]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu/paging_tmpl.h
KVM: x86/mmu: Reorder the reserved bit check in prefetch_invalid_gpte()
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu / paging_tmpl.h
CommitLineData
20c8ccb1 1/* SPDX-License-Identifier: GPL-2.0-only */
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732
AK
16 */
17
18/*
19 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20 * so the code in this file is compiled twice, once per pte size.
21 */
22
23#if PTTYPE == 64
24 #define pt_element_t u64
25 #define guest_walker guest_walker64
26 #define FNAME(name) paging##64_##name
27 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
e04da980
JR
28 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
6aa8b732 30 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
c7addb90 31 #define PT_LEVEL_BITS PT64_LEVEL_BITS
d8089bac
GN
32 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 34 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
cea0f0e7
AK
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
b3e4e63f 37 #define CMPXCHG cmpxchg
cea0f0e7 38 #else
b3e4e63f 39 #define CMPXCHG cmpxchg64
cea0f0e7
AK
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
6aa8b732
AK
42#elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
e04da980
JR
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
6aa8b732 49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
c7addb90 50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
cea0f0e7 51 #define PT_MAX_FULL_LEVELS 2
d8089bac
GN
52 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
53 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
86407bcb 54 #define PT_HAVE_ACCESSED_DIRTY(mmu) true
b3e4e63f 55 #define CMPXCHG cmpxchg
37406aaa
NHE
56#elif PTTYPE == PTTYPE_EPT
57 #define pt_element_t u64
58 #define guest_walker guest_walkerEPT
59 #define FNAME(name) ept_##name
60 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
61 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
62 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
63 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 #define PT_LEVEL_BITS PT64_LEVEL_BITS
ae1e2d10
PB
65 #define PT_GUEST_DIRTY_SHIFT 9
66 #define PT_GUEST_ACCESSED_SHIFT 8
67 #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
37406aaa
NHE
68 #define CMPXCHG cmpxchg64
69 #define PT_MAX_FULL_LEVELS 4
6aa8b732
AK
70#else
71 #error Invalid PTTYPE value
72#endif
73
ae1e2d10
PB
74#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
75#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
76
e04da980
JR
77#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
78#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
5fb07ddb 79
6aa8b732
AK
80/*
81 * The guest_walker structure emulates the behavior of the hardware page
82 * table walker.
83 */
84struct guest_walker {
85 int level;
8cbc7069 86 unsigned max_level;
cea0f0e7 87 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
7819026e 88 pt_element_t ptes[PT_MAX_FULL_LEVELS];
189be38d 89 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
7819026e 90 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
8cbc7069 91 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
ba6a3541 92 bool pte_writable[PT_MAX_FULL_LEVELS];
fe135d2c
AK
93 unsigned pt_access;
94 unsigned pte_access;
815af8d4 95 gfn_t gfn;
8c28d031 96 struct x86_exception fault;
6aa8b732
AK
97};
98
e04da980 99static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
5fb07ddb 100{
e04da980 101 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
5fb07ddb
AK
102}
103
86407bcb
PB
104static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
105 unsigned gpte)
0ad805a0
NHE
106{
107 unsigned mask;
108
61719a8f 109 /* dirty bit is not supported, so no need to track it */
86407bcb 110 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
111 return;
112
0ad805a0
NHE
113 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
114
115 mask = (unsigned)~ACC_WRITE_MASK;
116 /* Allow write access to dirty gptes */
d8089bac
GN
117 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
118 PT_WRITABLE_MASK;
0ad805a0
NHE
119 *access &= mask;
120}
121
0ad805a0
NHE
122static inline int FNAME(is_present_gpte)(unsigned long pte)
123{
37406aaa 124#if PTTYPE != PTTYPE_EPT
812f30b2 125 return pte & PT_PRESENT_MASK;
37406aaa
NHE
126#else
127 return pte & 7;
128#endif
0ad805a0
NHE
129}
130
a78484c6 131static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
c8cfbb55
TY
132 pt_element_t __user *ptep_user, unsigned index,
133 pt_element_t orig_pte, pt_element_t new_pte)
b3e4e63f 134{
c8cfbb55 135 int npages;
b3e4e63f
MT
136 pt_element_t ret;
137 pt_element_t *table;
138 struct page *page;
139
73b0140b 140 npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
bd53cb35
FS
141 if (likely(npages == 1)) {
142 table = kmap_atomic(page);
143 ret = CMPXCHG(&table[index], orig_pte, new_pte);
144 kunmap_atomic(table);
145
146 kvm_release_page_dirty(page);
147 } else {
148 struct vm_area_struct *vma;
149 unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
150 unsigned long pfn;
151 unsigned long paddr;
152
153 down_read(&current->mm->mmap_sem);
154 vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
155 if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
156 up_read(&current->mm->mmap_sem);
157 return -EFAULT;
158 }
159 pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
160 paddr = pfn << PAGE_SHIFT;
161 table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
162 if (!table) {
163 up_read(&current->mm->mmap_sem);
164 return -EFAULT;
165 }
166 ret = CMPXCHG(&table[index], orig_pte, new_pte);
167 memunmap(table);
168 up_read(&current->mm->mmap_sem);
169 }
b3e4e63f
MT
170
171 return (ret != orig_pte);
172}
173
0ad805a0
NHE
174static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
175 struct kvm_mmu_page *sp, u64 *spte,
176 u64 gpte)
177{
0ad805a0
NHE
178 if (!FNAME(is_present_gpte)(gpte))
179 goto no_present;
180
61719a8f 181 /* if accessed bit is not supported prefetch non accessed gpte */
44dd3ffa
VK
182 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
183 !(gpte & PT_GUEST_ACCESSED_MASK))
0ad805a0
NHE
184 goto no_present;
185
f8052a05
SC
186 if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
187 goto no_present;
188
0ad805a0
NHE
189 return false;
190
191no_present:
192 drop_spte(vcpu->kvm, spte);
193 return true;
194}
195
d95c5568
BD
196/*
197 * For PTTYPE_EPT, a page table can be executable but not readable
198 * on supported processors. Therefore, set_spte does not automatically
199 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
200 * to signify readability since it isn't used in the EPT case
201 */
42522d08 202static inline unsigned FNAME(gpte_access)(u64 gpte)
0ad805a0
NHE
203{
204 unsigned access;
37406aaa
NHE
205#if PTTYPE == PTTYPE_EPT
206 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
207 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
d95c5568 208 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
37406aaa 209#else
bb9eadf0
PB
210 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
211 BUILD_BUG_ON(ACC_EXEC_MASK != 1);
212 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
213 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
214 access ^= (gpte >> PT64_NX_SHIFT);
37406aaa 215#endif
0ad805a0
NHE
216
217 return access;
218}
219
8cbc7069
AK
220static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
221 struct kvm_mmu *mmu,
222 struct guest_walker *walker,
223 int write_fault)
224{
225 unsigned level, index;
226 pt_element_t pte, orig_pte;
227 pt_element_t __user *ptep_user;
228 gfn_t table_gfn;
229 int ret;
230
61719a8f 231 /* dirty/accessed bits are not supported, so no need to update them */
86407bcb 232 if (!PT_HAVE_ACCESSED_DIRTY(mmu))
61719a8f
GN
233 return 0;
234
8cbc7069
AK
235 for (level = walker->max_level; level >= walker->level; --level) {
236 pte = orig_pte = walker->ptes[level - 1];
237 table_gfn = walker->table_gfn[level - 1];
238 ptep_user = walker->ptep_user[level - 1];
239 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
d8089bac 240 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
8cbc7069 241 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
d8089bac 242 pte |= PT_GUEST_ACCESSED_MASK;
8cbc7069 243 }
0ad805a0 244 if (level == walker->level && write_fault &&
d8089bac 245 !(pte & PT_GUEST_DIRTY_MASK)) {
8cbc7069 246 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
bab4165e
BD
247#if PTTYPE == PTTYPE_EPT
248 if (kvm_arch_write_log_dirty(vcpu))
249 return -EINVAL;
250#endif
d8089bac 251 pte |= PT_GUEST_DIRTY_MASK;
8cbc7069
AK
252 }
253 if (pte == orig_pte)
254 continue;
255
ba6a3541
PB
256 /*
257 * If the slot is read-only, simply do not process the accessed
258 * and dirty bits. This is the correct thing to do if the slot
259 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
260 * are only supported if the accessed and dirty bits are already
261 * set in the ROM (so that MMIO writes are never needed).
262 *
263 * Note that NPT does not allow this at all and faults, since
264 * it always wants nested page table entries for the guest
265 * page tables to be writable. And EPT works but will simply
266 * overwrite the read-only memory to set the accessed and dirty
267 * bits.
268 */
269 if (unlikely(!walker->pte_writable[level - 1]))
270 continue;
271
8cbc7069
AK
272 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
273 if (ret)
274 return ret;
275
54bf36aa 276 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
17e4bce0 277 walker->ptes[level - 1] = pte;
8cbc7069
AK
278 }
279 return 0;
280}
281
be94f6b7
HH
282static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
283{
284 unsigned pkeys = 0;
285#if PTTYPE == 64
286 pte_t pte = {.pte = gpte};
287
288 pkeys = pte_flags_pkey(pte_flags(pte));
289#endif
290 return pkeys;
291}
292
ac79c978 293/*
736c291c 294 * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
ac79c978 295 */
1e301feb
JR
296static int FNAME(walk_addr_generic)(struct guest_walker *walker,
297 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
736c291c 298 gpa_t addr, u32 access)
6aa8b732 299{
8cbc7069 300 int ret;
42bf3f0a 301 pt_element_t pte;
b7233635 302 pt_element_t __user *uninitialized_var(ptep_user);
cea0f0e7 303 gfn_t table_gfn;
0780516a
PB
304 u64 pt_access, pte_access;
305 unsigned index, accessed_dirty, pte_pkey;
ae1e2d10 306 unsigned nested_access;
42bf3f0a 307 gpa_t pte_gpa;
86407bcb 308 bool have_ad;
134291bf 309 int offset;
0780516a 310 u64 walk_nx_mask = 0;
134291bf
TY
311 const int write_fault = access & PFERR_WRITE_MASK;
312 const int user_fault = access & PFERR_USER_MASK;
313 const int fetch_fault = access & PFERR_FETCH_MASK;
314 u16 errcode = 0;
13d22b6a
AK
315 gpa_t real_gpa;
316 gfn_t gfn;
6aa8b732 317
6fbc2770 318 trace_kvm_mmu_pagetable_walk(addr, access);
92c1c1e8 319retry_walk:
1e301feb
JR
320 walker->level = mmu->root_level;
321 pte = mmu->get_cr3(vcpu);
86407bcb 322 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
1e301feb 323
1b0973bd 324#if PTTYPE == 64
0780516a 325 walk_nx_mask = 1ULL << PT64_NX_SHIFT;
1e301feb 326 if (walker->level == PT32E_ROOT_LEVEL) {
e4e517b4 327 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
07420171 328 trace_kvm_mmu_paging_element(pte, walker->level);
0ad805a0 329 if (!FNAME(is_present_gpte)(pte))
f59c1d2d 330 goto error;
1b0973bd
AK
331 --walker->level;
332 }
333#endif
8cbc7069 334 walker->max_level = walker->level;
1715d0dc 335 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
6aa8b732 336
ae1e2d10
PB
337 /*
338 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
339 * by the MOV to CR instruction are treated as reads and do not cause the
340 * processor to set the dirty flag in any EPT paging-structure entry.
341 */
342 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
343
0780516a 344 pte_access = ~0;
13d22b6a 345 ++walker->level;
ac79c978 346
13d22b6a 347 do {
6e2ca7d1
TY
348 gfn_t real_gfn;
349 unsigned long host_addr;
350
0780516a 351 pt_access = pte_access;
13d22b6a
AK
352 --walker->level;
353
42bf3f0a 354 index = PT_INDEX(addr, walker->level);
5fb07ddb 355 table_gfn = gpte_to_gfn(pte);
2329d46d
JR
356 offset = index * sizeof(pt_element_t);
357 pte_gpa = gfn_to_gpa(table_gfn) + offset;
829ee279
LP
358
359 BUG_ON(walker->level < 1);
42bf3f0a 360 walker->table_gfn[walker->level - 1] = table_gfn;
7819026e 361 walker->pte_gpa[walker->level - 1] = pte_gpa;
42bf3f0a 362
6e2ca7d1 363 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
ae1e2d10 364 nested_access,
54987b7a 365 &walker->fault);
5e352519
PB
366
367 /*
368 * FIXME: This can happen if emulation (for of an INS/OUTS
369 * instruction) triggers a nested page fault. The exit
370 * qualification / exit info field will incorrectly have
371 * "guest page access" as the nested page fault's cause,
372 * instead of "guest page structure access". To fix this,
373 * the x86_exception struct should be augmented with enough
374 * information to fix the exit_qualification or exit_info_1
375 * fields.
376 */
134291bf 377 if (unlikely(real_gfn == UNMAPPED_GVA))
54987b7a 378 return 0;
5e352519 379
6e2ca7d1
TY
380 real_gfn = gpa_to_gfn(real_gfn);
381
54bf36aa 382 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
ba6a3541 383 &walker->pte_writable[walker->level - 1]);
134291bf
TY
384 if (unlikely(kvm_is_error_hva(host_addr)))
385 goto error;
6e2ca7d1
TY
386
387 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
134291bf
TY
388 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
389 goto error;
8cbc7069 390 walker->ptep_user[walker->level - 1] = ptep_user;
a6085fba 391
07420171 392 trace_kvm_mmu_paging_element(pte, walker->level);
42bf3f0a 393
0780516a
PB
394 /*
395 * Inverting the NX it lets us AND it like other
396 * permission bits.
397 */
398 pte_access = pt_access & (pte ^ walk_nx_mask);
399
0ad805a0 400 if (unlikely(!FNAME(is_present_gpte)(pte)))
134291bf 401 goto error;
7993ba43 402
d2b0f981 403 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
7a98205d 404 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
134291bf 405 goto error;
f59c1d2d 406 }
82725b20 407
7819026e 408 walker->ptes[walker->level - 1] = pte;
6fd01b71 409 } while (!is_last_gpte(mmu, walker->level, pte));
42bf3f0a 410
be94f6b7 411 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
0780516a
PB
412 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
413
414 /* Convert to ACC_*_MASK flags for struct guest_walker. */
42522d08
PX
415 walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
416 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
0780516a 417 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
f13577e8 418 if (unlikely(errcode))
f59c1d2d
AK
419 goto error;
420
13d22b6a
AK
421 gfn = gpte_to_gfn_lvl(pte, walker->level);
422 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
423
424 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
425 gfn += pse36_gfn_delta(pte);
426
54987b7a 427 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
13d22b6a
AK
428 if (real_gpa == UNMAPPED_GVA)
429 return 0;
430
431 walker->gfn = real_gpa >> PAGE_SHIFT;
432
8ea667f2 433 if (!write_fault)
0780516a 434 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
908e7d79
GN
435 else
436 /*
61719a8f
GN
437 * On a write fault, fold the dirty bit into accessed_dirty.
438 * For modes without A/D bits support accessed_dirty will be
439 * always clear.
908e7d79 440 */
d8089bac
GN
441 accessed_dirty &= pte >>
442 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
b514c30f
AK
443
444 if (unlikely(!accessed_dirty)) {
445 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
446 if (unlikely(ret < 0))
447 goto error;
448 else if (ret)
449 goto retry_walk;
450 }
42bf3f0a 451
fe135d2c 452 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
0780516a 453 __func__, (u64)pte, walker->pte_access, walker->pt_access);
7993ba43
AK
454 return 1;
455
f59c1d2d 456error:
134291bf 457 errcode |= write_fault | user_fault;
e57d4a35
YW
458 if (fetch_fault && (mmu->nx ||
459 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
134291bf 460 errcode |= PFERR_FETCH_MASK;
8df25a32 461
134291bf
TY
462 walker->fault.vector = PF_VECTOR;
463 walker->fault.error_code_valid = true;
464 walker->fault.error_code = errcode;
25d92081
YZ
465
466#if PTTYPE == PTTYPE_EPT
467 /*
468 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
469 * misconfiguration requires to be injected. The detection is
470 * done by is_rsvd_bits_set() above.
471 *
472 * We set up the value of exit_qualification to inject:
ddd6f0e9
KA
473 * [2:0] - Derive from the access bits. The exit_qualification might be
474 * out of date if it is serving an EPT misconfiguration.
25d92081
YZ
475 * [5:3] - Calculated by the page walk of the guest EPT page tables
476 * [7:8] - Derived from [7:8] of real exit_qualification
477 *
478 * The other bits are set to 0.
479 */
480 if (!(errcode & PFERR_RSVD_MASK)) {
ddd6f0e9
KA
481 vcpu->arch.exit_qualification &= 0x180;
482 if (write_fault)
483 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
484 if (user_fault)
485 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
486 if (fetch_fault)
487 vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
0780516a 488 vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
25d92081
YZ
489 }
490#endif
6389ee94
AK
491 walker->fault.address = addr;
492 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
8df25a32 493
8c28d031 494 trace_kvm_mmu_walker_error(walker->fault.error_code);
fe551881 495 return 0;
6aa8b732
AK
496}
497
1e301feb 498static int FNAME(walk_addr)(struct guest_walker *walker,
736c291c 499 struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
1e301feb 500{
44dd3ffa 501 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
33770780 502 access);
1e301feb
JR
503}
504
37406aaa 505#if PTTYPE != PTTYPE_EPT
6539e738
JR
506static int FNAME(walk_addr_nested)(struct guest_walker *walker,
507 struct kvm_vcpu *vcpu, gva_t addr,
33770780 508 u32 access)
6539e738
JR
509{
510 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
33770780 511 addr, access);
6539e738 512}
37406aaa 513#endif
6539e738 514
bd6360cc
XG
515static bool
516FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
517 u64 *spte, pt_element_t gpte, bool no_dirty_log)
0028425f 518{
41074d07 519 unsigned pte_access;
bd6360cc 520 gfn_t gfn;
ba049e93 521 kvm_pfn_t pfn;
0028425f 522
0ad805a0 523 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
bd6360cc 524 return false;
407c61c6 525
b8688d51 526 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
bd6360cc
XG
527
528 gfn = gpte_to_gfn(gpte);
42522d08 529 pte_access = sp->role.access & FNAME(gpte_access)(gpte);
44dd3ffa 530 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
bd6360cc
XG
531 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
532 no_dirty_log && (pte_access & ACC_WRITE_MASK));
81c52c56 533 if (is_error_pfn(pfn))
bd6360cc 534 return false;
0f53b5b1 535
1403283a 536 /*
bd6360cc
XG
537 * we call mmu_set_spte() with host_writable = true because
538 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
1403283a 539 */
029499b4
TY
540 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
541 true, true);
bd6360cc 542
43fdcda9 543 kvm_release_pfn_clean(pfn);
bd6360cc
XG
544 return true;
545}
546
547static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
548 u64 *spte, const void *pte)
549{
550 pt_element_t gpte = *(const pt_element_t *)pte;
551
552 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
0028425f
AK
553}
554
39c8c672
AK
555static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
556 struct guest_walker *gw, int level)
557{
39c8c672 558 pt_element_t curr_pte;
189be38d
XG
559 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
560 u64 mask;
561 int r, index;
562
563 if (level == PT_PAGE_TABLE_LEVEL) {
564 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
565 base_gpa = pte_gpa & ~mask;
566 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
567
54bf36aa 568 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
189be38d
XG
569 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
570 curr_pte = gw->prefetch_ptes[index];
571 } else
54bf36aa 572 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
39c8c672 573 &curr_pte, sizeof(curr_pte));
189be38d 574
39c8c672
AK
575 return r || curr_pte != gw->ptes[level - 1];
576}
577
189be38d
XG
578static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
579 u64 *sptep)
957ed9ef
XG
580{
581 struct kvm_mmu_page *sp;
189be38d 582 pt_element_t *gptep = gw->prefetch_ptes;
957ed9ef 583 u64 *spte;
189be38d 584 int i;
957ed9ef
XG
585
586 sp = page_header(__pa(sptep));
587
588 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
589 return;
590
591 if (sp->role.direct)
592 return __direct_pte_prefetch(vcpu, sp, sptep);
593
594 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
957ed9ef
XG
595 spte = sp->spt + i;
596
597 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
957ed9ef
XG
598 if (spte == sptep)
599 continue;
600
c3707958 601 if (is_shadow_present_pte(*spte))
957ed9ef
XG
602 continue;
603
bd6360cc 604 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
957ed9ef 605 break;
957ed9ef
XG
606 }
607}
608
6aa8b732
AK
609/*
610 * Fetch a shadow pte for a specific level in the paging hierarchy.
d4878f24
XG
611 * If the guest tries to write a write-protected page, we need to
612 * emulate this operation, return 1 to indicate this case.
6aa8b732 613 */
736c291c 614static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
e7a04c99 615 struct guest_walker *gw,
4cd071d1 616 int write_fault, int hlevel, int max_level,
b8e8c830
PB
617 kvm_pfn_t pfn, bool map_writable, bool prefault,
618 bool lpage_disallowed)
6aa8b732 619{
5991b332 620 struct kvm_mmu_page *sp = NULL;
24157aaf 621 struct kvm_shadow_walk_iterator it;
d4878f24 622 unsigned direct_access, access = gw->pt_access;
9b8ebbdb 623 int top_level, ret;
b8e8c830 624 gfn_t gfn, base_gfn;
abb9e0b8 625
b36c7a7c 626 direct_access = gw->pte_access;
84754cd8 627
44dd3ffa 628 top_level = vcpu->arch.mmu->root_level;
5991b332
AK
629 if (top_level == PT32E_ROOT_LEVEL)
630 top_level = PT32_ROOT_LEVEL;
631 /*
632 * Verify that the top-level gpte is still there. Since the page
633 * is a root page, it is either write protected (and cannot be
634 * changed from now on) or it is invalid (in which case, we don't
635 * really care if it changes underneath us after this point).
636 */
637 if (FNAME(gpte_changed)(vcpu, gw, top_level))
638 goto out_gpte_changed;
639
0c7a98e3 640 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
37f6a4e2
MT
641 goto out_gpte_changed;
642
24157aaf
AK
643 for (shadow_walk_init(&it, vcpu, addr);
644 shadow_walk_okay(&it) && it.level > gw->level;
645 shadow_walk_next(&it)) {
0b3c9333
AK
646 gfn_t table_gfn;
647
a30f47cb 648 clear_sp_write_flooding_count(it.sptep);
24157aaf 649 drop_large_spte(vcpu, it.sptep);
ef0197e8 650
5991b332 651 sp = NULL;
24157aaf
AK
652 if (!is_shadow_present_pte(*it.sptep)) {
653 table_gfn = gw->table_gfn[it.level - 2];
654 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
bb11c6c9 655 false, access);
5991b332 656 }
0b3c9333
AK
657
658 /*
659 * Verify that the gpte in the page we've just write
660 * protected is still there.
661 */
24157aaf 662 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
0b3c9333 663 goto out_gpte_changed;
abb9e0b8 664
5991b332 665 if (sp)
98bba238 666 link_shadow_page(vcpu, it.sptep, sp);
e7a04c99 667 }
050e6499 668
b8e8c830
PB
669 /*
670 * FNAME(page_fault) might have clobbered the bottom bits of
671 * gw->gfn, restore them from the virtual address.
672 */
673 gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
674 base_gfn = gfn;
0b3c9333 675
4cd071d1
SC
676 if (max_level > PT_PAGE_TABLE_LEVEL)
677 transparent_hugepage_adjust(vcpu, gw->gfn, &pfn, &hlevel);
678
335e192a
PB
679 trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
680
3fcf2d1b 681 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
a30f47cb 682 clear_sp_write_flooding_count(it.sptep);
b8e8c830
PB
683
684 /*
685 * We cannot overwrite existing page tables with an NX
686 * large page, as the leaf could be executable.
687 */
688 disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
689
690 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3fcf2d1b
PB
691 if (it.level == hlevel)
692 break;
693
24157aaf 694 validate_direct_spte(vcpu, it.sptep, direct_access);
0b3c9333 695
24157aaf 696 drop_large_spte(vcpu, it.sptep);
0b3c9333 697
3fcf2d1b
PB
698 if (!is_shadow_present_pte(*it.sptep)) {
699 sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
700 it.level - 1, true, direct_access);
701 link_shadow_page(vcpu, it.sptep, sp);
b8e8c830
PB
702 if (lpage_disallowed)
703 account_huge_nx_page(vcpu->kvm, sp);
3fcf2d1b 704 }
0b3c9333
AK
705 }
706
9b8ebbdb 707 ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
3fcf2d1b 708 it.level, base_gfn, pfn, prefault, map_writable);
189be38d 709 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
3fcf2d1b 710 ++vcpu->stat.pf_fixed;
9b8ebbdb 711 return ret;
0b3c9333
AK
712
713out_gpte_changed:
9b8ebbdb 714 return RET_PF_RETRY;
6aa8b732
AK
715}
716
7751babd
XG
717 /*
718 * To see whether the mapped gfn can write its page table in the current
719 * mapping.
720 *
721 * It is the helper function of FNAME(page_fault). When guest uses large page
722 * size to map the writable gfn which is used as current page table, we should
723 * force kvm to use small page size to map it because new shadow page will be
724 * created when kvm establishes shadow page table that stop kvm using large
725 * page size. Do it early can avoid unnecessary #PF and emulation.
726 *
93c05d3e
XG
727 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
728 * currently used as its page table.
729 *
7751babd
XG
730 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
731 * since the PDPT is always shadowed, that means, we can not use large page
732 * size to map the gfn which is used as PDPT.
733 */
734static bool
735FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
93c05d3e
XG
736 struct guest_walker *walker, int user_fault,
737 bool *write_fault_to_shadow_pgtable)
7751babd
XG
738{
739 int level;
740 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
93c05d3e 741 bool self_changed = false;
7751babd
XG
742
743 if (!(walker->pte_access & ACC_WRITE_MASK ||
744 (!is_write_protection(vcpu) && !user_fault)))
745 return false;
746
93c05d3e
XG
747 for (level = walker->level; level <= walker->max_level; level++) {
748 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
749
750 self_changed |= !(gfn & mask);
751 *write_fault_to_shadow_pgtable |= !gfn;
752 }
7751babd 753
93c05d3e 754 return self_changed;
7751babd
XG
755}
756
6aa8b732
AK
757/*
758 * Page fault handler. There are several causes for a page fault:
759 * - there is no shadow pte for the guest pte
760 * - write access through a shadow pte marked read only so that we can set
761 * the dirty bit
762 * - write access to a shadow pte marked read only so we can update the page
763 * dirty bitmap, when userspace requests it
764 * - mmio access; in this case we will never install a present shadow pte
765 * - normal guest page fault due to the guest pte marked not present, not
766 * writable, or not executable
767 *
e2dec939
AK
768 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
769 * a negative value on error.
6aa8b732 770 */
736c291c 771static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
78b2c54a 772 bool prefault)
6aa8b732
AK
773{
774 int write_fault = error_code & PFERR_WRITE_MASK;
6aa8b732
AK
775 int user_fault = error_code & PFERR_USER_MASK;
776 struct guest_walker walker;
e2dec939 777 int r;
ba049e93 778 kvm_pfn_t pfn;
cbe1e6f0 779 int level;
e930bffe 780 unsigned long mmu_seq;
93c05d3e 781 bool map_writable, is_self_change_mapping;
b8e8c830
PB
782 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
783 is_nx_huge_page_enabled();
39ca1ecb 784 int max_level;
6aa8b732 785
b8688d51 786 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
714b93da 787
e2dec939
AK
788 r = mmu_topup_memory_caches(vcpu);
789 if (r)
790 return r;
714b93da 791
e9ee956e
TY
792 /*
793 * If PFEC.RSVD is set, this is a shadow page fault.
794 * The bit needs to be cleared before walking guest page tables.
795 */
796 error_code &= ~PFERR_RSVD_MASK;
797
6aa8b732 798 /*
a8b876b1 799 * Look up the guest pte for the faulting address.
6aa8b732 800 */
33770780 801 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
6aa8b732
AK
802
803 /*
804 * The page is not mapped by the guest. Let the guest handle it.
805 */
7993ba43 806 if (!r) {
b8688d51 807 pgprintk("%s: guest page fault\n", __func__);
a30f47cb 808 if (!prefault)
fb67e14f 809 inject_page_fault(vcpu, &walker.fault);
a30f47cb 810
9b8ebbdb 811 return RET_PF_RETRY;
6aa8b732
AK
812 }
813
e5691a81
XG
814 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
815 shadow_page_table_clear_flood(vcpu, addr);
9b8ebbdb 816 return RET_PF_EMULATE;
e5691a81 817 }
3d0c27ad 818
93c05d3e
XG
819 vcpu->arch.write_fault_to_shadow_pgtable = false;
820
821 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
822 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
823
cbe1e6f0 824 if (lpage_disallowed || is_self_change_mapping)
39ca1ecb 825 max_level = PT_PAGE_TABLE_LEVEL;
cbe1e6f0
SC
826 else
827 max_level = walker.level;
828
829 level = mapping_level(vcpu, walker.gfn, &max_level);
830 if (level > PT_PAGE_TABLE_LEVEL)
831 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
7e4e4056 832
e930bffe 833 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 834 smp_rmb();
af585b92 835
78b2c54a 836 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
612819c3 837 &map_writable))
9b8ebbdb 838 return RET_PF_RETRY;
d7824fff 839
9034e6e8 840 if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
d7c55201
XG
841 return r;
842
c2288505
XG
843 /*
844 * Do not change pte_access if the pfn is a mmio page, otherwise
845 * we will cache the incorrect access into mmio spte.
846 */
847 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
848 !is_write_protection(vcpu) && !user_fault &&
849 !is_noslot_pfn(pfn)) {
850 walker.pte_access |= ACC_WRITE_MASK;
851 walker.pte_access &= ~ACC_USER_MASK;
852
853 /*
854 * If we converted a user page to a kernel page,
855 * so that the kernel can write to it when cr0.wp=0,
856 * then we should prevent the kernel from executing it
857 * if SMEP is enabled.
858 */
859 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
860 walker.pte_access &= ~ACC_EXEC_MASK;
861 }
862
43fdcda9 863 r = RET_PF_RETRY;
aaee2c94 864 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 865 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 866 goto out_unlock;
bc32ce21 867
0375f7fa 868 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
26eeb53c
WL
869 if (make_mmu_pages_available(vcpu) < 0)
870 goto out_unlock;
4cd071d1
SC
871 r = FNAME(fetch)(vcpu, addr, &walker, write_fault, level, max_level,
872 pfn, map_writable, prefault, lpage_disallowed);
0375f7fa 873 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
e930bffe
AA
874
875out_unlock:
876 spin_unlock(&vcpu->kvm->mmu_lock);
877 kvm_release_pfn_clean(pfn);
43fdcda9 878 return r;
6aa8b732
AK
879}
880
505aef8f
XG
881static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
882{
883 int offset = 0;
884
f71fa31f 885 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
505aef8f
XG
886
887 if (PTTYPE == 32)
888 offset = sp->role.quadrant << PT64_LEVEL_BITS;
889
890 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
891}
892
7eb77e9f 893static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
a7052897 894{
a461930b 895 struct kvm_shadow_walk_iterator iterator;
f78978aa 896 struct kvm_mmu_page *sp;
a461930b
AK
897 int level;
898 u64 *sptep;
899
bebb106a
XG
900 vcpu_clear_mmio_info(vcpu, gva);
901
f57f2ef5
XG
902 /*
903 * No need to check return value here, rmap_can_add() can
904 * help us to skip pte prefetch later.
905 */
906 mmu_topup_memory_caches(vcpu);
a7052897 907
7eb77e9f 908 if (!VALID_PAGE(root_hpa)) {
37f6a4e2
MT
909 WARN_ON(1);
910 return;
911 }
912
f57f2ef5 913 spin_lock(&vcpu->kvm->mmu_lock);
7eb77e9f 914 for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
a461930b
AK
915 level = iterator.level;
916 sptep = iterator.sptep;
ad218f85 917
f78978aa 918 sp = page_header(__pa(sptep));
884a0ff0 919 if (is_last_spte(*sptep, level)) {
f57f2ef5
XG
920 pt_element_t gpte;
921 gpa_t pte_gpa;
922
f78978aa
XG
923 if (!sp->unsync)
924 break;
925
505aef8f 926 pte_gpa = FNAME(get_level1_sp_gpa)(sp);
08e850c6 927 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
a461930b 928
505aef8f 929 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
c3134ce2
LT
930 kvm_flush_remote_tlbs_with_address(vcpu->kvm,
931 sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
f57f2ef5
XG
932
933 if (!rmap_can_add(vcpu))
934 break;
935
54bf36aa
PB
936 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
937 sizeof(pt_element_t)))
f57f2ef5
XG
938 break;
939
940 FNAME(update_pte)(vcpu, sp, sptep, &gpte);
87917239 941 }
a7052897 942
f78978aa 943 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
a461930b
AK
944 break;
945 }
ad218f85 946 spin_unlock(&vcpu->kvm->mmu_lock);
a7052897
MT
947}
948
736c291c
SC
949/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
950static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
ab9ae313 951 struct x86_exception *exception)
6aa8b732
AK
952{
953 struct guest_walker walker;
e119d117
AK
954 gpa_t gpa = UNMAPPED_GVA;
955 int r;
6aa8b732 956
736c291c 957 r = FNAME(walk_addr)(&walker, vcpu, addr, access);
6aa8b732 958
e119d117 959 if (r) {
1755fbcc 960 gpa = gfn_to_gpa(walker.gfn);
736c291c 961 gpa |= addr & ~PAGE_MASK;
8c28d031
AK
962 } else if (exception)
963 *exception = walker.fault;
6aa8b732
AK
964
965 return gpa;
966}
967
37406aaa 968#if PTTYPE != PTTYPE_EPT
736c291c
SC
969/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
970static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
971 u32 access,
972 struct x86_exception *exception)
6539e738
JR
973{
974 struct guest_walker walker;
975 gpa_t gpa = UNMAPPED_GVA;
976 int r;
977
736c291c
SC
978#ifndef CONFIG_X86_64
979 /* A 64-bit GVA should be impossible on 32-bit KVM. */
980 WARN_ON_ONCE(vaddr >> 32);
981#endif
982
33770780 983 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
6539e738
JR
984
985 if (r) {
986 gpa = gfn_to_gpa(walker.gfn);
987 gpa |= vaddr & ~PAGE_MASK;
8c28d031
AK
988 } else if (exception)
989 *exception = walker.fault;
6539e738
JR
990
991 return gpa;
992}
37406aaa 993#endif
6539e738 994
e8bc217a
MT
995/*
996 * Using the cached information from sp->gfns is safe because:
997 * - The spte has a reference to the struct page, so the pfn for a given gfn
998 * can't change unless all sptes pointing to it are nuked first.
a4ee1ca4
XG
999 *
1000 * Note:
1001 * We should flush all tlbs if spte is dropped even though guest is
1002 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1003 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1004 * used by guest then tlbs are not flushed, so guest is allowed to access the
1005 * freed pages.
a086f6a1 1006 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
e8bc217a 1007 */
a4a8e6f7 1008static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
e8bc217a 1009{
505aef8f 1010 int i, nr_present = 0;
9bdbba13 1011 bool host_writable;
51fb60d8 1012 gpa_t first_pte_gpa;
5ce4786f 1013 int set_spte_ret = 0;
e8bc217a 1014
2032a93d
LJ
1015 /* direct kvm_mmu_page can not be unsync. */
1016 BUG_ON(sp->role.direct);
1017
505aef8f 1018 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
51fb60d8 1019
e8bc217a
MT
1020 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1021 unsigned pte_access;
1022 pt_element_t gpte;
1023 gpa_t pte_gpa;
f55c3f41 1024 gfn_t gfn;
e8bc217a 1025
ce88decf 1026 if (!sp->spt[i])
e8bc217a
MT
1027 continue;
1028
51fb60d8 1029 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
e8bc217a 1030
54bf36aa
PB
1031 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1032 sizeof(pt_element_t)))
1f50f1b3 1033 return 0;
e8bc217a 1034
0ad805a0 1035 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
7bfdf217
LT
1036 /*
1037 * Update spte before increasing tlbs_dirty to make
1038 * sure no tlb flush is lost after spte is zapped; see
1039 * the comments in kvm_flush_remote_tlbs().
1040 */
1041 smp_wmb();
a086f6a1 1042 vcpu->kvm->tlbs_dirty++;
407c61c6
XG
1043 continue;
1044 }
1045
ce88decf
XG
1046 gfn = gpte_to_gfn(gpte);
1047 pte_access = sp->role.access;
42522d08 1048 pte_access &= FNAME(gpte_access)(gpte);
44dd3ffa 1049 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
ce88decf 1050
54bf36aa 1051 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
f2fd125d 1052 &nr_present))
ce88decf
XG
1053 continue;
1054
407c61c6 1055 if (gfn != sp->gfns[i]) {
c3707958 1056 drop_spte(vcpu->kvm, &sp->spt[i]);
7bfdf217
LT
1057 /*
1058 * The same as above where we are doing
1059 * prefetch_invalid_gpte().
1060 */
1061 smp_wmb();
a086f6a1 1062 vcpu->kvm->tlbs_dirty++;
e8bc217a
MT
1063 continue;
1064 }
1065
1066 nr_present++;
ce88decf 1067
f8e453b0
XG
1068 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1069
5ce4786f
JS
1070 set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1071 pte_access, PT_PAGE_TABLE_LEVEL,
1072 gfn, spte_to_pfn(sp->spt[i]),
1073 true, false, host_writable);
e8bc217a
MT
1074 }
1075
5ce4786f
JS
1076 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1077 kvm_flush_remote_tlbs(vcpu->kvm);
1078
1f50f1b3 1079 return nr_present;
e8bc217a
MT
1080}
1081
6aa8b732
AK
1082#undef pt_element_t
1083#undef guest_walker
1084#undef FNAME
1085#undef PT_BASE_ADDR_MASK
1086#undef PT_INDEX
e04da980
JR
1087#undef PT_LVL_ADDR_MASK
1088#undef PT_LVL_OFFSET_MASK
c7addb90 1089#undef PT_LEVEL_BITS
cea0f0e7 1090#undef PT_MAX_FULL_LEVELS
5fb07ddb 1091#undef gpte_to_gfn
e04da980 1092#undef gpte_to_gfn_lvl
b3e4e63f 1093#undef CMPXCHG
d8089bac
GN
1094#undef PT_GUEST_ACCESSED_MASK
1095#undef PT_GUEST_DIRTY_MASK
1096#undef PT_GUEST_DIRTY_SHIFT
1097#undef PT_GUEST_ACCESSED_SHIFT
86407bcb 1098#undef PT_HAVE_ACCESSED_DIRTY