4531 return shadow_x_mask == 0;
4532}
4533
c258b62b
XG
4534/*
4535 * the direct page table on host, use as much mmu features as
4536 * possible, however, kvm currently does not do execution-protection.
4537 */
4538static void
4539reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4540 struct kvm_mmu *context)
4541{
ea2800dd
BS
4542 struct rsvd_bits_validate *shadow_zero_check;
4543 int i;
4544
4545 shadow_zero_check = &context->shadow_zero_check;
4546
6fec2144 4547 if (boot_cpu_is_amd())
ea2800dd 4548 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4549 shadow_phys_bits,
c258b62b 4550 context->shadow_root_level, false,
b8291adc
BP
4551 boot_cpu_has(X86_FEATURE_GBPAGES),
4552 true, true);
c258b62b 4553 else
ea2800dd 4554 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4555 shadow_phys_bits,
c258b62b
XG
4556 false);
4557
ea2800dd
BS
4558 if (!shadow_me_mask)
4559 return;
4560
4561 for (i = context->shadow_root_level; --i >= 0;) {
4562 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4563 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4564 }
c258b62b
XG
4565}
4566
4567/*
4568 * as the comments in reset_shadow_zero_bits_mask() except it
4569 * is the shadow page table for intel nested guest.
4570 */
4571static void
4572reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4573 struct kvm_mmu *context, bool execonly)
4574{
4575 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4576 shadow_phys_bits, execonly);
c258b62b
XG
4577}
4578
09f037aa
PB
4579#define BYTE_MASK(access) \
4580 ((1 & (access) ? 2 : 0) | \
4581 (2 & (access) ? 4 : 0) | \
4582 (3 & (access) ? 8 : 0) | \
4583 (4 & (access) ? 16 : 0) | \
4584 (5 & (access) ? 32 : 0) | \
4585 (6 & (access) ? 64 : 0) | \
4586 (7 & (access) ? 128 : 0))
4587
4588
edc90b7d
XG
4589static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4590 struct kvm_mmu *mmu, bool ept)
97d64b78 4591{
09f037aa
PB
4592 unsigned byte;
4593
4594 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4595 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4596 const u8 u = BYTE_MASK(ACC_USER_MASK);
4597
4598 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4599 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4600 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4601
97d64b78 4602 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4603 unsigned pfec = byte << 1;
4604
97ec8c06 4605 /*
09f037aa
PB
4606 * Each "*f" variable has a 1 bit for each UWX value
4607 * that causes a fault with the given PFEC.
97ec8c06 4608 */
97d64b78 4609
09f037aa 4610 /* Faults from writes to non-writable pages */
a6a6d3b1 4611 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4612 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4613 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4614 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4615 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4616 /* Faults from kernel mode fetches of user pages */
4617 u8 smepf = 0;
4618 /* Faults from kernel mode accesses of user pages */
4619 u8 smapf = 0;
4620
4621 if (!ept) {
4622 /* Faults from kernel mode accesses to user pages */
4623 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4624
4625 /* Not really needed: !nx will cause pte.nx to fault */
4626 if (!mmu->nx)
4627 ff = 0;
4628
4629 /* Allow supervisor writes if !cr0.wp */
4630 if (!cr0_wp)
4631 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4632
4633 /* Disallow supervisor fetches of user code if cr4.smep */
4634 if (cr4_smep)
4635 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4636
4637 /*
4638 * SMAP:kernel-mode data accesses from user-mode
4639 * mappings should fault. A fault is considered
4640 * as a SMAP violation if all of the following
39337ad1 4641 * conditions are true:
09f037aa
PB
4642 * - X86_CR4_SMAP is set in CR4
4643 * - A user page is accessed
4644 * - The access is not a fetch
4645 * - Page fault in kernel mode
4646 * - if CPL = 3 or X86_EFLAGS_AC is clear
4647 *
4648 * Here, we cover the first three conditions.
4649 * The fourth is computed dynamically in permission_fault();
4650 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4651 * *not* subject to SMAP restrictions.
4652 */
4653 if (cr4_smap)
4654 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4655 }
09f037aa
PB
4656
4657 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4658 }
4659}
4660
2d344105
HH
4661/*
4662* PKU is an additional mechanism by which the paging controls access to
4663* user-mode addresses based on the value in the PKRU register. Protection
4664* key violations are reported through a bit in the page fault error code.
4665* Unlike other bits of the error code, the PK bit is not known at the
4666* call site of e.g. gva_to_gpa; it must be computed directly in
4667* permission_fault based on two bits of PKRU, on some machine state (CR4,
4668* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4669*
4670* In particular the following conditions come from the error code, the
4671* page tables and the machine state:
4672* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4673* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4674* - PK is always zero if U=0 in the page tables
4675* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4676*
4677* The PKRU bitmask caches the result of these four conditions. The error
4678* code (minus the P bit) and the page table's U bit form an index into the
4679* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4680* with the two bits of the PKRU register corresponding to the protection key.
4681* For the first three conditions above the bits will be 00, thus masking
4682* away both AD and WD. For all reads or if the last condition holds, WD
4683* only will be masked away.
4684*/
4685static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4686 bool ept)
4687{
4688 unsigned bit;
4689 bool wp;
4690
4691 if (ept) {
4692 mmu->pkru_mask = 0;
4693 return;
4694 }
4695
4696 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4697 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4698 mmu->pkru_mask = 0;
4699 return;
4700 }
4701
4702 wp = is_write_protection(vcpu);
4703
4704 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4705 unsigned pfec, pkey_bits;
4706 bool check_pkey, check_write, ff, uf, wf, pte_user;
4707
4708 pfec = bit << 1;
4709 ff = pfec & PFERR_FETCH_MASK;
4710 uf = pfec & PFERR_USER_MASK;
4711 wf = pfec & PFERR_WRITE_MASK;
4712
4713 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4714 pte_user = pfec & PFERR_RSVD_MASK;
4715
4716 /*
4717 * Only need to check the access which is not an
4718 * instruction fetch and is to a user page.
4719 */
4720 check_pkey = (!ff && pte_user);
4721 /*
4722 * write access is controlled by PKRU if it is a
4723 * user access or CR0.WP = 1.
4724 */
4725 check_write = check_pkey && wf && (uf || wp);
4726
4727 /* PKRU.AD stops both read and write access. */
4728 pkey_bits = !!check_pkey;
4729 /* PKRU.WD stops write access. */
4730 pkey_bits |= (!!check_write) << 1;
4731
4732 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4733 }
4734}
4735
6bb69c9b 4736static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4737{
6bb69c9b
PB
4738 unsigned root_level = mmu->root_level;
4739
4740 mmu->last_nonleaf_level = root_level;
4741 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4742 mmu->last_nonleaf_level++;
6fd01b71
AK
4743}
4744
8a3c1a33
PB
4745static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4746 struct kvm_mmu *context,
4747 int level)
6aa8b732 4748{
2d48a985 4749 context->nx = is_nx(vcpu);
4d6931c3 4750 context->root_level = level;
2d48a985 4751
4d6931c3 4752 reset_rsvds_bits_mask(vcpu, context);
25d92081 4753 update_permission_bitmask(vcpu, context, false);
2d344105 4754 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4755 update_last_nonleaf_level(vcpu, context);
6aa8b732 4756
fa4a2c08 4757 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4758 context->page_fault = paging64_page_fault;
6aa8b732 4759 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4760 context->sync_page = paging64_sync_page;
a7052897 4761 context->invlpg = paging64_invlpg;
0f53b5b1 4762 context->update_pte = paging64_update_pte;
17ac10ad 4763 context->shadow_root_level = level;
c5a78f2b 4764 context->direct_map = false;
6aa8b732
AK
4765}
4766
8a3c1a33
PB
4767static void paging64_init_context(struct kvm_vcpu *vcpu,
4768 struct kvm_mmu *context)
17ac10ad 4769{
855feb67
YZ
4770 int root_level = is_la57_mode(vcpu) ?
4771 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4772
4773 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4774}
4775
8a3c1a33
PB
4776static void paging32_init_context(struct kvm_vcpu *vcpu,
4777 struct kvm_mmu *context)
6aa8b732 4778{
2d48a985 4779 context->nx = false;
4d6931c3 4780 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4781
4d6931c3 4782 reset_rsvds_bits_mask(vcpu, context);
25d92081 4783 update_permission_bitmask(vcpu, context, false);
2d344105 4784 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4785 update_last_nonleaf_level(vcpu, context);
6aa8b732 4786
6aa8b732 4787 context->page_fault = paging32_page_fault;
6aa8b732 4788 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4789 context->sync_page = paging32_sync_page;
a7052897 4790 context->invlpg = paging32_invlpg;
0f53b5b1 4791 context->update_pte = paging32_update_pte;
6aa8b732 4792 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4793 context->direct_map = false;
6aa8b732
AK
4794}
4795
8a3c1a33
PB
4796static void paging32E_init_context(struct kvm_vcpu *vcpu,
4797 struct kvm_mmu *context)
6aa8b732 4798{
8a3c1a33 4799 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4800}
4801
a336282d
VK
4802static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4803{
4804 union kvm_mmu_extended_role ext = {0};
4805
7dcd5755 4806 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4807 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4808 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4809 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4810 ext.cr4_pse = !!is_pse(vcpu);
4811 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4812 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4813
4814 ext.valid = 1;
4815
4816 return ext;
4817}
4818
7dcd5755
VK
4819static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4820 bool base_only)
4821{
4822 union kvm_mmu_role role = {0};
4823
4824 role.base.access = ACC_ALL;
4825 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4826 role.base.cr0_wp = is_write_protection(vcpu);
4827 role.base.smm = is_smm(vcpu);
4828 role.base.guest_mode = is_guest_mode(vcpu);
4829
4830 if (base_only)
4831 return role;
4832
4833 role.ext = kvm_calc_mmu_role_ext(vcpu);
4834
4835 return role;
4836}
4837
4838static union kvm_mmu_role
4839kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4840{
7dcd5755 4841 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4842
7dcd5755 4843 role.base.ad_disabled = (shadow_accessed_mask == 0);
e93fd3b3 4844 role.base.level = vcpu->arch.tdp_level;
7dcd5755 4845 role.base.direct = true;
47c42e6b 4846 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4847
4848 return role;
4849}
4850
8a3c1a33 4851static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4852{
44dd3ffa 4853 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4854 union kvm_mmu_role new_role =
4855 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4856
7dcd5755
VK
4857 if (new_role.as_u64 == context->mmu_role.as_u64)
4858 return;
4859
4860 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4861 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4862 context->sync_page = nonpaging_sync_page;
5efac074 4863 context->invlpg = NULL;
0f53b5b1 4864 context->update_pte = nonpaging_update_pte;
e93fd3b3 4865 context->shadow_root_level = vcpu->arch.tdp_level;
c5a78f2b 4866 context->direct_map = true;
d8dd54e0 4867 context->get_guest_pgd = get_cr3;
e4e517b4 4868 context->get_pdptr = kvm_pdptr_read;
cb659db8 4869 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4870
4871 if (!is_paging(vcpu)) {
2d48a985 4872 context->nx = false;
fb72d167
JR
4873 context->gva_to_gpa = nonpaging_gva_to_gpa;
4874 context->root_level = 0;
4875 } else if (is_long_mode(vcpu)) {
2d48a985 4876 context->nx = is_nx(vcpu);
855feb67
YZ
4877 context->root_level = is_la57_mode(vcpu) ?
4878 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4879 reset_rsvds_bits_mask(vcpu, context);
4880 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4881 } else if (is_pae(vcpu)) {
2d48a985 4882 context->nx = is_nx(vcpu);
fb72d167 4883 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4884 reset_rsvds_bits_mask(vcpu, context);
4885 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4886 } else {
2d48a985 4887 context->nx = false;
fb72d167 4888 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4889 reset_rsvds_bits_mask(vcpu, context);
4890 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4891 }
4892
25d92081 4893 update_permission_bitmask(vcpu, context, false);
2d344105 4894 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4895 update_last_nonleaf_level(vcpu, context);
c258b62b 4896 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4897}
4898
7dcd5755
VK
4899static union kvm_mmu_role
4900kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4901{
4902 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4903
4904 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4905 !is_write_protection(vcpu);
4906 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4907 !is_write_protection(vcpu);
4908 role.base.direct = !is_paging(vcpu);
47c42e6b 4909 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4910
4911 if (!is_long_mode(vcpu))
7dcd5755 4912 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4913 else if (is_la57_mode(vcpu))
7dcd5755 4914 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4915 else
7dcd5755 4916 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4917
4918 return role;
4919}
4920
929d1cfa 4921void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
9fa72119 4922{
44dd3ffa 4923 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4924 union kvm_mmu_role new_role =
4925 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4926
7dcd5755
VK
4927 if (new_role.as_u64 == context->mmu_role.as_u64)
4928 return;
6aa8b732 4929
929d1cfa 4930 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4931 nonpaging_init_context(vcpu, context);
929d1cfa 4932 else if (efer & EFER_LMA)
8a3c1a33 4933 paging64_init_context(vcpu, context);
929d1cfa 4934 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4935 paging32E_init_context(vcpu, context);
6aa8b732 4936 else
8a3c1a33 4937 paging32_init_context(vcpu, context);
a770f6f2 4938
7dcd5755 4939 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4940 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4941}
4942EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4943
a336282d
VK
4944static union kvm_mmu_role
4945kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4946 bool execonly, u8 level)
9fa72119 4947{
552c69b1 4948 union kvm_mmu_role role = {0};
14c07ad8 4949
47c42e6b
SC
4950 /* SMM flag is inherited from root_mmu */
4951 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4952
bb1fcc70 4953 role.base.level = level;
47c42e6b 4954 role.base.gpte_is_8_bytes = true;
a336282d
VK
4955 role.base.direct = false;
4956 role.base.ad_disabled = !accessed_dirty;
4957 role.base.guest_mode = true;
4958 role.base.access = ACC_ALL;
9fa72119 4959
47c42e6b
SC
4960 /*
4961 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4962 * SMAP variation to denote shadow EPT entries.
4963 */
4964 role.base.cr0_wp = true;
4965 role.base.smap_andnot_wp = true;
4966
552c69b1 4967 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4968 role.ext.execonly = execonly;
9fa72119
JS
4969
4970 return role;
4971}
4972
ae1e2d10 4973void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4974 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4975{
44dd3ffa 4976 struct kvm_mmu *context = vcpu->arch.mmu;
bb1fcc70 4977 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4978 union kvm_mmu_role new_role =
4979 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4980 execonly, level);
a336282d 4981
be01e8e2 4982 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4983
a336282d
VK
4984 if (new_role.as_u64 == context->mmu_role.as_u64)
4985 return;
ad896af0 4986
bb1fcc70 4987 context->shadow_root_level = level;
155a97a3
NHE
4988
4989 context->nx = true;
ae1e2d10 4990 context->ept_ad = accessed_dirty;
155a97a3
NHE
4991 context->page_fault = ept_page_fault;
4992 context->gva_to_gpa = ept_gva_to_gpa;
4993 context->sync_page = ept_sync_page;
4994 context->invlpg = ept_invlpg;
4995 context->update_pte = ept_update_pte;
bb1fcc70 4996 context->root_level = level;
155a97a3 4997 context->direct_map = false;
a336282d 4998 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4999
155a97a3 5000 update_permission_bitmask(vcpu, context, true);
2d344105 5001 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 5002 update_last_nonleaf_level(vcpu, context);
155a97a3 5003 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 5004 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
5005}
5006EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5007
8a3c1a33 5008static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5009{
44dd3ffa 5010 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0 5011
929d1cfa
PB
5012 kvm_init_shadow_mmu(vcpu,
5013 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5014 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5015 vcpu->arch.efer);
5016
d8dd54e0 5017 context->get_guest_pgd = get_cr3;
ad896af0
PB
5018 context->get_pdptr = kvm_pdptr_read;
5019 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5020}
5021
8a3c1a33 5022static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5023{
bf627a92 5024 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5025 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5026
bf627a92
VK
5027 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5028 return;
5029
5030 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 5031 g_context->get_guest_pgd = get_cr3;
e4e517b4 5032 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5033 g_context->inject_page_fault = kvm_inject_page_fault;
5034
5efac074
PB
5035 /*
5036 * L2 page tables are never shadowed, so there is no need to sync
5037 * SPTEs.
5038 */
5039 g_context->invlpg = NULL;
5040
02f59dc9 5041 /*
44dd3ffa 5042 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5043 * L1's nested page tables (e.g. EPT12). The nested translation
5044 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5045 * L2's page tables as the first level of translation and L1's
5046 * nested page tables as the second level of translation. Basically
5047 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5048 */
5049 if (!is_paging(vcpu)) {
2d48a985 5050 g_context->nx = false;
02f59dc9
JR
5051 g_context->root_level = 0;
5052 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5053 } else if (is_long_mode(vcpu)) {
2d48a985 5054 g_context->nx = is_nx(vcpu);
855feb67
YZ
5055 g_context->root_level = is_la57_mode(vcpu) ?
5056 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5057 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5058 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5059 } else if (is_pae(vcpu)) {
2d48a985 5060 g_context->nx = is_nx(vcpu);
02f59dc9 5061 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5062 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5063 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5064 } else {
2d48a985 5065 g_context->nx = false;
02f59dc9 5066 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5067 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5068 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5069 }
5070
25d92081 5071 update_permission_bitmask(vcpu, g_context, false);
2d344105 5072 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5073 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5074}
5075
1c53da3f 5076void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5077{
1c53da3f 5078 if (reset_roots) {
b94742c9
JS
5079 uint i;
5080
44dd3ffa 5081 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5082
5083 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5084 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5085 }
5086
02f59dc9 5087 if (mmu_is_nested(vcpu))
e0c6db3e 5088 init_kvm_nested_mmu(vcpu);
02f59dc9 5089 else if (tdp_enabled)
e0c6db3e 5090 init_kvm_tdp_mmu(vcpu);
fb72d167 5091 else
e0c6db3e 5092 init_kvm_softmmu(vcpu);
fb72d167 5093}
1c53da3f 5094EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5095
9fa72119
JS
5096static union kvm_mmu_page_role
5097kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5098{
7dcd5755
VK
5099 union kvm_mmu_role role;
5100
9fa72119 5101 if (tdp_enabled)
7dcd5755 5102 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5103 else
7dcd5755
VK
5104 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5105
5106 return role.base;
9fa72119 5107}
fb72d167 5108
8a3c1a33 5109void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5110{
95f93af4 5111 kvm_mmu_unload(vcpu);
1c53da3f 5112 kvm_init_mmu(vcpu, true);
17c3ba9d 5113}
8668a3c4 5114EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5115
5116int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5117{
714b93da
AK
5118 int r;
5119
378f5cd6 5120 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
17c3ba9d
AK
5121 if (r)
5122 goto out;
8986ecc0 5123 r = mmu_alloc_roots(vcpu);
e2858b4a 5124 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5125 if (r)
5126 goto out;
727a7e27 5127 kvm_mmu_load_pgd(vcpu);
8c8560b8 5128 kvm_x86_ops.tlb_flush_current(vcpu);
714b93da
AK
5129out:
5130 return r;
6aa8b732 5131}
17c3ba9d
AK
5132EXPORT_SYMBOL_GPL(kvm_mmu_load);
5133
5134void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5135{
14c07ad8
VK
5136 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5137 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5138 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5139 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5140}
4b16184c 5141EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5142
0028425f 5143static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5144 struct kvm_mmu_page *sp, u64 *spte,
5145 const void *new)
0028425f 5146{
3bae0459 5147 if (sp->role.level != PG_LEVEL_4K) {
7e4e4056
JR
5148 ++vcpu->kvm->stat.mmu_pde_zapped;
5149 return;
30945387 5150 }
0028425f 5151
4cee5764 5152 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5153 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5154}
5155
79539cec
AK
5156static bool need_remote_flush(u64 old, u64 new)
5157{
5158 if (!is_shadow_present_pte(old))
5159 return false;
5160 if (!is_shadow_present_pte(new))
5161 return true;
5162 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5163 return true;
53166229
GN
5164 old ^= shadow_nx_mask;
5165 new ^= shadow_nx_mask;
79539cec
AK
5166 return (old & ~new & PT64_PERM_MASK) != 0;
5167}
5168
889e5cbc 5169static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5170 int *bytes)
da4a00f0 5171{
0e0fee5c 5172 u64 gentry = 0;
889e5cbc 5173 int r;
72016f3a 5174
72016f3a
AK
5175 /*
5176 * Assume that the pte write on a page table of the same type
49b26e26
XG
5177 * as the current vcpu paging mode since we update the sptes only
5178 * when they have the same mode.
72016f3a 5179 */
889e5cbc 5180 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5181 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5182 *gpa &= ~(gpa_t)7;
5183 *bytes = 8;
08e850c6
AK
5184 }
5185
0e0fee5c
JS
5186 if (*bytes == 4 || *bytes == 8) {
5187 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5188 if (r)
5189 gentry = 0;
72016f3a
AK
5190 }
5191
889e5cbc
XG
5192 return gentry;
5193}
5194
5195/*
5196 * If we're seeing too many writes to a page, it may no longer be a page table,
5197 * or we may be forking, in which case it is better to unmap the page.
5198 */
a138fe75 5199static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5200{
a30f47cb
XG
5201 /*
5202 * Skip write-flooding detected for the sp whose level is 1, because
5203 * it can become unsync, then the guest page is not write-protected.
5204 */
3bae0459 5205 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 5206 return false;
3246af0e 5207
e5691a81
XG
5208 atomic_inc(&sp->write_flooding_count);
5209 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5210}
5211
5212/*
5213 * Misaligned accesses are too much trouble to fix up; also, they usually
5214 * indicate a page is not used as a page table.
5215 */
5216static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5217 int bytes)
5218{
5219 unsigned offset, pte_size, misaligned;
5220
5221 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5222 gpa, bytes, sp->role.word);
5223
5224 offset = offset_in_page(gpa);
47c42e6b 5225 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5226
5227 /*
5228 * Sometimes, the OS only writes the last one bytes to update status
5229 * bits, for example, in linux, andb instruction is used in clear_bit().
5230 */
5231 if (!(offset & (pte_size - 1)) && bytes == 1)
5232 return false;
5233
889e5cbc
XG
5234 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5235 misaligned |= bytes < 4;
5236
5237 return misaligned;
5238}
5239
5240static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5241{
5242 unsigned page_offset, quadrant;
5243 u64 *spte;
5244 int level;
5245
5246 page_offset = offset_in_page(gpa);
5247 level = sp->role.level;
5248 *nspte = 1;
47c42e6b 5249 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5250 page_offset <<= 1; /* 32->64 */
5251 /*
5252 * A 32-bit pde maps 4MB while the shadow pdes map
5253 * only 2MB. So we need to double the offset again
5254 * and zap two pdes instead of one.
5255 */
5256 if (level == PT32_ROOT_LEVEL) {
5257 page_offset &= ~7; /* kill rounding error */
5258 page_offset <<= 1;
5259 *nspte = 2;
5260 }
5261 quadrant = page_offset >> PAGE_SHIFT;
5262 page_offset &= ~PAGE_MASK;
5263 if (quadrant != sp->role.quadrant)
5264 return NULL;
5265 }
5266
5267 spte = &sp->spt[page_offset / sizeof(*spte)];
5268 return spte;
5269}
5270
a102a674
SC
5271/*
5272 * Ignore various flags when determining if a SPTE can be immediately
5273 * overwritten for the current MMU.
5274 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5275 * match the current MMU role, as MMU's level tracks the root level.
5276 * - access: updated based on the new guest PTE
5277 * - quadrant: handled by get_written_sptes()
5278 * - invalid: always false (loop only walks valid shadow pages)
5279 */
5280static const union kvm_mmu_page_role role_ign = {
5281 .level = 0xf,
5282 .access = 0x7,
5283 .quadrant = 0x3,
5284 .invalid = 0x1,
5285};
5286
13d268ca 5287static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5288 const u8 *new, int bytes,
5289 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5290{
5291 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5292 struct kvm_mmu_page *sp;
889e5cbc
XG
5293 LIST_HEAD(invalid_list);
5294 u64 entry, gentry, *spte;
5295 int npte;
b8c67b7a 5296 bool remote_flush, local_flush;
889e5cbc
XG
5297
5298 /*
5299 * If we don't have indirect shadow pages, it means no page is
5300 * write-protected, so we can exit simply.
5301 */
6aa7de05 5302 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5303 return;
5304
b8c67b7a 5305 remote_flush = local_flush = false;
889e5cbc
XG
5306
5307 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5308
889e5cbc
XG
5309 /*
5310 * No need to care whether allocation memory is successful
5311 * or not since pte prefetch is skiped if it does not have
5312 * enough objects in the cache.
5313 */
378f5cd6 5314 mmu_topup_memory_caches(vcpu, true);
889e5cbc
XG
5315
5316 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5317
5318 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5319
889e5cbc 5320 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5321 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5322
b67bfe0d 5323 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5324 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5325 detect_write_flooding(sp)) {
b8c67b7a 5326 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5327 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5328 continue;
5329 }
889e5cbc
XG
5330
5331 spte = get_written_sptes(sp, gpa, &npte);
5332 if (!spte)
5333 continue;
5334
0671a8e7 5335 local_flush = true;
ac1b714e 5336 while (npte--) {
36d9594d
VK
5337 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5338
79539cec 5339 entry = *spte;
38e3b2b2 5340 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5341 if (gentry &&
a102a674
SC
5342 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5343 rmap_can_add(vcpu))
7c562522 5344 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5345 if (need_remote_flush(entry, *spte))
0671a8e7 5346 remote_flush = true;
ac1b714e 5347 ++spte;
9b7a0325 5348 }
9b7a0325 5349 }
b8c67b7a 5350 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5351 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5352 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5353}
5354
a436036b
AK
5355int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5356{
10589a46
MT
5357 gpa_t gpa;
5358 int r;
a436036b 5359
44dd3ffa 5360 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5361 return 0;
5362
1871c602 5363 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5364
10589a46 5365 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5366
10589a46 5367 return r;
a436036b 5368}
577bdc49 5369EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5370
736c291c 5371int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5372 void *insn, int insn_len)
3067714c 5373{
92daa48b 5374 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5375 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5376
6948199a 5377 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5378 return RET_PF_RETRY;
5379
9b8ebbdb 5380 r = RET_PF_INVALID;
e9ee956e 5381 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5382 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5383 if (r == RET_PF_EMULATE)
e9ee956e 5384 goto emulate;
e9ee956e 5385 }
3067714c 5386
9b8ebbdb 5387 if (r == RET_PF_INVALID) {
7a02674d
SC
5388 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5389 lower_32_bits(error_code), false);
9b8ebbdb
PB
5390 WARN_ON(r == RET_PF_INVALID);
5391 }
5392
5393 if (r == RET_PF_RETRY)
5394 return 1;
3067714c 5395 if (r < 0)
e9ee956e 5396 return r;
3067714c 5397
14727754
TL
5398 /*
5399 * Before emulating the instruction, check if the error code
5400 * was due to a RO violation while translating the guest page.
5401 * This can occur when using nested virtualization with nested
5402 * paging in both guests. If true, we simply unprotect the page
5403 * and resume the guest.
14727754 5404 */
44dd3ffa 5405 if (vcpu->arch.mmu->direct_map &&
eebed243 5406 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5407 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5408 return 1;
5409 }
5410
472faffa
SC
5411 /*
5412 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5413 * optimistically try to just unprotect the page and let the processor
5414 * re-execute the instruction that caused the page fault. Do not allow
5415 * retrying MMIO emulation, as it's not only pointless but could also
5416 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5417 * faulting on the non-existent MMIO address. Retrying an instruction
5418 * from a nested guest is also pointless and dangerous as we are only
5419 * explicitly shadowing L1's page tables, i.e. unprotecting something
5420 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5421 */
736c291c 5422 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5423 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5424emulate:
00b10fe1
BS
5425 /*
5426 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5427 * This can happen if a guest gets a page-fault on data access but the HW
5428 * table walker is not able to read the instruction page (e.g instruction
5429 * page is not present in memory). In those cases we simply restart the
05d5a486 5430 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5431 */
05d5a486 5432 if (unlikely(insn && !insn_len)) {
afaf0b2f 5433 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
05d5a486
SB
5434 return 1;
5435 }
00b10fe1 5436
736c291c 5437 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5438 insn_len);
3067714c
AK
5439}
5440EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5441
5efac074
PB
5442void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5443 gva_t gva, hpa_t root_hpa)
a7052897 5444{
b94742c9 5445 int i;
7eb77e9f 5446
5efac074
PB
5447 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5448 if (mmu != &vcpu->arch.guest_mmu) {
5449 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5450 if (is_noncanonical_address(gva, vcpu))
5451 return;
5452
5453 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5454 }
5455
5456 if (!mmu->invlpg)
faff8758
JS
5457 return;
5458
5efac074
PB
5459 if (root_hpa == INVALID_PAGE) {
5460 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5461
5efac074
PB
5462 /*
5463 * INVLPG is required to invalidate any global mappings for the VA,
5464 * irrespective of PCID. Since it would take us roughly similar amount
5465 * of work to determine whether any of the prev_root mappings of the VA
5466 * is marked global, or to just sync it blindly, so we might as well
5467 * just always sync it.
5468 *
5469 * Mappings not reachable via the current cr3 or the prev_roots will be
5470 * synced when switching to that cr3, so nothing needs to be done here
5471 * for them.
5472 */
5473 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5474 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5475 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5476 } else {
5477 mmu->invlpg(vcpu, gva, root_hpa);
5478 }
5479}
5480EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5481
5efac074
PB
5482void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5483{
5484 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5485 ++vcpu->stat.invlpg;
5486}
5487EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5488
5efac074 5489
eb4b248e
JS
5490void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5491{
44dd3ffa 5492 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5493 bool tlb_flush = false;
b94742c9 5494 uint i;
eb4b248e
JS
5495
5496 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5497 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5498 tlb_flush = true;
eb4b248e
JS
5499 }
5500
b94742c9
JS
5501 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5502 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5503 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5504 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5505 tlb_flush = true;
5506 }
956bf353 5507 }
ade61e28 5508
faff8758 5509 if (tlb_flush)
afaf0b2f 5510 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5511
eb4b248e
JS
5512 ++vcpu->stat.invlpg;
5513
5514 /*
b94742c9
JS
5515 * Mappings not reachable via the current cr3 or the prev_roots will be
5516 * synced when switching to that cr3, so nothing needs to be done here
5517 * for them.
eb4b248e
JS
5518 */
5519}
5520EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5521
703c335d 5522void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
18552672 5523{
bde77235 5524 tdp_enabled = enable_tdp;
703c335d
SC
5525
5526 /*
5527 * max_page_level reflects the capabilities of KVM's MMU irrespective
5528 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5529 * the kernel is not. But, KVM never creates a page size greater than
5530 * what is used by the kernel for any given HVA, i.e. the kernel's
5531 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5532 */
5533 if (tdp_enabled)
5534 max_page_level = tdp_page_level;
5535 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
3bae0459 5536 max_page_level = PG_LEVEL_1G;
703c335d 5537 else
3bae0459 5538 max_page_level = PG_LEVEL_2M;
18552672 5539}
bde77235 5540EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5541
5542/* The return value indicates if tlb flush on all vcpus is needed. */
5543typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5544
5545/* The caller should hold mmu-lock before calling this function. */
5546static __always_inline bool
5547slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5548 slot_level_handler fn, int start_level, int end_level,
5549 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5550{
5551 struct slot_rmap_walk_iterator iterator;
5552 bool flush = false;
5553
5554 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5555 end_gfn, &iterator) {
5556 if (iterator.rmap)
5557 flush |= fn(kvm, iterator.rmap);
5558
5559 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5560 if (flush && lock_flush_tlb) {
f285c633
BG
5561 kvm_flush_remote_tlbs_with_address(kvm,
5562 start_gfn,
5563 iterator.gfn - start_gfn + 1);
85875a13
SC
5564 flush = false;
5565 }
5566 cond_resched_lock(&kvm->mmu_lock);
5567 }
5568 }
5569
5570 if (flush && lock_flush_tlb) {
f285c633
BG
5571 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5572 end_gfn - start_gfn + 1);
85875a13
SC
5573 flush = false;
5574 }
5575
5576 return flush;
5577}
5578
5579static __always_inline bool
5580slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5581 slot_level_handler fn, int start_level, int end_level,
5582 bool lock_flush_tlb)
5583{
5584 return slot_handle_level_range(kvm, memslot, fn, start_level,
5585 end_level, memslot->base_gfn,
5586 memslot->base_gfn + memslot->npages - 1,
5587 lock_flush_tlb);
5588}
5589
5590static __always_inline bool
5591slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5592 slot_level_handler fn, bool lock_flush_tlb)
5593{
3bae0459 5594 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5595 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5596}
5597
5598static __always_inline bool
5599slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5600 slot_level_handler fn, bool lock_flush_tlb)
5601{
3bae0459 5602 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5603 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5604}
5605
5606static __always_inline bool
5607slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5608 slot_level_handler fn, bool lock_flush_tlb)
5609{
3bae0459
SC
5610 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5611 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5612}
5613
1cfff4d9 5614static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5615{
1cfff4d9
JP
5616 free_page((unsigned long)mmu->pae_root);
5617 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5618}
5619
1cfff4d9 5620static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5621{
17ac10ad 5622 struct page *page;
6aa8b732
AK
5623 int i;
5624
17ac10ad 5625 /*
b6b80c78
SC
5626 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5627 * while the PDP table is a per-vCPU construct that's allocated at MMU
5628 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5629 * x86_64. Therefore we need to allocate the PDP table in the first
5630 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5631 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5632 * skip allocating the PDP table.
17ac10ad 5633 */
e93fd3b3 5634 if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
b6b80c78
SC
5635 return 0;
5636
254272ce 5637 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5638 if (!page)
d7fa6ab2
WY
5639 return -ENOMEM;
5640
1cfff4d9 5641 mmu->pae_root = page_address(page);
17ac10ad 5642 for (i = 0; i < 4; ++i)
1cfff4d9 5643 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5644
6aa8b732 5645 return 0;
6aa8b732
AK
5646}
5647
8018c27b 5648int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5649{
b94742c9 5650 uint i;
1cfff4d9 5651 int ret;
b94742c9 5652
5962bfb7 5653 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5654 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5655
5962bfb7 5656 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5657 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5658
96880883
SC
5659 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5660
44dd3ffa
VK
5661 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5662 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5663
44dd3ffa 5664 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
be01e8e2 5665 vcpu->arch.root_mmu.root_pgd = 0;
44dd3ffa 5666 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5667 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5668 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5669
14c07ad8 5670 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
be01e8e2 5671 vcpu->arch.guest_mmu.root_pgd = 0;
14c07ad8
VK
5672 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5673 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5674 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5675
14c07ad8 5676 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9
JP
5677
5678 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5679 if (ret)
5680 return ret;
5681
5682 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5683 if (ret)
5684 goto fail_allocate_root;
5685
5686 return ret;
5687 fail_allocate_root:
5688 free_mmu_pages(&vcpu->arch.guest_mmu);
5689 return ret;
6aa8b732
AK
5690}
5691
fbb158cb 5692#define BATCH_ZAP_PAGES 10
002c5f73
SC
5693static void kvm_zap_obsolete_pages(struct kvm *kvm)
5694{
5695 struct kvm_mmu_page *sp, *node;
fbb158cb 5696 int nr_zapped, batch = 0;
002c5f73
SC
5697
5698restart:
5699 list_for_each_entry_safe_reverse(sp, node,
5700 &kvm->arch.active_mmu_pages, link) {
5701 /*
5702 * No obsolete valid page exists before a newly created page
5703 * since active_mmu_pages is a FIFO list.
5704 */
5705 if (!is_obsolete_sp(kvm, sp))
5706 break;
5707
5708 /*
f95eec9b
SC
5709 * Invalid pages should never land back on the list of active
5710 * pages. Skip the bogus page, otherwise we'll get stuck in an
5711 * infinite loop if the page gets put back on the list (again).
002c5f73 5712 */
f95eec9b 5713 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5714 continue;
5715
4506ecf4
SC
5716 /*
5717 * No need to flush the TLB since we're only zapping shadow
5718 * pages with an obsolete generation number and all vCPUS have
5719 * loaded a new root, i.e. the shadow pages being zapped cannot
5720 * be in active use by the guest.
5721 */
fbb158cb 5722 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5723 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5724 batch = 0;
002c5f73
SC
5725 goto restart;
5726 }
5727
10605204
SC
5728 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5729 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5730 batch += nr_zapped;
002c5f73 5731 goto restart;
fbb158cb 5732 }
002c5f73
SC
5733 }
5734
4506ecf4
SC
5735 /*
5736 * Trigger a remote TLB flush before freeing the page tables to ensure
5737 * KVM is not in the middle of a lockless shadow page table walk, which
5738 * may reference the pages.
5739 */
10605204 5740 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5741}
5742
5743/*
5744 * Fast invalidate all shadow pages and use lock-break technique
5745 * to zap obsolete pages.
5746 *
5747 * It's required when memslot is being deleted or VM is being
5748 * destroyed, in these cases, we should ensure that KVM MMU does
5749 * not use any resource of the being-deleted slot or all slots
5750 * after calling the function.
5751 */
5752static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5753{
ca333add
SC
5754 lockdep_assert_held(&kvm->slots_lock);
5755
002c5f73 5756 spin_lock(&kvm->mmu_lock);
14a3c4f4 5757 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5758
5759 /*
5760 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5761 * held for the entire duration of zapping obsolete pages, it's
5762 * impossible for there to be multiple invalid generations associated
5763 * with *valid* shadow pages at any given time, i.e. there is exactly
5764 * one valid generation and (at most) one invalid generation.
5765 */
5766 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5767
4506ecf4
SC
5768 /*
5769 * Notify all vcpus to reload its shadow page table and flush TLB.
5770 * Then all vcpus will switch to new shadow page table with the new
5771 * mmu_valid_gen.
5772 *
5773 * Note: we need to do this under the protection of mmu_lock,
5774 * otherwise, vcpu would purge shadow page but miss tlb flush.
5775 */
5776 kvm_reload_remote_mmus(kvm);
5777
002c5f73
SC
5778 kvm_zap_obsolete_pages(kvm);
5779 spin_unlock(&kvm->mmu_lock);
5780}
5781
10605204
SC
5782static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5783{
5784 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5785}
5786
b5f5fdca 5787static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5788 struct kvm_memory_slot *slot,
5789 struct kvm_page_track_notifier_node *node)
b5f5fdca 5790{
002c5f73 5791 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5792}
5793
13d268ca 5794void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5795{
13d268ca 5796 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5797
13d268ca 5798 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5799 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5800 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5801}
5802
13d268ca 5803void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5804{
13d268ca 5805 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5806
13d268ca 5807 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5808}
5809
efdfe536
XG
5810void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5811{
5812 struct kvm_memslots *slots;
5813 struct kvm_memory_slot *memslot;
9da0e4d5 5814 int i;
efdfe536
XG
5815
5816 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5817 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5818 slots = __kvm_memslots(kvm, i);
5819 kvm_for_each_memslot(memslot, slots) {
5820 gfn_t start, end;
5821
5822 start = max(gfn_start, memslot->base_gfn);
5823 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5824 if (start >= end)
5825 continue;
efdfe536 5826
92da008f 5827 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5828 PG_LEVEL_4K,
e662ec3e 5829 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5830 start, end - 1, true);
9da0e4d5 5831 }
efdfe536
XG
5832 }
5833
5834 spin_unlock(&kvm->mmu_lock);
5835}
5836
018aabb5
TY
5837static bool slot_rmap_write_protect(struct kvm *kvm,
5838 struct kvm_rmap_head *rmap_head)
d77aa73c 5839{
018aabb5 5840 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5841}
5842
1c91cad4 5843void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5844 struct kvm_memory_slot *memslot,
5845 int start_level)
6aa8b732 5846{
d77aa73c 5847 bool flush;
6aa8b732 5848
9d1beefb 5849 spin_lock(&kvm->mmu_lock);
3c9bd400 5850 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5851 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
9d1beefb 5852 spin_unlock(&kvm->mmu_lock);
198c74f4 5853
198c74f4
XG
5854 /*
5855 * We can flush all the TLBs out of the mmu lock without TLB
5856 * corruption since we just change the spte from writable to
5857 * readonly so that we only need to care the case of changing
5858 * spte from present to present (changing the spte from present
5859 * to nonpresent will flush all the TLBs immediately), in other
5860 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5861 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5862 * instead of PT_WRITABLE_MASK, that means it does not depend
5863 * on PT_WRITABLE_MASK anymore.
5864 */
d91ffee9 5865 if (flush)
7f42aa76 5866 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5867}
37a7d8b0 5868
3ea3b7fa 5869static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5870 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5871{
5872 u64 *sptep;
5873 struct rmap_iterator iter;
5874 int need_tlb_flush = 0;
ba049e93 5875 kvm_pfn_t pfn;
3ea3b7fa
WL
5876 struct kvm_mmu_page *sp;
5877
0d536790 5878restart:
018aabb5 5879 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5880 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5881 pfn = spte_to_pfn(*sptep);
5882
5883 /*
decf6333
XG
5884 * We cannot do huge page mapping for indirect shadow pages,
5885 * which are found on the last rmap (level = 1) when not using
5886 * tdp; such shadow pages are synced with the page table in
5887 * the guest, and the guest page table is using 4K page size
5888 * mapping if the indirect sp has level = 1.
3ea3b7fa 5889 */
a78986aa 5890 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5891 (kvm_is_zone_device_pfn(pfn) ||
5892 PageCompound(pfn_to_page(pfn)))) {
e7912386 5893 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5894
5895 if (kvm_available_flush_tlb_with_range())
5896 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5897 KVM_PAGES_PER_HPAGE(sp->role.level));
5898 else
5899 need_tlb_flush = 1;
5900
0d536790
XG
5901 goto restart;
5902 }
3ea3b7fa
WL
5903 }
5904
5905 return need_tlb_flush;
5906}
5907
5908void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5909 const struct kvm_memory_slot *memslot)
3ea3b7fa 5910{
f36f3f28 5911 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5912 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5913 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5914 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5915 spin_unlock(&kvm->mmu_lock);
5916}
5917
b3594ffb
SC
5918void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5919 struct kvm_memory_slot *memslot)
5920{
5921 /*
7f42aa76
SC
5922 * All current use cases for flushing the TLBs for a specific memslot
5923 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5924 * The interaction between the various operations on memslot must be
5925 * serialized by slots_locks to ensure the TLB flush from one operation
5926 * is observed by any other operation on the same memslot.
b3594ffb
SC
5927 */
5928 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5929 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5930 memslot->npages);
b3594ffb
SC
5931}
5932
f4b4b180
KH
5933void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5934 struct kvm_memory_slot *memslot)
5935{
d77aa73c 5936 bool flush;
f4b4b180
KH
5937
5938 spin_lock(&kvm->mmu_lock);
d77aa73c 5939 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5940 spin_unlock(&kvm->mmu_lock);
5941
f4b4b180
KH
5942 /*
5943 * It's also safe to flush TLBs out of mmu lock here as currently this
5944 * function is only used for dirty logging, in which case flushing TLB
5945 * out of mmu lock also guarantees no dirty pages will be lost in
5946 * dirty_bitmap.
5947 */
5948 if (flush)
7f42aa76 5949 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5950}
5951EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5952
5953void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5954 struct kvm_memory_slot *memslot)
5955{
d77aa73c 5956 bool flush;
f4b4b180
KH
5957
5958 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5959 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5960 false);
f4b4b180
KH
5961 spin_unlock(&kvm->mmu_lock);
5962
f4b4b180 5963 if (flush)
7f42aa76 5964 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5965}
5966EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5967
5968void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5969 struct kvm_memory_slot *memslot)
5970{
d77aa73c 5971 bool flush;
f4b4b180
KH
5972
5973 spin_lock(&kvm->mmu_lock);
d77aa73c 5974 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5975 spin_unlock(&kvm->mmu_lock);
5976
f4b4b180 5977 if (flush)
7f42aa76 5978 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5979}
5980EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5981
92f58b5c 5982void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5983{
5984 struct kvm_mmu_page *sp, *node;
7390de1e 5985 LIST_HEAD(invalid_list);
83cdb568 5986 int ign;
5304b8d3 5987
7390de1e 5988 spin_lock(&kvm->mmu_lock);
5304b8d3 5989restart:
8a674adc 5990 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5991 if (WARN_ON(sp->role.invalid))
4771450c 5992 continue;
92f58b5c 5993 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5994 goto restart;
24efe61f 5995 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5996 goto restart;
5997 }
5998
4771450c 5999 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
6000 spin_unlock(&kvm->mmu_lock);
6001}
6002
15248258 6003void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 6004{
164bf7e5 6005 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 6006
164bf7e5 6007 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 6008
f8f55942 6009 /*
e1359e2b
SC
6010 * Generation numbers are incremented in multiples of the number of
6011 * address spaces in order to provide unique generations across all
6012 * address spaces. Strip what is effectively the address space
6013 * modifier prior to checking for a wrap of the MMIO generation so
6014 * that a wrap in any address space is detected.
6015 */
6016 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6017
f8f55942 6018 /*
e1359e2b 6019 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 6020 * zap all shadow pages.
f8f55942 6021 */
e1359e2b 6022 if (unlikely(gen == 0)) {
ae0f5499 6023 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 6024 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 6025 }
f8f55942
XG
6026}
6027
70534a73
DC
6028static unsigned long
6029mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
6030{
6031 struct kvm *kvm;
1495f230 6032 int nr_to_scan = sc->nr_to_scan;
70534a73 6033 unsigned long freed = 0;
3ee16c81 6034
0d9ce162 6035 mutex_lock(&kvm_lock);
3ee16c81
IE
6036
6037 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 6038 int idx;
d98ba053 6039 LIST_HEAD(invalid_list);
3ee16c81 6040
35f2d16b
TY
6041 /*
6042 * Never scan more than sc->nr_to_scan VM instances.
6043 * Will not hit this condition practically since we do not try
6044 * to shrink more than one VM and it is very unlikely to see
6045 * !n_used_mmu_pages so many times.
6046 */
6047 if (!nr_to_scan--)
6048 break;
19526396
GN
6049 /*
6050 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6051 * here. We may skip a VM instance errorneosly, but we do not
6052 * want to shrink a VM that only started to populate its MMU
6053 * anyway.
6054 */
10605204
SC
6055 if (!kvm->arch.n_used_mmu_pages &&
6056 !kvm_has_zapped_obsolete_pages(kvm))
19526396 6057 continue;
19526396 6058
f656ce01 6059 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 6060 spin_lock(&kvm->mmu_lock);
3ee16c81 6061
10605204
SC
6062 if (kvm_has_zapped_obsolete_pages(kvm)) {
6063 kvm_mmu_commit_zap_page(kvm,
6064 &kvm->arch.zapped_obsolete_pages);
6065 goto unlock;
6066 }
6067
ebdb292d 6068 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 6069
10605204 6070unlock:
3ee16c81 6071 spin_unlock(&kvm->mmu_lock);
f656ce01 6072 srcu_read_unlock(&kvm->srcu, idx);
19526396 6073
70534a73
DC
6074 /*
6075 * unfair on small ones
6076 * per-vm shrinkers cry out
6077 * sadness comes quickly
6078 */
19526396
GN
6079 list_move_tail(&kvm->vm_list, &vm_list);
6080 break;
3ee16c81 6081 }
3ee16c81 6082
0d9ce162 6083 mutex_unlock(&kvm_lock);
70534a73 6084 return freed;
70534a73
DC
6085}
6086
6087static unsigned long
6088mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6089{
45221ab6 6090 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
6091}
6092
6093static struct shrinker mmu_shrinker = {
70534a73
DC
6094 .count_objects = mmu_shrink_count,
6095 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
6096 .seeks = DEFAULT_SEEKS * 10,
6097};
6098
2ddfd20e 6099static void mmu_destroy_caches(void)
b5a33a75 6100{
c1bd743e
TH
6101 kmem_cache_destroy(pte_list_desc_cache);
6102 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
6103}
6104
7b6f8a06
KH
6105static void kvm_set_mmio_spte_mask(void)
6106{
6107 u64 mask;
7b6f8a06
KH
6108
6109 /*
6129ed87
SC
6110 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6111 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
6112 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6113 * 52-bit physical addresses then there are no reserved PA bits in the
6114 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 6115 */
6129ed87
SC
6116 if (shadow_phys_bits < 52)
6117 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6118 else
6119 mask = 0;
7b6f8a06 6120
e7581cac 6121 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
6122}
6123
b8e8c830
PB
6124static bool get_nx_auto_mode(void)
6125{
6126 /* Return true when CPU has the bug, and mitigations are ON */
6127 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6128}
6129
6130static void __set_nx_huge_pages(bool val)
6131{
6132 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6133}
6134
6135static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6136{
6137 bool old_val = nx_huge_pages;
6138 bool new_val;
6139
6140 /* In "auto" mode deploy workaround only if CPU has the bug. */
6141 if (sysfs_streq(val, "off"))
6142 new_val = 0;
6143 else if (sysfs_streq(val, "force"))
6144 new_val = 1;
6145 else if (sysfs_streq(val, "auto"))
6146 new_val = get_nx_auto_mode();
6147 else if (strtobool(val, &new_val) < 0)
6148 return -EINVAL;
6149
6150 __set_nx_huge_pages(new_val);
6151
6152 if (new_val != old_val) {
6153 struct kvm *kvm;
b8e8c830
PB
6154
6155 mutex_lock(&kvm_lock);
6156
6157 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 6158 mutex_lock(&kvm->slots_lock);
b8e8c830 6159 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 6160 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
6161
6162 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
6163 }
6164 mutex_unlock(&kvm_lock);
6165 }
6166
6167 return 0;
6168}
6169
b5a33a75
AK
6170int kvm_mmu_module_init(void)
6171{
ab271bd4
AB
6172 int ret = -ENOMEM;
6173
b8e8c830
PB
6174 if (nx_huge_pages == -1)
6175 __set_nx_huge_pages(get_nx_auto_mode());
6176
36d9594d
VK
6177 /*
6178 * MMU roles use union aliasing which is, generally speaking, an
6179 * undefined behavior. However, we supposedly know how compilers behave
6180 * and the current status quo is unlikely to change. Guardians below are
6181 * supposed to let us know if the assumption becomes false.
6182 */
6183 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6184 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6185 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6186
28a1f3ac 6187 kvm_mmu_reset_all_pte_masks();
f160c7b7 6188
7b6f8a06
KH
6189 kvm_set_mmio_spte_mask();
6190
53c07b18
XG
6191 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6192 sizeof(struct pte_list_desc),
46bea48a 6193 0, SLAB_ACCOUNT, NULL);
53c07b18 6194 if (!pte_list_desc_cache)
ab271bd4 6195 goto out;
b5a33a75 6196
d3d25b04
AK
6197 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6198 sizeof(struct kvm_mmu_page),
46bea48a 6199 0, SLAB_ACCOUNT, NULL);
d3d25b04 6200 if (!mmu_page_header_cache)
ab271bd4 6201 goto out;
d3d25b04 6202
908c7f19 6203 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6204 goto out;
45bf21a8 6205
ab271bd4
AB
6206 ret = register_shrinker(&mmu_shrinker);
6207 if (ret)
6208 goto out;
3ee16c81 6209
b5a33a75
AK
6210 return 0;
6211
ab271bd4 6212out:
3ee16c81 6213 mmu_destroy_caches();
ab271bd4 6214 return ret;
b5a33a75
AK
6215}
6216
3ad82a7e 6217/*
39337ad1 6218 * Calculate mmu pages needed for kvm.
3ad82a7e 6219 */
bc8a3d89 6220unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6221{
bc8a3d89
BG
6222 unsigned long nr_mmu_pages;
6223 unsigned long nr_pages = 0;
bc6678a3 6224 struct kvm_memslots *slots;
be6ba0f0 6225 struct kvm_memory_slot *memslot;
9da0e4d5 6226 int i;
3ad82a7e 6227
9da0e4d5
PB
6228 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6229 slots = __kvm_memslots(kvm, i);
90d83dc3 6230
9da0e4d5
PB
6231 kvm_for_each_memslot(memslot, slots)
6232 nr_pages += memslot->npages;
6233 }
3ad82a7e
ZX
6234
6235 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6236 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6237
6238 return nr_mmu_pages;
6239}
6240
c42fffe3
XG
6241void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6242{
95f93af4 6243 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6244 free_mmu_pages(&vcpu->arch.root_mmu);
6245 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6246 mmu_free_memory_caches(vcpu);
b034cf01
XG
6247}
6248
b034cf01
XG
6249void kvm_mmu_module_exit(void)
6250{
6251 mmu_destroy_caches();
6252 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6253 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6254 mmu_audit_disable();
6255}
1aa9b957
JS
6256
6257static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6258{
6259 unsigned int old_val;
6260 int err;
6261
6262 old_val = nx_huge_pages_recovery_ratio;
6263 err = param_set_uint(val, kp);
6264 if (err)
6265 return err;
6266
6267 if (READ_ONCE(nx_huge_pages) &&
6268 !old_val && nx_huge_pages_recovery_ratio) {
6269 struct kvm *kvm;
6270
6271 mutex_lock(&kvm_lock);
6272
6273 list_for_each_entry(kvm, &vm_list, vm_list)
6274 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6275
6276 mutex_unlock(&kvm_lock);
6277 }
6278
6279 return err;
6280}
6281
6282static void kvm_recover_nx_lpages(struct kvm *kvm)
6283{
6284 int rcu_idx;
6285 struct kvm_mmu_page *sp;
6286 unsigned int ratio;
6287 LIST_HEAD(invalid_list);
6288 ulong to_zap;
6289
6290 rcu_idx = srcu_read_lock(&kvm->srcu);
6291 spin_lock(&kvm->mmu_lock);
6292
6293 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6294 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6295 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6296 /*
6297 * We use a separate list instead of just using active_mmu_pages
6298 * because the number of lpage_disallowed pages is expected to
6299 * be relatively small compared to the total.
6300 */
6301 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6302 struct kvm_mmu_page,
6303 lpage_disallowed_link);
6304 WARN_ON_ONCE(!sp->lpage_disallowed);
6305 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6306 WARN_ON_ONCE(sp->lpage_disallowed);
6307
6308 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6309 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6310 if (to_zap)
6311 cond_resched_lock(&kvm->mmu_lock);
6312 }
6313 }
6314
6315 spin_unlock(&kvm->mmu_lock);
6316 srcu_read_unlock(&kvm->srcu, rcu_idx);
6317}
6318
6319static long get_nx_lpage_recovery_timeout(u64 start_time)
6320{
6321 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6322 ? start_time + 60 * HZ - get_jiffies_64()
6323 : MAX_SCHEDULE_TIMEOUT;
6324}
6325
6326static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6327{
6328 u64 start_time;
6329 long remaining_time;
6330
6331 while (true) {
6332 start_time = get_jiffies_64();
6333 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6334
6335 set_current_state(TASK_INTERRUPTIBLE);
6336 while (!kthread_should_stop() && remaining_time > 0) {
6337 schedule_timeout(remaining_time);
6338 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6339 set_current_state(TASK_INTERRUPTIBLE);
6340 }
6341
6342 set_current_state(TASK_RUNNING);
6343
6344 if (kthread_should_stop())
6345 return 0;
6346
6347 kvm_recover_nx_lpages(kvm);
6348 }
6349}
6350
6351int kvm_mmu_post_init_vm(struct kvm *kvm)
6352{
6353 int err;
6354
6355 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6356 "kvm-nx-lpage-recovery",
6357 &kvm->arch.nx_lpage_recovery_thread);
6358 if (!err)
6359 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6360
6361 return err;
6362}
6363
6364void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6365{
6366 if (kvm->arch.nx_lpage_recovery_thread)
6367 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6368}