]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/mmu.c
KVM: x86/mmu: Topup memory caches after walking GVA->GPA
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
88197e6a 19#include "ioapic.h"
1d737c8a 20#include "mmu.h"
6ca9a6f3 21#include "mmu_internal.h"
836a1b3c 22#include "x86.h"
6de4f3ad 23#include "kvm_cache_regs.h"
2f728d66 24#include "kvm_emulate.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
1aa9b957 43#include <linux/kthread.h>
6aa8b732 44
e495606d 45#include <asm/page.h>
eb243d1d 46#include <asm/memtype.h>
e495606d 47#include <asm/cmpxchg.h>
0c55671f 48#include <asm/e820/api.h>
4e542370 49#include <asm/io.h>
13673a90 50#include <asm/vmx.h>
3d0c27ad 51#include <asm/kvm_page_track.h>
1261bfa3 52#include "trace.h"
6aa8b732 53
b8e8c830
PB
54extern bool itlb_multihit_kvm_mitigation;
55
56static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
57#ifdef CONFIG_PREEMPT_RT
58/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
59static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
60#else
1aa9b957 61static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 62#endif
b8e8c830
PB
63
64static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 65static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830
PB
66
67static struct kernel_param_ops nx_huge_pages_ops = {
68 .set = set_nx_huge_pages,
69 .get = param_get_bool,
70};
71
1aa9b957
JS
72static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
73 .set = set_nx_huge_pages_recovery_ratio,
74 .get = param_get_uint,
75};
76
b8e8c830
PB
77module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
78__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
79module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
80 &nx_huge_pages_recovery_ratio, 0644);
81__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 82
71fe7013
SC
83static bool __read_mostly force_flush_and_sync_on_reuse;
84module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
85
18552672
JR
86/*
87 * When setting this variable to true it enables Two-Dimensional-Paging
88 * where the hardware walks 2 page tables:
89 * 1. the guest-virtual to guest-physical
90 * 2. while doing 1. it walks guest-physical to host-physical
91 * If the hardware supports that we don't need to do shadow paging.
92 */
2f333bcb 93bool tdp_enabled = false;
18552672 94
703c335d
SC
95static int max_page_level __read_mostly;
96
8b1fe17c
XG
97enum {
98 AUDIT_PRE_PAGE_FAULT,
99 AUDIT_POST_PAGE_FAULT,
100 AUDIT_PRE_PTE_WRITE,
6903074c
XG
101 AUDIT_POST_PTE_WRITE,
102 AUDIT_PRE_SYNC,
103 AUDIT_POST_SYNC
8b1fe17c 104};
37a7d8b0 105
8b1fe17c 106#undef MMU_DEBUG
37a7d8b0
AK
107
108#ifdef MMU_DEBUG
fa4a2c08
PB
109static bool dbg = 0;
110module_param(dbg, bool, 0644);
37a7d8b0
AK
111
112#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
113#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 114#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 115#else
37a7d8b0
AK
116#define pgprintk(x...) do { } while (0)
117#define rmap_printk(x...) do { } while (0)
fa4a2c08 118#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 119#endif
6aa8b732 120
957ed9ef
XG
121#define PTE_PREFETCH_NUM 8
122
00763e41 123#define PT_FIRST_AVAIL_BITS_SHIFT 10
6eeb4ef0
PB
124#define PT64_SECOND_AVAIL_BITS_SHIFT 54
125
126/*
127 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
128 * Access Tracking SPTEs.
129 */
130#define SPTE_SPECIAL_MASK (3ULL << 52)
131#define SPTE_AD_ENABLED_MASK (0ULL << 52)
132#define SPTE_AD_DISABLED_MASK (1ULL << 52)
1f4e5fc8 133#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
6eeb4ef0 134#define SPTE_MMIO_MASK (3ULL << 52)
6aa8b732 135
6aa8b732
AK
136#define PT64_LEVEL_BITS 9
137
138#define PT64_LEVEL_SHIFT(level) \
d77c26fc 139 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 140
6aa8b732
AK
141#define PT64_INDEX(address, level)\
142 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
143
144
145#define PT32_LEVEL_BITS 10
146
147#define PT32_LEVEL_SHIFT(level) \
d77c26fc 148 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 149
e04da980
JR
150#define PT32_LVL_OFFSET_MASK(level) \
151 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
152 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
153
154#define PT32_INDEX(address, level)\
155 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
156
157
8acc0993
KH
158#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
159#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
160#else
161#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
162#endif
e04da980
JR
163#define PT64_LVL_ADDR_MASK(level) \
164 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
165 * PT64_LEVEL_BITS))) - 1))
166#define PT64_LVL_OFFSET_MASK(level) \
167 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
168 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
169
170#define PT32_BASE_ADDR_MASK PAGE_MASK
171#define PT32_DIR_BASE_ADDR_MASK \
172 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
173#define PT32_LVL_ADDR_MASK(level) \
174 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
175 * PT32_LEVEL_BITS))) - 1))
6aa8b732 176
53166229 177#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 178 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 179
fe135d2c
AK
180#define ACC_EXEC_MASK 1
181#define ACC_WRITE_MASK PT_WRITABLE_MASK
182#define ACC_USER_MASK PT_USER_MASK
183#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
184
f160c7b7
JS
185/* The mask for the R/X bits in EPT PTEs */
186#define PT64_EPT_READABLE_MASK 0x1ull
187#define PT64_EPT_EXECUTABLE_MASK 0x4ull
188
90bb6fc5
AK
189#include <trace/events/kvm.h>
190
49fde340
XG
191#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
192#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 193
135f8c2b
AK
194#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
195
220f773a
TY
196/* make pte_list_desc fit well in cache line */
197#define PTE_LIST_EXT 3
198
9b8ebbdb
PB
199/*
200 * Return values of handle_mmio_page_fault and mmu.page_fault:
201 * RET_PF_RETRY: let CPU fault again on the address.
202 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
203 *
204 * For handle_mmio_page_fault only:
205 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
206 */
207enum {
208 RET_PF_RETRY = 0,
209 RET_PF_EMULATE = 1,
210 RET_PF_INVALID = 2,
211};
212
53c07b18
XG
213struct pte_list_desc {
214 u64 *sptes[PTE_LIST_EXT];
215 struct pte_list_desc *more;
cd4a4e53
AK
216};
217
2d11123a
AK
218struct kvm_shadow_walk_iterator {
219 u64 addr;
220 hpa_t shadow_addr;
2d11123a 221 u64 *sptep;
dd3bfd59 222 int level;
2d11123a
AK
223 unsigned index;
224};
225
7eb77e9f
JS
226#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
227 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
228 (_root), (_addr)); \
229 shadow_walk_okay(&(_walker)); \
230 shadow_walk_next(&(_walker)))
231
232#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
233 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
234 shadow_walk_okay(&(_walker)); \
235 shadow_walk_next(&(_walker)))
236
c2a2ac2b
XG
237#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
238 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
239 shadow_walk_okay(&(_walker)) && \
240 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
241 __shadow_walk_next(&(_walker), spte))
242
53c07b18 243static struct kmem_cache *pte_list_desc_cache;
d3d25b04 244static struct kmem_cache *mmu_page_header_cache;
45221ab6 245static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 246
7b52345e
SY
247static u64 __read_mostly shadow_nx_mask;
248static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
249static u64 __read_mostly shadow_user_mask;
250static u64 __read_mostly shadow_accessed_mask;
251static u64 __read_mostly shadow_dirty_mask;
dcdca5fe 252static u64 __read_mostly shadow_mmio_value;
4af77151 253static u64 __read_mostly shadow_mmio_access_mask;
ffb128c8 254static u64 __read_mostly shadow_present_mask;
d0ec49d4 255static u64 __read_mostly shadow_me_mask;
ce88decf 256
f160c7b7 257/*
6eeb4ef0
PB
258 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
259 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
260 * pages.
f160c7b7
JS
261 */
262static u64 __read_mostly shadow_acc_track_mask;
f160c7b7
JS
263
264/*
265 * The mask/shift to use for saving the original R/X bits when marking the PTE
266 * as not-present for access tracking purposes. We do not save the W bit as the
267 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
268 * restored only when a write is attempted to the page.
269 */
270static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
271 PT64_EPT_EXECUTABLE_MASK;
272static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
273
28a1f3ac
JS
274/*
275 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
276 * to guard against L1TF attacks.
277 */
278static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
279
280/*
281 * The number of high-order 1 bits to use in the mask above.
282 */
283static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
284
daa07cbc
SC
285/*
286 * In some cases, we need to preserve the GFN of a non-present or reserved
287 * SPTE when we usurp the upper five bits of the physical address space to
288 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
289 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
290 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
291 * high and low parts. This mask covers the lower bits of the GFN.
292 */
293static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
294
f3ecb59d
KH
295/*
296 * The number of non-reserved physical address bits irrespective of features
297 * that repurpose legal bits, e.g. MKTME.
298 */
299static u8 __read_mostly shadow_phys_bits;
daa07cbc 300
ce88decf 301static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 302static bool is_executable_pte(u64 spte);
9fa72119
JS
303static union kvm_mmu_page_role
304kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 305
335e192a
PB
306#define CREATE_TRACE_POINTS
307#include "mmutrace.h"
308
40ef75a7
LT
309
310static inline bool kvm_available_flush_tlb_with_range(void)
311{
afaf0b2f 312 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
313}
314
315static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
316 struct kvm_tlb_range *range)
317{
318 int ret = -ENOTSUPP;
319
afaf0b2f
SC
320 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
321 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
322
323 if (ret)
324 kvm_flush_remote_tlbs(kvm);
325}
326
327static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
328 u64 start_gfn, u64 pages)
329{
330 struct kvm_tlb_range range;
331
332 range.start_gfn = start_gfn;
333 range.pages = pages;
334
335 kvm_flush_remote_tlbs_with_range(kvm, &range);
336}
337
e7581cac 338void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
ce88decf 339{
4af77151 340 BUG_ON((u64)(unsigned)access_mask != access_mask);
d43e2675
PB
341 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
342 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
6eeb4ef0 343 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
4af77151 344 shadow_mmio_access_mask = access_mask;
ce88decf
XG
345}
346EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
347
26c44a63
SC
348static bool is_mmio_spte(u64 spte)
349{
e7581cac 350 return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
26c44a63
SC
351}
352
ac8d57e5
PF
353static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
354{
355 return sp->role.ad_disabled;
356}
357
1f4e5fc8
PB
358static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
359{
360 /*
361 * When using the EPT page-modification log, the GPAs in the log
362 * would come from L2 rather than L1. Therefore, we need to rely
363 * on write protection to record dirty pages. This also bypasses
364 * PML, since writes now result in a vmexit.
365 */
366 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
367}
368
ac8d57e5
PF
369static inline bool spte_ad_enabled(u64 spte)
370{
26c44a63 371 MMU_WARN_ON(is_mmio_spte(spte));
1f4e5fc8
PB
372 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
373}
374
375static inline bool spte_ad_need_write_protect(u64 spte)
376{
377 MMU_WARN_ON(is_mmio_spte(spte));
378 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
ac8d57e5
PF
379}
380
b8e8c830
PB
381static bool is_nx_huge_page_enabled(void)
382{
383 return READ_ONCE(nx_huge_pages);
384}
385
ac8d57e5
PF
386static inline u64 spte_shadow_accessed_mask(u64 spte)
387{
26c44a63 388 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
389 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
390}
391
392static inline u64 spte_shadow_dirty_mask(u64 spte)
393{
26c44a63 394 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
395 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
396}
397
f160c7b7
JS
398static inline bool is_access_track_spte(u64 spte)
399{
ac8d57e5 400 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
401}
402
f2fd125d 403/*
cae7ed3c
SC
404 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
405 * the memslots generation and is derived as follows:
ee3d1570 406 *
164bf7e5
SC
407 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
408 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 409 *
164bf7e5
SC
410 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
411 * the MMIO generation number, as doing so would require stealing a bit from
412 * the "real" generation number and thus effectively halve the maximum number
413 * of MMIO generations that can be handled before encountering a wrap (which
414 * requires a full MMU zap). The flag is instead explicitly queried when
415 * checking for MMIO spte cache hits.
f2fd125d 416 */
56871d44 417#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
f2fd125d 418
cae7ed3c
SC
419#define MMIO_SPTE_GEN_LOW_START 3
420#define MMIO_SPTE_GEN_LOW_END 11
421#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
422 MMIO_SPTE_GEN_LOW_START)
f2fd125d 423
56871d44
PB
424#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
425#define MMIO_SPTE_GEN_HIGH_END 62
cae7ed3c
SC
426#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
427 MMIO_SPTE_GEN_HIGH_START)
56871d44 428
5192f9b9 429static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
430{
431 u64 mask;
432
cae7ed3c 433 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
56871d44 434 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
f2fd125d 435
cae7ed3c
SC
436 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
437 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
438 return mask;
439}
440
5192f9b9 441static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 442{
5192f9b9 443 u64 gen;
f2fd125d 444
cae7ed3c
SC
445 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
446 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
447 return gen;
448}
449
8f79b064 450static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
ce88decf 451{
8f79b064 452
cae7ed3c 453 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 454 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 455 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 456
4af77151 457 access &= shadow_mmio_access_mask;
28a1f3ac
JS
458 mask |= shadow_mmio_value | access;
459 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
460 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
461 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 462
8f79b064
BG
463 return mask;
464}
465
466static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
467 unsigned int access)
468{
469 u64 mask = make_mmio_spte(vcpu, gfn, access);
470 unsigned int gen = get_mmio_spte_generation(mask);
471
472 access = mask & ACC_ALL;
473
f8f55942 474 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 475 mmu_spte_set(sptep, mask);
ce88decf
XG
476}
477
ce88decf
XG
478static gfn_t get_mmio_spte_gfn(u64 spte)
479{
daa07cbc 480 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
481
482 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
483 & shadow_nonpresent_or_rsvd_mask;
484
485 return gpa >> PAGE_SHIFT;
ce88decf
XG
486}
487
488static unsigned get_mmio_spte_access(u64 spte)
489{
4af77151 490 return spte & shadow_mmio_access_mask;
ce88decf
XG
491}
492
54bf36aa 493static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 494 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
495{
496 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 497 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
498 return true;
499 }
500
501 return false;
502}
c7addb90 503
54bf36aa 504static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 505{
cae7ed3c 506 u64 kvm_gen, spte_gen, gen;
089504c0 507
cae7ed3c
SC
508 gen = kvm_vcpu_memslots(vcpu)->generation;
509 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
510 return false;
089504c0 511
cae7ed3c 512 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
513 spte_gen = get_mmio_spte_generation(spte);
514
515 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
516 return likely(kvm_gen == spte_gen);
f8f55942
XG
517}
518
ce00053b
PF
519/*
520 * Sets the shadow PTE masks used by the MMU.
521 *
522 * Assumptions:
523 * - Setting either @accessed_mask or @dirty_mask requires setting both
524 * - At least one of @accessed_mask or @acc_track_mask must be set
525 */
7b52345e 526void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 527 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 528 u64 acc_track_mask, u64 me_mask)
7b52345e 529{
ce00053b
PF
530 BUG_ON(!dirty_mask != !accessed_mask);
531 BUG_ON(!accessed_mask && !acc_track_mask);
6eeb4ef0 532 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
312b616b 533
7b52345e
SY
534 shadow_user_mask = user_mask;
535 shadow_accessed_mask = accessed_mask;
536 shadow_dirty_mask = dirty_mask;
537 shadow_nx_mask = nx_mask;
538 shadow_x_mask = x_mask;
ffb128c8 539 shadow_present_mask = p_mask;
f160c7b7 540 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 541 shadow_me_mask = me_mask;
7b52345e
SY
542}
543EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
544
f3ecb59d
KH
545static u8 kvm_get_shadow_phys_bits(void)
546{
547 /*
7adacf5e
PB
548 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
549 * in CPU detection code, but the processor treats those reduced bits as
550 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
551 * the physical address bits reported by CPUID.
f3ecb59d 552 */
7adacf5e
PB
553 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
554 return cpuid_eax(0x80000008) & 0xff;
f3ecb59d 555
7adacf5e
PB
556 /*
557 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
558 * custom CPUID. Proceed with whatever the kernel found since these features
559 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
560 */
561 return boot_cpu_data.x86_phys_bits;
f3ecb59d
KH
562}
563
28a1f3ac 564static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 565{
daa07cbc
SC
566 u8 low_phys_bits;
567
f160c7b7
JS
568 shadow_user_mask = 0;
569 shadow_accessed_mask = 0;
570 shadow_dirty_mask = 0;
571 shadow_nx_mask = 0;
572 shadow_x_mask = 0;
f160c7b7
JS
573 shadow_present_mask = 0;
574 shadow_acc_track_mask = 0;
28a1f3ac 575
f3ecb59d
KH
576 shadow_phys_bits = kvm_get_shadow_phys_bits();
577
28a1f3ac
JS
578 /*
579 * If the CPU has 46 or less physical address bits, then set an
580 * appropriate mask to guard against L1TF attacks. Otherwise, it is
581 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
582 *
583 * Some Intel CPUs address the L1 cache using more PA bits than are
584 * reported by CPUID. Use the PA width of the L1 cache when possible
585 * to achieve more effective mitigation, e.g. if system RAM overlaps
586 * the most significant bits of legal physical address space.
28a1f3ac 587 */
61455bf2 588 shadow_nonpresent_or_rsvd_mask = 0;
d43e2675
PB
589 low_phys_bits = boot_cpu_data.x86_phys_bits;
590 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
591 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
592 52 - shadow_nonpresent_or_rsvd_mask_len)) {
593 low_phys_bits = boot_cpu_data.x86_cache_bits
594 - shadow_nonpresent_or_rsvd_mask_len;
28a1f3ac 595 shadow_nonpresent_or_rsvd_mask =
d43e2675
PB
596 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
597 }
61455bf2 598
daa07cbc
SC
599 shadow_nonpresent_or_rsvd_lower_gfn_mask =
600 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
601}
602
6aa8b732
AK
603static int is_cpuid_PSE36(void)
604{
605 return 1;
606}
607
73b1087e
AK
608static int is_nx(struct kvm_vcpu *vcpu)
609{
f6801dff 610 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
611}
612
c7addb90
AK
613static int is_shadow_present_pte(u64 pte)
614{
f160c7b7 615 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
616}
617
05da4558
MT
618static int is_large_pte(u64 pte)
619{
620 return pte & PT_PAGE_SIZE_MASK;
621}
622
776e6633
MT
623static int is_last_spte(u64 pte, int level)
624{
3bae0459 625 if (level == PG_LEVEL_4K)
776e6633 626 return 1;
852e3c19 627 if (is_large_pte(pte))
776e6633
MT
628 return 1;
629 return 0;
630}
631
d3e328f2
JS
632static bool is_executable_pte(u64 spte)
633{
634 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
635}
636
ba049e93 637static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 638{
35149e21 639 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
640}
641
da928521
AK
642static gfn_t pse36_gfn_delta(u32 gpte)
643{
644 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
645
646 return (gpte & PT32_DIR_PSE36_MASK) << shift;
647}
648
603e0651 649#ifdef CONFIG_X86_64
d555c333 650static void __set_spte(u64 *sptep, u64 spte)
e663ee64 651{
b19ee2ff 652 WRITE_ONCE(*sptep, spte);
e663ee64
AK
653}
654
603e0651 655static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 656{
b19ee2ff 657 WRITE_ONCE(*sptep, spte);
603e0651
XG
658}
659
660static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
661{
662 return xchg(sptep, spte);
663}
c2a2ac2b
XG
664
665static u64 __get_spte_lockless(u64 *sptep)
666{
6aa7de05 667 return READ_ONCE(*sptep);
c2a2ac2b 668}
a9221dd5 669#else
603e0651
XG
670union split_spte {
671 struct {
672 u32 spte_low;
673 u32 spte_high;
674 };
675 u64 spte;
676};
a9221dd5 677
c2a2ac2b
XG
678static void count_spte_clear(u64 *sptep, u64 spte)
679{
57354682 680 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
681
682 if (is_shadow_present_pte(spte))
683 return;
684
685 /* Ensure the spte is completely set before we increase the count */
686 smp_wmb();
687 sp->clear_spte_count++;
688}
689
603e0651
XG
690static void __set_spte(u64 *sptep, u64 spte)
691{
692 union split_spte *ssptep, sspte;
a9221dd5 693
603e0651
XG
694 ssptep = (union split_spte *)sptep;
695 sspte = (union split_spte)spte;
696
697 ssptep->spte_high = sspte.spte_high;
698
699 /*
700 * If we map the spte from nonpresent to present, We should store
701 * the high bits firstly, then set present bit, so cpu can not
702 * fetch this spte while we are setting the spte.
703 */
704 smp_wmb();
705
b19ee2ff 706 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
707}
708
603e0651
XG
709static void __update_clear_spte_fast(u64 *sptep, u64 spte)
710{
711 union split_spte *ssptep, sspte;
712
713 ssptep = (union split_spte *)sptep;
714 sspte = (union split_spte)spte;
715
b19ee2ff 716 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
717
718 /*
719 * If we map the spte from present to nonpresent, we should clear
720 * present bit firstly to avoid vcpu fetch the old high bits.
721 */
722 smp_wmb();
723
724 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 725 count_spte_clear(sptep, spte);
603e0651
XG
726}
727
728static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
729{
730 union split_spte *ssptep, sspte, orig;
731
732 ssptep = (union split_spte *)sptep;
733 sspte = (union split_spte)spte;
734
735 /* xchg acts as a barrier before the setting of the high bits */
736 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
737 orig.spte_high = ssptep->spte_high;
738 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 739 count_spte_clear(sptep, spte);
603e0651
XG
740
741 return orig.spte;
742}
c2a2ac2b
XG
743
744/*
745 * The idea using the light way get the spte on x86_32 guest is from
39656e83 746 * gup_get_pte (mm/gup.c).
accaefe0
XG
747 *
748 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
749 * coalesces them and we are running out of the MMU lock. Therefore
750 * we need to protect against in-progress updates of the spte.
751 *
752 * Reading the spte while an update is in progress may get the old value
753 * for the high part of the spte. The race is fine for a present->non-present
754 * change (because the high part of the spte is ignored for non-present spte),
755 * but for a present->present change we must reread the spte.
756 *
757 * All such changes are done in two steps (present->non-present and
758 * non-present->present), hence it is enough to count the number of
759 * present->non-present updates: if it changed while reading the spte,
760 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
761 */
762static u64 __get_spte_lockless(u64 *sptep)
763{
57354682 764 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c2a2ac2b
XG
765 union split_spte spte, *orig = (union split_spte *)sptep;
766 int count;
767
768retry:
769 count = sp->clear_spte_count;
770 smp_rmb();
771
772 spte.spte_low = orig->spte_low;
773 smp_rmb();
774
775 spte.spte_high = orig->spte_high;
776 smp_rmb();
777
778 if (unlikely(spte.spte_low != orig->spte_low ||
779 count != sp->clear_spte_count))
780 goto retry;
781
782 return spte.spte;
783}
603e0651
XG
784#endif
785
ea4114bc 786static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 787{
feb3eb70
GN
788 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
789 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
790}
791
8672b721
XG
792static bool spte_has_volatile_bits(u64 spte)
793{
f160c7b7
JS
794 if (!is_shadow_present_pte(spte))
795 return false;
796
c7ba5b48 797 /*
6a6256f9 798 * Always atomically update spte if it can be updated
c7ba5b48
XG
799 * out of mmu-lock, it can ensure dirty bit is not lost,
800 * also, it can help us to get a stable is_writable_pte()
801 * to ensure tlb flush is not missed.
802 */
f160c7b7
JS
803 if (spte_can_locklessly_be_made_writable(spte) ||
804 is_access_track_spte(spte))
c7ba5b48
XG
805 return true;
806
ac8d57e5 807 if (spte_ad_enabled(spte)) {
f160c7b7
JS
808 if ((spte & shadow_accessed_mask) == 0 ||
809 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
810 return true;
811 }
8672b721 812
f160c7b7 813 return false;
8672b721
XG
814}
815
83ef6c81 816static bool is_accessed_spte(u64 spte)
4132779b 817{
ac8d57e5
PF
818 u64 accessed_mask = spte_shadow_accessed_mask(spte);
819
820 return accessed_mask ? spte & accessed_mask
821 : !is_access_track_spte(spte);
4132779b
XG
822}
823
83ef6c81 824static bool is_dirty_spte(u64 spte)
7e71a59b 825{
ac8d57e5
PF
826 u64 dirty_mask = spte_shadow_dirty_mask(spte);
827
828 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
829}
830
1df9f2dc
XG
831/* Rules for using mmu_spte_set:
832 * Set the sptep from nonpresent to present.
833 * Note: the sptep being assigned *must* be either not present
834 * or in a state where the hardware will not attempt to update
835 * the spte.
836 */
837static void mmu_spte_set(u64 *sptep, u64 new_spte)
838{
839 WARN_ON(is_shadow_present_pte(*sptep));
840 __set_spte(sptep, new_spte);
841}
842
f39a058d
JS
843/*
844 * Update the SPTE (excluding the PFN), but do not track changes in its
845 * accessed/dirty status.
1df9f2dc 846 */
f39a058d 847static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 848{
c7ba5b48 849 u64 old_spte = *sptep;
4132779b 850
afd28fe1 851 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 852
6e7d0354
XG
853 if (!is_shadow_present_pte(old_spte)) {
854 mmu_spte_set(sptep, new_spte);
f39a058d 855 return old_spte;
6e7d0354 856 }
4132779b 857
c7ba5b48 858 if (!spte_has_volatile_bits(old_spte))
603e0651 859 __update_clear_spte_fast(sptep, new_spte);
4132779b 860 else
603e0651 861 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 862
83ef6c81
JS
863 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
864
f39a058d
JS
865 return old_spte;
866}
867
868/* Rules for using mmu_spte_update:
869 * Update the state bits, it means the mapped pfn is not changed.
870 *
871 * Whenever we overwrite a writable spte with a read-only one we
872 * should flush remote TLBs. Otherwise rmap_write_protect
873 * will find a read-only spte, even though the writable spte
874 * might be cached on a CPU's TLB, the return value indicates this
875 * case.
876 *
877 * Returns true if the TLB needs to be flushed
878 */
879static bool mmu_spte_update(u64 *sptep, u64 new_spte)
880{
881 bool flush = false;
882 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
883
884 if (!is_shadow_present_pte(old_spte))
885 return false;
886
c7ba5b48
XG
887 /*
888 * For the spte updated out of mmu-lock is safe, since
6a6256f9 889 * we always atomically update it, see the comments in
c7ba5b48
XG
890 * spte_has_volatile_bits().
891 */
ea4114bc 892 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 893 !is_writable_pte(new_spte))
83ef6c81 894 flush = true;
4132779b 895
7e71a59b 896 /*
83ef6c81 897 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
898 * to guarantee consistency between TLB and page tables.
899 */
7e71a59b 900
83ef6c81
JS
901 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
902 flush = true;
4132779b 903 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
904 }
905
906 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
907 flush = true;
4132779b 908 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 909 }
6e7d0354 910
83ef6c81 911 return flush;
b79b93f9
AK
912}
913
1df9f2dc
XG
914/*
915 * Rules for using mmu_spte_clear_track_bits:
916 * It sets the sptep from present to nonpresent, and track the
917 * state bits, it is used to clear the last level sptep.
83ef6c81 918 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
919 */
920static int mmu_spte_clear_track_bits(u64 *sptep)
921{
ba049e93 922 kvm_pfn_t pfn;
1df9f2dc
XG
923 u64 old_spte = *sptep;
924
925 if (!spte_has_volatile_bits(old_spte))
603e0651 926 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 927 else
603e0651 928 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 929
afd28fe1 930 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
931 return 0;
932
933 pfn = spte_to_pfn(old_spte);
86fde74c
XG
934
935 /*
936 * KVM does not hold the refcount of the page used by
937 * kvm mmu, before reclaiming the page, we should
938 * unmap it from mmu first.
939 */
bf4bea8e 940 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 941
83ef6c81 942 if (is_accessed_spte(old_spte))
1df9f2dc 943 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
944
945 if (is_dirty_spte(old_spte))
1df9f2dc 946 kvm_set_pfn_dirty(pfn);
83ef6c81 947
1df9f2dc
XG
948 return 1;
949}
950
951/*
952 * Rules for using mmu_spte_clear_no_track:
953 * Directly clear spte without caring the state bits of sptep,
954 * it is used to set the upper level spte.
955 */
956static void mmu_spte_clear_no_track(u64 *sptep)
957{
603e0651 958 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
959}
960
c2a2ac2b
XG
961static u64 mmu_spte_get_lockless(u64 *sptep)
962{
963 return __get_spte_lockless(sptep);
964}
965
f160c7b7
JS
966static u64 mark_spte_for_access_track(u64 spte)
967{
ac8d57e5 968 if (spte_ad_enabled(spte))
f160c7b7
JS
969 return spte & ~shadow_accessed_mask;
970
ac8d57e5 971 if (is_access_track_spte(spte))
f160c7b7
JS
972 return spte;
973
974 /*
20d65236
JS
975 * Making an Access Tracking PTE will result in removal of write access
976 * from the PTE. So, verify that we will be able to restore the write
977 * access in the fast page fault path later on.
f160c7b7
JS
978 */
979 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
980 !spte_can_locklessly_be_made_writable(spte),
981 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
982
983 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
984 shadow_acc_track_saved_bits_shift),
985 "kvm: Access Tracking saved bit locations are not zero\n");
986
987 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
988 shadow_acc_track_saved_bits_shift;
989 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
990
991 return spte;
992}
993
d3e328f2
JS
994/* Restore an acc-track PTE back to a regular PTE */
995static u64 restore_acc_track_spte(u64 spte)
996{
997 u64 new_spte = spte;
998 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
999 & shadow_acc_track_saved_bits_mask;
1000
ac8d57e5 1001 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
1002 WARN_ON_ONCE(!is_access_track_spte(spte));
1003
1004 new_spte &= ~shadow_acc_track_mask;
1005 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1006 shadow_acc_track_saved_bits_shift);
1007 new_spte |= saved_bits;
1008
1009 return new_spte;
1010}
1011
f160c7b7
JS
1012/* Returns the Accessed status of the PTE and resets it at the same time. */
1013static bool mmu_spte_age(u64 *sptep)
1014{
1015 u64 spte = mmu_spte_get_lockless(sptep);
1016
1017 if (!is_accessed_spte(spte))
1018 return false;
1019
ac8d57e5 1020 if (spte_ad_enabled(spte)) {
f160c7b7
JS
1021 clear_bit((ffs(shadow_accessed_mask) - 1),
1022 (unsigned long *)sptep);
1023 } else {
1024 /*
1025 * Capture the dirty status of the page, so that it doesn't get
1026 * lost when the SPTE is marked for access tracking.
1027 */
1028 if (is_writable_pte(spte))
1029 kvm_set_pfn_dirty(spte_to_pfn(spte));
1030
1031 spte = mark_spte_for_access_track(spte);
1032 mmu_spte_update_no_track(sptep, spte);
1033 }
1034
1035 return true;
1036}
1037
c2a2ac2b
XG
1038static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1039{
c142786c
AK
1040 /*
1041 * Prevent page table teardown by making any free-er wait during
1042 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1043 */
1044 local_irq_disable();
36ca7e0a 1045
c142786c
AK
1046 /*
1047 * Make sure a following spte read is not reordered ahead of the write
1048 * to vcpu->mode.
1049 */
36ca7e0a 1050 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
1051}
1052
1053static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1054{
c142786c
AK
1055 /*
1056 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 1057 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
1058 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1059 */
36ca7e0a 1060 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 1061 local_irq_enable();
c2a2ac2b
XG
1062}
1063
53a3f487
SC
1064static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
1065 gfp_t gfp_flags)
1066{
1067 if (mc->kmem_cache)
1068 return kmem_cache_zalloc(mc->kmem_cache, gfp_flags);
1069 else
1070 return (void *)__get_free_page(gfp_flags);
1071}
1072
356ec69a 1073static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
714b93da
AK
1074{
1075 void *obj;
1076
356ec69a 1077 if (mc->nobjs >= min)
e2dec939 1078 return 0;
356ec69a 1079 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
53a3f487 1080 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
714b93da 1081 if (!obj)
356ec69a
SC
1082 return mc->nobjs >= min ? 0 : -ENOMEM;
1083 mc->objects[mc->nobjs++] = obj;
714b93da 1084 }
e2dec939 1085 return 0;
714b93da
AK
1086}
1087
356ec69a 1088static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *mc)
f759e2b4 1089{
356ec69a 1090 return mc->nobjs;
f759e2b4
XG
1091}
1092
5962bfb7 1093static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
714b93da 1094{
45177ccc
SC
1095 while (mc->nobjs) {
1096 if (mc->kmem_cache)
1097 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
1098 else
1099 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63 1100 }
c1158e63
AK
1101}
1102
2e3e5882 1103static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1104{
e2dec939
AK
1105 int r;
1106
53c07b18 1107 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
5962bfb7 1108 8 + PTE_PREFETCH_NUM);
d3d25b04 1109 if (r)
284aa868 1110 return r;
45177ccc 1111 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_cache, 8);
d3d25b04 1112 if (r)
284aa868
SC
1113 return r;
1114 return mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 4);
714b93da
AK
1115}
1116
1117static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1118{
5962bfb7 1119 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
45177ccc 1120 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
5962bfb7 1121 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
714b93da
AK
1122}
1123
80feb89a 1124static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1125{
1126 void *p;
1127
53a3f487
SC
1128 if (WARN_ON(!mc->nobjs))
1129 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
1130 else
1131 p = mc->objects[--mc->nobjs];
1132 BUG_ON(!p);
714b93da
AK
1133 return p;
1134}
1135
53c07b18 1136static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1137{
80feb89a 1138 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1139}
1140
53c07b18 1141static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1142{
53c07b18 1143 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1144}
1145
2032a93d
LJ
1146static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1147{
1148 if (!sp->role.direct)
1149 return sp->gfns[index];
1150
1151 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1152}
1153
1154static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1155{
e9f2a760 1156 if (!sp->role.direct) {
2032a93d 1157 sp->gfns[index] = gfn;
e9f2a760
PB
1158 return;
1159 }
1160
1161 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1162 pr_err_ratelimited("gfn mismatch under direct page %llx "
1163 "(expected %llx, got %llx)\n",
1164 sp->gfn,
1165 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1166}
1167
05da4558 1168/*
d4dbf470
TY
1169 * Return the pointer to the large page information for a given gfn,
1170 * handling slots that are not large page aligned.
05da4558 1171 */
d4dbf470
TY
1172static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1173 struct kvm_memory_slot *slot,
1174 int level)
05da4558
MT
1175{
1176 unsigned long idx;
1177
fb03cb6f 1178 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1179 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1180}
1181
547ffaed
XG
1182static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1183 gfn_t gfn, int count)
1184{
1185 struct kvm_lpage_info *linfo;
1186 int i;
1187
3bae0459 1188 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
547ffaed
XG
1189 linfo = lpage_info_slot(gfn, slot, i);
1190 linfo->disallow_lpage += count;
1191 WARN_ON(linfo->disallow_lpage < 0);
1192 }
1193}
1194
1195void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1196{
1197 update_gfn_disallow_lpage_count(slot, gfn, 1);
1198}
1199
1200void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1201{
1202 update_gfn_disallow_lpage_count(slot, gfn, -1);
1203}
1204
3ed1a478 1205static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1206{
699023e2 1207 struct kvm_memslots *slots;
d25797b2 1208 struct kvm_memory_slot *slot;
3ed1a478 1209 gfn_t gfn;
05da4558 1210
56ca57f9 1211 kvm->arch.indirect_shadow_pages++;
3ed1a478 1212 gfn = sp->gfn;
699023e2
PB
1213 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1214 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1215
1216 /* the non-leaf shadow pages are keeping readonly. */
3bae0459 1217 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
1218 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1219 KVM_PAGE_TRACK_WRITE);
1220
547ffaed 1221 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1222}
1223
b8e8c830
PB
1224static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1225{
1226 if (sp->lpage_disallowed)
1227 return;
1228
1229 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
1230 list_add_tail(&sp->lpage_disallowed_link,
1231 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
1232 sp->lpage_disallowed = true;
1233}
1234
3ed1a478 1235static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1236{
699023e2 1237 struct kvm_memslots *slots;
d25797b2 1238 struct kvm_memory_slot *slot;
3ed1a478 1239 gfn_t gfn;
05da4558 1240
56ca57f9 1241 kvm->arch.indirect_shadow_pages--;
3ed1a478 1242 gfn = sp->gfn;
699023e2
PB
1243 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1244 slot = __gfn_to_memslot(slots, gfn);
3bae0459 1245 if (sp->role.level > PG_LEVEL_4K)
56ca57f9
XG
1246 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1247 KVM_PAGE_TRACK_WRITE);
1248
547ffaed 1249 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1250}
1251
b8e8c830
PB
1252static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1253{
1254 --kvm->stat.nx_lpage_splits;
1255 sp->lpage_disallowed = false;
1aa9b957 1256 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
1257}
1258
5d163b1c
XG
1259static struct kvm_memory_slot *
1260gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1261 bool no_dirty_log)
05da4558
MT
1262{
1263 struct kvm_memory_slot *slot;
5d163b1c 1264
54bf36aa 1265 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
1266 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1267 return NULL;
1268 if (no_dirty_log && slot->dirty_bitmap)
1269 return NULL;
5d163b1c
XG
1270
1271 return slot;
1272}
1273
290fc38d 1274/*
018aabb5 1275 * About rmap_head encoding:
cd4a4e53 1276 *
018aabb5
TY
1277 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1278 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1279 * pte_list_desc containing more mappings.
018aabb5
TY
1280 */
1281
1282/*
1283 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1284 */
53c07b18 1285static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1286 struct kvm_rmap_head *rmap_head)
cd4a4e53 1287{
53c07b18 1288 struct pte_list_desc *desc;
53a27b39 1289 int i, count = 0;
cd4a4e53 1290
018aabb5 1291 if (!rmap_head->val) {
53c07b18 1292 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1293 rmap_head->val = (unsigned long)spte;
1294 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1295 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1296 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1297 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1298 desc->sptes[1] = spte;
018aabb5 1299 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1300 ++count;
cd4a4e53 1301 } else {
53c07b18 1302 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1303 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1304 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1305 desc = desc->more;
53c07b18 1306 count += PTE_LIST_EXT;
53a27b39 1307 }
53c07b18
XG
1308 if (desc->sptes[PTE_LIST_EXT-1]) {
1309 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1310 desc = desc->more;
1311 }
d555c333 1312 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1313 ++count;
d555c333 1314 desc->sptes[i] = spte;
cd4a4e53 1315 }
53a27b39 1316 return count;
cd4a4e53
AK
1317}
1318
53c07b18 1319static void
018aabb5
TY
1320pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1321 struct pte_list_desc *desc, int i,
1322 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1323{
1324 int j;
1325
53c07b18 1326 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1327 ;
d555c333
AK
1328 desc->sptes[i] = desc->sptes[j];
1329 desc->sptes[j] = NULL;
cd4a4e53
AK
1330 if (j != 0)
1331 return;
1332 if (!prev_desc && !desc->more)
fe3c2b4c 1333 rmap_head->val = 0;
cd4a4e53
AK
1334 else
1335 if (prev_desc)
1336 prev_desc->more = desc->more;
1337 else
018aabb5 1338 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1339 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1340}
1341
8daf3462 1342static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1343{
53c07b18
XG
1344 struct pte_list_desc *desc;
1345 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1346 int i;
1347
018aabb5 1348 if (!rmap_head->val) {
8daf3462 1349 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1350 BUG();
018aabb5 1351 } else if (!(rmap_head->val & 1)) {
8daf3462 1352 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1353 if ((u64 *)rmap_head->val != spte) {
8daf3462 1354 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1355 BUG();
1356 }
018aabb5 1357 rmap_head->val = 0;
cd4a4e53 1358 } else {
8daf3462 1359 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1360 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1361 prev_desc = NULL;
1362 while (desc) {
018aabb5 1363 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1364 if (desc->sptes[i] == spte) {
018aabb5
TY
1365 pte_list_desc_remove_entry(rmap_head,
1366 desc, i, prev_desc);
cd4a4e53
AK
1367 return;
1368 }
018aabb5 1369 }
cd4a4e53
AK
1370 prev_desc = desc;
1371 desc = desc->more;
1372 }
8daf3462 1373 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1374 BUG();
1375 }
1376}
1377
e7912386
WY
1378static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1379{
1380 mmu_spte_clear_track_bits(sptep);
1381 __pte_list_remove(sptep, rmap_head);
1382}
1383
018aabb5
TY
1384static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1385 struct kvm_memory_slot *slot)
53c07b18 1386{
77d11309 1387 unsigned long idx;
53c07b18 1388
77d11309 1389 idx = gfn_to_index(gfn, slot->base_gfn, level);
3bae0459 1390 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
53c07b18
XG
1391}
1392
018aabb5
TY
1393static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1394 struct kvm_mmu_page *sp)
9b9b1492 1395{
699023e2 1396 struct kvm_memslots *slots;
9b9b1492
TY
1397 struct kvm_memory_slot *slot;
1398
699023e2
PB
1399 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1400 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1401 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1402}
1403
f759e2b4
XG
1404static bool rmap_can_add(struct kvm_vcpu *vcpu)
1405{
356ec69a 1406 struct kvm_mmu_memory_cache *mc;
f759e2b4 1407
356ec69a
SC
1408 mc = &vcpu->arch.mmu_pte_list_desc_cache;
1409 return mmu_memory_cache_free_objects(mc);
f759e2b4
XG
1410}
1411
53c07b18
XG
1412static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413{
1414 struct kvm_mmu_page *sp;
018aabb5 1415 struct kvm_rmap_head *rmap_head;
53c07b18 1416
57354682 1417 sp = sptep_to_sp(spte);
53c07b18 1418 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1419 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1420 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1421}
1422
53c07b18
XG
1423static void rmap_remove(struct kvm *kvm, u64 *spte)
1424{
1425 struct kvm_mmu_page *sp;
1426 gfn_t gfn;
018aabb5 1427 struct kvm_rmap_head *rmap_head;
53c07b18 1428
57354682 1429 sp = sptep_to_sp(spte);
53c07b18 1430 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1431 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1432 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1433}
1434
1e3f42f0
TY
1435/*
1436 * Used by the following functions to iterate through the sptes linked by a
1437 * rmap. All fields are private and not assumed to be used outside.
1438 */
1439struct rmap_iterator {
1440 /* private fields */
1441 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1442 int pos; /* index of the sptep */
1443};
1444
1445/*
1446 * Iteration must be started by this function. This should also be used after
1447 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1448 * information in the iterator may not be valid.
1e3f42f0
TY
1449 *
1450 * Returns sptep if found, NULL otherwise.
1451 */
018aabb5
TY
1452static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1453 struct rmap_iterator *iter)
1e3f42f0 1454{
77fbbbd2
TY
1455 u64 *sptep;
1456
018aabb5 1457 if (!rmap_head->val)
1e3f42f0
TY
1458 return NULL;
1459
018aabb5 1460 if (!(rmap_head->val & 1)) {
1e3f42f0 1461 iter->desc = NULL;
77fbbbd2
TY
1462 sptep = (u64 *)rmap_head->val;
1463 goto out;
1e3f42f0
TY
1464 }
1465
018aabb5 1466 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1467 iter->pos = 0;
77fbbbd2
TY
1468 sptep = iter->desc->sptes[iter->pos];
1469out:
1470 BUG_ON(!is_shadow_present_pte(*sptep));
1471 return sptep;
1e3f42f0
TY
1472}
1473
1474/*
1475 * Must be used with a valid iterator: e.g. after rmap_get_first().
1476 *
1477 * Returns sptep if found, NULL otherwise.
1478 */
1479static u64 *rmap_get_next(struct rmap_iterator *iter)
1480{
77fbbbd2
TY
1481 u64 *sptep;
1482
1e3f42f0
TY
1483 if (iter->desc) {
1484 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1485 ++iter->pos;
1486 sptep = iter->desc->sptes[iter->pos];
1487 if (sptep)
77fbbbd2 1488 goto out;
1e3f42f0
TY
1489 }
1490
1491 iter->desc = iter->desc->more;
1492
1493 if (iter->desc) {
1494 iter->pos = 0;
1495 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1496 sptep = iter->desc->sptes[iter->pos];
1497 goto out;
1e3f42f0
TY
1498 }
1499 }
1500
1501 return NULL;
77fbbbd2
TY
1502out:
1503 BUG_ON(!is_shadow_present_pte(*sptep));
1504 return sptep;
1e3f42f0
TY
1505}
1506
018aabb5
TY
1507#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1508 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1509 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1510
c3707958 1511static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1512{
1df9f2dc 1513 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1514 rmap_remove(kvm, sptep);
be38d276
AK
1515}
1516
8e22f955
XG
1517
1518static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1519{
1520 if (is_large_pte(*sptep)) {
57354682 1521 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
8e22f955
XG
1522 drop_spte(kvm, sptep);
1523 --kvm->stat.lpages;
1524 return true;
1525 }
1526
1527 return false;
1528}
1529
1530static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1531{
c3134ce2 1532 if (__drop_large_spte(vcpu->kvm, sptep)) {
57354682 1533 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
c3134ce2
LT
1534
1535 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1536 KVM_PAGES_PER_HPAGE(sp->role.level));
1537 }
8e22f955
XG
1538}
1539
1540/*
49fde340 1541 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1542 * spte write-protection is caused by protecting shadow page table.
49fde340 1543 *
b4619660 1544 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1545 * protection:
1546 * - for dirty logging, the spte can be set to writable at anytime if
1547 * its dirty bitmap is properly set.
1548 * - for spte protection, the spte can be writable only after unsync-ing
1549 * shadow page.
8e22f955 1550 *
c126d94f 1551 * Return true if tlb need be flushed.
8e22f955 1552 */
c4f138b4 1553static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1554{
1555 u64 spte = *sptep;
1556
49fde340 1557 if (!is_writable_pte(spte) &&
ea4114bc 1558 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1559 return false;
1560
1561 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1562
49fde340
XG
1563 if (pt_protect)
1564 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1565 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1566
c126d94f 1567 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1568}
1569
018aabb5
TY
1570static bool __rmap_write_protect(struct kvm *kvm,
1571 struct kvm_rmap_head *rmap_head,
245c3912 1572 bool pt_protect)
98348e95 1573{
1e3f42f0
TY
1574 u64 *sptep;
1575 struct rmap_iterator iter;
d13bc5b5 1576 bool flush = false;
374cbac0 1577
018aabb5 1578 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1579 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1580
d13bc5b5 1581 return flush;
a0ed4607
TY
1582}
1583
c4f138b4 1584static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1585{
1586 u64 spte = *sptep;
1587
1588 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1589
1f4e5fc8 1590 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1591 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1592 return mmu_spte_update(sptep, spte);
1593}
1594
1f4e5fc8 1595static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1596{
1597 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1598 (unsigned long *)sptep);
1f4e5fc8 1599 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1600 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1601
1602 return was_writable;
1603}
1604
1605/*
1606 * Gets the GFN ready for another round of dirty logging by clearing the
1607 * - D bit on ad-enabled SPTEs, and
1608 * - W bit on ad-disabled SPTEs.
1609 * Returns true iff any D or W bits were cleared.
1610 */
018aabb5 1611static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1612{
1613 u64 *sptep;
1614 struct rmap_iterator iter;
1615 bool flush = false;
1616
018aabb5 1617 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1618 if (spte_ad_need_write_protect(*sptep))
1619 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1620 else
1f4e5fc8 1621 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1622
1623 return flush;
1624}
1625
c4f138b4 1626static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1627{
1628 u64 spte = *sptep;
1629
1630 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1631
1f4e5fc8 1632 /*
afaf0b2f 1633 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1634 * do not bother adding back write access to pages marked
1635 * SPTE_AD_WRPROT_ONLY_MASK.
1636 */
f4b4b180
KH
1637 spte |= shadow_dirty_mask;
1638
1639 return mmu_spte_update(sptep, spte);
1640}
1641
018aabb5 1642static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1643{
1644 u64 *sptep;
1645 struct rmap_iterator iter;
1646 bool flush = false;
1647
018aabb5 1648 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1649 if (spte_ad_enabled(*sptep))
1650 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1651
1652 return flush;
1653}
1654
5dc99b23 1655/**
3b0f1d01 1656 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1657 * @kvm: kvm instance
1658 * @slot: slot to protect
1659 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1660 * @mask: indicates which pages we should protect
1661 *
1662 * Used when we do not need to care about huge page mappings: e.g. during dirty
1663 * logging we do not have any such mappings.
1664 */
3b0f1d01 1665static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1666 struct kvm_memory_slot *slot,
1667 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1668{
018aabb5 1669 struct kvm_rmap_head *rmap_head;
a0ed4607 1670
5dc99b23 1671 while (mask) {
018aabb5 1672 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1673 PG_LEVEL_4K, slot);
018aabb5 1674 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1675
5dc99b23
TY
1676 /* clear the first set bit */
1677 mask &= mask - 1;
1678 }
374cbac0
AK
1679}
1680
f4b4b180 1681/**
ac8d57e5
PF
1682 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1683 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1684 * @kvm: kvm instance
1685 * @slot: slot to clear D-bit
1686 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1687 * @mask: indicates which pages we should clear D-bit
1688 *
1689 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1690 */
1691void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1692 struct kvm_memory_slot *slot,
1693 gfn_t gfn_offset, unsigned long mask)
1694{
018aabb5 1695 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1696
1697 while (mask) {
018aabb5 1698 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
3bae0459 1699 PG_LEVEL_4K, slot);
018aabb5 1700 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1701
1702 /* clear the first set bit */
1703 mask &= mask - 1;
1704 }
1705}
1706EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1707
3b0f1d01
KH
1708/**
1709 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1710 * PT level pages.
1711 *
1712 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1713 * enable dirty logging for them.
1714 *
1715 * Used when we do not need to care about huge page mappings: e.g. during dirty
1716 * logging we do not have any such mappings.
1717 */
1718void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1719 struct kvm_memory_slot *slot,
1720 gfn_t gfn_offset, unsigned long mask)
1721{
afaf0b2f
SC
1722 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1723 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1724 mask);
1725 else
1726 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1727}
1728
aeecee2e
XG
1729bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1730 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1731{
018aabb5 1732 struct kvm_rmap_head *rmap_head;
5dc99b23 1733 int i;
2f84569f 1734 bool write_protected = false;
95d4c16c 1735
3bae0459 1736 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1737 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1738 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1739 }
1740
1741 return write_protected;
95d4c16c
TY
1742}
1743
aeecee2e
XG
1744static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1745{
1746 struct kvm_memory_slot *slot;
1747
1748 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1749 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1750}
1751
018aabb5 1752static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1753{
1e3f42f0
TY
1754 u64 *sptep;
1755 struct rmap_iterator iter;
6a49f85c 1756 bool flush = false;
e930bffe 1757
018aabb5 1758 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1759 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1760
e7912386 1761 pte_list_remove(rmap_head, sptep);
6a49f85c 1762 flush = true;
e930bffe 1763 }
1e3f42f0 1764
6a49f85c
XG
1765 return flush;
1766}
1767
018aabb5 1768static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1769 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1770 unsigned long data)
1771{
018aabb5 1772 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1773}
1774
018aabb5 1775static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1776 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1777 unsigned long data)
3da0dd43 1778{
1e3f42f0
TY
1779 u64 *sptep;
1780 struct rmap_iterator iter;
3da0dd43 1781 int need_flush = 0;
1e3f42f0 1782 u64 new_spte;
3da0dd43 1783 pte_t *ptep = (pte_t *)data;
ba049e93 1784 kvm_pfn_t new_pfn;
3da0dd43
IE
1785
1786 WARN_ON(pte_huge(*ptep));
1787 new_pfn = pte_pfn(*ptep);
1e3f42f0 1788
0d536790 1789restart:
018aabb5 1790 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1791 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1792 sptep, *sptep, gfn, level);
1e3f42f0 1793
3da0dd43 1794 need_flush = 1;
1e3f42f0 1795
3da0dd43 1796 if (pte_write(*ptep)) {
e7912386 1797 pte_list_remove(rmap_head, sptep);
0d536790 1798 goto restart;
3da0dd43 1799 } else {
1e3f42f0 1800 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1801 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1802
1803 new_spte &= ~PT_WRITABLE_MASK;
1804 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1805
1806 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1807
1808 mmu_spte_clear_track_bits(sptep);
1809 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1810 }
1811 }
1e3f42f0 1812
3cc5ea94
LT
1813 if (need_flush && kvm_available_flush_tlb_with_range()) {
1814 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1815 return 0;
1816 }
1817
0cf853c5 1818 return need_flush;
3da0dd43
IE
1819}
1820
6ce1f4e2
XG
1821struct slot_rmap_walk_iterator {
1822 /* input fields. */
1823 struct kvm_memory_slot *slot;
1824 gfn_t start_gfn;
1825 gfn_t end_gfn;
1826 int start_level;
1827 int end_level;
1828
1829 /* output fields. */
1830 gfn_t gfn;
018aabb5 1831 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1832 int level;
1833
1834 /* private field. */
018aabb5 1835 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1836};
1837
1838static void
1839rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1840{
1841 iterator->level = level;
1842 iterator->gfn = iterator->start_gfn;
1843 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1844 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1845 iterator->slot);
1846}
1847
1848static void
1849slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1850 struct kvm_memory_slot *slot, int start_level,
1851 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1852{
1853 iterator->slot = slot;
1854 iterator->start_level = start_level;
1855 iterator->end_level = end_level;
1856 iterator->start_gfn = start_gfn;
1857 iterator->end_gfn = end_gfn;
1858
1859 rmap_walk_init_level(iterator, iterator->start_level);
1860}
1861
1862static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1863{
1864 return !!iterator->rmap;
1865}
1866
1867static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1868{
1869 if (++iterator->rmap <= iterator->end_rmap) {
1870 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1871 return;
1872 }
1873
1874 if (++iterator->level > iterator->end_level) {
1875 iterator->rmap = NULL;
1876 return;
1877 }
1878
1879 rmap_walk_init_level(iterator, iterator->level);
1880}
1881
1882#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1883 _start_gfn, _end_gfn, _iter_) \
1884 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1885 _end_level_, _start_gfn, _end_gfn); \
1886 slot_rmap_walk_okay(_iter_); \
1887 slot_rmap_walk_next(_iter_))
1888
84504ef3
TY
1889static int kvm_handle_hva_range(struct kvm *kvm,
1890 unsigned long start,
1891 unsigned long end,
1892 unsigned long data,
1893 int (*handler)(struct kvm *kvm,
018aabb5 1894 struct kvm_rmap_head *rmap_head,
048212d0 1895 struct kvm_memory_slot *slot,
8a9522d2
ALC
1896 gfn_t gfn,
1897 int level,
84504ef3 1898 unsigned long data))
e930bffe 1899{
bc6678a3 1900 struct kvm_memslots *slots;
be6ba0f0 1901 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1902 struct slot_rmap_walk_iterator iterator;
1903 int ret = 0;
9da0e4d5 1904 int i;
bc6678a3 1905
9da0e4d5
PB
1906 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1907 slots = __kvm_memslots(kvm, i);
1908 kvm_for_each_memslot(memslot, slots) {
1909 unsigned long hva_start, hva_end;
1910 gfn_t gfn_start, gfn_end;
e930bffe 1911
9da0e4d5
PB
1912 hva_start = max(start, memslot->userspace_addr);
1913 hva_end = min(end, memslot->userspace_addr +
1914 (memslot->npages << PAGE_SHIFT));
1915 if (hva_start >= hva_end)
1916 continue;
1917 /*
1918 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1919 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1920 */
1921 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1922 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1923
3bae0459 1924 for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
e662ec3e 1925 KVM_MAX_HUGEPAGE_LEVEL,
9da0e4d5
PB
1926 gfn_start, gfn_end - 1,
1927 &iterator)
1928 ret |= handler(kvm, iterator.rmap, memslot,
1929 iterator.gfn, iterator.level, data);
1930 }
e930bffe
AA
1931 }
1932
f395302e 1933 return ret;
e930bffe
AA
1934}
1935
84504ef3
TY
1936static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1937 unsigned long data,
018aabb5
TY
1938 int (*handler)(struct kvm *kvm,
1939 struct kvm_rmap_head *rmap_head,
048212d0 1940 struct kvm_memory_slot *slot,
8a9522d2 1941 gfn_t gfn, int level,
84504ef3
TY
1942 unsigned long data))
1943{
1944 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1945}
1946
b3ae2096
TY
1947int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1948{
1949 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1950}
1951
748c0e31 1952int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1953{
0cf853c5 1954 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1955}
1956
018aabb5 1957static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1958 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1959 unsigned long data)
e930bffe 1960{
1e3f42f0 1961 u64 *sptep;
79f702a6 1962 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1963 int young = 0;
1964
f160c7b7
JS
1965 for_each_rmap_spte(rmap_head, &iter, sptep)
1966 young |= mmu_spte_age(sptep);
0d536790 1967
8a9522d2 1968 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1969 return young;
1970}
1971
018aabb5 1972static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1973 struct kvm_memory_slot *slot, gfn_t gfn,
1974 int level, unsigned long data)
8ee53820 1975{
1e3f42f0
TY
1976 u64 *sptep;
1977 struct rmap_iterator iter;
8ee53820 1978
83ef6c81
JS
1979 for_each_rmap_spte(rmap_head, &iter, sptep)
1980 if (is_accessed_spte(*sptep))
1981 return 1;
83ef6c81 1982 return 0;
8ee53820
AA
1983}
1984
53a27b39
MT
1985#define RMAP_RECYCLE_THRESHOLD 1000
1986
852e3c19 1987static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1988{
018aabb5 1989 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1990 struct kvm_mmu_page *sp;
1991
57354682 1992 sp = sptep_to_sp(spte);
53a27b39 1993
018aabb5 1994 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1995
018aabb5 1996 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1997 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1998 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1999}
2000
57128468 2001int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2002{
57128468 2003 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2004}
2005
8ee53820
AA
2006int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2007{
2008 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2009}
2010
d6c69ee9 2011#ifdef MMU_DEBUG
47ad8e68 2012static int is_empty_shadow_page(u64 *spt)
6aa8b732 2013{
139bdb2d
AK
2014 u64 *pos;
2015 u64 *end;
2016
47ad8e68 2017 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2018 if (is_shadow_present_pte(*pos)) {
b8688d51 2019 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2020 pos, *pos);
6aa8b732 2021 return 0;
139bdb2d 2022 }
6aa8b732
AK
2023 return 1;
2024}
d6c69ee9 2025#endif
6aa8b732 2026
45221ab6
DH
2027/*
2028 * This value is the sum of all of the kvm instances's
2029 * kvm->arch.n_used_mmu_pages values. We need a global,
2030 * aggregate version in order to make the slab shrinker
2031 * faster
2032 */
bc8a3d89 2033static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2034{
2035 kvm->arch.n_used_mmu_pages += nr;
2036 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2037}
2038
834be0d8 2039static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2040{
fa4a2c08 2041 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2042 hlist_del(&sp->hash_link);
bd4c86ea
XG
2043 list_del(&sp->link);
2044 free_page((unsigned long)sp->spt);
834be0d8
GN
2045 if (!sp->role.direct)
2046 free_page((unsigned long)sp->gfns);
e8ad9a70 2047 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2048}
2049
cea0f0e7
AK
2050static unsigned kvm_page_table_hashfn(gfn_t gfn)
2051{
114df303 2052 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2053}
2054
714b93da 2055static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2056 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2057{
cea0f0e7
AK
2058 if (!parent_pte)
2059 return;
cea0f0e7 2060
67052b35 2061 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2062}
2063
4db35314 2064static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2065 u64 *parent_pte)
2066{
8daf3462 2067 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2068}
2069
bcdd9a93
XG
2070static void drop_parent_pte(struct kvm_mmu_page *sp,
2071 u64 *parent_pte)
2072{
2073 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2074 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2075}
2076
47005792 2077static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2078{
67052b35 2079 struct kvm_mmu_page *sp;
7ddca7e4 2080
80feb89a
TY
2081 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2082 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2083 if (!direct)
80feb89a 2084 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2085 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
2086
2087 /*
2088 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2089 * depends on valid pages being added to the head of the list. See
2090 * comments in kvm_zap_obsolete_pages().
2091 */
ca333add 2092 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 2093 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2094 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2095 return sp;
ad8cfbe3
MT
2096}
2097
67052b35 2098static void mark_unsync(u64 *spte);
1047df1f 2099static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2100{
74c4e63a
TY
2101 u64 *sptep;
2102 struct rmap_iterator iter;
2103
2104 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2105 mark_unsync(sptep);
2106 }
0074ff63
MT
2107}
2108
67052b35 2109static void mark_unsync(u64 *spte)
0074ff63 2110{
67052b35 2111 struct kvm_mmu_page *sp;
1047df1f 2112 unsigned int index;
0074ff63 2113
57354682 2114 sp = sptep_to_sp(spte);
1047df1f
XG
2115 index = spte - sp->spt;
2116 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2117 return;
1047df1f 2118 if (sp->unsync_children++)
0074ff63 2119 return;
1047df1f 2120 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2121}
2122
e8bc217a 2123static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2124 struct kvm_mmu_page *sp)
e8bc217a 2125{
1f50f1b3 2126 return 0;
e8bc217a
MT
2127}
2128
0f53b5b1
XG
2129static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2130 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2131 const void *pte)
0f53b5b1
XG
2132{
2133 WARN_ON(1);
2134}
2135
60c8aec6
MT
2136#define KVM_PAGE_ARRAY_NR 16
2137
2138struct kvm_mmu_pages {
2139 struct mmu_page_and_offset {
2140 struct kvm_mmu_page *sp;
2141 unsigned int idx;
2142 } page[KVM_PAGE_ARRAY_NR];
2143 unsigned int nr;
2144};
2145
cded19f3
HE
2146static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2147 int idx)
4731d4c7 2148{
60c8aec6 2149 int i;
4731d4c7 2150
60c8aec6
MT
2151 if (sp->unsync)
2152 for (i=0; i < pvec->nr; i++)
2153 if (pvec->page[i].sp == sp)
2154 return 0;
2155
2156 pvec->page[pvec->nr].sp = sp;
2157 pvec->page[pvec->nr].idx = idx;
2158 pvec->nr++;
2159 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2160}
2161
fd951457
TY
2162static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2163{
2164 --sp->unsync_children;
2165 WARN_ON((int)sp->unsync_children < 0);
2166 __clear_bit(idx, sp->unsync_child_bitmap);
2167}
2168
60c8aec6
MT
2169static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2170 struct kvm_mmu_pages *pvec)
2171{
2172 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2173
37178b8b 2174 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2175 struct kvm_mmu_page *child;
4731d4c7
MT
2176 u64 ent = sp->spt[i];
2177
fd951457
TY
2178 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2179 clear_unsync_child_bit(sp, i);
2180 continue;
2181 }
7a8f1a74 2182
e47c4aee 2183 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
7a8f1a74
XG
2184
2185 if (child->unsync_children) {
2186 if (mmu_pages_add(pvec, child, i))
2187 return -ENOSPC;
2188
2189 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2190 if (!ret) {
2191 clear_unsync_child_bit(sp, i);
2192 continue;
2193 } else if (ret > 0) {
7a8f1a74 2194 nr_unsync_leaf += ret;
fd951457 2195 } else
7a8f1a74
XG
2196 return ret;
2197 } else if (child->unsync) {
2198 nr_unsync_leaf++;
2199 if (mmu_pages_add(pvec, child, i))
2200 return -ENOSPC;
2201 } else
fd951457 2202 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2203 }
2204
60c8aec6
MT
2205 return nr_unsync_leaf;
2206}
2207
e23d3fef
XG
2208#define INVALID_INDEX (-1)
2209
60c8aec6
MT
2210static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2211 struct kvm_mmu_pages *pvec)
2212{
0a47cd85 2213 pvec->nr = 0;
60c8aec6
MT
2214 if (!sp->unsync_children)
2215 return 0;
2216
e23d3fef 2217 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2218 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2219}
2220
4731d4c7
MT
2221static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2222{
2223 WARN_ON(!sp->unsync);
5e1b3ddb 2224 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2225 sp->unsync = 0;
2226 --kvm->stat.mmu_unsync;
2227}
2228
83cdb568
SC
2229static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2230 struct list_head *invalid_list);
7775834a
XG
2231static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2232 struct list_head *invalid_list);
4731d4c7 2233
ac101b7c
SC
2234#define for_each_valid_sp(_kvm, _sp, _list) \
2235 hlist_for_each_entry(_sp, _list, hash_link) \
fac026da 2236 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 2237 } else
1044b030
TY
2238
2239#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
ac101b7c
SC
2240 for_each_valid_sp(_kvm, _sp, \
2241 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
f3414bc7 2242 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2243
47c42e6b
SC
2244static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2245{
2246 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2247}
2248
f918b443 2249/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2250static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2251 struct list_head *invalid_list)
4731d4c7 2252{
47c42e6b
SC
2253 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2254 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2255 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2256 return false;
4731d4c7
MT
2257 }
2258
1f50f1b3 2259 return true;
4731d4c7
MT
2260}
2261
a2113634
SC
2262static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2263 struct list_head *invalid_list,
2264 bool remote_flush)
2265{
cfd32acf 2266 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2267 return false;
2268
2269 if (!list_empty(invalid_list))
2270 kvm_mmu_commit_zap_page(kvm, invalid_list);
2271 else
2272 kvm_flush_remote_tlbs(kvm);
2273 return true;
2274}
2275
35a70510
PB
2276static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2277 struct list_head *invalid_list,
2278 bool remote_flush, bool local_flush)
1d9dc7e0 2279{
a2113634 2280 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2281 return;
d98ba053 2282
a2113634 2283 if (local_flush)
8c8560b8 2284 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1d9dc7e0
XG
2285}
2286
e37fa785
XG
2287#ifdef CONFIG_KVM_MMU_AUDIT
2288#include "mmu_audit.c"
2289#else
2290static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2291static void mmu_audit_disable(void) { }
2292#endif
2293
002c5f73
SC
2294static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2295{
fac026da
SC
2296 return sp->role.invalid ||
2297 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
2298}
2299
1f50f1b3 2300static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2301 struct list_head *invalid_list)
1d9dc7e0 2302{
9a43c5d9
PB
2303 kvm_unlink_unsync_page(vcpu->kvm, sp);
2304 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2305}
2306
9f1a122f 2307/* @gfn should be write-protected at the call site */
2a74003a
PB
2308static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2309 struct list_head *invalid_list)
9f1a122f 2310{
9f1a122f 2311 struct kvm_mmu_page *s;
2a74003a 2312 bool ret = false;
9f1a122f 2313
b67bfe0d 2314 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2315 if (!s->unsync)
9f1a122f
XG
2316 continue;
2317
3bae0459 2318 WARN_ON(s->role.level != PG_LEVEL_4K);
2a74003a 2319 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2320 }
2321
2a74003a 2322 return ret;
9f1a122f
XG
2323}
2324
60c8aec6 2325struct mmu_page_path {
2a7266a8
YZ
2326 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2327 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2328};
2329
60c8aec6 2330#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2331 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2332 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2333 i = mmu_pages_next(&pvec, &parents, i))
2334
cded19f3
HE
2335static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2336 struct mmu_page_path *parents,
2337 int i)
60c8aec6
MT
2338{
2339 int n;
2340
2341 for (n = i+1; n < pvec->nr; n++) {
2342 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2343 unsigned idx = pvec->page[n].idx;
2344 int level = sp->role.level;
60c8aec6 2345
0a47cd85 2346 parents->idx[level-1] = idx;
3bae0459 2347 if (level == PG_LEVEL_4K)
0a47cd85 2348 break;
60c8aec6 2349
0a47cd85 2350 parents->parent[level-2] = sp;
60c8aec6
MT
2351 }
2352
2353 return n;
2354}
2355
0a47cd85
PB
2356static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2357 struct mmu_page_path *parents)
2358{
2359 struct kvm_mmu_page *sp;
2360 int level;
2361
2362 if (pvec->nr == 0)
2363 return 0;
2364
e23d3fef
XG
2365 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2366
0a47cd85
PB
2367 sp = pvec->page[0].sp;
2368 level = sp->role.level;
3bae0459 2369 WARN_ON(level == PG_LEVEL_4K);
0a47cd85
PB
2370
2371 parents->parent[level-2] = sp;
2372
2373 /* Also set up a sentinel. Further entries in pvec are all
2374 * children of sp, so this element is never overwritten.
2375 */
2376 parents->parent[level-1] = NULL;
2377 return mmu_pages_next(pvec, parents, 0);
2378}
2379
cded19f3 2380static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2381{
60c8aec6
MT
2382 struct kvm_mmu_page *sp;
2383 unsigned int level = 0;
2384
2385 do {
2386 unsigned int idx = parents->idx[level];
60c8aec6
MT
2387 sp = parents->parent[level];
2388 if (!sp)
2389 return;
2390
e23d3fef 2391 WARN_ON(idx == INVALID_INDEX);
fd951457 2392 clear_unsync_child_bit(sp, idx);
60c8aec6 2393 level++;
0a47cd85 2394 } while (!sp->unsync_children);
60c8aec6 2395}
4731d4c7 2396
60c8aec6
MT
2397static void mmu_sync_children(struct kvm_vcpu *vcpu,
2398 struct kvm_mmu_page *parent)
2399{
2400 int i;
2401 struct kvm_mmu_page *sp;
2402 struct mmu_page_path parents;
2403 struct kvm_mmu_pages pages;
d98ba053 2404 LIST_HEAD(invalid_list);
50c9e6f3 2405 bool flush = false;
60c8aec6 2406
60c8aec6 2407 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2408 bool protected = false;
b1a36821
MT
2409
2410 for_each_sp(pages, sp, parents, i)
54bf36aa 2411 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2412
50c9e6f3 2413 if (protected) {
b1a36821 2414 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2415 flush = false;
2416 }
b1a36821 2417
60c8aec6 2418 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2419 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2420 mmu_pages_clear_parents(&parents);
2421 }
50c9e6f3
PB
2422 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2423 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2424 cond_resched_lock(&vcpu->kvm->mmu_lock);
2425 flush = false;
2426 }
60c8aec6 2427 }
50c9e6f3
PB
2428
2429 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2430}
2431
a30f47cb
XG
2432static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2433{
e5691a81 2434 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2435}
2436
2437static void clear_sp_write_flooding_count(u64 *spte)
2438{
57354682 2439 __clear_sp_write_flooding_count(sptep_to_sp(spte));
a30f47cb
XG
2440}
2441
cea0f0e7
AK
2442static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2443 gfn_t gfn,
2444 gva_t gaddr,
2445 unsigned level,
f6e2c02b 2446 int direct,
0a2b64c5 2447 unsigned int access)
cea0f0e7 2448{
fb58a9c3 2449 bool direct_mmu = vcpu->arch.mmu->direct_map;
cea0f0e7 2450 union kvm_mmu_page_role role;
ac101b7c 2451 struct hlist_head *sp_list;
cea0f0e7 2452 unsigned quadrant;
9f1a122f 2453 struct kvm_mmu_page *sp;
9f1a122f 2454 bool need_sync = false;
2a74003a 2455 bool flush = false;
f3414bc7 2456 int collisions = 0;
2a74003a 2457 LIST_HEAD(invalid_list);
cea0f0e7 2458
36d9594d 2459 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2460 role.level = level;
f6e2c02b 2461 role.direct = direct;
84b0c8c6 2462 if (role.direct)
47c42e6b 2463 role.gpte_is_8_bytes = true;
41074d07 2464 role.access = access;
fb58a9c3 2465 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2466 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2467 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2468 role.quadrant = quadrant;
2469 }
ac101b7c
SC
2470
2471 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2472 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
f3414bc7
DM
2473 if (sp->gfn != gfn) {
2474 collisions++;
2475 continue;
2476 }
2477
7ae680eb
XG
2478 if (!need_sync && sp->unsync)
2479 need_sync = true;
4731d4c7 2480
7ae680eb
XG
2481 if (sp->role.word != role.word)
2482 continue;
4731d4c7 2483
fb58a9c3
SC
2484 if (direct_mmu)
2485 goto trace_get_page;
2486
2a74003a
PB
2487 if (sp->unsync) {
2488 /* The page is good, but __kvm_sync_page might still end
2489 * up zapping it. If so, break in order to rebuild it.
2490 */
2491 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2492 break;
2493
2494 WARN_ON(!list_empty(&invalid_list));
8c8560b8 2495 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2a74003a 2496 }
e02aa901 2497
98bba238 2498 if (sp->unsync_children)
8c8560b8 2499 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
e02aa901 2500
a30f47cb 2501 __clear_sp_write_flooding_count(sp);
fb58a9c3
SC
2502
2503trace_get_page:
7ae680eb 2504 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2505 goto out;
7ae680eb 2506 }
47005792 2507
dfc5aa00 2508 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2509
2510 sp = kvm_mmu_alloc_page(vcpu, direct);
2511
4db35314
AK
2512 sp->gfn = gfn;
2513 sp->role = role;
ac101b7c 2514 hlist_add_head(&sp->hash_link, sp_list);
f6e2c02b 2515 if (!direct) {
56ca57f9
XG
2516 /*
2517 * we should do write protection before syncing pages
2518 * otherwise the content of the synced shadow page may
2519 * be inconsistent with guest page table.
2520 */
2521 account_shadowed(vcpu->kvm, sp);
3bae0459 2522 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
c3134ce2 2523 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2524
3bae0459 2525 if (level > PG_LEVEL_4K && need_sync)
2a74003a 2526 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2527 }
77492664 2528 clear_page(sp->spt);
f691fe1d 2529 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2530
2531 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2532out:
2533 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2534 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2535 return sp;
cea0f0e7
AK
2536}
2537
7eb77e9f
JS
2538static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2539 struct kvm_vcpu *vcpu, hpa_t root,
2540 u64 addr)
2d11123a
AK
2541{
2542 iterator->addr = addr;
7eb77e9f 2543 iterator->shadow_addr = root;
44dd3ffa 2544 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2545
2a7266a8 2546 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2547 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2548 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2549 --iterator->level;
2550
2d11123a 2551 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2552 /*
2553 * prev_root is currently only used for 64-bit hosts. So only
2554 * the active root_hpa is valid here.
2555 */
44dd3ffa 2556 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2557
2d11123a 2558 iterator->shadow_addr
44dd3ffa 2559 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2560 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2561 --iterator->level;
2562 if (!iterator->shadow_addr)
2563 iterator->level = 0;
2564 }
2565}
2566
7eb77e9f
JS
2567static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2568 struct kvm_vcpu *vcpu, u64 addr)
2569{
44dd3ffa 2570 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2571 addr);
2572}
2573
2d11123a
AK
2574static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2575{
3bae0459 2576 if (iterator->level < PG_LEVEL_4K)
2d11123a 2577 return false;
4d88954d 2578
2d11123a
AK
2579 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2580 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2581 return true;
2582}
2583
c2a2ac2b
XG
2584static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2585 u64 spte)
2d11123a 2586{
c2a2ac2b 2587 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2588 iterator->level = 0;
2589 return;
2590 }
2591
c2a2ac2b 2592 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2593 --iterator->level;
2594}
2595
c2a2ac2b
XG
2596static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2597{
bb606a9b 2598 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2599}
2600
98bba238
TY
2601static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2602 struct kvm_mmu_page *sp)
32ef26a3
AK
2603{
2604 u64 spte;
2605
ffb128c8 2606 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2607
ffb128c8 2608 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2609 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2610
2611 if (sp_ad_disabled(sp))
6eeb4ef0 2612 spte |= SPTE_AD_DISABLED_MASK;
ac8d57e5
PF
2613 else
2614 spte |= shadow_accessed_mask;
24db2734 2615
1df9f2dc 2616 mmu_spte_set(sptep, spte);
98bba238
TY
2617
2618 mmu_page_add_parent_pte(vcpu, sp, sptep);
2619
2620 if (sp->unsync_children || sp->unsync)
2621 mark_unsync(sptep);
32ef26a3
AK
2622}
2623
a357bd22
AK
2624static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2625 unsigned direct_access)
2626{
2627 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2628 struct kvm_mmu_page *child;
2629
2630 /*
2631 * For the direct sp, if the guest pte's dirty bit
2632 * changed form clean to dirty, it will corrupt the
2633 * sp's access: allow writable in the read-only sp,
2634 * so we should update the spte at this point to get
2635 * a new sp with the correct access.
2636 */
e47c4aee 2637 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
a357bd22
AK
2638 if (child->role.access == direct_access)
2639 return;
2640
bcdd9a93 2641 drop_parent_pte(child, sptep);
c3134ce2 2642 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2643 }
2644}
2645
505aef8f 2646static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2647 u64 *spte)
2648{
2649 u64 pte;
2650 struct kvm_mmu_page *child;
2651
2652 pte = *spte;
2653 if (is_shadow_present_pte(pte)) {
505aef8f 2654 if (is_last_spte(pte, sp->role.level)) {
c3707958 2655 drop_spte(kvm, spte);
505aef8f
XG
2656 if (is_large_pte(pte))
2657 --kvm->stat.lpages;
2658 } else {
e47c4aee 2659 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2660 drop_parent_pte(child, spte);
38e3b2b2 2661 }
505aef8f
XG
2662 return true;
2663 }
2664
2665 if (is_mmio_spte(pte))
ce88decf 2666 mmu_spte_clear_no_track(spte);
c3707958 2667
505aef8f 2668 return false;
38e3b2b2
XG
2669}
2670
90cb0529 2671static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2672 struct kvm_mmu_page *sp)
a436036b 2673{
697fe2e2 2674 unsigned i;
697fe2e2 2675
38e3b2b2
XG
2676 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2677 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2678}
2679
31aa2b44 2680static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2681{
1e3f42f0
TY
2682 u64 *sptep;
2683 struct rmap_iterator iter;
a436036b 2684
018aabb5 2685 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2686 drop_parent_pte(sp, sptep);
31aa2b44
AK
2687}
2688
60c8aec6 2689static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2690 struct kvm_mmu_page *parent,
2691 struct list_head *invalid_list)
4731d4c7 2692{
60c8aec6
MT
2693 int i, zapped = 0;
2694 struct mmu_page_path parents;
2695 struct kvm_mmu_pages pages;
4731d4c7 2696
3bae0459 2697 if (parent->role.level == PG_LEVEL_4K)
4731d4c7 2698 return 0;
60c8aec6 2699
60c8aec6
MT
2700 while (mmu_unsync_walk(parent, &pages)) {
2701 struct kvm_mmu_page *sp;
2702
2703 for_each_sp(pages, sp, parents, i) {
7775834a 2704 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2705 mmu_pages_clear_parents(&parents);
77662e00 2706 zapped++;
60c8aec6 2707 }
60c8aec6
MT
2708 }
2709
2710 return zapped;
4731d4c7
MT
2711}
2712
83cdb568
SC
2713static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2714 struct kvm_mmu_page *sp,
2715 struct list_head *invalid_list,
2716 int *nr_zapped)
31aa2b44 2717{
83cdb568 2718 bool list_unstable;
f691fe1d 2719
7775834a 2720 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2721 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2722 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2723 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2724 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2725
83cdb568
SC
2726 /* Zapping children means active_mmu_pages has become unstable. */
2727 list_unstable = *nr_zapped;
2728
f6e2c02b 2729 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2730 unaccount_shadowed(kvm, sp);
5304b8d3 2731
4731d4c7
MT
2732 if (sp->unsync)
2733 kvm_unlink_unsync_page(kvm, sp);
4db35314 2734 if (!sp->root_count) {
54a4f023 2735 /* Count self */
83cdb568 2736 (*nr_zapped)++;
f95eec9b
SC
2737
2738 /*
2739 * Already invalid pages (previously active roots) are not on
2740 * the active page list. See list_del() in the "else" case of
2741 * !sp->root_count.
2742 */
2743 if (sp->role.invalid)
2744 list_add(&sp->link, invalid_list);
2745 else
2746 list_move(&sp->link, invalid_list);
aa6bd187 2747 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2748 } else {
f95eec9b
SC
2749 /*
2750 * Remove the active root from the active page list, the root
2751 * will be explicitly freed when the root_count hits zero.
2752 */
2753 list_del(&sp->link);
05988d72 2754
10605204
SC
2755 /*
2756 * Obsolete pages cannot be used on any vCPUs, see the comment
2757 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2758 * treats invalid shadow pages as being obsolete.
2759 */
2760 if (!is_obsolete_sp(kvm, sp))
05988d72 2761 kvm_reload_remote_mmus(kvm);
2e53d63a 2762 }
7775834a 2763
b8e8c830
PB
2764 if (sp->lpage_disallowed)
2765 unaccount_huge_nx_page(kvm, sp);
2766
7775834a 2767 sp->role.invalid = 1;
83cdb568
SC
2768 return list_unstable;
2769}
2770
2771static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2772 struct list_head *invalid_list)
2773{
2774 int nr_zapped;
2775
2776 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2777 return nr_zapped;
a436036b
AK
2778}
2779
7775834a
XG
2780static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2781 struct list_head *invalid_list)
2782{
945315b9 2783 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2784
2785 if (list_empty(invalid_list))
2786 return;
2787
c142786c 2788 /*
9753f529
LT
2789 * We need to make sure everyone sees our modifications to
2790 * the page tables and see changes to vcpu->mode here. The barrier
2791 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2792 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2793 *
2794 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2795 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2796 */
2797 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2798
945315b9 2799 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2800 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2801 kvm_mmu_free_page(sp);
945315b9 2802 }
7775834a
XG
2803}
2804
6b82ef2c
SC
2805static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2806 unsigned long nr_to_zap)
ba7888dd 2807{
6b82ef2c
SC
2808 unsigned long total_zapped = 0;
2809 struct kvm_mmu_page *sp, *tmp;
ba7888dd 2810 LIST_HEAD(invalid_list);
6b82ef2c
SC
2811 bool unstable;
2812 int nr_zapped;
ba7888dd 2813
6b82ef2c 2814 if (list_empty(&kvm->arch.active_mmu_pages))
ba7888dd
SC
2815 return 0;
2816
6b82ef2c
SC
2817restart:
2818 list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2819 /*
2820 * Don't zap active root pages, the page itself can't be freed
2821 * and zapping it will just force vCPUs to realloc and reload.
2822 */
2823 if (sp->root_count)
2824 continue;
2825
2826 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2827 &nr_zapped);
2828 total_zapped += nr_zapped;
2829 if (total_zapped >= nr_to_zap)
ba7888dd
SC
2830 break;
2831
6b82ef2c
SC
2832 if (unstable)
2833 goto restart;
ba7888dd 2834 }
6b82ef2c
SC
2835
2836 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2837
2838 kvm->stat.mmu_recycled += total_zapped;
2839 return total_zapped;
2840}
2841
afe8d7e6
SC
2842static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2843{
2844 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2845 return kvm->arch.n_max_mmu_pages -
2846 kvm->arch.n_used_mmu_pages;
2847
2848 return 0;
2849}
2850
6b82ef2c
SC
2851static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2852{
2853 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2854
2855 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2856 return 0;
2857
2858 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
ba7888dd
SC
2859
2860 if (!kvm_mmu_available_pages(vcpu->kvm))
2861 return -ENOSPC;
2862 return 0;
2863}
2864
82ce2c96
IE
2865/*
2866 * Changing the number of mmu pages allocated to the vm
49d5ca26 2867 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2868 */
bc8a3d89 2869void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2870{
b34cb590
TY
2871 spin_lock(&kvm->mmu_lock);
2872
49d5ca26 2873 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
6b82ef2c
SC
2874 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2875 goal_nr_mmu_pages);
82ce2c96 2876
49d5ca26 2877 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2878 }
82ce2c96 2879
49d5ca26 2880 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2881
2882 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2883}
2884
1cb3f3ae 2885int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2886{
4db35314 2887 struct kvm_mmu_page *sp;
d98ba053 2888 LIST_HEAD(invalid_list);
a436036b
AK
2889 int r;
2890
9ad17b10 2891 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2892 r = 0;
1cb3f3ae 2893 spin_lock(&kvm->mmu_lock);
b67bfe0d 2894 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2895 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2896 sp->role.word);
2897 r = 1;
f41d335a 2898 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2899 }
d98ba053 2900 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2901 spin_unlock(&kvm->mmu_lock);
2902
a436036b 2903 return r;
cea0f0e7 2904}
1cb3f3ae 2905EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2906
5c520e90 2907static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2908{
2909 trace_kvm_mmu_unsync_page(sp);
2910 ++vcpu->kvm->stat.mmu_unsync;
2911 sp->unsync = 1;
2912
2913 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2914}
2915
3d0c27ad
XG
2916static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2917 bool can_unsync)
4731d4c7 2918{
5c520e90 2919 struct kvm_mmu_page *sp;
4731d4c7 2920
3d0c27ad
XG
2921 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2922 return true;
9cf5cf5a 2923
5c520e90 2924 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2925 if (!can_unsync)
3d0c27ad 2926 return true;
36a2e677 2927
5c520e90
XG
2928 if (sp->unsync)
2929 continue;
9cf5cf5a 2930
3bae0459 2931 WARN_ON(sp->role.level != PG_LEVEL_4K);
5c520e90 2932 kvm_unsync_page(vcpu, sp);
4731d4c7 2933 }
3d0c27ad 2934
578e1c4d
JS
2935 /*
2936 * We need to ensure that the marking of unsync pages is visible
2937 * before the SPTE is updated to allow writes because
2938 * kvm_mmu_sync_roots() checks the unsync flags without holding
2939 * the MMU lock and so can race with this. If the SPTE was updated
2940 * before the page had been marked as unsync-ed, something like the
2941 * following could happen:
2942 *
2943 * CPU 1 CPU 2
2944 * ---------------------------------------------------------------------
2945 * 1.2 Host updates SPTE
2946 * to be writable
2947 * 2.1 Guest writes a GPTE for GVA X.
2948 * (GPTE being in the guest page table shadowed
2949 * by the SP from CPU 1.)
2950 * This reads SPTE during the page table walk.
2951 * Since SPTE.W is read as 1, there is no
2952 * fault.
2953 *
2954 * 2.2 Guest issues TLB flush.
2955 * That causes a VM Exit.
2956 *
2957 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2958 * Since it is false, so it just returns.
2959 *
2960 * 2.4 Guest accesses GVA X.
2961 * Since the mapping in the SP was not updated,
2962 * so the old mapping for GVA X incorrectly
2963 * gets used.
2964 * 1.1 Host marks SP
2965 * as unsync
2966 * (sp->unsync = true)
2967 *
2968 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2969 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2970 * pairs with this write barrier.
2971 */
2972 smp_wmb();
2973
3d0c27ad 2974 return false;
4731d4c7
MT
2975}
2976
ba049e93 2977static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2978{
2979 if (pfn_valid(pfn))
aa2e063a
HZ
2980 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2981 /*
2982 * Some reserved pages, such as those from NVDIMM
2983 * DAX devices, are not for MMIO, and can be mapped
2984 * with cached memory type for better performance.
2985 * However, the above check misconceives those pages
2986 * as MMIO, and results in KVM mapping them with UC
2987 * memory type, which would hurt the performance.
2988 * Therefore, we check the host memory type in addition
2989 * and only treat UC/UC-/WC pages as MMIO.
2990 */
2991 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 2992
0c55671f
KA
2993 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2994 pfn_to_hpa(pfn + 1) - 1,
2995 E820_TYPE_RAM);
d1fe9219
PB
2996}
2997
5ce4786f
JS
2998/* Bits which may be returned by set_spte() */
2999#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
3000#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
3001
d555c333 3002static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
0a2b64c5 3003 unsigned int pte_access, int level,
ba049e93 3004 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 3005 bool can_unsync, bool host_writable)
1c4f1fd6 3006{
ffb128c8 3007 u64 spte = 0;
1e73f9dd 3008 int ret = 0;
ac8d57e5 3009 struct kvm_mmu_page *sp;
64d4d521 3010
54bf36aa 3011 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
3012 return 0;
3013
57354682 3014 sp = sptep_to_sp(sptep);
ac8d57e5 3015 if (sp_ad_disabled(sp))
6eeb4ef0 3016 spte |= SPTE_AD_DISABLED_MASK;
1f4e5fc8
PB
3017 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3018 spte |= SPTE_AD_WRPROT_ONLY_MASK;
ac8d57e5 3019
d95c5568
BD
3020 /*
3021 * For the EPT case, shadow_present_mask is 0 if hardware
3022 * supports exec-only page table entries. In that case,
3023 * ACC_USER_MASK and shadow_user_mask are used to represent
3024 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3025 */
ffb128c8 3026 spte |= shadow_present_mask;
947da538 3027 if (!speculative)
ac8d57e5 3028 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 3029
3bae0459 3030 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
b8e8c830
PB
3031 is_nx_huge_page_enabled()) {
3032 pte_access &= ~ACC_EXEC_MASK;
3033 }
3034
7b52345e
SY
3035 if (pte_access & ACC_EXEC_MASK)
3036 spte |= shadow_x_mask;
3037 else
3038 spte |= shadow_nx_mask;
49fde340 3039
1c4f1fd6 3040 if (pte_access & ACC_USER_MASK)
7b52345e 3041 spte |= shadow_user_mask;
49fde340 3042
3bae0459 3043 if (level > PG_LEVEL_4K)
05da4558 3044 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 3045 if (tdp_enabled)
afaf0b2f 3046 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
d1fe9219 3047 kvm_is_mmio_pfn(pfn));
1c4f1fd6 3048
9bdbba13 3049 if (host_writable)
1403283a 3050 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
3051 else
3052 pte_access &= ~ACC_WRITE_MASK;
1403283a 3053
daaf216c
TL
3054 if (!kvm_is_mmio_pfn(pfn))
3055 spte |= shadow_me_mask;
3056
35149e21 3057 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 3058
c2288505 3059 if (pte_access & ACC_WRITE_MASK) {
49fde340 3060 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3061
ecc5589f
MT
3062 /*
3063 * Optimization: for pte sync, if spte was writable the hash
3064 * lookup is unnecessary (and expensive). Write protection
3065 * is responsibility of mmu_get_page / kvm_sync_page.
3066 * Same reasoning can be applied to dirty page accounting.
3067 */
8dae4445 3068 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3069 goto set_pte;
3070
4731d4c7 3071 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3072 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3073 __func__, gfn);
5ce4786f 3074 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3075 pte_access &= ~ACC_WRITE_MASK;
49fde340 3076 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3077 }
3078 }
3079
9b51a630 3080 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3081 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3082 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3083 }
1c4f1fd6 3084
f160c7b7
JS
3085 if (speculative)
3086 spte = mark_spte_for_access_track(spte);
3087
38187c83 3088set_pte:
6e7d0354 3089 if (mmu_spte_update(sptep, spte))
5ce4786f 3090 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
3091 return ret;
3092}
3093
0a2b64c5
BG
3094static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3095 unsigned int pte_access, int write_fault, int level,
3096 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3097 bool host_writable)
1e73f9dd
MT
3098{
3099 int was_rmapped = 0;
53a27b39 3100 int rmap_count;
5ce4786f 3101 int set_spte_ret;
9b8ebbdb 3102 int ret = RET_PF_RETRY;
c2a4eadf 3103 bool flush = false;
1e73f9dd 3104
f7616203
XG
3105 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3106 *sptep, write_fault, gfn);
1e73f9dd 3107
afd28fe1 3108 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3109 /*
3110 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3111 * the parent of the now unreachable PTE.
3112 */
3bae0459 3113 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
1e73f9dd 3114 struct kvm_mmu_page *child;
d555c333 3115 u64 pte = *sptep;
1e73f9dd 3116
e47c4aee 3117 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3118 drop_parent_pte(child, sptep);
c2a4eadf 3119 flush = true;
d555c333 3120 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3121 pgprintk("hfn old %llx new %llx\n",
d555c333 3122 spte_to_pfn(*sptep), pfn);
c3707958 3123 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3124 flush = true;
6bed6b9e
JR
3125 } else
3126 was_rmapped = 1;
1e73f9dd 3127 }
852e3c19 3128
5ce4786f
JS
3129 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3130 speculative, true, host_writable);
3131 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3132 if (write_fault)
9b8ebbdb 3133 ret = RET_PF_EMULATE;
8c8560b8 3134 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
a378b4e6 3135 }
c3134ce2 3136
c2a4eadf 3137 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3138 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3139 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3140
029499b4 3141 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3142 ret = RET_PF_EMULATE;
ce88decf 3143
d555c333 3144 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3145 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3146 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3147 ++vcpu->kvm->stat.lpages;
3148
ffb61bb3 3149 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3150 if (!was_rmapped) {
3151 rmap_count = rmap_add(vcpu, sptep, gfn);
3152 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3153 rmap_recycle(vcpu, sptep, gfn);
3154 }
1c4f1fd6 3155 }
cb9aaa30 3156
9b8ebbdb 3157 return ret;
1c4f1fd6
AK
3158}
3159
ba049e93 3160static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3161 bool no_dirty_log)
3162{
3163 struct kvm_memory_slot *slot;
957ed9ef 3164
5d163b1c 3165 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3166 if (!slot)
6c8ee57b 3167 return KVM_PFN_ERR_FAULT;
957ed9ef 3168
037d92dc 3169 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3170}
3171
3172static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3173 struct kvm_mmu_page *sp,
3174 u64 *start, u64 *end)
3175{
3176 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3177 struct kvm_memory_slot *slot;
0a2b64c5 3178 unsigned int access = sp->role.access;
957ed9ef
XG
3179 int i, ret;
3180 gfn_t gfn;
3181
3182 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3183 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3184 if (!slot)
957ed9ef
XG
3185 return -1;
3186
d9ef13c2 3187 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3188 if (ret <= 0)
3189 return -1;
3190
43fdcda9 3191 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3192 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3193 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3194 put_page(pages[i]);
3195 }
957ed9ef
XG
3196
3197 return 0;
3198}
3199
3200static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3201 struct kvm_mmu_page *sp, u64 *sptep)
3202{
3203 u64 *spte, *start = NULL;
3204 int i;
3205
3206 WARN_ON(!sp->role.direct);
3207
3208 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3209 spte = sp->spt + i;
3210
3211 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3212 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3213 if (!start)
3214 continue;
3215 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3216 break;
3217 start = NULL;
3218 } else if (!start)
3219 start = spte;
3220 }
3221}
3222
3223static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3224{
3225 struct kvm_mmu_page *sp;
3226
57354682 3227 sp = sptep_to_sp(sptep);
ac8d57e5 3228
957ed9ef 3229 /*
ac8d57e5
PF
3230 * Without accessed bits, there's no way to distinguish between
3231 * actually accessed translations and prefetched, so disable pte
3232 * prefetch if accessed bits aren't available.
957ed9ef 3233 */
ac8d57e5 3234 if (sp_ad_disabled(sp))
957ed9ef
XG
3235 return;
3236
3bae0459 3237 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
3238 return;
3239
3240 __direct_pte_prefetch(vcpu, sp, sptep);
3241}
3242
db543216 3243static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 3244 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 3245{
db543216
SC
3246 unsigned long hva;
3247 pte_t *pte;
3248 int level;
3249
e851265a 3250 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3bae0459 3251 return PG_LEVEL_4K;
db543216 3252
293e306e
SC
3253 /*
3254 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3255 * is not solely for performance, it's also necessary to avoid the
3256 * "writable" check in __gfn_to_hva_many(), which will always fail on
3257 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3258 * page fault steps have already verified the guest isn't writing a
3259 * read-only memslot.
3260 */
db543216
SC
3261 hva = __gfn_to_hva_memslot(slot, gfn);
3262
3263 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3264 if (unlikely(!pte))
3bae0459 3265 return PG_LEVEL_4K;
db543216
SC
3266
3267 return level;
3268}
3269
83f06fa7
SC
3270static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3271 int max_level, kvm_pfn_t *pfnp)
0885904d 3272{
293e306e 3273 struct kvm_memory_slot *slot;
2c0629f4 3274 struct kvm_lpage_info *linfo;
0885904d 3275 kvm_pfn_t pfn = *pfnp;
17eff019 3276 kvm_pfn_t mask;
83f06fa7 3277 int level;
17eff019 3278
3bae0459
SC
3279 if (unlikely(max_level == PG_LEVEL_4K))
3280 return PG_LEVEL_4K;
17eff019 3281
e851265a 3282 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3bae0459 3283 return PG_LEVEL_4K;
17eff019 3284
293e306e
SC
3285 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3286 if (!slot)
3bae0459 3287 return PG_LEVEL_4K;
293e306e 3288
703c335d 3289 max_level = min(max_level, max_page_level);
3bae0459 3290 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2c0629f4
SC
3291 linfo = lpage_info_slot(gfn, slot, max_level);
3292 if (!linfo->disallow_lpage)
293e306e
SC
3293 break;
3294 }
3295
3bae0459
SC
3296 if (max_level == PG_LEVEL_4K)
3297 return PG_LEVEL_4K;
293e306e
SC
3298
3299 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3bae0459 3300 if (level == PG_LEVEL_4K)
83f06fa7 3301 return level;
17eff019 3302
db543216 3303 level = min(level, max_level);
0885904d
SC
3304
3305 /*
17eff019
SC
3306 * mmu_notifier_retry() was successful and mmu_lock is held, so
3307 * the pmd can't be split from under us.
0885904d 3308 */
17eff019
SC
3309 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3310 VM_BUG_ON((gfn & mask) != (pfn & mask));
3311 *pfnp = pfn & ~mask;
83f06fa7
SC
3312
3313 return level;
0885904d
SC
3314}
3315
b8e8c830
PB
3316static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3317 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3318{
3319 int level = *levelp;
3320 u64 spte = *it.sptep;
3321
3bae0459 3322 if (it.level == level && level > PG_LEVEL_4K &&
b8e8c830
PB
3323 is_nx_huge_page_enabled() &&
3324 is_shadow_present_pte(spte) &&
3325 !is_large_pte(spte)) {
3326 /*
3327 * A small SPTE exists for this pfn, but FNAME(fetch)
3328 * and __direct_map would like to create a large PTE
3329 * instead: just force them to go down another level,
3330 * patching back for them into pfn the next 9 bits of
3331 * the address.
3332 */
3333 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3334 *pfnp |= gfn & page_mask;
3335 (*levelp)--;
3336 }
3337}
3338
3fcf2d1b 3339static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
83f06fa7
SC
3340 int map_writable, int max_level, kvm_pfn_t pfn,
3341 bool prefault, bool account_disallowed_nx_lpage)
140754bc 3342{
3fcf2d1b 3343 struct kvm_shadow_walk_iterator it;
140754bc 3344 struct kvm_mmu_page *sp;
83f06fa7 3345 int level, ret;
3fcf2d1b
PB
3346 gfn_t gfn = gpa >> PAGE_SHIFT;
3347 gfn_t base_gfn = gfn;
6aa8b732 3348
0c7a98e3 3349 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 3350 return RET_PF_RETRY;
989c6b34 3351
83f06fa7 3352 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
4cd071d1 3353
335e192a 3354 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 3355 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
3356 /*
3357 * We cannot overwrite existing page tables with an NX
3358 * large page, as the leaf could be executable.
3359 */
3360 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3361
3fcf2d1b
PB
3362 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3363 if (it.level == level)
9f652d21 3364 break;
6aa8b732 3365
3fcf2d1b
PB
3366 drop_large_spte(vcpu, it.sptep);
3367 if (!is_shadow_present_pte(*it.sptep)) {
3368 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3369 it.level - 1, true, ACC_ALL);
c9fa0b3b 3370
3fcf2d1b 3371 link_shadow_page(vcpu, it.sptep, sp);
2cb70fd4 3372 if (account_disallowed_nx_lpage)
b8e8c830 3373 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
3374 }
3375 }
3fcf2d1b
PB
3376
3377 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3378 write, level, base_gfn, pfn, prefault,
3379 map_writable);
3380 direct_pte_prefetch(vcpu, it.sptep);
3381 ++vcpu->stat.pf_fixed;
3382 return ret;
6aa8b732
AK
3383}
3384
77db5cbd 3385static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3386{
585a8b9b 3387 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3388}
3389
ba049e93 3390static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3391{
4d8b81ab
XG
3392 /*
3393 * Do not cache the mmio info caused by writing the readonly gfn
3394 * into the spte otherwise read access on readonly gfn also can
3395 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3396 */
3397 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3398 return RET_PF_EMULATE;
4d8b81ab 3399
e6c1502b 3400 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3401 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3402 return RET_PF_RETRY;
d7c55201 3403 }
edba23e5 3404
2c151b25 3405 return -EFAULT;
bf998156
HY
3406}
3407
d7c55201 3408static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
3409 kvm_pfn_t pfn, unsigned int access,
3410 int *ret_val)
d7c55201 3411{
d7c55201 3412 /* The pfn is invalid, report the error! */
81c52c56 3413 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3414 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3415 return true;
d7c55201
XG
3416 }
3417
ce88decf 3418 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
3419 vcpu_cache_mmio_info(vcpu, gva, gfn,
3420 access & shadow_mmio_access_mask);
d7c55201 3421
798e88b3 3422 return false;
d7c55201
XG
3423}
3424
e5552fd2 3425static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3426{
1c118b82
XG
3427 /*
3428 * Do not fix the mmio spte with invalid generation number which
3429 * need to be updated by slow page fault path.
3430 */
3431 if (unlikely(error_code & PFERR_RSVD_MASK))
3432 return false;
3433
f160c7b7
JS
3434 /* See if the page fault is due to an NX violation */
3435 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3436 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3437 return false;
3438
c7ba5b48 3439 /*
f160c7b7
JS
3440 * #PF can be fast if:
3441 * 1. The shadow page table entry is not present, which could mean that
3442 * the fault is potentially caused by access tracking (if enabled).
3443 * 2. The shadow page table entry is present and the fault
3444 * is caused by write-protect, that means we just need change the W
3445 * bit of the spte which can be done out of mmu-lock.
3446 *
3447 * However, if access tracking is disabled we know that a non-present
3448 * page must be a genuine page fault where we have to create a new SPTE.
3449 * So, if access tracking is disabled, we return true only for write
3450 * accesses to a present page.
c7ba5b48 3451 */
c7ba5b48 3452
f160c7b7
JS
3453 return shadow_acc_track_mask != 0 ||
3454 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3455 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3456}
3457
97dceba2
JS
3458/*
3459 * Returns true if the SPTE was fixed successfully. Otherwise,
3460 * someone else modified the SPTE from its original value.
3461 */
c7ba5b48 3462static bool
92a476cb 3463fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3464 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3465{
c7ba5b48
XG
3466 gfn_t gfn;
3467
3468 WARN_ON(!sp->role.direct);
3469
9b51a630
KH
3470 /*
3471 * Theoretically we could also set dirty bit (and flush TLB) here in
3472 * order to eliminate unnecessary PML logging. See comments in
3473 * set_spte. But fast_page_fault is very unlikely to happen with PML
3474 * enabled, so we do not do this. This might result in the same GPA
3475 * to be logged in PML buffer again when the write really happens, and
3476 * eventually to be called by mark_page_dirty twice. But it's also no
3477 * harm. This also avoids the TLB flush needed after setting dirty bit
3478 * so non-PML cases won't be impacted.
3479 *
3480 * Compare with set_spte where instead shadow_dirty_mask is set.
3481 */
f160c7b7 3482 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3483 return false;
3484
d3e328f2 3485 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3486 /*
3487 * The gfn of direct spte is stable since it is
3488 * calculated by sp->gfn.
3489 */
3490 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3491 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3492 }
c7ba5b48
XG
3493
3494 return true;
3495}
3496
d3e328f2
JS
3497static bool is_access_allowed(u32 fault_err_code, u64 spte)
3498{
3499 if (fault_err_code & PFERR_FETCH_MASK)
3500 return is_executable_pte(spte);
3501
3502 if (fault_err_code & PFERR_WRITE_MASK)
3503 return is_writable_pte(spte);
3504
3505 /* Fault was on Read access */
3506 return spte & PT_PRESENT_MASK;
3507}
3508
c7ba5b48
XG
3509/*
3510 * Return value:
3511 * - true: let the vcpu to access on the same address again.
3512 * - false: let the real page fault path to fix it.
3513 */
f9fa2509 3514static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
c7ba5b48
XG
3515 u32 error_code)
3516{
3517 struct kvm_shadow_walk_iterator iterator;
92a476cb 3518 struct kvm_mmu_page *sp;
97dceba2 3519 bool fault_handled = false;
c7ba5b48 3520 u64 spte = 0ull;
97dceba2 3521 uint retry_count = 0;
c7ba5b48 3522
e5552fd2 3523 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3524 return false;
3525
3526 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3527
97dceba2 3528 do {
d3e328f2 3529 u64 new_spte;
c7ba5b48 3530
736c291c 3531 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3532 if (!is_shadow_present_pte(spte))
d162f30a
JS
3533 break;
3534
57354682 3535 sp = sptep_to_sp(iterator.sptep);
97dceba2
JS
3536 if (!is_last_spte(spte, sp->role.level))
3537 break;
c7ba5b48 3538
97dceba2 3539 /*
f160c7b7
JS
3540 * Check whether the memory access that caused the fault would
3541 * still cause it if it were to be performed right now. If not,
3542 * then this is a spurious fault caused by TLB lazily flushed,
3543 * or some other CPU has already fixed the PTE after the
3544 * current CPU took the fault.
97dceba2
JS
3545 *
3546 * Need not check the access of upper level table entries since
3547 * they are always ACC_ALL.
3548 */
d3e328f2
JS
3549 if (is_access_allowed(error_code, spte)) {
3550 fault_handled = true;
3551 break;
3552 }
f160c7b7 3553
d3e328f2
JS
3554 new_spte = spte;
3555
3556 if (is_access_track_spte(spte))
3557 new_spte = restore_acc_track_spte(new_spte);
3558
3559 /*
3560 * Currently, to simplify the code, write-protection can
3561 * be removed in the fast path only if the SPTE was
3562 * write-protected for dirty-logging or access tracking.
3563 */
3564 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3565 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3566 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3567
3568 /*
d3e328f2
JS
3569 * Do not fix write-permission on the large spte. Since
3570 * we only dirty the first page into the dirty-bitmap in
3571 * fast_pf_fix_direct_spte(), other pages are missed
3572 * if its slot has dirty logging enabled.
3573 *
3574 * Instead, we let the slow page fault path create a
3575 * normal spte to fix the access.
3576 *
3577 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3578 */
3bae0459 3579 if (sp->role.level > PG_LEVEL_4K)
f160c7b7 3580 break;
97dceba2 3581 }
c7ba5b48 3582
f160c7b7 3583 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3584 if (new_spte == spte ||
3585 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3586 break;
3587
3588 /*
3589 * Currently, fast page fault only works for direct mapping
3590 * since the gfn is not stable for indirect shadow page. See
3ecad8c2 3591 * Documentation/virt/kvm/locking.rst to get more detail.
97dceba2
JS
3592 */
3593 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3594 iterator.sptep, spte,
d3e328f2 3595 new_spte);
97dceba2
JS
3596 if (fault_handled)
3597 break;
3598
3599 if (++retry_count > 4) {
3600 printk_once(KERN_WARNING
3601 "kvm: Fast #PF retrying more than 4 times.\n");
3602 break;
3603 }
3604
97dceba2 3605 } while (true);
c126d94f 3606
736c291c 3607 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
97dceba2 3608 spte, fault_handled);
c7ba5b48
XG
3609 walk_shadow_page_lockless_end(vcpu);
3610
97dceba2 3611 return fault_handled;
c7ba5b48
XG
3612}
3613
74b566e6
JS
3614static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3615 struct list_head *invalid_list)
17ac10ad 3616{
4db35314 3617 struct kvm_mmu_page *sp;
17ac10ad 3618
74b566e6 3619 if (!VALID_PAGE(*root_hpa))
7b53aa56 3620 return;
35af577a 3621
e47c4aee 3622 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
74b566e6
JS
3623 --sp->root_count;
3624 if (!sp->root_count && sp->role.invalid)
3625 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3626
74b566e6
JS
3627 *root_hpa = INVALID_PAGE;
3628}
3629
08fb59d8 3630/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3631void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3632 ulong roots_to_free)
74b566e6
JS
3633{
3634 int i;
3635 LIST_HEAD(invalid_list);
08fb59d8 3636 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3637
b94742c9 3638 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3639
08fb59d8 3640 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3641 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3642 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3643 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3644 VALID_PAGE(mmu->prev_roots[i].hpa))
3645 break;
3646
3647 if (i == KVM_MMU_NUM_PREV_ROOTS)
3648 return;
3649 }
35af577a
GN
3650
3651 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3652
b94742c9
JS
3653 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3654 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3655 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3656 &invalid_list);
7c390d35 3657
08fb59d8
JS
3658 if (free_active_root) {
3659 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3660 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3661 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3662 &invalid_list);
3663 } else {
3664 for (i = 0; i < 4; ++i)
3665 if (mmu->pae_root[i] != 0)
3666 mmu_free_root_page(vcpu->kvm,
3667 &mmu->pae_root[i],
3668 &invalid_list);
3669 mmu->root_hpa = INVALID_PAGE;
3670 }
be01e8e2 3671 mmu->root_pgd = 0;
17ac10ad 3672 }
74b566e6 3673
d98ba053 3674 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3675 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3676}
74b566e6 3677EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3678
8986ecc0
MT
3679static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3680{
3681 int ret = 0;
3682
995decb6 3683 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
a8eeb04a 3684 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3685 ret = 1;
3686 }
3687
3688 return ret;
3689}
3690
8123f265
SC
3691static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3692 u8 level, bool direct)
651dd37a
JR
3693{
3694 struct kvm_mmu_page *sp;
8123f265
SC
3695
3696 spin_lock(&vcpu->kvm->mmu_lock);
3697
3698 if (make_mmu_pages_available(vcpu)) {
3699 spin_unlock(&vcpu->kvm->mmu_lock);
3700 return INVALID_PAGE;
3701 }
3702 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3703 ++sp->root_count;
3704
3705 spin_unlock(&vcpu->kvm->mmu_lock);
3706 return __pa(sp->spt);
3707}
3708
3709static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3710{
3711 u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3712 hpa_t root;
7ebaf15e 3713 unsigned i;
651dd37a 3714
8123f265
SC
3715 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3716 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3717 if (!VALID_PAGE(root))
ed52870f 3718 return -ENOSPC;
8123f265
SC
3719 vcpu->arch.mmu->root_hpa = root;
3720 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3721 for (i = 0; i < 4; ++i) {
8123f265 3722 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
651dd37a 3723
8123f265
SC
3724 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3725 i << 30, PT32_ROOT_LEVEL, true);
3726 if (!VALID_PAGE(root))
ed52870f 3727 return -ENOSPC;
44dd3ffa 3728 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3729 }
44dd3ffa 3730 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3731 } else
3732 BUG();
3651c7fc 3733
be01e8e2
SC
3734 /* root_pgd is ignored for direct MMUs. */
3735 vcpu->arch.mmu->root_pgd = 0;
651dd37a
JR
3736
3737 return 0;
3738}
3739
3740static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3741{
81407ca5 3742 u64 pdptr, pm_mask;
be01e8e2 3743 gfn_t root_gfn, root_pgd;
8123f265 3744 hpa_t root;
81407ca5 3745 int i;
3bb65a22 3746
be01e8e2
SC
3747 root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3748 root_gfn = root_pgd >> PAGE_SHIFT;
17ac10ad 3749
651dd37a
JR
3750 if (mmu_check_root(vcpu, root_gfn))
3751 return 1;
3752
3753 /*
3754 * Do we shadow a long mode page table? If so we need to
3755 * write-protect the guests page table root.
3756 */
44dd3ffa 3757 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
8123f265 3758 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
651dd37a 3759
8123f265
SC
3760 root = mmu_alloc_root(vcpu, root_gfn, 0,
3761 vcpu->arch.mmu->shadow_root_level, false);
3762 if (!VALID_PAGE(root))
ed52870f 3763 return -ENOSPC;
44dd3ffa 3764 vcpu->arch.mmu->root_hpa = root;
be01e8e2 3765 goto set_root_pgd;
17ac10ad 3766 }
f87f9288 3767
651dd37a
JR
3768 /*
3769 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3770 * or a PAE 3-level page table. In either case we need to be aware that
3771 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3772 */
81407ca5 3773 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3774 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3775 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3776
17ac10ad 3777 for (i = 0; i < 4; ++i) {
8123f265 3778 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
44dd3ffa
VK
3779 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3780 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3781 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3782 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3783 continue;
3784 }
6de4f3ad 3785 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3786 if (mmu_check_root(vcpu, root_gfn))
3787 return 1;
5a7388c2 3788 }
8facbbff 3789
8123f265
SC
3790 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3791 PT32_ROOT_LEVEL, false);
3792 if (!VALID_PAGE(root))
3793 return -ENOSPC;
44dd3ffa 3794 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3795 }
44dd3ffa 3796 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3797
3798 /*
3799 * If we shadow a 32 bit page table with a long mode page
3800 * table we enter this path.
3801 */
44dd3ffa
VK
3802 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3803 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3804 /*
3805 * The additional page necessary for this is only
3806 * allocated on demand.
3807 */
3808
3809 u64 *lm_root;
3810
254272ce 3811 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3812 if (lm_root == NULL)
3813 return 1;
3814
44dd3ffa 3815 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3816
44dd3ffa 3817 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3818 }
3819
44dd3ffa 3820 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3821 }
3822
be01e8e2
SC
3823set_root_pgd:
3824 vcpu->arch.mmu->root_pgd = root_pgd;
ad7dc69a 3825
8986ecc0 3826 return 0;
17ac10ad
AK
3827}
3828
651dd37a
JR
3829static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3830{
44dd3ffa 3831 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3832 return mmu_alloc_direct_roots(vcpu);
3833 else
3834 return mmu_alloc_shadow_roots(vcpu);
3835}
3836
578e1c4d 3837void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3838{
3839 int i;
3840 struct kvm_mmu_page *sp;
3841
44dd3ffa 3842 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3843 return;
3844
44dd3ffa 3845 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3846 return;
6903074c 3847
56f17dd3 3848 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3849
44dd3ffa
VK
3850 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3851 hpa_t root = vcpu->arch.mmu->root_hpa;
e47c4aee 3852 sp = to_shadow_page(root);
578e1c4d
JS
3853
3854 /*
3855 * Even if another CPU was marking the SP as unsync-ed
3856 * simultaneously, any guest page table changes are not
3857 * guaranteed to be visible anyway until this VCPU issues a TLB
3858 * flush strictly after those changes are made. We only need to
3859 * ensure that the other CPU sets these flags before any actual
3860 * changes to the page tables are made. The comments in
3861 * mmu_need_write_protect() describe what could go wrong if this
3862 * requirement isn't satisfied.
3863 */
3864 if (!smp_load_acquire(&sp->unsync) &&
3865 !smp_load_acquire(&sp->unsync_children))
3866 return;
3867
3868 spin_lock(&vcpu->kvm->mmu_lock);
3869 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3870
0ba73cda 3871 mmu_sync_children(vcpu, sp);
578e1c4d 3872
0375f7fa 3873 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3874 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3875 return;
3876 }
578e1c4d
JS
3877
3878 spin_lock(&vcpu->kvm->mmu_lock);
3879 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3880
0ba73cda 3881 for (i = 0; i < 4; ++i) {
44dd3ffa 3882 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3883
8986ecc0 3884 if (root && VALID_PAGE(root)) {
0ba73cda 3885 root &= PT64_BASE_ADDR_MASK;
e47c4aee 3886 sp = to_shadow_page(root);
0ba73cda
MT
3887 mmu_sync_children(vcpu, sp);
3888 }
3889 }
0ba73cda 3890
578e1c4d 3891 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3892 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3893}
bfd0a56b 3894EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3895
736c291c 3896static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3897 u32 access, struct x86_exception *exception)
6aa8b732 3898{
ab9ae313
AK
3899 if (exception)
3900 exception->error_code = 0;
6aa8b732
AK
3901 return vaddr;
3902}
3903
736c291c 3904static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3905 u32 access,
3906 struct x86_exception *exception)
6539e738 3907{
ab9ae313
AK
3908 if (exception)
3909 exception->error_code = 0;
54987b7a 3910 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3911}
3912
d625b155
XG
3913static bool
3914__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3915{
b5c3c1b3 3916 int bit7 = (pte >> 7) & 1;
d625b155 3917
b5c3c1b3 3918 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3919}
3920
b5c3c1b3 3921static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3922{
b5c3c1b3 3923 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3924}
3925
ded58749 3926static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3927{
9034e6e8
PB
3928 /*
3929 * A nested guest cannot use the MMIO cache if it is using nested
3930 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3931 */
3932 if (mmu_is_nested(vcpu))
3933 return false;
3934
ce88decf
XG
3935 if (direct)
3936 return vcpu_match_mmio_gpa(vcpu, addr);
3937
3938 return vcpu_match_mmio_gva(vcpu, addr);
3939}
3940
47ab8751
XG
3941/* return true if reserved bit is detected on spte. */
3942static bool
3943walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3944{
3945 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3946 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3947 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3948 int root, leaf;
3949 bool reserved = false;
ce88decf 3950
b5c3c1b3 3951 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3952
ce88decf 3953 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3954
29ecd660
PB
3955 for (shadow_walk_init(&iterator, vcpu, addr),
3956 leaf = root = iterator.level;
47ab8751
XG
3957 shadow_walk_okay(&iterator);
3958 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3959 spte = mmu_spte_get_lockless(iterator.sptep);
3960
3961 sptes[leaf - 1] = spte;
29ecd660 3962 leaf--;
47ab8751 3963
ce88decf
XG
3964 if (!is_shadow_present_pte(spte))
3965 break;
47ab8751 3966
b5c3c1b3
SC
3967 /*
3968 * Use a bitwise-OR instead of a logical-OR to aggregate the
3969 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3970 * adding a Jcc in the loop.
3971 */
3972 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3973 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3974 }
3975
ce88decf
XG
3976 walk_shadow_page_lockless_end(vcpu);
3977
47ab8751
XG
3978 if (reserved) {
3979 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3980 __func__, addr);
29ecd660 3981 while (root > leaf) {
47ab8751
XG
3982 pr_err("------ spte 0x%llx level %d.\n",
3983 sptes[root - 1], root);
3984 root--;
3985 }
3986 }
ddce6208 3987
47ab8751
XG
3988 *sptep = spte;
3989 return reserved;
ce88decf
XG
3990}
3991
e08d26f0 3992static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3993{
3994 u64 spte;
47ab8751 3995 bool reserved;
ce88decf 3996
ded58749 3997 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3998 return RET_PF_EMULATE;
ce88decf 3999
47ab8751 4000 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 4001 if (WARN_ON(reserved))
9b8ebbdb 4002 return -EINVAL;
ce88decf
XG
4003
4004 if (is_mmio_spte(spte)) {
4005 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 4006 unsigned int access = get_mmio_spte_access(spte);
ce88decf 4007
54bf36aa 4008 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 4009 return RET_PF_INVALID;
f8f55942 4010
ce88decf
XG
4011 if (direct)
4012 addr = 0;
4f022648
XG
4013
4014 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 4015 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 4016 return RET_PF_EMULATE;
ce88decf
XG
4017 }
4018
ce88decf
XG
4019 /*
4020 * If the page table is zapped by other cpus, let CPU fault again on
4021 * the address.
4022 */
9b8ebbdb 4023 return RET_PF_RETRY;
ce88decf 4024}
ce88decf 4025
3d0c27ad
XG
4026static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4027 u32 error_code, gfn_t gfn)
4028{
4029 if (unlikely(error_code & PFERR_RSVD_MASK))
4030 return false;
4031
4032 if (!(error_code & PFERR_PRESENT_MASK) ||
4033 !(error_code & PFERR_WRITE_MASK))
4034 return false;
4035
4036 /*
4037 * guest is writing the page which is write tracked which can
4038 * not be fixed by page fault handler.
4039 */
4040 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4041 return true;
4042
4043 return false;
4044}
4045
e5691a81
XG
4046static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4047{
4048 struct kvm_shadow_walk_iterator iterator;
4049 u64 spte;
4050
e5691a81
XG
4051 walk_shadow_page_lockless_begin(vcpu);
4052 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4053 clear_sp_write_flooding_count(iterator.sptep);
4054 if (!is_shadow_present_pte(spte))
4055 break;
4056 }
4057 walk_shadow_page_lockless_end(vcpu);
4058}
4059
e8c22266
VK
4060static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4061 gfn_t gfn)
af585b92
GN
4062{
4063 struct kvm_arch_async_pf arch;
fb67e14f 4064
7c90705b 4065 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4066 arch.gfn = gfn;
44dd3ffa 4067 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 4068 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 4069
9f1a8526
SC
4070 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4071 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4072}
4073
78b2c54a 4074static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
4075 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4076 bool *writable)
af585b92 4077{
c36b7150 4078 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
af585b92
GN
4079 bool async;
4080
c36b7150
PB
4081 /* Don't expose private memslots to L2. */
4082 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3a2936de 4083 *pfn = KVM_PFN_NOSLOT;
c583eed6 4084 *writable = false;
3a2936de
JM
4085 return false;
4086 }
4087
3520469d
PB
4088 async = false;
4089 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4090 if (!async)
4091 return false; /* *pfn has correct page already */
4092
9bc1f09f 4093 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 4094 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 4095 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 4096 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
4097 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4098 return true;
9f1a8526 4099 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
4100 return true;
4101 }
4102
3520469d 4103 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4104 return false;
4105}
4106
0f90e1c1
SC
4107static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4108 bool prefault, int max_level, bool is_tdp)
6aa8b732 4109{
367fd790 4110 bool write = error_code & PFERR_WRITE_MASK;
367fd790
SC
4111 bool exec = error_code & PFERR_FETCH_MASK;
4112 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
0f90e1c1 4113 bool map_writable;
6aa8b732 4114
0f90e1c1
SC
4115 gfn_t gfn = gpa >> PAGE_SHIFT;
4116 unsigned long mmu_seq;
4117 kvm_pfn_t pfn;
83f06fa7 4118 int r;
ce88decf 4119
3d0c27ad 4120 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4121 return RET_PF_EMULATE;
ce88decf 4122
83291445
SC
4123 if (fast_page_fault(vcpu, gpa, error_code))
4124 return RET_PF_RETRY;
4125
e2dec939
AK
4126 r = mmu_topup_memory_caches(vcpu);
4127 if (r)
4128 return r;
714b93da 4129
0f90e1c1 4130 if (lpage_disallowed)
3bae0459 4131 max_level = PG_LEVEL_4K;
367fd790 4132
367fd790
SC
4133 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4134 smp_rmb();
4135
4136 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4137 return RET_PF_RETRY;
4138
0f90e1c1 4139 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 4140 return r;
6aa8b732 4141
367fd790
SC
4142 r = RET_PF_RETRY;
4143 spin_lock(&vcpu->kvm->mmu_lock);
4144 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4145 goto out_unlock;
7bd7ded6
SC
4146 r = make_mmu_pages_available(vcpu);
4147 if (r)
367fd790 4148 goto out_unlock;
83f06fa7 4149 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4cd071d1 4150 prefault, is_tdp && lpage_disallowed);
0f90e1c1 4151
367fd790
SC
4152out_unlock:
4153 spin_unlock(&vcpu->kvm->mmu_lock);
4154 kvm_release_pfn_clean(pfn);
4155 return r;
6aa8b732
AK
4156}
4157
0f90e1c1
SC
4158static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4159 u32 error_code, bool prefault)
4160{
4161 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4162
4163 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4164 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3bae0459 4165 PG_LEVEL_2M, false);
0f90e1c1
SC
4166}
4167
1261bfa3 4168int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4169 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4170{
4171 int r = 1;
9ce372b3 4172 u32 flags = vcpu->arch.apf.host_apf_flags;
1261bfa3 4173
736c291c
SC
4174#ifndef CONFIG_X86_64
4175 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4176 if (WARN_ON_ONCE(fault_address >> 32))
4177 return -EFAULT;
4178#endif
4179
c595ceee 4180 vcpu->arch.l1tf_flush_l1d = true;
9ce372b3 4181 if (!flags) {
1261bfa3
WL
4182 trace_kvm_page_fault(fault_address, error_code);
4183
d0006530 4184 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4185 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4186 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4187 insn_len);
9ce372b3 4188 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
68fd66f1 4189 vcpu->arch.apf.host_apf_flags = 0;
1261bfa3 4190 local_irq_disable();
6bca69ad 4191 kvm_async_pf_task_wait_schedule(fault_address);
1261bfa3 4192 local_irq_enable();
9ce372b3
VK
4193 } else {
4194 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
1261bfa3 4195 }
9ce372b3 4196
1261bfa3
WL
4197 return r;
4198}
4199EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4200
7a02674d
SC
4201int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4202 bool prefault)
fb72d167 4203{
cb9b88c6 4204 int max_level;
fb72d167 4205
e662ec3e 4206 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3bae0459 4207 max_level > PG_LEVEL_4K;
cb9b88c6
SC
4208 max_level--) {
4209 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 4210 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 4211
cb9b88c6
SC
4212 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4213 break;
fd136902 4214 }
852e3c19 4215
0f90e1c1
SC
4216 return direct_page_fault(vcpu, gpa, error_code, prefault,
4217 max_level, true);
fb72d167
JR
4218}
4219
8a3c1a33
PB
4220static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4221 struct kvm_mmu *context)
6aa8b732 4222{
6aa8b732 4223 context->page_fault = nonpaging_page_fault;
6aa8b732 4224 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4225 context->sync_page = nonpaging_sync_page;
5efac074 4226 context->invlpg = NULL;
0f53b5b1 4227 context->update_pte = nonpaging_update_pte;
cea0f0e7 4228 context->root_level = 0;
6aa8b732 4229 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4230 context->direct_map = true;
2d48a985 4231 context->nx = false;
6aa8b732
AK
4232}
4233
be01e8e2 4234static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
0be44352
SC
4235 union kvm_mmu_page_role role)
4236{
be01e8e2 4237 return (role.direct || pgd == root->pgd) &&
e47c4aee
SC
4238 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4239 role.word == to_shadow_page(root->hpa)->role.word;
0be44352
SC
4240}
4241
b94742c9 4242/*
be01e8e2 4243 * Find out if a previously cached root matching the new pgd/role is available.
b94742c9
JS
4244 * The current root is also inserted into the cache.
4245 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4246 * returned.
4247 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4248 * false is returned. This root should now be freed by the caller.
4249 */
be01e8e2 4250static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b94742c9
JS
4251 union kvm_mmu_page_role new_role)
4252{
4253 uint i;
4254 struct kvm_mmu_root_info root;
44dd3ffa 4255 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4256
be01e8e2 4257 root.pgd = mmu->root_pgd;
b94742c9
JS
4258 root.hpa = mmu->root_hpa;
4259
be01e8e2 4260 if (is_root_usable(&root, new_pgd, new_role))
0be44352
SC
4261 return true;
4262
b94742c9
JS
4263 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4264 swap(root, mmu->prev_roots[i]);
4265
be01e8e2 4266 if (is_root_usable(&root, new_pgd, new_role))
b94742c9
JS
4267 break;
4268 }
4269
4270 mmu->root_hpa = root.hpa;
be01e8e2 4271 mmu->root_pgd = root.pgd;
b94742c9
JS
4272
4273 return i < KVM_MMU_NUM_PREV_ROOTS;
4274}
4275
be01e8e2 4276static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
b869855b 4277 union kvm_mmu_page_role new_role)
6aa8b732 4278{
44dd3ffa 4279 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4280
4281 /*
4282 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4283 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4284 * later if necessary.
4285 */
4286 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
b869855b 4287 mmu->root_level >= PT64_ROOT_4LEVEL)
be01e8e2
SC
4288 return !mmu_check_root(vcpu, new_pgd >> PAGE_SHIFT) &&
4289 cached_root_available(vcpu, new_pgd, new_role);
7c390d35
JS
4290
4291 return false;
6aa8b732
AK
4292}
4293
be01e8e2 4294static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
ade61e28 4295 union kvm_mmu_page_role new_role,
4a632ac6 4296 bool skip_tlb_flush, bool skip_mmu_sync)
6aa8b732 4297{
be01e8e2 4298 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
b869855b
SC
4299 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4300 return;
4301 }
4302
4303 /*
4304 * It's possible that the cached previous root page is obsolete because
4305 * of a change in the MMU generation number. However, changing the
4306 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4307 * free the root set here and allocate a new one.
4308 */
4309 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4310
71fe7013 4311 if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
b869855b 4312 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
71fe7013 4313 if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
b869855b 4314 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
b869855b
SC
4315
4316 /*
4317 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4318 * switching to a new CR3, that GVA->GPA mapping may no longer be
4319 * valid. So clear any cached MMIO info even when we don't need to sync
4320 * the shadow page tables.
4321 */
4322 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4323
e47c4aee 4324 __clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
6aa8b732
AK
4325}
4326
be01e8e2 4327void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4a632ac6 4328 bool skip_mmu_sync)
0aab33e4 4329{
be01e8e2 4330 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4a632ac6 4331 skip_tlb_flush, skip_mmu_sync);
0aab33e4 4332}
be01e8e2 4333EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
0aab33e4 4334
5777ed34
JR
4335static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4336{
9f8fe504 4337 return kvm_read_cr3(vcpu);
5777ed34
JR
4338}
4339
54bf36aa 4340static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 4341 unsigned int access, int *nr_present)
ce88decf
XG
4342{
4343 if (unlikely(is_mmio_spte(*sptep))) {
4344 if (gfn != get_mmio_spte_gfn(*sptep)) {
4345 mmu_spte_clear_no_track(sptep);
4346 return true;
4347 }
4348
4349 (*nr_present)++;
54bf36aa 4350 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4351 return true;
4352 }
4353
4354 return false;
4355}
4356
6bb69c9b
PB
4357static inline bool is_last_gpte(struct kvm_mmu *mmu,
4358 unsigned level, unsigned gpte)
6fd01b71 4359{
6bb69c9b
PB
4360 /*
4361 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4362 * If it is clear, there are no large pages at this level, so clear
4363 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4364 */
4365 gpte &= level - mmu->last_nonleaf_level;
4366
829ee279 4367 /*
3bae0459
SC
4368 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
4369 * iff level <= PG_LEVEL_4K, which for our purpose means
4370 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
829ee279 4371 */
3bae0459 4372 gpte |= level - PG_LEVEL_4K - 1;
829ee279 4373
6bb69c9b 4374 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4375}
4376
37406aaa
NHE
4377#define PTTYPE_EPT 18 /* arbitrary */
4378#define PTTYPE PTTYPE_EPT
4379#include "paging_tmpl.h"
4380#undef PTTYPE
4381
6aa8b732
AK
4382#define PTTYPE 64
4383#include "paging_tmpl.h"
4384#undef PTTYPE
4385
4386#define PTTYPE 32
4387#include "paging_tmpl.h"
4388#undef PTTYPE
4389
6dc98b86
XG
4390static void
4391__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4392 struct rsvd_bits_validate *rsvd_check,
4393 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4394 bool pse, bool amd)
82725b20 4395{
82725b20 4396 u64 exb_bit_rsvd = 0;
5f7dde7b 4397 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4398 u64 nonleaf_bit8_rsvd = 0;
82725b20 4399
a0a64f50 4400 rsvd_check->bad_mt_xwr = 0;
25d92081 4401
6dc98b86 4402 if (!nx)
82725b20 4403 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4404 if (!gbpages)
5f7dde7b 4405 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4406
4407 /*
4408 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4409 * leaf entries) on AMD CPUs only.
4410 */
6fec2144 4411 if (amd)
a0c0feb5
PB
4412 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4413
6dc98b86 4414 switch (level) {
82725b20
DE
4415 case PT32_ROOT_LEVEL:
4416 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4417 rsvd_check->rsvd_bits_mask[0][1] = 0;
4418 rsvd_check->rsvd_bits_mask[0][0] = 0;
4419 rsvd_check->rsvd_bits_mask[1][0] =
4420 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4421
6dc98b86 4422 if (!pse) {
a0a64f50 4423 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4424 break;
4425 }
4426
82725b20
DE
4427 if (is_cpuid_PSE36())
4428 /* 36bits PSE 4MB page */
a0a64f50 4429 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4430 else
4431 /* 32 bits PSE 4MB page */
a0a64f50 4432 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4433 break;
4434 case PT32E_ROOT_LEVEL:
a0a64f50 4435 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4436 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4437 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4438 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4439 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4440 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4441 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4442 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4443 rsvd_bits(maxphyaddr, 62) |
4444 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4445 rsvd_check->rsvd_bits_mask[1][0] =
4446 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4447 break;
855feb67
YZ
4448 case PT64_ROOT_5LEVEL:
4449 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4450 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4451 rsvd_bits(maxphyaddr, 51);
4452 rsvd_check->rsvd_bits_mask[1][4] =
4453 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4454 /* fall through */
2a7266a8 4455 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4456 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4457 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4458 rsvd_bits(maxphyaddr, 51);
a0a64f50 4459 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
5ecad245 4460 gbpages_bit_rsvd |
82725b20 4461 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4462 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4463 rsvd_bits(maxphyaddr, 51);
4464 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4465 rsvd_bits(maxphyaddr, 51);
4466 rsvd_check->rsvd_bits_mask[1][3] =
4467 rsvd_check->rsvd_bits_mask[0][3];
4468 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4469 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4470 rsvd_bits(13, 29);
a0a64f50 4471 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4472 rsvd_bits(maxphyaddr, 51) |
4473 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4474 rsvd_check->rsvd_bits_mask[1][0] =
4475 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4476 break;
4477 }
4478}
4479
6dc98b86
XG
4480static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4481 struct kvm_mmu *context)
4482{
4483 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4484 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4485 context->nx,
4486 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4487 is_pse(vcpu),
4488 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4489}
4490
81b8eebb
XG
4491static void
4492__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4493 int maxphyaddr, bool execonly)
25d92081 4494{
951f9fd7 4495 u64 bad_mt_xwr;
25d92081 4496
855feb67
YZ
4497 rsvd_check->rsvd_bits_mask[0][4] =
4498 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4499 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4500 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4501 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4502 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4503 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4504 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4505 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4506
4507 /* large page */
855feb67 4508 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4509 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4510 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4511 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4512 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4513 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4514 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4515
951f9fd7
PB
4516 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4517 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4518 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4519 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4520 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4521 if (!execonly) {
4522 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4523 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4524 }
951f9fd7 4525 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4526}
4527
81b8eebb
XG
4528static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4529 struct kvm_mmu *context, bool execonly)
4530{
4531 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4532 cpuid_maxphyaddr(vcpu), execonly);
4533}
4534
c258b62b
XG
4535/*
4536 * the page table on host is the shadow page table for the page
4537 * table in guest or amd nested guest, its mmu features completely
4538 * follow the features in guest.
4539 */
4540void
4541reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4542{
36d9594d
VK
4543 bool uses_nx = context->nx ||
4544 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4545 struct rsvd_bits_validate *shadow_zero_check;
4546 int i;
5f0b8199 4547
6fec2144
PB
4548 /*
4549 * Passing "true" to the last argument is okay; it adds a check
4550 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4551 */
ea2800dd
BS
4552 shadow_zero_check = &context->shadow_zero_check;
4553 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4554 shadow_phys_bits,
5f0b8199 4555 context->shadow_root_level, uses_nx,
d6321d49
RK
4556 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4557 is_pse(vcpu), true);
ea2800dd
BS
4558
4559 if (!shadow_me_mask)
4560 return;
4561
4562 for (i = context->shadow_root_level; --i >= 0;) {
4563 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4564 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4565 }
4566
c258b62b
XG
4567}
4568EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4569
6fec2144
PB
4570static inline bool boot_cpu_is_amd(void)
4571{
4572 WARN_ON_ONCE(!tdp_enabled);
4573 return shadow_x_mask == 0;
4574}
4575
c258b62b
XG
4576/*
4577 * the direct page table on host, use as much mmu features as
4578 * possible, however, kvm currently does not do execution-protection.
4579 */
4580static void
4581reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4582 struct kvm_mmu *context)
4583{
ea2800dd
BS
4584 struct rsvd_bits_validate *shadow_zero_check;
4585 int i;
4586
4587 shadow_zero_check = &context->shadow_zero_check;
4588
6fec2144 4589 if (boot_cpu_is_amd())
ea2800dd 4590 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4591 shadow_phys_bits,
c258b62b 4592 context->shadow_root_level, false,
b8291adc
BP
4593 boot_cpu_has(X86_FEATURE_GBPAGES),
4594 true, true);
c258b62b 4595 else
ea2800dd 4596 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4597 shadow_phys_bits,
c258b62b
XG
4598 false);
4599
ea2800dd
BS
4600 if (!shadow_me_mask)
4601 return;
4602
4603 for (i = context->shadow_root_level; --i >= 0;) {
4604 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4605 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4606 }
c258b62b
XG
4607}
4608
4609/*
4610 * as the comments in reset_shadow_zero_bits_mask() except it
4611 * is the shadow page table for intel nested guest.
4612 */
4613static void
4614reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4615 struct kvm_mmu *context, bool execonly)
4616{
4617 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4618 shadow_phys_bits, execonly);
c258b62b
XG
4619}
4620
09f037aa
PB
4621#define BYTE_MASK(access) \
4622 ((1 & (access) ? 2 : 0) | \
4623 (2 & (access) ? 4 : 0) | \
4624 (3 & (access) ? 8 : 0) | \
4625 (4 & (access) ? 16 : 0) | \
4626 (5 & (access) ? 32 : 0) | \
4627 (6 & (access) ? 64 : 0) | \
4628 (7 & (access) ? 128 : 0))
4629
4630
edc90b7d
XG
4631static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4632 struct kvm_mmu *mmu, bool ept)
97d64b78 4633{
09f037aa
PB
4634 unsigned byte;
4635
4636 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4637 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4638 const u8 u = BYTE_MASK(ACC_USER_MASK);
4639
4640 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4641 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4642 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4643
97d64b78 4644 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4645 unsigned pfec = byte << 1;
4646
97ec8c06 4647 /*
09f037aa
PB
4648 * Each "*f" variable has a 1 bit for each UWX value
4649 * that causes a fault with the given PFEC.
97ec8c06 4650 */
97d64b78 4651
09f037aa 4652 /* Faults from writes to non-writable pages */
a6a6d3b1 4653 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4654 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4655 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4656 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4657 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4658 /* Faults from kernel mode fetches of user pages */
4659 u8 smepf = 0;
4660 /* Faults from kernel mode accesses of user pages */
4661 u8 smapf = 0;
4662
4663 if (!ept) {
4664 /* Faults from kernel mode accesses to user pages */
4665 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4666
4667 /* Not really needed: !nx will cause pte.nx to fault */
4668 if (!mmu->nx)
4669 ff = 0;
4670
4671 /* Allow supervisor writes if !cr0.wp */
4672 if (!cr0_wp)
4673 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4674
4675 /* Disallow supervisor fetches of user code if cr4.smep */
4676 if (cr4_smep)
4677 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4678
4679 /*
4680 * SMAP:kernel-mode data accesses from user-mode
4681 * mappings should fault. A fault is considered
4682 * as a SMAP violation if all of the following
39337ad1 4683 * conditions are true:
09f037aa
PB
4684 * - X86_CR4_SMAP is set in CR4
4685 * - A user page is accessed
4686 * - The access is not a fetch
4687 * - Page fault in kernel mode
4688 * - if CPL = 3 or X86_EFLAGS_AC is clear
4689 *
4690 * Here, we cover the first three conditions.
4691 * The fourth is computed dynamically in permission_fault();
4692 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4693 * *not* subject to SMAP restrictions.
4694 */
4695 if (cr4_smap)
4696 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4697 }
09f037aa
PB
4698
4699 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4700 }
4701}
4702
2d344105
HH
4703/*
4704* PKU is an additional mechanism by which the paging controls access to
4705* user-mode addresses based on the value in the PKRU register. Protection
4706* key violations are reported through a bit in the page fault error code.
4707* Unlike other bits of the error code, the PK bit is not known at the
4708* call site of e.g. gva_to_gpa; it must be computed directly in
4709* permission_fault based on two bits of PKRU, on some machine state (CR4,
4710* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4711*
4712* In particular the following conditions come from the error code, the
4713* page tables and the machine state:
4714* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4715* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4716* - PK is always zero if U=0 in the page tables
4717* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4718*
4719* The PKRU bitmask caches the result of these four conditions. The error
4720* code (minus the P bit) and the page table's U bit form an index into the
4721* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4722* with the two bits of the PKRU register corresponding to the protection key.
4723* For the first three conditions above the bits will be 00, thus masking
4724* away both AD and WD. For all reads or if the last condition holds, WD
4725* only will be masked away.
4726*/
4727static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4728 bool ept)
4729{
4730 unsigned bit;
4731 bool wp;
4732
4733 if (ept) {
4734 mmu->pkru_mask = 0;
4735 return;
4736 }
4737
4738 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4739 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4740 mmu->pkru_mask = 0;
4741 return;
4742 }
4743
4744 wp = is_write_protection(vcpu);
4745
4746 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4747 unsigned pfec, pkey_bits;
4748 bool check_pkey, check_write, ff, uf, wf, pte_user;
4749
4750 pfec = bit << 1;
4751 ff = pfec & PFERR_FETCH_MASK;
4752 uf = pfec & PFERR_USER_MASK;
4753 wf = pfec & PFERR_WRITE_MASK;
4754
4755 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4756 pte_user = pfec & PFERR_RSVD_MASK;
4757
4758 /*
4759 * Only need to check the access which is not an
4760 * instruction fetch and is to a user page.
4761 */
4762 check_pkey = (!ff && pte_user);
4763 /*
4764 * write access is controlled by PKRU if it is a
4765 * user access or CR0.WP = 1.
4766 */
4767 check_write = check_pkey && wf && (uf || wp);
4768
4769 /* PKRU.AD stops both read and write access. */
4770 pkey_bits = !!check_pkey;
4771 /* PKRU.WD stops write access. */
4772 pkey_bits |= (!!check_write) << 1;
4773
4774 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4775 }
4776}
4777
6bb69c9b 4778static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4779{
6bb69c9b
PB
4780 unsigned root_level = mmu->root_level;
4781
4782 mmu->last_nonleaf_level = root_level;
4783 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4784 mmu->last_nonleaf_level++;
6fd01b71
AK
4785}
4786
8a3c1a33
PB
4787static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4788 struct kvm_mmu *context,
4789 int level)
6aa8b732 4790{
2d48a985 4791 context->nx = is_nx(vcpu);
4d6931c3 4792 context->root_level = level;
2d48a985 4793
4d6931c3 4794 reset_rsvds_bits_mask(vcpu, context);
25d92081 4795 update_permission_bitmask(vcpu, context, false);
2d344105 4796 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4797 update_last_nonleaf_level(vcpu, context);
6aa8b732 4798
fa4a2c08 4799 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4800 context->page_fault = paging64_page_fault;
6aa8b732 4801 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4802 context->sync_page = paging64_sync_page;
a7052897 4803 context->invlpg = paging64_invlpg;
0f53b5b1 4804 context->update_pte = paging64_update_pte;
17ac10ad 4805 context->shadow_root_level = level;
c5a78f2b 4806 context->direct_map = false;
6aa8b732
AK
4807}
4808
8a3c1a33
PB
4809static void paging64_init_context(struct kvm_vcpu *vcpu,
4810 struct kvm_mmu *context)
17ac10ad 4811{
855feb67
YZ
4812 int root_level = is_la57_mode(vcpu) ?
4813 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4814
4815 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4816}
4817
8a3c1a33
PB
4818static void paging32_init_context(struct kvm_vcpu *vcpu,
4819 struct kvm_mmu *context)
6aa8b732 4820{
2d48a985 4821 context->nx = false;
4d6931c3 4822 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4823
4d6931c3 4824 reset_rsvds_bits_mask(vcpu, context);
25d92081 4825 update_permission_bitmask(vcpu, context, false);
2d344105 4826 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4827 update_last_nonleaf_level(vcpu, context);
6aa8b732 4828
6aa8b732 4829 context->page_fault = paging32_page_fault;
6aa8b732 4830 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4831 context->sync_page = paging32_sync_page;
a7052897 4832 context->invlpg = paging32_invlpg;
0f53b5b1 4833 context->update_pte = paging32_update_pte;
6aa8b732 4834 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4835 context->direct_map = false;
6aa8b732
AK
4836}
4837
8a3c1a33
PB
4838static void paging32E_init_context(struct kvm_vcpu *vcpu,
4839 struct kvm_mmu *context)
6aa8b732 4840{
8a3c1a33 4841 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4842}
4843
a336282d
VK
4844static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4845{
4846 union kvm_mmu_extended_role ext = {0};
4847
7dcd5755 4848 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4849 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4850 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4851 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4852 ext.cr4_pse = !!is_pse(vcpu);
4853 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4854 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4855
4856 ext.valid = 1;
4857
4858 return ext;
4859}
4860
7dcd5755
VK
4861static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4862 bool base_only)
4863{
4864 union kvm_mmu_role role = {0};
4865
4866 role.base.access = ACC_ALL;
4867 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4868 role.base.cr0_wp = is_write_protection(vcpu);
4869 role.base.smm = is_smm(vcpu);
4870 role.base.guest_mode = is_guest_mode(vcpu);
4871
4872 if (base_only)
4873 return role;
4874
4875 role.ext = kvm_calc_mmu_role_ext(vcpu);
4876
4877 return role;
4878}
4879
4880static union kvm_mmu_role
4881kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4882{
7dcd5755 4883 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4884
7dcd5755 4885 role.base.ad_disabled = (shadow_accessed_mask == 0);
e93fd3b3 4886 role.base.level = vcpu->arch.tdp_level;
7dcd5755 4887 role.base.direct = true;
47c42e6b 4888 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4889
4890 return role;
4891}
4892
8a3c1a33 4893static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4894{
44dd3ffa 4895 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4896 union kvm_mmu_role new_role =
4897 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4898
7dcd5755
VK
4899 if (new_role.as_u64 == context->mmu_role.as_u64)
4900 return;
4901
4902 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4903 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4904 context->sync_page = nonpaging_sync_page;
5efac074 4905 context->invlpg = NULL;
0f53b5b1 4906 context->update_pte = nonpaging_update_pte;
e93fd3b3 4907 context->shadow_root_level = vcpu->arch.tdp_level;
c5a78f2b 4908 context->direct_map = true;
d8dd54e0 4909 context->get_guest_pgd = get_cr3;
e4e517b4 4910 context->get_pdptr = kvm_pdptr_read;
cb659db8 4911 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4912
4913 if (!is_paging(vcpu)) {
2d48a985 4914 context->nx = false;
fb72d167
JR
4915 context->gva_to_gpa = nonpaging_gva_to_gpa;
4916 context->root_level = 0;
4917 } else if (is_long_mode(vcpu)) {
2d48a985 4918 context->nx = is_nx(vcpu);
855feb67
YZ
4919 context->root_level = is_la57_mode(vcpu) ?
4920 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4921 reset_rsvds_bits_mask(vcpu, context);
4922 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4923 } else if (is_pae(vcpu)) {
2d48a985 4924 context->nx = is_nx(vcpu);
fb72d167 4925 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4926 reset_rsvds_bits_mask(vcpu, context);
4927 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4928 } else {
2d48a985 4929 context->nx = false;
fb72d167 4930 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4931 reset_rsvds_bits_mask(vcpu, context);
4932 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4933 }
4934
25d92081 4935 update_permission_bitmask(vcpu, context, false);
2d344105 4936 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4937 update_last_nonleaf_level(vcpu, context);
c258b62b 4938 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4939}
4940
7dcd5755
VK
4941static union kvm_mmu_role
4942kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4943{
4944 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4945
4946 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4947 !is_write_protection(vcpu);
4948 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4949 !is_write_protection(vcpu);
4950 role.base.direct = !is_paging(vcpu);
47c42e6b 4951 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4952
4953 if (!is_long_mode(vcpu))
7dcd5755 4954 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4955 else if (is_la57_mode(vcpu))
7dcd5755 4956 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4957 else
7dcd5755 4958 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4959
4960 return role;
4961}
4962
929d1cfa 4963void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
9fa72119 4964{
44dd3ffa 4965 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4966 union kvm_mmu_role new_role =
4967 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4968
7dcd5755
VK
4969 if (new_role.as_u64 == context->mmu_role.as_u64)
4970 return;
6aa8b732 4971
929d1cfa 4972 if (!(cr0 & X86_CR0_PG))
8a3c1a33 4973 nonpaging_init_context(vcpu, context);
929d1cfa 4974 else if (efer & EFER_LMA)
8a3c1a33 4975 paging64_init_context(vcpu, context);
929d1cfa 4976 else if (cr4 & X86_CR4_PAE)
8a3c1a33 4977 paging32E_init_context(vcpu, context);
6aa8b732 4978 else
8a3c1a33 4979 paging32_init_context(vcpu, context);
a770f6f2 4980
7dcd5755 4981 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4982 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4983}
4984EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4985
a336282d
VK
4986static union kvm_mmu_role
4987kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 4988 bool execonly, u8 level)
9fa72119 4989{
552c69b1 4990 union kvm_mmu_role role = {0};
14c07ad8 4991
47c42e6b
SC
4992 /* SMM flag is inherited from root_mmu */
4993 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4994
bb1fcc70 4995 role.base.level = level;
47c42e6b 4996 role.base.gpte_is_8_bytes = true;
a336282d
VK
4997 role.base.direct = false;
4998 role.base.ad_disabled = !accessed_dirty;
4999 role.base.guest_mode = true;
5000 role.base.access = ACC_ALL;
9fa72119 5001
47c42e6b
SC
5002 /*
5003 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5004 * SMAP variation to denote shadow EPT entries.
5005 */
5006 role.base.cr0_wp = true;
5007 role.base.smap_andnot_wp = true;
5008
552c69b1 5009 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 5010 role.ext.execonly = execonly;
9fa72119
JS
5011
5012 return role;
5013}
5014
ae1e2d10 5015void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 5016 bool accessed_dirty, gpa_t new_eptp)
155a97a3 5017{
44dd3ffa 5018 struct kvm_mmu *context = vcpu->arch.mmu;
bb1fcc70 5019 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
5020 union kvm_mmu_role new_role =
5021 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 5022 execonly, level);
a336282d 5023
be01e8e2 5024 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
a336282d 5025
a336282d
VK
5026 if (new_role.as_u64 == context->mmu_role.as_u64)
5027 return;
ad896af0 5028
bb1fcc70 5029 context->shadow_root_level = level;
155a97a3
NHE
5030
5031 context->nx = true;
ae1e2d10 5032 context->ept_ad = accessed_dirty;
155a97a3
NHE
5033 context->page_fault = ept_page_fault;
5034 context->gva_to_gpa = ept_gva_to_gpa;
5035 context->sync_page = ept_sync_page;
5036 context->invlpg = ept_invlpg;
5037 context->update_pte = ept_update_pte;
bb1fcc70 5038 context->root_level = level;
155a97a3 5039 context->direct_map = false;
a336282d 5040 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 5041
155a97a3 5042 update_permission_bitmask(vcpu, context, true);
2d344105 5043 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 5044 update_last_nonleaf_level(vcpu, context);
155a97a3 5045 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 5046 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
5047}
5048EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5049
8a3c1a33 5050static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5051{
44dd3ffa 5052 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0 5053
929d1cfa
PB
5054 kvm_init_shadow_mmu(vcpu,
5055 kvm_read_cr0_bits(vcpu, X86_CR0_PG),
5056 kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
5057 vcpu->arch.efer);
5058
d8dd54e0 5059 context->get_guest_pgd = get_cr3;
ad896af0
PB
5060 context->get_pdptr = kvm_pdptr_read;
5061 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5062}
5063
8a3c1a33 5064static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5065{
bf627a92 5066 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5067 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5068
bf627a92
VK
5069 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5070 return;
5071
5072 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 5073 g_context->get_guest_pgd = get_cr3;
e4e517b4 5074 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5075 g_context->inject_page_fault = kvm_inject_page_fault;
5076
5efac074
PB
5077 /*
5078 * L2 page tables are never shadowed, so there is no need to sync
5079 * SPTEs.
5080 */
5081 g_context->invlpg = NULL;
5082
02f59dc9 5083 /*
44dd3ffa 5084 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5085 * L1's nested page tables (e.g. EPT12). The nested translation
5086 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5087 * L2's page tables as the first level of translation and L1's
5088 * nested page tables as the second level of translation. Basically
5089 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5090 */
5091 if (!is_paging(vcpu)) {
2d48a985 5092 g_context->nx = false;
02f59dc9
JR
5093 g_context->root_level = 0;
5094 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5095 } else if (is_long_mode(vcpu)) {
2d48a985 5096 g_context->nx = is_nx(vcpu);
855feb67
YZ
5097 g_context->root_level = is_la57_mode(vcpu) ?
5098 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5099 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5100 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5101 } else if (is_pae(vcpu)) {
2d48a985 5102 g_context->nx = is_nx(vcpu);
02f59dc9 5103 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5104 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5105 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5106 } else {
2d48a985 5107 g_context->nx = false;
02f59dc9 5108 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5109 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5110 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5111 }
5112
25d92081 5113 update_permission_bitmask(vcpu, g_context, false);
2d344105 5114 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5115 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5116}
5117
1c53da3f 5118void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5119{
1c53da3f 5120 if (reset_roots) {
b94742c9
JS
5121 uint i;
5122
44dd3ffa 5123 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5124
5125 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5126 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5127 }
5128
02f59dc9 5129 if (mmu_is_nested(vcpu))
e0c6db3e 5130 init_kvm_nested_mmu(vcpu);
02f59dc9 5131 else if (tdp_enabled)
e0c6db3e 5132 init_kvm_tdp_mmu(vcpu);
fb72d167 5133 else
e0c6db3e 5134 init_kvm_softmmu(vcpu);
fb72d167 5135}
1c53da3f 5136EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5137
9fa72119
JS
5138static union kvm_mmu_page_role
5139kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5140{
7dcd5755
VK
5141 union kvm_mmu_role role;
5142
9fa72119 5143 if (tdp_enabled)
7dcd5755 5144 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5145 else
7dcd5755
VK
5146 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5147
5148 return role.base;
9fa72119 5149}
fb72d167 5150
8a3c1a33 5151void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5152{
95f93af4 5153 kvm_mmu_unload(vcpu);
1c53da3f 5154 kvm_init_mmu(vcpu, true);
17c3ba9d 5155}
8668a3c4 5156EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5157
5158int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5159{
714b93da
AK
5160 int r;
5161
e2dec939 5162 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5163 if (r)
5164 goto out;
8986ecc0 5165 r = mmu_alloc_roots(vcpu);
e2858b4a 5166 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5167 if (r)
5168 goto out;
727a7e27 5169 kvm_mmu_load_pgd(vcpu);
8c8560b8 5170 kvm_x86_ops.tlb_flush_current(vcpu);
714b93da
AK
5171out:
5172 return r;
6aa8b732 5173}
17c3ba9d
AK
5174EXPORT_SYMBOL_GPL(kvm_mmu_load);
5175
5176void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5177{
14c07ad8
VK
5178 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5179 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5180 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5181 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5182}
4b16184c 5183EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5184
0028425f 5185static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5186 struct kvm_mmu_page *sp, u64 *spte,
5187 const void *new)
0028425f 5188{
3bae0459 5189 if (sp->role.level != PG_LEVEL_4K) {
7e4e4056
JR
5190 ++vcpu->kvm->stat.mmu_pde_zapped;
5191 return;
30945387 5192 }
0028425f 5193
4cee5764 5194 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5195 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5196}
5197
79539cec
AK
5198static bool need_remote_flush(u64 old, u64 new)
5199{
5200 if (!is_shadow_present_pte(old))
5201 return false;
5202 if (!is_shadow_present_pte(new))
5203 return true;
5204 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5205 return true;
53166229
GN
5206 old ^= shadow_nx_mask;
5207 new ^= shadow_nx_mask;
79539cec
AK
5208 return (old & ~new & PT64_PERM_MASK) != 0;
5209}
5210
889e5cbc 5211static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5212 int *bytes)
da4a00f0 5213{
0e0fee5c 5214 u64 gentry = 0;
889e5cbc 5215 int r;
72016f3a 5216
72016f3a
AK
5217 /*
5218 * Assume that the pte write on a page table of the same type
49b26e26
XG
5219 * as the current vcpu paging mode since we update the sptes only
5220 * when they have the same mode.
72016f3a 5221 */
889e5cbc 5222 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5223 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5224 *gpa &= ~(gpa_t)7;
5225 *bytes = 8;
08e850c6
AK
5226 }
5227
0e0fee5c
JS
5228 if (*bytes == 4 || *bytes == 8) {
5229 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5230 if (r)
5231 gentry = 0;
72016f3a
AK
5232 }
5233
889e5cbc
XG
5234 return gentry;
5235}
5236
5237/*
5238 * If we're seeing too many writes to a page, it may no longer be a page table,
5239 * or we may be forking, in which case it is better to unmap the page.
5240 */
a138fe75 5241static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5242{
a30f47cb
XG
5243 /*
5244 * Skip write-flooding detected for the sp whose level is 1, because
5245 * it can become unsync, then the guest page is not write-protected.
5246 */
3bae0459 5247 if (sp->role.level == PG_LEVEL_4K)
a30f47cb 5248 return false;
3246af0e 5249
e5691a81
XG
5250 atomic_inc(&sp->write_flooding_count);
5251 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5252}
5253
5254/*
5255 * Misaligned accesses are too much trouble to fix up; also, they usually
5256 * indicate a page is not used as a page table.
5257 */
5258static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5259 int bytes)
5260{
5261 unsigned offset, pte_size, misaligned;
5262
5263 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5264 gpa, bytes, sp->role.word);
5265
5266 offset = offset_in_page(gpa);
47c42e6b 5267 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5268
5269 /*
5270 * Sometimes, the OS only writes the last one bytes to update status
5271 * bits, for example, in linux, andb instruction is used in clear_bit().
5272 */
5273 if (!(offset & (pte_size - 1)) && bytes == 1)
5274 return false;
5275
889e5cbc
XG
5276 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5277 misaligned |= bytes < 4;
5278
5279 return misaligned;
5280}
5281
5282static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5283{
5284 unsigned page_offset, quadrant;
5285 u64 *spte;
5286 int level;
5287
5288 page_offset = offset_in_page(gpa);
5289 level = sp->role.level;
5290 *nspte = 1;
47c42e6b 5291 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5292 page_offset <<= 1; /* 32->64 */
5293 /*
5294 * A 32-bit pde maps 4MB while the shadow pdes map
5295 * only 2MB. So we need to double the offset again
5296 * and zap two pdes instead of one.
5297 */
5298 if (level == PT32_ROOT_LEVEL) {
5299 page_offset &= ~7; /* kill rounding error */
5300 page_offset <<= 1;
5301 *nspte = 2;
5302 }
5303 quadrant = page_offset >> PAGE_SHIFT;
5304 page_offset &= ~PAGE_MASK;
5305 if (quadrant != sp->role.quadrant)
5306 return NULL;
5307 }
5308
5309 spte = &sp->spt[page_offset / sizeof(*spte)];
5310 return spte;
5311}
5312
a102a674
SC
5313/*
5314 * Ignore various flags when determining if a SPTE can be immediately
5315 * overwritten for the current MMU.
5316 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5317 * match the current MMU role, as MMU's level tracks the root level.
5318 * - access: updated based on the new guest PTE
5319 * - quadrant: handled by get_written_sptes()
5320 * - invalid: always false (loop only walks valid shadow pages)
5321 */
5322static const union kvm_mmu_page_role role_ign = {
5323 .level = 0xf,
5324 .access = 0x7,
5325 .quadrant = 0x3,
5326 .invalid = 0x1,
5327};
5328
13d268ca 5329static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5330 const u8 *new, int bytes,
5331 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5332{
5333 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5334 struct kvm_mmu_page *sp;
889e5cbc
XG
5335 LIST_HEAD(invalid_list);
5336 u64 entry, gentry, *spte;
5337 int npte;
b8c67b7a 5338 bool remote_flush, local_flush;
889e5cbc
XG
5339
5340 /*
5341 * If we don't have indirect shadow pages, it means no page is
5342 * write-protected, so we can exit simply.
5343 */
6aa7de05 5344 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5345 return;
5346
b8c67b7a 5347 remote_flush = local_flush = false;
889e5cbc
XG
5348
5349 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5350
889e5cbc
XG
5351 /*
5352 * No need to care whether allocation memory is successful
5353 * or not since pte prefetch is skiped if it does not have
5354 * enough objects in the cache.
5355 */
5356 mmu_topup_memory_caches(vcpu);
5357
5358 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5359
5360 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5361
889e5cbc 5362 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5363 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5364
b67bfe0d 5365 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5366 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5367 detect_write_flooding(sp)) {
b8c67b7a 5368 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5369 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5370 continue;
5371 }
889e5cbc
XG
5372
5373 spte = get_written_sptes(sp, gpa, &npte);
5374 if (!spte)
5375 continue;
5376
0671a8e7 5377 local_flush = true;
ac1b714e 5378 while (npte--) {
36d9594d
VK
5379 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5380
79539cec 5381 entry = *spte;
38e3b2b2 5382 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5383 if (gentry &&
a102a674
SC
5384 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5385 rmap_can_add(vcpu))
7c562522 5386 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5387 if (need_remote_flush(entry, *spte))
0671a8e7 5388 remote_flush = true;
ac1b714e 5389 ++spte;
9b7a0325 5390 }
9b7a0325 5391 }
b8c67b7a 5392 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5393 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5394 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5395}
5396
a436036b
AK
5397int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5398{
10589a46
MT
5399 gpa_t gpa;
5400 int r;
a436036b 5401
44dd3ffa 5402 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5403 return 0;
5404
1871c602 5405 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5406
10589a46 5407 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5408
10589a46 5409 return r;
a436036b 5410}
577bdc49 5411EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5412
736c291c 5413int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5414 void *insn, int insn_len)
3067714c 5415{
92daa48b 5416 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5417 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5418
6948199a 5419 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5420 return RET_PF_RETRY;
5421
9b8ebbdb 5422 r = RET_PF_INVALID;
e9ee956e 5423 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5424 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5425 if (r == RET_PF_EMULATE)
e9ee956e 5426 goto emulate;
e9ee956e 5427 }
3067714c 5428
9b8ebbdb 5429 if (r == RET_PF_INVALID) {
7a02674d
SC
5430 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5431 lower_32_bits(error_code), false);
9b8ebbdb
PB
5432 WARN_ON(r == RET_PF_INVALID);
5433 }
5434
5435 if (r == RET_PF_RETRY)
5436 return 1;
3067714c 5437 if (r < 0)
e9ee956e 5438 return r;
3067714c 5439
14727754
TL
5440 /*
5441 * Before emulating the instruction, check if the error code
5442 * was due to a RO violation while translating the guest page.
5443 * This can occur when using nested virtualization with nested
5444 * paging in both guests. If true, we simply unprotect the page
5445 * and resume the guest.
14727754 5446 */
44dd3ffa 5447 if (vcpu->arch.mmu->direct_map &&
eebed243 5448 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5449 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5450 return 1;
5451 }
5452
472faffa
SC
5453 /*
5454 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5455 * optimistically try to just unprotect the page and let the processor
5456 * re-execute the instruction that caused the page fault. Do not allow
5457 * retrying MMIO emulation, as it's not only pointless but could also
5458 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5459 * faulting on the non-existent MMIO address. Retrying an instruction
5460 * from a nested guest is also pointless and dangerous as we are only
5461 * explicitly shadowing L1's page tables, i.e. unprotecting something
5462 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5463 */
736c291c 5464 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5465 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5466emulate:
00b10fe1
BS
5467 /*
5468 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5469 * This can happen if a guest gets a page-fault on data access but the HW
5470 * table walker is not able to read the instruction page (e.g instruction
5471 * page is not present in memory). In those cases we simply restart the
05d5a486 5472 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5473 */
05d5a486 5474 if (unlikely(insn && !insn_len)) {
afaf0b2f 5475 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
05d5a486
SB
5476 return 1;
5477 }
00b10fe1 5478
736c291c 5479 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5480 insn_len);
3067714c
AK
5481}
5482EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5483
5efac074
PB
5484void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5485 gva_t gva, hpa_t root_hpa)
a7052897 5486{
b94742c9 5487 int i;
7eb77e9f 5488
5efac074
PB
5489 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5490 if (mmu != &vcpu->arch.guest_mmu) {
5491 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5492 if (is_noncanonical_address(gva, vcpu))
5493 return;
5494
5495 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5496 }
5497
5498 if (!mmu->invlpg)
faff8758
JS
5499 return;
5500
5efac074
PB
5501 if (root_hpa == INVALID_PAGE) {
5502 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5503
5efac074
PB
5504 /*
5505 * INVLPG is required to invalidate any global mappings for the VA,
5506 * irrespective of PCID. Since it would take us roughly similar amount
5507 * of work to determine whether any of the prev_root mappings of the VA
5508 * is marked global, or to just sync it blindly, so we might as well
5509 * just always sync it.
5510 *
5511 * Mappings not reachable via the current cr3 or the prev_roots will be
5512 * synced when switching to that cr3, so nothing needs to be done here
5513 * for them.
5514 */
5515 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5516 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5517 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5518 } else {
5519 mmu->invlpg(vcpu, gva, root_hpa);
5520 }
5521}
5522EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5523
5efac074
PB
5524void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5525{
5526 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5527 ++vcpu->stat.invlpg;
5528}
5529EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5530
5efac074 5531
eb4b248e
JS
5532void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5533{
44dd3ffa 5534 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5535 bool tlb_flush = false;
b94742c9 5536 uint i;
eb4b248e
JS
5537
5538 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5539 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5540 tlb_flush = true;
eb4b248e
JS
5541 }
5542
b94742c9
JS
5543 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5544 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
be01e8e2 5545 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
b94742c9
JS
5546 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5547 tlb_flush = true;
5548 }
956bf353 5549 }
ade61e28 5550
faff8758 5551 if (tlb_flush)
afaf0b2f 5552 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5553
eb4b248e
JS
5554 ++vcpu->stat.invlpg;
5555
5556 /*
b94742c9
JS
5557 * Mappings not reachable via the current cr3 or the prev_roots will be
5558 * synced when switching to that cr3, so nothing needs to be done here
5559 * for them.
eb4b248e
JS
5560 */
5561}
5562EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5563
703c335d 5564void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
18552672 5565{
bde77235 5566 tdp_enabled = enable_tdp;
703c335d
SC
5567
5568 /*
5569 * max_page_level reflects the capabilities of KVM's MMU irrespective
5570 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5571 * the kernel is not. But, KVM never creates a page size greater than
5572 * what is used by the kernel for any given HVA, i.e. the kernel's
5573 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5574 */
5575 if (tdp_enabled)
5576 max_page_level = tdp_page_level;
5577 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
3bae0459 5578 max_page_level = PG_LEVEL_1G;
703c335d 5579 else
3bae0459 5580 max_page_level = PG_LEVEL_2M;
18552672 5581}
bde77235 5582EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5583
5584/* The return value indicates if tlb flush on all vcpus is needed. */
5585typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5586
5587/* The caller should hold mmu-lock before calling this function. */
5588static __always_inline bool
5589slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5590 slot_level_handler fn, int start_level, int end_level,
5591 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5592{
5593 struct slot_rmap_walk_iterator iterator;
5594 bool flush = false;
5595
5596 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5597 end_gfn, &iterator) {
5598 if (iterator.rmap)
5599 flush |= fn(kvm, iterator.rmap);
5600
5601 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5602 if (flush && lock_flush_tlb) {
f285c633
BG
5603 kvm_flush_remote_tlbs_with_address(kvm,
5604 start_gfn,
5605 iterator.gfn - start_gfn + 1);
85875a13
SC
5606 flush = false;
5607 }
5608 cond_resched_lock(&kvm->mmu_lock);
5609 }
5610 }
5611
5612 if (flush && lock_flush_tlb) {
f285c633
BG
5613 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5614 end_gfn - start_gfn + 1);
85875a13
SC
5615 flush = false;
5616 }
5617
5618 return flush;
5619}
5620
5621static __always_inline bool
5622slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5623 slot_level_handler fn, int start_level, int end_level,
5624 bool lock_flush_tlb)
5625{
5626 return slot_handle_level_range(kvm, memslot, fn, start_level,
5627 end_level, memslot->base_gfn,
5628 memslot->base_gfn + memslot->npages - 1,
5629 lock_flush_tlb);
5630}
5631
5632static __always_inline bool
5633slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5634 slot_level_handler fn, bool lock_flush_tlb)
5635{
3bae0459 5636 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
e662ec3e 5637 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5638}
5639
5640static __always_inline bool
5641slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5642 slot_level_handler fn, bool lock_flush_tlb)
5643{
3bae0459 5644 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
e662ec3e 5645 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
85875a13
SC
5646}
5647
5648static __always_inline bool
5649slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5650 slot_level_handler fn, bool lock_flush_tlb)
5651{
3bae0459
SC
5652 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5653 PG_LEVEL_4K, lock_flush_tlb);
85875a13
SC
5654}
5655
1cfff4d9 5656static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5657{
1cfff4d9
JP
5658 free_page((unsigned long)mmu->pae_root);
5659 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5660}
5661
1cfff4d9 5662static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5663{
17ac10ad 5664 struct page *page;
6aa8b732
AK
5665 int i;
5666
17ac10ad 5667 /*
b6b80c78
SC
5668 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5669 * while the PDP table is a per-vCPU construct that's allocated at MMU
5670 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5671 * x86_64. Therefore we need to allocate the PDP table in the first
5672 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5673 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5674 * skip allocating the PDP table.
17ac10ad 5675 */
e93fd3b3 5676 if (tdp_enabled && vcpu->arch.tdp_level > PT32E_ROOT_LEVEL)
b6b80c78
SC
5677 return 0;
5678
254272ce 5679 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5680 if (!page)
d7fa6ab2
WY
5681 return -ENOMEM;
5682
1cfff4d9 5683 mmu->pae_root = page_address(page);
17ac10ad 5684 for (i = 0; i < 4; ++i)
1cfff4d9 5685 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5686
6aa8b732 5687 return 0;
6aa8b732
AK
5688}
5689
8018c27b 5690int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5691{
b94742c9 5692 uint i;
1cfff4d9 5693 int ret;
b94742c9 5694
5962bfb7
SC
5695 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5696 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5697
44dd3ffa
VK
5698 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5699 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5700
44dd3ffa 5701 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
be01e8e2 5702 vcpu->arch.root_mmu.root_pgd = 0;
44dd3ffa 5703 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5704 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5705 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5706
14c07ad8 5707 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
be01e8e2 5708 vcpu->arch.guest_mmu.root_pgd = 0;
14c07ad8
VK
5709 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5710 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5711 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5712
14c07ad8 5713 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9
JP
5714
5715 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5716 if (ret)
5717 return ret;
5718
5719 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5720 if (ret)
5721 goto fail_allocate_root;
5722
5723 return ret;
5724 fail_allocate_root:
5725 free_mmu_pages(&vcpu->arch.guest_mmu);
5726 return ret;
6aa8b732
AK
5727}
5728
fbb158cb 5729#define BATCH_ZAP_PAGES 10
002c5f73
SC
5730static void kvm_zap_obsolete_pages(struct kvm *kvm)
5731{
5732 struct kvm_mmu_page *sp, *node;
fbb158cb 5733 int nr_zapped, batch = 0;
002c5f73
SC
5734
5735restart:
5736 list_for_each_entry_safe_reverse(sp, node,
5737 &kvm->arch.active_mmu_pages, link) {
5738 /*
5739 * No obsolete valid page exists before a newly created page
5740 * since active_mmu_pages is a FIFO list.
5741 */
5742 if (!is_obsolete_sp(kvm, sp))
5743 break;
5744
5745 /*
f95eec9b
SC
5746 * Invalid pages should never land back on the list of active
5747 * pages. Skip the bogus page, otherwise we'll get stuck in an
5748 * infinite loop if the page gets put back on the list (again).
002c5f73 5749 */
f95eec9b 5750 if (WARN_ON(sp->role.invalid))
002c5f73
SC
5751 continue;
5752
4506ecf4
SC
5753 /*
5754 * No need to flush the TLB since we're only zapping shadow
5755 * pages with an obsolete generation number and all vCPUS have
5756 * loaded a new root, i.e. the shadow pages being zapped cannot
5757 * be in active use by the guest.
5758 */
fbb158cb 5759 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5760 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5761 batch = 0;
002c5f73
SC
5762 goto restart;
5763 }
5764
10605204
SC
5765 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5766 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5767 batch += nr_zapped;
002c5f73 5768 goto restart;
fbb158cb 5769 }
002c5f73
SC
5770 }
5771
4506ecf4
SC
5772 /*
5773 * Trigger a remote TLB flush before freeing the page tables to ensure
5774 * KVM is not in the middle of a lockless shadow page table walk, which
5775 * may reference the pages.
5776 */
10605204 5777 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5778}
5779
5780/*
5781 * Fast invalidate all shadow pages and use lock-break technique
5782 * to zap obsolete pages.
5783 *
5784 * It's required when memslot is being deleted or VM is being
5785 * destroyed, in these cases, we should ensure that KVM MMU does
5786 * not use any resource of the being-deleted slot or all slots
5787 * after calling the function.
5788 */
5789static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5790{
ca333add
SC
5791 lockdep_assert_held(&kvm->slots_lock);
5792
002c5f73 5793 spin_lock(&kvm->mmu_lock);
14a3c4f4 5794 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5795
5796 /*
5797 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5798 * held for the entire duration of zapping obsolete pages, it's
5799 * impossible for there to be multiple invalid generations associated
5800 * with *valid* shadow pages at any given time, i.e. there is exactly
5801 * one valid generation and (at most) one invalid generation.
5802 */
5803 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5804
4506ecf4
SC
5805 /*
5806 * Notify all vcpus to reload its shadow page table and flush TLB.
5807 * Then all vcpus will switch to new shadow page table with the new
5808 * mmu_valid_gen.
5809 *
5810 * Note: we need to do this under the protection of mmu_lock,
5811 * otherwise, vcpu would purge shadow page but miss tlb flush.
5812 */
5813 kvm_reload_remote_mmus(kvm);
5814
002c5f73
SC
5815 kvm_zap_obsolete_pages(kvm);
5816 spin_unlock(&kvm->mmu_lock);
5817}
5818
10605204
SC
5819static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5820{
5821 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5822}
5823
b5f5fdca 5824static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5825 struct kvm_memory_slot *slot,
5826 struct kvm_page_track_notifier_node *node)
b5f5fdca 5827{
002c5f73 5828 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5829}
5830
13d268ca 5831void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5832{
13d268ca 5833 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5834
13d268ca 5835 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5836 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5837 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5838}
5839
13d268ca 5840void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5841{
13d268ca 5842 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5843
13d268ca 5844 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5845}
5846
efdfe536
XG
5847void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5848{
5849 struct kvm_memslots *slots;
5850 struct kvm_memory_slot *memslot;
9da0e4d5 5851 int i;
efdfe536
XG
5852
5853 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5854 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5855 slots = __kvm_memslots(kvm, i);
5856 kvm_for_each_memslot(memslot, slots) {
5857 gfn_t start, end;
5858
5859 start = max(gfn_start, memslot->base_gfn);
5860 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5861 if (start >= end)
5862 continue;
efdfe536 5863
92da008f 5864 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
3bae0459 5865 PG_LEVEL_4K,
e662ec3e 5866 KVM_MAX_HUGEPAGE_LEVEL,
92da008f 5867 start, end - 1, true);
9da0e4d5 5868 }
efdfe536
XG
5869 }
5870
5871 spin_unlock(&kvm->mmu_lock);
5872}
5873
018aabb5
TY
5874static bool slot_rmap_write_protect(struct kvm *kvm,
5875 struct kvm_rmap_head *rmap_head)
d77aa73c 5876{
018aabb5 5877 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5878}
5879
1c91cad4 5880void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5881 struct kvm_memory_slot *memslot,
5882 int start_level)
6aa8b732 5883{
d77aa73c 5884 bool flush;
6aa8b732 5885
9d1beefb 5886 spin_lock(&kvm->mmu_lock);
3c9bd400 5887 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
e662ec3e 5888 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
9d1beefb 5889 spin_unlock(&kvm->mmu_lock);
198c74f4 5890
198c74f4
XG
5891 /*
5892 * We can flush all the TLBs out of the mmu lock without TLB
5893 * corruption since we just change the spte from writable to
5894 * readonly so that we only need to care the case of changing
5895 * spte from present to present (changing the spte from present
5896 * to nonpresent will flush all the TLBs immediately), in other
5897 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5898 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5899 * instead of PT_WRITABLE_MASK, that means it does not depend
5900 * on PT_WRITABLE_MASK anymore.
5901 */
d91ffee9 5902 if (flush)
7f42aa76 5903 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5904}
37a7d8b0 5905
3ea3b7fa 5906static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5907 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5908{
5909 u64 *sptep;
5910 struct rmap_iterator iter;
5911 int need_tlb_flush = 0;
ba049e93 5912 kvm_pfn_t pfn;
3ea3b7fa
WL
5913 struct kvm_mmu_page *sp;
5914
0d536790 5915restart:
018aabb5 5916 for_each_rmap_spte(rmap_head, &iter, sptep) {
57354682 5917 sp = sptep_to_sp(sptep);
3ea3b7fa
WL
5918 pfn = spte_to_pfn(*sptep);
5919
5920 /*
decf6333
XG
5921 * We cannot do huge page mapping for indirect shadow pages,
5922 * which are found on the last rmap (level = 1) when not using
5923 * tdp; such shadow pages are synced with the page table in
5924 * the guest, and the guest page table is using 4K page size
5925 * mapping if the indirect sp has level = 1.
3ea3b7fa 5926 */
a78986aa 5927 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5928 (kvm_is_zone_device_pfn(pfn) ||
5929 PageCompound(pfn_to_page(pfn)))) {
e7912386 5930 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5931
5932 if (kvm_available_flush_tlb_with_range())
5933 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5934 KVM_PAGES_PER_HPAGE(sp->role.level));
5935 else
5936 need_tlb_flush = 1;
5937
0d536790
XG
5938 goto restart;
5939 }
3ea3b7fa
WL
5940 }
5941
5942 return need_tlb_flush;
5943}
5944
5945void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5946 const struct kvm_memory_slot *memslot)
3ea3b7fa 5947{
f36f3f28 5948 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5949 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5950 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5951 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5952 spin_unlock(&kvm->mmu_lock);
5953}
5954
b3594ffb
SC
5955void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5956 struct kvm_memory_slot *memslot)
5957{
5958 /*
7f42aa76
SC
5959 * All current use cases for flushing the TLBs for a specific memslot
5960 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5961 * The interaction between the various operations on memslot must be
5962 * serialized by slots_locks to ensure the TLB flush from one operation
5963 * is observed by any other operation on the same memslot.
b3594ffb
SC
5964 */
5965 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5966 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5967 memslot->npages);
b3594ffb
SC
5968}
5969
f4b4b180
KH
5970void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5971 struct kvm_memory_slot *memslot)
5972{
d77aa73c 5973 bool flush;
f4b4b180
KH
5974
5975 spin_lock(&kvm->mmu_lock);
d77aa73c 5976 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5977 spin_unlock(&kvm->mmu_lock);
5978
f4b4b180
KH
5979 /*
5980 * It's also safe to flush TLBs out of mmu lock here as currently this
5981 * function is only used for dirty logging, in which case flushing TLB
5982 * out of mmu lock also guarantees no dirty pages will be lost in
5983 * dirty_bitmap.
5984 */
5985 if (flush)
7f42aa76 5986 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5987}
5988EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5989
5990void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5991 struct kvm_memory_slot *memslot)
5992{
d77aa73c 5993 bool flush;
f4b4b180
KH
5994
5995 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5996 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5997 false);
f4b4b180
KH
5998 spin_unlock(&kvm->mmu_lock);
5999
f4b4b180 6000 if (flush)
7f42aa76 6001 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
6002}
6003EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6004
6005void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6006 struct kvm_memory_slot *memslot)
6007{
d77aa73c 6008 bool flush;
f4b4b180
KH
6009
6010 spin_lock(&kvm->mmu_lock);
d77aa73c 6011 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
6012 spin_unlock(&kvm->mmu_lock);
6013
f4b4b180 6014 if (flush)
7f42aa76 6015 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
6016}
6017EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6018
92f58b5c 6019void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
6020{
6021 struct kvm_mmu_page *sp, *node;
7390de1e 6022 LIST_HEAD(invalid_list);
83cdb568 6023 int ign;
5304b8d3 6024
7390de1e 6025 spin_lock(&kvm->mmu_lock);
5304b8d3 6026restart:
8a674adc 6027 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
f95eec9b 6028 if (WARN_ON(sp->role.invalid))
4771450c 6029 continue;
92f58b5c 6030 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 6031 goto restart;
24efe61f 6032 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
6033 goto restart;
6034 }
6035
4771450c 6036 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
6037 spin_unlock(&kvm->mmu_lock);
6038}
6039
15248258 6040void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 6041{
164bf7e5 6042 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 6043
164bf7e5 6044 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 6045
f8f55942 6046 /*
e1359e2b
SC
6047 * Generation numbers are incremented in multiples of the number of
6048 * address spaces in order to provide unique generations across all
6049 * address spaces. Strip what is effectively the address space
6050 * modifier prior to checking for a wrap of the MMIO generation so
6051 * that a wrap in any address space is detected.
6052 */
6053 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6054
f8f55942 6055 /*
e1359e2b 6056 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 6057 * zap all shadow pages.
f8f55942 6058 */
e1359e2b 6059 if (unlikely(gen == 0)) {
ae0f5499 6060 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 6061 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 6062 }
f8f55942
XG
6063}
6064
70534a73
DC
6065static unsigned long
6066mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
6067{
6068 struct kvm *kvm;
1495f230 6069 int nr_to_scan = sc->nr_to_scan;
70534a73 6070 unsigned long freed = 0;
3ee16c81 6071
0d9ce162 6072 mutex_lock(&kvm_lock);
3ee16c81
IE
6073
6074 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 6075 int idx;
d98ba053 6076 LIST_HEAD(invalid_list);
3ee16c81 6077
35f2d16b
TY
6078 /*
6079 * Never scan more than sc->nr_to_scan VM instances.
6080 * Will not hit this condition practically since we do not try
6081 * to shrink more than one VM and it is very unlikely to see
6082 * !n_used_mmu_pages so many times.
6083 */
6084 if (!nr_to_scan--)
6085 break;
19526396
GN
6086 /*
6087 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6088 * here. We may skip a VM instance errorneosly, but we do not
6089 * want to shrink a VM that only started to populate its MMU
6090 * anyway.
6091 */
10605204
SC
6092 if (!kvm->arch.n_used_mmu_pages &&
6093 !kvm_has_zapped_obsolete_pages(kvm))
19526396 6094 continue;
19526396 6095
f656ce01 6096 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 6097 spin_lock(&kvm->mmu_lock);
3ee16c81 6098
10605204
SC
6099 if (kvm_has_zapped_obsolete_pages(kvm)) {
6100 kvm_mmu_commit_zap_page(kvm,
6101 &kvm->arch.zapped_obsolete_pages);
6102 goto unlock;
6103 }
6104
ebdb292d 6105 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
19526396 6106
10605204 6107unlock:
3ee16c81 6108 spin_unlock(&kvm->mmu_lock);
f656ce01 6109 srcu_read_unlock(&kvm->srcu, idx);
19526396 6110
70534a73
DC
6111 /*
6112 * unfair on small ones
6113 * per-vm shrinkers cry out
6114 * sadness comes quickly
6115 */
19526396
GN
6116 list_move_tail(&kvm->vm_list, &vm_list);
6117 break;
3ee16c81 6118 }
3ee16c81 6119
0d9ce162 6120 mutex_unlock(&kvm_lock);
70534a73 6121 return freed;
70534a73
DC
6122}
6123
6124static unsigned long
6125mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6126{
45221ab6 6127 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
6128}
6129
6130static struct shrinker mmu_shrinker = {
70534a73
DC
6131 .count_objects = mmu_shrink_count,
6132 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
6133 .seeks = DEFAULT_SEEKS * 10,
6134};
6135
2ddfd20e 6136static void mmu_destroy_caches(void)
b5a33a75 6137{
c1bd743e
TH
6138 kmem_cache_destroy(pte_list_desc_cache);
6139 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
6140}
6141
7b6f8a06
KH
6142static void kvm_set_mmio_spte_mask(void)
6143{
6144 u64 mask;
7b6f8a06
KH
6145
6146 /*
6129ed87
SC
6147 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6148 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
6149 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6150 * 52-bit physical addresses then there are no reserved PA bits in the
6151 * PTEs and so the reserved PA approach must be disabled.
7b6f8a06 6152 */
6129ed87
SC
6153 if (shadow_phys_bits < 52)
6154 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6155 else
6156 mask = 0;
7b6f8a06 6157
e7581cac 6158 kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
6159}
6160
b8e8c830
PB
6161static bool get_nx_auto_mode(void)
6162{
6163 /* Return true when CPU has the bug, and mitigations are ON */
6164 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6165}
6166
6167static void __set_nx_huge_pages(bool val)
6168{
6169 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6170}
6171
6172static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6173{
6174 bool old_val = nx_huge_pages;
6175 bool new_val;
6176
6177 /* In "auto" mode deploy workaround only if CPU has the bug. */
6178 if (sysfs_streq(val, "off"))
6179 new_val = 0;
6180 else if (sysfs_streq(val, "force"))
6181 new_val = 1;
6182 else if (sysfs_streq(val, "auto"))
6183 new_val = get_nx_auto_mode();
6184 else if (strtobool(val, &new_val) < 0)
6185 return -EINVAL;
6186
6187 __set_nx_huge_pages(new_val);
6188
6189 if (new_val != old_val) {
6190 struct kvm *kvm;
b8e8c830
PB
6191
6192 mutex_lock(&kvm_lock);
6193
6194 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 6195 mutex_lock(&kvm->slots_lock);
b8e8c830 6196 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 6197 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
6198
6199 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
6200 }
6201 mutex_unlock(&kvm_lock);
6202 }
6203
6204 return 0;
6205}
6206
b5a33a75
AK
6207int kvm_mmu_module_init(void)
6208{
ab271bd4
AB
6209 int ret = -ENOMEM;
6210
b8e8c830
PB
6211 if (nx_huge_pages == -1)
6212 __set_nx_huge_pages(get_nx_auto_mode());
6213
36d9594d
VK
6214 /*
6215 * MMU roles use union aliasing which is, generally speaking, an
6216 * undefined behavior. However, we supposedly know how compilers behave
6217 * and the current status quo is unlikely to change. Guardians below are
6218 * supposed to let us know if the assumption becomes false.
6219 */
6220 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6221 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6222 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6223
28a1f3ac 6224 kvm_mmu_reset_all_pte_masks();
f160c7b7 6225
7b6f8a06
KH
6226 kvm_set_mmio_spte_mask();
6227
53c07b18
XG
6228 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6229 sizeof(struct pte_list_desc),
46bea48a 6230 0, SLAB_ACCOUNT, NULL);
53c07b18 6231 if (!pte_list_desc_cache)
ab271bd4 6232 goto out;
b5a33a75 6233
d3d25b04
AK
6234 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6235 sizeof(struct kvm_mmu_page),
46bea48a 6236 0, SLAB_ACCOUNT, NULL);
d3d25b04 6237 if (!mmu_page_header_cache)
ab271bd4 6238 goto out;
d3d25b04 6239
908c7f19 6240 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6241 goto out;
45bf21a8 6242
ab271bd4
AB
6243 ret = register_shrinker(&mmu_shrinker);
6244 if (ret)
6245 goto out;
3ee16c81 6246
b5a33a75
AK
6247 return 0;
6248
ab271bd4 6249out:
3ee16c81 6250 mmu_destroy_caches();
ab271bd4 6251 return ret;
b5a33a75
AK
6252}
6253
3ad82a7e 6254/*
39337ad1 6255 * Calculate mmu pages needed for kvm.
3ad82a7e 6256 */
bc8a3d89 6257unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6258{
bc8a3d89
BG
6259 unsigned long nr_mmu_pages;
6260 unsigned long nr_pages = 0;
bc6678a3 6261 struct kvm_memslots *slots;
be6ba0f0 6262 struct kvm_memory_slot *memslot;
9da0e4d5 6263 int i;
3ad82a7e 6264
9da0e4d5
PB
6265 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6266 slots = __kvm_memslots(kvm, i);
90d83dc3 6267
9da0e4d5
PB
6268 kvm_for_each_memslot(memslot, slots)
6269 nr_pages += memslot->npages;
6270 }
3ad82a7e
ZX
6271
6272 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6273 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6274
6275 return nr_mmu_pages;
6276}
6277
c42fffe3
XG
6278void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6279{
95f93af4 6280 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6281 free_mmu_pages(&vcpu->arch.root_mmu);
6282 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6283 mmu_free_memory_caches(vcpu);
b034cf01
XG
6284}
6285
b034cf01
XG
6286void kvm_mmu_module_exit(void)
6287{
6288 mmu_destroy_caches();
6289 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6290 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6291 mmu_audit_disable();
6292}
1aa9b957
JS
6293
6294static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6295{
6296 unsigned int old_val;
6297 int err;
6298
6299 old_val = nx_huge_pages_recovery_ratio;
6300 err = param_set_uint(val, kp);
6301 if (err)
6302 return err;
6303
6304 if (READ_ONCE(nx_huge_pages) &&
6305 !old_val && nx_huge_pages_recovery_ratio) {
6306 struct kvm *kvm;
6307
6308 mutex_lock(&kvm_lock);
6309
6310 list_for_each_entry(kvm, &vm_list, vm_list)
6311 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6312
6313 mutex_unlock(&kvm_lock);
6314 }
6315
6316 return err;
6317}
6318
6319static void kvm_recover_nx_lpages(struct kvm *kvm)
6320{
6321 int rcu_idx;
6322 struct kvm_mmu_page *sp;
6323 unsigned int ratio;
6324 LIST_HEAD(invalid_list);
6325 ulong to_zap;
6326
6327 rcu_idx = srcu_read_lock(&kvm->srcu);
6328 spin_lock(&kvm->mmu_lock);
6329
6330 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6331 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6332 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6333 /*
6334 * We use a separate list instead of just using active_mmu_pages
6335 * because the number of lpage_disallowed pages is expected to
6336 * be relatively small compared to the total.
6337 */
6338 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6339 struct kvm_mmu_page,
6340 lpage_disallowed_link);
6341 WARN_ON_ONCE(!sp->lpage_disallowed);
6342 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6343 WARN_ON_ONCE(sp->lpage_disallowed);
6344
6345 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6346 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6347 if (to_zap)
6348 cond_resched_lock(&kvm->mmu_lock);
6349 }
6350 }
6351
6352 spin_unlock(&kvm->mmu_lock);
6353 srcu_read_unlock(&kvm->srcu, rcu_idx);
6354}
6355
6356static long get_nx_lpage_recovery_timeout(u64 start_time)
6357{
6358 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6359 ? start_time + 60 * HZ - get_jiffies_64()
6360 : MAX_SCHEDULE_TIMEOUT;
6361}
6362
6363static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6364{
6365 u64 start_time;
6366 long remaining_time;
6367
6368 while (true) {
6369 start_time = get_jiffies_64();
6370 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6371
6372 set_current_state(TASK_INTERRUPTIBLE);
6373 while (!kthread_should_stop() && remaining_time > 0) {
6374 schedule_timeout(remaining_time);
6375 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6376 set_current_state(TASK_INTERRUPTIBLE);
6377 }
6378
6379 set_current_state(TASK_RUNNING);
6380
6381 if (kthread_should_stop())
6382 return 0;
6383
6384 kvm_recover_nx_lpages(kvm);
6385 }
6386}
6387
6388int kvm_mmu_post_init_vm(struct kvm *kvm)
6389{
6390 int err;
6391
6392 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6393 "kvm-nx-lpage-recovery",
6394 &kvm->arch.nx_lpage_recovery_thread);
6395 if (!err)
6396 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6397
6398 return err;
6399}
6400
6401void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6402{
6403 if (kvm->arch.nx_lpage_recovery_thread)
6404 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6405}