]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/paging_tmpl.h
KVM: x86/mmu: Move flush logic from mmu_page_zap_pte() to FNAME(invlpg)
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / paging_tmpl.h
CommitLineData
20c8ccb1 1/* SPDX-License-Identifier: GPL-2.0-only */
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732
AK
16 */
17
18/*
19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20 * so the code in this file is compiled twice, once per pte size.
21 */
22
23#if PTTYPE == 64
24 #define pt_element_t u64
25 #define guest_walker guest_walker64
26 #define FNAME(name) paging##64_##name
27 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
e04da980
JR
28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
6aa8b732 30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
c7addb90 31 #define PT_LEVEL_BITS PT64_LEVEL_BITS
d8089bac
GN
32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
cea0f0e7 35 #ifdef CONFIG_X86_64
f6ab0107 36 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
b3e4e63f 37 #define CMPXCHG cmpxchg
cea0f0e7 38 #else
b3e4e63f 39 #define CMPXCHG cmpxchg64
cea0f0e7
AK
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
6aa8b732
AK
42#elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
e04da980
JR
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
6aa8b732 49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
c7addb90 50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 51 #define PT_MAX_FULL_LEVELS 2
d8089bac
GN
52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
b3e4e63f 55 #define CMPXCHG cmpxchg
37406aaa
NHE
56#elif PTTYPE == PTTYPE_EPT
57 #define pt_element_t u64
58 #define guest_walker guest_walkerEPT
59 #define FNAME(name) ept_##name
60 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 #define PT_LEVEL_BITS PT64_LEVEL_BITS
ae1e2d10
PB
65 #define PT_GUEST_DIRTY_SHIFT 9
66 #define PT_GUEST_ACCESSED_SHIFT 8
67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
37406aaa 68 #define CMPXCHG cmpxchg64
bb1fcc70 69 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
6aa8b732
AK
70#else
71 #error Invalid PTTYPE value
72#endif
73
ae1e2d10
PB
74#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
75#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
76
e04da980 77#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
3bae0459 78#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
5fb07ddb 79
6aa8b732
AK
80/*
81 * The guest_walker structure emulates the behavior of the hardware page
82 * table walker.
83 */
84struct guest_walker {
85 int level;
8cbc7069 86 unsigned max_level;
cea0f0e7 87 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
7819026e 88 pt_element_t ptes[PT_MAX_FULL_LEVELS];
189be38d 89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
7819026e 90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
8cbc7069 91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
ba6a3541 92 bool pte_writable[PT_MAX_FULL_LEVELS];
fe135d2c
AK
93 unsigned pt_access;
94 unsigned pte_access;
815af8d4 95 gfn_t gfn;
8c28d031 96 struct x86_exception fault;
6aa8b732
AK
97};
98
e04da980 99static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
5fb07ddb 100{
e04da980 101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
5fb07ddb
AK
102}
103
86407bcb
PB
104static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
105 unsigned gpte)
0ad805a0
NHE
106{
107 unsigned mask;
108
61719a8f 109 /* dirty bit is not supported, so no need to track it */
86407bcb 110 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
111 return;
112
0ad805a0
NHE
113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
114
115 mask = (unsigned)~ACC_WRITE_MASK;
116 /* Allow write access to dirty gptes */
d8089bac
GN
117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
118 PT_WRITABLE_MASK;
0ad805a0
NHE
119 *access &= mask;
120}
121
0ad805a0
NHE
122static inline int FNAME(is_present_gpte)(unsigned long pte)
123{
37406aaa 124#if PTTYPE != PTTYPE_EPT
812f30b2 125 return pte & PT_PRESENT_MASK;
37406aaa
NHE
126#else
127 return pte & 7;
128#endif
0ad805a0
NHE
129}
130
b5c3c1b3
SC
131static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
132{
133#if PTTYPE != PTTYPE_EPT
134 return false;
135#else
136 return __is_bad_mt_xwr(rsvd_check, gpte);
137#endif
138}
139
140static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
141{
142 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
143 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
144}
145
a78484c6 146static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
c8cfbb55
TY
147 pt_element_t __user *ptep_user, unsigned index,
148 pt_element_t orig_pte, pt_element_t new_pte)
b3e4e63f 149{
c8cfbb55 150 int npages;
b3e4e63f
MT
151 pt_element_t ret;
152 pt_element_t *table;
153 struct page *page;
154
73b0140b 155 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
bd53cb35
FS
156 if (likely(npages == 1)) {
157 table = kmap_atomic(page);
158 ret = CMPXCHG(&table[index], orig_pte, new_pte);
159 kunmap_atomic(table);
160
161 kvm_release_page_dirty(page);
162 } else {
163 struct vm_area_struct *vma;
164 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
165 unsigned long pfn;
166 unsigned long paddr;
167
89154dd5 168 mmap_read_lock(current->mm);
bd53cb35
FS
169 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
170 if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
89154dd5 171 mmap_read_unlock(current->mm);
bd53cb35
FS
172 return -EFAULT;
173 }
174 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
175 paddr = pfn << PAGE_SHIFT;
176 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
177 if (!table) {
89154dd5 178 mmap_read_unlock(current->mm);
bd53cb35
FS
179 return -EFAULT;
180 }
181 ret = CMPXCHG(&table[index], orig_pte, new_pte);
182 memunmap(table);
89154dd5 183 mmap_read_unlock(current->mm);
bd53cb35 184 }
b3e4e63f
MT
185
186 return (ret != orig_pte);
187}
188
0ad805a0
NHE
189static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
190 struct kvm_mmu_page *sp, u64 *spte,
191 u64 gpte)
192{
0ad805a0
NHE
193 if (!FNAME(is_present_gpte)(gpte))
194 goto no_present;
195
61719a8f 196 /* if accessed bit is not supported prefetch non accessed gpte */
44dd3ffa
VK
197 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
198 !(gpte & PT_GUEST_ACCESSED_MASK))
0ad805a0
NHE
199 goto no_present;
200
3bae0459 201 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
f8052a05
SC
202 goto no_present;
203
0ad805a0
NHE
204 return false;
205
206no_present:
207 drop_spte(vcpu->kvm, spte);
208 return true;
209}
210
d95c5568
BD
211/*
212 * For PTTYPE_EPT, a page table can be executable but not readable
213 * on supported processors. Therefore, set_spte does not automatically
214 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
215 * to signify readability since it isn't used in the EPT case
216 */
42522d08 217static inline unsigned FNAME(gpte_access)(u64 gpte)
0ad805a0
NHE
218{
219 unsigned access;
37406aaa
NHE
220#if PTTYPE == PTTYPE_EPT
221 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
222 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
d95c5568 223 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
37406aaa 224#else
bb9eadf0
PB
225 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
226 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
227 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
228 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
229 access ^= (gpte >> PT64_NX_SHIFT);
37406aaa 230#endif
0ad805a0
NHE
231
232 return access;
233}
234
8cbc7069
AK
235static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
236 struct kvm_mmu *mmu,
237 struct guest_walker *walker,
2dbebf7a 238 gpa_t addr, int write_fault)
8cbc7069
AK
239{
240 unsigned level, index;
241 pt_element_t pte, orig_pte;
242 pt_element_t __user *ptep_user;
243 gfn_t table_gfn;
244 int ret;
245
61719a8f 246 /* dirty/accessed bits are not supported, so no need to update them */
86407bcb 247 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
248 return 0;
249
8cbc7069
AK
250 for (level = walker->max_level; level >= walker->level; --level) {
251 pte = orig_pte = walker->ptes[level - 1];
252 table_gfn = walker->table_gfn[level - 1];
253 ptep_user = walker->ptep_user[level - 1];
254 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
d8089bac 255 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
8cbc7069 256 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
d8089bac 257 pte |= PT_GUEST_ACCESSED_MASK;
8cbc7069 258 }
0ad805a0 259 if (level == walker->level && write_fault &&
d8089bac 260 !(pte & PT_GUEST_DIRTY_MASK)) {
8cbc7069 261 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
bab4165e 262#if PTTYPE == PTTYPE_EPT
02f5fb2e 263 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
bab4165e
BD
264 return -EINVAL;
265#endif
d8089bac 266 pte |= PT_GUEST_DIRTY_MASK;
8cbc7069
AK
267 }
268 if (pte == orig_pte)
269 continue;
270
ba6a3541
PB
271 /*
272 * If the slot is read-only, simply do not process the accessed
273 * and dirty bits. This is the correct thing to do if the slot
274 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
275 * are only supported if the accessed and dirty bits are already
276 * set in the ROM (so that MMIO writes are never needed).
277 *
278 * Note that NPT does not allow this at all and faults, since
279 * it always wants nested page table entries for the guest
280 * page tables to be writable. And EPT works but will simply
281 * overwrite the read-only memory to set the accessed and dirty
282 * bits.
283 */
284 if (unlikely(!walker->pte_writable[level - 1]))
285 continue;
286
8cbc7069
AK
287 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
288 if (ret)
289 return ret;
290
54bf36aa 291 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
17e4bce0 292 walker->ptes[level - 1] = pte;
8cbc7069
AK
293 }
294 return 0;
295}
296
be94f6b7
HH
297static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
298{
299 unsigned pkeys = 0;
300#if PTTYPE == 64
301 pte_t pte = {.pte = gpte};
302
303 pkeys = pte_flags_pkey(pte_flags(pte));
304#endif
305 return pkeys;
306}
307
ac79c978 308/*
736c291c 309 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
ac79c978 310 */
1e301feb
JR
311static int FNAME(walk_addr_generic)(struct guest_walker *walker,
312 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
736c291c 313 gpa_t addr, u32 access)
6aa8b732 314{
8cbc7069 315 int ret;
42bf3f0a 316 pt_element_t pte;
3f649ab7 317 pt_element_t __user *ptep_user;
cea0f0e7 318 gfn_t table_gfn;
0780516a
PB
319 u64 pt_access, pte_access;
320 unsigned index, accessed_dirty, pte_pkey;
ae1e2d10 321 unsigned nested_access;
42bf3f0a 322 gpa_t pte_gpa;
86407bcb 323 bool have_ad;
134291bf 324 int offset;
0780516a 325 u64 walk_nx_mask = 0;
134291bf
TY
326 const int write_fault = access & PFERR_WRITE_MASK;
327 const int user_fault = access & PFERR_USER_MASK;
328 const int fetch_fault = access & PFERR_FETCH_MASK;
329 u16 errcode = 0;
13d22b6a
AK
330 gpa_t real_gpa;
331 gfn_t gfn;
6aa8b732 332
6fbc2770 333 trace_kvm_mmu_pagetable_walk(addr, access);
92c1c1e8 334retry_walk:
1e301feb 335 walker->level = mmu->root_level;
d8dd54e0 336 pte = mmu->get_guest_pgd(vcpu);
86407bcb 337 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
1e301feb 338
1b0973bd 339#if PTTYPE == 64
0780516a 340 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
1e301feb 341 if (walker->level == PT32E_ROOT_LEVEL) {
e4e517b4 342 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
07420171 343 trace_kvm_mmu_paging_element(pte, walker->level);
0ad805a0 344 if (!FNAME(is_present_gpte)(pte))
f59c1d2d 345 goto error;
1b0973bd
AK
346 --walker->level;
347 }
348#endif
8cbc7069 349 walker->max_level = walker->level;
1715d0dc 350 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
6aa8b732 351
ae1e2d10
PB
352 /*
353 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
354 * by the MOV to CR instruction are treated as reads and do not cause the
355 * processor to set the dirty flag in any EPT paging-structure entry.
356 */
357 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
358
0780516a 359 pte_access = ~0;
13d22b6a 360 ++walker->level;
ac79c978 361
13d22b6a 362 do {
6e2ca7d1
TY
363 unsigned long host_addr;
364
0780516a 365 pt_access = pte_access;
13d22b6a
AK
366 --walker->level;
367
42bf3f0a 368 index = PT_INDEX(addr, walker->level);
5fb07ddb 369 table_gfn = gpte_to_gfn(pte);
2329d46d
JR
370 offset = index * sizeof(pt_element_t);
371 pte_gpa = gfn_to_gpa(table_gfn) + offset;
829ee279
LP
372
373 BUG_ON(walker->level < 1);
42bf3f0a 374 walker->table_gfn[walker->level - 1] = table_gfn;
7819026e 375 walker->pte_gpa[walker->level - 1] = pte_gpa;
42bf3f0a 376
312d16c7 377 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
ae1e2d10 378 nested_access,
54987b7a 379 &walker->fault);
5e352519
PB
380
381 /*
382 * FIXME: This can happen if emulation (for of an INS/OUTS
383 * instruction) triggers a nested page fault. The exit
384 * qualification / exit info field will incorrectly have
385 * "guest page access" as the nested page fault's cause,
386 * instead of "guest page structure access". To fix this,
387 * the x86_exception struct should be augmented with enough
388 * information to fix the exit_qualification or exit_info_1
389 * fields.
390 */
312d16c7 391 if (unlikely(real_gpa == UNMAPPED_GVA))
54987b7a 392 return 0;
5e352519 393
312d16c7 394 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gpa_to_gfn(real_gpa),
ba6a3541 395 &walker->pte_writable[walker->level - 1]);
134291bf
TY
396 if (unlikely(kvm_is_error_hva(host_addr)))
397 goto error;
6e2ca7d1
TY
398
399 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
a4814443 400 if (unlikely(__get_user(pte, ptep_user)))
134291bf 401 goto error;
8cbc7069 402 walker->ptep_user[walker->level - 1] = ptep_user;
a6085fba 403
07420171 404 trace_kvm_mmu_paging_element(pte, walker->level);
42bf3f0a 405
0780516a
PB
406 /*
407 * Inverting the NX it lets us AND it like other
408 * permission bits.
409 */
410 pte_access = pt_access & (pte ^ walk_nx_mask);
411
0ad805a0 412 if (unlikely(!FNAME(is_present_gpte)(pte)))
134291bf 413 goto error;
7993ba43 414
b5c3c1b3 415 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
7a98205d 416 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
134291bf 417 goto error;
f59c1d2d 418 }
82725b20 419
7819026e 420 walker->ptes[walker->level - 1] = pte;
6fd01b71 421 } while (!is_last_gpte(mmu, walker->level, pte));
42bf3f0a 422
be94f6b7 423 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
0780516a
PB
424 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
425
426 /* Convert to ACC_*_MASK flags for struct guest_walker. */
42522d08
PX
427 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
428 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
0780516a 429 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
f13577e8 430 if (unlikely(errcode))
f59c1d2d
AK
431 goto error;
432
13d22b6a
AK
433 gfn = gpte_to_gfn_lvl(pte, walker->level);
434 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
435
3bae0459 436 if (PTTYPE == 32 && walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
13d22b6a
AK
437 gfn += pse36_gfn_delta(pte);
438
54987b7a 439 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
13d22b6a
AK
440 if (real_gpa == UNMAPPED_GVA)
441 return 0;
442
443 walker->gfn = real_gpa >> PAGE_SHIFT;
444
8ea667f2 445 if (!write_fault)
0780516a 446 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
908e7d79
GN
447 else
448 /*
61719a8f
GN
449 * On a write fault, fold the dirty bit into accessed_dirty.
450 * For modes without A/D bits support accessed_dirty will be
451 * always clear.
908e7d79 452 */
d8089bac
GN
453 accessed_dirty &= pte >>
454 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
b514c30f
AK
455
456 if (unlikely(!accessed_dirty)) {
2dbebf7a
SC
457 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
458 addr, write_fault);
b514c30f
AK
459 if (unlikely(ret < 0))
460 goto error;
461 else if (ret)
462 goto retry_walk;
463 }
42bf3f0a 464
fe135d2c 465 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
0780516a 466 __func__, (u64)pte, walker->pte_access, walker->pt_access);
7993ba43
AK
467 return 1;
468
f59c1d2d 469error:
134291bf 470 errcode |= write_fault | user_fault;
e57d4a35
YW
471 if (fetch_fault && (mmu->nx ||
472 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
134291bf 473 errcode |= PFERR_FETCH_MASK;
8df25a32 474
134291bf
TY
475 walker->fault.vector = PF_VECTOR;
476 walker->fault.error_code_valid = true;
477 walker->fault.error_code = errcode;
25d92081
YZ
478
479#if PTTYPE == PTTYPE_EPT
480 /*
481 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
482 * misconfiguration requires to be injected. The detection is
483 * done by is_rsvd_bits_set() above.
484 *
485 * We set up the value of exit_qualification to inject:
ddd6f0e9
KA
486 * [2:0] - Derive from the access bits. The exit_qualification might be
487 * out of date if it is serving an EPT misconfiguration.
25d92081
YZ
488 * [5:3] - Calculated by the page walk of the guest EPT page tables
489 * [7:8] - Derived from [7:8] of real exit_qualification
490 *
491 * The other bits are set to 0.
492 */
493 if (!(errcode & PFERR_RSVD_MASK)) {
ddd6f0e9
KA
494 vcpu->arch.exit_qualification &= 0x180;
495 if (write_fault)
496 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
497 if (user_fault)
498 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
499 if (fetch_fault)
500 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
0780516a 501 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
25d92081
YZ
502 }
503#endif
6389ee94
AK
504 walker->fault.address = addr;
505 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
8df25a32 506
8c28d031 507 trace_kvm_mmu_walker_error(walker->fault.error_code);
fe551881 508 return 0;
6aa8b732
AK
509}
510
1e301feb 511static int FNAME(walk_addr)(struct guest_walker *walker,
736c291c 512 struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
1e301feb 513{
44dd3ffa 514 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
33770780 515 access);
1e301feb
JR
516}
517
37406aaa 518#if PTTYPE != PTTYPE_EPT
6539e738
JR
519static int FNAME(walk_addr_nested)(struct guest_walker *walker,
520 struct kvm_vcpu *vcpu, gva_t addr,
33770780 521 u32 access)
6539e738
JR
522{
523 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
33770780 524 addr, access);
6539e738 525}
37406aaa 526#endif
6539e738 527
bd6360cc
XG
528static bool
529FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
530 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0028425f 531{
41074d07 532 unsigned pte_access;
bd6360cc 533 gfn_t gfn;
ba049e93 534 kvm_pfn_t pfn;
0028425f 535
0ad805a0 536 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
bd6360cc 537 return false;
407c61c6 538
b8688d51 539 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
bd6360cc
XG
540
541 gfn = gpte_to_gfn(gpte);
42522d08 542 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
44dd3ffa 543 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
bd6360cc
XG
544 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
545 no_dirty_log && (pte_access & ACC_WRITE_MASK));
81c52c56 546 if (is_error_pfn(pfn))
bd6360cc 547 return false;
0f53b5b1 548
1403283a 549 /*
bd6360cc
XG
550 * we call mmu_set_spte() with host_writable = true because
551 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
1403283a 552 */
3bae0459 553 mmu_set_spte(vcpu, spte, pte_access, 0, PG_LEVEL_4K, gfn, pfn,
029499b4 554 true, true);
bd6360cc 555
43fdcda9 556 kvm_release_pfn_clean(pfn);
bd6360cc
XG
557 return true;
558}
559
560static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
561 u64 *spte, const void *pte)
562{
563 pt_element_t gpte = *(const pt_element_t *)pte;
564
565 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
0028425f
AK
566}
567
39c8c672
AK
568static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
569 struct guest_walker *gw, int level)
570{
39c8c672 571 pt_element_t curr_pte;
189be38d
XG
572 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
573 u64 mask;
574 int r, index;
575
3bae0459 576 if (level == PG_LEVEL_4K) {
189be38d
XG
577 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
578 base_gpa = pte_gpa & ~mask;
579 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
580
54bf36aa 581 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
189be38d
XG
582 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
583 curr_pte = gw->prefetch_ptes[index];
584 } else
54bf36aa 585 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
39c8c672 586 &curr_pte, sizeof(curr_pte));
189be38d 587
39c8c672
AK
588 return r || curr_pte != gw->ptes[level - 1];
589}
590
189be38d
XG
591static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
592 u64 *sptep)
957ed9ef
XG
593{
594 struct kvm_mmu_page *sp;
189be38d 595 pt_element_t *gptep = gw->prefetch_ptes;
957ed9ef 596 u64 *spte;
189be38d 597 int i;
957ed9ef 598
57354682 599 sp = sptep_to_sp(sptep);
957ed9ef 600
3bae0459 601 if (sp->role.level > PG_LEVEL_4K)
957ed9ef
XG
602 return;
603
604 if (sp->role.direct)
605 return __direct_pte_prefetch(vcpu, sp, sptep);
606
607 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
957ed9ef
XG
608 spte = sp->spt + i;
609
610 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
957ed9ef
XG
611 if (spte == sptep)
612 continue;
613
c3707958 614 if (is_shadow_present_pte(*spte))
957ed9ef
XG
615 continue;
616
bd6360cc 617 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
957ed9ef 618 break;
957ed9ef
XG
619 }
620}
621
6aa8b732
AK
622/*
623 * Fetch a shadow pte for a specific level in the paging hierarchy.
d4878f24
XG
624 * If the guest tries to write a write-protected page, we need to
625 * emulate this operation, return 1 to indicate this case.
6aa8b732 626 */
736c291c 627static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
e7a04c99 628 struct guest_walker *gw,
83f06fa7 629 int write_fault, int max_level,
b8e8c830
PB
630 kvm_pfn_t pfn, bool map_writable, bool prefault,
631 bool lpage_disallowed)
6aa8b732 632{
5991b332 633 struct kvm_mmu_page *sp = NULL;
24157aaf 634 struct kvm_shadow_walk_iterator it;
d4878f24 635 unsigned direct_access, access = gw->pt_access;
83f06fa7 636 int top_level, hlevel, ret;
09c4453e 637 gfn_t base_gfn = gw->gfn;
abb9e0b8 638
b36c7a7c 639 direct_access = gw->pte_access;
84754cd8 640
44dd3ffa 641 top_level = vcpu->arch.mmu->root_level;
5991b332
AK
642 if (top_level == PT32E_ROOT_LEVEL)
643 top_level = PT32_ROOT_LEVEL;
644 /*
645 * Verify that the top-level gpte is still there. Since the page
646 * is a root page, it is either write protected (and cannot be
647 * changed from now on) or it is invalid (in which case, we don't
648 * really care if it changes underneath us after this point).
649 */
650 if (FNAME(gpte_changed)(vcpu, gw, top_level))
651 goto out_gpte_changed;
652
0c7a98e3 653 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
37f6a4e2
MT
654 goto out_gpte_changed;
655
24157aaf
AK
656 for (shadow_walk_init(&it, vcpu, addr);
657 shadow_walk_okay(&it) && it.level > gw->level;
658 shadow_walk_next(&it)) {
0b3c9333
AK
659 gfn_t table_gfn;
660
a30f47cb 661 clear_sp_write_flooding_count(it.sptep);
24157aaf 662 drop_large_spte(vcpu, it.sptep);
ef0197e8 663
5991b332 664 sp = NULL;
24157aaf
AK
665 if (!is_shadow_present_pte(*it.sptep)) {
666 table_gfn = gw->table_gfn[it.level - 2];
667 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
bb11c6c9 668 false, access);
5991b332 669 }
0b3c9333
AK
670
671 /*
672 * Verify that the gpte in the page we've just write
673 * protected is still there.
674 */
24157aaf 675 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0b3c9333 676 goto out_gpte_changed;
abb9e0b8 677
5991b332 678 if (sp)
98bba238 679 link_shadow_page(vcpu, it.sptep, sp);
e7a04c99 680 }
050e6499 681
83f06fa7 682 hlevel = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn);
4cd071d1 683
335e192a
PB
684 trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
685
3fcf2d1b 686 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
a30f47cb 687 clear_sp_write_flooding_count(it.sptep);
b8e8c830
PB
688
689 /*
690 * We cannot overwrite existing page tables with an NX
691 * large page, as the leaf could be executable.
692 */
09c4453e 693 disallowed_hugepage_adjust(it, gw->gfn, &pfn, &hlevel);
b8e8c830 694
09c4453e 695 base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3fcf2d1b
PB
696 if (it.level == hlevel)
697 break;
698
24157aaf 699 validate_direct_spte(vcpu, it.sptep, direct_access);
0b3c9333 700
24157aaf 701 drop_large_spte(vcpu, it.sptep);
0b3c9333 702
3fcf2d1b
PB
703 if (!is_shadow_present_pte(*it.sptep)) {
704 sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
705 it.level - 1, true, direct_access);
706 link_shadow_page(vcpu, it.sptep, sp);
b8e8c830
PB
707 if (lpage_disallowed)
708 account_huge_nx_page(vcpu->kvm, sp);
3fcf2d1b 709 }
0b3c9333
AK
710 }
711
9b8ebbdb 712 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
3fcf2d1b 713 it.level, base_gfn, pfn, prefault, map_writable);
189be38d 714 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
3fcf2d1b 715 ++vcpu->stat.pf_fixed;
9b8ebbdb 716 return ret;
0b3c9333
AK
717
718out_gpte_changed:
9b8ebbdb 719 return RET_PF_RETRY;
6aa8b732
AK
720}
721
7751babd
XG
722 /*
723 * To see whether the mapped gfn can write its page table in the current
724 * mapping.
725 *
726 * It is the helper function of FNAME(page_fault). When guest uses large page
727 * size to map the writable gfn which is used as current page table, we should
728 * force kvm to use small page size to map it because new shadow page will be
729 * created when kvm establishes shadow page table that stop kvm using large
730 * page size. Do it early can avoid unnecessary #PF and emulation.
731 *
93c05d3e
XG
732 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
733 * currently used as its page table.
734 *
7751babd
XG
735 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
736 * since the PDPT is always shadowed, that means, we can not use large page
737 * size to map the gfn which is used as PDPT.
738 */
739static bool
740FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
93c05d3e
XG
741 struct guest_walker *walker, int user_fault,
742 bool *write_fault_to_shadow_pgtable)
7751babd
XG
743{
744 int level;
745 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
93c05d3e 746 bool self_changed = false;
7751babd
XG
747
748 if (!(walker->pte_access & ACC_WRITE_MASK ||
749 (!is_write_protection(vcpu) && !user_fault)))
750 return false;
751
93c05d3e
XG
752 for (level = walker->level; level <= walker->max_level; level++) {
753 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
754
755 self_changed |= !(gfn & mask);
756 *write_fault_to_shadow_pgtable |= !gfn;
757 }
7751babd 758
93c05d3e 759 return self_changed;
7751babd
XG
760}
761
6aa8b732
AK
762/*
763 * Page fault handler. There are several causes for a page fault:
764 * - there is no shadow pte for the guest pte
765 * - write access through a shadow pte marked read only so that we can set
766 * the dirty bit
767 * - write access to a shadow pte marked read only so we can update the page
768 * dirty bitmap, when userspace requests it
769 * - mmio access; in this case we will never install a present shadow pte
770 * - normal guest page fault due to the guest pte marked not present, not
771 * writable, or not executable
772 *
e2dec939
AK
773 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
774 * a negative value on error.
6aa8b732 775 */
736c291c 776static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
78b2c54a 777 bool prefault)
6aa8b732
AK
778{
779 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732
AK
780 int user_fault = error_code & PFERR_USER_MASK;
781 struct guest_walker walker;
e2dec939 782 int r;
ba049e93 783 kvm_pfn_t pfn;
e930bffe 784 unsigned long mmu_seq;
93c05d3e 785 bool map_writable, is_self_change_mapping;
b8e8c830
PB
786 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
787 is_nx_huge_page_enabled();
39ca1ecb 788 int max_level;
6aa8b732 789
b8688d51 790 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
714b93da 791
e9ee956e
TY
792 /*
793 * If PFEC.RSVD is set, this is a shadow page fault.
794 * The bit needs to be cleared before walking guest page tables.
795 */
796 error_code &= ~PFERR_RSVD_MASK;
797
6aa8b732 798 /*
a8b876b1 799 * Look up the guest pte for the faulting address.
6aa8b732 800 */
33770780 801 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
6aa8b732
AK
802
803 /*
804 * The page is not mapped by the guest. Let the guest handle it.
805 */
7993ba43 806 if (!r) {
b8688d51 807 pgprintk("%s: guest page fault\n", __func__);
a30f47cb 808 if (!prefault)
0cd665bd 809 kvm_inject_emulated_page_fault(vcpu, &walker.fault);
a30f47cb 810
9b8ebbdb 811 return RET_PF_RETRY;
6aa8b732
AK
812 }
813
e5691a81
XG
814 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
815 shadow_page_table_clear_flood(vcpu, addr);
9b8ebbdb 816 return RET_PF_EMULATE;
e5691a81 817 }
3d0c27ad 818
378f5cd6 819 r = mmu_topup_memory_caches(vcpu, true);
f3747a5a
SC
820 if (r)
821 return r;
822
93c05d3e
XG
823 vcpu->arch.write_fault_to_shadow_pgtable = false;
824
825 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
826 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
827
cbe1e6f0 828 if (lpage_disallowed || is_self_change_mapping)
3bae0459 829 max_level = PG_LEVEL_4K;
cbe1e6f0
SC
830 else
831 max_level = walker.level;
832
e930bffe 833 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 834 smp_rmb();
af585b92 835
78b2c54a 836 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
612819c3 837 &map_writable))
9b8ebbdb 838 return RET_PF_RETRY;
d7824fff 839
9034e6e8 840 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
d7c55201
XG
841 return r;
842
c2288505
XG
843 /*
844 * Do not change pte_access if the pfn is a mmio page, otherwise
845 * we will cache the incorrect access into mmio spte.
846 */
847 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
848 !is_write_protection(vcpu) && !user_fault &&
849 !is_noslot_pfn(pfn)) {
850 walker.pte_access |= ACC_WRITE_MASK;
851 walker.pte_access &= ~ACC_USER_MASK;
852
853 /*
854 * If we converted a user page to a kernel page,
855 * so that the kernel can write to it when cr0.wp=0,
856 * then we should prevent the kernel from executing it
857 * if SMEP is enabled.
858 */
859 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
860 walker.pte_access &= ~ACC_EXEC_MASK;
861 }
862
43fdcda9 863 r = RET_PF_RETRY;
aaee2c94 864 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 865 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 866 goto out_unlock;
bc32ce21 867
0375f7fa 868 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
7bd7ded6
SC
869 r = make_mmu_pages_available(vcpu);
870 if (r)
26eeb53c 871 goto out_unlock;
83f06fa7
SC
872 r = FNAME(fetch)(vcpu, addr, &walker, write_fault, max_level, pfn,
873 map_writable, prefault, lpage_disallowed);
0375f7fa 874 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
e930bffe
AA
875
876out_unlock:
877 spin_unlock(&vcpu->kvm->mmu_lock);
878 kvm_release_pfn_clean(pfn);
43fdcda9 879 return r;
6aa8b732
AK
880}
881
505aef8f
XG
882static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
883{
884 int offset = 0;
885
3bae0459 886 WARN_ON(sp->role.level != PG_LEVEL_4K);
505aef8f
XG
887
888 if (PTTYPE == 32)
889 offset = sp->role.quadrant << PT64_LEVEL_BITS;
890
891 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
892}
893
7eb77e9f 894static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
a7052897 895{
a461930b 896 struct kvm_shadow_walk_iterator iterator;
f78978aa 897 struct kvm_mmu_page *sp;
ace569e0 898 u64 old_spte;
a461930b
AK
899 int level;
900 u64 *sptep;
901
bebb106a
XG
902 vcpu_clear_mmio_info(vcpu, gva);
903
f57f2ef5
XG
904 /*
905 * No need to check return value here, rmap_can_add() can
906 * help us to skip pte prefetch later.
907 */
378f5cd6 908 mmu_topup_memory_caches(vcpu, true);
a7052897 909
7eb77e9f 910 if (!VALID_PAGE(root_hpa)) {
37f6a4e2
MT
911 WARN_ON(1);
912 return;
913 }
914
f57f2ef5 915 spin_lock(&vcpu->kvm->mmu_lock);
7eb77e9f 916 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
a461930b
AK
917 level = iterator.level;
918 sptep = iterator.sptep;
ad218f85 919
57354682 920 sp = sptep_to_sp(sptep);
ace569e0
SC
921 old_spte = *sptep;
922 if (is_last_spte(old_spte, level)) {
f57f2ef5
XG
923 pt_element_t gpte;
924 gpa_t pte_gpa;
925
f78978aa
XG
926 if (!sp->unsync)
927 break;
928
505aef8f 929 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
08e850c6 930 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
a461930b 931
ace569e0
SC
932 mmu_page_zap_pte(vcpu->kvm, sp, sptep);
933 if (is_shadow_present_pte(old_spte))
c3134ce2
LT
934 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
935 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
f57f2ef5
XG
936
937 if (!rmap_can_add(vcpu))
938 break;
939
54bf36aa
PB
940 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
941 sizeof(pt_element_t)))
f57f2ef5
XG
942 break;
943
944 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
87917239 945 }
a7052897 946
f78978aa 947 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
a461930b
AK
948 break;
949 }
ad218f85 950 spin_unlock(&vcpu->kvm->mmu_lock);
a7052897
MT
951}
952
736c291c
SC
953/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
954static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
ab9ae313 955 struct x86_exception *exception)
6aa8b732
AK
956{
957 struct guest_walker walker;
e119d117
AK
958 gpa_t gpa = UNMAPPED_GVA;
959 int r;
6aa8b732 960
736c291c 961 r = FNAME(walk_addr)(&walker, vcpu, addr, access);
6aa8b732 962
e119d117 963 if (r) {
1755fbcc 964 gpa = gfn_to_gpa(walker.gfn);
736c291c 965 gpa |= addr & ~PAGE_MASK;
8c28d031
AK
966 } else if (exception)
967 *exception = walker.fault;
6aa8b732
AK
968
969 return gpa;
970}
971
37406aaa 972#if PTTYPE != PTTYPE_EPT
736c291c
SC
973/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
974static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
975 u32 access,
976 struct x86_exception *exception)
6539e738
JR
977{
978 struct guest_walker walker;
979 gpa_t gpa = UNMAPPED_GVA;
980 int r;
981
736c291c
SC
982#ifndef CONFIG_X86_64
983 /* A 64-bit GVA should be impossible on 32-bit KVM. */
984 WARN_ON_ONCE(vaddr >> 32);
985#endif
986
33770780 987 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
6539e738
JR
988
989 if (r) {
990 gpa = gfn_to_gpa(walker.gfn);
991 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
992 } else if (exception)
993 *exception = walker.fault;
6539e738
JR
994
995 return gpa;
996}
37406aaa 997#endif
6539e738 998
e8bc217a
MT
999/*
1000 * Using the cached information from sp->gfns is safe because:
1001 * - The spte has a reference to the struct page, so the pfn for a given gfn
1002 * can't change unless all sptes pointing to it are nuked first.
a4ee1ca4
XG
1003 *
1004 * Note:
1005 * We should flush all tlbs if spte is dropped even though guest is
1006 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1007 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1008 * used by guest then tlbs are not flushed, so guest is allowed to access the
1009 * freed pages.
a086f6a1 1010 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
e8bc217a 1011 */
a4a8e6f7 1012static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
e8bc217a 1013{
505aef8f 1014 int i, nr_present = 0;
9bdbba13 1015 bool host_writable;
51fb60d8 1016 gpa_t first_pte_gpa;
5ce4786f 1017 int set_spte_ret = 0;
e8bc217a 1018
2032a93d
LJ
1019 /* direct kvm_mmu_page can not be unsync. */
1020 BUG_ON(sp->role.direct);
1021
505aef8f 1022 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
51fb60d8 1023
e8bc217a
MT
1024 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1025 unsigned pte_access;
1026 pt_element_t gpte;
1027 gpa_t pte_gpa;
f55c3f41 1028 gfn_t gfn;
e8bc217a 1029
ce88decf 1030 if (!sp->spt[i])
e8bc217a
MT
1031 continue;
1032
51fb60d8 1033 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
e8bc217a 1034
54bf36aa
PB
1035 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1036 sizeof(pt_element_t)))
1f50f1b3 1037 return 0;
e8bc217a 1038
0ad805a0 1039 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
7bfdf217
LT
1040 /*
1041 * Update spte before increasing tlbs_dirty to make
1042 * sure no tlb flush is lost after spte is zapped; see
1043 * the comments in kvm_flush_remote_tlbs().
1044 */
1045 smp_wmb();
a086f6a1 1046 vcpu->kvm->tlbs_dirty++;
407c61c6
XG
1047 continue;
1048 }
1049
ce88decf
XG
1050 gfn = gpte_to_gfn(gpte);
1051 pte_access = sp->role.access;
42522d08 1052 pte_access &= FNAME(gpte_access)(gpte);
44dd3ffa 1053 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
ce88decf 1054
54bf36aa 1055 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
f2fd125d 1056 &nr_present))
ce88decf
XG
1057 continue;
1058
407c61c6 1059 if (gfn != sp->gfns[i]) {
c3707958 1060 drop_spte(vcpu->kvm, &sp->spt[i]);
7bfdf217
LT
1061 /*
1062 * The same as above where we are doing
1063 * prefetch_invalid_gpte().
1064 */
1065 smp_wmb();
a086f6a1 1066 vcpu->kvm->tlbs_dirty++;
e8bc217a
MT
1067 continue;
1068 }
1069
1070 nr_present++;
ce88decf 1071
f8e453b0
XG
1072 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1073
5ce4786f 1074 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
3bae0459 1075 pte_access, PG_LEVEL_4K,
5ce4786f
JS
1076 gfn, spte_to_pfn(sp->spt[i]),
1077 true, false, host_writable);
e8bc217a
MT
1078 }
1079
5ce4786f
JS
1080 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1081 kvm_flush_remote_tlbs(vcpu->kvm);
1082
1f50f1b3 1083 return nr_present;
e8bc217a
MT
1084}
1085
6aa8b732
AK
1086#undef pt_element_t
1087#undef guest_walker
1088#undef FNAME
1089#undef PT_BASE_ADDR_MASK
1090#undef PT_INDEX
e04da980
JR
1091#undef PT_LVL_ADDR_MASK
1092#undef PT_LVL_OFFSET_MASK
c7addb90 1093#undef PT_LEVEL_BITS
cea0f0e7 1094#undef PT_MAX_FULL_LEVELS
5fb07ddb 1095#undef gpte_to_gfn
e04da980 1096#undef gpte_to_gfn_lvl
b3e4e63f 1097#undef CMPXCHG
d8089bac
GN
1098#undef PT_GUEST_ACCESSED_MASK
1099#undef PT_GUEST_DIRTY_MASK
1100#undef PT_GUEST_DIRTY_SHIFT
1101#undef PT_GUEST_ACCESSED_SHIFT
86407bcb 1102#undef PT_HAVE_ACCESSED_DIRTY