]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/paging_tmpl.h
KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / paging_tmpl.h
CommitLineData
20c8ccb1 1/* SPDX-License-Identifier: GPL-2.0-only */
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732
AK
16 */
17
18/*
19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20 * so the code in this file is compiled twice, once per pte size.
21 */
22
23#if PTTYPE == 64
24 #define pt_element_t u64
25 #define guest_walker guest_walker64
26 #define FNAME(name) paging##64_##name
fc9bf2e0 27 #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
e04da980
JR
28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
6aa8b732 30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
c7addb90 31 #define PT_LEVEL_BITS PT64_LEVEL_BITS
d8089bac
GN
32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
cea0f0e7 35 #ifdef CONFIG_X86_64
f6ab0107 36 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
b3e4e63f 37 #define CMPXCHG cmpxchg
cea0f0e7 38 #else
b3e4e63f 39 #define CMPXCHG cmpxchg64
cea0f0e7
AK
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
6aa8b732
AK
42#elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
e04da980
JR
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
6aa8b732 49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
c7addb90 50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 51 #define PT_MAX_FULL_LEVELS 2
d8089bac
GN
52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
b3e4e63f 55 #define CMPXCHG cmpxchg
37406aaa
NHE
56#elif PTTYPE == PTTYPE_EPT
57 #define pt_element_t u64
58 #define guest_walker guest_walkerEPT
59 #define FNAME(name) ept_##name
fc9bf2e0 60 #define PT_BASE_ADDR_MASK GUEST_PT64_BASE_ADDR_MASK
37406aaa
NHE
61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 #define PT_LEVEL_BITS PT64_LEVEL_BITS
ae1e2d10
PB
65 #define PT_GUEST_DIRTY_SHIFT 9
66 #define PT_GUEST_ACCESSED_SHIFT 8
67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
37406aaa 68 #define CMPXCHG cmpxchg64
bb1fcc70 69 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
6aa8b732
AK
70#else
71 #error Invalid PTTYPE value
72#endif
73
ae1e2d10
PB
74#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
75#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
76
e04da980 77#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
3bae0459 78#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
5fb07ddb 79
6aa8b732
AK
80/*
81 * The guest_walker structure emulates the behavior of the hardware page
82 * table walker.
83 */
84struct guest_walker {
85 int level;
8cbc7069 86 unsigned max_level;
cea0f0e7 87 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
7819026e 88 pt_element_t ptes[PT_MAX_FULL_LEVELS];
189be38d 89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
7819026e 90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
8cbc7069 91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
ba6a3541 92 bool pte_writable[PT_MAX_FULL_LEVELS];
b1bd5cba
LJ
93 unsigned int pt_access[PT_MAX_FULL_LEVELS];
94 unsigned int pte_access;
815af8d4 95 gfn_t gfn;
8c28d031 96 struct x86_exception fault;
6aa8b732
AK
97};
98
e04da980 99static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
5fb07ddb 100{
e04da980 101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
5fb07ddb
AK
102}
103
86407bcb
PB
104static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
105 unsigned gpte)
0ad805a0
NHE
106{
107 unsigned mask;
108
61719a8f 109 /* dirty bit is not supported, so no need to track it */
86407bcb 110 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
111 return;
112
0ad805a0
NHE
113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
114
115 mask = (unsigned)~ACC_WRITE_MASK;
116 /* Allow write access to dirty gptes */
d8089bac
GN
117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
118 PT_WRITABLE_MASK;
0ad805a0
NHE
119 *access &= mask;
120}
121
0ad805a0
NHE
122static inline int FNAME(is_present_gpte)(unsigned long pte)
123{
37406aaa 124#if PTTYPE != PTTYPE_EPT
812f30b2 125 return pte & PT_PRESENT_MASK;
37406aaa
NHE
126#else
127 return pte & 7;
128#endif
0ad805a0
NHE
129}
130
b5c3c1b3
SC
131static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
132{
133#if PTTYPE != PTTYPE_EPT
134 return false;
135#else
136 return __is_bad_mt_xwr(rsvd_check, gpte);
137#endif
138}
139
140static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
141{
142 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
143 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
144}
145
a78484c6 146static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
c8cfbb55
TY
147 pt_element_t __user *ptep_user, unsigned index,
148 pt_element_t orig_pte, pt_element_t new_pte)
b3e4e63f 149{
c8cfbb55 150 int npages;
b3e4e63f
MT
151 pt_element_t ret;
152 pt_element_t *table;
153 struct page *page;
154
73b0140b 155 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
bd53cb35
FS
156 if (likely(npages == 1)) {
157 table = kmap_atomic(page);
158 ret = CMPXCHG(&table[index], orig_pte, new_pte);
159 kunmap_atomic(table);
160
161 kvm_release_page_dirty(page);
162 } else {
163 struct vm_area_struct *vma;
164 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
165 unsigned long pfn;
166 unsigned long paddr;
167
89154dd5 168 mmap_read_lock(current->mm);
bd53cb35
FS
169 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
170 if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
89154dd5 171 mmap_read_unlock(current->mm);
bd53cb35
FS
172 return -EFAULT;
173 }
174 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
175 paddr = pfn << PAGE_SHIFT;
176 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
177 if (!table) {
89154dd5 178 mmap_read_unlock(current->mm);
bd53cb35
FS
179 return -EFAULT;
180 }
181 ret = CMPXCHG(&table[index], orig_pte, new_pte);
182 memunmap(table);
89154dd5 183 mmap_read_unlock(current->mm);
bd53cb35 184 }
b3e4e63f
MT
185
186 return (ret != orig_pte);
187}
188
0ad805a0
NHE
189static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
190 struct kvm_mmu_page *sp, u64 *spte,
191 u64 gpte)
192{
0ad805a0
NHE
193 if (!FNAME(is_present_gpte)(gpte))
194 goto no_present;
195
61719a8f 196 /* if accessed bit is not supported prefetch non accessed gpte */
44dd3ffa
VK
197 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
198 !(gpte & PT_GUEST_ACCESSED_MASK))
0ad805a0
NHE
199 goto no_present;
200
3bae0459 201 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
f8052a05
SC
202 goto no_present;
203
0ad805a0
NHE
204 return false;
205
206no_present:
207 drop_spte(vcpu->kvm, spte);
208 return true;
209}
210
d95c5568
BD
211/*
212 * For PTTYPE_EPT, a page table can be executable but not readable
213 * on supported processors. Therefore, set_spte does not automatically
214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
215 * to signify readability since it isn't used in the EPT case
216 */
42522d08 217static inline unsigned FNAME(gpte_access)(u64 gpte)
0ad805a0
NHE
218{
219 unsigned access;
37406aaa
NHE
220#if PTTYPE == PTTYPE_EPT
221 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
222 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
d95c5568 223 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
37406aaa 224#else
bb9eadf0
PB
225 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
226 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
227 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
228 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
229 access ^= (gpte >> PT64_NX_SHIFT);
37406aaa 230#endif
0ad805a0
NHE
231
232 return access;
233}
234
8cbc7069
AK
235static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
236 struct kvm_mmu *mmu,
237 struct guest_walker *walker,
2dbebf7a 238 gpa_t addr, int write_fault)
8cbc7069
AK
239{
240 unsigned level, index;
241 pt_element_t pte, orig_pte;
242 pt_element_t __user *ptep_user;
243 gfn_t table_gfn;
244 int ret;
245
61719a8f 246 /* dirty/accessed bits are not supported, so no need to update them */
86407bcb 247 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
248 return 0;
249
8cbc7069
AK
250 for (level = walker->max_level; level >= walker->level; --level) {
251 pte = orig_pte = walker->ptes[level - 1];
252 table_gfn = walker->table_gfn[level - 1];
253 ptep_user = walker->ptep_user[level - 1];
254 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
d8089bac 255 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
8cbc7069 256 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
d8089bac 257 pte |= PT_GUEST_ACCESSED_MASK;
8cbc7069 258 }
0ad805a0 259 if (level == walker->level && write_fault &&
d8089bac 260 !(pte & PT_GUEST_DIRTY_MASK)) {
8cbc7069 261 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
bab4165e 262#if PTTYPE == PTTYPE_EPT
02f5fb2e 263 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
bab4165e
BD
264 return -EINVAL;
265#endif
d8089bac 266 pte |= PT_GUEST_DIRTY_MASK;
8cbc7069
AK
267 }
268 if (pte == orig_pte)
269 continue;
270
ba6a3541
PB
271 /*
272 * If the slot is read-only, simply do not process the accessed
273 * and dirty bits. This is the correct thing to do if the slot
274 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
275 * are only supported if the accessed and dirty bits are already
276 * set in the ROM (so that MMIO writes are never needed).
277 *
278 * Note that NPT does not allow this at all and faults, since
279 * it always wants nested page table entries for the guest
280 * page tables to be writable. And EPT works but will simply
281 * overwrite the read-only memory to set the accessed and dirty
282 * bits.
283 */
284 if (unlikely(!walker->pte_writable[level - 1]))
285 continue;
286
8cbc7069
AK
287 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
288 if (ret)
289 return ret;
290
54bf36aa 291 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
17e4bce0 292 walker->ptes[level - 1] = pte;
8cbc7069
AK
293 }
294 return 0;
295}
296
be94f6b7
HH
297static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
298{
299 unsigned pkeys = 0;
300#if PTTYPE == 64
301 pte_t pte = {.pte = gpte};
302
303 pkeys = pte_flags_pkey(pte_flags(pte));
304#endif
305 return pkeys;
306}
307
7cd138db
SC
308static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
309 unsigned int level, unsigned int gpte)
310{
311 /*
312 * For EPT and PAE paging (both variants), bit 7 is either reserved at
313 * all level or indicates a huge page (ignoring CR3/EPTP). In either
314 * case, bit 7 being set terminates the walk.
315 */
316#if PTTYPE == 32
317 /*
318 * 32-bit paging requires special handling because bit 7 is ignored if
319 * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is
320 * greater than the last level for which bit 7 is the PAGE_SIZE bit.
321 *
322 * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7
323 * is not reserved and does not indicate a large page at this level,
324 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
325 */
326 gpte &= level - (PT32_ROOT_LEVEL + mmu->mmu_role.ext.cr4_pse);
327#endif
328 /*
329 * PG_LEVEL_4K always terminates. The RHS has bit 7 set
330 * iff level <= PG_LEVEL_4K, which for our purpose means
331 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
332 */
333 gpte |= level - PG_LEVEL_4K - 1;
334
335 return gpte & PT_PAGE_SIZE_MASK;
336}
ac79c978 337/*
736c291c 338 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
ac79c978 339 */
1e301feb
JR
340static int FNAME(walk_addr_generic)(struct guest_walker *walker,
341 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
736c291c 342 gpa_t addr, u32 access)
6aa8b732 343{
8cbc7069 344 int ret;
42bf3f0a 345 pt_element_t pte;
3f649ab7 346 pt_element_t __user *ptep_user;
cea0f0e7 347 gfn_t table_gfn;
0780516a
PB
348 u64 pt_access, pte_access;
349 unsigned index, accessed_dirty, pte_pkey;
ae1e2d10 350 unsigned nested_access;
42bf3f0a 351 gpa_t pte_gpa;
86407bcb 352 bool have_ad;
134291bf 353 int offset;
0780516a 354 u64 walk_nx_mask = 0;
134291bf
TY
355 const int write_fault = access & PFERR_WRITE_MASK;
356 const int user_fault = access & PFERR_USER_MASK;
357 const int fetch_fault = access & PFERR_FETCH_MASK;
358 u16 errcode = 0;
13d22b6a
AK
359 gpa_t real_gpa;
360 gfn_t gfn;
6aa8b732 361
6fbc2770 362 trace_kvm_mmu_pagetable_walk(addr, access);
92c1c1e8 363retry_walk:
1e301feb 364 walker->level = mmu->root_level;
d8dd54e0 365 pte = mmu->get_guest_pgd(vcpu);
86407bcb 366 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
1e301feb 367
1b0973bd 368#if PTTYPE == 64
0780516a 369 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
1e301feb 370 if (walker->level == PT32E_ROOT_LEVEL) {
e4e517b4 371 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
07420171 372 trace_kvm_mmu_paging_element(pte, walker->level);
0ad805a0 373 if (!FNAME(is_present_gpte)(pte))
f59c1d2d 374 goto error;
1b0973bd
AK
375 --walker->level;
376 }
377#endif
8cbc7069 378 walker->max_level = walker->level;
1715d0dc 379 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
6aa8b732 380
ae1e2d10
PB
381 /*
382 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
383 * by the MOV to CR instruction are treated as reads and do not cause the
384 * processor to set the dirty flag in any EPT paging-structure entry.
385 */
386 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
387
0780516a 388 pte_access = ~0;
13d22b6a 389 ++walker->level;
ac79c978 390
13d22b6a 391 do {
6e2ca7d1
TY
392 unsigned long host_addr;
393
0780516a 394 pt_access = pte_access;
13d22b6a
AK
395 --walker->level;
396
42bf3f0a 397 index = PT_INDEX(addr, walker->level);
5fb07ddb 398 table_gfn = gpte_to_gfn(pte);
2329d46d
JR
399 offset = index * sizeof(pt_element_t);
400 pte_gpa = gfn_to_gpa(table_gfn) + offset;
829ee279
LP
401
402 BUG_ON(walker->level < 1);
42bf3f0a 403 walker->table_gfn[walker->level - 1] = table_gfn;
7819026e 404 walker->pte_gpa[walker->level - 1] = pte_gpa;
42bf3f0a 405
312d16c7 406 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
ae1e2d10 407 nested_access,
54987b7a 408 &walker->fault);
5e352519
PB
409
410 /*
411 * FIXME: This can happen if emulation (for of an INS/OUTS
412 * instruction) triggers a nested page fault. The exit
413 * qualification / exit info field will incorrectly have
414 * "guest page access" as the nested page fault's cause,
415 * instead of "guest page structure access". To fix this,
416 * the x86_exception struct should be augmented with enough
417 * information to fix the exit_qualification or exit_info_1
418 * fields.
419 */
312d16c7 420 if (unlikely(real_gpa == UNMAPPED_GVA))
54987b7a 421 return 0;
5e352519 422
312d16c7 423 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
ba6a3541 424 &walker->pte_writable[walker->level - 1]);
134291bf
TY
425 if (unlikely(kvm_is_error_hva(host_addr)))
426 goto error;
6e2ca7d1
TY
427
428 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
a4814443 429 if (unlikely(__get_user(pte, ptep_user)))
134291bf 430 goto error;
8cbc7069 431 walker->ptep_user[walker->level - 1] = ptep_user;
a6085fba 432
07420171 433 trace_kvm_mmu_paging_element(pte, walker->level);
42bf3f0a 434
0780516a
PB
435 /*
436 * Inverting the NX it lets us AND it like other
437 * permission bits.
438 */
439 pte_access = pt_access & (pte ^ walk_nx_mask);
440
0ad805a0 441 if (unlikely(!FNAME(is_present_gpte)(pte)))
134291bf 442 goto error;
7993ba43 443
b5c3c1b3 444 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
7a98205d 445 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
134291bf 446 goto error;
f59c1d2d 447 }
82725b20 448
7819026e 449 walker->ptes[walker->level - 1] = pte;
b1bd5cba
LJ
450
451 /* Convert to ACC_*_MASK flags for struct guest_walker. */
452 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
7cd138db 453 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
42bf3f0a 454
be94f6b7 455 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
0780516a
PB
456 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
457
458 /* Convert to ACC_*_MASK flags for struct guest_walker. */
42522d08 459 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
0780516a 460 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
f13577e8 461 if (unlikely(errcode))
f59c1d2d
AK
462 goto error;
463
13d22b6a
AK
464 gfn = gpte_to_gfn_lvl(pte, walker->level);
465 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
466
3bae0459 467 if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
13d22b6a
AK
468 gfn += pse36_gfn_delta(pte);
469
54987b7a 470 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
13d22b6a
AK
471 if (real_gpa == UNMAPPED_GVA)
472 return 0;
473
474 walker->gfn = real_gpa >> PAGE_SHIFT;
475
8ea667f2 476 if (!write_fault)
0780516a 477 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
908e7d79
GN
478 else
479 /*
61719a8f
GN
480 * On a write fault, fold the dirty bit into accessed_dirty.
481 * For modes without A/D bits support accessed_dirty will be
482 * always clear.
908e7d79 483 */
d8089bac
GN
484 accessed_dirty &= pte >>
485 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
b514c30f
AK
486
487 if (unlikely(!accessed_dirty)) {
2dbebf7a
SC
488 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
489 addr, write_fault);
b514c30f
AK
490 if (unlikely(ret < 0))
491 goto error;
492 else if (ret)
493 goto retry_walk;
494 }
42bf3f0a 495
fe135d2c 496 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
b1bd5cba
LJ
497 __func__, (u64)pte, walker->pte_access,
498 walker->pt_access[walker->level - 1]);
7993ba43
AK
499 return 1;
500
f59c1d2d 501error:
134291bf 502 errcode |= write_fault | user_fault;
cd628f0f 503 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
134291bf 504 errcode |= PFERR_FETCH_MASK;
8df25a32 505
134291bf
TY
506 walker->fault.vector = PF_VECTOR;
507 walker->fault.error_code_valid = true;
508 walker->fault.error_code = errcode;
25d92081
YZ
509
510#if PTTYPE == PTTYPE_EPT
511 /*
512 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
513 * misconfiguration requires to be injected. The detection is
514 * done by is_rsvd_bits_set() above.
515 *
516 * We set up the value of exit_qualification to inject:
ddd6f0e9
KA
517 * [2:0] - Derive from the access bits. The exit_qualification might be
518 * out of date if it is serving an EPT misconfiguration.
25d92081
YZ
519 * [5:3] - Calculated by the page walk of the guest EPT page tables
520 * [7:8] - Derived from [7:8] of real exit_qualification
521 *
522 * The other bits are set to 0.
523 */
524 if (!(errcode & PFERR_RSVD_MASK)) {
ddd6f0e9
KA
525 vcpu->arch.exit_qualification &= 0x180;
526 if (write_fault)
527 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
528 if (user_fault)
529 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
530 if (fetch_fault)
531 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
0780516a 532 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
25d92081
YZ
533 }
534#endif
6389ee94
AK
535 walker->fault.address = addr;
536 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
422e2e17 537 walker->fault.async_page_fault = false;
8df25a32 538
8c28d031 539 trace_kvm_mmu_walker_error(walker->fault.error_code);
fe551881 540 return 0;
6aa8b732
AK
541}
542
1e301feb 543static int FNAME(walk_addr)(struct guest_walker *walker,
736c291c 544 struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
1e301feb 545{
44dd3ffa 546 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
33770780 547 access);
1e301feb
JR
548}
549
37406aaa 550#if PTTYPE != PTTYPE_EPT
6539e738
JR
551static int FNAME(walk_addr_nested)(struct guest_walker *walker,
552 struct kvm_vcpu *vcpu, gva_t addr,
33770780 553 u32 access)
6539e738
JR
554{
555 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
33770780 556 addr, access);
6539e738 557}
37406aaa 558#endif
6539e738 559
bd6360cc
XG
560static bool
561FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
562 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0028425f 563{
41074d07 564 unsigned pte_access;
bd6360cc 565 gfn_t gfn;
ba049e93 566 kvm_pfn_t pfn;
0028425f 567
0ad805a0 568 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
bd6360cc 569 return false;
407c61c6 570
b8688d51 571 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
bd6360cc
XG
572
573 gfn = gpte_to_gfn(gpte);
42522d08 574 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
44dd3ffa 575 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
bd6360cc
XG
576 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
577 no_dirty_log && (pte_access & ACC_WRITE_MASK));
81c52c56 578 if (is_error_pfn(pfn))
bd6360cc 579 return false;
0f53b5b1 580
1403283a 581 /*
bd6360cc
XG
582 * we call mmu_set_spte() with host_writable = true because
583 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
1403283a 584 */
e88b8093 585 mmu_set_spte(vcpu, spte, pte_access, false, PG_LEVEL_4K, gfn, pfn,
029499b4 586 true, true);
bd6360cc 587
43fdcda9 588 kvm_release_pfn_clean(pfn);
bd6360cc
XG
589 return true;
590}
591
592static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
593 u64 *spte, const void *pte)
594{
595 pt_element_t gpte = *(const pt_element_t *)pte;
596
597 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
0028425f
AK
598}
599
39c8c672
AK
600static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
601 struct guest_walker *gw, int level)
602{
39c8c672 603 pt_element_t curr_pte;
189be38d
XG
604 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
605 u64 mask;
606 int r, index;
607
3bae0459 608 if (level == PG_LEVEL_4K) {
189be38d
XG
609 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
610 base_gpa = pte_gpa & ~mask;
611 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
612
54bf36aa 613 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
189be38d
XG
614 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
615 curr_pte = gw->prefetch_ptes[index];
616 } else
54bf36aa 617 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
39c8c672 618 &curr_pte, sizeof(curr_pte));
189be38d 619
39c8c672
AK
620 return r || curr_pte != gw->ptes[level - 1];
621}
622
189be38d
XG
623static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
624 u64 *sptep)
957ed9ef
XG
625{
626 struct kvm_mmu_page *sp;
189be38d 627 pt_element_t *gptep = gw->prefetch_ptes;
957ed9ef 628 u64 *spte;
189be38d 629 int i;
957ed9ef 630
57354682 631 sp = sptep_to_sp(sptep);
957ed9ef 632
3bae0459 633 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
634 return;
635
4a42d848
DS
636 /*
637 * If addresses are being invalidated, skip prefetching to avoid
638 * accidentally prefetching those addresses.
639 */
640 if (unlikely(vcpu->kvm->mmu_notifier_count))
641 return;
642
957ed9ef
XG
643 if (sp->role.direct)
644 return __direct_pte_prefetch(vcpu, sp, sptep);
645
646 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
957ed9ef
XG
647 spte = sp->spt + i;
648
649 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
957ed9ef
XG
650 if (spte == sptep)
651 continue;
652
c3707958 653 if (is_shadow_present_pte(*spte))
957ed9ef
XG
654 continue;
655
bd6360cc 656 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
957ed9ef 657 break;
957ed9ef
XG
658 }
659}
660
6aa8b732
AK
661/*
662 * Fetch a shadow pte for a specific level in the paging hierarchy.
d4878f24
XG
663 * If the guest tries to write a write-protected page, we need to
664 * emulate this operation, return 1 to indicate this case.
6aa8b732 665 */
736c291c 666static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
6c2fd34f
SC
667 struct guest_walker *gw, u32 error_code,
668 int max_level, kvm_pfn_t pfn, bool map_writable,
669 bool prefault)
6aa8b732 670{
6c2fd34f 671 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
e88b8093 672 bool write_fault = error_code & PFERR_WRITE_MASK;
6c2fd34f
SC
673 bool exec = error_code & PFERR_FETCH_MASK;
674 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
5991b332 675 struct kvm_mmu_page *sp = NULL;
24157aaf 676 struct kvm_shadow_walk_iterator it;
b1bd5cba 677 unsigned int direct_access, access;
1d4a7372 678 int top_level, level, req_level, ret;
09c4453e 679 gfn_t base_gfn = gw->gfn;
abb9e0b8 680
b36c7a7c 681 direct_access = gw->pte_access;
84754cd8 682
44dd3ffa 683 top_level = vcpu->arch.mmu->root_level;
5991b332
AK
684 if (top_level == PT32E_ROOT_LEVEL)
685 top_level = PT32_ROOT_LEVEL;
686 /*
687 * Verify that the top-level gpte is still there. Since the page
688 * is a root page, it is either write protected (and cannot be
689 * changed from now on) or it is invalid (in which case, we don't
690 * really care if it changes underneath us after this point).
691 */
692 if (FNAME(gpte_changed)(vcpu, gw, top_level))
693 goto out_gpte_changed;
694
0c7a98e3 695 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
37f6a4e2
MT
696 goto out_gpte_changed;
697
24157aaf
AK
698 for (shadow_walk_init(&it, vcpu, addr);
699 shadow_walk_okay(&it) && it.level > gw->level;
700 shadow_walk_next(&it)) {
0b3c9333
AK
701 gfn_t table_gfn;
702
a30f47cb 703 clear_sp_write_flooding_count(it.sptep);
24157aaf 704 drop_large_spte(vcpu, it.sptep);
ef0197e8 705
5991b332 706 sp = NULL;
24157aaf
AK
707 if (!is_shadow_present_pte(*it.sptep)) {
708 table_gfn = gw->table_gfn[it.level - 2];
b1bd5cba 709 access = gw->pt_access[it.level - 2];
24157aaf 710 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
bb11c6c9 711 false, access);
5991b332 712 }
0b3c9333
AK
713
714 /*
715 * Verify that the gpte in the page we've just write
716 * protected is still there.
717 */
24157aaf 718 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0b3c9333 719 goto out_gpte_changed;
abb9e0b8 720
5991b332 721 if (sp)
98bba238 722 link_shadow_page(vcpu, it.sptep, sp);
e7a04c99 723 }
050e6499 724
1d4a7372
SC
725 level = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn,
726 huge_page_disallowed, &req_level);
4cd071d1 727
335e192a
PB
728 trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
729
3fcf2d1b 730 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
a30f47cb 731 clear_sp_write_flooding_count(it.sptep);
b8e8c830
PB
732
733 /*
734 * We cannot overwrite existing page tables with an NX
735 * large page, as the leaf could be executable.
736 */
dcc70651 737 if (nx_huge_page_workaround_enabled)
7d945312
BG
738 disallowed_hugepage_adjust(*it.sptep, gw->gfn, it.level,
739 &pfn, &level);
b8e8c830 740
09c4453e 741 base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
1d4a7372 742 if (it.level == level)
3fcf2d1b
PB
743 break;
744
24157aaf 745 validate_direct_spte(vcpu, it.sptep, direct_access);
0b3c9333 746
24157aaf 747 drop_large_spte(vcpu, it.sptep);
0b3c9333 748
3fcf2d1b
PB
749 if (!is_shadow_present_pte(*it.sptep)) {
750 sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
751 it.level - 1, true, direct_access);
752 link_shadow_page(vcpu, it.sptep, sp);
5bcaf3e1 753 if (huge_page_disallowed && req_level >= it.level)
b8e8c830 754 account_huge_nx_page(vcpu->kvm, sp);
3fcf2d1b 755 }
0b3c9333
AK
756 }
757
9b8ebbdb 758 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
3fcf2d1b 759 it.level, base_gfn, pfn, prefault, map_writable);
12703759
SC
760 if (ret == RET_PF_SPURIOUS)
761 return ret;
762
189be38d 763 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
3fcf2d1b 764 ++vcpu->stat.pf_fixed;
9b8ebbdb 765 return ret;
0b3c9333
AK
766
767out_gpte_changed:
9b8ebbdb 768 return RET_PF_RETRY;
6aa8b732
AK
769}
770
7751babd
XG
771 /*
772 * To see whether the mapped gfn can write its page table in the current
773 * mapping.
774 *
775 * It is the helper function of FNAME(page_fault). When guest uses large page
776 * size to map the writable gfn which is used as current page table, we should
777 * force kvm to use small page size to map it because new shadow page will be
778 * created when kvm establishes shadow page table that stop kvm using large
779 * page size. Do it early can avoid unnecessary #PF and emulation.
780 *
93c05d3e
XG
781 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
782 * currently used as its page table.
783 *
7751babd
XG
784 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
785 * since the PDPT is always shadowed, that means, we can not use large page
786 * size to map the gfn which is used as PDPT.
787 */
788static bool
789FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
e88b8093 790 struct guest_walker *walker, bool user_fault,
93c05d3e 791 bool *write_fault_to_shadow_pgtable)
7751babd
XG
792{
793 int level;
794 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
93c05d3e 795 bool self_changed = false;
7751babd
XG
796
797 if (!(walker->pte_access & ACC_WRITE_MASK ||
fdaa2935 798 (!is_cr0_wp(vcpu->arch.mmu) && !user_fault)))
7751babd
XG
799 return false;
800
93c05d3e
XG
801 for (level = walker->level; level <= walker->max_level; level++) {
802 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
803
804 self_changed |= !(gfn & mask);
805 *write_fault_to_shadow_pgtable |= !gfn;
806 }
7751babd 807
93c05d3e 808 return self_changed;
7751babd
XG
809}
810
6aa8b732
AK
811/*
812 * Page fault handler. There are several causes for a page fault:
813 * - there is no shadow pte for the guest pte
814 * - write access through a shadow pte marked read only so that we can set
815 * the dirty bit
816 * - write access to a shadow pte marked read only so we can update the page
817 * dirty bitmap, when userspace requests it
818 * - mmio access; in this case we will never install a present shadow pte
819 * - normal guest page fault due to the guest pte marked not present, not
820 * writable, or not executable
821 *
e2dec939
AK
822 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
823 * a negative value on error.
6aa8b732 824 */
736c291c 825static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
78b2c54a 826 bool prefault)
6aa8b732 827{
e88b8093
SC
828 bool write_fault = error_code & PFERR_WRITE_MASK;
829 bool user_fault = error_code & PFERR_USER_MASK;
6aa8b732 830 struct guest_walker walker;
e2dec939 831 int r;
ba049e93 832 kvm_pfn_t pfn;
4a42d848 833 hva_t hva;
e930bffe 834 unsigned long mmu_seq;
93c05d3e 835 bool map_writable, is_self_change_mapping;
39ca1ecb 836 int max_level;
6aa8b732 837
b8688d51 838 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
714b93da 839
e9ee956e
TY
840 /*
841 * If PFEC.RSVD is set, this is a shadow page fault.
842 * The bit needs to be cleared before walking guest page tables.
843 */
844 error_code &= ~PFERR_RSVD_MASK;
845
6aa8b732 846 /*
a8b876b1 847 * Look up the guest pte for the faulting address.
6aa8b732 848 */
33770780 849 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
6aa8b732
AK
850
851 /*
852 * The page is not mapped by the guest. Let the guest handle it.
853 */
7993ba43 854 if (!r) {
b8688d51 855 pgprintk("%s: guest page fault\n", __func__);
a30f47cb 856 if (!prefault)
0cd665bd 857 kvm_inject_emulated_page_fault(vcpu, &walker.fault);
a30f47cb 858
9b8ebbdb 859 return RET_PF_RETRY;
6aa8b732
AK
860 }
861
e5691a81
XG
862 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
863 shadow_page_table_clear_flood(vcpu, addr);
9b8ebbdb 864 return RET_PF_EMULATE;
e5691a81 865 }
3d0c27ad 866
378f5cd6 867 r = mmu_topup_memory_caches(vcpu, true);
f3747a5a
SC
868 if (r)
869 return r;
870
93c05d3e
XG
871 vcpu->arch.write_fault_to_shadow_pgtable = false;
872
873 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
874 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
875
6c2fd34f 876 if (is_self_change_mapping)
3bae0459 877 max_level = PG_LEVEL_4K;
cbe1e6f0
SC
878 else
879 max_level = walker.level;
880
e930bffe 881 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 882 smp_rmb();
af585b92 883
33a5c000 884 if (kvm_faultin_pfn(vcpu, prefault, walker.gfn, addr, &pfn, &hva,
8f32d5e5
ML
885 write_fault, &map_writable, &r))
886 return r;
d7824fff 887
9034e6e8 888 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
d7c55201
XG
889 return r;
890
c2288505
XG
891 /*
892 * Do not change pte_access if the pfn is a mmio page, otherwise
893 * we will cache the incorrect access into mmio spte.
894 */
895 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
fdaa2935 896 !is_cr0_wp(vcpu->arch.mmu) && !user_fault && !is_noslot_pfn(pfn)) {
c2288505
XG
897 walker.pte_access |= ACC_WRITE_MASK;
898 walker.pte_access &= ~ACC_USER_MASK;
899
900 /*
901 * If we converted a user page to a kernel page,
902 * so that the kernel can write to it when cr0.wp=0,
903 * then we should prevent the kernel from executing it
904 * if SMEP is enabled.
905 */
9a65d0b7 906 if (is_cr4_smep(vcpu->arch.mmu))
c2288505
XG
907 walker.pte_access &= ~ACC_EXEC_MASK;
908 }
909
43fdcda9 910 r = RET_PF_RETRY;
531810ca 911 write_lock(&vcpu->kvm->mmu_lock);
4a42d848 912 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
e930bffe 913 goto out_unlock;
bc32ce21 914
0375f7fa 915 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
7bd7ded6
SC
916 r = make_mmu_pages_available(vcpu);
917 if (r)
26eeb53c 918 goto out_unlock;
6c2fd34f
SC
919 r = FNAME(fetch)(vcpu, addr, &walker, error_code, max_level, pfn,
920 map_writable, prefault);
0375f7fa 921 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
e930bffe
AA
922
923out_unlock:
531810ca 924 write_unlock(&vcpu->kvm->mmu_lock);
e930bffe 925 kvm_release_pfn_clean(pfn);
43fdcda9 926 return r;
6aa8b732
AK
927}
928
505aef8f
XG
929static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
930{
931 int offset = 0;
932
3bae0459 933 WARN_ON(sp->role.level != PG_LEVEL_4K);
505aef8f
XG
934
935 if (PTTYPE == 32)
936 offset = sp->role.quadrant << PT64_LEVEL_BITS;
937
938 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
939}
940
7eb77e9f 941static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
a7052897 942{
a461930b 943 struct kvm_shadow_walk_iterator iterator;
f78978aa 944 struct kvm_mmu_page *sp;
ace569e0 945 u64 old_spte;
a461930b
AK
946 int level;
947 u64 *sptep;
948
bebb106a
XG
949 vcpu_clear_mmio_info(vcpu, gva);
950
f57f2ef5
XG
951 /*
952 * No need to check return value here, rmap_can_add() can
953 * help us to skip pte prefetch later.
954 */
378f5cd6 955 mmu_topup_memory_caches(vcpu, true);
a7052897 956
7eb77e9f 957 if (!VALID_PAGE(root_hpa)) {
37f6a4e2
MT
958 WARN_ON(1);
959 return;
960 }
961
531810ca 962 write_lock(&vcpu->kvm->mmu_lock);
7eb77e9f 963 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
a461930b
AK
964 level = iterator.level;
965 sptep = iterator.sptep;
ad218f85 966
57354682 967 sp = sptep_to_sp(sptep);
ace569e0
SC
968 old_spte = *sptep;
969 if (is_last_spte(old_spte, level)) {
f57f2ef5
XG
970 pt_element_t gpte;
971 gpa_t pte_gpa;
972
f78978aa
XG
973 if (!sp->unsync)
974 break;
975
505aef8f 976 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
08e850c6 977 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
a461930b 978
2de4085c 979 mmu_page_zap_pte(vcpu->kvm, sp, sptep, NULL);
ace569e0 980 if (is_shadow_present_pte(old_spte))
c3134ce2
LT
981 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
982 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
f57f2ef5
XG
983
984 if (!rmap_can_add(vcpu))
985 break;
986
54bf36aa
PB
987 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
988 sizeof(pt_element_t)))
f57f2ef5
XG
989 break;
990
991 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
87917239 992 }
a7052897 993
f78978aa 994 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
a461930b
AK
995 break;
996 }
531810ca 997 write_unlock(&vcpu->kvm->mmu_lock);
a7052897
MT
998}
999
736c291c
SC
1000/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
1001static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
ab9ae313 1002 struct x86_exception *exception)
6aa8b732
AK
1003{
1004 struct guest_walker walker;
e119d117
AK
1005 gpa_t gpa = UNMAPPED_GVA;
1006 int r;
6aa8b732 1007
736c291c 1008 r = FNAME(walk_addr)(&walker, vcpu, addr, access);
6aa8b732 1009
e119d117 1010 if (r) {
1755fbcc 1011 gpa = gfn_to_gpa(walker.gfn);
736c291c 1012 gpa |= addr & ~PAGE_MASK;
8c28d031
AK
1013 } else if (exception)
1014 *exception = walker.fault;
6aa8b732
AK
1015
1016 return gpa;
1017}
1018
37406aaa 1019#if PTTYPE != PTTYPE_EPT
736c291c
SC
1020/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
1021static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
1022 u32 access,
1023 struct x86_exception *exception)
6539e738
JR
1024{
1025 struct guest_walker walker;
1026 gpa_t gpa = UNMAPPED_GVA;
1027 int r;
1028
736c291c
SC
1029#ifndef CONFIG_X86_64
1030 /* A 64-bit GVA should be impossible on 32-bit KVM. */
1031 WARN_ON_ONCE(vaddr >> 32);
1032#endif
1033
33770780 1034 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
6539e738
JR
1035
1036 if (r) {
1037 gpa = gfn_to_gpa(walker.gfn);
1038 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
1039 } else if (exception)
1040 *exception = walker.fault;
6539e738
JR
1041
1042 return gpa;
1043}
37406aaa 1044#endif
6539e738 1045
e8bc217a
MT
1046/*
1047 * Using the cached information from sp->gfns is safe because:
1048 * - The spte has a reference to the struct page, so the pfn for a given gfn
1049 * can't change unless all sptes pointing to it are nuked first.
a4ee1ca4
XG
1050 *
1051 * Note:
1052 * We should flush all tlbs if spte is dropped even though guest is
1053 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1054 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1055 * used by guest then tlbs are not flushed, so guest is allowed to access the
1056 * freed pages.
a086f6a1 1057 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
e8bc217a 1058 */
a4a8e6f7 1059static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
e8bc217a 1060{
2640b086 1061 union kvm_mmu_page_role mmu_role = vcpu->arch.mmu->mmu_role.base;
505aef8f 1062 int i, nr_present = 0;
9bdbba13 1063 bool host_writable;
51fb60d8 1064 gpa_t first_pte_gpa;
5ce4786f 1065 int set_spte_ret = 0;
e8bc217a 1066
2640b086
SC
1067 /*
1068 * Ignore various flags when verifying that it's safe to sync a shadow
1069 * page using the current MMU context.
1070 *
1071 * - level: not part of the overall MMU role and will never match as the MMU's
1072 * level tracks the root level
1073 * - access: updated based on the new guest PTE
1074 * - quadrant: not part of the overall MMU role (similar to level)
1075 */
1076 const union kvm_mmu_page_role sync_role_ign = {
1077 .level = 0xf,
1078 .access = 0x7,
1079 .quadrant = 0x3,
1080 };
1081
1082 /*
1083 * Direct pages can never be unsync, and KVM should never attempt to
1084 * sync a shadow page for a different MMU context, e.g. if the role
1085 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1086 * reserved bits checks will be wrong, etc...
1087 */
1088 if (WARN_ON_ONCE(sp->role.direct ||
1089 (sp->role.word ^ mmu_role.word) & ~sync_role_ign.word))
1090 return 0;
2032a93d 1091
505aef8f 1092 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
51fb60d8 1093
e8bc217a
MT
1094 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1095 unsigned pte_access;
1096 pt_element_t gpte;
1097 gpa_t pte_gpa;
f55c3f41 1098 gfn_t gfn;
e8bc217a 1099
ce88decf 1100 if (!sp->spt[i])
e8bc217a
MT
1101 continue;
1102
51fb60d8 1103 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
e8bc217a 1104
54bf36aa
PB
1105 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1106 sizeof(pt_element_t)))
1f50f1b3 1107 return 0;
e8bc217a 1108
0ad805a0 1109 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
7bfdf217
LT
1110 /*
1111 * Update spte before increasing tlbs_dirty to make
1112 * sure no tlb flush is lost after spte is zapped; see
1113 * the comments in kvm_flush_remote_tlbs().
1114 */
1115 smp_wmb();
a086f6a1 1116 vcpu->kvm->tlbs_dirty++;
407c61c6
XG
1117 continue;
1118 }
1119
ce88decf
XG
1120 gfn = gpte_to_gfn(gpte);
1121 pte_access = sp->role.access;
42522d08 1122 pte_access &= FNAME(gpte_access)(gpte);
44dd3ffa 1123 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
ce88decf 1124
54bf36aa 1125 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
f2fd125d 1126 &nr_present))
ce88decf
XG
1127 continue;
1128
407c61c6 1129 if (gfn != sp->gfns[i]) {
c3707958 1130 drop_spte(vcpu->kvm, &sp->spt[i]);
7bfdf217
LT
1131 /*
1132 * The same as above where we are doing
1133 * prefetch_invalid_gpte().
1134 */
1135 smp_wmb();
a086f6a1 1136 vcpu->kvm->tlbs_dirty++;
e8bc217a
MT
1137 continue;
1138 }
1139
1140 nr_present++;
ce88decf 1141
5fc3424f 1142 host_writable = sp->spt[i] & shadow_host_writable_mask;
f8e453b0 1143
5ce4786f 1144 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
3bae0459 1145 pte_access, PG_LEVEL_4K,
5ce4786f
JS
1146 gfn, spte_to_pfn(sp->spt[i]),
1147 true, false, host_writable);
e8bc217a
MT
1148 }
1149
5ce4786f
JS
1150 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1151 kvm_flush_remote_tlbs(vcpu->kvm);
1152
1f50f1b3 1153 return nr_present;
e8bc217a
MT
1154}
1155
6aa8b732
AK
1156#undef pt_element_t
1157#undef guest_walker
1158#undef FNAME
1159#undef PT_BASE_ADDR_MASK
1160#undef PT_INDEX
e04da980
JR
1161#undef PT_LVL_ADDR_MASK
1162#undef PT_LVL_OFFSET_MASK
c7addb90 1163#undef PT_LEVEL_BITS
cea0f0e7 1164#undef PT_MAX_FULL_LEVELS
5fb07ddb 1165#undef gpte_to_gfn
e04da980 1166#undef gpte_to_gfn_lvl
b3e4e63f 1167#undef CMPXCHG
d8089bac
GN
1168#undef PT_GUEST_ACCESSED_MASK
1169#undef PT_GUEST_DIRTY_MASK
1170#undef PT_GUEST_DIRTY_SHIFT
1171#undef PT_GUEST_ACCESSED_SHIFT
86407bcb 1172#undef PT_HAVE_ACCESSED_DIRTY