]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
ath10k: fix compilation warnings in wmi phyerr pull function
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
54bf36aa 226static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 227{
54bf36aa 228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
54bf36aa 231static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 232 unsigned access)
ce88decf 233{
54bf36aa 234 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
54bf36aa 261static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 265 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
54bf36aa 272static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
54bf36aa 276 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
ce88decf
XG
360
361static bool __check_direct_spte_mmio_pf(u64 spte)
362{
363 /* It is valid if the spte is zapped. */
364 return spte == 0ull;
365}
a9221dd5 366#else
603e0651
XG
367union split_spte {
368 struct {
369 u32 spte_low;
370 u32 spte_high;
371 };
372 u64 spte;
373};
a9221dd5 374
c2a2ac2b
XG
375static void count_spte_clear(u64 *sptep, u64 spte)
376{
377 struct kvm_mmu_page *sp = page_header(__pa(sptep));
378
379 if (is_shadow_present_pte(spte))
380 return;
381
382 /* Ensure the spte is completely set before we increase the count */
383 smp_wmb();
384 sp->clear_spte_count++;
385}
386
603e0651
XG
387static void __set_spte(u64 *sptep, u64 spte)
388{
389 union split_spte *ssptep, sspte;
a9221dd5 390
603e0651
XG
391 ssptep = (union split_spte *)sptep;
392 sspte = (union split_spte)spte;
393
394 ssptep->spte_high = sspte.spte_high;
395
396 /*
397 * If we map the spte from nonpresent to present, We should store
398 * the high bits firstly, then set present bit, so cpu can not
399 * fetch this spte while we are setting the spte.
400 */
401 smp_wmb();
402
403 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
404}
405
603e0651
XG
406static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407{
408 union split_spte *ssptep, sspte;
409
410 ssptep = (union split_spte *)sptep;
411 sspte = (union split_spte)spte;
412
413 ssptep->spte_low = sspte.spte_low;
414
415 /*
416 * If we map the spte from present to nonpresent, we should clear
417 * present bit firstly to avoid vcpu fetch the old high bits.
418 */
419 smp_wmb();
420
421 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 422 count_spte_clear(sptep, spte);
603e0651
XG
423}
424
425static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426{
427 union split_spte *ssptep, sspte, orig;
428
429 ssptep = (union split_spte *)sptep;
430 sspte = (union split_spte)spte;
431
432 /* xchg acts as a barrier before the setting of the high bits */
433 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
434 orig.spte_high = ssptep->spte_high;
435 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 436 count_spte_clear(sptep, spte);
603e0651
XG
437
438 return orig.spte;
439}
c2a2ac2b
XG
440
441/*
442 * The idea using the light way get the spte on x86_32 guest is from
443 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
444 *
445 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446 * coalesces them and we are running out of the MMU lock. Therefore
447 * we need to protect against in-progress updates of the spte.
448 *
449 * Reading the spte while an update is in progress may get the old value
450 * for the high part of the spte. The race is fine for a present->non-present
451 * change (because the high part of the spte is ignored for non-present spte),
452 * but for a present->present change we must reread the spte.
453 *
454 * All such changes are done in two steps (present->non-present and
455 * non-present->present), hence it is enough to count the number of
456 * present->non-present updates: if it changed while reading the spte,
457 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
458 */
459static u64 __get_spte_lockless(u64 *sptep)
460{
461 struct kvm_mmu_page *sp = page_header(__pa(sptep));
462 union split_spte spte, *orig = (union split_spte *)sptep;
463 int count;
464
465retry:
466 count = sp->clear_spte_count;
467 smp_rmb();
468
469 spte.spte_low = orig->spte_low;
470 smp_rmb();
471
472 spte.spte_high = orig->spte_high;
473 smp_rmb();
474
475 if (unlikely(spte.spte_low != orig->spte_low ||
476 count != sp->clear_spte_count))
477 goto retry;
478
479 return spte.spte;
480}
ce88decf
XG
481
482static bool __check_direct_spte_mmio_pf(u64 spte)
483{
484 union split_spte sspte = (union split_spte)spte;
485 u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487 /* It is valid if the spte is zapped. */
488 if (spte == 0ull)
489 return true;
490
491 /* It is valid if the spte is being zapped. */
492 if (sspte.spte_low == 0ull &&
493 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494 return true;
495
496 return false;
497}
603e0651
XG
498#endif
499
c7ba5b48
XG
500static bool spte_is_locklessly_modifiable(u64 spte)
501{
feb3eb70
GN
502 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
504}
505
8672b721
XG
506static bool spte_has_volatile_bits(u64 spte)
507{
c7ba5b48
XG
508 /*
509 * Always atomicly update spte if it can be updated
510 * out of mmu-lock, it can ensure dirty bit is not lost,
511 * also, it can help us to get a stable is_writable_pte()
512 * to ensure tlb flush is not missed.
513 */
514 if (spte_is_locklessly_modifiable(spte))
515 return true;
516
8672b721
XG
517 if (!shadow_accessed_mask)
518 return false;
519
520 if (!is_shadow_present_pte(spte))
521 return false;
522
4132779b
XG
523 if ((spte & shadow_accessed_mask) &&
524 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
525 return false;
526
527 return true;
528}
529
4132779b
XG
530static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531{
532 return (old_spte & bit_mask) && !(new_spte & bit_mask);
533}
534
7e71a59b
KH
535static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536{
537 return (old_spte & bit_mask) != (new_spte & bit_mask);
538}
539
1df9f2dc
XG
540/* Rules for using mmu_spte_set:
541 * Set the sptep from nonpresent to present.
542 * Note: the sptep being assigned *must* be either not present
543 * or in a state where the hardware will not attempt to update
544 * the spte.
545 */
546static void mmu_spte_set(u64 *sptep, u64 new_spte)
547{
548 WARN_ON(is_shadow_present_pte(*sptep));
549 __set_spte(sptep, new_spte);
550}
551
552/* Rules for using mmu_spte_update:
553 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
554 *
555 * Whenever we overwrite a writable spte with a read-only one we
556 * should flush remote TLBs. Otherwise rmap_write_protect
557 * will find a read-only spte, even though the writable spte
558 * might be cached on a CPU's TLB, the return value indicates this
559 * case.
1df9f2dc 560 */
6e7d0354 561static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 562{
c7ba5b48 563 u64 old_spte = *sptep;
6e7d0354 564 bool ret = false;
4132779b
XG
565
566 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 567
6e7d0354
XG
568 if (!is_shadow_present_pte(old_spte)) {
569 mmu_spte_set(sptep, new_spte);
570 return ret;
571 }
4132779b 572
c7ba5b48 573 if (!spte_has_volatile_bits(old_spte))
603e0651 574 __update_clear_spte_fast(sptep, new_spte);
4132779b 575 else
603e0651 576 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 577
c7ba5b48
XG
578 /*
579 * For the spte updated out of mmu-lock is safe, since
580 * we always atomicly update it, see the comments in
581 * spte_has_volatile_bits().
582 */
7f31c959
XG
583 if (spte_is_locklessly_modifiable(old_spte) &&
584 !is_writable_pte(new_spte))
6e7d0354
XG
585 ret = true;
586
4132779b 587 if (!shadow_accessed_mask)
6e7d0354 588 return ret;
4132779b 589
7e71a59b
KH
590 /*
591 * Flush TLB when accessed/dirty bits are changed in the page tables,
592 * to guarantee consistency between TLB and page tables.
593 */
594 if (spte_is_bit_changed(old_spte, new_spte,
595 shadow_accessed_mask | shadow_dirty_mask))
596 ret = true;
597
4132779b
XG
598 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
602
603 return ret;
b79b93f9
AK
604}
605
1df9f2dc
XG
606/*
607 * Rules for using mmu_spte_clear_track_bits:
608 * It sets the sptep from present to nonpresent, and track the
609 * state bits, it is used to clear the last level sptep.
610 */
611static int mmu_spte_clear_track_bits(u64 *sptep)
612{
613 pfn_t pfn;
614 u64 old_spte = *sptep;
615
616 if (!spte_has_volatile_bits(old_spte))
603e0651 617 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 618 else
603e0651 619 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
620
621 if (!is_rmap_spte(old_spte))
622 return 0;
623
624 pfn = spte_to_pfn(old_spte);
86fde74c
XG
625
626 /*
627 * KVM does not hold the refcount of the page used by
628 * kvm mmu, before reclaiming the page, we should
629 * unmap it from mmu first.
630 */
bf4bea8e 631 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 632
1df9f2dc
XG
633 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634 kvm_set_pfn_accessed(pfn);
635 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636 kvm_set_pfn_dirty(pfn);
637 return 1;
638}
639
640/*
641 * Rules for using mmu_spte_clear_no_track:
642 * Directly clear spte without caring the state bits of sptep,
643 * it is used to set the upper level spte.
644 */
645static void mmu_spte_clear_no_track(u64 *sptep)
646{
603e0651 647 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
648}
649
c2a2ac2b
XG
650static u64 mmu_spte_get_lockless(u64 *sptep)
651{
652 return __get_spte_lockless(sptep);
653}
654
655static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656{
c142786c
AK
657 /*
658 * Prevent page table teardown by making any free-er wait during
659 * kvm_flush_remote_tlbs() IPI to all active vcpus.
660 */
661 local_irq_disable();
662 vcpu->mode = READING_SHADOW_PAGE_TABLES;
663 /*
664 * Make sure a following spte read is not reordered ahead of the write
665 * to vcpu->mode.
666 */
667 smp_mb();
c2a2ac2b
XG
668}
669
670static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671{
c142786c
AK
672 /*
673 * Make sure the write to vcpu->mode is not reordered in front of
674 * reads to sptes. If it does, kvm_commit_zap_page() can see us
675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676 */
677 smp_mb();
678 vcpu->mode = OUTSIDE_GUEST_MODE;
679 local_irq_enable();
c2a2ac2b
XG
680}
681
e2dec939 682static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 683 struct kmem_cache *base_cache, int min)
714b93da
AK
684{
685 void *obj;
686
687 if (cache->nobjs >= min)
e2dec939 688 return 0;
714b93da 689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 690 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 691 if (!obj)
e2dec939 692 return -ENOMEM;
714b93da
AK
693 cache->objects[cache->nobjs++] = obj;
694 }
e2dec939 695 return 0;
714b93da
AK
696}
697
f759e2b4
XG
698static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699{
700 return cache->nobjs;
701}
702
e8ad9a70
XG
703static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704 struct kmem_cache *cache)
714b93da
AK
705{
706 while (mc->nobjs)
e8ad9a70 707 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
708}
709
c1158e63 710static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 711 int min)
c1158e63 712{
842f22ed 713 void *page;
c1158e63
AK
714
715 if (cache->nobjs >= min)
716 return 0;
717 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 718 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
719 if (!page)
720 return -ENOMEM;
842f22ed 721 cache->objects[cache->nobjs++] = page;
c1158e63
AK
722 }
723 return 0;
724}
725
726static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727{
728 while (mc->nobjs)
c4d198d5 729 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
730}
731
2e3e5882 732static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 733{
e2dec939
AK
734 int r;
735
53c07b18 736 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 737 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
738 if (r)
739 goto out;
ad312c7c 740 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
741 if (r)
742 goto out;
ad312c7c 743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 744 mmu_page_header_cache, 4);
e2dec939
AK
745out:
746 return r;
714b93da
AK
747}
748
749static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750{
53c07b18
XG
751 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752 pte_list_desc_cache);
ad312c7c 753 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
754 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache);
714b93da
AK
756}
757
80feb89a 758static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
759{
760 void *p;
761
762 BUG_ON(!mc->nobjs);
763 p = mc->objects[--mc->nobjs];
714b93da
AK
764 return p;
765}
766
53c07b18 767static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 768{
80feb89a 769 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
770}
771
53c07b18 772static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 773{
53c07b18 774 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
775}
776
2032a93d
LJ
777static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778{
779 if (!sp->role.direct)
780 return sp->gfns[index];
781
782 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783}
784
785static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786{
787 if (sp->role.direct)
788 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789 else
790 sp->gfns[index] = gfn;
791}
792
05da4558 793/*
d4dbf470
TY
794 * Return the pointer to the large page information for a given gfn,
795 * handling slots that are not large page aligned.
05da4558 796 */
d4dbf470
TY
797static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798 struct kvm_memory_slot *slot,
799 int level)
05da4558
MT
800{
801 unsigned long idx;
802
fb03cb6f 803 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 804 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
805}
806
3ed1a478 807static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 808{
699023e2 809 struct kvm_memslots *slots;
d25797b2 810 struct kvm_memory_slot *slot;
d4dbf470 811 struct kvm_lpage_info *linfo;
3ed1a478 812 gfn_t gfn;
d25797b2 813 int i;
05da4558 814
3ed1a478 815 gfn = sp->gfn;
699023e2
PB
816 slots = kvm_memslots_for_spte_role(kvm, sp->role);
817 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 818 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
819 linfo = lpage_info_slot(gfn, slot, i);
820 linfo->write_count += 1;
d25797b2 821 }
332b207d 822 kvm->arch.indirect_shadow_pages++;
05da4558
MT
823}
824
3ed1a478 825static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 826{
699023e2 827 struct kvm_memslots *slots;
d25797b2 828 struct kvm_memory_slot *slot;
d4dbf470 829 struct kvm_lpage_info *linfo;
3ed1a478 830 gfn_t gfn;
d25797b2 831 int i;
05da4558 832
3ed1a478 833 gfn = sp->gfn;
699023e2
PB
834 slots = kvm_memslots_for_spte_role(kvm, sp->role);
835 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 836 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
837 linfo = lpage_info_slot(gfn, slot, i);
838 linfo->write_count -= 1;
839 WARN_ON(linfo->write_count < 0);
d25797b2 840 }
332b207d 841 kvm->arch.indirect_shadow_pages--;
05da4558
MT
842}
843
54bf36aa 844static int has_wrprotected_page(struct kvm_vcpu *vcpu,
d25797b2
JR
845 gfn_t gfn,
846 int level)
05da4558 847{
2843099f 848 struct kvm_memory_slot *slot;
d4dbf470 849 struct kvm_lpage_info *linfo;
05da4558 850
54bf36aa 851 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
05da4558 852 if (slot) {
d4dbf470
TY
853 linfo = lpage_info_slot(gfn, slot, level);
854 return linfo->write_count;
05da4558
MT
855 }
856
857 return 1;
858}
859
d25797b2 860static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 861{
8f0b1ab6 862 unsigned long page_size;
d25797b2 863 int i, ret = 0;
05da4558 864
8f0b1ab6 865 page_size = kvm_host_page_size(kvm, gfn);
05da4558 866
8a3d08f1 867 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
868 if (page_size >= KVM_HPAGE_SIZE(i))
869 ret = i;
870 else
871 break;
872 }
873
4c2155ce 874 return ret;
05da4558
MT
875}
876
5d163b1c
XG
877static struct kvm_memory_slot *
878gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
879 bool no_dirty_log)
05da4558
MT
880{
881 struct kvm_memory_slot *slot;
5d163b1c 882
54bf36aa 883 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
5d163b1c
XG
884 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
885 (no_dirty_log && slot->dirty_bitmap))
886 slot = NULL;
887
888 return slot;
889}
890
891static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
892{
a0a8eaba 893 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
894}
895
896static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
897{
898 int host_level, level, max_level;
05da4558 899
d25797b2
JR
900 host_level = host_mapping_level(vcpu->kvm, large_gfn);
901
902 if (host_level == PT_PAGE_TABLE_LEVEL)
903 return host_level;
904
55dd98c3 905 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
906
907 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
54bf36aa 908 if (has_wrprotected_page(vcpu, large_gfn, level))
d25797b2 909 break;
d25797b2
JR
910
911 return level - 1;
05da4558
MT
912}
913
290fc38d 914/*
53c07b18 915 * Pte mapping structures:
cd4a4e53 916 *
53c07b18 917 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 918 *
53c07b18
XG
919 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
920 * pte_list_desc containing more mappings.
53a27b39 921 *
53c07b18 922 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
923 * the spte was not added.
924 *
cd4a4e53 925 */
53c07b18
XG
926static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
927 unsigned long *pte_list)
cd4a4e53 928{
53c07b18 929 struct pte_list_desc *desc;
53a27b39 930 int i, count = 0;
cd4a4e53 931
53c07b18
XG
932 if (!*pte_list) {
933 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
934 *pte_list = (unsigned long)spte;
935 } else if (!(*pte_list & 1)) {
936 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
937 desc = mmu_alloc_pte_list_desc(vcpu);
938 desc->sptes[0] = (u64 *)*pte_list;
d555c333 939 desc->sptes[1] = spte;
53c07b18 940 *pte_list = (unsigned long)desc | 1;
cb16a7b3 941 ++count;
cd4a4e53 942 } else {
53c07b18
XG
943 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
944 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
945 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 946 desc = desc->more;
53c07b18 947 count += PTE_LIST_EXT;
53a27b39 948 }
53c07b18
XG
949 if (desc->sptes[PTE_LIST_EXT-1]) {
950 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
951 desc = desc->more;
952 }
d555c333 953 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 954 ++count;
d555c333 955 desc->sptes[i] = spte;
cd4a4e53 956 }
53a27b39 957 return count;
cd4a4e53
AK
958}
959
53c07b18
XG
960static void
961pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
962 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
963{
964 int j;
965
53c07b18 966 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 967 ;
d555c333
AK
968 desc->sptes[i] = desc->sptes[j];
969 desc->sptes[j] = NULL;
cd4a4e53
AK
970 if (j != 0)
971 return;
972 if (!prev_desc && !desc->more)
53c07b18 973 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
974 else
975 if (prev_desc)
976 prev_desc->more = desc->more;
977 else
53c07b18
XG
978 *pte_list = (unsigned long)desc->more | 1;
979 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
980}
981
53c07b18 982static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 983{
53c07b18
XG
984 struct pte_list_desc *desc;
985 struct pte_list_desc *prev_desc;
cd4a4e53
AK
986 int i;
987
53c07b18
XG
988 if (!*pte_list) {
989 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 990 BUG();
53c07b18
XG
991 } else if (!(*pte_list & 1)) {
992 rmap_printk("pte_list_remove: %p 1->0\n", spte);
993 if ((u64 *)*pte_list != spte) {
994 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
995 BUG();
996 }
53c07b18 997 *pte_list = 0;
cd4a4e53 998 } else {
53c07b18
XG
999 rmap_printk("pte_list_remove: %p many->many\n", spte);
1000 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
1001 prev_desc = NULL;
1002 while (desc) {
53c07b18 1003 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1004 if (desc->sptes[i] == spte) {
53c07b18 1005 pte_list_desc_remove_entry(pte_list,
714b93da 1006 desc, i,
cd4a4e53
AK
1007 prev_desc);
1008 return;
1009 }
1010 prev_desc = desc;
1011 desc = desc->more;
1012 }
53c07b18 1013 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1014 BUG();
1015 }
1016}
1017
67052b35
XG
1018typedef void (*pte_list_walk_fn) (u64 *spte);
1019static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1020{
1021 struct pte_list_desc *desc;
1022 int i;
1023
1024 if (!*pte_list)
1025 return;
1026
1027 if (!(*pte_list & 1))
1028 return fn((u64 *)*pte_list);
1029
1030 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1031 while (desc) {
1032 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1033 fn(desc->sptes[i]);
1034 desc = desc->more;
1035 }
1036}
1037
9373e2c0 1038static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1039 struct kvm_memory_slot *slot)
53c07b18 1040{
77d11309 1041 unsigned long idx;
53c07b18 1042
77d11309 1043 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1044 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1045}
1046
9b9b1492
TY
1047/*
1048 * Take gfn and return the reverse mapping to it.
1049 */
e4cd1da9 1050static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
9b9b1492 1051{
699023e2 1052 struct kvm_memslots *slots;
9b9b1492
TY
1053 struct kvm_memory_slot *slot;
1054
699023e2
PB
1055 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1056 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1057 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1058}
1059
f759e2b4
XG
1060static bool rmap_can_add(struct kvm_vcpu *vcpu)
1061{
1062 struct kvm_mmu_memory_cache *cache;
1063
1064 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1065 return mmu_memory_cache_free_objects(cache);
1066}
1067
53c07b18
XG
1068static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1069{
1070 struct kvm_mmu_page *sp;
1071 unsigned long *rmapp;
1072
53c07b18
XG
1073 sp = page_header(__pa(spte));
1074 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
e4cd1da9 1075 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
53c07b18
XG
1076 return pte_list_add(vcpu, spte, rmapp);
1077}
1078
53c07b18
XG
1079static void rmap_remove(struct kvm *kvm, u64 *spte)
1080{
1081 struct kvm_mmu_page *sp;
1082 gfn_t gfn;
1083 unsigned long *rmapp;
1084
1085 sp = page_header(__pa(spte));
1086 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
e4cd1da9 1087 rmapp = gfn_to_rmap(kvm, gfn, sp);
53c07b18
XG
1088 pte_list_remove(spte, rmapp);
1089}
1090
1e3f42f0
TY
1091/*
1092 * Used by the following functions to iterate through the sptes linked by a
1093 * rmap. All fields are private and not assumed to be used outside.
1094 */
1095struct rmap_iterator {
1096 /* private fields */
1097 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1098 int pos; /* index of the sptep */
1099};
1100
1101/*
1102 * Iteration must be started by this function. This should also be used after
1103 * removing/dropping sptes from the rmap link because in such cases the
1104 * information in the itererator may not be valid.
1105 *
1106 * Returns sptep if found, NULL otherwise.
1107 */
1108static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1109{
1110 if (!rmap)
1111 return NULL;
1112
1113 if (!(rmap & 1)) {
1114 iter->desc = NULL;
1115 return (u64 *)rmap;
1116 }
1117
1118 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1119 iter->pos = 0;
1120 return iter->desc->sptes[iter->pos];
1121}
1122
1123/*
1124 * Must be used with a valid iterator: e.g. after rmap_get_first().
1125 *
1126 * Returns sptep if found, NULL otherwise.
1127 */
1128static u64 *rmap_get_next(struct rmap_iterator *iter)
1129{
1130 if (iter->desc) {
1131 if (iter->pos < PTE_LIST_EXT - 1) {
1132 u64 *sptep;
1133
1134 ++iter->pos;
1135 sptep = iter->desc->sptes[iter->pos];
1136 if (sptep)
1137 return sptep;
1138 }
1139
1140 iter->desc = iter->desc->more;
1141
1142 if (iter->desc) {
1143 iter->pos = 0;
1144 /* desc->sptes[0] cannot be NULL */
1145 return iter->desc->sptes[iter->pos];
1146 }
1147 }
1148
1149 return NULL;
1150}
1151
0d536790
XG
1152#define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1153 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1154 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1155 _spte_ = rmap_get_next(_iter_))
1156
c3707958 1157static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1158{
1df9f2dc 1159 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1160 rmap_remove(kvm, sptep);
be38d276
AK
1161}
1162
8e22f955
XG
1163
1164static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1165{
1166 if (is_large_pte(*sptep)) {
1167 WARN_ON(page_header(__pa(sptep))->role.level ==
1168 PT_PAGE_TABLE_LEVEL);
1169 drop_spte(kvm, sptep);
1170 --kvm->stat.lpages;
1171 return true;
1172 }
1173
1174 return false;
1175}
1176
1177static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1178{
1179 if (__drop_large_spte(vcpu->kvm, sptep))
1180 kvm_flush_remote_tlbs(vcpu->kvm);
1181}
1182
1183/*
49fde340 1184 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1185 * spte write-protection is caused by protecting shadow page table.
49fde340 1186 *
b4619660 1187 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1188 * protection:
1189 * - for dirty logging, the spte can be set to writable at anytime if
1190 * its dirty bitmap is properly set.
1191 * - for spte protection, the spte can be writable only after unsync-ing
1192 * shadow page.
8e22f955 1193 *
c126d94f 1194 * Return true if tlb need be flushed.
8e22f955 1195 */
c126d94f 1196static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1197{
1198 u64 spte = *sptep;
1199
49fde340
XG
1200 if (!is_writable_pte(spte) &&
1201 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1202 return false;
1203
1204 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1205
49fde340
XG
1206 if (pt_protect)
1207 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1208 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1209
c126d94f 1210 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1211}
1212
49fde340 1213static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1214 bool pt_protect)
98348e95 1215{
1e3f42f0
TY
1216 u64 *sptep;
1217 struct rmap_iterator iter;
d13bc5b5 1218 bool flush = false;
374cbac0 1219
0d536790 1220 for_each_rmap_spte(rmapp, &iter, sptep)
c126d94f 1221 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1222
d13bc5b5 1223 return flush;
a0ed4607
TY
1224}
1225
f4b4b180
KH
1226static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1227{
1228 u64 spte = *sptep;
1229
1230 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1231
1232 spte &= ~shadow_dirty_mask;
1233
1234 return mmu_spte_update(sptep, spte);
1235}
1236
1237static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1238{
1239 u64 *sptep;
1240 struct rmap_iterator iter;
1241 bool flush = false;
1242
0d536790 1243 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1244 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1245
1246 return flush;
1247}
1248
1249static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1250{
1251 u64 spte = *sptep;
1252
1253 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1254
1255 spte |= shadow_dirty_mask;
1256
1257 return mmu_spte_update(sptep, spte);
1258}
1259
1260static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1261{
1262 u64 *sptep;
1263 struct rmap_iterator iter;
1264 bool flush = false;
1265
0d536790 1266 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1267 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1268
1269 return flush;
1270}
1271
5dc99b23 1272/**
3b0f1d01 1273 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1274 * @kvm: kvm instance
1275 * @slot: slot to protect
1276 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1277 * @mask: indicates which pages we should protect
1278 *
1279 * Used when we do not need to care about huge page mappings: e.g. during dirty
1280 * logging we do not have any such mappings.
1281 */
3b0f1d01 1282static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1283 struct kvm_memory_slot *slot,
1284 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1285{
1286 unsigned long *rmapp;
a0ed4607 1287
5dc99b23 1288 while (mask) {
65fbe37c
TY
1289 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1290 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1291 __rmap_write_protect(kvm, rmapp, false);
05da4558 1292
5dc99b23
TY
1293 /* clear the first set bit */
1294 mask &= mask - 1;
1295 }
374cbac0
AK
1296}
1297
f4b4b180
KH
1298/**
1299 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1300 * @kvm: kvm instance
1301 * @slot: slot to clear D-bit
1302 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1303 * @mask: indicates which pages we should clear D-bit
1304 *
1305 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1306 */
1307void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1308 struct kvm_memory_slot *slot,
1309 gfn_t gfn_offset, unsigned long mask)
1310{
1311 unsigned long *rmapp;
1312
1313 while (mask) {
1314 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315 PT_PAGE_TABLE_LEVEL, slot);
1316 __rmap_clear_dirty(kvm, rmapp);
1317
1318 /* clear the first set bit */
1319 mask &= mask - 1;
1320 }
1321}
1322EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1323
3b0f1d01
KH
1324/**
1325 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1326 * PT level pages.
1327 *
1328 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1329 * enable dirty logging for them.
1330 *
1331 * Used when we do not need to care about huge page mappings: e.g. during dirty
1332 * logging we do not have any such mappings.
1333 */
1334void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1335 struct kvm_memory_slot *slot,
1336 gfn_t gfn_offset, unsigned long mask)
1337{
88178fd4
KH
1338 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1339 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1340 mask);
1341 else
1342 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1343}
1344
54bf36aa 1345static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
95d4c16c
TY
1346{
1347 struct kvm_memory_slot *slot;
5dc99b23
TY
1348 unsigned long *rmapp;
1349 int i;
2f84569f 1350 bool write_protected = false;
95d4c16c 1351
54bf36aa 1352 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
5dc99b23 1353
8a3d08f1 1354 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
5dc99b23 1355 rmapp = __gfn_to_rmap(gfn, i, slot);
54bf36aa 1356 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
5dc99b23
TY
1357 }
1358
1359 return write_protected;
95d4c16c
TY
1360}
1361
6a49f85c 1362static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
e930bffe 1363{
1e3f42f0
TY
1364 u64 *sptep;
1365 struct rmap_iterator iter;
6a49f85c 1366 bool flush = false;
e930bffe 1367
1e3f42f0
TY
1368 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1369 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6a49f85c 1370 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1371
1372 drop_spte(kvm, sptep);
6a49f85c 1373 flush = true;
e930bffe 1374 }
1e3f42f0 1375
6a49f85c
XG
1376 return flush;
1377}
1378
1379static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1380 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1381 unsigned long data)
1382{
1383 return kvm_zap_rmapp(kvm, rmapp);
e930bffe
AA
1384}
1385
8a8365c5 1386static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1387 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1388 unsigned long data)
3da0dd43 1389{
1e3f42f0
TY
1390 u64 *sptep;
1391 struct rmap_iterator iter;
3da0dd43 1392 int need_flush = 0;
1e3f42f0 1393 u64 new_spte;
3da0dd43
IE
1394 pte_t *ptep = (pte_t *)data;
1395 pfn_t new_pfn;
1396
1397 WARN_ON(pte_huge(*ptep));
1398 new_pfn = pte_pfn(*ptep);
1e3f42f0 1399
0d536790
XG
1400restart:
1401 for_each_rmap_spte(rmapp, &iter, sptep) {
8a9522d2
ALC
1402 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1403 sptep, *sptep, gfn, level);
1e3f42f0 1404
3da0dd43 1405 need_flush = 1;
1e3f42f0 1406
3da0dd43 1407 if (pte_write(*ptep)) {
1e3f42f0 1408 drop_spte(kvm, sptep);
0d536790 1409 goto restart;
3da0dd43 1410 } else {
1e3f42f0 1411 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1412 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1413
1414 new_spte &= ~PT_WRITABLE_MASK;
1415 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1416 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1417
1418 mmu_spte_clear_track_bits(sptep);
1419 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1420 }
1421 }
1e3f42f0 1422
3da0dd43
IE
1423 if (need_flush)
1424 kvm_flush_remote_tlbs(kvm);
1425
1426 return 0;
1427}
1428
6ce1f4e2
XG
1429struct slot_rmap_walk_iterator {
1430 /* input fields. */
1431 struct kvm_memory_slot *slot;
1432 gfn_t start_gfn;
1433 gfn_t end_gfn;
1434 int start_level;
1435 int end_level;
1436
1437 /* output fields. */
1438 gfn_t gfn;
1439 unsigned long *rmap;
1440 int level;
1441
1442 /* private field. */
1443 unsigned long *end_rmap;
1444};
1445
1446static void
1447rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1448{
1449 iterator->level = level;
1450 iterator->gfn = iterator->start_gfn;
1451 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1452 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1453 iterator->slot);
1454}
1455
1456static void
1457slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1458 struct kvm_memory_slot *slot, int start_level,
1459 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1460{
1461 iterator->slot = slot;
1462 iterator->start_level = start_level;
1463 iterator->end_level = end_level;
1464 iterator->start_gfn = start_gfn;
1465 iterator->end_gfn = end_gfn;
1466
1467 rmap_walk_init_level(iterator, iterator->start_level);
1468}
1469
1470static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1471{
1472 return !!iterator->rmap;
1473}
1474
1475static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1476{
1477 if (++iterator->rmap <= iterator->end_rmap) {
1478 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1479 return;
1480 }
1481
1482 if (++iterator->level > iterator->end_level) {
1483 iterator->rmap = NULL;
1484 return;
1485 }
1486
1487 rmap_walk_init_level(iterator, iterator->level);
1488}
1489
1490#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1491 _start_gfn, _end_gfn, _iter_) \
1492 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1493 _end_level_, _start_gfn, _end_gfn); \
1494 slot_rmap_walk_okay(_iter_); \
1495 slot_rmap_walk_next(_iter_))
1496
84504ef3
TY
1497static int kvm_handle_hva_range(struct kvm *kvm,
1498 unsigned long start,
1499 unsigned long end,
1500 unsigned long data,
1501 int (*handler)(struct kvm *kvm,
1502 unsigned long *rmapp,
048212d0 1503 struct kvm_memory_slot *slot,
8a9522d2
ALC
1504 gfn_t gfn,
1505 int level,
84504ef3 1506 unsigned long data))
e930bffe 1507{
bc6678a3 1508 struct kvm_memslots *slots;
be6ba0f0 1509 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1510 struct slot_rmap_walk_iterator iterator;
1511 int ret = 0;
9da0e4d5 1512 int i;
bc6678a3 1513
9da0e4d5
PB
1514 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1515 slots = __kvm_memslots(kvm, i);
1516 kvm_for_each_memslot(memslot, slots) {
1517 unsigned long hva_start, hva_end;
1518 gfn_t gfn_start, gfn_end;
e930bffe 1519
9da0e4d5
PB
1520 hva_start = max(start, memslot->userspace_addr);
1521 hva_end = min(end, memslot->userspace_addr +
1522 (memslot->npages << PAGE_SHIFT));
1523 if (hva_start >= hva_end)
1524 continue;
1525 /*
1526 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1527 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1528 */
1529 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1530 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1531
1532 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1533 PT_MAX_HUGEPAGE_LEVEL,
1534 gfn_start, gfn_end - 1,
1535 &iterator)
1536 ret |= handler(kvm, iterator.rmap, memslot,
1537 iterator.gfn, iterator.level, data);
1538 }
e930bffe
AA
1539 }
1540
f395302e 1541 return ret;
e930bffe
AA
1542}
1543
84504ef3
TY
1544static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1545 unsigned long data,
1546 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1547 struct kvm_memory_slot *slot,
8a9522d2 1548 gfn_t gfn, int level,
84504ef3
TY
1549 unsigned long data))
1550{
1551 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1552}
1553
1554int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1555{
3da0dd43
IE
1556 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1557}
1558
b3ae2096
TY
1559int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1560{
1561 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1562}
1563
3da0dd43
IE
1564void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1565{
8a8365c5 1566 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1567}
1568
8a8365c5 1569static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1570 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1571 unsigned long data)
e930bffe 1572{
1e3f42f0 1573 u64 *sptep;
79f702a6 1574 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1575 int young = 0;
1576
57128468 1577 BUG_ON(!shadow_accessed_mask);
534e38b4 1578
0d536790 1579 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1580 if (*sptep & shadow_accessed_mask) {
e930bffe 1581 young = 1;
3f6d8c8a
XH
1582 clear_bit((ffs(shadow_accessed_mask) - 1),
1583 (unsigned long *)sptep);
e930bffe 1584 }
0d536790 1585
8a9522d2 1586 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1587 return young;
1588}
1589
8ee53820 1590static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1591 struct kvm_memory_slot *slot, gfn_t gfn,
1592 int level, unsigned long data)
8ee53820 1593{
1e3f42f0
TY
1594 u64 *sptep;
1595 struct rmap_iterator iter;
8ee53820
AA
1596 int young = 0;
1597
1598 /*
1599 * If there's no access bit in the secondary pte set by the
1600 * hardware it's up to gup-fast/gup to set the access bit in
1601 * the primary pte or in the page structure.
1602 */
1603 if (!shadow_accessed_mask)
1604 goto out;
1605
0d536790 1606 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1607 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1608 young = 1;
1609 break;
1610 }
8ee53820
AA
1611out:
1612 return young;
1613}
1614
53a27b39
MT
1615#define RMAP_RECYCLE_THRESHOLD 1000
1616
852e3c19 1617static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1618{
1619 unsigned long *rmapp;
852e3c19
JR
1620 struct kvm_mmu_page *sp;
1621
1622 sp = page_header(__pa(spte));
53a27b39 1623
e4cd1da9 1624 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1625
8a9522d2 1626 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1627 kvm_flush_remote_tlbs(vcpu->kvm);
1628}
1629
57128468 1630int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1631{
57128468
ALC
1632 /*
1633 * In case of absence of EPT Access and Dirty Bits supports,
1634 * emulate the accessed bit for EPT, by checking if this page has
1635 * an EPT mapping, and clearing it if it does. On the next access,
1636 * a new EPT mapping will be established.
1637 * This has some overhead, but not as much as the cost of swapping
1638 * out actively used pages or breaking up actively used hugepages.
1639 */
1640 if (!shadow_accessed_mask) {
1641 /*
1642 * We are holding the kvm->mmu_lock, and we are blowing up
1643 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1644 * This is correct as long as we don't decouple the mmu_lock
1645 * protected regions (like invalidate_range_start|end does).
1646 */
1647 kvm->mmu_notifier_seq++;
1648 return kvm_handle_hva_range(kvm, start, end, 0,
1649 kvm_unmap_rmapp);
1650 }
1651
1652 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1653}
1654
8ee53820
AA
1655int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1656{
1657 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1658}
1659
d6c69ee9 1660#ifdef MMU_DEBUG
47ad8e68 1661static int is_empty_shadow_page(u64 *spt)
6aa8b732 1662{
139bdb2d
AK
1663 u64 *pos;
1664 u64 *end;
1665
47ad8e68 1666 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1667 if (is_shadow_present_pte(*pos)) {
b8688d51 1668 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1669 pos, *pos);
6aa8b732 1670 return 0;
139bdb2d 1671 }
6aa8b732
AK
1672 return 1;
1673}
d6c69ee9 1674#endif
6aa8b732 1675
45221ab6
DH
1676/*
1677 * This value is the sum of all of the kvm instances's
1678 * kvm->arch.n_used_mmu_pages values. We need a global,
1679 * aggregate version in order to make the slab shrinker
1680 * faster
1681 */
1682static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1683{
1684 kvm->arch.n_used_mmu_pages += nr;
1685 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1686}
1687
834be0d8 1688static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1689{
fa4a2c08 1690 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1691 hlist_del(&sp->hash_link);
bd4c86ea
XG
1692 list_del(&sp->link);
1693 free_page((unsigned long)sp->spt);
834be0d8
GN
1694 if (!sp->role.direct)
1695 free_page((unsigned long)sp->gfns);
e8ad9a70 1696 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1697}
1698
cea0f0e7
AK
1699static unsigned kvm_page_table_hashfn(gfn_t gfn)
1700{
1ae0a13d 1701 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1702}
1703
714b93da 1704static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1705 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1706{
cea0f0e7
AK
1707 if (!parent_pte)
1708 return;
cea0f0e7 1709
67052b35 1710 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1711}
1712
4db35314 1713static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1714 u64 *parent_pte)
1715{
67052b35 1716 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1717}
1718
bcdd9a93
XG
1719static void drop_parent_pte(struct kvm_mmu_page *sp,
1720 u64 *parent_pte)
1721{
1722 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1723 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1724}
1725
67052b35
XG
1726static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1727 u64 *parent_pte, int direct)
ad8cfbe3 1728{
67052b35 1729 struct kvm_mmu_page *sp;
7ddca7e4 1730
80feb89a
TY
1731 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1732 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1733 if (!direct)
80feb89a 1734 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1735 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1736
1737 /*
1738 * The active_mmu_pages list is the FIFO list, do not move the
1739 * page until it is zapped. kvm_zap_obsolete_pages depends on
1740 * this feature. See the comments in kvm_zap_obsolete_pages().
1741 */
67052b35 1742 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1743 sp->parent_ptes = 0;
1744 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1745 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1746 return sp;
ad8cfbe3
MT
1747}
1748
67052b35 1749static void mark_unsync(u64 *spte);
1047df1f 1750static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1751{
67052b35 1752 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1753}
1754
67052b35 1755static void mark_unsync(u64 *spte)
0074ff63 1756{
67052b35 1757 struct kvm_mmu_page *sp;
1047df1f 1758 unsigned int index;
0074ff63 1759
67052b35 1760 sp = page_header(__pa(spte));
1047df1f
XG
1761 index = spte - sp->spt;
1762 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1763 return;
1047df1f 1764 if (sp->unsync_children++)
0074ff63 1765 return;
1047df1f 1766 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1767}
1768
e8bc217a 1769static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1770 struct kvm_mmu_page *sp)
e8bc217a
MT
1771{
1772 return 1;
1773}
1774
a7052897
MT
1775static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1776{
1777}
1778
0f53b5b1
XG
1779static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1780 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1781 const void *pte)
0f53b5b1
XG
1782{
1783 WARN_ON(1);
1784}
1785
60c8aec6
MT
1786#define KVM_PAGE_ARRAY_NR 16
1787
1788struct kvm_mmu_pages {
1789 struct mmu_page_and_offset {
1790 struct kvm_mmu_page *sp;
1791 unsigned int idx;
1792 } page[KVM_PAGE_ARRAY_NR];
1793 unsigned int nr;
1794};
1795
cded19f3
HE
1796static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1797 int idx)
4731d4c7 1798{
60c8aec6 1799 int i;
4731d4c7 1800
60c8aec6
MT
1801 if (sp->unsync)
1802 for (i=0; i < pvec->nr; i++)
1803 if (pvec->page[i].sp == sp)
1804 return 0;
1805
1806 pvec->page[pvec->nr].sp = sp;
1807 pvec->page[pvec->nr].idx = idx;
1808 pvec->nr++;
1809 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1810}
1811
1812static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1813 struct kvm_mmu_pages *pvec)
1814{
1815 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1816
37178b8b 1817 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1818 struct kvm_mmu_page *child;
4731d4c7
MT
1819 u64 ent = sp->spt[i];
1820
7a8f1a74
XG
1821 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1822 goto clear_child_bitmap;
1823
1824 child = page_header(ent & PT64_BASE_ADDR_MASK);
1825
1826 if (child->unsync_children) {
1827 if (mmu_pages_add(pvec, child, i))
1828 return -ENOSPC;
1829
1830 ret = __mmu_unsync_walk(child, pvec);
1831 if (!ret)
1832 goto clear_child_bitmap;
1833 else if (ret > 0)
1834 nr_unsync_leaf += ret;
1835 else
1836 return ret;
1837 } else if (child->unsync) {
1838 nr_unsync_leaf++;
1839 if (mmu_pages_add(pvec, child, i))
1840 return -ENOSPC;
1841 } else
1842 goto clear_child_bitmap;
1843
1844 continue;
1845
1846clear_child_bitmap:
1847 __clear_bit(i, sp->unsync_child_bitmap);
1848 sp->unsync_children--;
1849 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1850 }
1851
4731d4c7 1852
60c8aec6
MT
1853 return nr_unsync_leaf;
1854}
1855
1856static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1857 struct kvm_mmu_pages *pvec)
1858{
1859 if (!sp->unsync_children)
1860 return 0;
1861
1862 mmu_pages_add(pvec, sp, 0);
1863 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1864}
1865
4731d4c7
MT
1866static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1867{
1868 WARN_ON(!sp->unsync);
5e1b3ddb 1869 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1870 sp->unsync = 0;
1871 --kvm->stat.mmu_unsync;
1872}
1873
7775834a
XG
1874static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1875 struct list_head *invalid_list);
1876static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1877 struct list_head *invalid_list);
4731d4c7 1878
f34d251d
XG
1879/*
1880 * NOTE: we should pay more attention on the zapped-obsolete page
1881 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1882 * since it has been deleted from active_mmu_pages but still can be found
1883 * at hast list.
1884 *
1885 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1886 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1887 * all the obsolete pages.
1888 */
1044b030
TY
1889#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1890 hlist_for_each_entry(_sp, \
1891 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1892 if ((_sp)->gfn != (_gfn)) {} else
1893
1894#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1895 for_each_gfn_sp(_kvm, _sp, _gfn) \
1896 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1897
f918b443 1898/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1899static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1900 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1901{
5b7e0102 1902 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1903 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1904 return 1;
1905 }
1906
f918b443 1907 if (clear_unsync)
1d9dc7e0 1908 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1909
a4a8e6f7 1910 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1911 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1912 return 1;
1913 }
1914
77c3913b 1915 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1916 return 0;
1917}
1918
1d9dc7e0
XG
1919static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1920 struct kvm_mmu_page *sp)
1921{
d98ba053 1922 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1923 int ret;
1924
d98ba053 1925 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1926 if (ret)
d98ba053
XG
1927 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1928
1d9dc7e0
XG
1929 return ret;
1930}
1931
e37fa785
XG
1932#ifdef CONFIG_KVM_MMU_AUDIT
1933#include "mmu_audit.c"
1934#else
1935static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1936static void mmu_audit_disable(void) { }
1937#endif
1938
d98ba053
XG
1939static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1940 struct list_head *invalid_list)
1d9dc7e0 1941{
d98ba053 1942 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1943}
1944
9f1a122f
XG
1945/* @gfn should be write-protected at the call site */
1946static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1947{
9f1a122f 1948 struct kvm_mmu_page *s;
d98ba053 1949 LIST_HEAD(invalid_list);
9f1a122f
XG
1950 bool flush = false;
1951
b67bfe0d 1952 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1953 if (!s->unsync)
9f1a122f
XG
1954 continue;
1955
1956 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1957 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1958 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1959 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1960 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1961 continue;
1962 }
9f1a122f
XG
1963 flush = true;
1964 }
1965
d98ba053 1966 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1967 if (flush)
77c3913b 1968 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1969}
1970
60c8aec6
MT
1971struct mmu_page_path {
1972 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1973 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1974};
1975
60c8aec6
MT
1976#define for_each_sp(pvec, sp, parents, i) \
1977 for (i = mmu_pages_next(&pvec, &parents, -1), \
1978 sp = pvec.page[i].sp; \
1979 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1980 i = mmu_pages_next(&pvec, &parents, i))
1981
cded19f3
HE
1982static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1983 struct mmu_page_path *parents,
1984 int i)
60c8aec6
MT
1985{
1986 int n;
1987
1988 for (n = i+1; n < pvec->nr; n++) {
1989 struct kvm_mmu_page *sp = pvec->page[n].sp;
1990
1991 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1992 parents->idx[0] = pvec->page[n].idx;
1993 return n;
1994 }
1995
1996 parents->parent[sp->role.level-2] = sp;
1997 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1998 }
1999
2000 return n;
2001}
2002
cded19f3 2003static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2004{
60c8aec6
MT
2005 struct kvm_mmu_page *sp;
2006 unsigned int level = 0;
2007
2008 do {
2009 unsigned int idx = parents->idx[level];
4731d4c7 2010
60c8aec6
MT
2011 sp = parents->parent[level];
2012 if (!sp)
2013 return;
2014
2015 --sp->unsync_children;
2016 WARN_ON((int)sp->unsync_children < 0);
2017 __clear_bit(idx, sp->unsync_child_bitmap);
2018 level++;
2019 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2020}
2021
60c8aec6
MT
2022static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2023 struct mmu_page_path *parents,
2024 struct kvm_mmu_pages *pvec)
4731d4c7 2025{
60c8aec6
MT
2026 parents->parent[parent->role.level-1] = NULL;
2027 pvec->nr = 0;
2028}
4731d4c7 2029
60c8aec6
MT
2030static void mmu_sync_children(struct kvm_vcpu *vcpu,
2031 struct kvm_mmu_page *parent)
2032{
2033 int i;
2034 struct kvm_mmu_page *sp;
2035 struct mmu_page_path parents;
2036 struct kvm_mmu_pages pages;
d98ba053 2037 LIST_HEAD(invalid_list);
60c8aec6
MT
2038
2039 kvm_mmu_pages_init(parent, &parents, &pages);
2040 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2041 bool protected = false;
b1a36821
MT
2042
2043 for_each_sp(pages, sp, parents, i)
54bf36aa 2044 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2045
2046 if (protected)
2047 kvm_flush_remote_tlbs(vcpu->kvm);
2048
60c8aec6 2049 for_each_sp(pages, sp, parents, i) {
d98ba053 2050 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2051 mmu_pages_clear_parents(&parents);
2052 }
d98ba053 2053 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2054 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2055 kvm_mmu_pages_init(parent, &parents, &pages);
2056 }
4731d4c7
MT
2057}
2058
c3707958
XG
2059static void init_shadow_page_table(struct kvm_mmu_page *sp)
2060{
2061 int i;
2062
2063 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2064 sp->spt[i] = 0ull;
2065}
2066
a30f47cb
XG
2067static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2068{
2069 sp->write_flooding_count = 0;
2070}
2071
2072static void clear_sp_write_flooding_count(u64 *spte)
2073{
2074 struct kvm_mmu_page *sp = page_header(__pa(spte));
2075
2076 __clear_sp_write_flooding_count(sp);
2077}
2078
5304b8d3
XG
2079static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2080{
2081 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2082}
2083
cea0f0e7
AK
2084static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2085 gfn_t gfn,
2086 gva_t gaddr,
2087 unsigned level,
f6e2c02b 2088 int direct,
41074d07 2089 unsigned access,
f7d9c7b7 2090 u64 *parent_pte)
cea0f0e7
AK
2091{
2092 union kvm_mmu_page_role role;
cea0f0e7 2093 unsigned quadrant;
9f1a122f 2094 struct kvm_mmu_page *sp;
9f1a122f 2095 bool need_sync = false;
cea0f0e7 2096
a770f6f2 2097 role = vcpu->arch.mmu.base_role;
cea0f0e7 2098 role.level = level;
f6e2c02b 2099 role.direct = direct;
84b0c8c6 2100 if (role.direct)
5b7e0102 2101 role.cr4_pae = 0;
41074d07 2102 role.access = access;
c5a78f2b
JR
2103 if (!vcpu->arch.mmu.direct_map
2104 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2105 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2106 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2107 role.quadrant = quadrant;
2108 }
b67bfe0d 2109 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2110 if (is_obsolete_sp(vcpu->kvm, sp))
2111 continue;
2112
7ae680eb
XG
2113 if (!need_sync && sp->unsync)
2114 need_sync = true;
4731d4c7 2115
7ae680eb
XG
2116 if (sp->role.word != role.word)
2117 continue;
4731d4c7 2118
7ae680eb
XG
2119 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2120 break;
e02aa901 2121
7ae680eb
XG
2122 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2123 if (sp->unsync_children) {
a8eeb04a 2124 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
2125 kvm_mmu_mark_parents_unsync(sp);
2126 } else if (sp->unsync)
2127 kvm_mmu_mark_parents_unsync(sp);
e02aa901 2128
a30f47cb 2129 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2130 trace_kvm_mmu_get_page(sp, false);
2131 return sp;
2132 }
dfc5aa00 2133 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 2134 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
2135 if (!sp)
2136 return sp;
4db35314
AK
2137 sp->gfn = gfn;
2138 sp->role = role;
7ae680eb
XG
2139 hlist_add_head(&sp->hash_link,
2140 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2141 if (!direct) {
54bf36aa 2142 if (rmap_write_protect(vcpu, gfn))
b1a36821 2143 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2144 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2145 kvm_sync_pages(vcpu, gfn);
2146
3ed1a478 2147 account_shadowed(vcpu->kvm, sp);
4731d4c7 2148 }
5304b8d3 2149 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2150 init_shadow_page_table(sp);
f691fe1d 2151 trace_kvm_mmu_get_page(sp, true);
4db35314 2152 return sp;
cea0f0e7
AK
2153}
2154
2d11123a
AK
2155static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156 struct kvm_vcpu *vcpu, u64 addr)
2157{
2158 iterator->addr = addr;
2159 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2160 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2161
2162 if (iterator->level == PT64_ROOT_LEVEL &&
2163 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2164 !vcpu->arch.mmu.direct_map)
2165 --iterator->level;
2166
2d11123a
AK
2167 if (iterator->level == PT32E_ROOT_LEVEL) {
2168 iterator->shadow_addr
2169 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2170 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2171 --iterator->level;
2172 if (!iterator->shadow_addr)
2173 iterator->level = 0;
2174 }
2175}
2176
2177static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2178{
2179 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2180 return false;
4d88954d 2181
2d11123a
AK
2182 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2183 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2184 return true;
2185}
2186
c2a2ac2b
XG
2187static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2188 u64 spte)
2d11123a 2189{
c2a2ac2b 2190 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2191 iterator->level = 0;
2192 return;
2193 }
2194
c2a2ac2b 2195 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2196 --iterator->level;
2197}
2198
c2a2ac2b
XG
2199static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2200{
2201 return __shadow_walk_next(iterator, *iterator->sptep);
2202}
2203
7a1638ce 2204static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2205{
2206 u64 spte;
2207
7a1638ce
YZ
2208 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2209 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2210
24db2734 2211 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2212 shadow_user_mask | shadow_x_mask;
2213
2214 if (accessed)
2215 spte |= shadow_accessed_mask;
24db2734 2216
1df9f2dc 2217 mmu_spte_set(sptep, spte);
32ef26a3
AK
2218}
2219
a357bd22
AK
2220static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2221 unsigned direct_access)
2222{
2223 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2224 struct kvm_mmu_page *child;
2225
2226 /*
2227 * For the direct sp, if the guest pte's dirty bit
2228 * changed form clean to dirty, it will corrupt the
2229 * sp's access: allow writable in the read-only sp,
2230 * so we should update the spte at this point to get
2231 * a new sp with the correct access.
2232 */
2233 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2234 if (child->role.access == direct_access)
2235 return;
2236
bcdd9a93 2237 drop_parent_pte(child, sptep);
a357bd22
AK
2238 kvm_flush_remote_tlbs(vcpu->kvm);
2239 }
2240}
2241
505aef8f 2242static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2243 u64 *spte)
2244{
2245 u64 pte;
2246 struct kvm_mmu_page *child;
2247
2248 pte = *spte;
2249 if (is_shadow_present_pte(pte)) {
505aef8f 2250 if (is_last_spte(pte, sp->role.level)) {
c3707958 2251 drop_spte(kvm, spte);
505aef8f
XG
2252 if (is_large_pte(pte))
2253 --kvm->stat.lpages;
2254 } else {
38e3b2b2 2255 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2256 drop_parent_pte(child, spte);
38e3b2b2 2257 }
505aef8f
XG
2258 return true;
2259 }
2260
2261 if (is_mmio_spte(pte))
ce88decf 2262 mmu_spte_clear_no_track(spte);
c3707958 2263
505aef8f 2264 return false;
38e3b2b2
XG
2265}
2266
90cb0529 2267static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2268 struct kvm_mmu_page *sp)
a436036b 2269{
697fe2e2 2270 unsigned i;
697fe2e2 2271
38e3b2b2
XG
2272 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2273 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2274}
2275
4db35314 2276static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2277{
4db35314 2278 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2279}
2280
31aa2b44 2281static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2282{
1e3f42f0
TY
2283 u64 *sptep;
2284 struct rmap_iterator iter;
a436036b 2285
1e3f42f0
TY
2286 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2287 drop_parent_pte(sp, sptep);
31aa2b44
AK
2288}
2289
60c8aec6 2290static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2291 struct kvm_mmu_page *parent,
2292 struct list_head *invalid_list)
4731d4c7 2293{
60c8aec6
MT
2294 int i, zapped = 0;
2295 struct mmu_page_path parents;
2296 struct kvm_mmu_pages pages;
4731d4c7 2297
60c8aec6 2298 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2299 return 0;
60c8aec6
MT
2300
2301 kvm_mmu_pages_init(parent, &parents, &pages);
2302 while (mmu_unsync_walk(parent, &pages)) {
2303 struct kvm_mmu_page *sp;
2304
2305 for_each_sp(pages, sp, parents, i) {
7775834a 2306 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2307 mmu_pages_clear_parents(&parents);
77662e00 2308 zapped++;
60c8aec6 2309 }
60c8aec6
MT
2310 kvm_mmu_pages_init(parent, &parents, &pages);
2311 }
2312
2313 return zapped;
4731d4c7
MT
2314}
2315
7775834a
XG
2316static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2317 struct list_head *invalid_list)
31aa2b44 2318{
4731d4c7 2319 int ret;
f691fe1d 2320
7775834a 2321 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2322 ++kvm->stat.mmu_shadow_zapped;
7775834a 2323 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2324 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2325 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2326
f6e2c02b 2327 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2328 unaccount_shadowed(kvm, sp);
5304b8d3 2329
4731d4c7
MT
2330 if (sp->unsync)
2331 kvm_unlink_unsync_page(kvm, sp);
4db35314 2332 if (!sp->root_count) {
54a4f023
GJ
2333 /* Count self */
2334 ret++;
7775834a 2335 list_move(&sp->link, invalid_list);
aa6bd187 2336 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2337 } else {
5b5c6a5a 2338 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2339
2340 /*
2341 * The obsolete pages can not be used on any vcpus.
2342 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2343 */
2344 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2345 kvm_reload_remote_mmus(kvm);
2e53d63a 2346 }
7775834a
XG
2347
2348 sp->role.invalid = 1;
4731d4c7 2349 return ret;
a436036b
AK
2350}
2351
7775834a
XG
2352static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2353 struct list_head *invalid_list)
2354{
945315b9 2355 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2356
2357 if (list_empty(invalid_list))
2358 return;
2359
c142786c
AK
2360 /*
2361 * wmb: make sure everyone sees our modifications to the page tables
2362 * rmb: make sure we see changes to vcpu->mode
2363 */
2364 smp_mb();
4f022648 2365
c142786c
AK
2366 /*
2367 * Wait for all vcpus to exit guest mode and/or lockless shadow
2368 * page table walks.
2369 */
2370 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2371
945315b9 2372 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2373 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2374 kvm_mmu_free_page(sp);
945315b9 2375 }
7775834a
XG
2376}
2377
5da59607
TY
2378static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2379 struct list_head *invalid_list)
2380{
2381 struct kvm_mmu_page *sp;
2382
2383 if (list_empty(&kvm->arch.active_mmu_pages))
2384 return false;
2385
2386 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2387 struct kvm_mmu_page, link);
2388 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2389
2390 return true;
2391}
2392
82ce2c96
IE
2393/*
2394 * Changing the number of mmu pages allocated to the vm
49d5ca26 2395 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2396 */
49d5ca26 2397void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2398{
d98ba053 2399 LIST_HEAD(invalid_list);
82ce2c96 2400
b34cb590
TY
2401 spin_lock(&kvm->mmu_lock);
2402
49d5ca26 2403 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2404 /* Need to free some mmu pages to achieve the goal. */
2405 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2406 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2407 break;
82ce2c96 2408
aa6bd187 2409 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2410 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2411 }
82ce2c96 2412
49d5ca26 2413 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2414
2415 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2416}
2417
1cb3f3ae 2418int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2419{
4db35314 2420 struct kvm_mmu_page *sp;
d98ba053 2421 LIST_HEAD(invalid_list);
a436036b
AK
2422 int r;
2423
9ad17b10 2424 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2425 r = 0;
1cb3f3ae 2426 spin_lock(&kvm->mmu_lock);
b67bfe0d 2427 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2428 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2429 sp->role.word);
2430 r = 1;
f41d335a 2431 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2432 }
d98ba053 2433 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2434 spin_unlock(&kvm->mmu_lock);
2435
a436036b 2436 return r;
cea0f0e7 2437}
1cb3f3ae 2438EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2439
9cf5cf5a
XG
2440static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2441{
2442 trace_kvm_mmu_unsync_page(sp);
2443 ++vcpu->kvm->stat.mmu_unsync;
2444 sp->unsync = 1;
2445
2446 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2447}
2448
2449static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2450{
4731d4c7 2451 struct kvm_mmu_page *s;
9cf5cf5a 2452
b67bfe0d 2453 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2454 if (s->unsync)
4731d4c7 2455 continue;
9cf5cf5a
XG
2456 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2457 __kvm_unsync_page(vcpu, s);
4731d4c7 2458 }
4731d4c7
MT
2459}
2460
2461static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2462 bool can_unsync)
2463{
9cf5cf5a 2464 struct kvm_mmu_page *s;
9cf5cf5a
XG
2465 bool need_unsync = false;
2466
b67bfe0d 2467 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2468 if (!can_unsync)
2469 return 1;
2470
9cf5cf5a 2471 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2472 return 1;
9cf5cf5a 2473
9bb4f6b1 2474 if (!s->unsync)
9cf5cf5a 2475 need_unsync = true;
4731d4c7 2476 }
9cf5cf5a
XG
2477 if (need_unsync)
2478 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2479 return 0;
2480}
2481
d1fe9219
PB
2482static bool kvm_is_mmio_pfn(pfn_t pfn)
2483{
2484 if (pfn_valid(pfn))
2485 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2486
2487 return true;
2488}
2489
d555c333 2490static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2491 unsigned pte_access, int level,
c2d0ee46 2492 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2493 bool can_unsync, bool host_writable)
1c4f1fd6 2494{
6e7d0354 2495 u64 spte;
1e73f9dd 2496 int ret = 0;
64d4d521 2497
54bf36aa 2498 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2499 return 0;
2500
982c2565 2501 spte = PT_PRESENT_MASK;
947da538 2502 if (!speculative)
3201b5d9 2503 spte |= shadow_accessed_mask;
640d9b0d 2504
7b52345e
SY
2505 if (pte_access & ACC_EXEC_MASK)
2506 spte |= shadow_x_mask;
2507 else
2508 spte |= shadow_nx_mask;
49fde340 2509
1c4f1fd6 2510 if (pte_access & ACC_USER_MASK)
7b52345e 2511 spte |= shadow_user_mask;
49fde340 2512
852e3c19 2513 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2514 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2515 if (tdp_enabled)
4b12f0de 2516 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2517 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2518
9bdbba13 2519 if (host_writable)
1403283a 2520 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2521 else
2522 pte_access &= ~ACC_WRITE_MASK;
1403283a 2523
35149e21 2524 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2525
c2288505 2526 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2527
c2193463 2528 /*
7751babd
XG
2529 * Other vcpu creates new sp in the window between
2530 * mapping_level() and acquiring mmu-lock. We can
2531 * allow guest to retry the access, the mapping can
2532 * be fixed if guest refault.
c2193463 2533 */
852e3c19 2534 if (level > PT_PAGE_TABLE_LEVEL &&
54bf36aa 2535 has_wrprotected_page(vcpu, gfn, level))
be38d276 2536 goto done;
38187c83 2537
49fde340 2538 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2539
ecc5589f
MT
2540 /*
2541 * Optimization: for pte sync, if spte was writable the hash
2542 * lookup is unnecessary (and expensive). Write protection
2543 * is responsibility of mmu_get_page / kvm_sync_page.
2544 * Same reasoning can be applied to dirty page accounting.
2545 */
8dae4445 2546 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2547 goto set_pte;
2548
4731d4c7 2549 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2550 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2551 __func__, gfn);
1e73f9dd 2552 ret = 1;
1c4f1fd6 2553 pte_access &= ~ACC_WRITE_MASK;
49fde340 2554 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2555 }
2556 }
2557
9b51a630 2558 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2559 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2560 spte |= shadow_dirty_mask;
2561 }
1c4f1fd6 2562
38187c83 2563set_pte:
6e7d0354 2564 if (mmu_spte_update(sptep, spte))
b330aa0c 2565 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2566done:
1e73f9dd
MT
2567 return ret;
2568}
2569
d555c333 2570static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2571 unsigned pte_access, int write_fault, int *emulate,
2572 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2573 bool host_writable)
1e73f9dd
MT
2574{
2575 int was_rmapped = 0;
53a27b39 2576 int rmap_count;
1e73f9dd 2577
f7616203
XG
2578 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2579 *sptep, write_fault, gfn);
1e73f9dd 2580
d555c333 2581 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2582 /*
2583 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2584 * the parent of the now unreachable PTE.
2585 */
852e3c19
JR
2586 if (level > PT_PAGE_TABLE_LEVEL &&
2587 !is_large_pte(*sptep)) {
1e73f9dd 2588 struct kvm_mmu_page *child;
d555c333 2589 u64 pte = *sptep;
1e73f9dd
MT
2590
2591 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2592 drop_parent_pte(child, sptep);
3be2264b 2593 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2594 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2595 pgprintk("hfn old %llx new %llx\n",
d555c333 2596 spte_to_pfn(*sptep), pfn);
c3707958 2597 drop_spte(vcpu->kvm, sptep);
91546356 2598 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2599 } else
2600 was_rmapped = 1;
1e73f9dd 2601 }
852e3c19 2602
c2288505
XG
2603 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2604 true, host_writable)) {
1e73f9dd 2605 if (write_fault)
b90a0e6c 2606 *emulate = 1;
77c3913b 2607 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2608 }
1e73f9dd 2609
ce88decf
XG
2610 if (unlikely(is_mmio_spte(*sptep) && emulate))
2611 *emulate = 1;
2612
d555c333 2613 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2614 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2615 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2616 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2617 *sptep, sptep);
d555c333 2618 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2619 ++vcpu->kvm->stat.lpages;
2620
ffb61bb3 2621 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2622 if (!was_rmapped) {
2623 rmap_count = rmap_add(vcpu, sptep, gfn);
2624 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2625 rmap_recycle(vcpu, sptep, gfn);
2626 }
1c4f1fd6 2627 }
cb9aaa30 2628
f3ac1a4b 2629 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2630}
2631
957ed9ef
XG
2632static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2633 bool no_dirty_log)
2634{
2635 struct kvm_memory_slot *slot;
957ed9ef 2636
5d163b1c 2637 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2638 if (!slot)
6c8ee57b 2639 return KVM_PFN_ERR_FAULT;
957ed9ef 2640
037d92dc 2641 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2642}
2643
2644static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2645 struct kvm_mmu_page *sp,
2646 u64 *start, u64 *end)
2647{
2648 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2649 struct kvm_memory_slot *slot;
957ed9ef
XG
2650 unsigned access = sp->role.access;
2651 int i, ret;
2652 gfn_t gfn;
2653
2654 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2655 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2656 if (!slot)
957ed9ef
XG
2657 return -1;
2658
d9ef13c2 2659 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2660 if (ret <= 0)
2661 return -1;
2662
2663 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2664 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2665 sp->role.level, gfn, page_to_pfn(pages[i]),
2666 true, true);
957ed9ef
XG
2667
2668 return 0;
2669}
2670
2671static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2672 struct kvm_mmu_page *sp, u64 *sptep)
2673{
2674 u64 *spte, *start = NULL;
2675 int i;
2676
2677 WARN_ON(!sp->role.direct);
2678
2679 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2680 spte = sp->spt + i;
2681
2682 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2683 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2684 if (!start)
2685 continue;
2686 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2687 break;
2688 start = NULL;
2689 } else if (!start)
2690 start = spte;
2691 }
2692}
2693
2694static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2695{
2696 struct kvm_mmu_page *sp;
2697
2698 /*
2699 * Since it's no accessed bit on EPT, it's no way to
2700 * distinguish between actually accessed translations
2701 * and prefetched, so disable pte prefetch if EPT is
2702 * enabled.
2703 */
2704 if (!shadow_accessed_mask)
2705 return;
2706
2707 sp = page_header(__pa(sptep));
2708 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2709 return;
2710
2711 __direct_pte_prefetch(vcpu, sp, sptep);
2712}
2713
9f652d21 2714static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2715 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2716 bool prefault)
140754bc 2717{
9f652d21 2718 struct kvm_shadow_walk_iterator iterator;
140754bc 2719 struct kvm_mmu_page *sp;
b90a0e6c 2720 int emulate = 0;
140754bc 2721 gfn_t pseudo_gfn;
6aa8b732 2722
989c6b34
MT
2723 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2724 return 0;
2725
9f652d21 2726 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2727 if (iterator.level == level) {
f7616203 2728 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2729 write, &emulate, level, gfn, pfn,
2730 prefault, map_writable);
957ed9ef 2731 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2732 ++vcpu->stat.pf_fixed;
2733 break;
6aa8b732
AK
2734 }
2735
404381c5 2736 drop_large_spte(vcpu, iterator.sptep);
c3707958 2737 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2738 u64 base_addr = iterator.addr;
2739
2740 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2741 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2742 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2743 iterator.level - 1,
2744 1, ACC_ALL, iterator.sptep);
140754bc 2745
7a1638ce 2746 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2747 }
2748 }
b90a0e6c 2749 return emulate;
6aa8b732
AK
2750}
2751
77db5cbd 2752static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2753{
77db5cbd
HY
2754 siginfo_t info;
2755
2756 info.si_signo = SIGBUS;
2757 info.si_errno = 0;
2758 info.si_code = BUS_MCEERR_AR;
2759 info.si_addr = (void __user *)address;
2760 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2761
77db5cbd 2762 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2763}
2764
d7c55201 2765static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2766{
4d8b81ab
XG
2767 /*
2768 * Do not cache the mmio info caused by writing the readonly gfn
2769 * into the spte otherwise read access on readonly gfn also can
2770 * caused mmio page fault and treat it as mmio access.
2771 * Return 1 to tell kvm to emulate it.
2772 */
2773 if (pfn == KVM_PFN_ERR_RO_FAULT)
2774 return 1;
2775
e6c1502b 2776 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2777 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2778 return 0;
d7c55201 2779 }
edba23e5 2780
d7c55201 2781 return -EFAULT;
bf998156
HY
2782}
2783
936a5fe6
AA
2784static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2785 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2786{
2787 pfn_t pfn = *pfnp;
2788 gfn_t gfn = *gfnp;
2789 int level = *levelp;
2790
2791 /*
2792 * Check if it's a transparent hugepage. If this would be an
2793 * hugetlbfs page, level wouldn't be set to
2794 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2795 * here.
2796 */
bf4bea8e 2797 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2798 level == PT_PAGE_TABLE_LEVEL &&
2799 PageTransCompound(pfn_to_page(pfn)) &&
54bf36aa 2800 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2801 unsigned long mask;
2802 /*
2803 * mmu_notifier_retry was successful and we hold the
2804 * mmu_lock here, so the pmd can't become splitting
2805 * from under us, and in turn
2806 * __split_huge_page_refcount() can't run from under
2807 * us and we can safely transfer the refcount from
2808 * PG_tail to PG_head as we switch the pfn to tail to
2809 * head.
2810 */
2811 *levelp = level = PT_DIRECTORY_LEVEL;
2812 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2813 VM_BUG_ON((gfn & mask) != (pfn & mask));
2814 if (pfn & mask) {
2815 gfn &= ~mask;
2816 *gfnp = gfn;
2817 kvm_release_pfn_clean(pfn);
2818 pfn &= ~mask;
c3586667 2819 kvm_get_pfn(pfn);
936a5fe6
AA
2820 *pfnp = pfn;
2821 }
2822 }
2823}
2824
d7c55201
XG
2825static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2826 pfn_t pfn, unsigned access, int *ret_val)
2827{
2828 bool ret = true;
2829
2830 /* The pfn is invalid, report the error! */
81c52c56 2831 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2832 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2833 goto exit;
2834 }
2835
ce88decf 2836 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2837 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2838
2839 ret = false;
2840exit:
2841 return ret;
2842}
2843
e5552fd2 2844static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2845{
1c118b82
XG
2846 /*
2847 * Do not fix the mmio spte with invalid generation number which
2848 * need to be updated by slow page fault path.
2849 */
2850 if (unlikely(error_code & PFERR_RSVD_MASK))
2851 return false;
2852
c7ba5b48
XG
2853 /*
2854 * #PF can be fast only if the shadow page table is present and it
2855 * is caused by write-protect, that means we just need change the
2856 * W bit of the spte which can be done out of mmu-lock.
2857 */
2858 if (!(error_code & PFERR_PRESENT_MASK) ||
2859 !(error_code & PFERR_WRITE_MASK))
2860 return false;
2861
2862 return true;
2863}
2864
2865static bool
92a476cb
XG
2866fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2867 u64 *sptep, u64 spte)
c7ba5b48 2868{
c7ba5b48
XG
2869 gfn_t gfn;
2870
2871 WARN_ON(!sp->role.direct);
2872
2873 /*
2874 * The gfn of direct spte is stable since it is calculated
2875 * by sp->gfn.
2876 */
2877 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2878
9b51a630
KH
2879 /*
2880 * Theoretically we could also set dirty bit (and flush TLB) here in
2881 * order to eliminate unnecessary PML logging. See comments in
2882 * set_spte. But fast_page_fault is very unlikely to happen with PML
2883 * enabled, so we do not do this. This might result in the same GPA
2884 * to be logged in PML buffer again when the write really happens, and
2885 * eventually to be called by mark_page_dirty twice. But it's also no
2886 * harm. This also avoids the TLB flush needed after setting dirty bit
2887 * so non-PML cases won't be impacted.
2888 *
2889 * Compare with set_spte where instead shadow_dirty_mask is set.
2890 */
c7ba5b48 2891 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2892 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2893
2894 return true;
2895}
2896
2897/*
2898 * Return value:
2899 * - true: let the vcpu to access on the same address again.
2900 * - false: let the real page fault path to fix it.
2901 */
2902static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2903 u32 error_code)
2904{
2905 struct kvm_shadow_walk_iterator iterator;
92a476cb 2906 struct kvm_mmu_page *sp;
c7ba5b48
XG
2907 bool ret = false;
2908 u64 spte = 0ull;
2909
37f6a4e2
MT
2910 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2911 return false;
2912
e5552fd2 2913 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2914 return false;
2915
2916 walk_shadow_page_lockless_begin(vcpu);
2917 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2918 if (!is_shadow_present_pte(spte) || iterator.level < level)
2919 break;
2920
2921 /*
2922 * If the mapping has been changed, let the vcpu fault on the
2923 * same address again.
2924 */
2925 if (!is_rmap_spte(spte)) {
2926 ret = true;
2927 goto exit;
2928 }
2929
92a476cb
XG
2930 sp = page_header(__pa(iterator.sptep));
2931 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2932 goto exit;
2933
2934 /*
2935 * Check if it is a spurious fault caused by TLB lazily flushed.
2936 *
2937 * Need not check the access of upper level table entries since
2938 * they are always ACC_ALL.
2939 */
2940 if (is_writable_pte(spte)) {
2941 ret = true;
2942 goto exit;
2943 }
2944
2945 /*
2946 * Currently, to simplify the code, only the spte write-protected
2947 * by dirty-log can be fast fixed.
2948 */
2949 if (!spte_is_locklessly_modifiable(spte))
2950 goto exit;
2951
c126d94f
XG
2952 /*
2953 * Do not fix write-permission on the large spte since we only dirty
2954 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2955 * that means other pages are missed if its slot is dirty-logged.
2956 *
2957 * Instead, we let the slow page fault path create a normal spte to
2958 * fix the access.
2959 *
2960 * See the comments in kvm_arch_commit_memory_region().
2961 */
2962 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2963 goto exit;
2964
c7ba5b48
XG
2965 /*
2966 * Currently, fast page fault only works for direct mapping since
2967 * the gfn is not stable for indirect shadow page.
2968 * See Documentation/virtual/kvm/locking.txt to get more detail.
2969 */
92a476cb 2970 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2971exit:
a72faf25
XG
2972 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2973 spte, ret);
c7ba5b48
XG
2974 walk_shadow_page_lockless_end(vcpu);
2975
2976 return ret;
2977}
2978
78b2c54a 2979static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2980 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2981static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2982
c7ba5b48
XG
2983static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2984 gfn_t gfn, bool prefault)
10589a46
MT
2985{
2986 int r;
852e3c19 2987 int level;
936a5fe6 2988 int force_pt_level;
35149e21 2989 pfn_t pfn;
e930bffe 2990 unsigned long mmu_seq;
c7ba5b48 2991 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2992
936a5fe6
AA
2993 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2994 if (likely(!force_pt_level)) {
2995 level = mapping_level(vcpu, gfn);
2996 /*
2997 * This path builds a PAE pagetable - so we can map
2998 * 2mb pages at maximum. Therefore check if the level
2999 * is larger than that.
3000 */
3001 if (level > PT_DIRECTORY_LEVEL)
3002 level = PT_DIRECTORY_LEVEL;
852e3c19 3003
936a5fe6
AA
3004 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3005 } else
3006 level = PT_PAGE_TABLE_LEVEL;
05da4558 3007
c7ba5b48
XG
3008 if (fast_page_fault(vcpu, v, level, error_code))
3009 return 0;
3010
e930bffe 3011 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3012 smp_rmb();
060c2abe 3013
78b2c54a 3014 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3015 return 0;
aaee2c94 3016
d7c55201
XG
3017 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3018 return r;
d196e343 3019
aaee2c94 3020 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3021 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3022 goto out_unlock;
450e0b41 3023 make_mmu_pages_available(vcpu);
936a5fe6
AA
3024 if (likely(!force_pt_level))
3025 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
3026 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3027 prefault);
aaee2c94
MT
3028 spin_unlock(&vcpu->kvm->mmu_lock);
3029
aaee2c94 3030
10589a46 3031 return r;
e930bffe
AA
3032
3033out_unlock:
3034 spin_unlock(&vcpu->kvm->mmu_lock);
3035 kvm_release_pfn_clean(pfn);
3036 return 0;
10589a46
MT
3037}
3038
3039
17ac10ad
AK
3040static void mmu_free_roots(struct kvm_vcpu *vcpu)
3041{
3042 int i;
4db35314 3043 struct kvm_mmu_page *sp;
d98ba053 3044 LIST_HEAD(invalid_list);
17ac10ad 3045
ad312c7c 3046 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3047 return;
35af577a 3048
81407ca5
JR
3049 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3050 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3051 vcpu->arch.mmu.direct_map)) {
ad312c7c 3052 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3053
35af577a 3054 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3055 sp = page_header(root);
3056 --sp->root_count;
d98ba053
XG
3057 if (!sp->root_count && sp->role.invalid) {
3058 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3059 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3060 }
aaee2c94 3061 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3062 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3063 return;
3064 }
35af577a
GN
3065
3066 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3067 for (i = 0; i < 4; ++i) {
ad312c7c 3068 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3069
417726a3 3070 if (root) {
417726a3 3071 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3072 sp = page_header(root);
3073 --sp->root_count;
2e53d63a 3074 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3075 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3076 &invalid_list);
417726a3 3077 }
ad312c7c 3078 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3079 }
d98ba053 3080 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3081 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3082 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3083}
3084
8986ecc0
MT
3085static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3086{
3087 int ret = 0;
3088
3089 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3090 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3091 ret = 1;
3092 }
3093
3094 return ret;
3095}
3096
651dd37a
JR
3097static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3098{
3099 struct kvm_mmu_page *sp;
7ebaf15e 3100 unsigned i;
651dd37a
JR
3101
3102 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3103 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3104 make_mmu_pages_available(vcpu);
651dd37a
JR
3105 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3106 1, ACC_ALL, NULL);
3107 ++sp->root_count;
3108 spin_unlock(&vcpu->kvm->mmu_lock);
3109 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3110 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3111 for (i = 0; i < 4; ++i) {
3112 hpa_t root = vcpu->arch.mmu.pae_root[i];
3113
fa4a2c08 3114 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3115 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3116 make_mmu_pages_available(vcpu);
649497d1
AK
3117 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3118 i << 30,
651dd37a
JR
3119 PT32_ROOT_LEVEL, 1, ACC_ALL,
3120 NULL);
3121 root = __pa(sp->spt);
3122 ++sp->root_count;
3123 spin_unlock(&vcpu->kvm->mmu_lock);
3124 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3125 }
6292757f 3126 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3127 } else
3128 BUG();
3129
3130 return 0;
3131}
3132
3133static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3134{
4db35314 3135 struct kvm_mmu_page *sp;
81407ca5
JR
3136 u64 pdptr, pm_mask;
3137 gfn_t root_gfn;
3138 int i;
3bb65a22 3139
5777ed34 3140 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3141
651dd37a
JR
3142 if (mmu_check_root(vcpu, root_gfn))
3143 return 1;
3144
3145 /*
3146 * Do we shadow a long mode page table? If so we need to
3147 * write-protect the guests page table root.
3148 */
3149 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3150 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3151
fa4a2c08 3152 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3153
8facbbff 3154 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3155 make_mmu_pages_available(vcpu);
651dd37a
JR
3156 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3157 0, ACC_ALL, NULL);
4db35314
AK
3158 root = __pa(sp->spt);
3159 ++sp->root_count;
8facbbff 3160 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3161 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3162 return 0;
17ac10ad 3163 }
f87f9288 3164
651dd37a
JR
3165 /*
3166 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3167 * or a PAE 3-level page table. In either case we need to be aware that
3168 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3169 */
81407ca5
JR
3170 pm_mask = PT_PRESENT_MASK;
3171 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3172 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3173
17ac10ad 3174 for (i = 0; i < 4; ++i) {
ad312c7c 3175 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3176
fa4a2c08 3177 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3178 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3179 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3180 if (!is_present_gpte(pdptr)) {
ad312c7c 3181 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3182 continue;
3183 }
6de4f3ad 3184 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3185 if (mmu_check_root(vcpu, root_gfn))
3186 return 1;
5a7388c2 3187 }
8facbbff 3188 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3189 make_mmu_pages_available(vcpu);
4db35314 3190 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3191 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3192 ACC_ALL, NULL);
4db35314
AK
3193 root = __pa(sp->spt);
3194 ++sp->root_count;
8facbbff
AK
3195 spin_unlock(&vcpu->kvm->mmu_lock);
3196
81407ca5 3197 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3198 }
6292757f 3199 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3200
3201 /*
3202 * If we shadow a 32 bit page table with a long mode page
3203 * table we enter this path.
3204 */
3205 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3206 if (vcpu->arch.mmu.lm_root == NULL) {
3207 /*
3208 * The additional page necessary for this is only
3209 * allocated on demand.
3210 */
3211
3212 u64 *lm_root;
3213
3214 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3215 if (lm_root == NULL)
3216 return 1;
3217
3218 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3219
3220 vcpu->arch.mmu.lm_root = lm_root;
3221 }
3222
3223 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3224 }
3225
8986ecc0 3226 return 0;
17ac10ad
AK
3227}
3228
651dd37a
JR
3229static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3230{
3231 if (vcpu->arch.mmu.direct_map)
3232 return mmu_alloc_direct_roots(vcpu);
3233 else
3234 return mmu_alloc_shadow_roots(vcpu);
3235}
3236
0ba73cda
MT
3237static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3238{
3239 int i;
3240 struct kvm_mmu_page *sp;
3241
81407ca5
JR
3242 if (vcpu->arch.mmu.direct_map)
3243 return;
3244
0ba73cda
MT
3245 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3246 return;
6903074c 3247
56f17dd3 3248 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3249 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3250 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3251 hpa_t root = vcpu->arch.mmu.root_hpa;
3252 sp = page_header(root);
3253 mmu_sync_children(vcpu, sp);
0375f7fa 3254 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3255 return;
3256 }
3257 for (i = 0; i < 4; ++i) {
3258 hpa_t root = vcpu->arch.mmu.pae_root[i];
3259
8986ecc0 3260 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3261 root &= PT64_BASE_ADDR_MASK;
3262 sp = page_header(root);
3263 mmu_sync_children(vcpu, sp);
3264 }
3265 }
0375f7fa 3266 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3267}
3268
3269void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3270{
3271 spin_lock(&vcpu->kvm->mmu_lock);
3272 mmu_sync_roots(vcpu);
6cffe8ca 3273 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3274}
bfd0a56b 3275EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3276
1871c602 3277static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3278 u32 access, struct x86_exception *exception)
6aa8b732 3279{
ab9ae313
AK
3280 if (exception)
3281 exception->error_code = 0;
6aa8b732
AK
3282 return vaddr;
3283}
3284
6539e738 3285static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3286 u32 access,
3287 struct x86_exception *exception)
6539e738 3288{
ab9ae313
AK
3289 if (exception)
3290 exception->error_code = 0;
54987b7a 3291 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3292}
3293
ce88decf
XG
3294static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3295{
3296 if (direct)
3297 return vcpu_match_mmio_gpa(vcpu, addr);
3298
3299 return vcpu_match_mmio_gva(vcpu, addr);
3300}
3301
3302
3303/*
3304 * On direct hosts, the last spte is only allows two states
3305 * for mmio page fault:
3306 * - It is the mmio spte
3307 * - It is zapped or it is being zapped.
3308 *
3309 * This function completely checks the spte when the last spte
3310 * is not the mmio spte.
3311 */
3312static bool check_direct_spte_mmio_pf(u64 spte)
3313{
3314 return __check_direct_spte_mmio_pf(spte);
3315}
3316
3317static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3318{
3319 struct kvm_shadow_walk_iterator iterator;
3320 u64 spte = 0ull;
3321
37f6a4e2
MT
3322 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3323 return spte;
3324
ce88decf
XG
3325 walk_shadow_page_lockless_begin(vcpu);
3326 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3327 if (!is_shadow_present_pte(spte))
3328 break;
3329 walk_shadow_page_lockless_end(vcpu);
3330
3331 return spte;
3332}
3333
ce88decf
XG
3334int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3335{
3336 u64 spte;
3337
3338 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3339 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3340
3341 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3342
3343 if (is_mmio_spte(spte)) {
3344 gfn_t gfn = get_mmio_spte_gfn(spte);
3345 unsigned access = get_mmio_spte_access(spte);
3346
54bf36aa 3347 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3348 return RET_MMIO_PF_INVALID;
3349
ce88decf
XG
3350 if (direct)
3351 addr = 0;
4f022648
XG
3352
3353 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3354 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3355 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3356 }
3357
3358 /*
3359 * It's ok if the gva is remapped by other cpus on shadow guest,
3360 * it's a BUG if the gfn is not a mmio page.
3361 */
3362 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3363 return RET_MMIO_PF_BUG;
ce88decf
XG
3364
3365 /*
3366 * If the page table is zapped by other cpus, let CPU fault again on
3367 * the address.
3368 */
b37fbea6 3369 return RET_MMIO_PF_RETRY;
ce88decf
XG
3370}
3371EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3372
3373static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3374 u32 error_code, bool direct)
3375{
3376 int ret;
3377
3378 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3379 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3380 return ret;
3381}
3382
6aa8b732 3383static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3384 u32 error_code, bool prefault)
6aa8b732 3385{
e833240f 3386 gfn_t gfn;
e2dec939 3387 int r;
6aa8b732 3388
b8688d51 3389 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3390
f8f55942
XG
3391 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3392 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3393
3394 if (likely(r != RET_MMIO_PF_INVALID))
3395 return r;
3396 }
ce88decf 3397
e2dec939
AK
3398 r = mmu_topup_memory_caches(vcpu);
3399 if (r)
3400 return r;
714b93da 3401
fa4a2c08 3402 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3403
e833240f 3404 gfn = gva >> PAGE_SHIFT;
6aa8b732 3405
e833240f 3406 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3407 error_code, gfn, prefault);
6aa8b732
AK
3408}
3409
7e1fbeac 3410static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3411{
3412 struct kvm_arch_async_pf arch;
fb67e14f 3413
7c90705b 3414 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3415 arch.gfn = gfn;
c4806acd 3416 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3417 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3418
54bf36aa 3419 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3420}
3421
3422static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3423{
3424 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3425 kvm_event_needs_reinjection(vcpu)))
3426 return false;
3427
3428 return kvm_x86_ops->interrupt_allowed(vcpu);
3429}
3430
78b2c54a 3431static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3432 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92 3433{
3520469d 3434 struct kvm_memory_slot *slot;
af585b92
GN
3435 bool async;
3436
54bf36aa 3437 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3438 async = false;
3439 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3440 if (!async)
3441 return false; /* *pfn has correct page already */
3442
78b2c54a 3443 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3444 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3445 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3446 trace_kvm_async_pf_doublefault(gva, gfn);
3447 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3448 return true;
3449 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3450 return true;
3451 }
3452
3520469d 3453 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3454 return false;
3455}
3456
6a39bbc5
XG
3457static bool
3458check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3459{
3460 int page_num = KVM_PAGES_PER_HPAGE(level);
3461
3462 gfn &= ~(page_num - 1);
3463
3464 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3465}
3466
56028d08 3467static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3468 bool prefault)
fb72d167 3469{
35149e21 3470 pfn_t pfn;
fb72d167 3471 int r;
852e3c19 3472 int level;
936a5fe6 3473 int force_pt_level;
05da4558 3474 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3475 unsigned long mmu_seq;
612819c3
MT
3476 int write = error_code & PFERR_WRITE_MASK;
3477 bool map_writable;
fb72d167 3478
fa4a2c08 3479 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3480
f8f55942
XG
3481 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3482 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3483
3484 if (likely(r != RET_MMIO_PF_INVALID))
3485 return r;
3486 }
ce88decf 3487
fb72d167
JR
3488 r = mmu_topup_memory_caches(vcpu);
3489 if (r)
3490 return r;
3491
6a39bbc5
XG
3492 if (mapping_level_dirty_bitmap(vcpu, gfn) ||
3493 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL))
3494 force_pt_level = 1;
3495 else
3496 force_pt_level = 0;
3497
936a5fe6
AA
3498 if (likely(!force_pt_level)) {
3499 level = mapping_level(vcpu, gfn);
6a39bbc5
XG
3500 if (level > PT_DIRECTORY_LEVEL &&
3501 !check_hugepage_cache_consistency(vcpu, gfn, level))
3502 level = PT_DIRECTORY_LEVEL;
936a5fe6
AA
3503 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3504 } else
3505 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3506
c7ba5b48
XG
3507 if (fast_page_fault(vcpu, gpa, level, error_code))
3508 return 0;
3509
e930bffe 3510 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3511 smp_rmb();
af585b92 3512
78b2c54a 3513 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3514 return 0;
3515
d7c55201
XG
3516 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3517 return r;
3518
fb72d167 3519 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3520 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3521 goto out_unlock;
450e0b41 3522 make_mmu_pages_available(vcpu);
936a5fe6
AA
3523 if (likely(!force_pt_level))
3524 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3525 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3526 level, gfn, pfn, prefault);
fb72d167 3527 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3528
3529 return r;
e930bffe
AA
3530
3531out_unlock:
3532 spin_unlock(&vcpu->kvm->mmu_lock);
3533 kvm_release_pfn_clean(pfn);
3534 return 0;
fb72d167
JR
3535}
3536
8a3c1a33
PB
3537static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3538 struct kvm_mmu *context)
6aa8b732 3539{
6aa8b732 3540 context->page_fault = nonpaging_page_fault;
6aa8b732 3541 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3542 context->sync_page = nonpaging_sync_page;
a7052897 3543 context->invlpg = nonpaging_invlpg;
0f53b5b1 3544 context->update_pte = nonpaging_update_pte;
cea0f0e7 3545 context->root_level = 0;
6aa8b732 3546 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3547 context->root_hpa = INVALID_PAGE;
c5a78f2b 3548 context->direct_map = true;
2d48a985 3549 context->nx = false;
6aa8b732
AK
3550}
3551
d8d173da 3552void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3553{
cea0f0e7 3554 mmu_free_roots(vcpu);
6aa8b732
AK
3555}
3556
5777ed34
JR
3557static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3558{
9f8fe504 3559 return kvm_read_cr3(vcpu);
5777ed34
JR
3560}
3561
6389ee94
AK
3562static void inject_page_fault(struct kvm_vcpu *vcpu,
3563 struct x86_exception *fault)
6aa8b732 3564{
6389ee94 3565 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3566}
3567
54bf36aa 3568static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3569 unsigned access, int *nr_present)
ce88decf
XG
3570{
3571 if (unlikely(is_mmio_spte(*sptep))) {
3572 if (gfn != get_mmio_spte_gfn(*sptep)) {
3573 mmu_spte_clear_no_track(sptep);
3574 return true;
3575 }
3576
3577 (*nr_present)++;
54bf36aa 3578 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3579 return true;
3580 }
3581
3582 return false;
3583}
3584
6fd01b71
AK
3585static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3586{
3587 unsigned index;
3588
3589 index = level - 1;
3590 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3591 return mmu->last_pte_bitmap & (1 << index);
3592}
3593
37406aaa
NHE
3594#define PTTYPE_EPT 18 /* arbitrary */
3595#define PTTYPE PTTYPE_EPT
3596#include "paging_tmpl.h"
3597#undef PTTYPE
3598
6aa8b732
AK
3599#define PTTYPE 64
3600#include "paging_tmpl.h"
3601#undef PTTYPE
3602
3603#define PTTYPE 32
3604#include "paging_tmpl.h"
3605#undef PTTYPE
3606
52fde8df 3607static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3608 struct kvm_mmu *context)
82725b20 3609{
82725b20
DE
3610 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3611 u64 exb_bit_rsvd = 0;
5f7dde7b 3612 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3613 u64 nonleaf_bit8_rsvd = 0;
82725b20 3614
25d92081
YZ
3615 context->bad_mt_xwr = 0;
3616
2d48a985 3617 if (!context->nx)
82725b20 3618 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3619 if (!guest_cpuid_has_gbpages(vcpu))
3620 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3621
3622 /*
3623 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3624 * leaf entries) on AMD CPUs only.
3625 */
3626 if (guest_cpuid_is_amd(vcpu))
3627 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3628
4d6931c3 3629 switch (context->root_level) {
82725b20
DE
3630 case PT32_ROOT_LEVEL:
3631 /* no rsvd bits for 2 level 4K page table entries */
3632 context->rsvd_bits_mask[0][1] = 0;
3633 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3634 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3635
3636 if (!is_pse(vcpu)) {
3637 context->rsvd_bits_mask[1][1] = 0;
3638 break;
3639 }
3640
82725b20
DE
3641 if (is_cpuid_PSE36())
3642 /* 36bits PSE 4MB page */
3643 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3644 else
3645 /* 32 bits PSE 4MB page */
3646 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3647 break;
3648 case PT32E_ROOT_LEVEL:
20c466b5
DE
3649 context->rsvd_bits_mask[0][2] =
3650 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3651 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3652 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3653 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3654 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3655 rsvd_bits(maxphyaddr, 62); /* PTE */
3656 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3657 rsvd_bits(maxphyaddr, 62) |
3658 rsvd_bits(13, 20); /* large page */
f815bce8 3659 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3660 break;
3661 case PT64_ROOT_LEVEL:
3662 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3663 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3664 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3665 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3666 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3667 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3668 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3669 rsvd_bits(maxphyaddr, 51);
3670 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3671 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3672 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3673 rsvd_bits(13, 29);
82725b20 3674 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3675 rsvd_bits(maxphyaddr, 51) |
3676 rsvd_bits(13, 20); /* large page */
f815bce8 3677 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3678 break;
3679 }
3680}
3681
25d92081
YZ
3682static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3683 struct kvm_mmu *context, bool execonly)
3684{
3685 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3686 int pte;
3687
3688 context->rsvd_bits_mask[0][3] =
3689 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3690 context->rsvd_bits_mask[0][2] =
3691 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3692 context->rsvd_bits_mask[0][1] =
3693 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3694 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3695
3696 /* large page */
3697 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3698 context->rsvd_bits_mask[1][2] =
3699 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3700 context->rsvd_bits_mask[1][1] =
3701 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3702 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3703
3704 for (pte = 0; pte < 64; pte++) {
3705 int rwx_bits = pte & 7;
3706 int mt = pte >> 3;
3707 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3708 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3709 (rwx_bits == 0x4 && !execonly))
3710 context->bad_mt_xwr |= (1ull << pte);
3711 }
3712}
3713
edc90b7d
XG
3714static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3715 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3716{
3717 unsigned bit, byte, pfec;
3718 u8 map;
66386ade 3719 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3720
66386ade 3721 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3722 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3723 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3724 pfec = byte << 1;
3725 map = 0;
3726 wf = pfec & PFERR_WRITE_MASK;
3727 uf = pfec & PFERR_USER_MASK;
3728 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3729 /*
3730 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3731 * subject to SMAP restrictions, and cleared otherwise. The
3732 * bit is only meaningful if the SMAP bit is set in CR4.
3733 */
3734 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3735 for (bit = 0; bit < 8; ++bit) {
3736 x = bit & ACC_EXEC_MASK;
3737 w = bit & ACC_WRITE_MASK;
3738 u = bit & ACC_USER_MASK;
3739
25d92081
YZ
3740 if (!ept) {
3741 /* Not really needed: !nx will cause pte.nx to fault */
3742 x |= !mmu->nx;
3743 /* Allow supervisor writes if !cr0.wp */
3744 w |= !is_write_protection(vcpu) && !uf;
3745 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3746 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3747
3748 /*
3749 * SMAP:kernel-mode data accesses from user-mode
3750 * mappings should fault. A fault is considered
3751 * as a SMAP violation if all of the following
3752 * conditions are ture:
3753 * - X86_CR4_SMAP is set in CR4
3754 * - An user page is accessed
3755 * - Page fault in kernel mode
3756 * - if CPL = 3 or X86_EFLAGS_AC is clear
3757 *
3758 * Here, we cover the first three conditions.
3759 * The fourth is computed dynamically in
3760 * permission_fault() and is in smapf.
3761 *
3762 * Also, SMAP does not affect instruction
3763 * fetches, add the !ff check here to make it
3764 * clearer.
3765 */
3766 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3767 } else
3768 /* Not really needed: no U/S accesses on ept */
3769 u = 1;
97d64b78 3770
97ec8c06
FW
3771 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3772 (smapf && smap);
97d64b78
AK
3773 map |= fault << bit;
3774 }
3775 mmu->permissions[byte] = map;
3776 }
3777}
3778
6fd01b71
AK
3779static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3780{
3781 u8 map;
3782 unsigned level, root_level = mmu->root_level;
3783 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3784
3785 if (root_level == PT32E_ROOT_LEVEL)
3786 --root_level;
3787 /* PT_PAGE_TABLE_LEVEL always terminates */
3788 map = 1 | (1 << ps_set_index);
3789 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3790 if (level <= PT_PDPE_LEVEL
3791 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3792 map |= 1 << (ps_set_index | (level - 1));
3793 }
3794 mmu->last_pte_bitmap = map;
3795}
3796
8a3c1a33
PB
3797static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3798 struct kvm_mmu *context,
3799 int level)
6aa8b732 3800{
2d48a985 3801 context->nx = is_nx(vcpu);
4d6931c3 3802 context->root_level = level;
2d48a985 3803
4d6931c3 3804 reset_rsvds_bits_mask(vcpu, context);
25d92081 3805 update_permission_bitmask(vcpu, context, false);
6fd01b71 3806 update_last_pte_bitmap(vcpu, context);
6aa8b732 3807
fa4a2c08 3808 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3809 context->page_fault = paging64_page_fault;
6aa8b732 3810 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3811 context->sync_page = paging64_sync_page;
a7052897 3812 context->invlpg = paging64_invlpg;
0f53b5b1 3813 context->update_pte = paging64_update_pte;
17ac10ad 3814 context->shadow_root_level = level;
17c3ba9d 3815 context->root_hpa = INVALID_PAGE;
c5a78f2b 3816 context->direct_map = false;
6aa8b732
AK
3817}
3818
8a3c1a33
PB
3819static void paging64_init_context(struct kvm_vcpu *vcpu,
3820 struct kvm_mmu *context)
17ac10ad 3821{
8a3c1a33 3822 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3823}
3824
8a3c1a33
PB
3825static void paging32_init_context(struct kvm_vcpu *vcpu,
3826 struct kvm_mmu *context)
6aa8b732 3827{
2d48a985 3828 context->nx = false;
4d6931c3 3829 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3830
4d6931c3 3831 reset_rsvds_bits_mask(vcpu, context);
25d92081 3832 update_permission_bitmask(vcpu, context, false);
6fd01b71 3833 update_last_pte_bitmap(vcpu, context);
6aa8b732 3834
6aa8b732 3835 context->page_fault = paging32_page_fault;
6aa8b732 3836 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3837 context->sync_page = paging32_sync_page;
a7052897 3838 context->invlpg = paging32_invlpg;
0f53b5b1 3839 context->update_pte = paging32_update_pte;
6aa8b732 3840 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3841 context->root_hpa = INVALID_PAGE;
c5a78f2b 3842 context->direct_map = false;
6aa8b732
AK
3843}
3844
8a3c1a33
PB
3845static void paging32E_init_context(struct kvm_vcpu *vcpu,
3846 struct kvm_mmu *context)
6aa8b732 3847{
8a3c1a33 3848 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3849}
3850
8a3c1a33 3851static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3852{
ad896af0 3853 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3854
c445f8ef 3855 context->base_role.word = 0;
699023e2 3856 context->base_role.smm = is_smm(vcpu);
fb72d167 3857 context->page_fault = tdp_page_fault;
e8bc217a 3858 context->sync_page = nonpaging_sync_page;
a7052897 3859 context->invlpg = nonpaging_invlpg;
0f53b5b1 3860 context->update_pte = nonpaging_update_pte;
67253af5 3861 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3862 context->root_hpa = INVALID_PAGE;
c5a78f2b 3863 context->direct_map = true;
1c97f0a0 3864 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3865 context->get_cr3 = get_cr3;
e4e517b4 3866 context->get_pdptr = kvm_pdptr_read;
cb659db8 3867 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3868
3869 if (!is_paging(vcpu)) {
2d48a985 3870 context->nx = false;
fb72d167
JR
3871 context->gva_to_gpa = nonpaging_gva_to_gpa;
3872 context->root_level = 0;
3873 } else if (is_long_mode(vcpu)) {
2d48a985 3874 context->nx = is_nx(vcpu);
fb72d167 3875 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3876 reset_rsvds_bits_mask(vcpu, context);
3877 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3878 } else if (is_pae(vcpu)) {
2d48a985 3879 context->nx = is_nx(vcpu);
fb72d167 3880 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3881 reset_rsvds_bits_mask(vcpu, context);
3882 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3883 } else {
2d48a985 3884 context->nx = false;
fb72d167 3885 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3886 reset_rsvds_bits_mask(vcpu, context);
3887 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3888 }
3889
25d92081 3890 update_permission_bitmask(vcpu, context, false);
6fd01b71 3891 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3892}
3893
ad896af0 3894void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3895{
411c588d 3896 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 3897 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
3898 struct kvm_mmu *context = &vcpu->arch.mmu;
3899
fa4a2c08 3900 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3901
3902 if (!is_paging(vcpu))
8a3c1a33 3903 nonpaging_init_context(vcpu, context);
a9058ecd 3904 else if (is_long_mode(vcpu))
8a3c1a33 3905 paging64_init_context(vcpu, context);
6aa8b732 3906 else if (is_pae(vcpu))
8a3c1a33 3907 paging32E_init_context(vcpu, context);
6aa8b732 3908 else
8a3c1a33 3909 paging32_init_context(vcpu, context);
a770f6f2 3910
ad896af0
PB
3911 context->base_role.nxe = is_nx(vcpu);
3912 context->base_role.cr4_pae = !!is_pae(vcpu);
3913 context->base_role.cr0_wp = is_write_protection(vcpu);
3914 context->base_role.smep_andnot_wp
411c588d 3915 = smep && !is_write_protection(vcpu);
edc90b7d
XG
3916 context->base_role.smap_andnot_wp
3917 = smap && !is_write_protection(vcpu);
699023e2 3918 context->base_role.smm = is_smm(vcpu);
52fde8df
JR
3919}
3920EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3921
ad896af0 3922void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 3923{
ad896af0
PB
3924 struct kvm_mmu *context = &vcpu->arch.mmu;
3925
fa4a2c08 3926 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
3927
3928 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3929
3930 context->nx = true;
155a97a3
NHE
3931 context->page_fault = ept_page_fault;
3932 context->gva_to_gpa = ept_gva_to_gpa;
3933 context->sync_page = ept_sync_page;
3934 context->invlpg = ept_invlpg;
3935 context->update_pte = ept_update_pte;
155a97a3
NHE
3936 context->root_level = context->shadow_root_level;
3937 context->root_hpa = INVALID_PAGE;
3938 context->direct_map = false;
3939
3940 update_permission_bitmask(vcpu, context, true);
3941 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3942}
3943EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3944
8a3c1a33 3945static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3946{
ad896af0
PB
3947 struct kvm_mmu *context = &vcpu->arch.mmu;
3948
3949 kvm_init_shadow_mmu(vcpu);
3950 context->set_cr3 = kvm_x86_ops->set_cr3;
3951 context->get_cr3 = get_cr3;
3952 context->get_pdptr = kvm_pdptr_read;
3953 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3954}
3955
8a3c1a33 3956static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3957{
3958 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3959
3960 g_context->get_cr3 = get_cr3;
e4e517b4 3961 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3962 g_context->inject_page_fault = kvm_inject_page_fault;
3963
3964 /*
3965 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3966 * translation of l2_gpa to l1_gpa addresses is done using the
3967 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3968 * functions between mmu and nested_mmu are swapped.
3969 */
3970 if (!is_paging(vcpu)) {
2d48a985 3971 g_context->nx = false;
02f59dc9
JR
3972 g_context->root_level = 0;
3973 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3974 } else if (is_long_mode(vcpu)) {
2d48a985 3975 g_context->nx = is_nx(vcpu);
02f59dc9 3976 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3977 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3978 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3979 } else if (is_pae(vcpu)) {
2d48a985 3980 g_context->nx = is_nx(vcpu);
02f59dc9 3981 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3982 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3983 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3984 } else {
2d48a985 3985 g_context->nx = false;
02f59dc9 3986 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3987 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3988 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3989 }
3990
25d92081 3991 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 3992 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
3993}
3994
8a3c1a33 3995static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 3996{
02f59dc9 3997 if (mmu_is_nested(vcpu))
e0c6db3e 3998 init_kvm_nested_mmu(vcpu);
02f59dc9 3999 else if (tdp_enabled)
e0c6db3e 4000 init_kvm_tdp_mmu(vcpu);
fb72d167 4001 else
e0c6db3e 4002 init_kvm_softmmu(vcpu);
fb72d167
JR
4003}
4004
8a3c1a33 4005void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4006{
95f93af4 4007 kvm_mmu_unload(vcpu);
8a3c1a33 4008 init_kvm_mmu(vcpu);
17c3ba9d 4009}
8668a3c4 4010EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4011
4012int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4013{
714b93da
AK
4014 int r;
4015
e2dec939 4016 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4017 if (r)
4018 goto out;
8986ecc0 4019 r = mmu_alloc_roots(vcpu);
e2858b4a 4020 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4021 if (r)
4022 goto out;
3662cb1c 4023 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4024 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4025out:
4026 return r;
6aa8b732 4027}
17c3ba9d
AK
4028EXPORT_SYMBOL_GPL(kvm_mmu_load);
4029
4030void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4031{
4032 mmu_free_roots(vcpu);
95f93af4 4033 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4034}
4b16184c 4035EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4036
0028425f 4037static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4038 struct kvm_mmu_page *sp, u64 *spte,
4039 const void *new)
0028425f 4040{
30945387 4041 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4042 ++vcpu->kvm->stat.mmu_pde_zapped;
4043 return;
30945387 4044 }
0028425f 4045
4cee5764 4046 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4047 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4048}
4049
79539cec
AK
4050static bool need_remote_flush(u64 old, u64 new)
4051{
4052 if (!is_shadow_present_pte(old))
4053 return false;
4054 if (!is_shadow_present_pte(new))
4055 return true;
4056 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4057 return true;
53166229
GN
4058 old ^= shadow_nx_mask;
4059 new ^= shadow_nx_mask;
79539cec
AK
4060 return (old & ~new & PT64_PERM_MASK) != 0;
4061}
4062
0671a8e7
XG
4063static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4064 bool remote_flush, bool local_flush)
79539cec 4065{
0671a8e7
XG
4066 if (zap_page)
4067 return;
4068
4069 if (remote_flush)
79539cec 4070 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4071 else if (local_flush)
77c3913b 4072 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4073}
4074
889e5cbc
XG
4075static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4076 const u8 *new, int *bytes)
da4a00f0 4077{
889e5cbc
XG
4078 u64 gentry;
4079 int r;
72016f3a 4080
72016f3a
AK
4081 /*
4082 * Assume that the pte write on a page table of the same type
49b26e26
XG
4083 * as the current vcpu paging mode since we update the sptes only
4084 * when they have the same mode.
72016f3a 4085 */
889e5cbc 4086 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4087 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4088 *gpa &= ~(gpa_t)7;
4089 *bytes = 8;
54bf36aa 4090 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4091 if (r)
4092 gentry = 0;
08e850c6
AK
4093 new = (const u8 *)&gentry;
4094 }
4095
889e5cbc 4096 switch (*bytes) {
08e850c6
AK
4097 case 4:
4098 gentry = *(const u32 *)new;
4099 break;
4100 case 8:
4101 gentry = *(const u64 *)new;
4102 break;
4103 default:
4104 gentry = 0;
4105 break;
72016f3a
AK
4106 }
4107
889e5cbc
XG
4108 return gentry;
4109}
4110
4111/*
4112 * If we're seeing too many writes to a page, it may no longer be a page table,
4113 * or we may be forking, in which case it is better to unmap the page.
4114 */
a138fe75 4115static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4116{
a30f47cb
XG
4117 /*
4118 * Skip write-flooding detected for the sp whose level is 1, because
4119 * it can become unsync, then the guest page is not write-protected.
4120 */
f71fa31f 4121 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4122 return false;
3246af0e 4123
a30f47cb 4124 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4125}
4126
4127/*
4128 * Misaligned accesses are too much trouble to fix up; also, they usually
4129 * indicate a page is not used as a page table.
4130 */
4131static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4132 int bytes)
4133{
4134 unsigned offset, pte_size, misaligned;
4135
4136 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4137 gpa, bytes, sp->role.word);
4138
4139 offset = offset_in_page(gpa);
4140 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4141
4142 /*
4143 * Sometimes, the OS only writes the last one bytes to update status
4144 * bits, for example, in linux, andb instruction is used in clear_bit().
4145 */
4146 if (!(offset & (pte_size - 1)) && bytes == 1)
4147 return false;
4148
889e5cbc
XG
4149 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4150 misaligned |= bytes < 4;
4151
4152 return misaligned;
4153}
4154
4155static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4156{
4157 unsigned page_offset, quadrant;
4158 u64 *spte;
4159 int level;
4160
4161 page_offset = offset_in_page(gpa);
4162 level = sp->role.level;
4163 *nspte = 1;
4164 if (!sp->role.cr4_pae) {
4165 page_offset <<= 1; /* 32->64 */
4166 /*
4167 * A 32-bit pde maps 4MB while the shadow pdes map
4168 * only 2MB. So we need to double the offset again
4169 * and zap two pdes instead of one.
4170 */
4171 if (level == PT32_ROOT_LEVEL) {
4172 page_offset &= ~7; /* kill rounding error */
4173 page_offset <<= 1;
4174 *nspte = 2;
4175 }
4176 quadrant = page_offset >> PAGE_SHIFT;
4177 page_offset &= ~PAGE_MASK;
4178 if (quadrant != sp->role.quadrant)
4179 return NULL;
4180 }
4181
4182 spte = &sp->spt[page_offset / sizeof(*spte)];
4183 return spte;
4184}
4185
4186void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4187 const u8 *new, int bytes)
4188{
4189 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4190 struct kvm_mmu_page *sp;
889e5cbc
XG
4191 LIST_HEAD(invalid_list);
4192 u64 entry, gentry, *spte;
4193 int npte;
a30f47cb 4194 bool remote_flush, local_flush, zap_page;
4141259b
AM
4195 union kvm_mmu_page_role mask = { };
4196
4197 mask.cr0_wp = 1;
4198 mask.cr4_pae = 1;
4199 mask.nxe = 1;
4200 mask.smep_andnot_wp = 1;
4201 mask.smap_andnot_wp = 1;
699023e2 4202 mask.smm = 1;
889e5cbc
XG
4203
4204 /*
4205 * If we don't have indirect shadow pages, it means no page is
4206 * write-protected, so we can exit simply.
4207 */
4208 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4209 return;
4210
4211 zap_page = remote_flush = local_flush = false;
4212
4213 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4214
4215 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4216
4217 /*
4218 * No need to care whether allocation memory is successful
4219 * or not since pte prefetch is skiped if it does not have
4220 * enough objects in the cache.
4221 */
4222 mmu_topup_memory_caches(vcpu);
4223
4224 spin_lock(&vcpu->kvm->mmu_lock);
4225 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4226 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4227
b67bfe0d 4228 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4229 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4230 detect_write_flooding(sp)) {
0671a8e7 4231 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4232 &invalid_list);
4cee5764 4233 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4234 continue;
4235 }
889e5cbc
XG
4236
4237 spte = get_written_sptes(sp, gpa, &npte);
4238 if (!spte)
4239 continue;
4240
0671a8e7 4241 local_flush = true;
ac1b714e 4242 while (npte--) {
79539cec 4243 entry = *spte;
38e3b2b2 4244 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4245 if (gentry &&
4246 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4247 & mask.word) && rmap_can_add(vcpu))
7c562522 4248 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4249 if (need_remote_flush(entry, *spte))
0671a8e7 4250 remote_flush = true;
ac1b714e 4251 ++spte;
9b7a0325 4252 }
9b7a0325 4253 }
0671a8e7 4254 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4255 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4256 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4257 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4258}
4259
a436036b
AK
4260int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4261{
10589a46
MT
4262 gpa_t gpa;
4263 int r;
a436036b 4264
c5a78f2b 4265 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4266 return 0;
4267
1871c602 4268 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4269
10589a46 4270 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4271
10589a46 4272 return r;
a436036b 4273}
577bdc49 4274EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4275
81f4f76b 4276static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4277{
d98ba053 4278 LIST_HEAD(invalid_list);
103ad25a 4279
81f4f76b
TY
4280 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4281 return;
4282
5da59607
TY
4283 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4284 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4285 break;
ebeace86 4286
4cee5764 4287 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4288 }
aa6bd187 4289 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4290}
ebeace86 4291
1cb3f3ae
XG
4292static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4293{
4294 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4295 return vcpu_match_mmio_gpa(vcpu, addr);
4296
4297 return vcpu_match_mmio_gva(vcpu, addr);
4298}
4299
dc25e89e
AP
4300int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4301 void *insn, int insn_len)
3067714c 4302{
1cb3f3ae 4303 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4304 enum emulation_result er;
4305
56028d08 4306 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4307 if (r < 0)
4308 goto out;
4309
4310 if (!r) {
4311 r = 1;
4312 goto out;
4313 }
4314
1cb3f3ae
XG
4315 if (is_mmio_page_fault(vcpu, cr2))
4316 emulation_type = 0;
4317
4318 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4319
4320 switch (er) {
4321 case EMULATE_DONE:
4322 return 1;
ac0a48c3 4323 case EMULATE_USER_EXIT:
3067714c 4324 ++vcpu->stat.mmio_exits;
6d77dbfc 4325 /* fall through */
3067714c 4326 case EMULATE_FAIL:
3f5d18a9 4327 return 0;
3067714c
AK
4328 default:
4329 BUG();
4330 }
4331out:
3067714c
AK
4332 return r;
4333}
4334EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4335
a7052897
MT
4336void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4337{
a7052897 4338 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4339 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4340 ++vcpu->stat.invlpg;
4341}
4342EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4343
18552672
JR
4344void kvm_enable_tdp(void)
4345{
4346 tdp_enabled = true;
4347}
4348EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4349
5f4cb662
JR
4350void kvm_disable_tdp(void)
4351{
4352 tdp_enabled = false;
4353}
4354EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4355
6aa8b732
AK
4356static void free_mmu_pages(struct kvm_vcpu *vcpu)
4357{
ad312c7c 4358 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4359 if (vcpu->arch.mmu.lm_root != NULL)
4360 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4361}
4362
4363static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4364{
17ac10ad 4365 struct page *page;
6aa8b732
AK
4366 int i;
4367
17ac10ad
AK
4368 /*
4369 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4370 * Therefore we need to allocate shadow page tables in the first
4371 * 4GB of memory, which happens to fit the DMA32 zone.
4372 */
4373 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4374 if (!page)
d7fa6ab2
WY
4375 return -ENOMEM;
4376
ad312c7c 4377 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4378 for (i = 0; i < 4; ++i)
ad312c7c 4379 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4380
6aa8b732 4381 return 0;
6aa8b732
AK
4382}
4383
8018c27b 4384int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4385{
e459e322
XG
4386 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4387 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4388 vcpu->arch.mmu.translate_gpa = translate_gpa;
4389 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4390
8018c27b
IM
4391 return alloc_mmu_pages(vcpu);
4392}
6aa8b732 4393
8a3c1a33 4394void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4395{
fa4a2c08 4396 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4397
8a3c1a33 4398 init_kvm_mmu(vcpu);
6aa8b732
AK
4399}
4400
1bad2b2a
XG
4401/* The return value indicates if tlb flush on all vcpus is needed. */
4402typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4403
4404/* The caller should hold mmu-lock before calling this function. */
4405static bool
4406slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4407 slot_level_handler fn, int start_level, int end_level,
4408 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4409{
4410 struct slot_rmap_walk_iterator iterator;
4411 bool flush = false;
4412
4413 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4414 end_gfn, &iterator) {
4415 if (iterator.rmap)
4416 flush |= fn(kvm, iterator.rmap);
4417
4418 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4419 if (flush && lock_flush_tlb) {
4420 kvm_flush_remote_tlbs(kvm);
4421 flush = false;
4422 }
4423 cond_resched_lock(&kvm->mmu_lock);
4424 }
4425 }
4426
4427 if (flush && lock_flush_tlb) {
4428 kvm_flush_remote_tlbs(kvm);
4429 flush = false;
4430 }
4431
4432 return flush;
4433}
4434
4435static bool
4436slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4437 slot_level_handler fn, int start_level, int end_level,
4438 bool lock_flush_tlb)
4439{
4440 return slot_handle_level_range(kvm, memslot, fn, start_level,
4441 end_level, memslot->base_gfn,
4442 memslot->base_gfn + memslot->npages - 1,
4443 lock_flush_tlb);
4444}
4445
4446static bool
4447slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4448 slot_level_handler fn, bool lock_flush_tlb)
4449{
4450 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4451 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4452}
4453
4454static bool
4455slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4456 slot_level_handler fn, bool lock_flush_tlb)
4457{
4458 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4459 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4460}
4461
4462static bool
4463slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4464 slot_level_handler fn, bool lock_flush_tlb)
4465{
4466 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4467 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4468}
4469
efdfe536
XG
4470void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4471{
4472 struct kvm_memslots *slots;
4473 struct kvm_memory_slot *memslot;
9da0e4d5 4474 int i;
efdfe536
XG
4475
4476 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4477 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4478 slots = __kvm_memslots(kvm, i);
4479 kvm_for_each_memslot(memslot, slots) {
4480 gfn_t start, end;
4481
4482 start = max(gfn_start, memslot->base_gfn);
4483 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4484 if (start >= end)
4485 continue;
efdfe536 4486
9da0e4d5
PB
4487 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4488 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4489 start, end - 1, true);
4490 }
efdfe536
XG
4491 }
4492
4493 spin_unlock(&kvm->mmu_lock);
4494}
4495
d77aa73c
XG
4496static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4497{
4498 return __rmap_write_protect(kvm, rmapp, false);
4499}
4500
1c91cad4
KH
4501void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4502 struct kvm_memory_slot *memslot)
6aa8b732 4503{
d77aa73c 4504 bool flush;
6aa8b732 4505
9d1beefb 4506 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4507 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4508 false);
9d1beefb 4509 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4510
4511 /*
4512 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4513 * which do tlb flush out of mmu-lock should be serialized by
4514 * kvm->slots_lock otherwise tlb flush would be missed.
4515 */
4516 lockdep_assert_held(&kvm->slots_lock);
4517
4518 /*
4519 * We can flush all the TLBs out of the mmu lock without TLB
4520 * corruption since we just change the spte from writable to
4521 * readonly so that we only need to care the case of changing
4522 * spte from present to present (changing the spte from present
4523 * to nonpresent will flush all the TLBs immediately), in other
4524 * words, the only case we care is mmu_spte_update() where we
4525 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4526 * instead of PT_WRITABLE_MASK, that means it does not depend
4527 * on PT_WRITABLE_MASK anymore.
4528 */
d91ffee9
KH
4529 if (flush)
4530 kvm_flush_remote_tlbs(kvm);
6aa8b732 4531}
37a7d8b0 4532
3ea3b7fa
WL
4533static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4534 unsigned long *rmapp)
4535{
4536 u64 *sptep;
4537 struct rmap_iterator iter;
4538 int need_tlb_flush = 0;
4539 pfn_t pfn;
4540 struct kvm_mmu_page *sp;
4541
0d536790
XG
4542restart:
4543 for_each_rmap_spte(rmapp, &iter, sptep) {
3ea3b7fa
WL
4544 sp = page_header(__pa(sptep));
4545 pfn = spte_to_pfn(*sptep);
4546
4547 /*
decf6333
XG
4548 * We cannot do huge page mapping for indirect shadow pages,
4549 * which are found on the last rmap (level = 1) when not using
4550 * tdp; such shadow pages are synced with the page table in
4551 * the guest, and the guest page table is using 4K page size
4552 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4553 */
4554 if (sp->role.direct &&
4555 !kvm_is_reserved_pfn(pfn) &&
4556 PageTransCompound(pfn_to_page(pfn))) {
4557 drop_spte(kvm, sptep);
3ea3b7fa 4558 need_tlb_flush = 1;
0d536790
XG
4559 goto restart;
4560 }
3ea3b7fa
WL
4561 }
4562
4563 return need_tlb_flush;
4564}
4565
4566void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4567 const struct kvm_memory_slot *memslot)
3ea3b7fa 4568{
f36f3f28 4569 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4570 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4571 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4572 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4573 spin_unlock(&kvm->mmu_lock);
4574}
4575
f4b4b180
KH
4576void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4577 struct kvm_memory_slot *memslot)
4578{
d77aa73c 4579 bool flush;
f4b4b180
KH
4580
4581 spin_lock(&kvm->mmu_lock);
d77aa73c 4582 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4583 spin_unlock(&kvm->mmu_lock);
4584
4585 lockdep_assert_held(&kvm->slots_lock);
4586
4587 /*
4588 * It's also safe to flush TLBs out of mmu lock here as currently this
4589 * function is only used for dirty logging, in which case flushing TLB
4590 * out of mmu lock also guarantees no dirty pages will be lost in
4591 * dirty_bitmap.
4592 */
4593 if (flush)
4594 kvm_flush_remote_tlbs(kvm);
4595}
4596EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4597
4598void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4599 struct kvm_memory_slot *memslot)
4600{
d77aa73c 4601 bool flush;
f4b4b180
KH
4602
4603 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4604 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4605 false);
f4b4b180
KH
4606 spin_unlock(&kvm->mmu_lock);
4607
4608 /* see kvm_mmu_slot_remove_write_access */
4609 lockdep_assert_held(&kvm->slots_lock);
4610
4611 if (flush)
4612 kvm_flush_remote_tlbs(kvm);
4613}
4614EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4615
4616void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4617 struct kvm_memory_slot *memslot)
4618{
d77aa73c 4619 bool flush;
f4b4b180
KH
4620
4621 spin_lock(&kvm->mmu_lock);
d77aa73c 4622 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4623 spin_unlock(&kvm->mmu_lock);
4624
4625 lockdep_assert_held(&kvm->slots_lock);
4626
4627 /* see kvm_mmu_slot_leaf_clear_dirty */
4628 if (flush)
4629 kvm_flush_remote_tlbs(kvm);
4630}
4631EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4632
e7d11c7a 4633#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4634static void kvm_zap_obsolete_pages(struct kvm *kvm)
4635{
4636 struct kvm_mmu_page *sp, *node;
e7d11c7a 4637 int batch = 0;
5304b8d3
XG
4638
4639restart:
4640 list_for_each_entry_safe_reverse(sp, node,
4641 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4642 int ret;
4643
5304b8d3
XG
4644 /*
4645 * No obsolete page exists before new created page since
4646 * active_mmu_pages is the FIFO list.
4647 */
4648 if (!is_obsolete_sp(kvm, sp))
4649 break;
4650
4651 /*
5304b8d3
XG
4652 * Since we are reversely walking the list and the invalid
4653 * list will be moved to the head, skip the invalid page
4654 * can help us to avoid the infinity list walking.
4655 */
4656 if (sp->role.invalid)
4657 continue;
4658
f34d251d
XG
4659 /*
4660 * Need not flush tlb since we only zap the sp with invalid
4661 * generation number.
4662 */
e7d11c7a 4663 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4664 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4665 batch = 0;
5304b8d3
XG
4666 goto restart;
4667 }
4668
365c8868
XG
4669 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4670 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4671 batch += ret;
4672
4673 if (ret)
5304b8d3
XG
4674 goto restart;
4675 }
4676
f34d251d
XG
4677 /*
4678 * Should flush tlb before free page tables since lockless-walking
4679 * may use the pages.
4680 */
365c8868 4681 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4682}
4683
4684/*
4685 * Fast invalidate all shadow pages and use lock-break technique
4686 * to zap obsolete pages.
4687 *
4688 * It's required when memslot is being deleted or VM is being
4689 * destroyed, in these cases, we should ensure that KVM MMU does
4690 * not use any resource of the being-deleted slot or all slots
4691 * after calling the function.
4692 */
4693void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4694{
4695 spin_lock(&kvm->mmu_lock);
35006126 4696 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4697 kvm->arch.mmu_valid_gen++;
4698
f34d251d
XG
4699 /*
4700 * Notify all vcpus to reload its shadow page table
4701 * and flush TLB. Then all vcpus will switch to new
4702 * shadow page table with the new mmu_valid_gen.
4703 *
4704 * Note: we should do this under the protection of
4705 * mmu-lock, otherwise, vcpu would purge shadow page
4706 * but miss tlb flush.
4707 */
4708 kvm_reload_remote_mmus(kvm);
4709
5304b8d3
XG
4710 kvm_zap_obsolete_pages(kvm);
4711 spin_unlock(&kvm->mmu_lock);
4712}
4713
365c8868
XG
4714static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4715{
4716 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4717}
4718
54bf36aa 4719void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4720{
4721 /*
4722 * The very rare case: if the generation-number is round,
4723 * zap all shadow pages.
f8f55942 4724 */
54bf36aa 4725 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4726 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4727 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4728 }
f8f55942
XG
4729}
4730
70534a73
DC
4731static unsigned long
4732mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4733{
4734 struct kvm *kvm;
1495f230 4735 int nr_to_scan = sc->nr_to_scan;
70534a73 4736 unsigned long freed = 0;
3ee16c81 4737
2f303b74 4738 spin_lock(&kvm_lock);
3ee16c81
IE
4739
4740 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4741 int idx;
d98ba053 4742 LIST_HEAD(invalid_list);
3ee16c81 4743
35f2d16b
TY
4744 /*
4745 * Never scan more than sc->nr_to_scan VM instances.
4746 * Will not hit this condition practically since we do not try
4747 * to shrink more than one VM and it is very unlikely to see
4748 * !n_used_mmu_pages so many times.
4749 */
4750 if (!nr_to_scan--)
4751 break;
19526396
GN
4752 /*
4753 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4754 * here. We may skip a VM instance errorneosly, but we do not
4755 * want to shrink a VM that only started to populate its MMU
4756 * anyway.
4757 */
365c8868
XG
4758 if (!kvm->arch.n_used_mmu_pages &&
4759 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4760 continue;
19526396 4761
f656ce01 4762 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4763 spin_lock(&kvm->mmu_lock);
3ee16c81 4764
365c8868
XG
4765 if (kvm_has_zapped_obsolete_pages(kvm)) {
4766 kvm_mmu_commit_zap_page(kvm,
4767 &kvm->arch.zapped_obsolete_pages);
4768 goto unlock;
4769 }
4770
70534a73
DC
4771 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4772 freed++;
d98ba053 4773 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4774
365c8868 4775unlock:
3ee16c81 4776 spin_unlock(&kvm->mmu_lock);
f656ce01 4777 srcu_read_unlock(&kvm->srcu, idx);
19526396 4778
70534a73
DC
4779 /*
4780 * unfair on small ones
4781 * per-vm shrinkers cry out
4782 * sadness comes quickly
4783 */
19526396
GN
4784 list_move_tail(&kvm->vm_list, &vm_list);
4785 break;
3ee16c81 4786 }
3ee16c81 4787
2f303b74 4788 spin_unlock(&kvm_lock);
70534a73 4789 return freed;
70534a73
DC
4790}
4791
4792static unsigned long
4793mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4794{
45221ab6 4795 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4796}
4797
4798static struct shrinker mmu_shrinker = {
70534a73
DC
4799 .count_objects = mmu_shrink_count,
4800 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4801 .seeks = DEFAULT_SEEKS * 10,
4802};
4803
2ddfd20e 4804static void mmu_destroy_caches(void)
b5a33a75 4805{
53c07b18
XG
4806 if (pte_list_desc_cache)
4807 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4808 if (mmu_page_header_cache)
4809 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4810}
4811
4812int kvm_mmu_module_init(void)
4813{
53c07b18
XG
4814 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4815 sizeof(struct pte_list_desc),
20c2df83 4816 0, 0, NULL);
53c07b18 4817 if (!pte_list_desc_cache)
b5a33a75
AK
4818 goto nomem;
4819
d3d25b04
AK
4820 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4821 sizeof(struct kvm_mmu_page),
20c2df83 4822 0, 0, NULL);
d3d25b04
AK
4823 if (!mmu_page_header_cache)
4824 goto nomem;
4825
908c7f19 4826 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4827 goto nomem;
4828
3ee16c81
IE
4829 register_shrinker(&mmu_shrinker);
4830
b5a33a75
AK
4831 return 0;
4832
4833nomem:
3ee16c81 4834 mmu_destroy_caches();
b5a33a75
AK
4835 return -ENOMEM;
4836}
4837
3ad82a7e
ZX
4838/*
4839 * Caculate mmu pages needed for kvm.
4840 */
4841unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4842{
3ad82a7e
ZX
4843 unsigned int nr_mmu_pages;
4844 unsigned int nr_pages = 0;
bc6678a3 4845 struct kvm_memslots *slots;
be6ba0f0 4846 struct kvm_memory_slot *memslot;
9da0e4d5 4847 int i;
3ad82a7e 4848
9da0e4d5
PB
4849 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4850 slots = __kvm_memslots(kvm, i);
90d83dc3 4851
9da0e4d5
PB
4852 kvm_for_each_memslot(memslot, slots)
4853 nr_pages += memslot->npages;
4854 }
3ad82a7e
ZX
4855
4856 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4857 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4858 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4859
4860 return nr_mmu_pages;
4861}
4862
94d8b056
MT
4863int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4864{
4865 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4866 u64 spte;
94d8b056
MT
4867 int nr_sptes = 0;
4868
37f6a4e2
MT
4869 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4870 return nr_sptes;
4871
c2a2ac2b
XG
4872 walk_shadow_page_lockless_begin(vcpu);
4873 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4874 sptes[iterator.level-1] = spte;
94d8b056 4875 nr_sptes++;
c2a2ac2b 4876 if (!is_shadow_present_pte(spte))
94d8b056
MT
4877 break;
4878 }
c2a2ac2b 4879 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4880
4881 return nr_sptes;
4882}
4883EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4884
c42fffe3
XG
4885void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4886{
95f93af4 4887 kvm_mmu_unload(vcpu);
c42fffe3
XG
4888 free_mmu_pages(vcpu);
4889 mmu_free_memory_caches(vcpu);
b034cf01
XG
4890}
4891
b034cf01
XG
4892void kvm_mmu_module_exit(void)
4893{
4894 mmu_destroy_caches();
4895 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4896 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4897 mmu_audit_disable();
4898}