]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: MMU: protect TDP MMU pages only down to required level
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
fe5db27d 22#include "tdp_mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
2f728d66 25#include "kvm_emulate.h"
5f7dde7b 26#include "cpuid.h"
5a9624af 27#include "spte.h"
e495606d 28
edf88417 29#include <linux/kvm_host.h>
6aa8b732
AK
30#include <linux/types.h>
31#include <linux/string.h>
6aa8b732
AK
32#include <linux/mm.h>
33#include <linux/highmem.h>
1767e931
PG
34#include <linux/moduleparam.h>
35#include <linux/export.h>
448353ca 36#include <linux/swap.h>
05da4558 37#include <linux/hugetlb.h>
2f333bcb 38#include <linux/compiler.h>
bc6678a3 39#include <linux/srcu.h>
5a0e3ad6 40#include <linux/slab.h>
3f07c014 41#include <linux/sched/signal.h>
bf998156 42#include <linux/uaccess.h>
114df303 43#include <linux/hash.h>
f160c7b7 44#include <linux/kern_levels.h>
1aa9b957 45#include <linux/kthread.h>
6aa8b732 46
e495606d 47#include <asm/page.h>
eb243d1d 48#include <asm/memtype.h>
e495606d 49#include <asm/cmpxchg.h>
4e542370 50#include <asm/io.h>
4a98623d 51#include <asm/set_memory.h>
13673a90 52#include <asm/vmx.h>
3d0c27ad 53#include <asm/kvm_page_track.h>
1261bfa3 54#include "trace.h"
6aa8b732 55
b8e8c830
PB
56extern bool itlb_multihit_kvm_mitigation;
57
58static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
59#ifdef CONFIG_PREEMPT_RT
60/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
61static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62#else
1aa9b957 63static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 64#endif
b8e8c830
PB
65
66static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 67static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830 68
d5d6c18d 69static const struct kernel_param_ops nx_huge_pages_ops = {
b8e8c830
PB
70 .set = set_nx_huge_pages,
71 .get = param_get_bool,
72};
73
d5d6c18d 74static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
1aa9b957
JS
75 .set = set_nx_huge_pages_recovery_ratio,
76 .get = param_get_uint,
77};
78
b8e8c830
PB
79module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
81module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82 &nx_huge_pages_recovery_ratio, 0644);
83__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 84
71fe7013
SC
85static bool __read_mostly force_flush_and_sync_on_reuse;
86module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
18552672
JR
88/*
89 * When setting this variable to true it enables Two-Dimensional-Paging
90 * where the hardware walks 2 page tables:
91 * 1. the guest-virtual to guest-physical
92 * 2. while doing 1. it walks guest-physical to host-physical
93 * If the hardware supports that we don't need to do shadow paging.
94 */
2f333bcb 95bool tdp_enabled = false;
18552672 96
1d92d2e8 97static int max_huge_page_level __read_mostly;
83013059 98static int max_tdp_level __read_mostly;
703c335d 99
8b1fe17c
XG
100enum {
101 AUDIT_PRE_PAGE_FAULT,
102 AUDIT_POST_PAGE_FAULT,
103 AUDIT_PRE_PTE_WRITE,
6903074c
XG
104 AUDIT_POST_PTE_WRITE,
105 AUDIT_PRE_SYNC,
106 AUDIT_POST_SYNC
8b1fe17c 107};
37a7d8b0 108
37a7d8b0 109#ifdef MMU_DEBUG
5a9624af 110bool dbg = 0;
fa4a2c08 111module_param(dbg, bool, 0644);
d6c69ee9 112#endif
6aa8b732 113
957ed9ef
XG
114#define PTE_PREFETCH_NUM 8
115
6aa8b732
AK
116#define PT32_LEVEL_BITS 10
117
118#define PT32_LEVEL_SHIFT(level) \
d77c26fc 119 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 120
e04da980
JR
121#define PT32_LVL_OFFSET_MASK(level) \
122 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
124
125#define PT32_INDEX(address, level)\
126 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
6aa8b732
AK
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
132#define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
6aa8b732 135
90bb6fc5
AK
136#include <trace/events/kvm.h>
137
220f773a
TY
138/* make pte_list_desc fit well in cache line */
139#define PTE_LIST_EXT 3
140
53c07b18
XG
141struct pte_list_desc {
142 u64 *sptes[PTE_LIST_EXT];
143 struct pte_list_desc *more;
cd4a4e53
AK
144};
145
2d11123a
AK
146struct kvm_shadow_walk_iterator {
147 u64 addr;
148 hpa_t shadow_addr;
2d11123a 149 u64 *sptep;
dd3bfd59 150 int level;
2d11123a
AK
151 unsigned index;
152};
153
7eb77e9f
JS
154#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
155 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
156 (_root), (_addr)); \
157 shadow_walk_okay(&(_walker)); \
158 shadow_walk_next(&(_walker)))
159
160#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
161 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
162 shadow_walk_okay(&(_walker)); \
163 shadow_walk_next(&(_walker)))
164
c2a2ac2b
XG
165#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
166 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
167 shadow_walk_okay(&(_walker)) && \
168 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
169 __shadow_walk_next(&(_walker), spte))
170
53c07b18 171static struct kmem_cache *pte_list_desc_cache;
02c00b3a 172struct kmem_cache *mmu_page_header_cache;
45221ab6 173static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 174
ce88decf 175static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
176static union kvm_mmu_page_role
177kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 178
335e192a
PB
179#define CREATE_TRACE_POINTS
180#include "mmutrace.h"
181
40ef75a7
LT
182
183static inline bool kvm_available_flush_tlb_with_range(void)
184{
afaf0b2f 185 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
186}
187
188static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
189 struct kvm_tlb_range *range)
190{
191 int ret = -ENOTSUPP;
192
afaf0b2f 193 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
b3646477 194 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
40ef75a7
LT
195
196 if (ret)
197 kvm_flush_remote_tlbs(kvm);
198}
199
2f2fad08 200void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
40ef75a7
LT
201 u64 start_gfn, u64 pages)
202{
203 struct kvm_tlb_range range;
204
205 range.start_gfn = start_gfn;
206 range.pages = pages;
207
208 kvm_flush_remote_tlbs_with_range(kvm, &range);
209}
210
5a9624af 211bool is_nx_huge_page_enabled(void)
b8e8c830
PB
212{
213 return READ_ONCE(nx_huge_pages);
214}
215
8f79b064
BG
216static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
217 unsigned int access)
218{
c236d962 219 u64 spte = make_mmio_spte(vcpu, gfn, access);
8f79b064 220
c236d962
SC
221 trace_mark_mmio_spte(sptep, gfn, spte);
222 mmu_spte_set(sptep, spte);
ce88decf
XG
223}
224
ce88decf
XG
225static gfn_t get_mmio_spte_gfn(u64 spte)
226{
daa07cbc 227 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac 228
8a967d65 229 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
28a1f3ac
JS
230 & shadow_nonpresent_or_rsvd_mask;
231
232 return gpa >> PAGE_SHIFT;
ce88decf
XG
233}
234
235static unsigned get_mmio_spte_access(u64 spte)
236{
4af77151 237 return spte & shadow_mmio_access_mask;
ce88decf
XG
238}
239
54bf36aa 240static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 241{
cae7ed3c 242 u64 kvm_gen, spte_gen, gen;
089504c0 243
cae7ed3c
SC
244 gen = kvm_vcpu_memslots(vcpu)->generation;
245 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
246 return false;
089504c0 247
cae7ed3c 248 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
249 spte_gen = get_mmio_spte_generation(spte);
250
251 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
252 return likely(kvm_gen == spte_gen);
f8f55942
XG
253}
254
cd313569
MG
255static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
256 struct x86_exception *exception)
257{
ec7771ab 258 /* Check if guest physical address doesn't exceed guest maximum */
dc46515c 259 if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
ec7771ab
MG
260 exception->error_code |= PFERR_RSVD_MASK;
261 return UNMAPPED_GVA;
262 }
263
cd313569
MG
264 return gpa;
265}
266
6aa8b732
AK
267static int is_cpuid_PSE36(void)
268{
269 return 1;
270}
271
73b1087e
AK
272static int is_nx(struct kvm_vcpu *vcpu)
273{
f6801dff 274 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
275}
276
da928521
AK
277static gfn_t pse36_gfn_delta(u32 gpte)
278{
279 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
280
281 return (gpte & PT32_DIR_PSE36_MASK) << shift;
282}
283
603e0651 284#ifdef CONFIG_X86_64
d555c333 285static void __set_spte(u64 *sptep, u64 spte)
e663ee64 286{
b19ee2ff 287 WRITE_ONCE(*sptep, spte);
e663ee64
AK
288}
289
603e0651 290static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 291{
b19ee2ff 292 WRITE_ONCE(*sptep, spte);
603e0651
XG
293}
294
295static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
296{
297 return xchg(sptep, spte);
298}
c2a2ac2b
XG
299
300static u64 __get_spte_lockless(u64 *sptep)
301{
6aa7de05 302 return READ_ONCE(*sptep);
c2a2ac2b 303}
a9221dd5 304#else
603e0651
XG
305union split_spte {
306 struct {
307 u32 spte_low;
308 u32 spte_high;
309 };
310 u64 spte;
311};
a9221dd5 312
c2a2ac2b
XG
313static void count_spte_clear(u64 *sptep, u64 spte)
314{
57354682 315 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
316
317 if (is_shadow_present_pte(spte))
318 return;
319
320 /* Ensure the spte is completely set before we increase the count */
321 smp_wmb();
322 sp->clear_spte_count++;
323}
324
603e0651
XG
325static void __set_spte(u64 *sptep, u64 spte)
326{
327 union split_spte *ssptep, sspte;
a9221dd5 328
603e0651
XG
329 ssptep = (union split_spte *)sptep;
330 sspte = (union split_spte)spte;
331
332 ssptep->spte_high = sspte.spte_high;
333
334 /*
335 * If we map the spte from nonpresent to present, We should store
336 * the high bits firstly, then set present bit, so cpu can not
337 * fetch this spte while we are setting the spte.
338 */
339 smp_wmb();
340
b19ee2ff 341 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
342}
343
603e0651
XG
344static void __update_clear_spte_fast(u64 *sptep, u64 spte)
345{
346 union split_spte *ssptep, sspte;
347
348 ssptep = (union split_spte *)sptep;
349 sspte = (union split_spte)spte;
350
b19ee2ff 351 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
352
353 /*
354 * If we map the spte from present to nonpresent, we should clear
355 * present bit firstly to avoid vcpu fetch the old high bits.
356 */
357 smp_wmb();
358
359 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 360 count_spte_clear(sptep, spte);
603e0651
XG
361}
362
363static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364{
365 union split_spte *ssptep, sspte, orig;
366
367 ssptep = (union split_spte *)sptep;
368 sspte = (union split_spte)spte;
369
370 /* xchg acts as a barrier before the setting of the high bits */
371 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
372 orig.spte_high = ssptep->spte_high;
373 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 374 count_spte_clear(sptep, spte);
603e0651
XG
375
376 return orig.spte;
377}
c2a2ac2b
XG
378
379/*
380 * The idea using the light way get the spte on x86_32 guest is from
39656e83 381 * gup_get_pte (mm/gup.c).
accaefe0
XG
382 *
383 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
384 * coalesces them and we are running out of the MMU lock. Therefore
385 * we need to protect against in-progress updates of the spte.
386 *
387 * Reading the spte while an update is in progress may get the old value
388 * for the high part of the spte. The race is fine for a present->non-present
389 * change (because the high part of the spte is ignored for non-present spte),
390 * but for a present->present change we must reread the spte.
391 *
392 * All such changes are done in two steps (present->non-present and
393 * non-present->present), hence it is enough to count the number of
394 * present->non-present updates: if it changed while reading the spte,
395 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
396 */
397static u64 __get_spte_lockless(u64 *sptep)
398{
57354682 399 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
400 union split_spte spte, *orig = (union split_spte *)sptep;
401 int count;
402
403retry:
404 count = sp->clear_spte_count;
405 smp_rmb();
406
407 spte.spte_low = orig->spte_low;
408 smp_rmb();
409
410 spte.spte_high = orig->spte_high;
411 smp_rmb();
412
413 if (unlikely(spte.spte_low != orig->spte_low ||
414 count != sp->clear_spte_count))
415 goto retry;
416
417 return spte.spte;
418}
603e0651
XG
419#endif
420
8672b721
XG
421static bool spte_has_volatile_bits(u64 spte)
422{
f160c7b7
JS
423 if (!is_shadow_present_pte(spte))
424 return false;
425
c7ba5b48 426 /*
6a6256f9 427 * Always atomically update spte if it can be updated
c7ba5b48
XG
428 * out of mmu-lock, it can ensure dirty bit is not lost,
429 * also, it can help us to get a stable is_writable_pte()
430 * to ensure tlb flush is not missed.
431 */
f160c7b7
JS
432 if (spte_can_locklessly_be_made_writable(spte) ||
433 is_access_track_spte(spte))
c7ba5b48
XG
434 return true;
435
ac8d57e5 436 if (spte_ad_enabled(spte)) {
f160c7b7
JS
437 if ((spte & shadow_accessed_mask) == 0 ||
438 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
439 return true;
440 }
8672b721 441
f160c7b7 442 return false;
8672b721
XG
443}
444
1df9f2dc
XG
445/* Rules for using mmu_spte_set:
446 * Set the sptep from nonpresent to present.
447 * Note: the sptep being assigned *must* be either not present
448 * or in a state where the hardware will not attempt to update
449 * the spte.
450 */
451static void mmu_spte_set(u64 *sptep, u64 new_spte)
452{
453 WARN_ON(is_shadow_present_pte(*sptep));
454 __set_spte(sptep, new_spte);
455}
456
f39a058d
JS
457/*
458 * Update the SPTE (excluding the PFN), but do not track changes in its
459 * accessed/dirty status.
1df9f2dc 460 */
f39a058d 461static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 462{
c7ba5b48 463 u64 old_spte = *sptep;
4132779b 464
afd28fe1 465 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 466
6e7d0354
XG
467 if (!is_shadow_present_pte(old_spte)) {
468 mmu_spte_set(sptep, new_spte);
f39a058d 469 return old_spte;
6e7d0354 470 }
4132779b 471
c7ba5b48 472 if (!spte_has_volatile_bits(old_spte))
603e0651 473 __update_clear_spte_fast(sptep, new_spte);
4132779b 474 else
603e0651 475 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 476
83ef6c81
JS
477 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
478
f39a058d
JS
479 return old_spte;
480}
481
482/* Rules for using mmu_spte_update:
483 * Update the state bits, it means the mapped pfn is not changed.
484 *
485 * Whenever we overwrite a writable spte with a read-only one we
486 * should flush remote TLBs. Otherwise rmap_write_protect
487 * will find a read-only spte, even though the writable spte
488 * might be cached on a CPU's TLB, the return value indicates this
489 * case.
490 *
491 * Returns true if the TLB needs to be flushed
492 */
493static bool mmu_spte_update(u64 *sptep, u64 new_spte)
494{
495 bool flush = false;
496 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
497
498 if (!is_shadow_present_pte(old_spte))
499 return false;
500
c7ba5b48
XG
501 /*
502 * For the spte updated out of mmu-lock is safe, since
6a6256f9 503 * we always atomically update it, see the comments in
c7ba5b48
XG
504 * spte_has_volatile_bits().
505 */
ea4114bc 506 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 507 !is_writable_pte(new_spte))
83ef6c81 508 flush = true;
4132779b 509
7e71a59b 510 /*
83ef6c81 511 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
512 * to guarantee consistency between TLB and page tables.
513 */
7e71a59b 514
83ef6c81
JS
515 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
516 flush = true;
4132779b 517 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
518 }
519
520 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
521 flush = true;
4132779b 522 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 523 }
6e7d0354 524
83ef6c81 525 return flush;
b79b93f9
AK
526}
527
1df9f2dc
XG
528/*
529 * Rules for using mmu_spte_clear_track_bits:
530 * It sets the sptep from present to nonpresent, and track the
531 * state bits, it is used to clear the last level sptep.
83ef6c81 532 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
533 */
534static int mmu_spte_clear_track_bits(u64 *sptep)
535{
ba049e93 536 kvm_pfn_t pfn;
1df9f2dc
XG
537 u64 old_spte = *sptep;
538
539 if (!spte_has_volatile_bits(old_spte))
603e0651 540 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 541 else
603e0651 542 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 543
afd28fe1 544 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
545 return 0;
546
547 pfn = spte_to_pfn(old_spte);
86fde74c
XG
548
549 /*
550 * KVM does not hold the refcount of the page used by
551 * kvm mmu, before reclaiming the page, we should
552 * unmap it from mmu first.
553 */
bf4bea8e 554 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 555
83ef6c81 556 if (is_accessed_spte(old_spte))
1df9f2dc 557 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
558
559 if (is_dirty_spte(old_spte))
1df9f2dc 560 kvm_set_pfn_dirty(pfn);
83ef6c81 561
1df9f2dc
XG
562 return 1;
563}
564
565/*
566 * Rules for using mmu_spte_clear_no_track:
567 * Directly clear spte without caring the state bits of sptep,
568 * it is used to set the upper level spte.
569 */
570static void mmu_spte_clear_no_track(u64 *sptep)
571{
603e0651 572 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
573}
574
c2a2ac2b
XG
575static u64 mmu_spte_get_lockless(u64 *sptep)
576{
577 return __get_spte_lockless(sptep);
578}
579
d3e328f2
JS
580/* Restore an acc-track PTE back to a regular PTE */
581static u64 restore_acc_track_spte(u64 spte)
582{
583 u64 new_spte = spte;
8a967d65
PB
584 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
585 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
d3e328f2 586
ac8d57e5 587 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
588 WARN_ON_ONCE(!is_access_track_spte(spte));
589
590 new_spte &= ~shadow_acc_track_mask;
8a967d65
PB
591 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
592 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
d3e328f2
JS
593 new_spte |= saved_bits;
594
595 return new_spte;
596}
597
f160c7b7
JS
598/* Returns the Accessed status of the PTE and resets it at the same time. */
599static bool mmu_spte_age(u64 *sptep)
600{
601 u64 spte = mmu_spte_get_lockless(sptep);
602
603 if (!is_accessed_spte(spte))
604 return false;
605
ac8d57e5 606 if (spte_ad_enabled(spte)) {
f160c7b7
JS
607 clear_bit((ffs(shadow_accessed_mask) - 1),
608 (unsigned long *)sptep);
609 } else {
610 /*
611 * Capture the dirty status of the page, so that it doesn't get
612 * lost when the SPTE is marked for access tracking.
613 */
614 if (is_writable_pte(spte))
615 kvm_set_pfn_dirty(spte_to_pfn(spte));
616
617 spte = mark_spte_for_access_track(spte);
618 mmu_spte_update_no_track(sptep, spte);
619 }
620
621 return true;
622}
623
c2a2ac2b
XG
624static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
625{
c142786c
AK
626 /*
627 * Prevent page table teardown by making any free-er wait during
628 * kvm_flush_remote_tlbs() IPI to all active vcpus.
629 */
630 local_irq_disable();
36ca7e0a 631
c142786c
AK
632 /*
633 * Make sure a following spte read is not reordered ahead of the write
634 * to vcpu->mode.
635 */
36ca7e0a 636 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
637}
638
639static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
640{
c142786c
AK
641 /*
642 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 643 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
644 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
645 */
36ca7e0a 646 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 647 local_irq_enable();
c2a2ac2b
XG
648}
649
378f5cd6 650static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714b93da 651{
e2dec939
AK
652 int r;
653
531281ad 654 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
94ce87ef
SC
655 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
656 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
d3d25b04 657 if (r)
284aa868 658 return r;
94ce87ef
SC
659 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
660 PT64_ROOT_MAX_LEVEL);
d3d25b04 661 if (r)
171a90d7 662 return r;
378f5cd6 663 if (maybe_indirect) {
94ce87ef
SC
664 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
665 PT64_ROOT_MAX_LEVEL);
378f5cd6
SC
666 if (r)
667 return r;
668 }
94ce87ef
SC
669 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670 PT64_ROOT_MAX_LEVEL);
714b93da
AK
671}
672
673static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
674{
94ce87ef
SC
675 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
676 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
677 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
678 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
679}
680
53c07b18 681static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 682{
94ce87ef 683 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
684}
685
53c07b18 686static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 687{
53c07b18 688 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
689}
690
2032a93d
LJ
691static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
692{
693 if (!sp->role.direct)
694 return sp->gfns[index];
695
696 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
697}
698
699static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
700{
e9f2a760 701 if (!sp->role.direct) {
2032a93d 702 sp->gfns[index] = gfn;
e9f2a760
PB
703 return;
704 }
705
706 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
707 pr_err_ratelimited("gfn mismatch under direct page %llx "
708 "(expected %llx, got %llx)\n",
709 sp->gfn,
710 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
711}
712
05da4558 713/*
d4dbf470
TY
714 * Return the pointer to the large page information for a given gfn,
715 * handling slots that are not large page aligned.
05da4558 716 */
d4dbf470
TY
717static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
718 struct kvm_memory_slot *slot,
719 int level)
05da4558
MT
720{
721 unsigned long idx;
722
fb03cb6f 723 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 724 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
725}
726
547ffaed
XG
727static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
728 gfn_t gfn, int count)
729{
730 struct kvm_lpage_info *linfo;
731 int i;
732
3bae0459 733 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
734 linfo = lpage_info_slot(gfn, slot, i);
735 linfo->disallow_lpage += count;
736 WARN_ON(linfo->disallow_lpage < 0);
737 }
738}
739
740void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
741{
742 update_gfn_disallow_lpage_count(slot, gfn, 1);
743}
744
745void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
746{
747 update_gfn_disallow_lpage_count(slot, gfn, -1);
748}
749
3ed1a478 750static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 751{
699023e2 752 struct kvm_memslots *slots;
d25797b2 753 struct kvm_memory_slot *slot;
3ed1a478 754 gfn_t gfn;
05da4558 755
56ca57f9 756 kvm->arch.indirect_shadow_pages++;
3ed1a478 757 gfn = sp->gfn;
699023e2
PB
758 slots = kvm_memslots_for_spte_role(kvm, sp->role);
759 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
760
761 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 762 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
763 return kvm_slot_page_track_add_page(kvm, slot, gfn,
764 KVM_PAGE_TRACK_WRITE);
765
547ffaed 766 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
767}
768
29cf0f50 769void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
770{
771 if (sp->lpage_disallowed)
772 return;
773
774 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
775 list_add_tail(&sp->lpage_disallowed_link,
776 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
777 sp->lpage_disallowed = true;
778}
779
3ed1a478 780static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 781{
699023e2 782 struct kvm_memslots *slots;
d25797b2 783 struct kvm_memory_slot *slot;
3ed1a478 784 gfn_t gfn;
05da4558 785
56ca57f9 786 kvm->arch.indirect_shadow_pages--;
3ed1a478 787 gfn = sp->gfn;
699023e2
PB
788 slots = kvm_memslots_for_spte_role(kvm, sp->role);
789 slot = __gfn_to_memslot(slots, gfn);
3bae0459 790 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
791 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
792 KVM_PAGE_TRACK_WRITE);
793
547ffaed 794 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
795}
796
29cf0f50 797void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
b8e8c830
PB
798{
799 --kvm->stat.nx_lpage_splits;
800 sp->lpage_disallowed = false;
1aa9b957 801 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
802}
803
5d163b1c
XG
804static struct kvm_memory_slot *
805gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
806 bool no_dirty_log)
05da4558
MT
807{
808 struct kvm_memory_slot *slot;
5d163b1c 809
54bf36aa 810 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
811 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
812 return NULL;
044c59c4 813 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
91b0d268 814 return NULL;
5d163b1c
XG
815
816 return slot;
817}
818
290fc38d 819/*
018aabb5 820 * About rmap_head encoding:
cd4a4e53 821 *
018aabb5
TY
822 * If the bit zero of rmap_head->val is clear, then it points to the only spte
823 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 824 * pte_list_desc containing more mappings.
018aabb5
TY
825 */
826
827/*
828 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 829 */
53c07b18 830static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 831 struct kvm_rmap_head *rmap_head)
cd4a4e53 832{
53c07b18 833 struct pte_list_desc *desc;
53a27b39 834 int i, count = 0;
cd4a4e53 835
018aabb5 836 if (!rmap_head->val) {
805a0f83 837 rmap_printk("%p %llx 0->1\n", spte, *spte);
018aabb5
TY
838 rmap_head->val = (unsigned long)spte;
839 } else if (!(rmap_head->val & 1)) {
805a0f83 840 rmap_printk("%p %llx 1->many\n", spte, *spte);
53c07b18 841 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 842 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 843 desc->sptes[1] = spte;
018aabb5 844 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 845 ++count;
cd4a4e53 846 } else {
805a0f83 847 rmap_printk("%p %llx many->many\n", spte, *spte);
018aabb5 848 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
c6c4f961 849 while (desc->sptes[PTE_LIST_EXT-1]) {
53c07b18 850 count += PTE_LIST_EXT;
c6c4f961
LR
851
852 if (!desc->more) {
853 desc->more = mmu_alloc_pte_list_desc(vcpu);
854 desc = desc->more;
855 break;
856 }
cd4a4e53
AK
857 desc = desc->more;
858 }
d555c333 859 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 860 ++count;
d555c333 861 desc->sptes[i] = spte;
cd4a4e53 862 }
53a27b39 863 return count;
cd4a4e53
AK
864}
865
53c07b18 866static void
018aabb5
TY
867pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
868 struct pte_list_desc *desc, int i,
869 struct pte_list_desc *prev_desc)
cd4a4e53
AK
870{
871 int j;
872
53c07b18 873 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 874 ;
d555c333
AK
875 desc->sptes[i] = desc->sptes[j];
876 desc->sptes[j] = NULL;
cd4a4e53
AK
877 if (j != 0)
878 return;
879 if (!prev_desc && !desc->more)
fe3c2b4c 880 rmap_head->val = 0;
cd4a4e53
AK
881 else
882 if (prev_desc)
883 prev_desc->more = desc->more;
884 else
018aabb5 885 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 886 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
887}
888
8daf3462 889static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 890{
53c07b18
XG
891 struct pte_list_desc *desc;
892 struct pte_list_desc *prev_desc;
cd4a4e53
AK
893 int i;
894
018aabb5 895 if (!rmap_head->val) {
8daf3462 896 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 897 BUG();
018aabb5 898 } else if (!(rmap_head->val & 1)) {
805a0f83 899 rmap_printk("%p 1->0\n", spte);
018aabb5 900 if ((u64 *)rmap_head->val != spte) {
8daf3462 901 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
902 BUG();
903 }
018aabb5 904 rmap_head->val = 0;
cd4a4e53 905 } else {
805a0f83 906 rmap_printk("%p many->many\n", spte);
018aabb5 907 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
908 prev_desc = NULL;
909 while (desc) {
018aabb5 910 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 911 if (desc->sptes[i] == spte) {
018aabb5
TY
912 pte_list_desc_remove_entry(rmap_head,
913 desc, i, prev_desc);
cd4a4e53
AK
914 return;
915 }
018aabb5 916 }
cd4a4e53
AK
917 prev_desc = desc;
918 desc = desc->more;
919 }
8daf3462 920 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
921 BUG();
922 }
923}
924
e7912386
WY
925static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
926{
927 mmu_spte_clear_track_bits(sptep);
928 __pte_list_remove(sptep, rmap_head);
929}
930
018aabb5
TY
931static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
932 struct kvm_memory_slot *slot)
53c07b18 933{
77d11309 934 unsigned long idx;
53c07b18 935
77d11309 936 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 937 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
938}
939
018aabb5
TY
940static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
941 struct kvm_mmu_page *sp)
9b9b1492 942{
699023e2 943 struct kvm_memslots *slots;
9b9b1492
TY
944 struct kvm_memory_slot *slot;
945
699023e2
PB
946 slots = kvm_memslots_for_spte_role(kvm, sp->role);
947 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 948 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
949}
950
f759e2b4
XG
951static bool rmap_can_add(struct kvm_vcpu *vcpu)
952{
356ec69a 953 struct kvm_mmu_memory_cache *mc;
f759e2b4 954
356ec69a 955 mc = &vcpu->arch.mmu_pte_list_desc_cache;
94ce87ef 956 return kvm_mmu_memory_cache_nr_free_objects(mc);
f759e2b4
XG
957}
958
53c07b18
XG
959static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
960{
961 struct kvm_mmu_page *sp;
018aabb5 962 struct kvm_rmap_head *rmap_head;
53c07b18 963
57354682 964 sp = sptep_to_sp(spte);
53c07b18 965 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
966 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
967 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
968}
969
53c07b18
XG
970static void rmap_remove(struct kvm *kvm, u64 *spte)
971{
972 struct kvm_mmu_page *sp;
973 gfn_t gfn;
018aabb5 974 struct kvm_rmap_head *rmap_head;
53c07b18 975
57354682 976 sp = sptep_to_sp(spte);
53c07b18 977 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 978 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 979 __pte_list_remove(spte, rmap_head);
53c07b18
XG
980}
981
1e3f42f0
TY
982/*
983 * Used by the following functions to iterate through the sptes linked by a
984 * rmap. All fields are private and not assumed to be used outside.
985 */
986struct rmap_iterator {
987 /* private fields */
988 struct pte_list_desc *desc; /* holds the sptep if not NULL */
989 int pos; /* index of the sptep */
990};
991
992/*
993 * Iteration must be started by this function. This should also be used after
994 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 995 * information in the iterator may not be valid.
1e3f42f0
TY
996 *
997 * Returns sptep if found, NULL otherwise.
998 */
018aabb5
TY
999static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1000 struct rmap_iterator *iter)
1e3f42f0 1001{
77fbbbd2
TY
1002 u64 *sptep;
1003
018aabb5 1004 if (!rmap_head->val)
1e3f42f0
TY
1005 return NULL;
1006
018aabb5 1007 if (!(rmap_head->val & 1)) {
1e3f42f0 1008 iter->desc = NULL;
77fbbbd2
TY
1009 sptep = (u64 *)rmap_head->val;
1010 goto out;
1e3f42f0
TY
1011 }
1012
018aabb5 1013 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1014 iter->pos = 0;
77fbbbd2
TY
1015 sptep = iter->desc->sptes[iter->pos];
1016out:
1017 BUG_ON(!is_shadow_present_pte(*sptep));
1018 return sptep;
1e3f42f0
TY
1019}
1020
1021/*
1022 * Must be used with a valid iterator: e.g. after rmap_get_first().
1023 *
1024 * Returns sptep if found, NULL otherwise.
1025 */
1026static u64 *rmap_get_next(struct rmap_iterator *iter)
1027{
77fbbbd2
TY
1028 u64 *sptep;
1029
1e3f42f0
TY
1030 if (iter->desc) {
1031 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1032 ++iter->pos;
1033 sptep = iter->desc->sptes[iter->pos];
1034 if (sptep)
77fbbbd2 1035 goto out;
1e3f42f0
TY
1036 }
1037
1038 iter->desc = iter->desc->more;
1039
1040 if (iter->desc) {
1041 iter->pos = 0;
1042 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1043 sptep = iter->desc->sptes[iter->pos];
1044 goto out;
1e3f42f0
TY
1045 }
1046 }
1047
1048 return NULL;
77fbbbd2
TY
1049out:
1050 BUG_ON(!is_shadow_present_pte(*sptep));
1051 return sptep;
1e3f42f0
TY
1052}
1053
018aabb5
TY
1054#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1055 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1056 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1057
c3707958 1058static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1059{
1df9f2dc 1060 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1061 rmap_remove(kvm, sptep);
be38d276
AK
1062}
1063
8e22f955
XG
1064
1065static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1066{
1067 if (is_large_pte(*sptep)) {
57354682 1068 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1069 drop_spte(kvm, sptep);
1070 --kvm->stat.lpages;
1071 return true;
1072 }
1073
1074 return false;
1075}
1076
1077static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1078{
c3134ce2 1079 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1080 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1081
1082 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1083 KVM_PAGES_PER_HPAGE(sp->role.level));
1084 }
8e22f955
XG
1085}
1086
1087/*
49fde340 1088 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1089 * spte write-protection is caused by protecting shadow page table.
49fde340 1090 *
b4619660 1091 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1092 * protection:
1093 * - for dirty logging, the spte can be set to writable at anytime if
1094 * its dirty bitmap is properly set.
1095 * - for spte protection, the spte can be writable only after unsync-ing
1096 * shadow page.
8e22f955 1097 *
c126d94f 1098 * Return true if tlb need be flushed.
8e22f955 1099 */
c4f138b4 1100static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1101{
1102 u64 spte = *sptep;
1103
49fde340 1104 if (!is_writable_pte(spte) &&
ea4114bc 1105 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1106 return false;
1107
805a0f83 1108 rmap_printk("spte %p %llx\n", sptep, *sptep);
d13bc5b5 1109
49fde340 1110 if (pt_protect)
5fc3424f 1111 spte &= ~shadow_mmu_writable_mask;
d13bc5b5 1112 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1113
c126d94f 1114 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1115}
1116
018aabb5
TY
1117static bool __rmap_write_protect(struct kvm *kvm,
1118 struct kvm_rmap_head *rmap_head,
245c3912 1119 bool pt_protect)
98348e95 1120{
1e3f42f0
TY
1121 u64 *sptep;
1122 struct rmap_iterator iter;
d13bc5b5 1123 bool flush = false;
374cbac0 1124
018aabb5 1125 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1126 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1127
d13bc5b5 1128 return flush;
a0ed4607
TY
1129}
1130
c4f138b4 1131static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1132{
1133 u64 spte = *sptep;
1134
805a0f83 1135 rmap_printk("spte %p %llx\n", sptep, *sptep);
f4b4b180 1136
1f4e5fc8 1137 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1138 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1139 return mmu_spte_update(sptep, spte);
1140}
1141
1f4e5fc8 1142static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1143{
1144 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1145 (unsigned long *)sptep);
1f4e5fc8 1146 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1147 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1148
1149 return was_writable;
1150}
1151
1152/*
1153 * Gets the GFN ready for another round of dirty logging by clearing the
1154 * - D bit on ad-enabled SPTEs, and
1155 * - W bit on ad-disabled SPTEs.
1156 * Returns true iff any D or W bits were cleared.
1157 */
0a234f5d
SC
1158static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1159 struct kvm_memory_slot *slot)
f4b4b180
KH
1160{
1161 u64 *sptep;
1162 struct rmap_iterator iter;
1163 bool flush = false;
1164
018aabb5 1165 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1166 if (spte_ad_need_write_protect(*sptep))
1167 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1168 else
1f4e5fc8 1169 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1170
1171 return flush;
1172}
1173
5dc99b23 1174/**
3b0f1d01 1175 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1176 * @kvm: kvm instance
1177 * @slot: slot to protect
1178 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1179 * @mask: indicates which pages we should protect
1180 *
1181 * Used when we do not need to care about huge page mappings: e.g. during dirty
1182 * logging we do not have any such mappings.
1183 */
3b0f1d01 1184static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1185 struct kvm_memory_slot *slot,
1186 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1187{
018aabb5 1188 struct kvm_rmap_head *rmap_head;
a0ed4607 1189
897218ff 1190 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1191 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1192 slot->base_gfn + gfn_offset, mask, true);
5dc99b23 1193 while (mask) {
018aabb5 1194 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1195 PG_LEVEL_4K, slot);
018aabb5 1196 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1197
5dc99b23
TY
1198 /* clear the first set bit */
1199 mask &= mask - 1;
1200 }
374cbac0
AK
1201}
1202
f4b4b180 1203/**
ac8d57e5
PF
1204 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1205 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1206 * @kvm: kvm instance
1207 * @slot: slot to clear D-bit
1208 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1209 * @mask: indicates which pages we should clear D-bit
1210 *
1211 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1212 */
a018eba5
SC
1213static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1214 struct kvm_memory_slot *slot,
1215 gfn_t gfn_offset, unsigned long mask)
f4b4b180 1216{
018aabb5 1217 struct kvm_rmap_head *rmap_head;
f4b4b180 1218
897218ff 1219 if (is_tdp_mmu_enabled(kvm))
a6a0b05d
BG
1220 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1221 slot->base_gfn + gfn_offset, mask, false);
f4b4b180 1222 while (mask) {
018aabb5 1223 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1224 PG_LEVEL_4K, slot);
0a234f5d 1225 __rmap_clear_dirty(kvm, rmap_head, slot);
f4b4b180
KH
1226
1227 /* clear the first set bit */
1228 mask &= mask - 1;
1229 }
1230}
f4b4b180 1231
3b0f1d01
KH
1232/**
1233 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1234 * PT level pages.
1235 *
1236 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1237 * enable dirty logging for them.
1238 *
1239 * Used when we do not need to care about huge page mappings: e.g. during dirty
1240 * logging we do not have any such mappings.
1241 */
1242void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1243 struct kvm_memory_slot *slot,
1244 gfn_t gfn_offset, unsigned long mask)
1245{
a018eba5
SC
1246 if (kvm_x86_ops.cpu_dirty_log_size)
1247 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
88178fd4
KH
1248 else
1249 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1250}
1251
fb04a1ed
PX
1252int kvm_cpu_dirty_log_size(void)
1253{
6dd03800 1254 return kvm_x86_ops.cpu_dirty_log_size;
fb04a1ed
PX
1255}
1256
aeecee2e
XG
1257bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1258 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1259{
018aabb5 1260 struct kvm_rmap_head *rmap_head;
5dc99b23 1261 int i;
2f84569f 1262 bool write_protected = false;
95d4c16c 1263
3bae0459 1264 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1265 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1266 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1267 }
1268
897218ff 1269 if (is_tdp_mmu_enabled(kvm))
46044f72
BG
1270 write_protected |=
1271 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1272
5dc99b23 1273 return write_protected;
95d4c16c
TY
1274}
1275
aeecee2e
XG
1276static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1277{
1278 struct kvm_memory_slot *slot;
1279
1280 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1281 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1282}
1283
0a234f5d
SC
1284static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1285 struct kvm_memory_slot *slot)
e930bffe 1286{
1e3f42f0
TY
1287 u64 *sptep;
1288 struct rmap_iterator iter;
6a49f85c 1289 bool flush = false;
e930bffe 1290
018aabb5 1291 while ((sptep = rmap_get_first(rmap_head, &iter))) {
805a0f83 1292 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1e3f42f0 1293
e7912386 1294 pte_list_remove(rmap_head, sptep);
6a49f85c 1295 flush = true;
e930bffe 1296 }
1e3f42f0 1297
6a49f85c
XG
1298 return flush;
1299}
1300
018aabb5 1301static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1302 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1303 unsigned long data)
1304{
0a234f5d 1305 return kvm_zap_rmapp(kvm, rmap_head, slot);
e930bffe
AA
1306}
1307
018aabb5 1308static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1309 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1310 unsigned long data)
3da0dd43 1311{
1e3f42f0
TY
1312 u64 *sptep;
1313 struct rmap_iterator iter;
3da0dd43 1314 int need_flush = 0;
1e3f42f0 1315 u64 new_spte;
3da0dd43 1316 pte_t *ptep = (pte_t *)data;
ba049e93 1317 kvm_pfn_t new_pfn;
3da0dd43
IE
1318
1319 WARN_ON(pte_huge(*ptep));
1320 new_pfn = pte_pfn(*ptep);
1e3f42f0 1321
0d536790 1322restart:
018aabb5 1323 for_each_rmap_spte(rmap_head, &iter, sptep) {
805a0f83 1324 rmap_printk("spte %p %llx gfn %llx (%d)\n",
f160c7b7 1325 sptep, *sptep, gfn, level);
1e3f42f0 1326
3da0dd43 1327 need_flush = 1;
1e3f42f0 1328
3da0dd43 1329 if (pte_write(*ptep)) {
e7912386 1330 pte_list_remove(rmap_head, sptep);
0d536790 1331 goto restart;
3da0dd43 1332 } else {
cb3eedab
PB
1333 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1334 *sptep, new_pfn);
1e3f42f0
TY
1335
1336 mmu_spte_clear_track_bits(sptep);
1337 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1338 }
1339 }
1e3f42f0 1340
3cc5ea94
LT
1341 if (need_flush && kvm_available_flush_tlb_with_range()) {
1342 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1343 return 0;
1344 }
1345
0cf853c5 1346 return need_flush;
3da0dd43
IE
1347}
1348
6ce1f4e2
XG
1349struct slot_rmap_walk_iterator {
1350 /* input fields. */
1351 struct kvm_memory_slot *slot;
1352 gfn_t start_gfn;
1353 gfn_t end_gfn;
1354 int start_level;
1355 int end_level;
1356
1357 /* output fields. */
1358 gfn_t gfn;
018aabb5 1359 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1360 int level;
1361
1362 /* private field. */
018aabb5 1363 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1364};
1365
1366static void
1367rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1368{
1369 iterator->level = level;
1370 iterator->gfn = iterator->start_gfn;
1371 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1372 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1373 iterator->slot);
1374}
1375
1376static void
1377slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1378 struct kvm_memory_slot *slot, int start_level,
1379 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1380{
1381 iterator->slot = slot;
1382 iterator->start_level = start_level;
1383 iterator->end_level = end_level;
1384 iterator->start_gfn = start_gfn;
1385 iterator->end_gfn = end_gfn;
1386
1387 rmap_walk_init_level(iterator, iterator->start_level);
1388}
1389
1390static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1391{
1392 return !!iterator->rmap;
1393}
1394
1395static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1396{
1397 if (++iterator->rmap <= iterator->end_rmap) {
1398 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1399 return;
1400 }
1401
1402 if (++iterator->level > iterator->end_level) {
1403 iterator->rmap = NULL;
1404 return;
1405 }
1406
1407 rmap_walk_init_level(iterator, iterator->level);
1408}
1409
1410#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1411 _start_gfn, _end_gfn, _iter_) \
1412 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1413 _end_level_, _start_gfn, _end_gfn); \
1414 slot_rmap_walk_okay(_iter_); \
1415 slot_rmap_walk_next(_iter_))
1416
c1b91493
SC
1417typedef int (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1418 struct kvm_memory_slot *slot, gfn_t gfn,
1419 int level, unsigned long data);
1420
1421static __always_inline int kvm_handle_hva_range(struct kvm *kvm,
1422 unsigned long start,
1423 unsigned long end,
1424 unsigned long data,
1425 rmap_handler_t handler)
e930bffe 1426{
bc6678a3 1427 struct kvm_memslots *slots;
be6ba0f0 1428 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1429 struct slot_rmap_walk_iterator iterator;
1430 int ret = 0;
9da0e4d5 1431 int i;
bc6678a3 1432
9da0e4d5
PB
1433 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1434 slots = __kvm_memslots(kvm, i);
1435 kvm_for_each_memslot(memslot, slots) {
1436 unsigned long hva_start, hva_end;
1437 gfn_t gfn_start, gfn_end;
e930bffe 1438
9da0e4d5
PB
1439 hva_start = max(start, memslot->userspace_addr);
1440 hva_end = min(end, memslot->userspace_addr +
1441 (memslot->npages << PAGE_SHIFT));
1442 if (hva_start >= hva_end)
1443 continue;
1444 /*
1445 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1446 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1447 */
1448 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1449 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1450
3bae0459 1451 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1452 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1453 gfn_start, gfn_end - 1,
1454 &iterator)
1455 ret |= handler(kvm, iterator.rmap, memslot,
1456 iterator.gfn, iterator.level, data);
1457 }
e930bffe
AA
1458 }
1459
f395302e 1460 return ret;
e930bffe
AA
1461}
1462
84504ef3 1463static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
c1b91493 1464 unsigned long data, rmap_handler_t handler)
84504ef3
TY
1465{
1466 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1467}
1468
fdfe7cbd
WD
1469int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1470 unsigned flags)
b3ae2096 1471{
063afacd
BG
1472 int r;
1473
1474 r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1475
897218ff 1476 if (is_tdp_mmu_enabled(kvm))
063afacd
BG
1477 r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1478
1479 return r;
b3ae2096
TY
1480}
1481
748c0e31 1482int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1483{
1d8dd6b3
BG
1484 int r;
1485
1486 r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1487
897218ff 1488 if (is_tdp_mmu_enabled(kvm))
1d8dd6b3
BG
1489 r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1490
1491 return r;
e930bffe
AA
1492}
1493
018aabb5 1494static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1495 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1496 unsigned long data)
e930bffe 1497{
1e3f42f0 1498 u64 *sptep;
3f649ab7 1499 struct rmap_iterator iter;
e930bffe
AA
1500 int young = 0;
1501
f160c7b7
JS
1502 for_each_rmap_spte(rmap_head, &iter, sptep)
1503 young |= mmu_spte_age(sptep);
0d536790 1504
e930bffe
AA
1505 return young;
1506}
1507
018aabb5 1508static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1509 struct kvm_memory_slot *slot, gfn_t gfn,
1510 int level, unsigned long data)
8ee53820 1511{
1e3f42f0
TY
1512 u64 *sptep;
1513 struct rmap_iterator iter;
8ee53820 1514
83ef6c81
JS
1515 for_each_rmap_spte(rmap_head, &iter, sptep)
1516 if (is_accessed_spte(*sptep))
1517 return 1;
83ef6c81 1518 return 0;
8ee53820
AA
1519}
1520
53a27b39
MT
1521#define RMAP_RECYCLE_THRESHOLD 1000
1522
852e3c19 1523static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1524{
018aabb5 1525 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1526 struct kvm_mmu_page *sp;
1527
57354682 1528 sp = sptep_to_sp(spte);
53a27b39 1529
018aabb5 1530 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1531
018aabb5 1532 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1533 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1534 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1535}
1536
57128468 1537int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1538{
f8e14497
BG
1539 int young = false;
1540
1541 young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
897218ff 1542 if (is_tdp_mmu_enabled(kvm))
f8e14497
BG
1543 young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1544
1545 return young;
e930bffe
AA
1546}
1547
8ee53820
AA
1548int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1549{
f8e14497
BG
1550 int young = false;
1551
1552 young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
897218ff 1553 if (is_tdp_mmu_enabled(kvm))
f8e14497
BG
1554 young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1555
1556 return young;
8ee53820
AA
1557}
1558
d6c69ee9 1559#ifdef MMU_DEBUG
47ad8e68 1560static int is_empty_shadow_page(u64 *spt)
6aa8b732 1561{
139bdb2d
AK
1562 u64 *pos;
1563 u64 *end;
1564
47ad8e68 1565 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1566 if (is_shadow_present_pte(*pos)) {
b8688d51 1567 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1568 pos, *pos);
6aa8b732 1569 return 0;
139bdb2d 1570 }
6aa8b732
AK
1571 return 1;
1572}
d6c69ee9 1573#endif
6aa8b732 1574
45221ab6
DH
1575/*
1576 * This value is the sum of all of the kvm instances's
1577 * kvm->arch.n_used_mmu_pages values. We need a global,
1578 * aggregate version in order to make the slab shrinker
1579 * faster
1580 */
bc8a3d89 1581static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
1582{
1583 kvm->arch.n_used_mmu_pages += nr;
1584 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1585}
1586
834be0d8 1587static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1588{
fa4a2c08 1589 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1590 hlist_del(&sp->hash_link);
bd4c86ea
XG
1591 list_del(&sp->link);
1592 free_page((unsigned long)sp->spt);
834be0d8
GN
1593 if (!sp->role.direct)
1594 free_page((unsigned long)sp->gfns);
e8ad9a70 1595 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1596}
1597
cea0f0e7
AK
1598static unsigned kvm_page_table_hashfn(gfn_t gfn)
1599{
114df303 1600 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
1601}
1602
714b93da 1603static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1604 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1605{
cea0f0e7
AK
1606 if (!parent_pte)
1607 return;
cea0f0e7 1608
67052b35 1609 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1610}
1611
4db35314 1612static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1613 u64 *parent_pte)
1614{
8daf3462 1615 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1616}
1617
bcdd9a93
XG
1618static void drop_parent_pte(struct kvm_mmu_page *sp,
1619 u64 *parent_pte)
1620{
1621 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1622 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1623}
1624
47005792 1625static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1626{
67052b35 1627 struct kvm_mmu_page *sp;
7ddca7e4 1628
94ce87ef
SC
1629 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1630 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
67052b35 1631 if (!direct)
94ce87ef 1632 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
67052b35 1633 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
1634
1635 /*
1636 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1637 * depends on valid pages being added to the head of the list. See
1638 * comments in kvm_zap_obsolete_pages().
1639 */
ca333add 1640 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 1641 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1642 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1643 return sp;
ad8cfbe3
MT
1644}
1645
67052b35 1646static void mark_unsync(u64 *spte);
1047df1f 1647static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1648{
74c4e63a
TY
1649 u64 *sptep;
1650 struct rmap_iterator iter;
1651
1652 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1653 mark_unsync(sptep);
1654 }
0074ff63
MT
1655}
1656
67052b35 1657static void mark_unsync(u64 *spte)
0074ff63 1658{
67052b35 1659 struct kvm_mmu_page *sp;
1047df1f 1660 unsigned int index;
0074ff63 1661
57354682 1662 sp = sptep_to_sp(spte);
1047df1f
XG
1663 index = spte - sp->spt;
1664 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1665 return;
1047df1f 1666 if (sp->unsync_children++)
0074ff63 1667 return;
1047df1f 1668 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1669}
1670
e8bc217a 1671static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1672 struct kvm_mmu_page *sp)
e8bc217a 1673{
1f50f1b3 1674 return 0;
e8bc217a
MT
1675}
1676
60c8aec6
MT
1677#define KVM_PAGE_ARRAY_NR 16
1678
1679struct kvm_mmu_pages {
1680 struct mmu_page_and_offset {
1681 struct kvm_mmu_page *sp;
1682 unsigned int idx;
1683 } page[KVM_PAGE_ARRAY_NR];
1684 unsigned int nr;
1685};
1686
cded19f3
HE
1687static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1688 int idx)
4731d4c7 1689{
60c8aec6 1690 int i;
4731d4c7 1691
60c8aec6
MT
1692 if (sp->unsync)
1693 for (i=0; i < pvec->nr; i++)
1694 if (pvec->page[i].sp == sp)
1695 return 0;
1696
1697 pvec->page[pvec->nr].sp = sp;
1698 pvec->page[pvec->nr].idx = idx;
1699 pvec->nr++;
1700 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1701}
1702
fd951457
TY
1703static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1704{
1705 --sp->unsync_children;
1706 WARN_ON((int)sp->unsync_children < 0);
1707 __clear_bit(idx, sp->unsync_child_bitmap);
1708}
1709
60c8aec6
MT
1710static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1711 struct kvm_mmu_pages *pvec)
1712{
1713 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1714
37178b8b 1715 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1716 struct kvm_mmu_page *child;
4731d4c7
MT
1717 u64 ent = sp->spt[i];
1718
fd951457
TY
1719 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1720 clear_unsync_child_bit(sp, i);
1721 continue;
1722 }
7a8f1a74 1723
e47c4aee 1724 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
1725
1726 if (child->unsync_children) {
1727 if (mmu_pages_add(pvec, child, i))
1728 return -ENOSPC;
1729
1730 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1731 if (!ret) {
1732 clear_unsync_child_bit(sp, i);
1733 continue;
1734 } else if (ret > 0) {
7a8f1a74 1735 nr_unsync_leaf += ret;
fd951457 1736 } else
7a8f1a74
XG
1737 return ret;
1738 } else if (child->unsync) {
1739 nr_unsync_leaf++;
1740 if (mmu_pages_add(pvec, child, i))
1741 return -ENOSPC;
1742 } else
fd951457 1743 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1744 }
1745
60c8aec6
MT
1746 return nr_unsync_leaf;
1747}
1748
e23d3fef
XG
1749#define INVALID_INDEX (-1)
1750
60c8aec6
MT
1751static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1752 struct kvm_mmu_pages *pvec)
1753{
0a47cd85 1754 pvec->nr = 0;
60c8aec6
MT
1755 if (!sp->unsync_children)
1756 return 0;
1757
e23d3fef 1758 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1759 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1760}
1761
4731d4c7
MT
1762static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1763{
1764 WARN_ON(!sp->unsync);
5e1b3ddb 1765 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1766 sp->unsync = 0;
1767 --kvm->stat.mmu_unsync;
1768}
1769
83cdb568
SC
1770static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1771 struct list_head *invalid_list);
7775834a
XG
1772static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1773 struct list_head *invalid_list);
4731d4c7 1774
ac101b7c
SC
1775#define for_each_valid_sp(_kvm, _sp, _list) \
1776 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 1777 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 1778 } else
1044b030
TY
1779
1780#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
1781 for_each_valid_sp(_kvm, _sp, \
1782 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 1783 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 1784
47c42e6b
SC
1785static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1786{
1787 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1788}
1789
f918b443 1790/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1791static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1792 struct list_head *invalid_list)
4731d4c7 1793{
47c42e6b
SC
1794 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1795 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 1796 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1797 return false;
4731d4c7
MT
1798 }
1799
1f50f1b3 1800 return true;
4731d4c7
MT
1801}
1802
a2113634
SC
1803static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1804 struct list_head *invalid_list,
1805 bool remote_flush)
1806{
cfd32acf 1807 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
1808 return false;
1809
1810 if (!list_empty(invalid_list))
1811 kvm_mmu_commit_zap_page(kvm, invalid_list);
1812 else
1813 kvm_flush_remote_tlbs(kvm);
1814 return true;
1815}
1816
35a70510
PB
1817static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1818 struct list_head *invalid_list,
1819 bool remote_flush, bool local_flush)
1d9dc7e0 1820{
a2113634 1821 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 1822 return;
d98ba053 1823
a2113634 1824 if (local_flush)
8c8560b8 1825 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
1826}
1827
e37fa785
XG
1828#ifdef CONFIG_KVM_MMU_AUDIT
1829#include "mmu_audit.c"
1830#else
1831static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1832static void mmu_audit_disable(void) { }
1833#endif
1834
002c5f73
SC
1835static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1836{
fac026da
SC
1837 return sp->role.invalid ||
1838 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
1839}
1840
1f50f1b3 1841static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1842 struct list_head *invalid_list)
1d9dc7e0 1843{
9a43c5d9
PB
1844 kvm_unlink_unsync_page(vcpu->kvm, sp);
1845 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1846}
1847
9f1a122f 1848/* @gfn should be write-protected at the call site */
2a74003a
PB
1849static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1850 struct list_head *invalid_list)
9f1a122f 1851{
9f1a122f 1852 struct kvm_mmu_page *s;
2a74003a 1853 bool ret = false;
9f1a122f 1854
b67bfe0d 1855 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1856 if (!s->unsync)
9f1a122f
XG
1857 continue;
1858
3bae0459 1859 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 1860 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1861 }
1862
2a74003a 1863 return ret;
9f1a122f
XG
1864}
1865
60c8aec6 1866struct mmu_page_path {
2a7266a8
YZ
1867 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1868 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
1869};
1870
60c8aec6 1871#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1872 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1873 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1874 i = mmu_pages_next(&pvec, &parents, i))
1875
cded19f3
HE
1876static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1877 struct mmu_page_path *parents,
1878 int i)
60c8aec6
MT
1879{
1880 int n;
1881
1882 for (n = i+1; n < pvec->nr; n++) {
1883 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
1884 unsigned idx = pvec->page[n].idx;
1885 int level = sp->role.level;
60c8aec6 1886
0a47cd85 1887 parents->idx[level-1] = idx;
3bae0459 1888 if (level == PG_LEVEL_4K)
0a47cd85 1889 break;
60c8aec6 1890
0a47cd85 1891 parents->parent[level-2] = sp;
60c8aec6
MT
1892 }
1893
1894 return n;
1895}
1896
0a47cd85
PB
1897static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1898 struct mmu_page_path *parents)
1899{
1900 struct kvm_mmu_page *sp;
1901 int level;
1902
1903 if (pvec->nr == 0)
1904 return 0;
1905
e23d3fef
XG
1906 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1907
0a47cd85
PB
1908 sp = pvec->page[0].sp;
1909 level = sp->role.level;
3bae0459 1910 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
1911
1912 parents->parent[level-2] = sp;
1913
1914 /* Also set up a sentinel. Further entries in pvec are all
1915 * children of sp, so this element is never overwritten.
1916 */
1917 parents->parent[level-1] = NULL;
1918 return mmu_pages_next(pvec, parents, 0);
1919}
1920
cded19f3 1921static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1922{
60c8aec6
MT
1923 struct kvm_mmu_page *sp;
1924 unsigned int level = 0;
1925
1926 do {
1927 unsigned int idx = parents->idx[level];
60c8aec6
MT
1928 sp = parents->parent[level];
1929 if (!sp)
1930 return;
1931
e23d3fef 1932 WARN_ON(idx == INVALID_INDEX);
fd951457 1933 clear_unsync_child_bit(sp, idx);
60c8aec6 1934 level++;
0a47cd85 1935 } while (!sp->unsync_children);
60c8aec6 1936}
4731d4c7 1937
60c8aec6
MT
1938static void mmu_sync_children(struct kvm_vcpu *vcpu,
1939 struct kvm_mmu_page *parent)
1940{
1941 int i;
1942 struct kvm_mmu_page *sp;
1943 struct mmu_page_path parents;
1944 struct kvm_mmu_pages pages;
d98ba053 1945 LIST_HEAD(invalid_list);
50c9e6f3 1946 bool flush = false;
60c8aec6 1947
60c8aec6 1948 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1949 bool protected = false;
b1a36821
MT
1950
1951 for_each_sp(pages, sp, parents, i)
54bf36aa 1952 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 1953
50c9e6f3 1954 if (protected) {
b1a36821 1955 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
1956 flush = false;
1957 }
b1a36821 1958
60c8aec6 1959 for_each_sp(pages, sp, parents, i) {
1f50f1b3 1960 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1961 mmu_pages_clear_parents(&parents);
1962 }
531810ca 1963 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
50c9e6f3 1964 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
531810ca 1965 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
50c9e6f3
PB
1966 flush = false;
1967 }
60c8aec6 1968 }
50c9e6f3
PB
1969
1970 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
1971}
1972
a30f47cb
XG
1973static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1974{
e5691a81 1975 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
1976}
1977
1978static void clear_sp_write_flooding_count(u64 *spte)
1979{
57354682 1980 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
1981}
1982
cea0f0e7
AK
1983static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1984 gfn_t gfn,
1985 gva_t gaddr,
1986 unsigned level,
f6e2c02b 1987 int direct,
0a2b64c5 1988 unsigned int access)
cea0f0e7 1989{
fb58a9c3 1990 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 1991 union kvm_mmu_page_role role;
ac101b7c 1992 struct hlist_head *sp_list;
cea0f0e7 1993 unsigned quadrant;
9f1a122f 1994 struct kvm_mmu_page *sp;
9f1a122f 1995 bool need_sync = false;
2a74003a 1996 bool flush = false;
f3414bc7 1997 int collisions = 0;
2a74003a 1998 LIST_HEAD(invalid_list);
cea0f0e7 1999
36d9594d 2000 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2001 role.level = level;
f6e2c02b 2002 role.direct = direct;
84b0c8c6 2003 if (role.direct)
47c42e6b 2004 role.gpte_is_8_bytes = true;
41074d07 2005 role.access = access;
fb58a9c3 2006 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2007 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2008 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2009 role.quadrant = quadrant;
2010 }
ac101b7c
SC
2011
2012 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2013 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2014 if (sp->gfn != gfn) {
2015 collisions++;
2016 continue;
2017 }
2018
7ae680eb
XG
2019 if (!need_sync && sp->unsync)
2020 need_sync = true;
4731d4c7 2021
7ae680eb
XG
2022 if (sp->role.word != role.word)
2023 continue;
4731d4c7 2024
fb58a9c3
SC
2025 if (direct_mmu)
2026 goto trace_get_page;
2027
2a74003a
PB
2028 if (sp->unsync) {
2029 /* The page is good, but __kvm_sync_page might still end
2030 * up zapping it. If so, break in order to rebuild it.
2031 */
2032 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2033 break;
2034
2035 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2036 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2037 }
e02aa901 2038
98bba238 2039 if (sp->unsync_children)
f6f6195b 2040 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2041
a30f47cb 2042 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2043
2044trace_get_page:
7ae680eb 2045 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2046 goto out;
7ae680eb 2047 }
47005792 2048
dfc5aa00 2049 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2050
2051 sp = kvm_mmu_alloc_page(vcpu, direct);
2052
4db35314
AK
2053 sp->gfn = gfn;
2054 sp->role = role;
ac101b7c 2055 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2056 if (!direct) {
56ca57f9
XG
2057 /*
2058 * we should do write protection before syncing pages
2059 * otherwise the content of the synced shadow page may
2060 * be inconsistent with guest page table.
2061 */
2062 account_shadowed(vcpu->kvm, sp);
3bae0459 2063 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2064 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2065
3bae0459 2066 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2067 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2068 }
f691fe1d 2069 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2070
2071 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2072out:
2073 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2074 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2075 return sp;
cea0f0e7
AK
2076}
2077
7eb77e9f
JS
2078static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2079 struct kvm_vcpu *vcpu, hpa_t root,
2080 u64 addr)
2d11123a
AK
2081{
2082 iterator->addr = addr;
7eb77e9f 2083 iterator->shadow_addr = root;
44dd3ffa 2084 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2085
2a7266a8 2086 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2087 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2088 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2089 --iterator->level;
2090
2d11123a 2091 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2092 /*
2093 * prev_root is currently only used for 64-bit hosts. So only
2094 * the active root_hpa is valid here.
2095 */
44dd3ffa 2096 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2097
2d11123a 2098 iterator->shadow_addr
44dd3ffa 2099 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2100 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2101 --iterator->level;
2102 if (!iterator->shadow_addr)
2103 iterator->level = 0;
2104 }
2105}
2106
7eb77e9f
JS
2107static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2108 struct kvm_vcpu *vcpu, u64 addr)
2109{
44dd3ffa 2110 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2111 addr);
2112}
2113
2d11123a
AK
2114static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2115{
3bae0459 2116 if (iterator->level < PG_LEVEL_4K)
2d11123a 2117 return false;
4d88954d 2118
2d11123a
AK
2119 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2120 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2121 return true;
2122}
2123
c2a2ac2b
XG
2124static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2125 u64 spte)
2d11123a 2126{
c2a2ac2b 2127 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2128 iterator->level = 0;
2129 return;
2130 }
2131
c2a2ac2b 2132 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2133 --iterator->level;
2134}
2135
c2a2ac2b
XG
2136static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2137{
bb606a9b 2138 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2139}
2140
cc4674d0
BG
2141static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2142 struct kvm_mmu_page *sp)
2143{
2144 u64 spte;
2145
2146 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2147
2148 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2149
1df9f2dc 2150 mmu_spte_set(sptep, spte);
98bba238
TY
2151
2152 mmu_page_add_parent_pte(vcpu, sp, sptep);
2153
2154 if (sp->unsync_children || sp->unsync)
2155 mark_unsync(sptep);
32ef26a3
AK
2156}
2157
a357bd22
AK
2158static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2159 unsigned direct_access)
2160{
2161 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2162 struct kvm_mmu_page *child;
2163
2164 /*
2165 * For the direct sp, if the guest pte's dirty bit
2166 * changed form clean to dirty, it will corrupt the
2167 * sp's access: allow writable in the read-only sp,
2168 * so we should update the spte at this point to get
2169 * a new sp with the correct access.
2170 */
e47c4aee 2171 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2172 if (child->role.access == direct_access)
2173 return;
2174
bcdd9a93 2175 drop_parent_pte(child, sptep);
c3134ce2 2176 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2177 }
2178}
2179
2de4085c
BG
2180/* Returns the number of zapped non-leaf child shadow pages. */
2181static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2182 u64 *spte, struct list_head *invalid_list)
38e3b2b2
XG
2183{
2184 u64 pte;
2185 struct kvm_mmu_page *child;
2186
2187 pte = *spte;
2188 if (is_shadow_present_pte(pte)) {
505aef8f 2189 if (is_last_spte(pte, sp->role.level)) {
c3707958 2190 drop_spte(kvm, spte);
505aef8f
XG
2191 if (is_large_pte(pte))
2192 --kvm->stat.lpages;
2193 } else {
e47c4aee 2194 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2195 drop_parent_pte(child, spte);
2de4085c
BG
2196
2197 /*
2198 * Recursively zap nested TDP SPs, parentless SPs are
2199 * unlikely to be used again in the near future. This
2200 * avoids retaining a large number of stale nested SPs.
2201 */
2202 if (tdp_enabled && invalid_list &&
2203 child->role.guest_mode && !child->parent_ptes.val)
2204 return kvm_mmu_prepare_zap_page(kvm, child,
2205 invalid_list);
38e3b2b2 2206 }
ace569e0 2207 } else if (is_mmio_spte(pte)) {
ce88decf 2208 mmu_spte_clear_no_track(spte);
ace569e0 2209 }
2de4085c 2210 return 0;
38e3b2b2
XG
2211}
2212
2de4085c
BG
2213static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2214 struct kvm_mmu_page *sp,
2215 struct list_head *invalid_list)
a436036b 2216{
2de4085c 2217 int zapped = 0;
697fe2e2 2218 unsigned i;
697fe2e2 2219
38e3b2b2 2220 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2de4085c
BG
2221 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2222
2223 return zapped;
a436036b
AK
2224}
2225
31aa2b44 2226static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2227{
1e3f42f0
TY
2228 u64 *sptep;
2229 struct rmap_iterator iter;
a436036b 2230
018aabb5 2231 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2232 drop_parent_pte(sp, sptep);
31aa2b44
AK
2233}
2234
60c8aec6 2235static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2236 struct kvm_mmu_page *parent,
2237 struct list_head *invalid_list)
4731d4c7 2238{
60c8aec6
MT
2239 int i, zapped = 0;
2240 struct mmu_page_path parents;
2241 struct kvm_mmu_pages pages;
4731d4c7 2242
3bae0459 2243 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2244 return 0;
60c8aec6 2245
60c8aec6
MT
2246 while (mmu_unsync_walk(parent, &pages)) {
2247 struct kvm_mmu_page *sp;
2248
2249 for_each_sp(pages, sp, parents, i) {
7775834a 2250 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2251 mmu_pages_clear_parents(&parents);
77662e00 2252 zapped++;
60c8aec6 2253 }
60c8aec6
MT
2254 }
2255
2256 return zapped;
4731d4c7
MT
2257}
2258
83cdb568
SC
2259static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2260 struct kvm_mmu_page *sp,
2261 struct list_head *invalid_list,
2262 int *nr_zapped)
31aa2b44 2263{
83cdb568 2264 bool list_unstable;
f691fe1d 2265
7775834a 2266 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2267 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2268 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2de4085c 2269 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
31aa2b44 2270 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2271
83cdb568
SC
2272 /* Zapping children means active_mmu_pages has become unstable. */
2273 list_unstable = *nr_zapped;
2274
f6e2c02b 2275 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2276 unaccount_shadowed(kvm, sp);
5304b8d3 2277
4731d4c7
MT
2278 if (sp->unsync)
2279 kvm_unlink_unsync_page(kvm, sp);
4db35314 2280 if (!sp->root_count) {
54a4f023 2281 /* Count self */
83cdb568 2282 (*nr_zapped)++;
f95eec9b
SC
2283
2284 /*
2285 * Already invalid pages (previously active roots) are not on
2286 * the active page list. See list_del() in the "else" case of
2287 * !sp->root_count.
2288 */
2289 if (sp->role.invalid)
2290 list_add(&sp->link, invalid_list);
2291 else
2292 list_move(&sp->link, invalid_list);
aa6bd187 2293 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2294 } else {
f95eec9b
SC
2295 /*
2296 * Remove the active root from the active page list, the root
2297 * will be explicitly freed when the root_count hits zero.
2298 */
2299 list_del(&sp->link);
05988d72 2300
10605204
SC
2301 /*
2302 * Obsolete pages cannot be used on any vCPUs, see the comment
2303 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2304 * treats invalid shadow pages as being obsolete.
2305 */
2306 if (!is_obsolete_sp(kvm, sp))
05988d72 2307 kvm_reload_remote_mmus(kvm);
2e53d63a 2308 }
7775834a 2309
b8e8c830
PB
2310 if (sp->lpage_disallowed)
2311 unaccount_huge_nx_page(kvm, sp);
2312
7775834a 2313 sp->role.invalid = 1;
83cdb568
SC
2314 return list_unstable;
2315}
2316
2317static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2318 struct list_head *invalid_list)
2319{
2320 int nr_zapped;
2321
2322 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2323 return nr_zapped;
a436036b
AK
2324}
2325
7775834a
XG
2326static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2327 struct list_head *invalid_list)
2328{
945315b9 2329 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2330
2331 if (list_empty(invalid_list))
2332 return;
2333
c142786c 2334 /*
9753f529
LT
2335 * We need to make sure everyone sees our modifications to
2336 * the page tables and see changes to vcpu->mode here. The barrier
2337 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2338 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2339 *
2340 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2341 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2342 */
2343 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2344
945315b9 2345 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2346 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2347 kvm_mmu_free_page(sp);
945315b9 2348 }
7775834a
XG
2349}
2350
6b82ef2c
SC
2351static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2352 unsigned long nr_to_zap)
5da59607 2353{
6b82ef2c
SC
2354 unsigned long total_zapped = 0;
2355 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2356 LIST_HEAD(invalid_list);
6b82ef2c
SC
2357 bool unstable;
2358 int nr_zapped;
5da59607
TY
2359
2360 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2361 return 0;
2362
6b82ef2c 2363restart:
8fc51726 2364 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
6b82ef2c
SC
2365 /*
2366 * Don't zap active root pages, the page itself can't be freed
2367 * and zapping it will just force vCPUs to realloc and reload.
2368 */
2369 if (sp->root_count)
2370 continue;
2371
2372 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2373 &nr_zapped);
2374 total_zapped += nr_zapped;
2375 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2376 break;
2377
6b82ef2c
SC
2378 if (unstable)
2379 goto restart;
ba7888dd 2380 }
5da59607 2381
6b82ef2c
SC
2382 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2383
2384 kvm->stat.mmu_recycled += total_zapped;
2385 return total_zapped;
2386}
2387
afe8d7e6
SC
2388static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2389{
2390 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2391 return kvm->arch.n_max_mmu_pages -
2392 kvm->arch.n_used_mmu_pages;
2393
2394 return 0;
5da59607
TY
2395}
2396
ba7888dd
SC
2397static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2398{
6b82ef2c 2399 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
ba7888dd 2400
6b82ef2c 2401 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
ba7888dd
SC
2402 return 0;
2403
6b82ef2c 2404 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd 2405
6e6ec584
SC
2406 /*
2407 * Note, this check is intentionally soft, it only guarantees that one
2408 * page is available, while the caller may end up allocating as many as
2409 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2410 * exceeding the (arbitrary by default) limit will not harm the host,
2411 * being too agressive may unnecessarily kill the guest, and getting an
2412 * exact count is far more trouble than it's worth, especially in the
2413 * page fault paths.
2414 */
ba7888dd
SC
2415 if (!kvm_mmu_available_pages(vcpu->kvm))
2416 return -ENOSPC;
2417 return 0;
2418}
2419
82ce2c96
IE
2420/*
2421 * Changing the number of mmu pages allocated to the vm
49d5ca26 2422 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2423 */
bc8a3d89 2424void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2425{
531810ca 2426 write_lock(&kvm->mmu_lock);
b34cb590 2427
49d5ca26 2428 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2429 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2430 goal_nr_mmu_pages);
82ce2c96 2431
49d5ca26 2432 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2433 }
82ce2c96 2434
49d5ca26 2435 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590 2436
531810ca 2437 write_unlock(&kvm->mmu_lock);
82ce2c96
IE
2438}
2439
1cb3f3ae 2440int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2441{
4db35314 2442 struct kvm_mmu_page *sp;
d98ba053 2443 LIST_HEAD(invalid_list);
a436036b
AK
2444 int r;
2445
9ad17b10 2446 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2447 r = 0;
531810ca 2448 write_lock(&kvm->mmu_lock);
b67bfe0d 2449 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2450 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2451 sp->role.word);
2452 r = 1;
f41d335a 2453 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2454 }
d98ba053 2455 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 2456 write_unlock(&kvm->mmu_lock);
1cb3f3ae 2457
a436036b 2458 return r;
cea0f0e7 2459}
96ad91ae
SC
2460
2461static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2462{
2463 gpa_t gpa;
2464 int r;
2465
2466 if (vcpu->arch.mmu->direct_map)
2467 return 0;
2468
2469 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2470
2471 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2472
2473 return r;
2474}
cea0f0e7 2475
5c520e90 2476static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2477{
2478 trace_kvm_mmu_unsync_page(sp);
2479 ++vcpu->kvm->stat.mmu_unsync;
2480 sp->unsync = 1;
2481
2482 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2483}
2484
5a9624af
PB
2485bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2486 bool can_unsync)
4731d4c7 2487{
5c520e90 2488 struct kvm_mmu_page *sp;
4731d4c7 2489
3d0c27ad
XG
2490 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2491 return true;
9cf5cf5a 2492
5c520e90 2493 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2494 if (!can_unsync)
3d0c27ad 2495 return true;
36a2e677 2496
5c520e90
XG
2497 if (sp->unsync)
2498 continue;
9cf5cf5a 2499
3bae0459 2500 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2501 kvm_unsync_page(vcpu, sp);
4731d4c7 2502 }
3d0c27ad 2503
578e1c4d
JS
2504 /*
2505 * We need to ensure that the marking of unsync pages is visible
2506 * before the SPTE is updated to allow writes because
2507 * kvm_mmu_sync_roots() checks the unsync flags without holding
2508 * the MMU lock and so can race with this. If the SPTE was updated
2509 * before the page had been marked as unsync-ed, something like the
2510 * following could happen:
2511 *
2512 * CPU 1 CPU 2
2513 * ---------------------------------------------------------------------
2514 * 1.2 Host updates SPTE
2515 * to be writable
2516 * 2.1 Guest writes a GPTE for GVA X.
2517 * (GPTE being in the guest page table shadowed
2518 * by the SP from CPU 1.)
2519 * This reads SPTE during the page table walk.
2520 * Since SPTE.W is read as 1, there is no
2521 * fault.
2522 *
2523 * 2.2 Guest issues TLB flush.
2524 * That causes a VM Exit.
2525 *
2526 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2527 * Since it is false, so it just returns.
2528 *
2529 * 2.4 Guest accesses GVA X.
2530 * Since the mapping in the SP was not updated,
2531 * so the old mapping for GVA X incorrectly
2532 * gets used.
2533 * 1.1 Host marks SP
2534 * as unsync
2535 * (sp->unsync = true)
2536 *
2537 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2538 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2539 * pairs with this write barrier.
2540 */
2541 smp_wmb();
2542
3d0c27ad 2543 return false;
4731d4c7
MT
2544}
2545
799a4190
BG
2546static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2547 unsigned int pte_access, int level,
2548 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2549 bool can_unsync, bool host_writable)
2550{
2551 u64 spte;
2552 struct kvm_mmu_page *sp;
2553 int ret;
2554
799a4190
BG
2555 sp = sptep_to_sp(sptep);
2556
2557 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2558 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2559
2560 if (spte & PT_WRITABLE_MASK)
2561 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2562
12703759
SC
2563 if (*sptep == spte)
2564 ret |= SET_SPTE_SPURIOUS;
2565 else if (mmu_spte_update(sptep, spte))
5ce4786f 2566 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
2567 return ret;
2568}
2569
0a2b64c5 2570static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
e88b8093 2571 unsigned int pte_access, bool write_fault, int level,
0a2b64c5
BG
2572 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2573 bool host_writable)
1e73f9dd
MT
2574{
2575 int was_rmapped = 0;
53a27b39 2576 int rmap_count;
5ce4786f 2577 int set_spte_ret;
c4371c2a 2578 int ret = RET_PF_FIXED;
c2a4eadf 2579 bool flush = false;
1e73f9dd 2580
f7616203
XG
2581 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2582 *sptep, write_fault, gfn);
1e73f9dd 2583
a54aa15c
SC
2584 if (unlikely(is_noslot_pfn(pfn))) {
2585 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2586 return RET_PF_EMULATE;
2587 }
2588
afd28fe1 2589 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2590 /*
2591 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2592 * the parent of the now unreachable PTE.
2593 */
3bae0459 2594 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 2595 struct kvm_mmu_page *child;
d555c333 2596 u64 pte = *sptep;
1e73f9dd 2597
e47c4aee 2598 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2599 drop_parent_pte(child, sptep);
c2a4eadf 2600 flush = true;
d555c333 2601 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2602 pgprintk("hfn old %llx new %llx\n",
d555c333 2603 spte_to_pfn(*sptep), pfn);
c3707958 2604 drop_spte(vcpu->kvm, sptep);
c2a4eadf 2605 flush = true;
6bed6b9e
JR
2606 } else
2607 was_rmapped = 1;
1e73f9dd 2608 }
852e3c19 2609
5ce4786f
JS
2610 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2611 speculative, true, host_writable);
2612 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 2613 if (write_fault)
9b8ebbdb 2614 ret = RET_PF_EMULATE;
8c8560b8 2615 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 2616 }
c3134ce2 2617
c2a4eadf 2618 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
2619 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2620 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 2621
12703759
SC
2622 /*
2623 * The fault is fully spurious if and only if the new SPTE and old SPTE
2624 * are identical, and emulation is not required.
2625 */
2626 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2627 WARN_ON_ONCE(!was_rmapped);
2628 return RET_PF_SPURIOUS;
2629 }
2630
d555c333 2631 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 2632 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 2633 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2634 ++vcpu->kvm->stat.lpages;
2635
ffb61bb3 2636 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2637 if (!was_rmapped) {
2638 rmap_count = rmap_add(vcpu, sptep, gfn);
2639 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2640 rmap_recycle(vcpu, sptep, gfn);
2641 }
1c4f1fd6 2642 }
cb9aaa30 2643
9b8ebbdb 2644 return ret;
1c4f1fd6
AK
2645}
2646
ba049e93 2647static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2648 bool no_dirty_log)
2649{
2650 struct kvm_memory_slot *slot;
957ed9ef 2651
5d163b1c 2652 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2653 if (!slot)
6c8ee57b 2654 return KVM_PFN_ERR_FAULT;
957ed9ef 2655
037d92dc 2656 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2657}
2658
2659static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2660 struct kvm_mmu_page *sp,
2661 u64 *start, u64 *end)
2662{
2663 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2664 struct kvm_memory_slot *slot;
0a2b64c5 2665 unsigned int access = sp->role.access;
957ed9ef
XG
2666 int i, ret;
2667 gfn_t gfn;
2668
2669 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2670 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2671 if (!slot)
957ed9ef
XG
2672 return -1;
2673
d9ef13c2 2674 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2675 if (ret <= 0)
2676 return -1;
2677
43fdcda9 2678 for (i = 0; i < ret; i++, gfn++, start++) {
e88b8093 2679 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
029499b4 2680 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
2681 put_page(pages[i]);
2682 }
957ed9ef
XG
2683
2684 return 0;
2685}
2686
2687static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2688 struct kvm_mmu_page *sp, u64 *sptep)
2689{
2690 u64 *spte, *start = NULL;
2691 int i;
2692
2693 WARN_ON(!sp->role.direct);
2694
2695 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2696 spte = sp->spt + i;
2697
2698 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2699 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2700 if (!start)
2701 continue;
2702 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2703 break;
2704 start = NULL;
2705 } else if (!start)
2706 start = spte;
2707 }
2708}
2709
2710static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2711{
2712 struct kvm_mmu_page *sp;
2713
57354682 2714 sp = sptep_to_sp(sptep);
ac8d57e5 2715
957ed9ef 2716 /*
ac8d57e5
PF
2717 * Without accessed bits, there's no way to distinguish between
2718 * actually accessed translations and prefetched, so disable pte
2719 * prefetch if accessed bits aren't available.
957ed9ef 2720 */
ac8d57e5 2721 if (sp_ad_disabled(sp))
957ed9ef
XG
2722 return;
2723
3bae0459 2724 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
2725 return;
2726
4a42d848
DS
2727 /*
2728 * If addresses are being invalidated, skip prefetching to avoid
2729 * accidentally prefetching those addresses.
2730 */
2731 if (unlikely(vcpu->kvm->mmu_notifier_count))
2732 return;
2733
957ed9ef
XG
2734 __direct_pte_prefetch(vcpu, sp, sptep);
2735}
2736
1b6d9d9e
SC
2737static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2738 struct kvm_memory_slot *slot)
db543216 2739{
db543216
SC
2740 unsigned long hva;
2741 pte_t *pte;
2742 int level;
2743
e851265a 2744 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 2745 return PG_LEVEL_4K;
db543216 2746
293e306e
SC
2747 /*
2748 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2749 * is not solely for performance, it's also necessary to avoid the
2750 * "writable" check in __gfn_to_hva_many(), which will always fail on
2751 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2752 * page fault steps have already verified the guest isn't writing a
2753 * read-only memslot.
2754 */
db543216
SC
2755 hva = __gfn_to_hva_memslot(slot, gfn);
2756
1b6d9d9e 2757 pte = lookup_address_in_mm(kvm->mm, hva, &level);
db543216 2758 if (unlikely(!pte))
3bae0459 2759 return PG_LEVEL_4K;
db543216
SC
2760
2761 return level;
2762}
2763
1b6d9d9e
SC
2764int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
2765 gfn_t gfn, kvm_pfn_t pfn, int max_level)
2766{
2767 struct kvm_lpage_info *linfo;
2768
2769 max_level = min(max_level, max_huge_page_level);
2770 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2771 linfo = lpage_info_slot(gfn, slot, max_level);
2772 if (!linfo->disallow_lpage)
2773 break;
2774 }
2775
2776 if (max_level == PG_LEVEL_4K)
2777 return PG_LEVEL_4K;
2778
2779 return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2780}
2781
bb18842e
BG
2782int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2783 int max_level, kvm_pfn_t *pfnp,
2784 bool huge_page_disallowed, int *req_level)
0885904d 2785{
293e306e 2786 struct kvm_memory_slot *slot;
0885904d 2787 kvm_pfn_t pfn = *pfnp;
17eff019 2788 kvm_pfn_t mask;
83f06fa7 2789 int level;
17eff019 2790
3cf06612
SC
2791 *req_level = PG_LEVEL_4K;
2792
3bae0459
SC
2793 if (unlikely(max_level == PG_LEVEL_4K))
2794 return PG_LEVEL_4K;
17eff019 2795
e851265a 2796 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 2797 return PG_LEVEL_4K;
17eff019 2798
293e306e
SC
2799 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2800 if (!slot)
3bae0459 2801 return PG_LEVEL_4K;
293e306e 2802
1b6d9d9e 2803 level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
3bae0459 2804 if (level == PG_LEVEL_4K)
83f06fa7 2805 return level;
17eff019 2806
3cf06612
SC
2807 *req_level = level = min(level, max_level);
2808
2809 /*
2810 * Enforce the iTLB multihit workaround after capturing the requested
2811 * level, which will be used to do precise, accurate accounting.
2812 */
2813 if (huge_page_disallowed)
2814 return PG_LEVEL_4K;
0885904d
SC
2815
2816 /*
17eff019
SC
2817 * mmu_notifier_retry() was successful and mmu_lock is held, so
2818 * the pmd can't be split from under us.
0885904d 2819 */
17eff019
SC
2820 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2821 VM_BUG_ON((gfn & mask) != (pfn & mask));
2822 *pfnp = pfn & ~mask;
83f06fa7
SC
2823
2824 return level;
0885904d
SC
2825}
2826
bb18842e
BG
2827void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2828 kvm_pfn_t *pfnp, int *goal_levelp)
b8e8c830 2829{
bb18842e 2830 int level = *goal_levelp;
b8e8c830 2831
7d945312 2832 if (cur_level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
2833 is_shadow_present_pte(spte) &&
2834 !is_large_pte(spte)) {
2835 /*
2836 * A small SPTE exists for this pfn, but FNAME(fetch)
2837 * and __direct_map would like to create a large PTE
2838 * instead: just force them to go down another level,
2839 * patching back for them into pfn the next 9 bits of
2840 * the address.
2841 */
7d945312
BG
2842 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2843 KVM_PAGES_PER_HPAGE(level - 1);
b8e8c830 2844 *pfnp |= gfn & page_mask;
bb18842e 2845 (*goal_levelp)--;
b8e8c830
PB
2846 }
2847}
2848
6c2fd34f 2849static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
83f06fa7 2850 int map_writable, int max_level, kvm_pfn_t pfn,
6c2fd34f 2851 bool prefault, bool is_tdp)
140754bc 2852{
6c2fd34f
SC
2853 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2854 bool write = error_code & PFERR_WRITE_MASK;
2855 bool exec = error_code & PFERR_FETCH_MASK;
2856 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
3fcf2d1b 2857 struct kvm_shadow_walk_iterator it;
140754bc 2858 struct kvm_mmu_page *sp;
3cf06612 2859 int level, req_level, ret;
3fcf2d1b
PB
2860 gfn_t gfn = gpa >> PAGE_SHIFT;
2861 gfn_t base_gfn = gfn;
6aa8b732 2862
0c7a98e3 2863 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 2864 return RET_PF_RETRY;
989c6b34 2865
3cf06612
SC
2866 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2867 huge_page_disallowed, &req_level);
4cd071d1 2868
335e192a 2869 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 2870 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
2871 /*
2872 * We cannot overwrite existing page tables with an NX
2873 * large page, as the leaf could be executable.
2874 */
dcc70651 2875 if (nx_huge_page_workaround_enabled)
7d945312
BG
2876 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2877 &pfn, &level);
b8e8c830 2878
3fcf2d1b
PB
2879 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2880 if (it.level == level)
9f652d21 2881 break;
6aa8b732 2882
3fcf2d1b
PB
2883 drop_large_spte(vcpu, it.sptep);
2884 if (!is_shadow_present_pte(*it.sptep)) {
2885 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2886 it.level - 1, true, ACC_ALL);
c9fa0b3b 2887
3fcf2d1b 2888 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1
SC
2889 if (is_tdp && huge_page_disallowed &&
2890 req_level >= it.level)
b8e8c830 2891 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
2892 }
2893 }
3fcf2d1b
PB
2894
2895 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2896 write, level, base_gfn, pfn, prefault,
2897 map_writable);
12703759
SC
2898 if (ret == RET_PF_SPURIOUS)
2899 return ret;
2900
3fcf2d1b
PB
2901 direct_pte_prefetch(vcpu, it.sptep);
2902 ++vcpu->stat.pf_fixed;
2903 return ret;
6aa8b732
AK
2904}
2905
77db5cbd 2906static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2907{
585a8b9b 2908 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
2909}
2910
ba049e93 2911static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2912{
4d8b81ab
XG
2913 /*
2914 * Do not cache the mmio info caused by writing the readonly gfn
2915 * into the spte otherwise read access on readonly gfn also can
2916 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
2917 */
2918 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 2919 return RET_PF_EMULATE;
4d8b81ab 2920
e6c1502b 2921 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2922 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 2923 return RET_PF_RETRY;
d7c55201 2924 }
edba23e5 2925
2c151b25 2926 return -EFAULT;
bf998156
HY
2927}
2928
d7c55201 2929static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
2930 kvm_pfn_t pfn, unsigned int access,
2931 int *ret_val)
d7c55201 2932{
d7c55201 2933 /* The pfn is invalid, report the error! */
81c52c56 2934 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2935 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2936 return true;
d7c55201
XG
2937 }
2938
30ab5901 2939 if (unlikely(is_noslot_pfn(pfn))) {
4af77151
SC
2940 vcpu_cache_mmio_info(vcpu, gva, gfn,
2941 access & shadow_mmio_access_mask);
30ab5901
SC
2942 /*
2943 * If MMIO caching is disabled, emulate immediately without
2944 * touching the shadow page tables as attempting to install an
2945 * MMIO SPTE will just be an expensive nop.
2946 */
2947 if (unlikely(!shadow_mmio_value)) {
2948 *ret_val = RET_PF_EMULATE;
2949 return true;
2950 }
2951 }
d7c55201 2952
798e88b3 2953 return false;
d7c55201
XG
2954}
2955
e5552fd2 2956static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2957{
1c118b82
XG
2958 /*
2959 * Do not fix the mmio spte with invalid generation number which
2960 * need to be updated by slow page fault path.
2961 */
2962 if (unlikely(error_code & PFERR_RSVD_MASK))
2963 return false;
2964
f160c7b7
JS
2965 /* See if the page fault is due to an NX violation */
2966 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2967 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2968 return false;
2969
c7ba5b48 2970 /*
f160c7b7
JS
2971 * #PF can be fast if:
2972 * 1. The shadow page table entry is not present, which could mean that
2973 * the fault is potentially caused by access tracking (if enabled).
2974 * 2. The shadow page table entry is present and the fault
2975 * is caused by write-protect, that means we just need change the W
2976 * bit of the spte which can be done out of mmu-lock.
2977 *
2978 * However, if access tracking is disabled we know that a non-present
2979 * page must be a genuine page fault where we have to create a new SPTE.
2980 * So, if access tracking is disabled, we return true only for write
2981 * accesses to a present page.
c7ba5b48 2982 */
c7ba5b48 2983
f160c7b7
JS
2984 return shadow_acc_track_mask != 0 ||
2985 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2986 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
2987}
2988
97dceba2
JS
2989/*
2990 * Returns true if the SPTE was fixed successfully. Otherwise,
2991 * someone else modified the SPTE from its original value.
2992 */
c7ba5b48 2993static bool
92a476cb 2994fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 2995 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 2996{
c7ba5b48
XG
2997 gfn_t gfn;
2998
2999 WARN_ON(!sp->role.direct);
3000
9b51a630
KH
3001 /*
3002 * Theoretically we could also set dirty bit (and flush TLB) here in
3003 * order to eliminate unnecessary PML logging. See comments in
3004 * set_spte. But fast_page_fault is very unlikely to happen with PML
3005 * enabled, so we do not do this. This might result in the same GPA
3006 * to be logged in PML buffer again when the write really happens, and
3007 * eventually to be called by mark_page_dirty twice. But it's also no
3008 * harm. This also avoids the TLB flush needed after setting dirty bit
3009 * so non-PML cases won't be impacted.
3010 *
3011 * Compare with set_spte where instead shadow_dirty_mask is set.
3012 */
f160c7b7 3013 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3014 return false;
3015
d3e328f2 3016 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3017 /*
3018 * The gfn of direct spte is stable since it is
3019 * calculated by sp->gfn.
3020 */
3021 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3022 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3023 }
c7ba5b48
XG
3024
3025 return true;
3026}
3027
d3e328f2
JS
3028static bool is_access_allowed(u32 fault_err_code, u64 spte)
3029{
3030 if (fault_err_code & PFERR_FETCH_MASK)
3031 return is_executable_pte(spte);
3032
3033 if (fault_err_code & PFERR_WRITE_MASK)
3034 return is_writable_pte(spte);
3035
3036 /* Fault was on Read access */
3037 return spte & PT_PRESENT_MASK;
3038}
3039
c7ba5b48 3040/*
c4371c2a 3041 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
c7ba5b48 3042 */
c4371c2a
SC
3043static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3044 u32 error_code)
c7ba5b48
XG
3045{
3046 struct kvm_shadow_walk_iterator iterator;
92a476cb 3047 struct kvm_mmu_page *sp;
c4371c2a 3048 int ret = RET_PF_INVALID;
c7ba5b48 3049 u64 spte = 0ull;
97dceba2 3050 uint retry_count = 0;
c7ba5b48 3051
e5552fd2 3052 if (!page_fault_can_be_fast(error_code))
c4371c2a 3053 return ret;
c7ba5b48
XG
3054
3055 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3056
97dceba2 3057 do {
d3e328f2 3058 u64 new_spte;
c7ba5b48 3059
736c291c 3060 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3061 if (!is_shadow_present_pte(spte))
d162f30a
JS
3062 break;
3063
ec89e643
SC
3064 if (!is_shadow_present_pte(spte))
3065 break;
3066
57354682 3067 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3068 if (!is_last_spte(spte, sp->role.level))
3069 break;
c7ba5b48 3070
97dceba2 3071 /*
f160c7b7
JS
3072 * Check whether the memory access that caused the fault would
3073 * still cause it if it were to be performed right now. If not,
3074 * then this is a spurious fault caused by TLB lazily flushed,
3075 * or some other CPU has already fixed the PTE after the
3076 * current CPU took the fault.
97dceba2
JS
3077 *
3078 * Need not check the access of upper level table entries since
3079 * they are always ACC_ALL.
3080 */
d3e328f2 3081 if (is_access_allowed(error_code, spte)) {
c4371c2a 3082 ret = RET_PF_SPURIOUS;
d3e328f2
JS
3083 break;
3084 }
f160c7b7 3085
d3e328f2
JS
3086 new_spte = spte;
3087
3088 if (is_access_track_spte(spte))
3089 new_spte = restore_acc_track_spte(new_spte);
3090
3091 /*
3092 * Currently, to simplify the code, write-protection can
3093 * be removed in the fast path only if the SPTE was
3094 * write-protected for dirty-logging or access tracking.
3095 */
3096 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3097 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3098 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3099
3100 /*
d3e328f2
JS
3101 * Do not fix write-permission on the large spte. Since
3102 * we only dirty the first page into the dirty-bitmap in
3103 * fast_pf_fix_direct_spte(), other pages are missed
3104 * if its slot has dirty logging enabled.
3105 *
3106 * Instead, we let the slow page fault path create a
3107 * normal spte to fix the access.
3108 *
3109 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3110 */
3bae0459 3111 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3112 break;
97dceba2 3113 }
c7ba5b48 3114
f160c7b7 3115 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3116 if (new_spte == spte ||
3117 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3118 break;
3119
3120 /*
3121 * Currently, fast page fault only works for direct mapping
3122 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3123 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2 3124 */
c4371c2a
SC
3125 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3126 new_spte)) {
3127 ret = RET_PF_FIXED;
97dceba2 3128 break;
c4371c2a 3129 }
97dceba2
JS
3130
3131 if (++retry_count > 4) {
3132 printk_once(KERN_WARNING
3133 "kvm: Fast #PF retrying more than 4 times.\n");
3134 break;
3135 }
3136
97dceba2 3137 } while (true);
c126d94f 3138
736c291c 3139 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
c4371c2a 3140 spte, ret);
c7ba5b48
XG
3141 walk_shadow_page_lockless_end(vcpu);
3142
c4371c2a 3143 return ret;
c7ba5b48
XG
3144}
3145
74b566e6
JS
3146static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3147 struct list_head *invalid_list)
17ac10ad 3148{
4db35314 3149 struct kvm_mmu_page *sp;
17ac10ad 3150
74b566e6 3151 if (!VALID_PAGE(*root_hpa))
7b53aa56 3152 return;
35af577a 3153
e47c4aee 3154 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
02c00b3a
BG
3155
3156 if (kvm_mmu_put_root(kvm, sp)) {
897218ff 3157 if (is_tdp_mmu_page(sp))
02c00b3a
BG
3158 kvm_tdp_mmu_free_root(kvm, sp);
3159 else if (sp->role.invalid)
3160 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3161 }
17ac10ad 3162
74b566e6
JS
3163 *root_hpa = INVALID_PAGE;
3164}
3165
08fb59d8 3166/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3167void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3168 ulong roots_to_free)
74b566e6 3169{
4d710de9 3170 struct kvm *kvm = vcpu->kvm;
74b566e6
JS
3171 int i;
3172 LIST_HEAD(invalid_list);
08fb59d8 3173 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3174
b94742c9 3175 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3176
08fb59d8 3177 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3178 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3179 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3180 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3181 VALID_PAGE(mmu->prev_roots[i].hpa))
3182 break;
3183
3184 if (i == KVM_MMU_NUM_PREV_ROOTS)
3185 return;
3186 }
35af577a 3187
531810ca 3188 write_lock(&kvm->mmu_lock);
17ac10ad 3189
b94742c9
JS
3190 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3191 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
4d710de9 3192 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
b94742c9 3193 &invalid_list);
7c390d35 3194
08fb59d8
JS
3195 if (free_active_root) {
3196 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3197 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
4d710de9 3198 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
04d45551 3199 } else if (mmu->pae_root) {
c834e5e4
SC
3200 for (i = 0; i < 4; ++i) {
3201 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3202 continue;
3203
3204 mmu_free_root_page(kvm, &mmu->pae_root[i],
3205 &invalid_list);
3206 mmu->pae_root[i] = INVALID_PAE_ROOT;
3207 }
08fb59d8 3208 }
04d45551 3209 mmu->root_hpa = INVALID_PAGE;
be01e8e2 3210 mmu->root_pgd = 0;
17ac10ad 3211 }
74b566e6 3212
4d710de9 3213 kvm_mmu_commit_zap_page(kvm, &invalid_list);
531810ca 3214 write_unlock(&kvm->mmu_lock);
17ac10ad 3215}
74b566e6 3216EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3217
8986ecc0
MT
3218static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3219{
3220 int ret = 0;
3221
995decb6 3222 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3223 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3224 ret = 1;
3225 }
3226
3227 return ret;
3228}
3229
8123f265
SC
3230static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3231 u8 level, bool direct)
651dd37a
JR
3232{
3233 struct kvm_mmu_page *sp;
8123f265 3234
8123f265
SC
3235 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3236 ++sp->root_count;
3237
8123f265
SC
3238 return __pa(sp->spt);
3239}
3240
3241static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3242{
b37233c9
SC
3243 struct kvm_mmu *mmu = vcpu->arch.mmu;
3244 u8 shadow_root_level = mmu->shadow_root_level;
8123f265 3245 hpa_t root;
7ebaf15e 3246 unsigned i;
4a38162e
PB
3247 int r;
3248
3249 write_lock(&vcpu->kvm->mmu_lock);
3250 r = make_mmu_pages_available(vcpu);
3251 if (r < 0)
3252 goto out_unlock;
651dd37a 3253
897218ff 3254 if (is_tdp_mmu_enabled(vcpu->kvm)) {
02c00b3a 3255 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
b37233c9 3256 mmu->root_hpa = root;
02c00b3a 3257 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
6e6ec584 3258 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
b37233c9 3259 mmu->root_hpa = root;
8123f265 3260 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
4a38162e
PB
3261 if (WARN_ON_ONCE(!mmu->pae_root)) {
3262 r = -EIO;
3263 goto out_unlock;
3264 }
73ad1606 3265
651dd37a 3266 for (i = 0; i < 4; ++i) {
c834e5e4 3267 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
651dd37a 3268
8123f265
SC
3269 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3270 i << 30, PT32_ROOT_LEVEL, true);
17e368d9
SC
3271 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3272 shadow_me_mask;
651dd37a 3273 }
b37233c9 3274 mmu->root_hpa = __pa(mmu->pae_root);
73ad1606
SC
3275 } else {
3276 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
4a38162e
PB
3277 r = -EIO;
3278 goto out_unlock;
73ad1606 3279 }
3651c7fc 3280
be01e8e2 3281 /* root_pgd is ignored for direct MMUs. */
b37233c9 3282 mmu->root_pgd = 0;
4a38162e
PB
3283out_unlock:
3284 write_unlock(&vcpu->kvm->mmu_lock);
3285 return r;
651dd37a
JR
3286}
3287
3288static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3289{
b37233c9 3290 struct kvm_mmu *mmu = vcpu->arch.mmu;
6e0918ae 3291 u64 pdptrs[4], pm_mask;
be01e8e2 3292 gfn_t root_gfn, root_pgd;
8123f265 3293 hpa_t root;
4a38162e
PB
3294 unsigned i;
3295 int r;
3bb65a22 3296
b37233c9 3297 root_pgd = mmu->get_guest_pgd(vcpu);
be01e8e2 3298 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3299
651dd37a
JR
3300 if (mmu_check_root(vcpu, root_gfn))
3301 return 1;
3302
4a38162e
PB
3303 /*
3304 * On SVM, reading PDPTRs might access guest memory, which might fault
3305 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3306 */
6e0918ae
SC
3307 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3308 for (i = 0; i < 4; ++i) {
3309 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3310 if (!(pdptrs[i] & PT_PRESENT_MASK))
3311 continue;
3312
3313 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3314 return 1;
3315 }
3316 }
3317
4a38162e
PB
3318 write_lock(&vcpu->kvm->mmu_lock);
3319 r = make_mmu_pages_available(vcpu);
3320 if (r < 0)
3321 goto out_unlock;
3322
651dd37a
JR
3323 /*
3324 * Do we shadow a long mode page table? If so we need to
3325 * write-protect the guests page table root.
3326 */
b37233c9 3327 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3328 root = mmu_alloc_root(vcpu, root_gfn, 0,
b37233c9 3329 mmu->shadow_root_level, false);
b37233c9 3330 mmu->root_hpa = root;
be01e8e2 3331 goto set_root_pgd;
17ac10ad 3332 }
f87f9288 3333
4a38162e
PB
3334 if (WARN_ON_ONCE(!mmu->pae_root)) {
3335 r = -EIO;
3336 goto out_unlock;
3337 }
73ad1606 3338
651dd37a
JR
3339 /*
3340 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3341 * or a PAE 3-level page table. In either case we need to be aware that
3342 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3343 */
17e368d9 3344 pm_mask = PT_PRESENT_MASK | shadow_me_mask;
748e52b9 3345 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
81407ca5
JR
3346 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3347
4a38162e
PB
3348 if (WARN_ON_ONCE(!mmu->lm_root)) {
3349 r = -EIO;
3350 goto out_unlock;
3351 }
73ad1606 3352
748e52b9 3353 mmu->lm_root[0] = __pa(mmu->pae_root) | pm_mask;
04d45551
SC
3354 }
3355
17ac10ad 3356 for (i = 0; i < 4; ++i) {
c834e5e4 3357 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
6e6ec584 3358
b37233c9 3359 if (mmu->root_level == PT32E_ROOT_LEVEL) {
6e0918ae 3360 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
c834e5e4 3361 mmu->pae_root[i] = INVALID_PAE_ROOT;
417726a3
AK
3362 continue;
3363 }
6e0918ae 3364 root_gfn = pdptrs[i] >> PAGE_SHIFT;
5a7388c2 3365 }
8facbbff 3366
8123f265
SC
3367 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3368 PT32_ROOT_LEVEL, false);
b37233c9 3369 mmu->pae_root[i] = root | pm_mask;
17ac10ad 3370 }
81407ca5 3371
ba0a194f 3372 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
b37233c9 3373 mmu->root_hpa = __pa(mmu->lm_root);
ba0a194f
SC
3374 else
3375 mmu->root_hpa = __pa(mmu->pae_root);
81407ca5 3376
be01e8e2 3377set_root_pgd:
b37233c9 3378 mmu->root_pgd = root_pgd;
4a38162e
PB
3379out_unlock:
3380 write_unlock(&vcpu->kvm->mmu_lock);
ad7dc69a 3381
8986ecc0 3382 return 0;
17ac10ad
AK
3383}
3384
748e52b9
SC
3385static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3386{
3387 struct kvm_mmu *mmu = vcpu->arch.mmu;
3388 u64 *lm_root, *pae_root;
3389
3390 /*
3391 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3392 * tables are allocated and initialized at root creation as there is no
3393 * equivalent level in the guest's NPT to shadow. Allocate the tables
3394 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3395 */
3396 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3397 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3398 return 0;
3399
3400 /*
3401 * This mess only works with 4-level paging and needs to be updated to
3402 * work with 5-level paging.
3403 */
3404 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3405 return -EIO;
3406
3407 if (mmu->pae_root && mmu->lm_root)
3408 return 0;
3409
3410 /*
3411 * The special roots should always be allocated in concert. Yell and
3412 * bail if KVM ends up in a state where only one of the roots is valid.
3413 */
3414 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->lm_root))
3415 return -EIO;
3416
4a98623d
SC
3417 /*
3418 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3419 * doesn't need to be decrypted.
3420 */
748e52b9
SC
3421 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3422 if (!pae_root)
3423 return -ENOMEM;
3424
3425 lm_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3426 if (!lm_root) {
3427 free_page((unsigned long)pae_root);
3428 return -ENOMEM;
3429 }
3430
3431 mmu->pae_root = pae_root;
3432 mmu->lm_root = lm_root;
3433
3434 return 0;
3435}
3436
578e1c4d 3437void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3438{
3439 int i;
3440 struct kvm_mmu_page *sp;
3441
44dd3ffa 3442 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3443 return;
3444
44dd3ffa 3445 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3446 return;
6903074c 3447
56f17dd3 3448 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3449
44dd3ffa
VK
3450 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3451 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3452 sp = to_shadow_page(root);
578e1c4d
JS
3453
3454 /*
3455 * Even if another CPU was marking the SP as unsync-ed
3456 * simultaneously, any guest page table changes are not
3457 * guaranteed to be visible anyway until this VCPU issues a TLB
3458 * flush strictly after those changes are made. We only need to
3459 * ensure that the other CPU sets these flags before any actual
3460 * changes to the page tables are made. The comments in
3461 * mmu_need_write_protect() describe what could go wrong if this
3462 * requirement isn't satisfied.
3463 */
3464 if (!smp_load_acquire(&sp->unsync) &&
3465 !smp_load_acquire(&sp->unsync_children))
3466 return;
3467
531810ca 3468 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3469 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3470
0ba73cda 3471 mmu_sync_children(vcpu, sp);
578e1c4d 3472
0375f7fa 3473 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3474 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3475 return;
3476 }
578e1c4d 3477
531810ca 3478 write_lock(&vcpu->kvm->mmu_lock);
578e1c4d
JS
3479 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3480
0ba73cda 3481 for (i = 0; i < 4; ++i) {
44dd3ffa 3482 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3483
c834e5e4 3484 if (IS_VALID_PAE_ROOT(root)) {
0ba73cda 3485 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3486 sp = to_shadow_page(root);
0ba73cda
MT
3487 mmu_sync_children(vcpu, sp);
3488 }
3489 }
0ba73cda 3490
578e1c4d 3491 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
531810ca 3492 write_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3493}
3494
736c291c 3495static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3496 u32 access, struct x86_exception *exception)
6aa8b732 3497{
ab9ae313
AK
3498 if (exception)
3499 exception->error_code = 0;
6aa8b732
AK
3500 return vaddr;
3501}
3502
736c291c 3503static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3504 u32 access,
3505 struct x86_exception *exception)
6539e738 3506{
ab9ae313
AK
3507 if (exception)
3508 exception->error_code = 0;
54987b7a 3509 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3510}
3511
d625b155
XG
3512static bool
3513__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3514{
b5c3c1b3 3515 int bit7 = (pte >> 7) & 1;
d625b155 3516
b5c3c1b3 3517 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3518}
3519
b5c3c1b3 3520static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3521{
b5c3c1b3 3522 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3523}
3524
ded58749 3525static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3526{
9034e6e8
PB
3527 /*
3528 * A nested guest cannot use the MMIO cache if it is using nested
3529 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3530 */
3531 if (mmu_is_nested(vcpu))
3532 return false;
3533
ce88decf
XG
3534 if (direct)
3535 return vcpu_match_mmio_gpa(vcpu, addr);
3536
3537 return vcpu_match_mmio_gva(vcpu, addr);
3538}
3539
95fb5b02
BG
3540/*
3541 * Return the level of the lowest level SPTE added to sptes.
3542 * That SPTE may be non-present.
3543 */
39b4d43e 3544static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
ce88decf
XG
3545{
3546 struct kvm_shadow_walk_iterator iterator;
2aa07893 3547 int leaf = -1;
95fb5b02 3548 u64 spte;
ce88decf
XG
3549
3550 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3551
39b4d43e
SC
3552 for (shadow_walk_init(&iterator, vcpu, addr),
3553 *root_level = iterator.level;
47ab8751
XG
3554 shadow_walk_okay(&iterator);
3555 __shadow_walk_next(&iterator, spte)) {
95fb5b02 3556 leaf = iterator.level;
47ab8751
XG
3557 spte = mmu_spte_get_lockless(iterator.sptep);
3558
dde81f94 3559 sptes[leaf] = spte;
47ab8751 3560
ce88decf
XG
3561 if (!is_shadow_present_pte(spte))
3562 break;
95fb5b02
BG
3563 }
3564
3565 walk_shadow_page_lockless_end(vcpu);
3566
3567 return leaf;
3568}
3569
9aa41879 3570/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
95fb5b02
BG
3571static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3572{
dde81f94 3573 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
95fb5b02 3574 struct rsvd_bits_validate *rsvd_check;
39b4d43e 3575 int root, leaf, level;
95fb5b02
BG
3576 bool reserved = false;
3577
3578 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3579 *sptep = 0ull;
3580 return reserved;
3581 }
3582
3583 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
39b4d43e 3584 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
95fb5b02 3585 else
39b4d43e 3586 leaf = get_walk(vcpu, addr, sptes, &root);
95fb5b02 3587
2aa07893
SC
3588 if (unlikely(leaf < 0)) {
3589 *sptep = 0ull;
3590 return reserved;
3591 }
3592
9aa41879
SC
3593 *sptep = sptes[leaf];
3594
3595 /*
3596 * Skip reserved bits checks on the terminal leaf if it's not a valid
3597 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3598 * design, always have reserved bits set. The purpose of the checks is
3599 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3600 */
3601 if (!is_shadow_present_pte(sptes[leaf]))
3602 leaf++;
95fb5b02
BG
3603
3604 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3605
9aa41879 3606 for (level = root; level >= leaf; level--)
b5c3c1b3
SC
3607 /*
3608 * Use a bitwise-OR instead of a logical-OR to aggregate the
3609 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3610 * adding a Jcc in the loop.
3611 */
dde81f94
SC
3612 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) |
3613 __is_rsvd_bits_set(rsvd_check, sptes[level], level);
47ab8751 3614
47ab8751 3615 if (reserved) {
bb4cdf3a 3616 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
47ab8751 3617 __func__, addr);
95fb5b02 3618 for (level = root; level >= leaf; level--)
bb4cdf3a
SC
3619 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3620 sptes[level], level,
3621 rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
47ab8751 3622 }
ddce6208 3623
47ab8751 3624 return reserved;
ce88decf
XG
3625}
3626
e08d26f0 3627static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3628{
3629 u64 spte;
47ab8751 3630 bool reserved;
ce88decf 3631
ded58749 3632 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3633 return RET_PF_EMULATE;
ce88decf 3634
95fb5b02 3635 reserved = get_mmio_spte(vcpu, addr, &spte);
450869d6 3636 if (WARN_ON(reserved))
9b8ebbdb 3637 return -EINVAL;
ce88decf
XG
3638
3639 if (is_mmio_spte(spte)) {
3640 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 3641 unsigned int access = get_mmio_spte_access(spte);
ce88decf 3642
54bf36aa 3643 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3644 return RET_PF_INVALID;
f8f55942 3645
ce88decf
XG
3646 if (direct)
3647 addr = 0;
4f022648
XG
3648
3649 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3650 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3651 return RET_PF_EMULATE;
ce88decf
XG
3652 }
3653
ce88decf
XG
3654 /*
3655 * If the page table is zapped by other cpus, let CPU fault again on
3656 * the address.
3657 */
9b8ebbdb 3658 return RET_PF_RETRY;
ce88decf 3659}
ce88decf 3660
3d0c27ad
XG
3661static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3662 u32 error_code, gfn_t gfn)
3663{
3664 if (unlikely(error_code & PFERR_RSVD_MASK))
3665 return false;
3666
3667 if (!(error_code & PFERR_PRESENT_MASK) ||
3668 !(error_code & PFERR_WRITE_MASK))
3669 return false;
3670
3671 /*
3672 * guest is writing the page which is write tracked which can
3673 * not be fixed by page fault handler.
3674 */
3675 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3676 return true;
3677
3678 return false;
3679}
3680
e5691a81
XG
3681static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3682{
3683 struct kvm_shadow_walk_iterator iterator;
3684 u64 spte;
3685
e5691a81
XG
3686 walk_shadow_page_lockless_begin(vcpu);
3687 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3688 clear_sp_write_flooding_count(iterator.sptep);
3689 if (!is_shadow_present_pte(spte))
3690 break;
3691 }
3692 walk_shadow_page_lockless_end(vcpu);
3693}
3694
e8c22266
VK
3695static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3696 gfn_t gfn)
af585b92
GN
3697{
3698 struct kvm_arch_async_pf arch;
fb67e14f 3699
7c90705b 3700 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3701 arch.gfn = gfn;
44dd3ffa 3702 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 3703 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 3704
9f1a8526
SC
3705 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3706 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3707}
3708
78b2c54a 3709static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4a42d848
DS
3710 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3711 bool write, bool *writable)
af585b92 3712{
c36b7150 3713 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
3714 bool async;
3715
e0c37868
SC
3716 /*
3717 * Retry the page fault if the gfn hit a memslot that is being deleted
3718 * or moved. This ensures any existing SPTEs for the old memslot will
3719 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3720 */
3721 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3722 return true;
3723
c36b7150
PB
3724 /* Don't expose private memslots to L2. */
3725 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 3726 *pfn = KVM_PFN_NOSLOT;
c583eed6 3727 *writable = false;
3a2936de
JM
3728 return false;
3729 }
3730
3520469d 3731 async = false;
4a42d848
DS
3732 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3733 write, writable, hva);
af585b92
GN
3734 if (!async)
3735 return false; /* *pfn has correct page already */
3736
9bc1f09f 3737 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 3738 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 3739 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 3740 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
3741 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3742 return true;
9f1a8526 3743 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
3744 return true;
3745 }
3746
4a42d848
DS
3747 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3748 write, writable, hva);
af585b92
GN
3749 return false;
3750}
3751
0f90e1c1
SC
3752static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3753 bool prefault, int max_level, bool is_tdp)
6aa8b732 3754{
367fd790 3755 bool write = error_code & PFERR_WRITE_MASK;
0f90e1c1 3756 bool map_writable;
6aa8b732 3757
0f90e1c1
SC
3758 gfn_t gfn = gpa >> PAGE_SHIFT;
3759 unsigned long mmu_seq;
3760 kvm_pfn_t pfn;
4a42d848 3761 hva_t hva;
83f06fa7 3762 int r;
ce88decf 3763
3d0c27ad 3764 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3765 return RET_PF_EMULATE;
ce88decf 3766
bb18842e
BG
3767 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3768 r = fast_page_fault(vcpu, gpa, error_code);
3769 if (r != RET_PF_INVALID)
3770 return r;
3771 }
83291445 3772
378f5cd6 3773 r = mmu_topup_memory_caches(vcpu, false);
e2dec939
AK
3774 if (r)
3775 return r;
714b93da 3776
367fd790
SC
3777 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3778 smp_rmb();
3779
4a42d848
DS
3780 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3781 write, &map_writable))
367fd790
SC
3782 return RET_PF_RETRY;
3783
0f90e1c1 3784 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 3785 return r;
6aa8b732 3786
367fd790 3787 r = RET_PF_RETRY;
a2855afc
BG
3788
3789 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3790 read_lock(&vcpu->kvm->mmu_lock);
3791 else
3792 write_lock(&vcpu->kvm->mmu_lock);
3793
4a42d848 3794 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
367fd790 3795 goto out_unlock;
7bd7ded6
SC
3796 r = make_mmu_pages_available(vcpu);
3797 if (r)
367fd790 3798 goto out_unlock;
bb18842e
BG
3799
3800 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3801 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3802 pfn, prefault);
3803 else
3804 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3805 prefault, is_tdp);
0f90e1c1 3806
367fd790 3807out_unlock:
a2855afc
BG
3808 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3809 read_unlock(&vcpu->kvm->mmu_lock);
3810 else
3811 write_unlock(&vcpu->kvm->mmu_lock);
367fd790
SC
3812 kvm_release_pfn_clean(pfn);
3813 return r;
6aa8b732
AK
3814}
3815
0f90e1c1
SC
3816static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3817 u32 error_code, bool prefault)
3818{
3819 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3820
3821 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3822 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 3823 PG_LEVEL_2M, false);
0f90e1c1
SC
3824}
3825
1261bfa3 3826int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 3827 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
3828{
3829 int r = 1;
9ce372b3 3830 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 3831
736c291c
SC
3832#ifndef CONFIG_X86_64
3833 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3834 if (WARN_ON_ONCE(fault_address >> 32))
3835 return -EFAULT;
3836#endif
3837
c595ceee 3838 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 3839 if (!flags) {
1261bfa3
WL
3840 trace_kvm_page_fault(fault_address, error_code);
3841
d0006530 3842 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
3843 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3844 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3845 insn_len);
9ce372b3 3846 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 3847 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 3848 local_irq_disable();
6bca69ad 3849 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 3850 local_irq_enable();
9ce372b3
VK
3851 } else {
3852 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 3853 }
9ce372b3 3854
1261bfa3
WL
3855 return r;
3856}
3857EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3858
7a02674d
SC
3859int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3860 bool prefault)
fb72d167 3861{
cb9b88c6 3862 int max_level;
fb72d167 3863
e662ec3e 3864 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 3865 max_level > PG_LEVEL_4K;
cb9b88c6
SC
3866 max_level--) {
3867 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 3868 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 3869
cb9b88c6
SC
3870 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3871 break;
fd136902 3872 }
852e3c19 3873
0f90e1c1
SC
3874 return direct_page_fault(vcpu, gpa, error_code, prefault,
3875 max_level, true);
fb72d167
JR
3876}
3877
8a3c1a33
PB
3878static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3879 struct kvm_mmu *context)
6aa8b732 3880{
6aa8b732 3881 context->page_fault = nonpaging_page_fault;
6aa8b732 3882 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3883 context->sync_page = nonpaging_sync_page;
5efac074 3884 context->invlpg = NULL;
cea0f0e7 3885 context->root_level = 0;
6aa8b732 3886 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 3887 context->direct_map = true;
2d48a985 3888 context->nx = false;
6aa8b732
AK
3889}
3890
be01e8e2 3891static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
3892 union kvm_mmu_page_role role)
3893{
be01e8e2 3894 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
3895 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3896 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
3897}
3898
b94742c9 3899/*
be01e8e2 3900 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
3901 * The current root is also inserted into the cache.
3902 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3903 * returned.
3904 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3905 * false is returned. This root should now be freed by the caller.
3906 */
be01e8e2 3907static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
3908 union kvm_mmu_page_role new_role)
3909{
3910 uint i;
3911 struct kvm_mmu_root_info root;
44dd3ffa 3912 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 3913
be01e8e2 3914 root.pgd = mmu->root_pgd;
b94742c9
JS
3915 root.hpa = mmu->root_hpa;
3916
be01e8e2 3917 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
3918 return true;
3919
b94742c9
JS
3920 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3921 swap(root, mmu->prev_roots[i]);
3922
be01e8e2 3923 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
3924 break;
3925 }
3926
3927 mmu->root_hpa = root.hpa;
be01e8e2 3928 mmu->root_pgd = root.pgd;
b94742c9
JS
3929
3930 return i < KVM_MMU_NUM_PREV_ROOTS;
3931}
3932
be01e8e2 3933static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 3934 union kvm_mmu_page_role new_role)
6aa8b732 3935{
44dd3ffa 3936 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
3937
3938 /*
3939 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3940 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3941 * later if necessary.
3942 */
3943 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 3944 mmu->root_level >= PT64_ROOT_4LEVEL)
fe9304d3 3945 return cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
3946
3947 return false;
6aa8b732
AK
3948}
3949
be01e8e2 3950static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 3951 union kvm_mmu_page_role new_role,
4a632ac6 3952 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 3953{
be01e8e2 3954 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
3955 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3956 return;
3957 }
3958
3959 /*
3960 * It's possible that the cached previous root page is obsolete because
3961 * of a change in the MMU generation number. However, changing the
3962 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3963 * free the root set here and allocate a new one.
3964 */
3965 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3966
71fe7013 3967 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 3968 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 3969 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 3970 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
3971
3972 /*
3973 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3974 * switching to a new CR3, that GVA->GPA mapping may no longer be
3975 * valid. So clear any cached MMIO info even when we don't need to sync
3976 * the shadow page tables.
3977 */
3978 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3979
daa5b6c1
BG
3980 /*
3981 * If this is a direct root page, it doesn't have a write flooding
3982 * count. Otherwise, clear the write flooding count.
3983 */
3984 if (!new_role.direct)
3985 __clear_sp_write_flooding_count(
3986 to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
3987}
3988
be01e8e2 3989void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 3990 bool skip_mmu_sync)
0aab33e4 3991{
be01e8e2 3992 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 3993 skip_tlb_flush, skip_mmu_sync);
0aab33e4 3994}
be01e8e2 3995EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 3996
5777ed34
JR
3997static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3998{
9f8fe504 3999 return kvm_read_cr3(vcpu);
5777ed34
JR
4000}
4001
54bf36aa 4002static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 4003 unsigned int access, int *nr_present)
ce88decf
XG
4004{
4005 if (unlikely(is_mmio_spte(*sptep))) {
4006 if (gfn != get_mmio_spte_gfn(*sptep)) {
4007 mmu_spte_clear_no_track(sptep);
4008 return true;
4009 }
4010
4011 (*nr_present)++;
54bf36aa 4012 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4013 return true;
4014 }
4015
4016 return false;
4017}
4018
6bb69c9b
PB
4019static inline bool is_last_gpte(struct kvm_mmu *mmu,
4020 unsigned level, unsigned gpte)
6fd01b71 4021{
6bb69c9b
PB
4022 /*
4023 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4024 * If it is clear, there are no large pages at this level, so clear
4025 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4026 */
4027 gpte &= level - mmu->last_nonleaf_level;
4028
829ee279 4029 /*
3bae0459
SC
4030 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
4031 * iff level <= PG_LEVEL_4K, which for our purpose means
4032 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 4033 */
3bae0459 4034 gpte |= level - PG_LEVEL_4K - 1;
829ee279 4035
6bb69c9b 4036 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4037}
4038
37406aaa
NHE
4039#define PTTYPE_EPT 18 /* arbitrary */
4040#define PTTYPE PTTYPE_EPT
4041#include "paging_tmpl.h"
4042#undef PTTYPE
4043
6aa8b732
AK
4044#define PTTYPE 64
4045#include "paging_tmpl.h"
4046#undef PTTYPE
4047
4048#define PTTYPE 32
4049#include "paging_tmpl.h"
4050#undef PTTYPE
4051
6dc98b86
XG
4052static void
4053__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4054 struct rsvd_bits_validate *rsvd_check,
5b7f575c 4055 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
6fec2144 4056 bool pse, bool amd)
82725b20 4057{
5f7dde7b 4058 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4059 u64 nonleaf_bit8_rsvd = 0;
5b7f575c 4060 u64 high_bits_rsvd;
82725b20 4061
a0a64f50 4062 rsvd_check->bad_mt_xwr = 0;
25d92081 4063
6dc98b86 4064 if (!gbpages)
5f7dde7b 4065 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5 4066
5b7f575c
SC
4067 if (level == PT32E_ROOT_LEVEL)
4068 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4069 else
4070 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4071
4072 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4073 if (!nx)
4074 high_bits_rsvd |= rsvd_bits(63, 63);
4075
a0c0feb5
PB
4076 /*
4077 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4078 * leaf entries) on AMD CPUs only.
4079 */
6fec2144 4080 if (amd)
a0c0feb5
PB
4081 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4082
6dc98b86 4083 switch (level) {
82725b20
DE
4084 case PT32_ROOT_LEVEL:
4085 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4086 rsvd_check->rsvd_bits_mask[0][1] = 0;
4087 rsvd_check->rsvd_bits_mask[0][0] = 0;
4088 rsvd_check->rsvd_bits_mask[1][0] =
4089 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4090
6dc98b86 4091 if (!pse) {
a0a64f50 4092 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4093 break;
4094 }
4095
82725b20
DE
4096 if (is_cpuid_PSE36())
4097 /* 36bits PSE 4MB page */
a0a64f50 4098 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4099 else
4100 /* 32 bits PSE 4MB page */
a0a64f50 4101 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4102 break;
4103 case PT32E_ROOT_LEVEL:
5b7f575c
SC
4104 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4105 high_bits_rsvd |
4106 rsvd_bits(5, 8) |
4107 rsvd_bits(1, 2); /* PDPTE */
4108 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4109 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4110 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4111 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4112 rsvd_check->rsvd_bits_mask[1][0] =
4113 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4114 break;
855feb67 4115 case PT64_ROOT_5LEVEL:
5b7f575c
SC
4116 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4117 nonleaf_bit8_rsvd |
4118 rsvd_bits(7, 7);
855feb67
YZ
4119 rsvd_check->rsvd_bits_mask[1][4] =
4120 rsvd_check->rsvd_bits_mask[0][4];
df561f66 4121 fallthrough;
2a7266a8 4122 case PT64_ROOT_4LEVEL:
5b7f575c
SC
4123 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4124 nonleaf_bit8_rsvd |
4125 rsvd_bits(7, 7);
4126 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4127 gbpages_bit_rsvd;
4128 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4129 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
a0a64f50
XG
4130 rsvd_check->rsvd_bits_mask[1][3] =
4131 rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4132 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4133 gbpages_bit_rsvd |
4134 rsvd_bits(13, 29);
4135 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4136 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4137 rsvd_check->rsvd_bits_mask[1][0] =
4138 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4139 break;
4140 }
4141}
4142
6dc98b86
XG
4143static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4144 struct kvm_mmu *context)
4145{
4146 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
5b7f575c
SC
4147 vcpu->arch.reserved_gpa_bits,
4148 context->root_level, context->nx,
d6321d49 4149 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4150 is_pse(vcpu),
4151 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4152}
4153
81b8eebb
XG
4154static void
4155__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
5b7f575c 4156 u64 pa_bits_rsvd, bool execonly)
25d92081 4157{
5b7f575c 4158 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
951f9fd7 4159 u64 bad_mt_xwr;
25d92081 4160
5b7f575c
SC
4161 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4162 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4163 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4164 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4165 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
25d92081
YZ
4166
4167 /* large page */
855feb67 4168 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50 4169 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
5b7f575c
SC
4170 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4171 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
a0a64f50 4172 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4173
951f9fd7
PB
4174 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4175 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4176 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4177 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4178 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4179 if (!execonly) {
4180 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4181 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4182 }
951f9fd7 4183 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4184}
4185
81b8eebb
XG
4186static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4187 struct kvm_mmu *context, bool execonly)
4188{
4189 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
5b7f575c 4190 vcpu->arch.reserved_gpa_bits, execonly);
81b8eebb
XG
4191}
4192
6f8e65a6
SC
4193static inline u64 reserved_hpa_bits(void)
4194{
4195 return rsvd_bits(shadow_phys_bits, 63);
4196}
4197
c258b62b
XG
4198/*
4199 * the page table on host is the shadow page table for the page
4200 * table in guest or amd nested guest, its mmu features completely
4201 * follow the features in guest.
4202 */
4203void
4204reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4205{
36d9594d
VK
4206 bool uses_nx = context->nx ||
4207 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4208 struct rsvd_bits_validate *shadow_zero_check;
4209 int i;
5f0b8199 4210
6fec2144
PB
4211 /*
4212 * Passing "true" to the last argument is okay; it adds a check
4213 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4214 */
ea2800dd
BS
4215 shadow_zero_check = &context->shadow_zero_check;
4216 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4217 reserved_hpa_bits(),
5f0b8199 4218 context->shadow_root_level, uses_nx,
d6321d49
RK
4219 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4220 is_pse(vcpu), true);
ea2800dd
BS
4221
4222 if (!shadow_me_mask)
4223 return;
4224
4225 for (i = context->shadow_root_level; --i >= 0;) {
4226 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4227 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4228 }
4229
c258b62b
XG
4230}
4231EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4232
6fec2144
PB
4233static inline bool boot_cpu_is_amd(void)
4234{
4235 WARN_ON_ONCE(!tdp_enabled);
4236 return shadow_x_mask == 0;
4237}
4238
c258b62b
XG
4239/*
4240 * the direct page table on host, use as much mmu features as
4241 * possible, however, kvm currently does not do execution-protection.
4242 */
4243static void
4244reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4245 struct kvm_mmu *context)
4246{
ea2800dd
BS
4247 struct rsvd_bits_validate *shadow_zero_check;
4248 int i;
4249
4250 shadow_zero_check = &context->shadow_zero_check;
4251
6fec2144 4252 if (boot_cpu_is_amd())
ea2800dd 4253 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
6f8e65a6 4254 reserved_hpa_bits(),
c258b62b 4255 context->shadow_root_level, false,
b8291adc
BP
4256 boot_cpu_has(X86_FEATURE_GBPAGES),
4257 true, true);
c258b62b 4258 else
ea2800dd 4259 __reset_rsvds_bits_mask_ept(shadow_zero_check,
6f8e65a6 4260 reserved_hpa_bits(), false);
c258b62b 4261
ea2800dd
BS
4262 if (!shadow_me_mask)
4263 return;
4264
4265 for (i = context->shadow_root_level; --i >= 0;) {
4266 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4267 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4268 }
c258b62b
XG
4269}
4270
4271/*
4272 * as the comments in reset_shadow_zero_bits_mask() except it
4273 * is the shadow page table for intel nested guest.
4274 */
4275static void
4276reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4277 struct kvm_mmu *context, bool execonly)
4278{
4279 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
6f8e65a6 4280 reserved_hpa_bits(), execonly);
c258b62b
XG
4281}
4282
09f037aa
PB
4283#define BYTE_MASK(access) \
4284 ((1 & (access) ? 2 : 0) | \
4285 (2 & (access) ? 4 : 0) | \
4286 (3 & (access) ? 8 : 0) | \
4287 (4 & (access) ? 16 : 0) | \
4288 (5 & (access) ? 32 : 0) | \
4289 (6 & (access) ? 64 : 0) | \
4290 (7 & (access) ? 128 : 0))
4291
4292
edc90b7d
XG
4293static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4294 struct kvm_mmu *mmu, bool ept)
97d64b78 4295{
09f037aa
PB
4296 unsigned byte;
4297
4298 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4299 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4300 const u8 u = BYTE_MASK(ACC_USER_MASK);
4301
4302 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4303 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4304 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4305
97d64b78 4306 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4307 unsigned pfec = byte << 1;
4308
97ec8c06 4309 /*
09f037aa
PB
4310 * Each "*f" variable has a 1 bit for each UWX value
4311 * that causes a fault with the given PFEC.
97ec8c06 4312 */
97d64b78 4313
09f037aa 4314 /* Faults from writes to non-writable pages */
a6a6d3b1 4315 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4316 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4317 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4318 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4319 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4320 /* Faults from kernel mode fetches of user pages */
4321 u8 smepf = 0;
4322 /* Faults from kernel mode accesses of user pages */
4323 u8 smapf = 0;
4324
4325 if (!ept) {
4326 /* Faults from kernel mode accesses to user pages */
4327 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4328
4329 /* Not really needed: !nx will cause pte.nx to fault */
4330 if (!mmu->nx)
4331 ff = 0;
4332
4333 /* Allow supervisor writes if !cr0.wp */
4334 if (!cr0_wp)
4335 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4336
4337 /* Disallow supervisor fetches of user code if cr4.smep */
4338 if (cr4_smep)
4339 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4340
4341 /*
4342 * SMAP:kernel-mode data accesses from user-mode
4343 * mappings should fault. A fault is considered
4344 * as a SMAP violation if all of the following
39337ad1 4345 * conditions are true:
09f037aa
PB
4346 * - X86_CR4_SMAP is set in CR4
4347 * - A user page is accessed
4348 * - The access is not a fetch
4349 * - Page fault in kernel mode
4350 * - if CPL = 3 or X86_EFLAGS_AC is clear
4351 *
4352 * Here, we cover the first three conditions.
4353 * The fourth is computed dynamically in permission_fault();
4354 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4355 * *not* subject to SMAP restrictions.
4356 */
4357 if (cr4_smap)
4358 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4359 }
09f037aa
PB
4360
4361 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4362 }
4363}
4364
2d344105
HH
4365/*
4366* PKU is an additional mechanism by which the paging controls access to
4367* user-mode addresses based on the value in the PKRU register. Protection
4368* key violations are reported through a bit in the page fault error code.
4369* Unlike other bits of the error code, the PK bit is not known at the
4370* call site of e.g. gva_to_gpa; it must be computed directly in
4371* permission_fault based on two bits of PKRU, on some machine state (CR4,
4372* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4373*
4374* In particular the following conditions come from the error code, the
4375* page tables and the machine state:
4376* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4377* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4378* - PK is always zero if U=0 in the page tables
4379* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4380*
4381* The PKRU bitmask caches the result of these four conditions. The error
4382* code (minus the P bit) and the page table's U bit form an index into the
4383* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4384* with the two bits of the PKRU register corresponding to the protection key.
4385* For the first three conditions above the bits will be 00, thus masking
4386* away both AD and WD. For all reads or if the last condition holds, WD
4387* only will be masked away.
4388*/
4389static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4390 bool ept)
4391{
4392 unsigned bit;
4393 bool wp;
4394
4395 if (ept) {
4396 mmu->pkru_mask = 0;
4397 return;
4398 }
4399
4400 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4401 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4402 mmu->pkru_mask = 0;
4403 return;
4404 }
4405
4406 wp = is_write_protection(vcpu);
4407
4408 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4409 unsigned pfec, pkey_bits;
4410 bool check_pkey, check_write, ff, uf, wf, pte_user;
4411
4412 pfec = bit << 1;
4413 ff = pfec & PFERR_FETCH_MASK;
4414 uf = pfec & PFERR_USER_MASK;
4415 wf = pfec & PFERR_WRITE_MASK;
4416
4417 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4418 pte_user = pfec & PFERR_RSVD_MASK;
4419
4420 /*
4421 * Only need to check the access which is not an
4422 * instruction fetch and is to a user page.
4423 */
4424 check_pkey = (!ff && pte_user);
4425 /*
4426 * write access is controlled by PKRU if it is a
4427 * user access or CR0.WP = 1.
4428 */
4429 check_write = check_pkey && wf && (uf || wp);
4430
4431 /* PKRU.AD stops both read and write access. */
4432 pkey_bits = !!check_pkey;
4433 /* PKRU.WD stops write access. */
4434 pkey_bits |= (!!check_write) << 1;
4435
4436 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4437 }
4438}
4439
6bb69c9b 4440static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4441{
6bb69c9b
PB
4442 unsigned root_level = mmu->root_level;
4443
4444 mmu->last_nonleaf_level = root_level;
4445 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4446 mmu->last_nonleaf_level++;
6fd01b71
AK
4447}
4448
8a3c1a33
PB
4449static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4450 struct kvm_mmu *context,
4451 int level)
6aa8b732 4452{
2d48a985 4453 context->nx = is_nx(vcpu);
4d6931c3 4454 context->root_level = level;
2d48a985 4455
4d6931c3 4456 reset_rsvds_bits_mask(vcpu, context);
25d92081 4457 update_permission_bitmask(vcpu, context, false);
2d344105 4458 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4459 update_last_nonleaf_level(vcpu, context);
6aa8b732 4460
fa4a2c08 4461 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4462 context->page_fault = paging64_page_fault;
6aa8b732 4463 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4464 context->sync_page = paging64_sync_page;
a7052897 4465 context->invlpg = paging64_invlpg;
17ac10ad 4466 context->shadow_root_level = level;
c5a78f2b 4467 context->direct_map = false;
6aa8b732
AK
4468}
4469
8a3c1a33
PB
4470static void paging64_init_context(struct kvm_vcpu *vcpu,
4471 struct kvm_mmu *context)
17ac10ad 4472{
855feb67
YZ
4473 int root_level = is_la57_mode(vcpu) ?
4474 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4475
4476 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4477}
4478
8a3c1a33
PB
4479static void paging32_init_context(struct kvm_vcpu *vcpu,
4480 struct kvm_mmu *context)
6aa8b732 4481{
2d48a985 4482 context->nx = false;
4d6931c3 4483 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4484
4d6931c3 4485 reset_rsvds_bits_mask(vcpu, context);
25d92081 4486 update_permission_bitmask(vcpu, context, false);
2d344105 4487 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4488 update_last_nonleaf_level(vcpu, context);
6aa8b732 4489
6aa8b732 4490 context->page_fault = paging32_page_fault;
6aa8b732 4491 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4492 context->sync_page = paging32_sync_page;
a7052897 4493 context->invlpg = paging32_invlpg;
6aa8b732 4494 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4495 context->direct_map = false;
6aa8b732
AK
4496}
4497
8a3c1a33
PB
4498static void paging32E_init_context(struct kvm_vcpu *vcpu,
4499 struct kvm_mmu *context)
6aa8b732 4500{
8a3c1a33 4501 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4502}
4503
a336282d
VK
4504static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4505{
4506 union kvm_mmu_extended_role ext = {0};
4507
7dcd5755 4508 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4509 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4510 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4511 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4512 ext.cr4_pse = !!is_pse(vcpu);
4513 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4514 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4515
4516 ext.valid = 1;
4517
4518 return ext;
4519}
4520
7dcd5755
VK
4521static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4522 bool base_only)
4523{
4524 union kvm_mmu_role role = {0};
4525
4526 role.base.access = ACC_ALL;
4527 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4528 role.base.cr0_wp = is_write_protection(vcpu);
4529 role.base.smm = is_smm(vcpu);
4530 role.base.guest_mode = is_guest_mode(vcpu);
4531
4532 if (base_only)
4533 return role;
4534
4535 role.ext = kvm_calc_mmu_role_ext(vcpu);
4536
4537 return role;
4538}
4539
d468d94b
SC
4540static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4541{
4542 /* Use 5-level TDP if and only if it's useful/necessary. */
83013059 4543 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
d468d94b
SC
4544 return 4;
4545
83013059 4546 return max_tdp_level;
d468d94b
SC
4547}
4548
7dcd5755
VK
4549static union kvm_mmu_role
4550kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4551{
7dcd5755 4552 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4553
7dcd5755 4554 role.base.ad_disabled = (shadow_accessed_mask == 0);
d468d94b 4555 role.base.level = kvm_mmu_get_tdp_level(vcpu);
7dcd5755 4556 role.base.direct = true;
47c42e6b 4557 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4558
4559 return role;
4560}
4561
8a3c1a33 4562static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4563{
8c008659 4564 struct kvm_mmu *context = &vcpu->arch.root_mmu;
7dcd5755
VK
4565 union kvm_mmu_role new_role =
4566 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4567
7dcd5755
VK
4568 if (new_role.as_u64 == context->mmu_role.as_u64)
4569 return;
4570
4571 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4572 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4573 context->sync_page = nonpaging_sync_page;
5efac074 4574 context->invlpg = NULL;
d468d94b 4575 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
c5a78f2b 4576 context->direct_map = true;
d8dd54e0 4577 context->get_guest_pgd = get_cr3;
e4e517b4 4578 context->get_pdptr = kvm_pdptr_read;
cb659db8 4579 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4580
4581 if (!is_paging(vcpu)) {
2d48a985 4582 context->nx = false;
fb72d167
JR
4583 context->gva_to_gpa = nonpaging_gva_to_gpa;
4584 context->root_level = 0;
4585 } else if (is_long_mode(vcpu)) {
2d48a985 4586 context->nx = is_nx(vcpu);
855feb67
YZ
4587 context->root_level = is_la57_mode(vcpu) ?
4588 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4589 reset_rsvds_bits_mask(vcpu, context);
4590 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4591 } else if (is_pae(vcpu)) {
2d48a985 4592 context->nx = is_nx(vcpu);
fb72d167 4593 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4594 reset_rsvds_bits_mask(vcpu, context);
4595 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4596 } else {
2d48a985 4597 context->nx = false;
fb72d167 4598 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4599 reset_rsvds_bits_mask(vcpu, context);
4600 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4601 }
4602
25d92081 4603 update_permission_bitmask(vcpu, context, false);
2d344105 4604 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4605 update_last_nonleaf_level(vcpu, context);
c258b62b 4606 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4607}
4608
7dcd5755 4609static union kvm_mmu_role
59505b55 4610kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
7dcd5755
VK
4611{
4612 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4613
4614 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4615 !is_write_protection(vcpu);
4616 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4617 !is_write_protection(vcpu);
47c42e6b 4618 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119 4619
59505b55
SC
4620 return role;
4621}
4622
4623static union kvm_mmu_role
4624kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4625{
4626 union kvm_mmu_role role =
4627 kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4628
4629 role.base.direct = !is_paging(vcpu);
4630
9fa72119 4631 if (!is_long_mode(vcpu))
7dcd5755 4632 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4633 else if (is_la57_mode(vcpu))
7dcd5755 4634 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4635 else
7dcd5755 4636 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4637
4638 return role;
4639}
4640
8c008659
PB
4641static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4642 u32 cr0, u32 cr4, u32 efer,
4643 union kvm_mmu_role new_role)
9fa72119 4644{
929d1cfa 4645 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4646 nonpaging_init_context(vcpu, context);
929d1cfa 4647 else if (efer & EFER_LMA)
8a3c1a33 4648 paging64_init_context(vcpu, context);
929d1cfa 4649 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4650 paging32E_init_context(vcpu, context);
6aa8b732 4651 else
8a3c1a33 4652 paging32_init_context(vcpu, context);
a770f6f2 4653
7dcd5755 4654 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4655 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df 4656}
0f04a2ac
VK
4657
4658static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4659{
8c008659 4660 struct kvm_mmu *context = &vcpu->arch.root_mmu;
0f04a2ac
VK
4661 union kvm_mmu_role new_role =
4662 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4663
4664 if (new_role.as_u64 != context->mmu_role.as_u64)
8c008659 4665 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
0f04a2ac
VK
4666}
4667
59505b55
SC
4668static union kvm_mmu_role
4669kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4670{
4671 union kvm_mmu_role role =
4672 kvm_calc_shadow_root_page_role_common(vcpu, false);
4673
4674 role.base.direct = false;
d468d94b 4675 role.base.level = kvm_mmu_get_tdp_level(vcpu);
59505b55
SC
4676
4677 return role;
4678}
4679
0f04a2ac
VK
4680void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4681 gpa_t nested_cr3)
4682{
8c008659 4683 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
59505b55 4684 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
0f04a2ac 4685
a506fdd2
VK
4686 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4687
a3322d5c 4688 if (new_role.as_u64 != context->mmu_role.as_u64) {
8c008659 4689 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
a3322d5c
SC
4690
4691 /*
4692 * Override the level set by the common init helper, nested TDP
4693 * always uses the host's TDP configuration.
4694 */
4695 context->shadow_root_level = new_role.base.level;
4696 }
0f04a2ac
VK
4697}
4698EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
52fde8df 4699
a336282d
VK
4700static union kvm_mmu_role
4701kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4702 bool execonly, u8 level)
9fa72119 4703{
552c69b1 4704 union kvm_mmu_role role = {0};
14c07ad8 4705
47c42e6b
SC
4706 /* SMM flag is inherited from root_mmu */
4707 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4708
bb1fcc70 4709 role.base.level = level;
47c42e6b 4710 role.base.gpte_is_8_bytes = true;
a336282d
VK
4711 role.base.direct = false;
4712 role.base.ad_disabled = !accessed_dirty;
4713 role.base.guest_mode = true;
4714 role.base.access = ACC_ALL;
9fa72119 4715
47c42e6b
SC
4716 /*
4717 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4718 * SMAP variation to denote shadow EPT entries.
4719 */
4720 role.base.cr0_wp = true;
4721 role.base.smap_andnot_wp = true;
4722
552c69b1 4723 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4724 role.ext.execonly = execonly;
9fa72119
JS
4725
4726 return role;
4727}
4728
ae1e2d10 4729void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4730 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4731{
8c008659 4732 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
bb1fcc70 4733 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
4734 union kvm_mmu_role new_role =
4735 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 4736 execonly, level);
a336282d 4737
be01e8e2 4738 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 4739
a336282d
VK
4740 if (new_role.as_u64 == context->mmu_role.as_u64)
4741 return;
ad896af0 4742
bb1fcc70 4743 context->shadow_root_level = level;
155a97a3
NHE
4744
4745 context->nx = true;
ae1e2d10 4746 context->ept_ad = accessed_dirty;
155a97a3
NHE
4747 context->page_fault = ept_page_fault;
4748 context->gva_to_gpa = ept_gva_to_gpa;
4749 context->sync_page = ept_sync_page;
4750 context->invlpg = ept_invlpg;
bb1fcc70 4751 context->root_level = level;
155a97a3 4752 context->direct_map = false;
a336282d 4753 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4754
155a97a3 4755 update_permission_bitmask(vcpu, context, true);
2d344105 4756 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4757 update_last_nonleaf_level(vcpu, context);
155a97a3 4758 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4759 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4760}
4761EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4762
8a3c1a33 4763static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4764{
8c008659 4765 struct kvm_mmu *context = &vcpu->arch.root_mmu;
ad896af0 4766
929d1cfa
PB
4767 kvm_init_shadow_mmu(vcpu,
4768 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4769 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4770 vcpu->arch.efer);
4771
d8dd54e0 4772 context->get_guest_pgd = get_cr3;
ad896af0
PB
4773 context->get_pdptr = kvm_pdptr_read;
4774 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4775}
4776
8a3c1a33 4777static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4778{
bf627a92 4779 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4780 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4781
bf627a92
VK
4782 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4783 return;
4784
4785 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 4786 g_context->get_guest_pgd = get_cr3;
e4e517b4 4787 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4788 g_context->inject_page_fault = kvm_inject_page_fault;
4789
5efac074
PB
4790 /*
4791 * L2 page tables are never shadowed, so there is no need to sync
4792 * SPTEs.
4793 */
4794 g_context->invlpg = NULL;
4795
02f59dc9 4796 /*
44dd3ffa 4797 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4798 * L1's nested page tables (e.g. EPT12). The nested translation
4799 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4800 * L2's page tables as the first level of translation and L1's
4801 * nested page tables as the second level of translation. Basically
4802 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4803 */
4804 if (!is_paging(vcpu)) {
2d48a985 4805 g_context->nx = false;
02f59dc9
JR
4806 g_context->root_level = 0;
4807 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4808 } else if (is_long_mode(vcpu)) {
2d48a985 4809 g_context->nx = is_nx(vcpu);
855feb67
YZ
4810 g_context->root_level = is_la57_mode(vcpu) ?
4811 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 4812 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4813 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4814 } else if (is_pae(vcpu)) {
2d48a985 4815 g_context->nx = is_nx(vcpu);
02f59dc9 4816 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4817 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4818 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4819 } else {
2d48a985 4820 g_context->nx = false;
02f59dc9 4821 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4822 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4823 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4824 }
4825
25d92081 4826 update_permission_bitmask(vcpu, g_context, false);
2d344105 4827 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4828 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4829}
4830
1c53da3f 4831void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 4832{
1c53da3f 4833 if (reset_roots) {
b94742c9
JS
4834 uint i;
4835
44dd3ffa 4836 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
4837
4838 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 4839 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
4840 }
4841
02f59dc9 4842 if (mmu_is_nested(vcpu))
e0c6db3e 4843 init_kvm_nested_mmu(vcpu);
02f59dc9 4844 else if (tdp_enabled)
e0c6db3e 4845 init_kvm_tdp_mmu(vcpu);
fb72d167 4846 else
e0c6db3e 4847 init_kvm_softmmu(vcpu);
fb72d167 4848}
1c53da3f 4849EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 4850
9fa72119
JS
4851static union kvm_mmu_page_role
4852kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4853{
7dcd5755
VK
4854 union kvm_mmu_role role;
4855
9fa72119 4856 if (tdp_enabled)
7dcd5755 4857 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 4858 else
7dcd5755
VK
4859 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4860
4861 return role.base;
9fa72119 4862}
fb72d167 4863
8a3c1a33 4864void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4865{
95f93af4 4866 kvm_mmu_unload(vcpu);
1c53da3f 4867 kvm_init_mmu(vcpu, true);
17c3ba9d 4868}
8668a3c4 4869EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4870
4871int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4872{
714b93da
AK
4873 int r;
4874
378f5cd6 4875 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
748e52b9
SC
4876 if (r)
4877 goto out;
4878 r = mmu_alloc_special_roots(vcpu);
17c3ba9d
AK
4879 if (r)
4880 goto out;
4a38162e 4881 if (vcpu->arch.mmu->direct_map)
6e6ec584
SC
4882 r = mmu_alloc_direct_roots(vcpu);
4883 else
4884 r = mmu_alloc_shadow_roots(vcpu);
8986ecc0
MT
4885 if (r)
4886 goto out;
a91f387b
SC
4887
4888 kvm_mmu_sync_roots(vcpu);
4889
727a7e27 4890 kvm_mmu_load_pgd(vcpu);
b3646477 4891 static_call(kvm_x86_tlb_flush_current)(vcpu);
714b93da
AK
4892out:
4893 return r;
6aa8b732 4894}
17c3ba9d
AK
4895
4896void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4897{
14c07ad8
VK
4898 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4899 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4900 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4901 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 4902}
6aa8b732 4903
79539cec
AK
4904static bool need_remote_flush(u64 old, u64 new)
4905{
4906 if (!is_shadow_present_pte(old))
4907 return false;
4908 if (!is_shadow_present_pte(new))
4909 return true;
4910 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4911 return true;
53166229
GN
4912 old ^= shadow_nx_mask;
4913 new ^= shadow_nx_mask;
79539cec
AK
4914 return (old & ~new & PT64_PERM_MASK) != 0;
4915}
4916
889e5cbc 4917static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 4918 int *bytes)
da4a00f0 4919{
0e0fee5c 4920 u64 gentry = 0;
889e5cbc 4921 int r;
72016f3a 4922
72016f3a
AK
4923 /*
4924 * Assume that the pte write on a page table of the same type
49b26e26
XG
4925 * as the current vcpu paging mode since we update the sptes only
4926 * when they have the same mode.
72016f3a 4927 */
889e5cbc 4928 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4929 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4930 *gpa &= ~(gpa_t)7;
4931 *bytes = 8;
08e850c6
AK
4932 }
4933
0e0fee5c
JS
4934 if (*bytes == 4 || *bytes == 8) {
4935 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4936 if (r)
4937 gentry = 0;
72016f3a
AK
4938 }
4939
889e5cbc
XG
4940 return gentry;
4941}
4942
4943/*
4944 * If we're seeing too many writes to a page, it may no longer be a page table,
4945 * or we may be forking, in which case it is better to unmap the page.
4946 */
a138fe75 4947static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4948{
a30f47cb
XG
4949 /*
4950 * Skip write-flooding detected for the sp whose level is 1, because
4951 * it can become unsync, then the guest page is not write-protected.
4952 */
3bae0459 4953 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 4954 return false;
3246af0e 4955
e5691a81
XG
4956 atomic_inc(&sp->write_flooding_count);
4957 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4958}
4959
4960/*
4961 * Misaligned accesses are too much trouble to fix up; also, they usually
4962 * indicate a page is not used as a page table.
4963 */
4964static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4965 int bytes)
4966{
4967 unsigned offset, pte_size, misaligned;
4968
4969 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4970 gpa, bytes, sp->role.word);
4971
4972 offset = offset_in_page(gpa);
47c42e6b 4973 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
4974
4975 /*
4976 * Sometimes, the OS only writes the last one bytes to update status
4977 * bits, for example, in linux, andb instruction is used in clear_bit().
4978 */
4979 if (!(offset & (pte_size - 1)) && bytes == 1)
4980 return false;
4981
889e5cbc
XG
4982 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4983 misaligned |= bytes < 4;
4984
4985 return misaligned;
4986}
4987
4988static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4989{
4990 unsigned page_offset, quadrant;
4991 u64 *spte;
4992 int level;
4993
4994 page_offset = offset_in_page(gpa);
4995 level = sp->role.level;
4996 *nspte = 1;
47c42e6b 4997 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
4998 page_offset <<= 1; /* 32->64 */
4999 /*
5000 * A 32-bit pde maps 4MB while the shadow pdes map
5001 * only 2MB. So we need to double the offset again
5002 * and zap two pdes instead of one.
5003 */
5004 if (level == PT32_ROOT_LEVEL) {
5005 page_offset &= ~7; /* kill rounding error */
5006 page_offset <<= 1;
5007 *nspte = 2;
5008 }
5009 quadrant = page_offset >> PAGE_SHIFT;
5010 page_offset &= ~PAGE_MASK;
5011 if (quadrant != sp->role.quadrant)
5012 return NULL;
5013 }
5014
5015 spte = &sp->spt[page_offset / sizeof(*spte)];
5016 return spte;
5017}
5018
13d268ca 5019static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5020 const u8 *new, int bytes,
5021 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5022{
5023 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5024 struct kvm_mmu_page *sp;
889e5cbc
XG
5025 LIST_HEAD(invalid_list);
5026 u64 entry, gentry, *spte;
5027 int npte;
b8c67b7a 5028 bool remote_flush, local_flush;
889e5cbc
XG
5029
5030 /*
5031 * If we don't have indirect shadow pages, it means no page is
5032 * write-protected, so we can exit simply.
5033 */
6aa7de05 5034 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5035 return;
5036
b8c67b7a 5037 remote_flush = local_flush = false;
889e5cbc
XG
5038
5039 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5040
889e5cbc
XG
5041 /*
5042 * No need to care whether allocation memory is successful
5043 * or not since pte prefetch is skiped if it does not have
5044 * enough objects in the cache.
5045 */
378f5cd6 5046 mmu_topup_memory_caches(vcpu, true);
889e5cbc 5047
531810ca 5048 write_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5049
5050 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5051
889e5cbc 5052 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5053 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5054
b67bfe0d 5055 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5056 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5057 detect_write_flooding(sp)) {
b8c67b7a 5058 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5059 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5060 continue;
5061 }
889e5cbc
XG
5062
5063 spte = get_written_sptes(sp, gpa, &npte);
5064 if (!spte)
5065 continue;
5066
0671a8e7 5067 local_flush = true;
ac1b714e 5068 while (npte--) {
79539cec 5069 entry = *spte;
2de4085c 5070 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
c5e2184d
SC
5071 if (gentry && sp->role.level != PG_LEVEL_4K)
5072 ++vcpu->kvm->stat.mmu_pde_zapped;
9bb4f6b1 5073 if (need_remote_flush(entry, *spte))
0671a8e7 5074 remote_flush = true;
ac1b714e 5075 ++spte;
9b7a0325 5076 }
9b7a0325 5077 }
b8c67b7a 5078 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5079 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
531810ca 5080 write_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5081}
5082
736c291c 5083int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5084 void *insn, int insn_len)
3067714c 5085{
92daa48b 5086 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5087 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5088
6948199a 5089 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5090 return RET_PF_RETRY;
5091
9b8ebbdb 5092 r = RET_PF_INVALID;
e9ee956e 5093 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5094 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5095 if (r == RET_PF_EMULATE)
e9ee956e 5096 goto emulate;
e9ee956e 5097 }
3067714c 5098
9b8ebbdb 5099 if (r == RET_PF_INVALID) {
7a02674d
SC
5100 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5101 lower_32_bits(error_code), false);
7b367bc9
SC
5102 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5103 return -EIO;
9b8ebbdb
PB
5104 }
5105
3067714c 5106 if (r < 0)
e9ee956e 5107 return r;
83a2ba4c
SC
5108 if (r != RET_PF_EMULATE)
5109 return 1;
3067714c 5110
14727754
TL
5111 /*
5112 * Before emulating the instruction, check if the error code
5113 * was due to a RO violation while translating the guest page.
5114 * This can occur when using nested virtualization with nested
5115 * paging in both guests. If true, we simply unprotect the page
5116 * and resume the guest.
14727754 5117 */
44dd3ffa 5118 if (vcpu->arch.mmu->direct_map &&
eebed243 5119 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5120 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5121 return 1;
5122 }
5123
472faffa
SC
5124 /*
5125 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5126 * optimistically try to just unprotect the page and let the processor
5127 * re-execute the instruction that caused the page fault. Do not allow
5128 * retrying MMIO emulation, as it's not only pointless but could also
5129 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5130 * faulting on the non-existent MMIO address. Retrying an instruction
5131 * from a nested guest is also pointless and dangerous as we are only
5132 * explicitly shadowing L1's page tables, i.e. unprotecting something
5133 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5134 */
736c291c 5135 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5136 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5137emulate:
736c291c 5138 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5139 insn_len);
3067714c
AK
5140}
5141EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5142
5efac074
PB
5143void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5144 gva_t gva, hpa_t root_hpa)
a7052897 5145{
b94742c9 5146 int i;
7eb77e9f 5147
5efac074
PB
5148 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5149 if (mmu != &vcpu->arch.guest_mmu) {
5150 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5151 if (is_noncanonical_address(gva, vcpu))
5152 return;
5153
b3646477 5154 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5efac074
PB
5155 }
5156
5157 if (!mmu->invlpg)
faff8758
JS
5158 return;
5159
5efac074
PB
5160 if (root_hpa == INVALID_PAGE) {
5161 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5162
5efac074
PB
5163 /*
5164 * INVLPG is required to invalidate any global mappings for the VA,
5165 * irrespective of PCID. Since it would take us roughly similar amount
5166 * of work to determine whether any of the prev_root mappings of the VA
5167 * is marked global, or to just sync it blindly, so we might as well
5168 * just always sync it.
5169 *
5170 * Mappings not reachable via the current cr3 or the prev_roots will be
5171 * synced when switching to that cr3, so nothing needs to be done here
5172 * for them.
5173 */
5174 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5175 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5176 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5177 } else {
5178 mmu->invlpg(vcpu, gva, root_hpa);
5179 }
5180}
956bf353 5181
5efac074
PB
5182void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5183{
5184 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5185 ++vcpu->stat.invlpg;
5186}
5187EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5188
5efac074 5189
eb4b248e
JS
5190void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5191{
44dd3ffa 5192 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5193 bool tlb_flush = false;
b94742c9 5194 uint i;
eb4b248e
JS
5195
5196 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5197 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5198 tlb_flush = true;
eb4b248e
JS
5199 }
5200
b94742c9
JS
5201 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5202 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5203 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5204 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5205 tlb_flush = true;
5206 }
956bf353 5207 }
ade61e28 5208
faff8758 5209 if (tlb_flush)
b3646477 5210 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
faff8758 5211
eb4b248e
JS
5212 ++vcpu->stat.invlpg;
5213
5214 /*
b94742c9
JS
5215 * Mappings not reachable via the current cr3 or the prev_roots will be
5216 * synced when switching to that cr3, so nothing needs to be done here
5217 * for them.
eb4b248e
JS
5218 */
5219}
eb4b248e 5220
83013059
SC
5221void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5222 int tdp_huge_page_level)
18552672 5223{
bde77235 5224 tdp_enabled = enable_tdp;
83013059 5225 max_tdp_level = tdp_max_root_level;
703c335d
SC
5226
5227 /*
1d92d2e8 5228 * max_huge_page_level reflects KVM's MMU capabilities irrespective
703c335d
SC
5229 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5230 * the kernel is not. But, KVM never creates a page size greater than
5231 * what is used by the kernel for any given HVA, i.e. the kernel's
5232 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5233 */
5234 if (tdp_enabled)
1d92d2e8 5235 max_huge_page_level = tdp_huge_page_level;
703c335d 5236 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
1d92d2e8 5237 max_huge_page_level = PG_LEVEL_1G;
703c335d 5238 else
1d92d2e8 5239 max_huge_page_level = PG_LEVEL_2M;
18552672 5240}
bde77235 5241EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5242
5243/* The return value indicates if tlb flush on all vcpus is needed. */
0a234f5d
SC
5244typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5245 struct kvm_memory_slot *slot);
85875a13
SC
5246
5247/* The caller should hold mmu-lock before calling this function. */
5248static __always_inline bool
5249slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5250 slot_level_handler fn, int start_level, int end_level,
1a61b7db
SC
5251 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5252 bool flush)
85875a13
SC
5253{
5254 struct slot_rmap_walk_iterator iterator;
85875a13
SC
5255
5256 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5257 end_gfn, &iterator) {
5258 if (iterator.rmap)
0a234f5d 5259 flush |= fn(kvm, iterator.rmap, memslot);
85875a13 5260
531810ca 5261 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
302695a5 5262 if (flush && flush_on_yield) {
f285c633
BG
5263 kvm_flush_remote_tlbs_with_address(kvm,
5264 start_gfn,
5265 iterator.gfn - start_gfn + 1);
85875a13
SC
5266 flush = false;
5267 }
531810ca 5268 cond_resched_rwlock_write(&kvm->mmu_lock);
85875a13
SC
5269 }
5270 }
5271
85875a13
SC
5272 return flush;
5273}
5274
5275static __always_inline bool
5276slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5277 slot_level_handler fn, int start_level, int end_level,
302695a5 5278 bool flush_on_yield)
85875a13
SC
5279{
5280 return slot_handle_level_range(kvm, memslot, fn, start_level,
5281 end_level, memslot->base_gfn,
5282 memslot->base_gfn + memslot->npages - 1,
1a61b7db 5283 flush_on_yield, false);
85875a13
SC
5284}
5285
85875a13
SC
5286static __always_inline bool
5287slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
302695a5 5288 slot_level_handler fn, bool flush_on_yield)
85875a13 5289{
3bae0459 5290 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
302695a5 5291 PG_LEVEL_4K, flush_on_yield);
85875a13
SC
5292}
5293
1cfff4d9 5294static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5295{
4a98623d
SC
5296 if (!tdp_enabled && mmu->pae_root)
5297 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
1cfff4d9
JP
5298 free_page((unsigned long)mmu->pae_root);
5299 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5300}
5301
04d28e37 5302static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5303{
17ac10ad 5304 struct page *page;
6aa8b732
AK
5305 int i;
5306
04d28e37
SC
5307 mmu->root_hpa = INVALID_PAGE;
5308 mmu->root_pgd = 0;
5309 mmu->translate_gpa = translate_gpa;
5310 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5311 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5312
17ac10ad 5313 /*
b6b80c78
SC
5314 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5315 * while the PDP table is a per-vCPU construct that's allocated at MMU
5316 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5317 * x86_64. Therefore we need to allocate the PDP table in the first
04d45551
SC
5318 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5319 * generally doesn't use PAE paging and can skip allocating the PDP
5320 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5321 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5322 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
17ac10ad 5323 */
d468d94b 5324 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5325 return 0;
5326
254272ce 5327 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5328 if (!page)
d7fa6ab2
WY
5329 return -ENOMEM;
5330
1cfff4d9 5331 mmu->pae_root = page_address(page);
4a98623d
SC
5332
5333 /*
5334 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5335 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5336 * that KVM's writes and the CPU's reads get along. Note, this is
5337 * only necessary when using shadow paging, as 64-bit NPT can get at
5338 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5339 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5340 */
5341 if (!tdp_enabled)
5342 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5343 else
5344 WARN_ON_ONCE(shadow_me_mask);
5345
17ac10ad 5346 for (i = 0; i < 4; ++i)
c834e5e4 5347 mmu->pae_root[i] = INVALID_PAE_ROOT;
17ac10ad 5348
6aa8b732 5349 return 0;
6aa8b732
AK
5350}
5351
8018c27b 5352int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5353{
1cfff4d9 5354 int ret;
b94742c9 5355
5962bfb7 5356 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5f6078f9
SC
5357 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5358
5962bfb7 5359 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5f6078f9 5360 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5962bfb7 5361
96880883
SC
5362 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5363
44dd3ffa
VK
5364 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5365 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5366
14c07ad8 5367 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9 5368
04d28e37 5369 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
1cfff4d9
JP
5370 if (ret)
5371 return ret;
5372
04d28e37 5373 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
1cfff4d9
JP
5374 if (ret)
5375 goto fail_allocate_root;
5376
5377 return ret;
5378 fail_allocate_root:
5379 free_mmu_pages(&vcpu->arch.guest_mmu);
5380 return ret;
6aa8b732
AK
5381}
5382
fbb158cb 5383#define BATCH_ZAP_PAGES 10
002c5f73
SC
5384static void kvm_zap_obsolete_pages(struct kvm *kvm)
5385{
5386 struct kvm_mmu_page *sp, *node;
fbb158cb 5387 int nr_zapped, batch = 0;
002c5f73
SC
5388
5389restart:
5390 list_for_each_entry_safe_reverse(sp, node,
5391 &kvm->arch.active_mmu_pages, link) {
5392 /*
5393 * No obsolete valid page exists before a newly created page
5394 * since active_mmu_pages is a FIFO list.
5395 */
5396 if (!is_obsolete_sp(kvm, sp))
5397 break;
5398
5399 /*
f95eec9b
SC
5400 * Invalid pages should never land back on the list of active
5401 * pages. Skip the bogus page, otherwise we'll get stuck in an
5402 * infinite loop if the page gets put back on the list (again).
002c5f73 5403 */
f95eec9b 5404 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5405 continue;
5406
4506ecf4
SC
5407 /*
5408 * No need to flush the TLB since we're only zapping shadow
5409 * pages with an obsolete generation number and all vCPUS have
5410 * loaded a new root, i.e. the shadow pages being zapped cannot
5411 * be in active use by the guest.
5412 */
fbb158cb 5413 if (batch >= BATCH_ZAP_PAGES &&
531810ca 5414 cond_resched_rwlock_write(&kvm->mmu_lock)) {
fbb158cb 5415 batch = 0;
002c5f73
SC
5416 goto restart;
5417 }
5418
10605204
SC
5419 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5420 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5421 batch += nr_zapped;
002c5f73 5422 goto restart;
fbb158cb 5423 }
002c5f73
SC
5424 }
5425
4506ecf4
SC
5426 /*
5427 * Trigger a remote TLB flush before freeing the page tables to ensure
5428 * KVM is not in the middle of a lockless shadow page table walk, which
5429 * may reference the pages.
5430 */
10605204 5431 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5432}
5433
5434/*
5435 * Fast invalidate all shadow pages and use lock-break technique
5436 * to zap obsolete pages.
5437 *
5438 * It's required when memslot is being deleted or VM is being
5439 * destroyed, in these cases, we should ensure that KVM MMU does
5440 * not use any resource of the being-deleted slot or all slots
5441 * after calling the function.
5442 */
5443static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5444{
ca333add
SC
5445 lockdep_assert_held(&kvm->slots_lock);
5446
531810ca 5447 write_lock(&kvm->mmu_lock);
14a3c4f4 5448 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5449
5450 /*
5451 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5452 * held for the entire duration of zapping obsolete pages, it's
5453 * impossible for there to be multiple invalid generations associated
5454 * with *valid* shadow pages at any given time, i.e. there is exactly
5455 * one valid generation and (at most) one invalid generation.
5456 */
5457 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5458
4506ecf4
SC
5459 /*
5460 * Notify all vcpus to reload its shadow page table and flush TLB.
5461 * Then all vcpus will switch to new shadow page table with the new
5462 * mmu_valid_gen.
5463 *
5464 * Note: we need to do this under the protection of mmu_lock,
5465 * otherwise, vcpu would purge shadow page but miss tlb flush.
5466 */
5467 kvm_reload_remote_mmus(kvm);
5468
002c5f73 5469 kvm_zap_obsolete_pages(kvm);
faaf05b0 5470
897218ff 5471 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5472 kvm_tdp_mmu_zap_all(kvm);
5473
531810ca 5474 write_unlock(&kvm->mmu_lock);
002c5f73
SC
5475}
5476
10605204
SC
5477static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5478{
5479 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5480}
5481
b5f5fdca 5482static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5483 struct kvm_memory_slot *slot,
5484 struct kvm_page_track_notifier_node *node)
b5f5fdca 5485{
002c5f73 5486 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5487}
5488
13d268ca 5489void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5490{
13d268ca 5491 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5492
fe5db27d
BG
5493 kvm_mmu_init_tdp_mmu(kvm);
5494
13d268ca 5495 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5496 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5497 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5498}
5499
13d268ca 5500void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5501{
13d268ca 5502 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5503
13d268ca 5504 kvm_page_track_unregister_notifier(kvm, node);
fe5db27d
BG
5505
5506 kvm_mmu_uninit_tdp_mmu(kvm);
1bad2b2a
XG
5507}
5508
efdfe536
XG
5509void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5510{
5511 struct kvm_memslots *slots;
5512 struct kvm_memory_slot *memslot;
9da0e4d5 5513 int i;
1a61b7db 5514 bool flush = false;
efdfe536 5515
531810ca 5516 write_lock(&kvm->mmu_lock);
9da0e4d5
PB
5517 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5518 slots = __kvm_memslots(kvm, i);
5519 kvm_for_each_memslot(memslot, slots) {
5520 gfn_t start, end;
5521
5522 start = max(gfn_start, memslot->base_gfn);
5523 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5524 if (start >= end)
5525 continue;
efdfe536 5526
302695a5
SC
5527 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5528 PG_LEVEL_4K,
5529 KVM_MAX_HUGEPAGE_LEVEL,
1a61b7db 5530 start, end - 1, true, flush);
9da0e4d5 5531 }
efdfe536
XG
5532 }
5533
897218ff 5534 if (is_tdp_mmu_enabled(kvm)) {
2b9663d8
SC
5535 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5536 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5537 gfn_end, flush);
faaf05b0
BG
5538 }
5539
2b9663d8
SC
5540 if (flush)
5541 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5542
531810ca 5543 write_unlock(&kvm->mmu_lock);
efdfe536
XG
5544}
5545
018aabb5 5546static bool slot_rmap_write_protect(struct kvm *kvm,
0a234f5d
SC
5547 struct kvm_rmap_head *rmap_head,
5548 struct kvm_memory_slot *slot)
d77aa73c 5549{
018aabb5 5550 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5551}
5552
1c91cad4 5553void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5554 struct kvm_memory_slot *memslot,
5555 int start_level)
6aa8b732 5556{
d77aa73c 5557 bool flush;
6aa8b732 5558
531810ca 5559 write_lock(&kvm->mmu_lock);
3c9bd400 5560 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5561 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
897218ff 5562 if (is_tdp_mmu_enabled(kvm))
dbb6964e 5563 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
531810ca 5564 write_unlock(&kvm->mmu_lock);
198c74f4 5565
198c74f4
XG
5566 /*
5567 * We can flush all the TLBs out of the mmu lock without TLB
5568 * corruption since we just change the spte from writable to
5569 * readonly so that we only need to care the case of changing
5570 * spte from present to present (changing the spte from present
5571 * to nonpresent will flush all the TLBs immediately), in other
5572 * words, the only case we care is mmu_spte_update() where we
5fc3424f
SC
5573 * have checked Host-writable | MMU-writable instead of
5574 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5575 * anymore.
198c74f4 5576 */
d91ffee9 5577 if (flush)
7f42aa76 5578 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5579}
37a7d8b0 5580
3ea3b7fa 5581static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
0a234f5d
SC
5582 struct kvm_rmap_head *rmap_head,
5583 struct kvm_memory_slot *slot)
3ea3b7fa
WL
5584{
5585 u64 *sptep;
5586 struct rmap_iterator iter;
5587 int need_tlb_flush = 0;
ba049e93 5588 kvm_pfn_t pfn;
3ea3b7fa
WL
5589 struct kvm_mmu_page *sp;
5590
0d536790 5591restart:
018aabb5 5592 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5593 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5594 pfn = spte_to_pfn(*sptep);
5595
5596 /*
decf6333
XG
5597 * We cannot do huge page mapping for indirect shadow pages,
5598 * which are found on the last rmap (level = 1) when not using
5599 * tdp; such shadow pages are synced with the page table in
5600 * the guest, and the guest page table is using 4K page size
5601 * mapping if the indirect sp has level = 1.
3ea3b7fa 5602 */
a78986aa 5603 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
9eba50f8
SC
5604 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5605 pfn, PG_LEVEL_NUM)) {
e7912386 5606 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5607
5608 if (kvm_available_flush_tlb_with_range())
5609 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5610 KVM_PAGES_PER_HPAGE(sp->role.level));
5611 else
5612 need_tlb_flush = 1;
5613
0d536790
XG
5614 goto restart;
5615 }
3ea3b7fa
WL
5616 }
5617
5618 return need_tlb_flush;
5619}
5620
5621void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5622 const struct kvm_memory_slot *memslot)
3ea3b7fa 5623{
f36f3f28 5624 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
9eba50f8 5625 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
302695a5 5626 bool flush;
9eba50f8 5627
531810ca 5628 write_lock(&kvm->mmu_lock);
302695a5 5629 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
142ccde1
SC
5630
5631 if (is_tdp_mmu_enabled(kvm))
5632 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5633
302695a5
SC
5634 if (flush)
5635 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
14881998 5636
531810ca 5637 write_unlock(&kvm->mmu_lock);
3ea3b7fa
WL
5638}
5639
b3594ffb
SC
5640void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5641 struct kvm_memory_slot *memslot)
5642{
5643 /*
7f42aa76 5644 * All current use cases for flushing the TLBs for a specific memslot
302695a5 5645 * related to dirty logging, and many do the TLB flush out of mmu_lock.
7f42aa76
SC
5646 * The interaction between the various operations on memslot must be
5647 * serialized by slots_locks to ensure the TLB flush from one operation
5648 * is observed by any other operation on the same memslot.
b3594ffb
SC
5649 */
5650 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5651 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5652 memslot->npages);
b3594ffb
SC
5653}
5654
f4b4b180
KH
5655void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5656 struct kvm_memory_slot *memslot)
5657{
d77aa73c 5658 bool flush;
f4b4b180 5659
531810ca 5660 write_lock(&kvm->mmu_lock);
d77aa73c 5661 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
897218ff 5662 if (is_tdp_mmu_enabled(kvm))
a6a0b05d 5663 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
531810ca 5664 write_unlock(&kvm->mmu_lock);
f4b4b180 5665
f4b4b180
KH
5666 /*
5667 * It's also safe to flush TLBs out of mmu lock here as currently this
5668 * function is only used for dirty logging, in which case flushing TLB
5669 * out of mmu lock also guarantees no dirty pages will be lost in
5670 * dirty_bitmap.
5671 */
5672 if (flush)
7f42aa76 5673 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180 5674}
f4b4b180 5675
92f58b5c 5676void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
5677{
5678 struct kvm_mmu_page *sp, *node;
7390de1e 5679 LIST_HEAD(invalid_list);
83cdb568 5680 int ign;
5304b8d3 5681
531810ca 5682 write_lock(&kvm->mmu_lock);
5304b8d3 5683restart:
8a674adc 5684 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 5685 if (WARN_ON(sp->role.invalid))
4771450c 5686 continue;
92f58b5c 5687 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 5688 goto restart;
531810ca 5689 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5304b8d3
XG
5690 goto restart;
5691 }
5692
4771450c 5693 kvm_mmu_commit_zap_page(kvm, &invalid_list);
faaf05b0 5694
897218ff 5695 if (is_tdp_mmu_enabled(kvm))
faaf05b0
BG
5696 kvm_tdp_mmu_zap_all(kvm);
5697
531810ca 5698 write_unlock(&kvm->mmu_lock);
5304b8d3
XG
5699}
5700
15248258 5701void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5702{
164bf7e5 5703 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5704
164bf7e5 5705 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5706
f8f55942 5707 /*
e1359e2b
SC
5708 * Generation numbers are incremented in multiples of the number of
5709 * address spaces in order to provide unique generations across all
5710 * address spaces. Strip what is effectively the address space
5711 * modifier prior to checking for a wrap of the MMIO generation so
5712 * that a wrap in any address space is detected.
5713 */
5714 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5715
f8f55942 5716 /*
e1359e2b 5717 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5718 * zap all shadow pages.
f8f55942 5719 */
e1359e2b 5720 if (unlikely(gen == 0)) {
ae0f5499 5721 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 5722 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 5723 }
f8f55942
XG
5724}
5725
70534a73
DC
5726static unsigned long
5727mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5728{
5729 struct kvm *kvm;
1495f230 5730 int nr_to_scan = sc->nr_to_scan;
70534a73 5731 unsigned long freed = 0;
3ee16c81 5732
0d9ce162 5733 mutex_lock(&kvm_lock);
3ee16c81
IE
5734
5735 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5736 int idx;
d98ba053 5737 LIST_HEAD(invalid_list);
3ee16c81 5738
35f2d16b
TY
5739 /*
5740 * Never scan more than sc->nr_to_scan VM instances.
5741 * Will not hit this condition practically since we do not try
5742 * to shrink more than one VM and it is very unlikely to see
5743 * !n_used_mmu_pages so many times.
5744 */
5745 if (!nr_to_scan--)
5746 break;
19526396
GN
5747 /*
5748 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5749 * here. We may skip a VM instance errorneosly, but we do not
5750 * want to shrink a VM that only started to populate its MMU
5751 * anyway.
5752 */
10605204
SC
5753 if (!kvm->arch.n_used_mmu_pages &&
5754 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5755 continue;
19526396 5756
f656ce01 5757 idx = srcu_read_lock(&kvm->srcu);
531810ca 5758 write_lock(&kvm->mmu_lock);
3ee16c81 5759
10605204
SC
5760 if (kvm_has_zapped_obsolete_pages(kvm)) {
5761 kvm_mmu_commit_zap_page(kvm,
5762 &kvm->arch.zapped_obsolete_pages);
5763 goto unlock;
5764 }
5765
ebdb292d 5766 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 5767
10605204 5768unlock:
531810ca 5769 write_unlock(&kvm->mmu_lock);
f656ce01 5770 srcu_read_unlock(&kvm->srcu, idx);
19526396 5771
70534a73
DC
5772 /*
5773 * unfair on small ones
5774 * per-vm shrinkers cry out
5775 * sadness comes quickly
5776 */
19526396
GN
5777 list_move_tail(&kvm->vm_list, &vm_list);
5778 break;
3ee16c81 5779 }
3ee16c81 5780
0d9ce162 5781 mutex_unlock(&kvm_lock);
70534a73 5782 return freed;
70534a73
DC
5783}
5784
5785static unsigned long
5786mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5787{
45221ab6 5788 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5789}
5790
5791static struct shrinker mmu_shrinker = {
70534a73
DC
5792 .count_objects = mmu_shrink_count,
5793 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5794 .seeks = DEFAULT_SEEKS * 10,
5795};
5796
2ddfd20e 5797static void mmu_destroy_caches(void)
b5a33a75 5798{
c1bd743e
TH
5799 kmem_cache_destroy(pte_list_desc_cache);
5800 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5801}
5802
b8e8c830
PB
5803static bool get_nx_auto_mode(void)
5804{
5805 /* Return true when CPU has the bug, and mitigations are ON */
5806 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5807}
5808
5809static void __set_nx_huge_pages(bool val)
5810{
5811 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5812}
5813
5814static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5815{
5816 bool old_val = nx_huge_pages;
5817 bool new_val;
5818
5819 /* In "auto" mode deploy workaround only if CPU has the bug. */
5820 if (sysfs_streq(val, "off"))
5821 new_val = 0;
5822 else if (sysfs_streq(val, "force"))
5823 new_val = 1;
5824 else if (sysfs_streq(val, "auto"))
5825 new_val = get_nx_auto_mode();
5826 else if (strtobool(val, &new_val) < 0)
5827 return -EINVAL;
5828
5829 __set_nx_huge_pages(new_val);
5830
5831 if (new_val != old_val) {
5832 struct kvm *kvm;
b8e8c830
PB
5833
5834 mutex_lock(&kvm_lock);
5835
5836 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 5837 mutex_lock(&kvm->slots_lock);
b8e8c830 5838 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 5839 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
5840
5841 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
5842 }
5843 mutex_unlock(&kvm_lock);
5844 }
5845
5846 return 0;
5847}
5848
b5a33a75
AK
5849int kvm_mmu_module_init(void)
5850{
ab271bd4
AB
5851 int ret = -ENOMEM;
5852
b8e8c830
PB
5853 if (nx_huge_pages == -1)
5854 __set_nx_huge_pages(get_nx_auto_mode());
5855
36d9594d
VK
5856 /*
5857 * MMU roles use union aliasing which is, generally speaking, an
5858 * undefined behavior. However, we supposedly know how compilers behave
5859 * and the current status quo is unlikely to change. Guardians below are
5860 * supposed to let us know if the assumption becomes false.
5861 */
5862 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5863 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5864 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5865
28a1f3ac 5866 kvm_mmu_reset_all_pte_masks();
f160c7b7 5867
53c07b18
XG
5868 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5869 sizeof(struct pte_list_desc),
46bea48a 5870 0, SLAB_ACCOUNT, NULL);
53c07b18 5871 if (!pte_list_desc_cache)
ab271bd4 5872 goto out;
b5a33a75 5873
d3d25b04
AK
5874 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5875 sizeof(struct kvm_mmu_page),
46bea48a 5876 0, SLAB_ACCOUNT, NULL);
d3d25b04 5877 if (!mmu_page_header_cache)
ab271bd4 5878 goto out;
d3d25b04 5879
908c7f19 5880 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 5881 goto out;
45bf21a8 5882
ab271bd4
AB
5883 ret = register_shrinker(&mmu_shrinker);
5884 if (ret)
5885 goto out;
3ee16c81 5886
b5a33a75
AK
5887 return 0;
5888
ab271bd4 5889out:
3ee16c81 5890 mmu_destroy_caches();
ab271bd4 5891 return ret;
b5a33a75
AK
5892}
5893
3ad82a7e 5894/*
39337ad1 5895 * Calculate mmu pages needed for kvm.
3ad82a7e 5896 */
bc8a3d89 5897unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 5898{
bc8a3d89
BG
5899 unsigned long nr_mmu_pages;
5900 unsigned long nr_pages = 0;
bc6678a3 5901 struct kvm_memslots *slots;
be6ba0f0 5902 struct kvm_memory_slot *memslot;
9da0e4d5 5903 int i;
3ad82a7e 5904
9da0e4d5
PB
5905 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5906 slots = __kvm_memslots(kvm, i);
90d83dc3 5907
9da0e4d5
PB
5908 kvm_for_each_memslot(memslot, slots)
5909 nr_pages += memslot->npages;
5910 }
3ad82a7e
ZX
5911
5912 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 5913 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5914
5915 return nr_mmu_pages;
5916}
5917
c42fffe3
XG
5918void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5919{
95f93af4 5920 kvm_mmu_unload(vcpu);
1cfff4d9
JP
5921 free_mmu_pages(&vcpu->arch.root_mmu);
5922 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 5923 mmu_free_memory_caches(vcpu);
b034cf01
XG
5924}
5925
b034cf01
XG
5926void kvm_mmu_module_exit(void)
5927{
5928 mmu_destroy_caches();
5929 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5930 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5931 mmu_audit_disable();
5932}
1aa9b957
JS
5933
5934static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5935{
5936 unsigned int old_val;
5937 int err;
5938
5939 old_val = nx_huge_pages_recovery_ratio;
5940 err = param_set_uint(val, kp);
5941 if (err)
5942 return err;
5943
5944 if (READ_ONCE(nx_huge_pages) &&
5945 !old_val && nx_huge_pages_recovery_ratio) {
5946 struct kvm *kvm;
5947
5948 mutex_lock(&kvm_lock);
5949
5950 list_for_each_entry(kvm, &vm_list, vm_list)
5951 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5952
5953 mutex_unlock(&kvm_lock);
5954 }
5955
5956 return err;
5957}
5958
5959static void kvm_recover_nx_lpages(struct kvm *kvm)
5960{
5961 int rcu_idx;
5962 struct kvm_mmu_page *sp;
5963 unsigned int ratio;
5964 LIST_HEAD(invalid_list);
048f4980 5965 bool flush = false;
1aa9b957
JS
5966 ulong to_zap;
5967
5968 rcu_idx = srcu_read_lock(&kvm->srcu);
531810ca 5969 write_lock(&kvm->mmu_lock);
1aa9b957
JS
5970
5971 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5972 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
7d919c7a
SC
5973 for ( ; to_zap; --to_zap) {
5974 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5975 break;
5976
1aa9b957
JS
5977 /*
5978 * We use a separate list instead of just using active_mmu_pages
5979 * because the number of lpage_disallowed pages is expected to
5980 * be relatively small compared to the total.
5981 */
5982 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5983 struct kvm_mmu_page,
5984 lpage_disallowed_link);
5985 WARN_ON_ONCE(!sp->lpage_disallowed);
897218ff 5986 if (is_tdp_mmu_page(sp)) {
33a31641 5987 flush = kvm_tdp_mmu_zap_sp(kvm, sp);
8d1a182e 5988 } else {
29cf0f50
BG
5989 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5990 WARN_ON_ONCE(sp->lpage_disallowed);
5991 }
1aa9b957 5992
531810ca 5993 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
048f4980 5994 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
531810ca 5995 cond_resched_rwlock_write(&kvm->mmu_lock);
048f4980 5996 flush = false;
1aa9b957
JS
5997 }
5998 }
048f4980 5999 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
1aa9b957 6000
531810ca 6001 write_unlock(&kvm->mmu_lock);
1aa9b957
JS
6002 srcu_read_unlock(&kvm->srcu, rcu_idx);
6003}
6004
6005static long get_nx_lpage_recovery_timeout(u64 start_time)
6006{
6007 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6008 ? start_time + 60 * HZ - get_jiffies_64()
6009 : MAX_SCHEDULE_TIMEOUT;
6010}
6011
6012static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6013{
6014 u64 start_time;
6015 long remaining_time;
6016
6017 while (true) {
6018 start_time = get_jiffies_64();
6019 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6020
6021 set_current_state(TASK_INTERRUPTIBLE);
6022 while (!kthread_should_stop() && remaining_time > 0) {
6023 schedule_timeout(remaining_time);
6024 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6025 set_current_state(TASK_INTERRUPTIBLE);
6026 }
6027
6028 set_current_state(TASK_RUNNING);
6029
6030 if (kthread_should_stop())
6031 return 0;
6032
6033 kvm_recover_nx_lpages(kvm);
6034 }
6035}
6036
6037int kvm_mmu_post_init_vm(struct kvm *kvm)
6038{
6039 int err;
6040
6041 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6042 "kvm-nx-lpage-recovery",
6043 &kvm->arch.nx_lpage_recovery_thread);
6044 if (!err)
6045 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6046
6047 return err;
6048}
6049
6050void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6051{
6052 if (kvm->arch.nx_lpage_recovery_thread)
6053 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6054}