]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: x86: limit difference between kvmclock updates
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
95b0430d
TY
202 struct kvm_mmu_page *sp = page_header(__pa(sptep));
203
ce88decf
XG
204 access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
95b0430d 206 sp->mmio_cached = true;
4f022648 207 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
208 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209}
210
211static bool is_mmio_spte(u64 spte)
212{
213 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214}
215
216static gfn_t get_mmio_spte_gfn(u64 spte)
217{
218 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219}
220
221static unsigned get_mmio_spte_access(u64 spte)
222{
223 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224}
225
226static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227{
228 if (unlikely(is_noslot_pfn(pfn))) {
229 mark_mmio_spte(sptep, gfn, access);
230 return true;
231 }
232
233 return false;
234}
c7addb90 235
82725b20
DE
236static inline u64 rsvd_bits(int s, int e)
237{
238 return ((1ULL << (e - s + 1)) - 1) << s;
239}
240
7b52345e 241void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 242 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
243{
244 shadow_user_mask = user_mask;
245 shadow_accessed_mask = accessed_mask;
246 shadow_dirty_mask = dirty_mask;
247 shadow_nx_mask = nx_mask;
248 shadow_x_mask = x_mask;
249}
250EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
6aa8b732
AK
252static int is_cpuid_PSE36(void)
253{
254 return 1;
255}
256
73b1087e
AK
257static int is_nx(struct kvm_vcpu *vcpu)
258{
f6801dff 259 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
260}
261
c7addb90
AK
262static int is_shadow_present_pte(u64 pte)
263{
ce88decf 264 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
265}
266
05da4558
MT
267static int is_large_pte(u64 pte)
268{
269 return pte & PT_PAGE_SIZE_MASK;
270}
271
43a3795a 272static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 273{
439e218a 274 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
275}
276
43a3795a 277static int is_rmap_spte(u64 pte)
cd4a4e53 278{
4b1a80fa 279 return is_shadow_present_pte(pte);
cd4a4e53
AK
280}
281
776e6633
MT
282static int is_last_spte(u64 pte, int level)
283{
284 if (level == PT_PAGE_TABLE_LEVEL)
285 return 1;
852e3c19 286 if (is_large_pte(pte))
776e6633
MT
287 return 1;
288 return 0;
289}
290
35149e21 291static pfn_t spte_to_pfn(u64 pte)
0b49ea86 292{
35149e21 293 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
294}
295
da928521
AK
296static gfn_t pse36_gfn_delta(u32 gpte)
297{
298 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300 return (gpte & PT32_DIR_PSE36_MASK) << shift;
301}
302
603e0651 303#ifdef CONFIG_X86_64
d555c333 304static void __set_spte(u64 *sptep, u64 spte)
e663ee64 305{
603e0651 306 *sptep = spte;
e663ee64
AK
307}
308
603e0651 309static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 310{
603e0651
XG
311 *sptep = spte;
312}
313
314static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315{
316 return xchg(sptep, spte);
317}
c2a2ac2b
XG
318
319static u64 __get_spte_lockless(u64 *sptep)
320{
321 return ACCESS_ONCE(*sptep);
322}
ce88decf
XG
323
324static bool __check_direct_spte_mmio_pf(u64 spte)
325{
326 /* It is valid if the spte is zapped. */
327 return spte == 0ull;
328}
a9221dd5 329#else
603e0651
XG
330union split_spte {
331 struct {
332 u32 spte_low;
333 u32 spte_high;
334 };
335 u64 spte;
336};
a9221dd5 337
c2a2ac2b
XG
338static void count_spte_clear(u64 *sptep, u64 spte)
339{
340 struct kvm_mmu_page *sp = page_header(__pa(sptep));
341
342 if (is_shadow_present_pte(spte))
343 return;
344
345 /* Ensure the spte is completely set before we increase the count */
346 smp_wmb();
347 sp->clear_spte_count++;
348}
349
603e0651
XG
350static void __set_spte(u64 *sptep, u64 spte)
351{
352 union split_spte *ssptep, sspte;
a9221dd5 353
603e0651
XG
354 ssptep = (union split_spte *)sptep;
355 sspte = (union split_spte)spte;
356
357 ssptep->spte_high = sspte.spte_high;
358
359 /*
360 * If we map the spte from nonpresent to present, We should store
361 * the high bits firstly, then set present bit, so cpu can not
362 * fetch this spte while we are setting the spte.
363 */
364 smp_wmb();
365
366 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
367}
368
603e0651
XG
369static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370{
371 union split_spte *ssptep, sspte;
372
373 ssptep = (union split_spte *)sptep;
374 sspte = (union split_spte)spte;
375
376 ssptep->spte_low = sspte.spte_low;
377
378 /*
379 * If we map the spte from present to nonpresent, we should clear
380 * present bit firstly to avoid vcpu fetch the old high bits.
381 */
382 smp_wmb();
383
384 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 385 count_spte_clear(sptep, spte);
603e0651
XG
386}
387
388static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389{
390 union split_spte *ssptep, sspte, orig;
391
392 ssptep = (union split_spte *)sptep;
393 sspte = (union split_spte)spte;
394
395 /* xchg acts as a barrier before the setting of the high bits */
396 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
397 orig.spte_high = ssptep->spte_high;
398 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 399 count_spte_clear(sptep, spte);
603e0651
XG
400
401 return orig.spte;
402}
c2a2ac2b
XG
403
404/*
405 * The idea using the light way get the spte on x86_32 guest is from
406 * gup_get_pte(arch/x86/mm/gup.c).
407 * The difference is we can not catch the spte tlb flush if we leave
408 * guest mode, so we emulate it by increase clear_spte_count when spte
409 * is cleared.
410 */
411static u64 __get_spte_lockless(u64 *sptep)
412{
413 struct kvm_mmu_page *sp = page_header(__pa(sptep));
414 union split_spte spte, *orig = (union split_spte *)sptep;
415 int count;
416
417retry:
418 count = sp->clear_spte_count;
419 smp_rmb();
420
421 spte.spte_low = orig->spte_low;
422 smp_rmb();
423
424 spte.spte_high = orig->spte_high;
425 smp_rmb();
426
427 if (unlikely(spte.spte_low != orig->spte_low ||
428 count != sp->clear_spte_count))
429 goto retry;
430
431 return spte.spte;
432}
ce88decf
XG
433
434static bool __check_direct_spte_mmio_pf(u64 spte)
435{
436 union split_spte sspte = (union split_spte)spte;
437 u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439 /* It is valid if the spte is zapped. */
440 if (spte == 0ull)
441 return true;
442
443 /* It is valid if the spte is being zapped. */
444 if (sspte.spte_low == 0ull &&
445 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 return true;
447
448 return false;
449}
603e0651
XG
450#endif
451
c7ba5b48
XG
452static bool spte_is_locklessly_modifiable(u64 spte)
453{
feb3eb70
GN
454 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
456}
457
8672b721
XG
458static bool spte_has_volatile_bits(u64 spte)
459{
c7ba5b48
XG
460 /*
461 * Always atomicly update spte if it can be updated
462 * out of mmu-lock, it can ensure dirty bit is not lost,
463 * also, it can help us to get a stable is_writable_pte()
464 * to ensure tlb flush is not missed.
465 */
466 if (spte_is_locklessly_modifiable(spte))
467 return true;
468
8672b721
XG
469 if (!shadow_accessed_mask)
470 return false;
471
472 if (!is_shadow_present_pte(spte))
473 return false;
474
4132779b
XG
475 if ((spte & shadow_accessed_mask) &&
476 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
477 return false;
478
479 return true;
480}
481
4132779b
XG
482static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483{
484 return (old_spte & bit_mask) && !(new_spte & bit_mask);
485}
486
1df9f2dc
XG
487/* Rules for using mmu_spte_set:
488 * Set the sptep from nonpresent to present.
489 * Note: the sptep being assigned *must* be either not present
490 * or in a state where the hardware will not attempt to update
491 * the spte.
492 */
493static void mmu_spte_set(u64 *sptep, u64 new_spte)
494{
495 WARN_ON(is_shadow_present_pte(*sptep));
496 __set_spte(sptep, new_spte);
497}
498
499/* Rules for using mmu_spte_update:
500 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
501 *
502 * Whenever we overwrite a writable spte with a read-only one we
503 * should flush remote TLBs. Otherwise rmap_write_protect
504 * will find a read-only spte, even though the writable spte
505 * might be cached on a CPU's TLB, the return value indicates this
506 * case.
1df9f2dc 507 */
6e7d0354 508static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 509{
c7ba5b48 510 u64 old_spte = *sptep;
6e7d0354 511 bool ret = false;
4132779b
XG
512
513 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 514
6e7d0354
XG
515 if (!is_shadow_present_pte(old_spte)) {
516 mmu_spte_set(sptep, new_spte);
517 return ret;
518 }
4132779b 519
c7ba5b48 520 if (!spte_has_volatile_bits(old_spte))
603e0651 521 __update_clear_spte_fast(sptep, new_spte);
4132779b 522 else
603e0651 523 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 524
c7ba5b48
XG
525 /*
526 * For the spte updated out of mmu-lock is safe, since
527 * we always atomicly update it, see the comments in
528 * spte_has_volatile_bits().
529 */
6e7d0354
XG
530 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531 ret = true;
532
4132779b 533 if (!shadow_accessed_mask)
6e7d0354 534 return ret;
4132779b
XG
535
536 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
540
541 return ret;
b79b93f9
AK
542}
543
1df9f2dc
XG
544/*
545 * Rules for using mmu_spte_clear_track_bits:
546 * It sets the sptep from present to nonpresent, and track the
547 * state bits, it is used to clear the last level sptep.
548 */
549static int mmu_spte_clear_track_bits(u64 *sptep)
550{
551 pfn_t pfn;
552 u64 old_spte = *sptep;
553
554 if (!spte_has_volatile_bits(old_spte))
603e0651 555 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 556 else
603e0651 557 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
558
559 if (!is_rmap_spte(old_spte))
560 return 0;
561
562 pfn = spte_to_pfn(old_spte);
86fde74c
XG
563
564 /*
565 * KVM does not hold the refcount of the page used by
566 * kvm mmu, before reclaiming the page, we should
567 * unmap it from mmu first.
568 */
569 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
1df9f2dc
XG
571 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572 kvm_set_pfn_accessed(pfn);
573 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574 kvm_set_pfn_dirty(pfn);
575 return 1;
576}
577
578/*
579 * Rules for using mmu_spte_clear_no_track:
580 * Directly clear spte without caring the state bits of sptep,
581 * it is used to set the upper level spte.
582 */
583static void mmu_spte_clear_no_track(u64 *sptep)
584{
603e0651 585 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
586}
587
c2a2ac2b
XG
588static u64 mmu_spte_get_lockless(u64 *sptep)
589{
590 return __get_spte_lockless(sptep);
591}
592
593static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594{
c142786c
AK
595 /*
596 * Prevent page table teardown by making any free-er wait during
597 * kvm_flush_remote_tlbs() IPI to all active vcpus.
598 */
599 local_irq_disable();
600 vcpu->mode = READING_SHADOW_PAGE_TABLES;
601 /*
602 * Make sure a following spte read is not reordered ahead of the write
603 * to vcpu->mode.
604 */
605 smp_mb();
c2a2ac2b
XG
606}
607
608static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609{
c142786c
AK
610 /*
611 * Make sure the write to vcpu->mode is not reordered in front of
612 * reads to sptes. If it does, kvm_commit_zap_page() can see us
613 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614 */
615 smp_mb();
616 vcpu->mode = OUTSIDE_GUEST_MODE;
617 local_irq_enable();
c2a2ac2b
XG
618}
619
e2dec939 620static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 621 struct kmem_cache *base_cache, int min)
714b93da
AK
622{
623 void *obj;
624
625 if (cache->nobjs >= min)
e2dec939 626 return 0;
714b93da 627 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 628 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 629 if (!obj)
e2dec939 630 return -ENOMEM;
714b93da
AK
631 cache->objects[cache->nobjs++] = obj;
632 }
e2dec939 633 return 0;
714b93da
AK
634}
635
f759e2b4
XG
636static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637{
638 return cache->nobjs;
639}
640
e8ad9a70
XG
641static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642 struct kmem_cache *cache)
714b93da
AK
643{
644 while (mc->nobjs)
e8ad9a70 645 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
646}
647
c1158e63 648static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 649 int min)
c1158e63 650{
842f22ed 651 void *page;
c1158e63
AK
652
653 if (cache->nobjs >= min)
654 return 0;
655 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 656 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
657 if (!page)
658 return -ENOMEM;
842f22ed 659 cache->objects[cache->nobjs++] = page;
c1158e63
AK
660 }
661 return 0;
662}
663
664static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665{
666 while (mc->nobjs)
c4d198d5 667 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
668}
669
2e3e5882 670static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 671{
e2dec939
AK
672 int r;
673
53c07b18 674 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 675 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
679 if (r)
680 goto out;
ad312c7c 681 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 682 mmu_page_header_cache, 4);
e2dec939
AK
683out:
684 return r;
714b93da
AK
685}
686
687static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688{
53c07b18
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690 pte_list_desc_cache);
ad312c7c 691 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
692 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693 mmu_page_header_cache);
714b93da
AK
694}
695
80feb89a 696static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
697{
698 void *p;
699
700 BUG_ON(!mc->nobjs);
701 p = mc->objects[--mc->nobjs];
714b93da
AK
702 return p;
703}
704
53c07b18 705static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 706{
80feb89a 707 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
708}
709
53c07b18 710static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 711{
53c07b18 712 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
713}
714
2032a93d
LJ
715static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716{
717 if (!sp->role.direct)
718 return sp->gfns[index];
719
720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721}
722
723static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724{
725 if (sp->role.direct)
726 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727 else
728 sp->gfns[index] = gfn;
729}
730
05da4558 731/*
d4dbf470
TY
732 * Return the pointer to the large page information for a given gfn,
733 * handling slots that are not large page aligned.
05da4558 734 */
d4dbf470
TY
735static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736 struct kvm_memory_slot *slot,
737 int level)
05da4558
MT
738{
739 unsigned long idx;
740
fb03cb6f 741 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 742 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
743}
744
745static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746{
d25797b2 747 struct kvm_memory_slot *slot;
d4dbf470 748 struct kvm_lpage_info *linfo;
d25797b2 749 int i;
05da4558 750
a1f4d395 751 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
752 for (i = PT_DIRECTORY_LEVEL;
753 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
754 linfo = lpage_info_slot(gfn, slot, i);
755 linfo->write_count += 1;
d25797b2 756 }
332b207d 757 kvm->arch.indirect_shadow_pages++;
05da4558
MT
758}
759
760static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761{
d25797b2 762 struct kvm_memory_slot *slot;
d4dbf470 763 struct kvm_lpage_info *linfo;
d25797b2 764 int i;
05da4558 765
a1f4d395 766 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
767 for (i = PT_DIRECTORY_LEVEL;
768 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
769 linfo = lpage_info_slot(gfn, slot, i);
770 linfo->write_count -= 1;
771 WARN_ON(linfo->write_count < 0);
d25797b2 772 }
332b207d 773 kvm->arch.indirect_shadow_pages--;
05da4558
MT
774}
775
d25797b2
JR
776static int has_wrprotected_page(struct kvm *kvm,
777 gfn_t gfn,
778 int level)
05da4558 779{
2843099f 780 struct kvm_memory_slot *slot;
d4dbf470 781 struct kvm_lpage_info *linfo;
05da4558 782
a1f4d395 783 slot = gfn_to_memslot(kvm, gfn);
05da4558 784 if (slot) {
d4dbf470
TY
785 linfo = lpage_info_slot(gfn, slot, level);
786 return linfo->write_count;
05da4558
MT
787 }
788
789 return 1;
790}
791
d25797b2 792static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 793{
8f0b1ab6 794 unsigned long page_size;
d25797b2 795 int i, ret = 0;
05da4558 796
8f0b1ab6 797 page_size = kvm_host_page_size(kvm, gfn);
05da4558 798
d25797b2
JR
799 for (i = PT_PAGE_TABLE_LEVEL;
800 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801 if (page_size >= KVM_HPAGE_SIZE(i))
802 ret = i;
803 else
804 break;
805 }
806
4c2155ce 807 return ret;
05da4558
MT
808}
809
5d163b1c
XG
810static struct kvm_memory_slot *
811gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 bool no_dirty_log)
05da4558
MT
813{
814 struct kvm_memory_slot *slot;
5d163b1c
XG
815
816 slot = gfn_to_memslot(vcpu->kvm, gfn);
817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818 (no_dirty_log && slot->dirty_bitmap))
819 slot = NULL;
820
821 return slot;
822}
823
824static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825{
a0a8eaba 826 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
827}
828
829static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830{
831 int host_level, level, max_level;
05da4558 832
d25797b2
JR
833 host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835 if (host_level == PT_PAGE_TABLE_LEVEL)
836 return host_level;
837
55dd98c3 838 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
839
840 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
841 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842 break;
d25797b2
JR
843
844 return level - 1;
05da4558
MT
845}
846
290fc38d 847/*
53c07b18 848 * Pte mapping structures:
cd4a4e53 849 *
53c07b18 850 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 851 *
53c07b18
XG
852 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853 * pte_list_desc containing more mappings.
53a27b39 854 *
53c07b18 855 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
856 * the spte was not added.
857 *
cd4a4e53 858 */
53c07b18
XG
859static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860 unsigned long *pte_list)
cd4a4e53 861{
53c07b18 862 struct pte_list_desc *desc;
53a27b39 863 int i, count = 0;
cd4a4e53 864
53c07b18
XG
865 if (!*pte_list) {
866 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867 *pte_list = (unsigned long)spte;
868 } else if (!(*pte_list & 1)) {
869 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870 desc = mmu_alloc_pte_list_desc(vcpu);
871 desc->sptes[0] = (u64 *)*pte_list;
d555c333 872 desc->sptes[1] = spte;
53c07b18 873 *pte_list = (unsigned long)desc | 1;
cb16a7b3 874 ++count;
cd4a4e53 875 } else {
53c07b18
XG
876 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 879 desc = desc->more;
53c07b18 880 count += PTE_LIST_EXT;
53a27b39 881 }
53c07b18
XG
882 if (desc->sptes[PTE_LIST_EXT-1]) {
883 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
884 desc = desc->more;
885 }
d555c333 886 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 887 ++count;
d555c333 888 desc->sptes[i] = spte;
cd4a4e53 889 }
53a27b39 890 return count;
cd4a4e53
AK
891}
892
53c07b18
XG
893static void
894pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
896{
897 int j;
898
53c07b18 899 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 900 ;
d555c333
AK
901 desc->sptes[i] = desc->sptes[j];
902 desc->sptes[j] = NULL;
cd4a4e53
AK
903 if (j != 0)
904 return;
905 if (!prev_desc && !desc->more)
53c07b18 906 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
907 else
908 if (prev_desc)
909 prev_desc->more = desc->more;
910 else
53c07b18
XG
911 *pte_list = (unsigned long)desc->more | 1;
912 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
913}
914
53c07b18 915static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 916{
53c07b18
XG
917 struct pte_list_desc *desc;
918 struct pte_list_desc *prev_desc;
cd4a4e53
AK
919 int i;
920
53c07b18
XG
921 if (!*pte_list) {
922 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 923 BUG();
53c07b18
XG
924 } else if (!(*pte_list & 1)) {
925 rmap_printk("pte_list_remove: %p 1->0\n", spte);
926 if ((u64 *)*pte_list != spte) {
927 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
928 BUG();
929 }
53c07b18 930 *pte_list = 0;
cd4a4e53 931 } else {
53c07b18
XG
932 rmap_printk("pte_list_remove: %p many->many\n", spte);
933 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
934 prev_desc = NULL;
935 while (desc) {
53c07b18 936 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 937 if (desc->sptes[i] == spte) {
53c07b18 938 pte_list_desc_remove_entry(pte_list,
714b93da 939 desc, i,
cd4a4e53
AK
940 prev_desc);
941 return;
942 }
943 prev_desc = desc;
944 desc = desc->more;
945 }
53c07b18 946 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
947 BUG();
948 }
949}
950
67052b35
XG
951typedef void (*pte_list_walk_fn) (u64 *spte);
952static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953{
954 struct pte_list_desc *desc;
955 int i;
956
957 if (!*pte_list)
958 return;
959
960 if (!(*pte_list & 1))
961 return fn((u64 *)*pte_list);
962
963 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964 while (desc) {
965 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966 fn(desc->sptes[i]);
967 desc = desc->more;
968 }
969}
970
9373e2c0 971static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 972 struct kvm_memory_slot *slot)
53c07b18 973{
77d11309 974 unsigned long idx;
53c07b18 975
77d11309 976 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 977 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
978}
979
9b9b1492
TY
980/*
981 * Take gfn and return the reverse mapping to it.
982 */
983static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984{
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 988 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
989}
990
f759e2b4
XG
991static bool rmap_can_add(struct kvm_vcpu *vcpu)
992{
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997}
998
53c07b18
XG
999static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000{
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
53c07b18
XG
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008}
1009
53c07b18
XG
1010static void rmap_remove(struct kvm *kvm, u64 *spte)
1011{
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020}
1021
1e3f42f0
TY
1022/*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030};
1031
1032/*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
1039static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040{
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052}
1053
1054/*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059static u64 *rmap_get_next(struct rmap_iterator *iter)
1060{
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081}
1082
c3707958 1083static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1084{
1df9f2dc 1085 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1086 rmap_remove(kvm, sptep);
be38d276
AK
1087}
1088
8e22f955
XG
1089
1090static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091{
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101}
1102
1103static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104{
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107}
1108
1109/*
49fde340 1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
49fde340
XG
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
8e22f955 1120 *
6b73a960 1121 * Return true if the spte is dropped.
8e22f955 1122 */
6b73a960
MT
1123static bool
1124spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1125{
1126 u64 spte = *sptep;
1127
49fde340
XG
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
6b73a960
MT
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
1136 return true;
1137 }
1138
49fde340
XG
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1141 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1142
6b73a960
MT
1143 *flush |= mmu_spte_update(sptep, spte);
1144 return false;
d13bc5b5
XG
1145}
1146
49fde340 1147static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1148 bool pt_protect)
98348e95 1149{
1e3f42f0
TY
1150 u64 *sptep;
1151 struct rmap_iterator iter;
d13bc5b5 1152 bool flush = false;
374cbac0 1153
1e3f42f0
TY
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157 sptep = rmap_get_first(*rmapp, &iter);
1158 continue;
1159 }
a0ed4607 1160
d13bc5b5 1161 sptep = rmap_get_next(&iter);
374cbac0 1162 }
855149aa 1163
d13bc5b5 1164 return flush;
a0ed4607
TY
1165}
1166
5dc99b23
TY
1167/**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
1177void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1180{
1181 unsigned long *rmapp;
a0ed4607 1182
5dc99b23 1183 while (mask) {
65fbe37c
TY
1184 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1186 __rmap_write_protect(kvm, rmapp, false);
05da4558 1187
5dc99b23
TY
1188 /* clear the first set bit */
1189 mask &= mask - 1;
1190 }
374cbac0
AK
1191}
1192
2f84569f 1193static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1194{
1195 struct kvm_memory_slot *slot;
5dc99b23
TY
1196 unsigned long *rmapp;
1197 int i;
2f84569f 1198 bool write_protected = false;
95d4c16c
TY
1199
1200 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1201
1202 for (i = PT_PAGE_TABLE_LEVEL;
1203 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1205 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1206 }
1207
1208 return write_protected;
95d4c16c
TY
1209}
1210
8a8365c5 1211static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1212 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1213{
1e3f42f0
TY
1214 u64 *sptep;
1215 struct rmap_iterator iter;
e930bffe
AA
1216 int need_tlb_flush = 0;
1217
1e3f42f0
TY
1218 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222 drop_spte(kvm, sptep);
e930bffe
AA
1223 need_tlb_flush = 1;
1224 }
1e3f42f0 1225
e930bffe
AA
1226 return need_tlb_flush;
1227}
1228
8a8365c5 1229static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1230 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1231{
1e3f42f0
TY
1232 u64 *sptep;
1233 struct rmap_iterator iter;
3da0dd43 1234 int need_flush = 0;
1e3f42f0 1235 u64 new_spte;
3da0dd43
IE
1236 pte_t *ptep = (pte_t *)data;
1237 pfn_t new_pfn;
1238
1239 WARN_ON(pte_huge(*ptep));
1240 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1241
1242 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 BUG_ON(!is_shadow_present_pte(*sptep));
1244 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
3da0dd43 1246 need_flush = 1;
1e3f42f0 1247
3da0dd43 1248 if (pte_write(*ptep)) {
1e3f42f0
TY
1249 drop_spte(kvm, sptep);
1250 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1251 } else {
1e3f42f0 1252 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1253 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255 new_spte &= ~PT_WRITABLE_MASK;
1256 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1257 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1258
1259 mmu_spte_clear_track_bits(sptep);
1260 mmu_spte_set(sptep, new_spte);
1261 sptep = rmap_get_next(&iter);
3da0dd43
IE
1262 }
1263 }
1e3f42f0 1264
3da0dd43
IE
1265 if (need_flush)
1266 kvm_flush_remote_tlbs(kvm);
1267
1268 return 0;
1269}
1270
84504ef3
TY
1271static int kvm_handle_hva_range(struct kvm *kvm,
1272 unsigned long start,
1273 unsigned long end,
1274 unsigned long data,
1275 int (*handler)(struct kvm *kvm,
1276 unsigned long *rmapp,
048212d0 1277 struct kvm_memory_slot *slot,
84504ef3 1278 unsigned long data))
e930bffe 1279{
be6ba0f0 1280 int j;
f395302e 1281 int ret = 0;
bc6678a3 1282 struct kvm_memslots *slots;
be6ba0f0 1283 struct kvm_memory_slot *memslot;
bc6678a3 1284
90d83dc3 1285 slots = kvm_memslots(kvm);
e930bffe 1286
be6ba0f0 1287 kvm_for_each_memslot(memslot, slots) {
84504ef3 1288 unsigned long hva_start, hva_end;
bcd3ef58 1289 gfn_t gfn_start, gfn_end;
e930bffe 1290
84504ef3
TY
1291 hva_start = max(start, memslot->userspace_addr);
1292 hva_end = min(end, memslot->userspace_addr +
1293 (memslot->npages << PAGE_SHIFT));
1294 if (hva_start >= hva_end)
1295 continue;
1296 /*
1297 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1298 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1299 */
bcd3ef58 1300 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1301 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1302
bcd3ef58
TY
1303 for (j = PT_PAGE_TABLE_LEVEL;
1304 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 unsigned long idx, idx_end;
1306 unsigned long *rmapp;
d4dbf470 1307
bcd3ef58
TY
1308 /*
1309 * {idx(page_j) | page_j intersects with
1310 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 */
1312 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1314
bcd3ef58 1315 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1316
bcd3ef58
TY
1317 for (; idx <= idx_end; ++idx)
1318 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1319 }
1320 }
1321
f395302e 1322 return ret;
e930bffe
AA
1323}
1324
84504ef3
TY
1325static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 unsigned long data,
1327 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1328 struct kvm_memory_slot *slot,
84504ef3
TY
1329 unsigned long data))
1330{
1331 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1332}
1333
1334int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335{
3da0dd43
IE
1336 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337}
1338
b3ae2096
TY
1339int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340{
1341 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342}
1343
3da0dd43
IE
1344void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345{
8a8365c5 1346 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1347}
1348
8a8365c5 1349static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1350 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1351{
1e3f42f0 1352 u64 *sptep;
79f702a6 1353 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1354 int young = 0;
1355
6316e1c8 1356 /*
3f6d8c8a
XH
1357 * In case of absence of EPT Access and Dirty Bits supports,
1358 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1359 * an EPT mapping, and clearing it if it does. On the next access,
1360 * a new EPT mapping will be established.
1361 * This has some overhead, but not as much as the cost of swapping
1362 * out actively used pages or breaking up actively used hugepages.
1363 */
f395302e
TY
1364 if (!shadow_accessed_mask) {
1365 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 goto out;
1367 }
534e38b4 1368
1e3f42f0
TY
1369 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1371 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1372
3f6d8c8a 1373 if (*sptep & shadow_accessed_mask) {
e930bffe 1374 young = 1;
3f6d8c8a
XH
1375 clear_bit((ffs(shadow_accessed_mask) - 1),
1376 (unsigned long *)sptep);
e930bffe 1377 }
e930bffe 1378 }
f395302e
TY
1379out:
1380 /* @data has hva passed to kvm_age_hva(). */
1381 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1382 return young;
1383}
1384
8ee53820 1385static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1386 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1387{
1e3f42f0
TY
1388 u64 *sptep;
1389 struct rmap_iterator iter;
8ee53820
AA
1390 int young = 0;
1391
1392 /*
1393 * If there's no access bit in the secondary pte set by the
1394 * hardware it's up to gup-fast/gup to set the access bit in
1395 * the primary pte or in the page structure.
1396 */
1397 if (!shadow_accessed_mask)
1398 goto out;
1399
1e3f42f0
TY
1400 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1402 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1403
3f6d8c8a 1404 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1405 young = 1;
1406 break;
1407 }
8ee53820
AA
1408 }
1409out:
1410 return young;
1411}
1412
53a27b39
MT
1413#define RMAP_RECYCLE_THRESHOLD 1000
1414
852e3c19 1415static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1416{
1417 unsigned long *rmapp;
852e3c19
JR
1418 struct kvm_mmu_page *sp;
1419
1420 sp = page_header(__pa(spte));
53a27b39 1421
852e3c19 1422 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1423
048212d0 1424 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426}
1427
e930bffe
AA
1428int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429{
f395302e 1430 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1431}
1432
8ee53820
AA
1433int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434{
1435 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436}
1437
d6c69ee9 1438#ifdef MMU_DEBUG
47ad8e68 1439static int is_empty_shadow_page(u64 *spt)
6aa8b732 1440{
139bdb2d
AK
1441 u64 *pos;
1442 u64 *end;
1443
47ad8e68 1444 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1445 if (is_shadow_present_pte(*pos)) {
b8688d51 1446 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1447 pos, *pos);
6aa8b732 1448 return 0;
139bdb2d 1449 }
6aa8b732
AK
1450 return 1;
1451}
d6c69ee9 1452#endif
6aa8b732 1453
45221ab6
DH
1454/*
1455 * This value is the sum of all of the kvm instances's
1456 * kvm->arch.n_used_mmu_pages values. We need a global,
1457 * aggregate version in order to make the slab shrinker
1458 * faster
1459 */
1460static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461{
1462 kvm->arch.n_used_mmu_pages += nr;
1463 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464}
1465
834be0d8 1466static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1467{
4db35314 1468 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1469 hlist_del(&sp->hash_link);
bd4c86ea
XG
1470 list_del(&sp->link);
1471 free_page((unsigned long)sp->spt);
834be0d8
GN
1472 if (!sp->role.direct)
1473 free_page((unsigned long)sp->gfns);
e8ad9a70 1474 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1475}
1476
cea0f0e7
AK
1477static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478{
1ae0a13d 1479 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1480}
1481
714b93da 1482static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1483 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1484{
cea0f0e7
AK
1485 if (!parent_pte)
1486 return;
cea0f0e7 1487
67052b35 1488 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1489}
1490
4db35314 1491static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1492 u64 *parent_pte)
1493{
67052b35 1494 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1495}
1496
bcdd9a93
XG
1497static void drop_parent_pte(struct kvm_mmu_page *sp,
1498 u64 *parent_pte)
1499{
1500 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1501 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1502}
1503
67052b35
XG
1504static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505 u64 *parent_pte, int direct)
ad8cfbe3 1506{
67052b35 1507 struct kvm_mmu_page *sp;
7ddca7e4 1508
80feb89a
TY
1509 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1511 if (!direct)
80feb89a 1512 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1513 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1514 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1515 sp->parent_ptes = 0;
1516 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1517 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1518 return sp;
ad8cfbe3
MT
1519}
1520
67052b35 1521static void mark_unsync(u64 *spte);
1047df1f 1522static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1523{
67052b35 1524 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1525}
1526
67052b35 1527static void mark_unsync(u64 *spte)
0074ff63 1528{
67052b35 1529 struct kvm_mmu_page *sp;
1047df1f 1530 unsigned int index;
0074ff63 1531
67052b35 1532 sp = page_header(__pa(spte));
1047df1f
XG
1533 index = spte - sp->spt;
1534 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1535 return;
1047df1f 1536 if (sp->unsync_children++)
0074ff63 1537 return;
1047df1f 1538 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1539}
1540
e8bc217a 1541static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1542 struct kvm_mmu_page *sp)
e8bc217a
MT
1543{
1544 return 1;
1545}
1546
a7052897
MT
1547static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1548{
1549}
1550
0f53b5b1
XG
1551static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1552 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1553 const void *pte)
0f53b5b1
XG
1554{
1555 WARN_ON(1);
1556}
1557
60c8aec6
MT
1558#define KVM_PAGE_ARRAY_NR 16
1559
1560struct kvm_mmu_pages {
1561 struct mmu_page_and_offset {
1562 struct kvm_mmu_page *sp;
1563 unsigned int idx;
1564 } page[KVM_PAGE_ARRAY_NR];
1565 unsigned int nr;
1566};
1567
cded19f3
HE
1568static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1569 int idx)
4731d4c7 1570{
60c8aec6 1571 int i;
4731d4c7 1572
60c8aec6
MT
1573 if (sp->unsync)
1574 for (i=0; i < pvec->nr; i++)
1575 if (pvec->page[i].sp == sp)
1576 return 0;
1577
1578 pvec->page[pvec->nr].sp = sp;
1579 pvec->page[pvec->nr].idx = idx;
1580 pvec->nr++;
1581 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1582}
1583
1584static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1585 struct kvm_mmu_pages *pvec)
1586{
1587 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1588
37178b8b 1589 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1590 struct kvm_mmu_page *child;
4731d4c7
MT
1591 u64 ent = sp->spt[i];
1592
7a8f1a74
XG
1593 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1594 goto clear_child_bitmap;
1595
1596 child = page_header(ent & PT64_BASE_ADDR_MASK);
1597
1598 if (child->unsync_children) {
1599 if (mmu_pages_add(pvec, child, i))
1600 return -ENOSPC;
1601
1602 ret = __mmu_unsync_walk(child, pvec);
1603 if (!ret)
1604 goto clear_child_bitmap;
1605 else if (ret > 0)
1606 nr_unsync_leaf += ret;
1607 else
1608 return ret;
1609 } else if (child->unsync) {
1610 nr_unsync_leaf++;
1611 if (mmu_pages_add(pvec, child, i))
1612 return -ENOSPC;
1613 } else
1614 goto clear_child_bitmap;
1615
1616 continue;
1617
1618clear_child_bitmap:
1619 __clear_bit(i, sp->unsync_child_bitmap);
1620 sp->unsync_children--;
1621 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1622 }
1623
4731d4c7 1624
60c8aec6
MT
1625 return nr_unsync_leaf;
1626}
1627
1628static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1629 struct kvm_mmu_pages *pvec)
1630{
1631 if (!sp->unsync_children)
1632 return 0;
1633
1634 mmu_pages_add(pvec, sp, 0);
1635 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1636}
1637
4731d4c7
MT
1638static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1639{
1640 WARN_ON(!sp->unsync);
5e1b3ddb 1641 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1642 sp->unsync = 0;
1643 --kvm->stat.mmu_unsync;
1644}
1645
7775834a
XG
1646static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1647 struct list_head *invalid_list);
1648static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1649 struct list_head *invalid_list);
4731d4c7 1650
1044b030
TY
1651#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1652 hlist_for_each_entry(_sp, \
1653 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1654 if ((_sp)->gfn != (_gfn)) {} else
1655
1656#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1657 for_each_gfn_sp(_kvm, _sp, _gfn) \
1658 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1659
f918b443 1660/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1661static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1662 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1663{
5b7e0102 1664 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1665 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1666 return 1;
1667 }
1668
f918b443 1669 if (clear_unsync)
1d9dc7e0 1670 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1671
a4a8e6f7 1672 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1673 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1674 return 1;
1675 }
1676
1677 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1678 return 0;
1679}
1680
1d9dc7e0
XG
1681static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1682 struct kvm_mmu_page *sp)
1683{
d98ba053 1684 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1685 int ret;
1686
d98ba053 1687 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1688 if (ret)
d98ba053
XG
1689 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1690
1d9dc7e0
XG
1691 return ret;
1692}
1693
e37fa785
XG
1694#ifdef CONFIG_KVM_MMU_AUDIT
1695#include "mmu_audit.c"
1696#else
1697static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1698static void mmu_audit_disable(void) { }
1699#endif
1700
d98ba053
XG
1701static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1702 struct list_head *invalid_list)
1d9dc7e0 1703{
d98ba053 1704 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1705}
1706
9f1a122f
XG
1707/* @gfn should be write-protected at the call site */
1708static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1709{
9f1a122f 1710 struct kvm_mmu_page *s;
d98ba053 1711 LIST_HEAD(invalid_list);
9f1a122f
XG
1712 bool flush = false;
1713
b67bfe0d 1714 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1715 if (!s->unsync)
9f1a122f
XG
1716 continue;
1717
1718 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1719 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1720 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1721 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1722 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1723 continue;
1724 }
9f1a122f
XG
1725 flush = true;
1726 }
1727
d98ba053 1728 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1729 if (flush)
1730 kvm_mmu_flush_tlb(vcpu);
1731}
1732
60c8aec6
MT
1733struct mmu_page_path {
1734 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1735 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1736};
1737
60c8aec6
MT
1738#define for_each_sp(pvec, sp, parents, i) \
1739 for (i = mmu_pages_next(&pvec, &parents, -1), \
1740 sp = pvec.page[i].sp; \
1741 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1742 i = mmu_pages_next(&pvec, &parents, i))
1743
cded19f3
HE
1744static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1745 struct mmu_page_path *parents,
1746 int i)
60c8aec6
MT
1747{
1748 int n;
1749
1750 for (n = i+1; n < pvec->nr; n++) {
1751 struct kvm_mmu_page *sp = pvec->page[n].sp;
1752
1753 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1754 parents->idx[0] = pvec->page[n].idx;
1755 return n;
1756 }
1757
1758 parents->parent[sp->role.level-2] = sp;
1759 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1760 }
1761
1762 return n;
1763}
1764
cded19f3 1765static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1766{
60c8aec6
MT
1767 struct kvm_mmu_page *sp;
1768 unsigned int level = 0;
1769
1770 do {
1771 unsigned int idx = parents->idx[level];
4731d4c7 1772
60c8aec6
MT
1773 sp = parents->parent[level];
1774 if (!sp)
1775 return;
1776
1777 --sp->unsync_children;
1778 WARN_ON((int)sp->unsync_children < 0);
1779 __clear_bit(idx, sp->unsync_child_bitmap);
1780 level++;
1781 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1782}
1783
60c8aec6
MT
1784static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1785 struct mmu_page_path *parents,
1786 struct kvm_mmu_pages *pvec)
4731d4c7 1787{
60c8aec6
MT
1788 parents->parent[parent->role.level-1] = NULL;
1789 pvec->nr = 0;
1790}
4731d4c7 1791
60c8aec6
MT
1792static void mmu_sync_children(struct kvm_vcpu *vcpu,
1793 struct kvm_mmu_page *parent)
1794{
1795 int i;
1796 struct kvm_mmu_page *sp;
1797 struct mmu_page_path parents;
1798 struct kvm_mmu_pages pages;
d98ba053 1799 LIST_HEAD(invalid_list);
60c8aec6
MT
1800
1801 kvm_mmu_pages_init(parent, &parents, &pages);
1802 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1803 bool protected = false;
b1a36821
MT
1804
1805 for_each_sp(pages, sp, parents, i)
1806 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1807
1808 if (protected)
1809 kvm_flush_remote_tlbs(vcpu->kvm);
1810
60c8aec6 1811 for_each_sp(pages, sp, parents, i) {
d98ba053 1812 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1813 mmu_pages_clear_parents(&parents);
1814 }
d98ba053 1815 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1816 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1817 kvm_mmu_pages_init(parent, &parents, &pages);
1818 }
4731d4c7
MT
1819}
1820
c3707958
XG
1821static void init_shadow_page_table(struct kvm_mmu_page *sp)
1822{
1823 int i;
1824
1825 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1826 sp->spt[i] = 0ull;
1827}
1828
a30f47cb
XG
1829static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1830{
1831 sp->write_flooding_count = 0;
1832}
1833
1834static void clear_sp_write_flooding_count(u64 *spte)
1835{
1836 struct kvm_mmu_page *sp = page_header(__pa(spte));
1837
1838 __clear_sp_write_flooding_count(sp);
1839}
1840
cea0f0e7
AK
1841static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1842 gfn_t gfn,
1843 gva_t gaddr,
1844 unsigned level,
f6e2c02b 1845 int direct,
41074d07 1846 unsigned access,
f7d9c7b7 1847 u64 *parent_pte)
cea0f0e7
AK
1848{
1849 union kvm_mmu_page_role role;
cea0f0e7 1850 unsigned quadrant;
9f1a122f 1851 struct kvm_mmu_page *sp;
9f1a122f 1852 bool need_sync = false;
cea0f0e7 1853
a770f6f2 1854 role = vcpu->arch.mmu.base_role;
cea0f0e7 1855 role.level = level;
f6e2c02b 1856 role.direct = direct;
84b0c8c6 1857 if (role.direct)
5b7e0102 1858 role.cr4_pae = 0;
41074d07 1859 role.access = access;
c5a78f2b
JR
1860 if (!vcpu->arch.mmu.direct_map
1861 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1862 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1863 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1864 role.quadrant = quadrant;
1865 }
b67bfe0d 1866 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7ae680eb
XG
1867 if (!need_sync && sp->unsync)
1868 need_sync = true;
4731d4c7 1869
7ae680eb
XG
1870 if (sp->role.word != role.word)
1871 continue;
4731d4c7 1872
7ae680eb
XG
1873 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1874 break;
e02aa901 1875
7ae680eb
XG
1876 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1877 if (sp->unsync_children) {
a8eeb04a 1878 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1879 kvm_mmu_mark_parents_unsync(sp);
1880 } else if (sp->unsync)
1881 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1882
a30f47cb 1883 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1884 trace_kvm_mmu_get_page(sp, false);
1885 return sp;
1886 }
dfc5aa00 1887 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1888 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1889 if (!sp)
1890 return sp;
4db35314
AK
1891 sp->gfn = gfn;
1892 sp->role = role;
7ae680eb
XG
1893 hlist_add_head(&sp->hash_link,
1894 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1895 if (!direct) {
b1a36821
MT
1896 if (rmap_write_protect(vcpu->kvm, gfn))
1897 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1898 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1899 kvm_sync_pages(vcpu, gfn);
1900
4731d4c7
MT
1901 account_shadowed(vcpu->kvm, gfn);
1902 }
c3707958 1903 init_shadow_page_table(sp);
f691fe1d 1904 trace_kvm_mmu_get_page(sp, true);
4db35314 1905 return sp;
cea0f0e7
AK
1906}
1907
2d11123a
AK
1908static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1909 struct kvm_vcpu *vcpu, u64 addr)
1910{
1911 iterator->addr = addr;
1912 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1913 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1914
1915 if (iterator->level == PT64_ROOT_LEVEL &&
1916 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1917 !vcpu->arch.mmu.direct_map)
1918 --iterator->level;
1919
2d11123a
AK
1920 if (iterator->level == PT32E_ROOT_LEVEL) {
1921 iterator->shadow_addr
1922 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1923 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1924 --iterator->level;
1925 if (!iterator->shadow_addr)
1926 iterator->level = 0;
1927 }
1928}
1929
1930static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1931{
1932 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1933 return false;
4d88954d 1934
2d11123a
AK
1935 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1936 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1937 return true;
1938}
1939
c2a2ac2b
XG
1940static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1941 u64 spte)
2d11123a 1942{
c2a2ac2b 1943 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1944 iterator->level = 0;
1945 return;
1946 }
1947
c2a2ac2b 1948 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1949 --iterator->level;
1950}
1951
c2a2ac2b
XG
1952static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1953{
1954 return __shadow_walk_next(iterator, *iterator->sptep);
1955}
1956
32ef26a3
AK
1957static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1958{
1959 u64 spte;
1960
24db2734
XG
1961 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1962 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1963
1df9f2dc 1964 mmu_spte_set(sptep, spte);
32ef26a3
AK
1965}
1966
a357bd22
AK
1967static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1968 unsigned direct_access)
1969{
1970 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1971 struct kvm_mmu_page *child;
1972
1973 /*
1974 * For the direct sp, if the guest pte's dirty bit
1975 * changed form clean to dirty, it will corrupt the
1976 * sp's access: allow writable in the read-only sp,
1977 * so we should update the spte at this point to get
1978 * a new sp with the correct access.
1979 */
1980 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1981 if (child->role.access == direct_access)
1982 return;
1983
bcdd9a93 1984 drop_parent_pte(child, sptep);
a357bd22
AK
1985 kvm_flush_remote_tlbs(vcpu->kvm);
1986 }
1987}
1988
505aef8f 1989static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1990 u64 *spte)
1991{
1992 u64 pte;
1993 struct kvm_mmu_page *child;
1994
1995 pte = *spte;
1996 if (is_shadow_present_pte(pte)) {
505aef8f 1997 if (is_last_spte(pte, sp->role.level)) {
c3707958 1998 drop_spte(kvm, spte);
505aef8f
XG
1999 if (is_large_pte(pte))
2000 --kvm->stat.lpages;
2001 } else {
38e3b2b2 2002 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2003 drop_parent_pte(child, spte);
38e3b2b2 2004 }
505aef8f
XG
2005 return true;
2006 }
2007
2008 if (is_mmio_spte(pte))
ce88decf 2009 mmu_spte_clear_no_track(spte);
c3707958 2010
505aef8f 2011 return false;
38e3b2b2
XG
2012}
2013
90cb0529 2014static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2015 struct kvm_mmu_page *sp)
a436036b 2016{
697fe2e2 2017 unsigned i;
697fe2e2 2018
38e3b2b2
XG
2019 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2020 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2021}
2022
4db35314 2023static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2024{
4db35314 2025 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2026}
2027
31aa2b44 2028static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2029{
1e3f42f0
TY
2030 u64 *sptep;
2031 struct rmap_iterator iter;
a436036b 2032
1e3f42f0
TY
2033 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2034 drop_parent_pte(sp, sptep);
31aa2b44
AK
2035}
2036
60c8aec6 2037static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2038 struct kvm_mmu_page *parent,
2039 struct list_head *invalid_list)
4731d4c7 2040{
60c8aec6
MT
2041 int i, zapped = 0;
2042 struct mmu_page_path parents;
2043 struct kvm_mmu_pages pages;
4731d4c7 2044
60c8aec6 2045 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2046 return 0;
60c8aec6
MT
2047
2048 kvm_mmu_pages_init(parent, &parents, &pages);
2049 while (mmu_unsync_walk(parent, &pages)) {
2050 struct kvm_mmu_page *sp;
2051
2052 for_each_sp(pages, sp, parents, i) {
7775834a 2053 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2054 mmu_pages_clear_parents(&parents);
77662e00 2055 zapped++;
60c8aec6 2056 }
60c8aec6
MT
2057 kvm_mmu_pages_init(parent, &parents, &pages);
2058 }
2059
2060 return zapped;
4731d4c7
MT
2061}
2062
7775834a
XG
2063static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2064 struct list_head *invalid_list)
31aa2b44 2065{
4731d4c7 2066 int ret;
f691fe1d 2067
7775834a 2068 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2069 ++kvm->stat.mmu_shadow_zapped;
7775834a 2070 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2071 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2072 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2073 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2074 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2075 if (sp->unsync)
2076 kvm_unlink_unsync_page(kvm, sp);
4db35314 2077 if (!sp->root_count) {
54a4f023
GJ
2078 /* Count self */
2079 ret++;
7775834a 2080 list_move(&sp->link, invalid_list);
aa6bd187 2081 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2082 } else {
5b5c6a5a 2083 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2084 kvm_reload_remote_mmus(kvm);
2085 }
7775834a
XG
2086
2087 sp->role.invalid = 1;
4731d4c7 2088 return ret;
a436036b
AK
2089}
2090
7775834a
XG
2091static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2092 struct list_head *invalid_list)
2093{
945315b9 2094 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2095
2096 if (list_empty(invalid_list))
2097 return;
2098
c142786c
AK
2099 /*
2100 * wmb: make sure everyone sees our modifications to the page tables
2101 * rmb: make sure we see changes to vcpu->mode
2102 */
2103 smp_mb();
4f022648 2104
c142786c
AK
2105 /*
2106 * Wait for all vcpus to exit guest mode and/or lockless shadow
2107 * page table walks.
2108 */
2109 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2110
945315b9 2111 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2112 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2113 kvm_mmu_free_page(sp);
945315b9 2114 }
7775834a
XG
2115}
2116
5da59607
TY
2117static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2118 struct list_head *invalid_list)
2119{
2120 struct kvm_mmu_page *sp;
2121
2122 if (list_empty(&kvm->arch.active_mmu_pages))
2123 return false;
2124
2125 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2126 struct kvm_mmu_page, link);
2127 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2128
2129 return true;
2130}
2131
82ce2c96
IE
2132/*
2133 * Changing the number of mmu pages allocated to the vm
49d5ca26 2134 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2135 */
49d5ca26 2136void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2137{
d98ba053 2138 LIST_HEAD(invalid_list);
82ce2c96 2139
b34cb590
TY
2140 spin_lock(&kvm->mmu_lock);
2141
49d5ca26 2142 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2143 /* Need to free some mmu pages to achieve the goal. */
2144 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2145 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2146 break;
82ce2c96 2147
aa6bd187 2148 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2149 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2150 }
82ce2c96 2151
49d5ca26 2152 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2153
2154 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2155}
2156
1cb3f3ae 2157int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2158{
4db35314 2159 struct kvm_mmu_page *sp;
d98ba053 2160 LIST_HEAD(invalid_list);
a436036b
AK
2161 int r;
2162
9ad17b10 2163 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2164 r = 0;
1cb3f3ae 2165 spin_lock(&kvm->mmu_lock);
b67bfe0d 2166 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2167 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2168 sp->role.word);
2169 r = 1;
f41d335a 2170 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2171 }
d98ba053 2172 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2173 spin_unlock(&kvm->mmu_lock);
2174
a436036b 2175 return r;
cea0f0e7 2176}
1cb3f3ae 2177EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2178
74be52e3
SY
2179/*
2180 * The function is based on mtrr_type_lookup() in
2181 * arch/x86/kernel/cpu/mtrr/generic.c
2182 */
2183static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2184 u64 start, u64 end)
2185{
2186 int i;
2187 u64 base, mask;
2188 u8 prev_match, curr_match;
2189 int num_var_ranges = KVM_NR_VAR_MTRR;
2190
2191 if (!mtrr_state->enabled)
2192 return 0xFF;
2193
2194 /* Make end inclusive end, instead of exclusive */
2195 end--;
2196
2197 /* Look in fixed ranges. Just return the type as per start */
2198 if (mtrr_state->have_fixed && (start < 0x100000)) {
2199 int idx;
2200
2201 if (start < 0x80000) {
2202 idx = 0;
2203 idx += (start >> 16);
2204 return mtrr_state->fixed_ranges[idx];
2205 } else if (start < 0xC0000) {
2206 idx = 1 * 8;
2207 idx += ((start - 0x80000) >> 14);
2208 return mtrr_state->fixed_ranges[idx];
2209 } else if (start < 0x1000000) {
2210 idx = 3 * 8;
2211 idx += ((start - 0xC0000) >> 12);
2212 return mtrr_state->fixed_ranges[idx];
2213 }
2214 }
2215
2216 /*
2217 * Look in variable ranges
2218 * Look of multiple ranges matching this address and pick type
2219 * as per MTRR precedence
2220 */
2221 if (!(mtrr_state->enabled & 2))
2222 return mtrr_state->def_type;
2223
2224 prev_match = 0xFF;
2225 for (i = 0; i < num_var_ranges; ++i) {
2226 unsigned short start_state, end_state;
2227
2228 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2229 continue;
2230
2231 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2232 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2233 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2234 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2235
2236 start_state = ((start & mask) == (base & mask));
2237 end_state = ((end & mask) == (base & mask));
2238 if (start_state != end_state)
2239 return 0xFE;
2240
2241 if ((start & mask) != (base & mask))
2242 continue;
2243
2244 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2245 if (prev_match == 0xFF) {
2246 prev_match = curr_match;
2247 continue;
2248 }
2249
2250 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2251 curr_match == MTRR_TYPE_UNCACHABLE)
2252 return MTRR_TYPE_UNCACHABLE;
2253
2254 if ((prev_match == MTRR_TYPE_WRBACK &&
2255 curr_match == MTRR_TYPE_WRTHROUGH) ||
2256 (prev_match == MTRR_TYPE_WRTHROUGH &&
2257 curr_match == MTRR_TYPE_WRBACK)) {
2258 prev_match = MTRR_TYPE_WRTHROUGH;
2259 curr_match = MTRR_TYPE_WRTHROUGH;
2260 }
2261
2262 if (prev_match != curr_match)
2263 return MTRR_TYPE_UNCACHABLE;
2264 }
2265
2266 if (prev_match != 0xFF)
2267 return prev_match;
2268
2269 return mtrr_state->def_type;
2270}
2271
4b12f0de 2272u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2273{
2274 u8 mtrr;
2275
2276 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2277 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2278 if (mtrr == 0xfe || mtrr == 0xff)
2279 mtrr = MTRR_TYPE_WRBACK;
2280 return mtrr;
2281}
4b12f0de 2282EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2283
9cf5cf5a
XG
2284static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2285{
2286 trace_kvm_mmu_unsync_page(sp);
2287 ++vcpu->kvm->stat.mmu_unsync;
2288 sp->unsync = 1;
2289
2290 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2291}
2292
2293static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2294{
4731d4c7 2295 struct kvm_mmu_page *s;
9cf5cf5a 2296
b67bfe0d 2297 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2298 if (s->unsync)
4731d4c7 2299 continue;
9cf5cf5a
XG
2300 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2301 __kvm_unsync_page(vcpu, s);
4731d4c7 2302 }
4731d4c7
MT
2303}
2304
2305static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2306 bool can_unsync)
2307{
9cf5cf5a 2308 struct kvm_mmu_page *s;
9cf5cf5a
XG
2309 bool need_unsync = false;
2310
b67bfe0d 2311 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2312 if (!can_unsync)
2313 return 1;
2314
9cf5cf5a 2315 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2316 return 1;
9cf5cf5a 2317
9bb4f6b1 2318 if (!s->unsync)
9cf5cf5a 2319 need_unsync = true;
4731d4c7 2320 }
9cf5cf5a
XG
2321 if (need_unsync)
2322 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2323 return 0;
2324}
2325
d555c333 2326static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2327 unsigned pte_access, int level,
c2d0ee46 2328 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2329 bool can_unsync, bool host_writable)
1c4f1fd6 2330{
6e7d0354 2331 u64 spte;
1e73f9dd 2332 int ret = 0;
64d4d521 2333
ce88decf
XG
2334 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2335 return 0;
2336
982c2565 2337 spte = PT_PRESENT_MASK;
947da538 2338 if (!speculative)
3201b5d9 2339 spte |= shadow_accessed_mask;
640d9b0d 2340
7b52345e
SY
2341 if (pte_access & ACC_EXEC_MASK)
2342 spte |= shadow_x_mask;
2343 else
2344 spte |= shadow_nx_mask;
49fde340 2345
1c4f1fd6 2346 if (pte_access & ACC_USER_MASK)
7b52345e 2347 spte |= shadow_user_mask;
49fde340 2348
852e3c19 2349 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2350 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2351 if (tdp_enabled)
4b12f0de
SY
2352 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2353 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2354
9bdbba13 2355 if (host_writable)
1403283a 2356 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2357 else
2358 pte_access &= ~ACC_WRITE_MASK;
1403283a 2359
35149e21 2360 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2361
c2288505 2362 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2363
c2193463 2364 /*
7751babd
XG
2365 * Other vcpu creates new sp in the window between
2366 * mapping_level() and acquiring mmu-lock. We can
2367 * allow guest to retry the access, the mapping can
2368 * be fixed if guest refault.
c2193463 2369 */
852e3c19 2370 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2371 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2372 goto done;
38187c83 2373
49fde340 2374 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2375
ecc5589f
MT
2376 /*
2377 * Optimization: for pte sync, if spte was writable the hash
2378 * lookup is unnecessary (and expensive). Write protection
2379 * is responsibility of mmu_get_page / kvm_sync_page.
2380 * Same reasoning can be applied to dirty page accounting.
2381 */
8dae4445 2382 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2383 goto set_pte;
2384
4731d4c7 2385 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2386 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2387 __func__, gfn);
1e73f9dd 2388 ret = 1;
1c4f1fd6 2389 pte_access &= ~ACC_WRITE_MASK;
49fde340 2390 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2391 }
2392 }
2393
1c4f1fd6
AK
2394 if (pte_access & ACC_WRITE_MASK)
2395 mark_page_dirty(vcpu->kvm, gfn);
2396
38187c83 2397set_pte:
6e7d0354 2398 if (mmu_spte_update(sptep, spte))
b330aa0c 2399 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2400done:
1e73f9dd
MT
2401 return ret;
2402}
2403
d555c333 2404static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2405 unsigned pte_access, int write_fault, int *emulate,
2406 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2407 bool host_writable)
1e73f9dd
MT
2408{
2409 int was_rmapped = 0;
53a27b39 2410 int rmap_count;
1e73f9dd 2411
f7616203
XG
2412 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2413 *sptep, write_fault, gfn);
1e73f9dd 2414
d555c333 2415 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2416 /*
2417 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2418 * the parent of the now unreachable PTE.
2419 */
852e3c19
JR
2420 if (level > PT_PAGE_TABLE_LEVEL &&
2421 !is_large_pte(*sptep)) {
1e73f9dd 2422 struct kvm_mmu_page *child;
d555c333 2423 u64 pte = *sptep;
1e73f9dd
MT
2424
2425 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2426 drop_parent_pte(child, sptep);
3be2264b 2427 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2428 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2429 pgprintk("hfn old %llx new %llx\n",
d555c333 2430 spte_to_pfn(*sptep), pfn);
c3707958 2431 drop_spte(vcpu->kvm, sptep);
91546356 2432 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2433 } else
2434 was_rmapped = 1;
1e73f9dd 2435 }
852e3c19 2436
c2288505
XG
2437 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2438 true, host_writable)) {
1e73f9dd 2439 if (write_fault)
b90a0e6c 2440 *emulate = 1;
5304efde 2441 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2442 }
1e73f9dd 2443
ce88decf
XG
2444 if (unlikely(is_mmio_spte(*sptep) && emulate))
2445 *emulate = 1;
2446
d555c333 2447 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2448 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2449 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2450 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2451 *sptep, sptep);
d555c333 2452 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2453 ++vcpu->kvm->stat.lpages;
2454
ffb61bb3 2455 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2456 if (!was_rmapped) {
2457 rmap_count = rmap_add(vcpu, sptep, gfn);
2458 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2459 rmap_recycle(vcpu, sptep, gfn);
2460 }
1c4f1fd6 2461 }
cb9aaa30 2462
f3ac1a4b 2463 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2464}
2465
6aa8b732
AK
2466static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2467{
e676505a 2468 mmu_free_roots(vcpu);
6aa8b732
AK
2469}
2470
a052b42b
XG
2471static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2472{
2473 int bit7;
2474
2475 bit7 = (gpte >> 7) & 1;
2476 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2477}
2478
957ed9ef
XG
2479static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2480 bool no_dirty_log)
2481{
2482 struct kvm_memory_slot *slot;
957ed9ef 2483
5d163b1c 2484 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2485 if (!slot)
6c8ee57b 2486 return KVM_PFN_ERR_FAULT;
957ed9ef 2487
037d92dc 2488 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2489}
2490
a052b42b
XG
2491static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2492 struct kvm_mmu_page *sp, u64 *spte,
2493 u64 gpte)
2494{
2495 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2496 goto no_present;
2497
2498 if (!is_present_gpte(gpte))
2499 goto no_present;
2500
2501 if (!(gpte & PT_ACCESSED_MASK))
2502 goto no_present;
2503
2504 return false;
2505
2506no_present:
2507 drop_spte(vcpu->kvm, spte);
2508 return true;
2509}
2510
957ed9ef
XG
2511static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2512 struct kvm_mmu_page *sp,
2513 u64 *start, u64 *end)
2514{
2515 struct page *pages[PTE_PREFETCH_NUM];
2516 unsigned access = sp->role.access;
2517 int i, ret;
2518 gfn_t gfn;
2519
2520 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2521 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2522 return -1;
2523
2524 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2525 if (ret <= 0)
2526 return -1;
2527
2528 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2529 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2530 sp->role.level, gfn, page_to_pfn(pages[i]),
2531 true, true);
957ed9ef
XG
2532
2533 return 0;
2534}
2535
2536static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2537 struct kvm_mmu_page *sp, u64 *sptep)
2538{
2539 u64 *spte, *start = NULL;
2540 int i;
2541
2542 WARN_ON(!sp->role.direct);
2543
2544 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2545 spte = sp->spt + i;
2546
2547 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2548 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2549 if (!start)
2550 continue;
2551 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2552 break;
2553 start = NULL;
2554 } else if (!start)
2555 start = spte;
2556 }
2557}
2558
2559static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2560{
2561 struct kvm_mmu_page *sp;
2562
2563 /*
2564 * Since it's no accessed bit on EPT, it's no way to
2565 * distinguish between actually accessed translations
2566 * and prefetched, so disable pte prefetch if EPT is
2567 * enabled.
2568 */
2569 if (!shadow_accessed_mask)
2570 return;
2571
2572 sp = page_header(__pa(sptep));
2573 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2574 return;
2575
2576 __direct_pte_prefetch(vcpu, sp, sptep);
2577}
2578
9f652d21 2579static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2580 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2581 bool prefault)
140754bc 2582{
9f652d21 2583 struct kvm_shadow_walk_iterator iterator;
140754bc 2584 struct kvm_mmu_page *sp;
b90a0e6c 2585 int emulate = 0;
140754bc 2586 gfn_t pseudo_gfn;
6aa8b732 2587
9f652d21 2588 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2589 if (iterator.level == level) {
f7616203 2590 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2591 write, &emulate, level, gfn, pfn,
2592 prefault, map_writable);
957ed9ef 2593 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2594 ++vcpu->stat.pf_fixed;
2595 break;
6aa8b732
AK
2596 }
2597
c3707958 2598 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2599 u64 base_addr = iterator.addr;
2600
2601 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2602 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2603 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2604 iterator.level - 1,
2605 1, ACC_ALL, iterator.sptep);
140754bc 2606
24db2734 2607 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2608 }
2609 }
b90a0e6c 2610 return emulate;
6aa8b732
AK
2611}
2612
77db5cbd 2613static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2614{
77db5cbd
HY
2615 siginfo_t info;
2616
2617 info.si_signo = SIGBUS;
2618 info.si_errno = 0;
2619 info.si_code = BUS_MCEERR_AR;
2620 info.si_addr = (void __user *)address;
2621 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2622
77db5cbd 2623 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2624}
2625
d7c55201 2626static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2627{
4d8b81ab
XG
2628 /*
2629 * Do not cache the mmio info caused by writing the readonly gfn
2630 * into the spte otherwise read access on readonly gfn also can
2631 * caused mmio page fault and treat it as mmio access.
2632 * Return 1 to tell kvm to emulate it.
2633 */
2634 if (pfn == KVM_PFN_ERR_RO_FAULT)
2635 return 1;
2636
e6c1502b 2637 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2638 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2639 return 0;
d7c55201 2640 }
edba23e5 2641
d7c55201 2642 return -EFAULT;
bf998156
HY
2643}
2644
936a5fe6
AA
2645static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2646 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2647{
2648 pfn_t pfn = *pfnp;
2649 gfn_t gfn = *gfnp;
2650 int level = *levelp;
2651
2652 /*
2653 * Check if it's a transparent hugepage. If this would be an
2654 * hugetlbfs page, level wouldn't be set to
2655 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2656 * here.
2657 */
81c52c56 2658 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2659 level == PT_PAGE_TABLE_LEVEL &&
2660 PageTransCompound(pfn_to_page(pfn)) &&
2661 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2662 unsigned long mask;
2663 /*
2664 * mmu_notifier_retry was successful and we hold the
2665 * mmu_lock here, so the pmd can't become splitting
2666 * from under us, and in turn
2667 * __split_huge_page_refcount() can't run from under
2668 * us and we can safely transfer the refcount from
2669 * PG_tail to PG_head as we switch the pfn to tail to
2670 * head.
2671 */
2672 *levelp = level = PT_DIRECTORY_LEVEL;
2673 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2674 VM_BUG_ON((gfn & mask) != (pfn & mask));
2675 if (pfn & mask) {
2676 gfn &= ~mask;
2677 *gfnp = gfn;
2678 kvm_release_pfn_clean(pfn);
2679 pfn &= ~mask;
c3586667 2680 kvm_get_pfn(pfn);
936a5fe6
AA
2681 *pfnp = pfn;
2682 }
2683 }
2684}
2685
d7c55201
XG
2686static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2687 pfn_t pfn, unsigned access, int *ret_val)
2688{
2689 bool ret = true;
2690
2691 /* The pfn is invalid, report the error! */
81c52c56 2692 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2693 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2694 goto exit;
2695 }
2696
ce88decf 2697 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2698 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2699
2700 ret = false;
2701exit:
2702 return ret;
2703}
2704
c7ba5b48
XG
2705static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2706{
2707 /*
2708 * #PF can be fast only if the shadow page table is present and it
2709 * is caused by write-protect, that means we just need change the
2710 * W bit of the spte which can be done out of mmu-lock.
2711 */
2712 if (!(error_code & PFERR_PRESENT_MASK) ||
2713 !(error_code & PFERR_WRITE_MASK))
2714 return false;
2715
2716 return true;
2717}
2718
2719static bool
2720fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2721{
2722 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2723 gfn_t gfn;
2724
2725 WARN_ON(!sp->role.direct);
2726
2727 /*
2728 * The gfn of direct spte is stable since it is calculated
2729 * by sp->gfn.
2730 */
2731 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2732
2733 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2734 mark_page_dirty(vcpu->kvm, gfn);
2735
2736 return true;
2737}
2738
2739/*
2740 * Return value:
2741 * - true: let the vcpu to access on the same address again.
2742 * - false: let the real page fault path to fix it.
2743 */
2744static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2745 u32 error_code)
2746{
2747 struct kvm_shadow_walk_iterator iterator;
2748 bool ret = false;
2749 u64 spte = 0ull;
2750
2751 if (!page_fault_can_be_fast(vcpu, error_code))
2752 return false;
2753
2754 walk_shadow_page_lockless_begin(vcpu);
2755 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2756 if (!is_shadow_present_pte(spte) || iterator.level < level)
2757 break;
2758
2759 /*
2760 * If the mapping has been changed, let the vcpu fault on the
2761 * same address again.
2762 */
2763 if (!is_rmap_spte(spte)) {
2764 ret = true;
2765 goto exit;
2766 }
2767
2768 if (!is_last_spte(spte, level))
2769 goto exit;
2770
2771 /*
2772 * Check if it is a spurious fault caused by TLB lazily flushed.
2773 *
2774 * Need not check the access of upper level table entries since
2775 * they are always ACC_ALL.
2776 */
2777 if (is_writable_pte(spte)) {
2778 ret = true;
2779 goto exit;
2780 }
2781
2782 /*
2783 * Currently, to simplify the code, only the spte write-protected
2784 * by dirty-log can be fast fixed.
2785 */
2786 if (!spte_is_locklessly_modifiable(spte))
2787 goto exit;
2788
2789 /*
2790 * Currently, fast page fault only works for direct mapping since
2791 * the gfn is not stable for indirect shadow page.
2792 * See Documentation/virtual/kvm/locking.txt to get more detail.
2793 */
2794 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2795exit:
a72faf25
XG
2796 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2797 spte, ret);
c7ba5b48
XG
2798 walk_shadow_page_lockless_end(vcpu);
2799
2800 return ret;
2801}
2802
78b2c54a 2803static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2804 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2805static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2806
c7ba5b48
XG
2807static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2808 gfn_t gfn, bool prefault)
10589a46
MT
2809{
2810 int r;
852e3c19 2811 int level;
936a5fe6 2812 int force_pt_level;
35149e21 2813 pfn_t pfn;
e930bffe 2814 unsigned long mmu_seq;
c7ba5b48 2815 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2816
936a5fe6
AA
2817 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2818 if (likely(!force_pt_level)) {
2819 level = mapping_level(vcpu, gfn);
2820 /*
2821 * This path builds a PAE pagetable - so we can map
2822 * 2mb pages at maximum. Therefore check if the level
2823 * is larger than that.
2824 */
2825 if (level > PT_DIRECTORY_LEVEL)
2826 level = PT_DIRECTORY_LEVEL;
852e3c19 2827
936a5fe6
AA
2828 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2829 } else
2830 level = PT_PAGE_TABLE_LEVEL;
05da4558 2831
c7ba5b48
XG
2832 if (fast_page_fault(vcpu, v, level, error_code))
2833 return 0;
2834
e930bffe 2835 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2836 smp_rmb();
060c2abe 2837
78b2c54a 2838 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2839 return 0;
aaee2c94 2840
d7c55201
XG
2841 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2842 return r;
d196e343 2843
aaee2c94 2844 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2845 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2846 goto out_unlock;
450e0b41 2847 make_mmu_pages_available(vcpu);
936a5fe6
AA
2848 if (likely(!force_pt_level))
2849 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2850 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2851 prefault);
aaee2c94
MT
2852 spin_unlock(&vcpu->kvm->mmu_lock);
2853
aaee2c94 2854
10589a46 2855 return r;
e930bffe
AA
2856
2857out_unlock:
2858 spin_unlock(&vcpu->kvm->mmu_lock);
2859 kvm_release_pfn_clean(pfn);
2860 return 0;
10589a46
MT
2861}
2862
2863
17ac10ad
AK
2864static void mmu_free_roots(struct kvm_vcpu *vcpu)
2865{
2866 int i;
4db35314 2867 struct kvm_mmu_page *sp;
d98ba053 2868 LIST_HEAD(invalid_list);
17ac10ad 2869
ad312c7c 2870 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2871 return;
aaee2c94 2872 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2873 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2874 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2875 vcpu->arch.mmu.direct_map)) {
ad312c7c 2876 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2877
4db35314
AK
2878 sp = page_header(root);
2879 --sp->root_count;
d98ba053
XG
2880 if (!sp->root_count && sp->role.invalid) {
2881 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2882 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2883 }
ad312c7c 2884 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2885 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2886 return;
2887 }
17ac10ad 2888 for (i = 0; i < 4; ++i) {
ad312c7c 2889 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2890
417726a3 2891 if (root) {
417726a3 2892 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2893 sp = page_header(root);
2894 --sp->root_count;
2e53d63a 2895 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2896 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2897 &invalid_list);
417726a3 2898 }
ad312c7c 2899 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2900 }
d98ba053 2901 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2902 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2903 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2904}
2905
8986ecc0
MT
2906static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2907{
2908 int ret = 0;
2909
2910 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2911 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2912 ret = 1;
2913 }
2914
2915 return ret;
2916}
2917
651dd37a
JR
2918static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2919{
2920 struct kvm_mmu_page *sp;
7ebaf15e 2921 unsigned i;
651dd37a
JR
2922
2923 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2924 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 2925 make_mmu_pages_available(vcpu);
651dd37a
JR
2926 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2927 1, ACC_ALL, NULL);
2928 ++sp->root_count;
2929 spin_unlock(&vcpu->kvm->mmu_lock);
2930 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2931 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2932 for (i = 0; i < 4; ++i) {
2933 hpa_t root = vcpu->arch.mmu.pae_root[i];
2934
2935 ASSERT(!VALID_PAGE(root));
2936 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 2937 make_mmu_pages_available(vcpu);
649497d1
AK
2938 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2939 i << 30,
651dd37a
JR
2940 PT32_ROOT_LEVEL, 1, ACC_ALL,
2941 NULL);
2942 root = __pa(sp->spt);
2943 ++sp->root_count;
2944 spin_unlock(&vcpu->kvm->mmu_lock);
2945 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2946 }
6292757f 2947 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2948 } else
2949 BUG();
2950
2951 return 0;
2952}
2953
2954static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2955{
4db35314 2956 struct kvm_mmu_page *sp;
81407ca5
JR
2957 u64 pdptr, pm_mask;
2958 gfn_t root_gfn;
2959 int i;
3bb65a22 2960
5777ed34 2961 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2962
651dd37a
JR
2963 if (mmu_check_root(vcpu, root_gfn))
2964 return 1;
2965
2966 /*
2967 * Do we shadow a long mode page table? If so we need to
2968 * write-protect the guests page table root.
2969 */
2970 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2971 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2972
2973 ASSERT(!VALID_PAGE(root));
651dd37a 2974
8facbbff 2975 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 2976 make_mmu_pages_available(vcpu);
651dd37a
JR
2977 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2978 0, ACC_ALL, NULL);
4db35314
AK
2979 root = __pa(sp->spt);
2980 ++sp->root_count;
8facbbff 2981 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2982 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2983 return 0;
17ac10ad 2984 }
f87f9288 2985
651dd37a
JR
2986 /*
2987 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2988 * or a PAE 3-level page table. In either case we need to be aware that
2989 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2990 */
81407ca5
JR
2991 pm_mask = PT_PRESENT_MASK;
2992 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2993 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2994
17ac10ad 2995 for (i = 0; i < 4; ++i) {
ad312c7c 2996 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2997
2998 ASSERT(!VALID_PAGE(root));
ad312c7c 2999 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3000 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3001 if (!is_present_gpte(pdptr)) {
ad312c7c 3002 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3003 continue;
3004 }
6de4f3ad 3005 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3006 if (mmu_check_root(vcpu, root_gfn))
3007 return 1;
5a7388c2 3008 }
8facbbff 3009 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3010 make_mmu_pages_available(vcpu);
4db35314 3011 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3012 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3013 ACC_ALL, NULL);
4db35314
AK
3014 root = __pa(sp->spt);
3015 ++sp->root_count;
8facbbff
AK
3016 spin_unlock(&vcpu->kvm->mmu_lock);
3017
81407ca5 3018 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3019 }
6292757f 3020 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3021
3022 /*
3023 * If we shadow a 32 bit page table with a long mode page
3024 * table we enter this path.
3025 */
3026 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3027 if (vcpu->arch.mmu.lm_root == NULL) {
3028 /*
3029 * The additional page necessary for this is only
3030 * allocated on demand.
3031 */
3032
3033 u64 *lm_root;
3034
3035 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3036 if (lm_root == NULL)
3037 return 1;
3038
3039 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3040
3041 vcpu->arch.mmu.lm_root = lm_root;
3042 }
3043
3044 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3045 }
3046
8986ecc0 3047 return 0;
17ac10ad
AK
3048}
3049
651dd37a
JR
3050static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3051{
3052 if (vcpu->arch.mmu.direct_map)
3053 return mmu_alloc_direct_roots(vcpu);
3054 else
3055 return mmu_alloc_shadow_roots(vcpu);
3056}
3057
0ba73cda
MT
3058static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3059{
3060 int i;
3061 struct kvm_mmu_page *sp;
3062
81407ca5
JR
3063 if (vcpu->arch.mmu.direct_map)
3064 return;
3065
0ba73cda
MT
3066 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3067 return;
6903074c 3068
bebb106a 3069 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3070 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3071 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3072 hpa_t root = vcpu->arch.mmu.root_hpa;
3073 sp = page_header(root);
3074 mmu_sync_children(vcpu, sp);
0375f7fa 3075 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3076 return;
3077 }
3078 for (i = 0; i < 4; ++i) {
3079 hpa_t root = vcpu->arch.mmu.pae_root[i];
3080
8986ecc0 3081 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3082 root &= PT64_BASE_ADDR_MASK;
3083 sp = page_header(root);
3084 mmu_sync_children(vcpu, sp);
3085 }
3086 }
0375f7fa 3087 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3088}
3089
3090void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3091{
3092 spin_lock(&vcpu->kvm->mmu_lock);
3093 mmu_sync_roots(vcpu);
6cffe8ca 3094 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3095}
3096
1871c602 3097static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3098 u32 access, struct x86_exception *exception)
6aa8b732 3099{
ab9ae313
AK
3100 if (exception)
3101 exception->error_code = 0;
6aa8b732
AK
3102 return vaddr;
3103}
3104
6539e738 3105static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3106 u32 access,
3107 struct x86_exception *exception)
6539e738 3108{
ab9ae313
AK
3109 if (exception)
3110 exception->error_code = 0;
6539e738
JR
3111 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3112}
3113
ce88decf
XG
3114static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3115{
3116 if (direct)
3117 return vcpu_match_mmio_gpa(vcpu, addr);
3118
3119 return vcpu_match_mmio_gva(vcpu, addr);
3120}
3121
3122
3123/*
3124 * On direct hosts, the last spte is only allows two states
3125 * for mmio page fault:
3126 * - It is the mmio spte
3127 * - It is zapped or it is being zapped.
3128 *
3129 * This function completely checks the spte when the last spte
3130 * is not the mmio spte.
3131 */
3132static bool check_direct_spte_mmio_pf(u64 spte)
3133{
3134 return __check_direct_spte_mmio_pf(spte);
3135}
3136
3137static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3138{
3139 struct kvm_shadow_walk_iterator iterator;
3140 u64 spte = 0ull;
3141
3142 walk_shadow_page_lockless_begin(vcpu);
3143 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3144 if (!is_shadow_present_pte(spte))
3145 break;
3146 walk_shadow_page_lockless_end(vcpu);
3147
3148 return spte;
3149}
3150
3151/*
3152 * If it is a real mmio page fault, return 1 and emulat the instruction
3153 * directly, return 0 to let CPU fault again on the address, -1 is
3154 * returned if bug is detected.
3155 */
3156int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3157{
3158 u64 spte;
3159
3160 if (quickly_check_mmio_pf(vcpu, addr, direct))
3161 return 1;
3162
3163 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3164
3165 if (is_mmio_spte(spte)) {
3166 gfn_t gfn = get_mmio_spte_gfn(spte);
3167 unsigned access = get_mmio_spte_access(spte);
3168
3169 if (direct)
3170 addr = 0;
4f022648
XG
3171
3172 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3173 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3174 return 1;
3175 }
3176
3177 /*
3178 * It's ok if the gva is remapped by other cpus on shadow guest,
3179 * it's a BUG if the gfn is not a mmio page.
3180 */
3181 if (direct && !check_direct_spte_mmio_pf(spte))
3182 return -1;
3183
3184 /*
3185 * If the page table is zapped by other cpus, let CPU fault again on
3186 * the address.
3187 */
3188 return 0;
3189}
3190EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3191
3192static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3193 u32 error_code, bool direct)
3194{
3195 int ret;
3196
3197 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3198 WARN_ON(ret < 0);
3199 return ret;
3200}
3201
6aa8b732 3202static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3203 u32 error_code, bool prefault)
6aa8b732 3204{
e833240f 3205 gfn_t gfn;
e2dec939 3206 int r;
6aa8b732 3207
b8688d51 3208 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3209
3210 if (unlikely(error_code & PFERR_RSVD_MASK))
3211 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3212
e2dec939
AK
3213 r = mmu_topup_memory_caches(vcpu);
3214 if (r)
3215 return r;
714b93da 3216
6aa8b732 3217 ASSERT(vcpu);
ad312c7c 3218 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3219
e833240f 3220 gfn = gva >> PAGE_SHIFT;
6aa8b732 3221
e833240f 3222 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3223 error_code, gfn, prefault);
6aa8b732
AK
3224}
3225
7e1fbeac 3226static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3227{
3228 struct kvm_arch_async_pf arch;
fb67e14f 3229
7c90705b 3230 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3231 arch.gfn = gfn;
c4806acd 3232 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3233 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3234
3235 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3236}
3237
3238static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3239{
3240 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3241 kvm_event_needs_reinjection(vcpu)))
3242 return false;
3243
3244 return kvm_x86_ops->interrupt_allowed(vcpu);
3245}
3246
78b2c54a 3247static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3248 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3249{
3250 bool async;
3251
612819c3 3252 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3253
3254 if (!async)
3255 return false; /* *pfn has correct page already */
3256
78b2c54a 3257 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3258 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3259 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3260 trace_kvm_async_pf_doublefault(gva, gfn);
3261 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3262 return true;
3263 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3264 return true;
3265 }
3266
612819c3 3267 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3268
3269 return false;
3270}
3271
56028d08 3272static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3273 bool prefault)
fb72d167 3274{
35149e21 3275 pfn_t pfn;
fb72d167 3276 int r;
852e3c19 3277 int level;
936a5fe6 3278 int force_pt_level;
05da4558 3279 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3280 unsigned long mmu_seq;
612819c3
MT
3281 int write = error_code & PFERR_WRITE_MASK;
3282 bool map_writable;
fb72d167
JR
3283
3284 ASSERT(vcpu);
3285 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3286
ce88decf
XG
3287 if (unlikely(error_code & PFERR_RSVD_MASK))
3288 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3289
fb72d167
JR
3290 r = mmu_topup_memory_caches(vcpu);
3291 if (r)
3292 return r;
3293
936a5fe6
AA
3294 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3295 if (likely(!force_pt_level)) {
3296 level = mapping_level(vcpu, gfn);
3297 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3298 } else
3299 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3300
c7ba5b48
XG
3301 if (fast_page_fault(vcpu, gpa, level, error_code))
3302 return 0;
3303
e930bffe 3304 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3305 smp_rmb();
af585b92 3306
78b2c54a 3307 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3308 return 0;
3309
d7c55201
XG
3310 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3311 return r;
3312
fb72d167 3313 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3314 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3315 goto out_unlock;
450e0b41 3316 make_mmu_pages_available(vcpu);
936a5fe6
AA
3317 if (likely(!force_pt_level))
3318 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3319 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3320 level, gfn, pfn, prefault);
fb72d167 3321 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3322
3323 return r;
e930bffe
AA
3324
3325out_unlock:
3326 spin_unlock(&vcpu->kvm->mmu_lock);
3327 kvm_release_pfn_clean(pfn);
3328 return 0;
fb72d167
JR
3329}
3330
6aa8b732
AK
3331static void nonpaging_free(struct kvm_vcpu *vcpu)
3332{
17ac10ad 3333 mmu_free_roots(vcpu);
6aa8b732
AK
3334}
3335
52fde8df
JR
3336static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3337 struct kvm_mmu *context)
6aa8b732 3338{
6aa8b732
AK
3339 context->new_cr3 = nonpaging_new_cr3;
3340 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3341 context->gva_to_gpa = nonpaging_gva_to_gpa;
3342 context->free = nonpaging_free;
e8bc217a 3343 context->sync_page = nonpaging_sync_page;
a7052897 3344 context->invlpg = nonpaging_invlpg;
0f53b5b1 3345 context->update_pte = nonpaging_update_pte;
cea0f0e7 3346 context->root_level = 0;
6aa8b732 3347 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3348 context->root_hpa = INVALID_PAGE;
c5a78f2b 3349 context->direct_map = true;
2d48a985 3350 context->nx = false;
6aa8b732
AK
3351 return 0;
3352}
3353
d835dfec 3354void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3355{
1165f5fe 3356 ++vcpu->stat.tlb_flush;
a8eeb04a 3357 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3358}
3359
3360static void paging_new_cr3(struct kvm_vcpu *vcpu)
3361{
9f8fe504 3362 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3363 mmu_free_roots(vcpu);
6aa8b732
AK
3364}
3365
5777ed34
JR
3366static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3367{
9f8fe504 3368 return kvm_read_cr3(vcpu);
5777ed34
JR
3369}
3370
6389ee94
AK
3371static void inject_page_fault(struct kvm_vcpu *vcpu,
3372 struct x86_exception *fault)
6aa8b732 3373{
6389ee94 3374 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3375}
3376
6aa8b732
AK
3377static void paging_free(struct kvm_vcpu *vcpu)
3378{
3379 nonpaging_free(vcpu);
3380}
3381
8ea667f2
AK
3382static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3383{
3384 unsigned mask;
3385
3386 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3387
3388 mask = (unsigned)~ACC_WRITE_MASK;
3389 /* Allow write access to dirty gptes */
3390 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3391 *access &= mask;
3392}
3393
ce88decf
XG
3394static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3395 int *nr_present)
3396{
3397 if (unlikely(is_mmio_spte(*sptep))) {
3398 if (gfn != get_mmio_spte_gfn(*sptep)) {
3399 mmu_spte_clear_no_track(sptep);
3400 return true;
3401 }
3402
3403 (*nr_present)++;
3404 mark_mmio_spte(sptep, gfn, access);
3405 return true;
3406 }
3407
3408 return false;
3409}
3410
3d34adec
AK
3411static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3412{
3413 unsigned access;
3414
3415 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3416 access &= ~(gpte >> PT64_NX_SHIFT);
3417
3418 return access;
3419}
3420
6fd01b71
AK
3421static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3422{
3423 unsigned index;
3424
3425 index = level - 1;
3426 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3427 return mmu->last_pte_bitmap & (1 << index);
3428}
3429
6aa8b732
AK
3430#define PTTYPE 64
3431#include "paging_tmpl.h"
3432#undef PTTYPE
3433
3434#define PTTYPE 32
3435#include "paging_tmpl.h"
3436#undef PTTYPE
3437
52fde8df 3438static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3439 struct kvm_mmu *context)
82725b20 3440{
82725b20
DE
3441 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3442 u64 exb_bit_rsvd = 0;
3443
2d48a985 3444 if (!context->nx)
82725b20 3445 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3446 switch (context->root_level) {
82725b20
DE
3447 case PT32_ROOT_LEVEL:
3448 /* no rsvd bits for 2 level 4K page table entries */
3449 context->rsvd_bits_mask[0][1] = 0;
3450 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3451 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3452
3453 if (!is_pse(vcpu)) {
3454 context->rsvd_bits_mask[1][1] = 0;
3455 break;
3456 }
3457
82725b20
DE
3458 if (is_cpuid_PSE36())
3459 /* 36bits PSE 4MB page */
3460 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3461 else
3462 /* 32 bits PSE 4MB page */
3463 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3464 break;
3465 case PT32E_ROOT_LEVEL:
20c466b5
DE
3466 context->rsvd_bits_mask[0][2] =
3467 rsvd_bits(maxphyaddr, 63) |
3468 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3469 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3470 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3471 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3472 rsvd_bits(maxphyaddr, 62); /* PTE */
3473 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3474 rsvd_bits(maxphyaddr, 62) |
3475 rsvd_bits(13, 20); /* large page */
f815bce8 3476 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3477 break;
3478 case PT64_ROOT_LEVEL:
3479 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3480 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3481 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3482 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3483 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3484 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3485 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3486 rsvd_bits(maxphyaddr, 51);
3487 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3488 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3489 rsvd_bits(maxphyaddr, 51) |
3490 rsvd_bits(13, 29);
82725b20 3491 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3492 rsvd_bits(maxphyaddr, 51) |
3493 rsvd_bits(13, 20); /* large page */
f815bce8 3494 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3495 break;
3496 }
3497}
3498
97d64b78
AK
3499static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3500{
3501 unsigned bit, byte, pfec;
3502 u8 map;
3503 bool fault, x, w, u, wf, uf, ff, smep;
3504
3505 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3506 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3507 pfec = byte << 1;
3508 map = 0;
3509 wf = pfec & PFERR_WRITE_MASK;
3510 uf = pfec & PFERR_USER_MASK;
3511 ff = pfec & PFERR_FETCH_MASK;
3512 for (bit = 0; bit < 8; ++bit) {
3513 x = bit & ACC_EXEC_MASK;
3514 w = bit & ACC_WRITE_MASK;
3515 u = bit & ACC_USER_MASK;
3516
3517 /* Not really needed: !nx will cause pte.nx to fault */
3518 x |= !mmu->nx;
3519 /* Allow supervisor writes if !cr0.wp */
3520 w |= !is_write_protection(vcpu) && !uf;
3521 /* Disallow supervisor fetches of user code if cr4.smep */
3522 x &= !(smep && u && !uf);
3523
3524 fault = (ff && !x) || (uf && !u) || (wf && !w);
3525 map |= fault << bit;
3526 }
3527 mmu->permissions[byte] = map;
3528 }
3529}
3530
6fd01b71
AK
3531static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3532{
3533 u8 map;
3534 unsigned level, root_level = mmu->root_level;
3535 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3536
3537 if (root_level == PT32E_ROOT_LEVEL)
3538 --root_level;
3539 /* PT_PAGE_TABLE_LEVEL always terminates */
3540 map = 1 | (1 << ps_set_index);
3541 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3542 if (level <= PT_PDPE_LEVEL
3543 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3544 map |= 1 << (ps_set_index | (level - 1));
3545 }
3546 mmu->last_pte_bitmap = map;
3547}
3548
52fde8df
JR
3549static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3550 struct kvm_mmu *context,
3551 int level)
6aa8b732 3552{
2d48a985 3553 context->nx = is_nx(vcpu);
4d6931c3 3554 context->root_level = level;
2d48a985 3555
4d6931c3 3556 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3557 update_permission_bitmask(vcpu, context);
6fd01b71 3558 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3559
3560 ASSERT(is_pae(vcpu));
3561 context->new_cr3 = paging_new_cr3;
3562 context->page_fault = paging64_page_fault;
6aa8b732 3563 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3564 context->sync_page = paging64_sync_page;
a7052897 3565 context->invlpg = paging64_invlpg;
0f53b5b1 3566 context->update_pte = paging64_update_pte;
6aa8b732 3567 context->free = paging_free;
17ac10ad 3568 context->shadow_root_level = level;
17c3ba9d 3569 context->root_hpa = INVALID_PAGE;
c5a78f2b 3570 context->direct_map = false;
6aa8b732
AK
3571 return 0;
3572}
3573
52fde8df
JR
3574static int paging64_init_context(struct kvm_vcpu *vcpu,
3575 struct kvm_mmu *context)
17ac10ad 3576{
52fde8df 3577 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3578}
3579
52fde8df
JR
3580static int paging32_init_context(struct kvm_vcpu *vcpu,
3581 struct kvm_mmu *context)
6aa8b732 3582{
2d48a985 3583 context->nx = false;
4d6931c3 3584 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3585
4d6931c3 3586 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3587 update_permission_bitmask(vcpu, context);
6fd01b71 3588 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3589
3590 context->new_cr3 = paging_new_cr3;
3591 context->page_fault = paging32_page_fault;
6aa8b732
AK
3592 context->gva_to_gpa = paging32_gva_to_gpa;
3593 context->free = paging_free;
e8bc217a 3594 context->sync_page = paging32_sync_page;
a7052897 3595 context->invlpg = paging32_invlpg;
0f53b5b1 3596 context->update_pte = paging32_update_pte;
6aa8b732 3597 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3598 context->root_hpa = INVALID_PAGE;
c5a78f2b 3599 context->direct_map = false;
6aa8b732
AK
3600 return 0;
3601}
3602
52fde8df
JR
3603static int paging32E_init_context(struct kvm_vcpu *vcpu,
3604 struct kvm_mmu *context)
6aa8b732 3605{
52fde8df 3606 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3607}
3608
fb72d167
JR
3609static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3610{
14dfe855 3611 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3612
c445f8ef 3613 context->base_role.word = 0;
fb72d167
JR
3614 context->new_cr3 = nonpaging_new_cr3;
3615 context->page_fault = tdp_page_fault;
3616 context->free = nonpaging_free;
e8bc217a 3617 context->sync_page = nonpaging_sync_page;
a7052897 3618 context->invlpg = nonpaging_invlpg;
0f53b5b1 3619 context->update_pte = nonpaging_update_pte;
67253af5 3620 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3621 context->root_hpa = INVALID_PAGE;
c5a78f2b 3622 context->direct_map = true;
1c97f0a0 3623 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3624 context->get_cr3 = get_cr3;
e4e517b4 3625 context->get_pdptr = kvm_pdptr_read;
cb659db8 3626 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3627
3628 if (!is_paging(vcpu)) {
2d48a985 3629 context->nx = false;
fb72d167
JR
3630 context->gva_to_gpa = nonpaging_gva_to_gpa;
3631 context->root_level = 0;
3632 } else if (is_long_mode(vcpu)) {
2d48a985 3633 context->nx = is_nx(vcpu);
fb72d167 3634 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3635 reset_rsvds_bits_mask(vcpu, context);
3636 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3637 } else if (is_pae(vcpu)) {
2d48a985 3638 context->nx = is_nx(vcpu);
fb72d167 3639 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3640 reset_rsvds_bits_mask(vcpu, context);
3641 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3642 } else {
2d48a985 3643 context->nx = false;
fb72d167 3644 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3645 reset_rsvds_bits_mask(vcpu, context);
3646 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3647 }
3648
97d64b78 3649 update_permission_bitmask(vcpu, context);
6fd01b71 3650 update_last_pte_bitmap(vcpu, context);
97d64b78 3651
fb72d167
JR
3652 return 0;
3653}
3654
52fde8df 3655int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3656{
a770f6f2 3657 int r;
411c588d 3658 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3659 ASSERT(vcpu);
ad312c7c 3660 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3661
3662 if (!is_paging(vcpu))
52fde8df 3663 r = nonpaging_init_context(vcpu, context);
a9058ecd 3664 else if (is_long_mode(vcpu))
52fde8df 3665 r = paging64_init_context(vcpu, context);
6aa8b732 3666 else if (is_pae(vcpu))
52fde8df 3667 r = paging32E_init_context(vcpu, context);
6aa8b732 3668 else
52fde8df 3669 r = paging32_init_context(vcpu, context);
a770f6f2 3670
2c9afa52 3671 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3672 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3673 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3674 vcpu->arch.mmu.base_role.smep_andnot_wp
3675 = smep && !is_write_protection(vcpu);
52fde8df
JR
3676
3677 return r;
3678}
3679EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3680
3681static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3682{
14dfe855 3683 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3684
14dfe855
JR
3685 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3686 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3687 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3688 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3689
3690 return r;
6aa8b732
AK
3691}
3692
02f59dc9
JR
3693static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3694{
3695 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3696
3697 g_context->get_cr3 = get_cr3;
e4e517b4 3698 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3699 g_context->inject_page_fault = kvm_inject_page_fault;
3700
3701 /*
3702 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3703 * translation of l2_gpa to l1_gpa addresses is done using the
3704 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3705 * functions between mmu and nested_mmu are swapped.
3706 */
3707 if (!is_paging(vcpu)) {
2d48a985 3708 g_context->nx = false;
02f59dc9
JR
3709 g_context->root_level = 0;
3710 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3711 } else if (is_long_mode(vcpu)) {
2d48a985 3712 g_context->nx = is_nx(vcpu);
02f59dc9 3713 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3714 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3715 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3716 } else if (is_pae(vcpu)) {
2d48a985 3717 g_context->nx = is_nx(vcpu);
02f59dc9 3718 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3719 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3720 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3721 } else {
2d48a985 3722 g_context->nx = false;
02f59dc9 3723 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3724 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3725 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3726 }
3727
97d64b78 3728 update_permission_bitmask(vcpu, g_context);
6fd01b71 3729 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3730
02f59dc9
JR
3731 return 0;
3732}
3733
fb72d167
JR
3734static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3735{
02f59dc9
JR
3736 if (mmu_is_nested(vcpu))
3737 return init_kvm_nested_mmu(vcpu);
3738 else if (tdp_enabled)
fb72d167
JR
3739 return init_kvm_tdp_mmu(vcpu);
3740 else
3741 return init_kvm_softmmu(vcpu);
3742}
3743
6aa8b732
AK
3744static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3745{
3746 ASSERT(vcpu);
62ad0755
SY
3747 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3748 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3749 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3750}
3751
3752int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3753{
3754 destroy_kvm_mmu(vcpu);
f8f7e5ee 3755 return init_kvm_mmu(vcpu);
17c3ba9d 3756}
8668a3c4 3757EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3758
3759int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3760{
714b93da
AK
3761 int r;
3762
e2dec939 3763 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3764 if (r)
3765 goto out;
8986ecc0 3766 r = mmu_alloc_roots(vcpu);
e2858b4a 3767 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3768 if (r)
3769 goto out;
3662cb1c 3770 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3771 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3772out:
3773 return r;
6aa8b732 3774}
17c3ba9d
AK
3775EXPORT_SYMBOL_GPL(kvm_mmu_load);
3776
3777void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3778{
3779 mmu_free_roots(vcpu);
3780}
4b16184c 3781EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3782
0028425f 3783static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3784 struct kvm_mmu_page *sp, u64 *spte,
3785 const void *new)
0028425f 3786{
30945387 3787 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3788 ++vcpu->kvm->stat.mmu_pde_zapped;
3789 return;
30945387 3790 }
0028425f 3791
4cee5764 3792 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3793 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3794}
3795
79539cec
AK
3796static bool need_remote_flush(u64 old, u64 new)
3797{
3798 if (!is_shadow_present_pte(old))
3799 return false;
3800 if (!is_shadow_present_pte(new))
3801 return true;
3802 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3803 return true;
3804 old ^= PT64_NX_MASK;
3805 new ^= PT64_NX_MASK;
3806 return (old & ~new & PT64_PERM_MASK) != 0;
3807}
3808
0671a8e7
XG
3809static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3810 bool remote_flush, bool local_flush)
79539cec 3811{
0671a8e7
XG
3812 if (zap_page)
3813 return;
3814
3815 if (remote_flush)
79539cec 3816 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3817 else if (local_flush)
79539cec
AK
3818 kvm_mmu_flush_tlb(vcpu);
3819}
3820
889e5cbc
XG
3821static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3822 const u8 *new, int *bytes)
da4a00f0 3823{
889e5cbc
XG
3824 u64 gentry;
3825 int r;
72016f3a 3826
72016f3a
AK
3827 /*
3828 * Assume that the pte write on a page table of the same type
49b26e26
XG
3829 * as the current vcpu paging mode since we update the sptes only
3830 * when they have the same mode.
72016f3a 3831 */
889e5cbc 3832 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3833 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3834 *gpa &= ~(gpa_t)7;
3835 *bytes = 8;
116eb3d3 3836 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3837 if (r)
3838 gentry = 0;
08e850c6
AK
3839 new = (const u8 *)&gentry;
3840 }
3841
889e5cbc 3842 switch (*bytes) {
08e850c6
AK
3843 case 4:
3844 gentry = *(const u32 *)new;
3845 break;
3846 case 8:
3847 gentry = *(const u64 *)new;
3848 break;
3849 default:
3850 gentry = 0;
3851 break;
72016f3a
AK
3852 }
3853
889e5cbc
XG
3854 return gentry;
3855}
3856
3857/*
3858 * If we're seeing too many writes to a page, it may no longer be a page table,
3859 * or we may be forking, in which case it is better to unmap the page.
3860 */
a138fe75 3861static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3862{
a30f47cb
XG
3863 /*
3864 * Skip write-flooding detected for the sp whose level is 1, because
3865 * it can become unsync, then the guest page is not write-protected.
3866 */
f71fa31f 3867 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3868 return false;
3246af0e 3869
a30f47cb 3870 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3871}
3872
3873/*
3874 * Misaligned accesses are too much trouble to fix up; also, they usually
3875 * indicate a page is not used as a page table.
3876 */
3877static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3878 int bytes)
3879{
3880 unsigned offset, pte_size, misaligned;
3881
3882 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3883 gpa, bytes, sp->role.word);
3884
3885 offset = offset_in_page(gpa);
3886 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3887
3888 /*
3889 * Sometimes, the OS only writes the last one bytes to update status
3890 * bits, for example, in linux, andb instruction is used in clear_bit().
3891 */
3892 if (!(offset & (pte_size - 1)) && bytes == 1)
3893 return false;
3894
889e5cbc
XG
3895 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3896 misaligned |= bytes < 4;
3897
3898 return misaligned;
3899}
3900
3901static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3902{
3903 unsigned page_offset, quadrant;
3904 u64 *spte;
3905 int level;
3906
3907 page_offset = offset_in_page(gpa);
3908 level = sp->role.level;
3909 *nspte = 1;
3910 if (!sp->role.cr4_pae) {
3911 page_offset <<= 1; /* 32->64 */
3912 /*
3913 * A 32-bit pde maps 4MB while the shadow pdes map
3914 * only 2MB. So we need to double the offset again
3915 * and zap two pdes instead of one.
3916 */
3917 if (level == PT32_ROOT_LEVEL) {
3918 page_offset &= ~7; /* kill rounding error */
3919 page_offset <<= 1;
3920 *nspte = 2;
3921 }
3922 quadrant = page_offset >> PAGE_SHIFT;
3923 page_offset &= ~PAGE_MASK;
3924 if (quadrant != sp->role.quadrant)
3925 return NULL;
3926 }
3927
3928 spte = &sp->spt[page_offset / sizeof(*spte)];
3929 return spte;
3930}
3931
3932void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3933 const u8 *new, int bytes)
3934{
3935 gfn_t gfn = gpa >> PAGE_SHIFT;
3936 union kvm_mmu_page_role mask = { .word = 0 };
3937 struct kvm_mmu_page *sp;
889e5cbc
XG
3938 LIST_HEAD(invalid_list);
3939 u64 entry, gentry, *spte;
3940 int npte;
a30f47cb 3941 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3942
3943 /*
3944 * If we don't have indirect shadow pages, it means no page is
3945 * write-protected, so we can exit simply.
3946 */
3947 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3948 return;
3949
3950 zap_page = remote_flush = local_flush = false;
3951
3952 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3953
3954 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3955
3956 /*
3957 * No need to care whether allocation memory is successful
3958 * or not since pte prefetch is skiped if it does not have
3959 * enough objects in the cache.
3960 */
3961 mmu_topup_memory_caches(vcpu);
3962
3963 spin_lock(&vcpu->kvm->mmu_lock);
3964 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3965 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3966
fa1de2bf 3967 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 3968 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 3969 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3970 detect_write_flooding(sp)) {
0671a8e7 3971 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3972 &invalid_list);
4cee5764 3973 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3974 continue;
3975 }
889e5cbc
XG
3976
3977 spte = get_written_sptes(sp, gpa, &npte);
3978 if (!spte)
3979 continue;
3980
0671a8e7 3981 local_flush = true;
ac1b714e 3982 while (npte--) {
79539cec 3983 entry = *spte;
38e3b2b2 3984 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3985 if (gentry &&
3986 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3987 & mask.word) && rmap_can_add(vcpu))
7c562522 3988 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 3989 if (need_remote_flush(entry, *spte))
0671a8e7 3990 remote_flush = true;
ac1b714e 3991 ++spte;
9b7a0325 3992 }
9b7a0325 3993 }
0671a8e7 3994 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3995 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3996 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3997 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3998}
3999
a436036b
AK
4000int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4001{
10589a46
MT
4002 gpa_t gpa;
4003 int r;
a436036b 4004
c5a78f2b 4005 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4006 return 0;
4007
1871c602 4008 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4009
10589a46 4010 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4011
10589a46 4012 return r;
a436036b 4013}
577bdc49 4014EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4015
81f4f76b 4016static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4017{
d98ba053 4018 LIST_HEAD(invalid_list);
103ad25a 4019
81f4f76b
TY
4020 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4021 return;
4022
5da59607
TY
4023 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4024 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4025 break;
ebeace86 4026
4cee5764 4027 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4028 }
aa6bd187 4029 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4030}
ebeace86 4031
1cb3f3ae
XG
4032static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4033{
4034 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4035 return vcpu_match_mmio_gpa(vcpu, addr);
4036
4037 return vcpu_match_mmio_gva(vcpu, addr);
4038}
4039
dc25e89e
AP
4040int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4041 void *insn, int insn_len)
3067714c 4042{
1cb3f3ae 4043 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4044 enum emulation_result er;
4045
56028d08 4046 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4047 if (r < 0)
4048 goto out;
4049
4050 if (!r) {
4051 r = 1;
4052 goto out;
4053 }
4054
1cb3f3ae
XG
4055 if (is_mmio_page_fault(vcpu, cr2))
4056 emulation_type = 0;
4057
4058 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4059
4060 switch (er) {
4061 case EMULATE_DONE:
4062 return 1;
4063 case EMULATE_DO_MMIO:
4064 ++vcpu->stat.mmio_exits;
6d77dbfc 4065 /* fall through */
3067714c 4066 case EMULATE_FAIL:
3f5d18a9 4067 return 0;
3067714c
AK
4068 default:
4069 BUG();
4070 }
4071out:
3067714c
AK
4072 return r;
4073}
4074EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4075
a7052897
MT
4076void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4077{
a7052897 4078 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4079 kvm_mmu_flush_tlb(vcpu);
4080 ++vcpu->stat.invlpg;
4081}
4082EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4083
18552672
JR
4084void kvm_enable_tdp(void)
4085{
4086 tdp_enabled = true;
4087}
4088EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4089
5f4cb662
JR
4090void kvm_disable_tdp(void)
4091{
4092 tdp_enabled = false;
4093}
4094EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4095
6aa8b732
AK
4096static void free_mmu_pages(struct kvm_vcpu *vcpu)
4097{
ad312c7c 4098 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4099 if (vcpu->arch.mmu.lm_root != NULL)
4100 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4101}
4102
4103static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4104{
17ac10ad 4105 struct page *page;
6aa8b732
AK
4106 int i;
4107
4108 ASSERT(vcpu);
4109
17ac10ad
AK
4110 /*
4111 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4112 * Therefore we need to allocate shadow page tables in the first
4113 * 4GB of memory, which happens to fit the DMA32 zone.
4114 */
4115 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4116 if (!page)
d7fa6ab2
WY
4117 return -ENOMEM;
4118
ad312c7c 4119 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4120 for (i = 0; i < 4; ++i)
ad312c7c 4121 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4122
6aa8b732 4123 return 0;
6aa8b732
AK
4124}
4125
8018c27b 4126int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4127{
6aa8b732 4128 ASSERT(vcpu);
e459e322
XG
4129
4130 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4131 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4132 vcpu->arch.mmu.translate_gpa = translate_gpa;
4133 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4134
8018c27b
IM
4135 return alloc_mmu_pages(vcpu);
4136}
6aa8b732 4137
8018c27b
IM
4138int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4139{
4140 ASSERT(vcpu);
ad312c7c 4141 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4142
8018c27b 4143 return init_kvm_mmu(vcpu);
6aa8b732
AK
4144}
4145
90cb0529 4146void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4147{
b99db1d3
TY
4148 struct kvm_memory_slot *memslot;
4149 gfn_t last_gfn;
4150 int i;
6aa8b732 4151
b99db1d3
TY
4152 memslot = id_to_memslot(kvm->memslots, slot);
4153 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4154
9d1beefb
TY
4155 spin_lock(&kvm->mmu_lock);
4156
b99db1d3
TY
4157 for (i = PT_PAGE_TABLE_LEVEL;
4158 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4159 unsigned long *rmapp;
4160 unsigned long last_index, index;
6aa8b732 4161
b99db1d3
TY
4162 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4163 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4164
b99db1d3
TY
4165 for (index = 0; index <= last_index; ++index, ++rmapp) {
4166 if (*rmapp)
4167 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4168
4169 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4170 kvm_flush_remote_tlbs(kvm);
4171 cond_resched_lock(&kvm->mmu_lock);
4172 }
8234b22e 4173 }
6aa8b732 4174 }
b99db1d3 4175
171d595d 4176 kvm_flush_remote_tlbs(kvm);
9d1beefb 4177 spin_unlock(&kvm->mmu_lock);
6aa8b732 4178}
37a7d8b0 4179
90cb0529 4180void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4181{
4db35314 4182 struct kvm_mmu_page *sp, *node;
d98ba053 4183 LIST_HEAD(invalid_list);
e0fa826f 4184
aaee2c94 4185 spin_lock(&kvm->mmu_lock);
3246af0e 4186restart:
f05e70ac 4187 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4188 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4189 goto restart;
4190
d98ba053 4191 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4192 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4193}
4194
982b3394
TY
4195void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4196{
4197 struct kvm_mmu_page *sp, *node;
4198 LIST_HEAD(invalid_list);
4199
4200 spin_lock(&kvm->mmu_lock);
4201restart:
4202 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4203 if (!sp->mmio_cached)
4204 continue;
4205 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4206 goto restart;
4207 }
4208
4209 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4210 spin_unlock(&kvm->mmu_lock);
4211}
4212
1495f230 4213static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4214{
4215 struct kvm *kvm;
1495f230 4216 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4217
4218 if (nr_to_scan == 0)
4219 goto out;
3ee16c81 4220
e935b837 4221 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4222
4223 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4224 int idx;
d98ba053 4225 LIST_HEAD(invalid_list);
3ee16c81 4226
35f2d16b
TY
4227 /*
4228 * Never scan more than sc->nr_to_scan VM instances.
4229 * Will not hit this condition practically since we do not try
4230 * to shrink more than one VM and it is very unlikely to see
4231 * !n_used_mmu_pages so many times.
4232 */
4233 if (!nr_to_scan--)
4234 break;
19526396
GN
4235 /*
4236 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4237 * here. We may skip a VM instance errorneosly, but we do not
4238 * want to shrink a VM that only started to populate its MMU
4239 * anyway.
4240 */
35f2d16b 4241 if (!kvm->arch.n_used_mmu_pages)
19526396 4242 continue;
19526396 4243
f656ce01 4244 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4245 spin_lock(&kvm->mmu_lock);
3ee16c81 4246
5da59607 4247 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
d98ba053 4248 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4249
3ee16c81 4250 spin_unlock(&kvm->mmu_lock);
f656ce01 4251 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4252
4253 list_move_tail(&kvm->vm_list, &vm_list);
4254 break;
3ee16c81 4255 }
3ee16c81 4256
e935b837 4257 raw_spin_unlock(&kvm_lock);
3ee16c81 4258
45221ab6
DH
4259out:
4260 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4261}
4262
4263static struct shrinker mmu_shrinker = {
4264 .shrink = mmu_shrink,
4265 .seeks = DEFAULT_SEEKS * 10,
4266};
4267
2ddfd20e 4268static void mmu_destroy_caches(void)
b5a33a75 4269{
53c07b18
XG
4270 if (pte_list_desc_cache)
4271 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4272 if (mmu_page_header_cache)
4273 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4274}
4275
4276int kvm_mmu_module_init(void)
4277{
53c07b18
XG
4278 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4279 sizeof(struct pte_list_desc),
20c2df83 4280 0, 0, NULL);
53c07b18 4281 if (!pte_list_desc_cache)
b5a33a75
AK
4282 goto nomem;
4283
d3d25b04
AK
4284 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4285 sizeof(struct kvm_mmu_page),
20c2df83 4286 0, 0, NULL);
d3d25b04
AK
4287 if (!mmu_page_header_cache)
4288 goto nomem;
4289
45bf21a8
WY
4290 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4291 goto nomem;
4292
3ee16c81
IE
4293 register_shrinker(&mmu_shrinker);
4294
b5a33a75
AK
4295 return 0;
4296
4297nomem:
3ee16c81 4298 mmu_destroy_caches();
b5a33a75
AK
4299 return -ENOMEM;
4300}
4301
3ad82a7e
ZX
4302/*
4303 * Caculate mmu pages needed for kvm.
4304 */
4305unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4306{
3ad82a7e
ZX
4307 unsigned int nr_mmu_pages;
4308 unsigned int nr_pages = 0;
bc6678a3 4309 struct kvm_memslots *slots;
be6ba0f0 4310 struct kvm_memory_slot *memslot;
3ad82a7e 4311
90d83dc3
LJ
4312 slots = kvm_memslots(kvm);
4313
be6ba0f0
XG
4314 kvm_for_each_memslot(memslot, slots)
4315 nr_pages += memslot->npages;
3ad82a7e
ZX
4316
4317 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4318 nr_mmu_pages = max(nr_mmu_pages,
4319 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4320
4321 return nr_mmu_pages;
4322}
4323
94d8b056
MT
4324int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4325{
4326 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4327 u64 spte;
94d8b056
MT
4328 int nr_sptes = 0;
4329
c2a2ac2b
XG
4330 walk_shadow_page_lockless_begin(vcpu);
4331 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4332 sptes[iterator.level-1] = spte;
94d8b056 4333 nr_sptes++;
c2a2ac2b 4334 if (!is_shadow_present_pte(spte))
94d8b056
MT
4335 break;
4336 }
c2a2ac2b 4337 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4338
4339 return nr_sptes;
4340}
4341EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4342
c42fffe3
XG
4343void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4344{
4345 ASSERT(vcpu);
4346
4347 destroy_kvm_mmu(vcpu);
4348 free_mmu_pages(vcpu);
4349 mmu_free_memory_caches(vcpu);
b034cf01
XG
4350}
4351
b034cf01
XG
4352void kvm_mmu_module_exit(void)
4353{
4354 mmu_destroy_caches();
4355 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4356 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4357 mmu_audit_disable();
4358}