]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: nVMX: Add preemption timer support
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
feb3eb70
GN
451 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
453}
454
8672b721
XG
455static bool spte_has_volatile_bits(u64 spte)
456{
c7ba5b48
XG
457 /*
458 * Always atomicly update spte if it can be updated
459 * out of mmu-lock, it can ensure dirty bit is not lost,
460 * also, it can help us to get a stable is_writable_pte()
461 * to ensure tlb flush is not missed.
462 */
463 if (spte_is_locklessly_modifiable(spte))
464 return true;
465
8672b721
XG
466 if (!shadow_accessed_mask)
467 return false;
468
469 if (!is_shadow_present_pte(spte))
470 return false;
471
4132779b
XG
472 if ((spte & shadow_accessed_mask) &&
473 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
474 return false;
475
476 return true;
477}
478
4132779b
XG
479static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480{
481 return (old_spte & bit_mask) && !(new_spte & bit_mask);
482}
483
1df9f2dc
XG
484/* Rules for using mmu_spte_set:
485 * Set the sptep from nonpresent to present.
486 * Note: the sptep being assigned *must* be either not present
487 * or in a state where the hardware will not attempt to update
488 * the spte.
489 */
490static void mmu_spte_set(u64 *sptep, u64 new_spte)
491{
492 WARN_ON(is_shadow_present_pte(*sptep));
493 __set_spte(sptep, new_spte);
494}
495
496/* Rules for using mmu_spte_update:
497 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
498 *
499 * Whenever we overwrite a writable spte with a read-only one we
500 * should flush remote TLBs. Otherwise rmap_write_protect
501 * will find a read-only spte, even though the writable spte
502 * might be cached on a CPU's TLB, the return value indicates this
503 * case.
1df9f2dc 504 */
6e7d0354 505static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 506{
c7ba5b48 507 u64 old_spte = *sptep;
6e7d0354 508 bool ret = false;
4132779b
XG
509
510 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 511
6e7d0354
XG
512 if (!is_shadow_present_pte(old_spte)) {
513 mmu_spte_set(sptep, new_spte);
514 return ret;
515 }
4132779b 516
c7ba5b48 517 if (!spte_has_volatile_bits(old_spte))
603e0651 518 __update_clear_spte_fast(sptep, new_spte);
4132779b 519 else
603e0651 520 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 521
c7ba5b48
XG
522 /*
523 * For the spte updated out of mmu-lock is safe, since
524 * we always atomicly update it, see the comments in
525 * spte_has_volatile_bits().
526 */
6e7d0354
XG
527 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528 ret = true;
529
4132779b 530 if (!shadow_accessed_mask)
6e7d0354 531 return ret;
4132779b
XG
532
533 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
537
538 return ret;
b79b93f9
AK
539}
540
1df9f2dc
XG
541/*
542 * Rules for using mmu_spte_clear_track_bits:
543 * It sets the sptep from present to nonpresent, and track the
544 * state bits, it is used to clear the last level sptep.
545 */
546static int mmu_spte_clear_track_bits(u64 *sptep)
547{
548 pfn_t pfn;
549 u64 old_spte = *sptep;
550
551 if (!spte_has_volatile_bits(old_spte))
603e0651 552 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 553 else
603e0651 554 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
555
556 if (!is_rmap_spte(old_spte))
557 return 0;
558
559 pfn = spte_to_pfn(old_spte);
86fde74c
XG
560
561 /*
562 * KVM does not hold the refcount of the page used by
563 * kvm mmu, before reclaiming the page, we should
564 * unmap it from mmu first.
565 */
566 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
1df9f2dc
XG
568 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569 kvm_set_pfn_accessed(pfn);
570 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571 kvm_set_pfn_dirty(pfn);
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
590static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591{
c142786c
AK
592 /*
593 * Prevent page table teardown by making any free-er wait during
594 * kvm_flush_remote_tlbs() IPI to all active vcpus.
595 */
596 local_irq_disable();
597 vcpu->mode = READING_SHADOW_PAGE_TABLES;
598 /*
599 * Make sure a following spte read is not reordered ahead of the write
600 * to vcpu->mode.
601 */
602 smp_mb();
c2a2ac2b
XG
603}
604
605static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606{
c142786c
AK
607 /*
608 * Make sure the write to vcpu->mode is not reordered in front of
609 * reads to sptes. If it does, kvm_commit_zap_page() can see us
610 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611 */
612 smp_mb();
613 vcpu->mode = OUTSIDE_GUEST_MODE;
614 local_irq_enable();
c2a2ac2b
XG
615}
616
e2dec939 617static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 618 struct kmem_cache *base_cache, int min)
714b93da
AK
619{
620 void *obj;
621
622 if (cache->nobjs >= min)
e2dec939 623 return 0;
714b93da 624 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 625 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 626 if (!obj)
e2dec939 627 return -ENOMEM;
714b93da
AK
628 cache->objects[cache->nobjs++] = obj;
629 }
e2dec939 630 return 0;
714b93da
AK
631}
632
f759e2b4
XG
633static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634{
635 return cache->nobjs;
636}
637
e8ad9a70
XG
638static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639 struct kmem_cache *cache)
714b93da
AK
640{
641 while (mc->nobjs)
e8ad9a70 642 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
643}
644
c1158e63 645static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 646 int min)
c1158e63 647{
842f22ed 648 void *page;
c1158e63
AK
649
650 if (cache->nobjs >= min)
651 return 0;
652 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 653 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
654 if (!page)
655 return -ENOMEM;
842f22ed 656 cache->objects[cache->nobjs++] = page;
c1158e63
AK
657 }
658 return 0;
659}
660
661static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662{
663 while (mc->nobjs)
c4d198d5 664 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
665}
666
2e3e5882 667static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 668{
e2dec939
AK
669 int r;
670
53c07b18 671 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 672 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
673 if (r)
674 goto out;
ad312c7c 675 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 679 mmu_page_header_cache, 4);
e2dec939
AK
680out:
681 return r;
714b93da
AK
682}
683
684static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685{
53c07b18
XG
686 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687 pte_list_desc_cache);
ad312c7c 688 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690 mmu_page_header_cache);
714b93da
AK
691}
692
80feb89a 693static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
694{
695 void *p;
696
697 BUG_ON(!mc->nobjs);
698 p = mc->objects[--mc->nobjs];
714b93da
AK
699 return p;
700}
701
53c07b18 702static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 703{
80feb89a 704 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
705}
706
53c07b18 707static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 708{
53c07b18 709 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
710}
711
2032a93d
LJ
712static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713{
714 if (!sp->role.direct)
715 return sp->gfns[index];
716
717 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718}
719
720static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721{
722 if (sp->role.direct)
723 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724 else
725 sp->gfns[index] = gfn;
726}
727
05da4558 728/*
d4dbf470
TY
729 * Return the pointer to the large page information for a given gfn,
730 * handling slots that are not large page aligned.
05da4558 731 */
d4dbf470
TY
732static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733 struct kvm_memory_slot *slot,
734 int level)
05da4558
MT
735{
736 unsigned long idx;
737
fb03cb6f 738 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 739 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
740}
741
742static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743{
d25797b2 744 struct kvm_memory_slot *slot;
d4dbf470 745 struct kvm_lpage_info *linfo;
d25797b2 746 int i;
05da4558 747
a1f4d395 748 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
749 for (i = PT_DIRECTORY_LEVEL;
750 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
751 linfo = lpage_info_slot(gfn, slot, i);
752 linfo->write_count += 1;
d25797b2 753 }
332b207d 754 kvm->arch.indirect_shadow_pages++;
05da4558
MT
755}
756
757static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758{
d25797b2 759 struct kvm_memory_slot *slot;
d4dbf470 760 struct kvm_lpage_info *linfo;
d25797b2 761 int i;
05da4558 762
a1f4d395 763 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
764 for (i = PT_DIRECTORY_LEVEL;
765 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
766 linfo = lpage_info_slot(gfn, slot, i);
767 linfo->write_count -= 1;
768 WARN_ON(linfo->write_count < 0);
d25797b2 769 }
332b207d 770 kvm->arch.indirect_shadow_pages--;
05da4558
MT
771}
772
d25797b2
JR
773static int has_wrprotected_page(struct kvm *kvm,
774 gfn_t gfn,
775 int level)
05da4558 776{
2843099f 777 struct kvm_memory_slot *slot;
d4dbf470 778 struct kvm_lpage_info *linfo;
05da4558 779
a1f4d395 780 slot = gfn_to_memslot(kvm, gfn);
05da4558 781 if (slot) {
d4dbf470
TY
782 linfo = lpage_info_slot(gfn, slot, level);
783 return linfo->write_count;
05da4558
MT
784 }
785
786 return 1;
787}
788
d25797b2 789static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 790{
8f0b1ab6 791 unsigned long page_size;
d25797b2 792 int i, ret = 0;
05da4558 793
8f0b1ab6 794 page_size = kvm_host_page_size(kvm, gfn);
05da4558 795
d25797b2
JR
796 for (i = PT_PAGE_TABLE_LEVEL;
797 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798 if (page_size >= KVM_HPAGE_SIZE(i))
799 ret = i;
800 else
801 break;
802 }
803
4c2155ce 804 return ret;
05da4558
MT
805}
806
5d163b1c
XG
807static struct kvm_memory_slot *
808gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809 bool no_dirty_log)
05da4558
MT
810{
811 struct kvm_memory_slot *slot;
5d163b1c
XG
812
813 slot = gfn_to_memslot(vcpu->kvm, gfn);
814 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815 (no_dirty_log && slot->dirty_bitmap))
816 slot = NULL;
817
818 return slot;
819}
820
821static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822{
a0a8eaba 823 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
824}
825
826static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827{
828 int host_level, level, max_level;
05da4558 829
d25797b2
JR
830 host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832 if (host_level == PT_PAGE_TABLE_LEVEL)
833 return host_level;
834
55dd98c3 835 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
d25797b2
JR
840
841 return level - 1;
05da4558
MT
842}
843
290fc38d 844/*
53c07b18 845 * Pte mapping structures:
cd4a4e53 846 *
53c07b18 847 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 848 *
53c07b18
XG
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
53a27b39 851 *
53c07b18 852 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
853 * the spte was not added.
854 *
cd4a4e53 855 */
53c07b18
XG
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
cd4a4e53 858{
53c07b18 859 struct pte_list_desc *desc;
53a27b39 860 int i, count = 0;
cd4a4e53 861
53c07b18
XG
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
d555c333 869 desc->sptes[1] = spte;
53c07b18 870 *pte_list = (unsigned long)desc | 1;
cb16a7b3 871 ++count;
cd4a4e53 872 } else {
53c07b18
XG
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 876 desc = desc->more;
53c07b18 877 count += PTE_LIST_EXT;
53a27b39 878 }
53c07b18
XG
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
881 desc = desc->more;
882 }
d555c333 883 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 884 ++count;
d555c333 885 desc->sptes[i] = spte;
cd4a4e53 886 }
53a27b39 887 return count;
cd4a4e53
AK
888}
889
53c07b18
XG
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
893{
894 int j;
895
53c07b18 896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 897 ;
d555c333
AK
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
cd4a4e53
AK
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
53c07b18 903 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
53c07b18
XG
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
910}
911
53c07b18 912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 913{
53c07b18
XG
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
cd4a4e53
AK
916 int i;
917
53c07b18
XG
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 920 BUG();
53c07b18
XG
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
925 BUG();
926 }
53c07b18 927 *pte_list = 0;
cd4a4e53 928 } else {
53c07b18
XG
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
931 prev_desc = NULL;
932 while (desc) {
53c07b18 933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 934 if (desc->sptes[i] == spte) {
53c07b18 935 pte_list_desc_remove_entry(pte_list,
714b93da 936 desc, i,
cd4a4e53
AK
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
53c07b18 943 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
944 BUG();
945 }
946}
947
67052b35
XG
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
9373e2c0 968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 969 struct kvm_memory_slot *slot)
53c07b18 970{
77d11309 971 unsigned long idx;
53c07b18 972
77d11309 973 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
975}
976
9b9b1492
TY
977/*
978 * Take gfn and return the reverse mapping to it.
979 */
980static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981{
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 985 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
986}
987
f759e2b4
XG
988static bool rmap_can_add(struct kvm_vcpu *vcpu)
989{
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994}
995
53c07b18
XG
996static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997{
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
53c07b18
XG
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005}
1006
53c07b18
XG
1007static void rmap_remove(struct kvm *kvm, u64 *spte)
1008{
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017}
1018
1e3f42f0
TY
1019/*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027};
1028
1029/*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037{
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049}
1050
1051/*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056static u64 *rmap_get_next(struct rmap_iterator *iter)
1057{
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078}
1079
c3707958 1080static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1081{
1df9f2dc 1082 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1083 rmap_remove(kvm, sptep);
be38d276
AK
1084}
1085
8e22f955
XG
1086
1087static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088{
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098}
1099
1100static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101{
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104}
1105
1106/*
49fde340 1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
49fde340
XG
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
8e22f955 1117 *
6b73a960 1118 * Return true if the spte is dropped.
8e22f955 1119 */
6b73a960
MT
1120static bool
1121spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1122{
1123 u64 spte = *sptep;
1124
49fde340
XG
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
6b73a960
MT
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
1133 return true;
1134 }
1135
49fde340
XG
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1138 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1139
6b73a960
MT
1140 *flush |= mmu_spte_update(sptep, spte);
1141 return false;
d13bc5b5
XG
1142}
1143
49fde340 1144static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1145 bool pt_protect)
98348e95 1146{
1e3f42f0
TY
1147 u64 *sptep;
1148 struct rmap_iterator iter;
d13bc5b5 1149 bool flush = false;
374cbac0 1150
1e3f42f0
TY
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1155 continue;
1156 }
a0ed4607 1157
d13bc5b5 1158 sptep = rmap_get_next(&iter);
374cbac0 1159 }
855149aa 1160
d13bc5b5 1161 return flush;
a0ed4607
TY
1162}
1163
5dc99b23
TY
1164/**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1177{
1178 unsigned long *rmapp;
a0ed4607 1179
5dc99b23 1180 while (mask) {
65fbe37c
TY
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1183 __rmap_write_protect(kvm, rmapp, false);
05da4558 1184
5dc99b23
TY
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
374cbac0
AK
1188}
1189
2f84569f 1190static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1191{
1192 struct kvm_memory_slot *slot;
5dc99b23
TY
1193 unsigned long *rmapp;
1194 int i;
2f84569f 1195 bool write_protected = false;
95d4c16c
TY
1196
1197 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1202 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1203 }
1204
1205 return write_protected;
95d4c16c
TY
1206}
1207
8a8365c5 1208static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1209 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1210{
1e3f42f0
TY
1211 u64 *sptep;
1212 struct rmap_iterator iter;
e930bffe
AA
1213 int need_tlb_flush = 0;
1214
1e3f42f0
TY
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
e930bffe
AA
1220 need_tlb_flush = 1;
1221 }
1e3f42f0 1222
e930bffe
AA
1223 return need_tlb_flush;
1224}
1225
8a8365c5 1226static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1227 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1228{
1e3f42f0
TY
1229 u64 *sptep;
1230 struct rmap_iterator iter;
3da0dd43 1231 int need_flush = 0;
1e3f42f0 1232 u64 new_spte;
3da0dd43
IE
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
3da0dd43 1243 need_flush = 1;
1e3f42f0 1244
3da0dd43 1245 if (pte_write(*ptep)) {
1e3f42f0
TY
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1248 } else {
1e3f42f0 1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1254 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
3da0dd43
IE
1259 }
1260 }
1e3f42f0 1261
3da0dd43
IE
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266}
1267
84504ef3
TY
1268static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
048212d0 1274 struct kvm_memory_slot *slot,
84504ef3 1275 unsigned long data))
e930bffe 1276{
be6ba0f0 1277 int j;
f395302e 1278 int ret = 0;
bc6678a3 1279 struct kvm_memslots *slots;
be6ba0f0 1280 struct kvm_memory_slot *memslot;
bc6678a3 1281
90d83dc3 1282 slots = kvm_memslots(kvm);
e930bffe 1283
be6ba0f0 1284 kvm_for_each_memslot(memslot, slots) {
84504ef3 1285 unsigned long hva_start, hva_end;
bcd3ef58 1286 gfn_t gfn_start, gfn_end;
e930bffe 1287
84504ef3
TY
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1296 */
bcd3ef58 1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1299
bcd3ef58
TY
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
d4dbf470 1304
bcd3ef58
TY
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1311
bcd3ef58 1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1313
bcd3ef58
TY
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1316 }
1317 }
1318
f395302e 1319 return ret;
e930bffe
AA
1320}
1321
84504ef3
TY
1322static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1325 struct kvm_memory_slot *slot,
84504ef3
TY
1326 unsigned long data))
1327{
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1329}
1330
1331int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332{
3da0dd43
IE
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334}
1335
b3ae2096
TY
1336int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337{
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339}
1340
3da0dd43
IE
1341void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342{
8a8365c5 1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1344}
1345
8a8365c5 1346static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1347 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1348{
1e3f42f0 1349 u64 *sptep;
79f702a6 1350 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1351 int young = 0;
1352
6316e1c8 1353 /*
3f6d8c8a
XH
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
f395302e
TY
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
534e38b4 1365
1e3f42f0
TY
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1368 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1369
3f6d8c8a 1370 if (*sptep & shadow_accessed_mask) {
e930bffe 1371 young = 1;
3f6d8c8a
XH
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
e930bffe 1374 }
e930bffe 1375 }
f395302e
TY
1376out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1379 return young;
1380}
1381
8ee53820 1382static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1383 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1384{
1e3f42f0
TY
1385 u64 *sptep;
1386 struct rmap_iterator iter;
8ee53820
AA
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1e3f42f0
TY
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1399 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1400
3f6d8c8a 1401 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1402 young = 1;
1403 break;
1404 }
8ee53820
AA
1405 }
1406out:
1407 return young;
1408}
1409
53a27b39
MT
1410#define RMAP_RECYCLE_THRESHOLD 1000
1411
852e3c19 1412static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1413{
1414 unsigned long *rmapp;
852e3c19
JR
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
53a27b39 1418
852e3c19 1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1420
048212d0 1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423}
1424
e930bffe
AA
1425int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426{
f395302e 1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1428}
1429
8ee53820
AA
1430int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431{
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433}
1434
d6c69ee9 1435#ifdef MMU_DEBUG
47ad8e68 1436static int is_empty_shadow_page(u64 *spt)
6aa8b732 1437{
139bdb2d
AK
1438 u64 *pos;
1439 u64 *end;
1440
47ad8e68 1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1442 if (is_shadow_present_pte(*pos)) {
b8688d51 1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1444 pos, *pos);
6aa8b732 1445 return 0;
139bdb2d 1446 }
6aa8b732
AK
1447 return 1;
1448}
d6c69ee9 1449#endif
6aa8b732 1450
45221ab6
DH
1451/*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458{
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461}
1462
834be0d8 1463static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1464{
4db35314 1465 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1466 hlist_del(&sp->hash_link);
bd4c86ea
XG
1467 list_del(&sp->link);
1468 free_page((unsigned long)sp->spt);
834be0d8
GN
1469 if (!sp->role.direct)
1470 free_page((unsigned long)sp->gfns);
e8ad9a70 1471 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1472}
1473
cea0f0e7
AK
1474static unsigned kvm_page_table_hashfn(gfn_t gfn)
1475{
1ae0a13d 1476 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1477}
1478
714b93da 1479static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1480 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1481{
cea0f0e7
AK
1482 if (!parent_pte)
1483 return;
cea0f0e7 1484
67052b35 1485 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1486}
1487
4db35314 1488static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1489 u64 *parent_pte)
1490{
67052b35 1491 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1492}
1493
bcdd9a93
XG
1494static void drop_parent_pte(struct kvm_mmu_page *sp,
1495 u64 *parent_pte)
1496{
1497 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1498 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1499}
1500
67052b35
XG
1501static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1502 u64 *parent_pte, int direct)
ad8cfbe3 1503{
67052b35 1504 struct kvm_mmu_page *sp;
80feb89a
TY
1505 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1506 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1507 if (!direct)
80feb89a 1508 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1509 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1510 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1511 sp->parent_ptes = 0;
1512 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1513 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1514 return sp;
ad8cfbe3
MT
1515}
1516
67052b35 1517static void mark_unsync(u64 *spte);
1047df1f 1518static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1519{
67052b35 1520 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1521}
1522
67052b35 1523static void mark_unsync(u64 *spte)
0074ff63 1524{
67052b35 1525 struct kvm_mmu_page *sp;
1047df1f 1526 unsigned int index;
0074ff63 1527
67052b35 1528 sp = page_header(__pa(spte));
1047df1f
XG
1529 index = spte - sp->spt;
1530 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1531 return;
1047df1f 1532 if (sp->unsync_children++)
0074ff63 1533 return;
1047df1f 1534 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1535}
1536
e8bc217a 1537static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1538 struct kvm_mmu_page *sp)
e8bc217a
MT
1539{
1540 return 1;
1541}
1542
a7052897
MT
1543static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1544{
1545}
1546
0f53b5b1
XG
1547static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1548 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1549 const void *pte)
0f53b5b1
XG
1550{
1551 WARN_ON(1);
1552}
1553
60c8aec6
MT
1554#define KVM_PAGE_ARRAY_NR 16
1555
1556struct kvm_mmu_pages {
1557 struct mmu_page_and_offset {
1558 struct kvm_mmu_page *sp;
1559 unsigned int idx;
1560 } page[KVM_PAGE_ARRAY_NR];
1561 unsigned int nr;
1562};
1563
cded19f3
HE
1564static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1565 int idx)
4731d4c7 1566{
60c8aec6 1567 int i;
4731d4c7 1568
60c8aec6
MT
1569 if (sp->unsync)
1570 for (i=0; i < pvec->nr; i++)
1571 if (pvec->page[i].sp == sp)
1572 return 0;
1573
1574 pvec->page[pvec->nr].sp = sp;
1575 pvec->page[pvec->nr].idx = idx;
1576 pvec->nr++;
1577 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1578}
1579
1580static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1581 struct kvm_mmu_pages *pvec)
1582{
1583 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1584
37178b8b 1585 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1586 struct kvm_mmu_page *child;
4731d4c7
MT
1587 u64 ent = sp->spt[i];
1588
7a8f1a74
XG
1589 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1590 goto clear_child_bitmap;
1591
1592 child = page_header(ent & PT64_BASE_ADDR_MASK);
1593
1594 if (child->unsync_children) {
1595 if (mmu_pages_add(pvec, child, i))
1596 return -ENOSPC;
1597
1598 ret = __mmu_unsync_walk(child, pvec);
1599 if (!ret)
1600 goto clear_child_bitmap;
1601 else if (ret > 0)
1602 nr_unsync_leaf += ret;
1603 else
1604 return ret;
1605 } else if (child->unsync) {
1606 nr_unsync_leaf++;
1607 if (mmu_pages_add(pvec, child, i))
1608 return -ENOSPC;
1609 } else
1610 goto clear_child_bitmap;
1611
1612 continue;
1613
1614clear_child_bitmap:
1615 __clear_bit(i, sp->unsync_child_bitmap);
1616 sp->unsync_children--;
1617 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1618 }
1619
4731d4c7 1620
60c8aec6
MT
1621 return nr_unsync_leaf;
1622}
1623
1624static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1625 struct kvm_mmu_pages *pvec)
1626{
1627 if (!sp->unsync_children)
1628 return 0;
1629
1630 mmu_pages_add(pvec, sp, 0);
1631 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1632}
1633
4731d4c7
MT
1634static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1635{
1636 WARN_ON(!sp->unsync);
5e1b3ddb 1637 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1638 sp->unsync = 0;
1639 --kvm->stat.mmu_unsync;
1640}
1641
7775834a
XG
1642static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1643 struct list_head *invalid_list);
1644static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1645 struct list_head *invalid_list);
4731d4c7 1646
1044b030
TY
1647#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1648 hlist_for_each_entry(_sp, \
1649 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1650 if ((_sp)->gfn != (_gfn)) {} else
1651
1652#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1653 for_each_gfn_sp(_kvm, _sp, _gfn) \
1654 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1655
f918b443 1656/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1657static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1658 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1659{
5b7e0102 1660 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1661 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1662 return 1;
1663 }
1664
f918b443 1665 if (clear_unsync)
1d9dc7e0 1666 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1667
a4a8e6f7 1668 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1669 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1670 return 1;
1671 }
1672
1673 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1674 return 0;
1675}
1676
1d9dc7e0
XG
1677static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1678 struct kvm_mmu_page *sp)
1679{
d98ba053 1680 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1681 int ret;
1682
d98ba053 1683 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1684 if (ret)
d98ba053
XG
1685 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1686
1d9dc7e0
XG
1687 return ret;
1688}
1689
e37fa785
XG
1690#ifdef CONFIG_KVM_MMU_AUDIT
1691#include "mmu_audit.c"
1692#else
1693static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1694static void mmu_audit_disable(void) { }
1695#endif
1696
d98ba053
XG
1697static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1698 struct list_head *invalid_list)
1d9dc7e0 1699{
d98ba053 1700 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1701}
1702
9f1a122f
XG
1703/* @gfn should be write-protected at the call site */
1704static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1705{
9f1a122f 1706 struct kvm_mmu_page *s;
d98ba053 1707 LIST_HEAD(invalid_list);
9f1a122f
XG
1708 bool flush = false;
1709
b67bfe0d 1710 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1711 if (!s->unsync)
9f1a122f
XG
1712 continue;
1713
1714 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1715 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1716 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1717 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1718 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1719 continue;
1720 }
9f1a122f
XG
1721 flush = true;
1722 }
1723
d98ba053 1724 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1725 if (flush)
1726 kvm_mmu_flush_tlb(vcpu);
1727}
1728
60c8aec6
MT
1729struct mmu_page_path {
1730 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1731 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1732};
1733
60c8aec6
MT
1734#define for_each_sp(pvec, sp, parents, i) \
1735 for (i = mmu_pages_next(&pvec, &parents, -1), \
1736 sp = pvec.page[i].sp; \
1737 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1738 i = mmu_pages_next(&pvec, &parents, i))
1739
cded19f3
HE
1740static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1741 struct mmu_page_path *parents,
1742 int i)
60c8aec6
MT
1743{
1744 int n;
1745
1746 for (n = i+1; n < pvec->nr; n++) {
1747 struct kvm_mmu_page *sp = pvec->page[n].sp;
1748
1749 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1750 parents->idx[0] = pvec->page[n].idx;
1751 return n;
1752 }
1753
1754 parents->parent[sp->role.level-2] = sp;
1755 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1756 }
1757
1758 return n;
1759}
1760
cded19f3 1761static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1762{
60c8aec6
MT
1763 struct kvm_mmu_page *sp;
1764 unsigned int level = 0;
1765
1766 do {
1767 unsigned int idx = parents->idx[level];
4731d4c7 1768
60c8aec6
MT
1769 sp = parents->parent[level];
1770 if (!sp)
1771 return;
1772
1773 --sp->unsync_children;
1774 WARN_ON((int)sp->unsync_children < 0);
1775 __clear_bit(idx, sp->unsync_child_bitmap);
1776 level++;
1777 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1778}
1779
60c8aec6
MT
1780static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1781 struct mmu_page_path *parents,
1782 struct kvm_mmu_pages *pvec)
4731d4c7 1783{
60c8aec6
MT
1784 parents->parent[parent->role.level-1] = NULL;
1785 pvec->nr = 0;
1786}
4731d4c7 1787
60c8aec6
MT
1788static void mmu_sync_children(struct kvm_vcpu *vcpu,
1789 struct kvm_mmu_page *parent)
1790{
1791 int i;
1792 struct kvm_mmu_page *sp;
1793 struct mmu_page_path parents;
1794 struct kvm_mmu_pages pages;
d98ba053 1795 LIST_HEAD(invalid_list);
60c8aec6
MT
1796
1797 kvm_mmu_pages_init(parent, &parents, &pages);
1798 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1799 bool protected = false;
b1a36821
MT
1800
1801 for_each_sp(pages, sp, parents, i)
1802 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1803
1804 if (protected)
1805 kvm_flush_remote_tlbs(vcpu->kvm);
1806
60c8aec6 1807 for_each_sp(pages, sp, parents, i) {
d98ba053 1808 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1809 mmu_pages_clear_parents(&parents);
1810 }
d98ba053 1811 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1812 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1813 kvm_mmu_pages_init(parent, &parents, &pages);
1814 }
4731d4c7
MT
1815}
1816
c3707958
XG
1817static void init_shadow_page_table(struct kvm_mmu_page *sp)
1818{
1819 int i;
1820
1821 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1822 sp->spt[i] = 0ull;
1823}
1824
a30f47cb
XG
1825static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1826{
1827 sp->write_flooding_count = 0;
1828}
1829
1830static void clear_sp_write_flooding_count(u64 *spte)
1831{
1832 struct kvm_mmu_page *sp = page_header(__pa(spte));
1833
1834 __clear_sp_write_flooding_count(sp);
1835}
1836
cea0f0e7
AK
1837static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1838 gfn_t gfn,
1839 gva_t gaddr,
1840 unsigned level,
f6e2c02b 1841 int direct,
41074d07 1842 unsigned access,
f7d9c7b7 1843 u64 *parent_pte)
cea0f0e7
AK
1844{
1845 union kvm_mmu_page_role role;
cea0f0e7 1846 unsigned quadrant;
9f1a122f 1847 struct kvm_mmu_page *sp;
9f1a122f 1848 bool need_sync = false;
cea0f0e7 1849
a770f6f2 1850 role = vcpu->arch.mmu.base_role;
cea0f0e7 1851 role.level = level;
f6e2c02b 1852 role.direct = direct;
84b0c8c6 1853 if (role.direct)
5b7e0102 1854 role.cr4_pae = 0;
41074d07 1855 role.access = access;
c5a78f2b
JR
1856 if (!vcpu->arch.mmu.direct_map
1857 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1858 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1859 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1860 role.quadrant = quadrant;
1861 }
b67bfe0d 1862 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7ae680eb
XG
1863 if (!need_sync && sp->unsync)
1864 need_sync = true;
4731d4c7 1865
7ae680eb
XG
1866 if (sp->role.word != role.word)
1867 continue;
4731d4c7 1868
7ae680eb
XG
1869 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1870 break;
e02aa901 1871
7ae680eb
XG
1872 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1873 if (sp->unsync_children) {
a8eeb04a 1874 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1875 kvm_mmu_mark_parents_unsync(sp);
1876 } else if (sp->unsync)
1877 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1878
a30f47cb 1879 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1880 trace_kvm_mmu_get_page(sp, false);
1881 return sp;
1882 }
dfc5aa00 1883 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1884 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1885 if (!sp)
1886 return sp;
4db35314
AK
1887 sp->gfn = gfn;
1888 sp->role = role;
7ae680eb
XG
1889 hlist_add_head(&sp->hash_link,
1890 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1891 if (!direct) {
b1a36821
MT
1892 if (rmap_write_protect(vcpu->kvm, gfn))
1893 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1894 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1895 kvm_sync_pages(vcpu, gfn);
1896
4731d4c7
MT
1897 account_shadowed(vcpu->kvm, gfn);
1898 }
c3707958 1899 init_shadow_page_table(sp);
f691fe1d 1900 trace_kvm_mmu_get_page(sp, true);
4db35314 1901 return sp;
cea0f0e7
AK
1902}
1903
2d11123a
AK
1904static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1905 struct kvm_vcpu *vcpu, u64 addr)
1906{
1907 iterator->addr = addr;
1908 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1909 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1910
1911 if (iterator->level == PT64_ROOT_LEVEL &&
1912 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1913 !vcpu->arch.mmu.direct_map)
1914 --iterator->level;
1915
2d11123a
AK
1916 if (iterator->level == PT32E_ROOT_LEVEL) {
1917 iterator->shadow_addr
1918 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1919 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1920 --iterator->level;
1921 if (!iterator->shadow_addr)
1922 iterator->level = 0;
1923 }
1924}
1925
1926static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1927{
1928 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1929 return false;
4d88954d 1930
2d11123a
AK
1931 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1932 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1933 return true;
1934}
1935
c2a2ac2b
XG
1936static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1937 u64 spte)
2d11123a 1938{
c2a2ac2b 1939 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1940 iterator->level = 0;
1941 return;
1942 }
1943
c2a2ac2b 1944 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1945 --iterator->level;
1946}
1947
c2a2ac2b
XG
1948static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1949{
1950 return __shadow_walk_next(iterator, *iterator->sptep);
1951}
1952
32ef26a3
AK
1953static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1954{
1955 u64 spte;
1956
24db2734
XG
1957 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1958 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1959
1df9f2dc 1960 mmu_spte_set(sptep, spte);
32ef26a3
AK
1961}
1962
a357bd22
AK
1963static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1964 unsigned direct_access)
1965{
1966 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1967 struct kvm_mmu_page *child;
1968
1969 /*
1970 * For the direct sp, if the guest pte's dirty bit
1971 * changed form clean to dirty, it will corrupt the
1972 * sp's access: allow writable in the read-only sp,
1973 * so we should update the spte at this point to get
1974 * a new sp with the correct access.
1975 */
1976 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1977 if (child->role.access == direct_access)
1978 return;
1979
bcdd9a93 1980 drop_parent_pte(child, sptep);
a357bd22
AK
1981 kvm_flush_remote_tlbs(vcpu->kvm);
1982 }
1983}
1984
505aef8f 1985static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1986 u64 *spte)
1987{
1988 u64 pte;
1989 struct kvm_mmu_page *child;
1990
1991 pte = *spte;
1992 if (is_shadow_present_pte(pte)) {
505aef8f 1993 if (is_last_spte(pte, sp->role.level)) {
c3707958 1994 drop_spte(kvm, spte);
505aef8f
XG
1995 if (is_large_pte(pte))
1996 --kvm->stat.lpages;
1997 } else {
38e3b2b2 1998 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1999 drop_parent_pte(child, spte);
38e3b2b2 2000 }
505aef8f
XG
2001 return true;
2002 }
2003
2004 if (is_mmio_spte(pte))
ce88decf 2005 mmu_spte_clear_no_track(spte);
c3707958 2006
505aef8f 2007 return false;
38e3b2b2
XG
2008}
2009
90cb0529 2010static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2011 struct kvm_mmu_page *sp)
a436036b 2012{
697fe2e2 2013 unsigned i;
697fe2e2 2014
38e3b2b2
XG
2015 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2016 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2017}
2018
4db35314 2019static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2020{
4db35314 2021 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2022}
2023
31aa2b44 2024static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2025{
1e3f42f0
TY
2026 u64 *sptep;
2027 struct rmap_iterator iter;
a436036b 2028
1e3f42f0
TY
2029 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2030 drop_parent_pte(sp, sptep);
31aa2b44
AK
2031}
2032
60c8aec6 2033static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2034 struct kvm_mmu_page *parent,
2035 struct list_head *invalid_list)
4731d4c7 2036{
60c8aec6
MT
2037 int i, zapped = 0;
2038 struct mmu_page_path parents;
2039 struct kvm_mmu_pages pages;
4731d4c7 2040
60c8aec6 2041 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2042 return 0;
60c8aec6
MT
2043
2044 kvm_mmu_pages_init(parent, &parents, &pages);
2045 while (mmu_unsync_walk(parent, &pages)) {
2046 struct kvm_mmu_page *sp;
2047
2048 for_each_sp(pages, sp, parents, i) {
7775834a 2049 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2050 mmu_pages_clear_parents(&parents);
77662e00 2051 zapped++;
60c8aec6 2052 }
60c8aec6
MT
2053 kvm_mmu_pages_init(parent, &parents, &pages);
2054 }
2055
2056 return zapped;
4731d4c7
MT
2057}
2058
7775834a
XG
2059static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2060 struct list_head *invalid_list)
31aa2b44 2061{
4731d4c7 2062 int ret;
f691fe1d 2063
7775834a 2064 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2065 ++kvm->stat.mmu_shadow_zapped;
7775834a 2066 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2067 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2068 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2069 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2070 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2071 if (sp->unsync)
2072 kvm_unlink_unsync_page(kvm, sp);
4db35314 2073 if (!sp->root_count) {
54a4f023
GJ
2074 /* Count self */
2075 ret++;
7775834a 2076 list_move(&sp->link, invalid_list);
aa6bd187 2077 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2078 } else {
5b5c6a5a 2079 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2080 kvm_reload_remote_mmus(kvm);
2081 }
7775834a
XG
2082
2083 sp->role.invalid = 1;
4731d4c7 2084 return ret;
a436036b
AK
2085}
2086
7775834a
XG
2087static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2088 struct list_head *invalid_list)
2089{
945315b9 2090 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2091
2092 if (list_empty(invalid_list))
2093 return;
2094
c142786c
AK
2095 /*
2096 * wmb: make sure everyone sees our modifications to the page tables
2097 * rmb: make sure we see changes to vcpu->mode
2098 */
2099 smp_mb();
4f022648 2100
c142786c
AK
2101 /*
2102 * Wait for all vcpus to exit guest mode and/or lockless shadow
2103 * page table walks.
2104 */
2105 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2106
945315b9 2107 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2108 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2109 kvm_mmu_free_page(sp);
945315b9 2110 }
7775834a
XG
2111}
2112
5da59607
TY
2113static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2114 struct list_head *invalid_list)
2115{
2116 struct kvm_mmu_page *sp;
2117
2118 if (list_empty(&kvm->arch.active_mmu_pages))
2119 return false;
2120
2121 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2122 struct kvm_mmu_page, link);
2123 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2124
2125 return true;
2126}
2127
82ce2c96
IE
2128/*
2129 * Changing the number of mmu pages allocated to the vm
49d5ca26 2130 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2131 */
49d5ca26 2132void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2133{
d98ba053 2134 LIST_HEAD(invalid_list);
82ce2c96 2135
b34cb590
TY
2136 spin_lock(&kvm->mmu_lock);
2137
49d5ca26 2138 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2139 /* Need to free some mmu pages to achieve the goal. */
2140 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2141 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2142 break;
82ce2c96 2143
aa6bd187 2144 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2145 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2146 }
82ce2c96 2147
49d5ca26 2148 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2149
2150 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2151}
2152
1cb3f3ae 2153int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2154{
4db35314 2155 struct kvm_mmu_page *sp;
d98ba053 2156 LIST_HEAD(invalid_list);
a436036b
AK
2157 int r;
2158
9ad17b10 2159 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2160 r = 0;
1cb3f3ae 2161 spin_lock(&kvm->mmu_lock);
b67bfe0d 2162 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2163 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2164 sp->role.word);
2165 r = 1;
f41d335a 2166 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2167 }
d98ba053 2168 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2169 spin_unlock(&kvm->mmu_lock);
2170
a436036b 2171 return r;
cea0f0e7 2172}
1cb3f3ae 2173EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2174
74be52e3
SY
2175/*
2176 * The function is based on mtrr_type_lookup() in
2177 * arch/x86/kernel/cpu/mtrr/generic.c
2178 */
2179static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2180 u64 start, u64 end)
2181{
2182 int i;
2183 u64 base, mask;
2184 u8 prev_match, curr_match;
2185 int num_var_ranges = KVM_NR_VAR_MTRR;
2186
2187 if (!mtrr_state->enabled)
2188 return 0xFF;
2189
2190 /* Make end inclusive end, instead of exclusive */
2191 end--;
2192
2193 /* Look in fixed ranges. Just return the type as per start */
2194 if (mtrr_state->have_fixed && (start < 0x100000)) {
2195 int idx;
2196
2197 if (start < 0x80000) {
2198 idx = 0;
2199 idx += (start >> 16);
2200 return mtrr_state->fixed_ranges[idx];
2201 } else if (start < 0xC0000) {
2202 idx = 1 * 8;
2203 idx += ((start - 0x80000) >> 14);
2204 return mtrr_state->fixed_ranges[idx];
2205 } else if (start < 0x1000000) {
2206 idx = 3 * 8;
2207 idx += ((start - 0xC0000) >> 12);
2208 return mtrr_state->fixed_ranges[idx];
2209 }
2210 }
2211
2212 /*
2213 * Look in variable ranges
2214 * Look of multiple ranges matching this address and pick type
2215 * as per MTRR precedence
2216 */
2217 if (!(mtrr_state->enabled & 2))
2218 return mtrr_state->def_type;
2219
2220 prev_match = 0xFF;
2221 for (i = 0; i < num_var_ranges; ++i) {
2222 unsigned short start_state, end_state;
2223
2224 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2225 continue;
2226
2227 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2228 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2229 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2230 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2231
2232 start_state = ((start & mask) == (base & mask));
2233 end_state = ((end & mask) == (base & mask));
2234 if (start_state != end_state)
2235 return 0xFE;
2236
2237 if ((start & mask) != (base & mask))
2238 continue;
2239
2240 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2241 if (prev_match == 0xFF) {
2242 prev_match = curr_match;
2243 continue;
2244 }
2245
2246 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2247 curr_match == MTRR_TYPE_UNCACHABLE)
2248 return MTRR_TYPE_UNCACHABLE;
2249
2250 if ((prev_match == MTRR_TYPE_WRBACK &&
2251 curr_match == MTRR_TYPE_WRTHROUGH) ||
2252 (prev_match == MTRR_TYPE_WRTHROUGH &&
2253 curr_match == MTRR_TYPE_WRBACK)) {
2254 prev_match = MTRR_TYPE_WRTHROUGH;
2255 curr_match = MTRR_TYPE_WRTHROUGH;
2256 }
2257
2258 if (prev_match != curr_match)
2259 return MTRR_TYPE_UNCACHABLE;
2260 }
2261
2262 if (prev_match != 0xFF)
2263 return prev_match;
2264
2265 return mtrr_state->def_type;
2266}
2267
4b12f0de 2268u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2269{
2270 u8 mtrr;
2271
2272 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2273 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2274 if (mtrr == 0xfe || mtrr == 0xff)
2275 mtrr = MTRR_TYPE_WRBACK;
2276 return mtrr;
2277}
4b12f0de 2278EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2279
9cf5cf5a
XG
2280static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2281{
2282 trace_kvm_mmu_unsync_page(sp);
2283 ++vcpu->kvm->stat.mmu_unsync;
2284 sp->unsync = 1;
2285
2286 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2287}
2288
2289static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2290{
4731d4c7 2291 struct kvm_mmu_page *s;
9cf5cf5a 2292
b67bfe0d 2293 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2294 if (s->unsync)
4731d4c7 2295 continue;
9cf5cf5a
XG
2296 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2297 __kvm_unsync_page(vcpu, s);
4731d4c7 2298 }
4731d4c7
MT
2299}
2300
2301static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2302 bool can_unsync)
2303{
9cf5cf5a 2304 struct kvm_mmu_page *s;
9cf5cf5a
XG
2305 bool need_unsync = false;
2306
b67bfe0d 2307 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2308 if (!can_unsync)
2309 return 1;
2310
9cf5cf5a 2311 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2312 return 1;
9cf5cf5a 2313
9bb4f6b1 2314 if (!s->unsync)
9cf5cf5a 2315 need_unsync = true;
4731d4c7 2316 }
9cf5cf5a
XG
2317 if (need_unsync)
2318 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2319 return 0;
2320}
2321
d555c333 2322static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2323 unsigned pte_access, int level,
c2d0ee46 2324 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2325 bool can_unsync, bool host_writable)
1c4f1fd6 2326{
6e7d0354 2327 u64 spte;
1e73f9dd 2328 int ret = 0;
64d4d521 2329
ce88decf
XG
2330 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2331 return 0;
2332
982c2565 2333 spte = PT_PRESENT_MASK;
947da538 2334 if (!speculative)
3201b5d9 2335 spte |= shadow_accessed_mask;
640d9b0d 2336
7b52345e
SY
2337 if (pte_access & ACC_EXEC_MASK)
2338 spte |= shadow_x_mask;
2339 else
2340 spte |= shadow_nx_mask;
49fde340 2341
1c4f1fd6 2342 if (pte_access & ACC_USER_MASK)
7b52345e 2343 spte |= shadow_user_mask;
49fde340 2344
852e3c19 2345 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2346 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2347 if (tdp_enabled)
4b12f0de
SY
2348 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2349 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2350
9bdbba13 2351 if (host_writable)
1403283a 2352 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2353 else
2354 pte_access &= ~ACC_WRITE_MASK;
1403283a 2355
35149e21 2356 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2357
c2288505 2358 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2359
c2193463 2360 /*
7751babd
XG
2361 * Other vcpu creates new sp in the window between
2362 * mapping_level() and acquiring mmu-lock. We can
2363 * allow guest to retry the access, the mapping can
2364 * be fixed if guest refault.
c2193463 2365 */
852e3c19 2366 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2367 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2368 goto done;
38187c83 2369
49fde340 2370 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2371
ecc5589f
MT
2372 /*
2373 * Optimization: for pte sync, if spte was writable the hash
2374 * lookup is unnecessary (and expensive). Write protection
2375 * is responsibility of mmu_get_page / kvm_sync_page.
2376 * Same reasoning can be applied to dirty page accounting.
2377 */
8dae4445 2378 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2379 goto set_pte;
2380
4731d4c7 2381 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2382 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2383 __func__, gfn);
1e73f9dd 2384 ret = 1;
1c4f1fd6 2385 pte_access &= ~ACC_WRITE_MASK;
49fde340 2386 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2387 }
2388 }
2389
1c4f1fd6
AK
2390 if (pte_access & ACC_WRITE_MASK)
2391 mark_page_dirty(vcpu->kvm, gfn);
2392
38187c83 2393set_pte:
6e7d0354 2394 if (mmu_spte_update(sptep, spte))
b330aa0c 2395 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2396done:
1e73f9dd
MT
2397 return ret;
2398}
2399
d555c333 2400static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2401 unsigned pte_access, int write_fault, int *emulate,
2402 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2403 bool host_writable)
1e73f9dd
MT
2404{
2405 int was_rmapped = 0;
53a27b39 2406 int rmap_count;
1e73f9dd 2407
f7616203
XG
2408 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2409 *sptep, write_fault, gfn);
1e73f9dd 2410
d555c333 2411 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2412 /*
2413 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2414 * the parent of the now unreachable PTE.
2415 */
852e3c19
JR
2416 if (level > PT_PAGE_TABLE_LEVEL &&
2417 !is_large_pte(*sptep)) {
1e73f9dd 2418 struct kvm_mmu_page *child;
d555c333 2419 u64 pte = *sptep;
1e73f9dd
MT
2420
2421 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2422 drop_parent_pte(child, sptep);
3be2264b 2423 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2424 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2425 pgprintk("hfn old %llx new %llx\n",
d555c333 2426 spte_to_pfn(*sptep), pfn);
c3707958 2427 drop_spte(vcpu->kvm, sptep);
91546356 2428 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2429 } else
2430 was_rmapped = 1;
1e73f9dd 2431 }
852e3c19 2432
c2288505
XG
2433 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2434 true, host_writable)) {
1e73f9dd 2435 if (write_fault)
b90a0e6c 2436 *emulate = 1;
5304efde 2437 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2438 }
1e73f9dd 2439
ce88decf
XG
2440 if (unlikely(is_mmio_spte(*sptep) && emulate))
2441 *emulate = 1;
2442
d555c333 2443 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2444 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2445 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2446 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2447 *sptep, sptep);
d555c333 2448 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2449 ++vcpu->kvm->stat.lpages;
2450
ffb61bb3 2451 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2452 if (!was_rmapped) {
2453 rmap_count = rmap_add(vcpu, sptep, gfn);
2454 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2455 rmap_recycle(vcpu, sptep, gfn);
2456 }
1c4f1fd6 2457 }
cb9aaa30 2458
f3ac1a4b 2459 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2460}
2461
6aa8b732
AK
2462static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2463{
e676505a 2464 mmu_free_roots(vcpu);
6aa8b732
AK
2465}
2466
a052b42b
XG
2467static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2468{
2469 int bit7;
2470
2471 bit7 = (gpte >> 7) & 1;
2472 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2473}
2474
957ed9ef
XG
2475static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2476 bool no_dirty_log)
2477{
2478 struct kvm_memory_slot *slot;
957ed9ef 2479
5d163b1c 2480 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2481 if (!slot)
6c8ee57b 2482 return KVM_PFN_ERR_FAULT;
957ed9ef 2483
037d92dc 2484 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2485}
2486
a052b42b
XG
2487static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2488 struct kvm_mmu_page *sp, u64 *spte,
2489 u64 gpte)
2490{
2491 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2492 goto no_present;
2493
2494 if (!is_present_gpte(gpte))
2495 goto no_present;
2496
2497 if (!(gpte & PT_ACCESSED_MASK))
2498 goto no_present;
2499
2500 return false;
2501
2502no_present:
2503 drop_spte(vcpu->kvm, spte);
2504 return true;
2505}
2506
957ed9ef
XG
2507static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2508 struct kvm_mmu_page *sp,
2509 u64 *start, u64 *end)
2510{
2511 struct page *pages[PTE_PREFETCH_NUM];
2512 unsigned access = sp->role.access;
2513 int i, ret;
2514 gfn_t gfn;
2515
2516 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2517 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2518 return -1;
2519
2520 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2521 if (ret <= 0)
2522 return -1;
2523
2524 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2525 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2526 sp->role.level, gfn, page_to_pfn(pages[i]),
2527 true, true);
957ed9ef
XG
2528
2529 return 0;
2530}
2531
2532static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2533 struct kvm_mmu_page *sp, u64 *sptep)
2534{
2535 u64 *spte, *start = NULL;
2536 int i;
2537
2538 WARN_ON(!sp->role.direct);
2539
2540 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2541 spte = sp->spt + i;
2542
2543 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2544 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2545 if (!start)
2546 continue;
2547 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2548 break;
2549 start = NULL;
2550 } else if (!start)
2551 start = spte;
2552 }
2553}
2554
2555static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2556{
2557 struct kvm_mmu_page *sp;
2558
2559 /*
2560 * Since it's no accessed bit on EPT, it's no way to
2561 * distinguish between actually accessed translations
2562 * and prefetched, so disable pte prefetch if EPT is
2563 * enabled.
2564 */
2565 if (!shadow_accessed_mask)
2566 return;
2567
2568 sp = page_header(__pa(sptep));
2569 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2570 return;
2571
2572 __direct_pte_prefetch(vcpu, sp, sptep);
2573}
2574
9f652d21 2575static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2576 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2577 bool prefault)
140754bc 2578{
9f652d21 2579 struct kvm_shadow_walk_iterator iterator;
140754bc 2580 struct kvm_mmu_page *sp;
b90a0e6c 2581 int emulate = 0;
140754bc 2582 gfn_t pseudo_gfn;
6aa8b732 2583
9f652d21 2584 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2585 if (iterator.level == level) {
f7616203 2586 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2587 write, &emulate, level, gfn, pfn,
2588 prefault, map_writable);
957ed9ef 2589 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2590 ++vcpu->stat.pf_fixed;
2591 break;
6aa8b732
AK
2592 }
2593
c3707958 2594 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2595 u64 base_addr = iterator.addr;
2596
2597 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2598 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2599 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2600 iterator.level - 1,
2601 1, ACC_ALL, iterator.sptep);
140754bc 2602
24db2734 2603 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2604 }
2605 }
b90a0e6c 2606 return emulate;
6aa8b732
AK
2607}
2608
77db5cbd 2609static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2610{
77db5cbd
HY
2611 siginfo_t info;
2612
2613 info.si_signo = SIGBUS;
2614 info.si_errno = 0;
2615 info.si_code = BUS_MCEERR_AR;
2616 info.si_addr = (void __user *)address;
2617 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2618
77db5cbd 2619 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2620}
2621
d7c55201 2622static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2623{
4d8b81ab
XG
2624 /*
2625 * Do not cache the mmio info caused by writing the readonly gfn
2626 * into the spte otherwise read access on readonly gfn also can
2627 * caused mmio page fault and treat it as mmio access.
2628 * Return 1 to tell kvm to emulate it.
2629 */
2630 if (pfn == KVM_PFN_ERR_RO_FAULT)
2631 return 1;
2632
e6c1502b 2633 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2634 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2635 return 0;
d7c55201 2636 }
edba23e5 2637
d7c55201 2638 return -EFAULT;
bf998156
HY
2639}
2640
936a5fe6
AA
2641static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2642 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2643{
2644 pfn_t pfn = *pfnp;
2645 gfn_t gfn = *gfnp;
2646 int level = *levelp;
2647
2648 /*
2649 * Check if it's a transparent hugepage. If this would be an
2650 * hugetlbfs page, level wouldn't be set to
2651 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2652 * here.
2653 */
81c52c56 2654 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2655 level == PT_PAGE_TABLE_LEVEL &&
2656 PageTransCompound(pfn_to_page(pfn)) &&
2657 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2658 unsigned long mask;
2659 /*
2660 * mmu_notifier_retry was successful and we hold the
2661 * mmu_lock here, so the pmd can't become splitting
2662 * from under us, and in turn
2663 * __split_huge_page_refcount() can't run from under
2664 * us and we can safely transfer the refcount from
2665 * PG_tail to PG_head as we switch the pfn to tail to
2666 * head.
2667 */
2668 *levelp = level = PT_DIRECTORY_LEVEL;
2669 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2670 VM_BUG_ON((gfn & mask) != (pfn & mask));
2671 if (pfn & mask) {
2672 gfn &= ~mask;
2673 *gfnp = gfn;
2674 kvm_release_pfn_clean(pfn);
2675 pfn &= ~mask;
c3586667 2676 kvm_get_pfn(pfn);
936a5fe6
AA
2677 *pfnp = pfn;
2678 }
2679 }
2680}
2681
d7c55201
XG
2682static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2683 pfn_t pfn, unsigned access, int *ret_val)
2684{
2685 bool ret = true;
2686
2687 /* The pfn is invalid, report the error! */
81c52c56 2688 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2689 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2690 goto exit;
2691 }
2692
ce88decf 2693 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2694 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2695
2696 ret = false;
2697exit:
2698 return ret;
2699}
2700
c7ba5b48
XG
2701static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2702{
2703 /*
2704 * #PF can be fast only if the shadow page table is present and it
2705 * is caused by write-protect, that means we just need change the
2706 * W bit of the spte which can be done out of mmu-lock.
2707 */
2708 if (!(error_code & PFERR_PRESENT_MASK) ||
2709 !(error_code & PFERR_WRITE_MASK))
2710 return false;
2711
2712 return true;
2713}
2714
2715static bool
2716fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2717{
2718 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2719 gfn_t gfn;
2720
2721 WARN_ON(!sp->role.direct);
2722
2723 /*
2724 * The gfn of direct spte is stable since it is calculated
2725 * by sp->gfn.
2726 */
2727 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2728
2729 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2730 mark_page_dirty(vcpu->kvm, gfn);
2731
2732 return true;
2733}
2734
2735/*
2736 * Return value:
2737 * - true: let the vcpu to access on the same address again.
2738 * - false: let the real page fault path to fix it.
2739 */
2740static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2741 u32 error_code)
2742{
2743 struct kvm_shadow_walk_iterator iterator;
2744 bool ret = false;
2745 u64 spte = 0ull;
2746
2747 if (!page_fault_can_be_fast(vcpu, error_code))
2748 return false;
2749
2750 walk_shadow_page_lockless_begin(vcpu);
2751 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2752 if (!is_shadow_present_pte(spte) || iterator.level < level)
2753 break;
2754
2755 /*
2756 * If the mapping has been changed, let the vcpu fault on the
2757 * same address again.
2758 */
2759 if (!is_rmap_spte(spte)) {
2760 ret = true;
2761 goto exit;
2762 }
2763
2764 if (!is_last_spte(spte, level))
2765 goto exit;
2766
2767 /*
2768 * Check if it is a spurious fault caused by TLB lazily flushed.
2769 *
2770 * Need not check the access of upper level table entries since
2771 * they are always ACC_ALL.
2772 */
2773 if (is_writable_pte(spte)) {
2774 ret = true;
2775 goto exit;
2776 }
2777
2778 /*
2779 * Currently, to simplify the code, only the spte write-protected
2780 * by dirty-log can be fast fixed.
2781 */
2782 if (!spte_is_locklessly_modifiable(spte))
2783 goto exit;
2784
2785 /*
2786 * Currently, fast page fault only works for direct mapping since
2787 * the gfn is not stable for indirect shadow page.
2788 * See Documentation/virtual/kvm/locking.txt to get more detail.
2789 */
2790 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2791exit:
a72faf25
XG
2792 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2793 spte, ret);
c7ba5b48
XG
2794 walk_shadow_page_lockless_end(vcpu);
2795
2796 return ret;
2797}
2798
78b2c54a 2799static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2800 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2801
c7ba5b48
XG
2802static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2803 gfn_t gfn, bool prefault)
10589a46
MT
2804{
2805 int r;
852e3c19 2806 int level;
936a5fe6 2807 int force_pt_level;
35149e21 2808 pfn_t pfn;
e930bffe 2809 unsigned long mmu_seq;
c7ba5b48 2810 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2811
936a5fe6
AA
2812 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2813 if (likely(!force_pt_level)) {
2814 level = mapping_level(vcpu, gfn);
2815 /*
2816 * This path builds a PAE pagetable - so we can map
2817 * 2mb pages at maximum. Therefore check if the level
2818 * is larger than that.
2819 */
2820 if (level > PT_DIRECTORY_LEVEL)
2821 level = PT_DIRECTORY_LEVEL;
852e3c19 2822
936a5fe6
AA
2823 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2824 } else
2825 level = PT_PAGE_TABLE_LEVEL;
05da4558 2826
c7ba5b48
XG
2827 if (fast_page_fault(vcpu, v, level, error_code))
2828 return 0;
2829
e930bffe 2830 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2831 smp_rmb();
060c2abe 2832
78b2c54a 2833 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2834 return 0;
aaee2c94 2835
d7c55201
XG
2836 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2837 return r;
d196e343 2838
aaee2c94 2839 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2840 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2841 goto out_unlock;
eb787d10 2842 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2843 if (likely(!force_pt_level))
2844 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2845 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2846 prefault);
aaee2c94
MT
2847 spin_unlock(&vcpu->kvm->mmu_lock);
2848
aaee2c94 2849
10589a46 2850 return r;
e930bffe
AA
2851
2852out_unlock:
2853 spin_unlock(&vcpu->kvm->mmu_lock);
2854 kvm_release_pfn_clean(pfn);
2855 return 0;
10589a46
MT
2856}
2857
2858
17ac10ad
AK
2859static void mmu_free_roots(struct kvm_vcpu *vcpu)
2860{
2861 int i;
4db35314 2862 struct kvm_mmu_page *sp;
d98ba053 2863 LIST_HEAD(invalid_list);
17ac10ad 2864
ad312c7c 2865 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2866 return;
aaee2c94 2867 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2868 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2869 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2870 vcpu->arch.mmu.direct_map)) {
ad312c7c 2871 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2872
4db35314
AK
2873 sp = page_header(root);
2874 --sp->root_count;
d98ba053
XG
2875 if (!sp->root_count && sp->role.invalid) {
2876 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2877 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2878 }
ad312c7c 2879 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2880 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2881 return;
2882 }
17ac10ad 2883 for (i = 0; i < 4; ++i) {
ad312c7c 2884 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2885
417726a3 2886 if (root) {
417726a3 2887 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2888 sp = page_header(root);
2889 --sp->root_count;
2e53d63a 2890 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2891 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2892 &invalid_list);
417726a3 2893 }
ad312c7c 2894 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2895 }
d98ba053 2896 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2897 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2898 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2899}
2900
8986ecc0
MT
2901static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2902{
2903 int ret = 0;
2904
2905 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2906 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2907 ret = 1;
2908 }
2909
2910 return ret;
2911}
2912
651dd37a
JR
2913static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2914{
2915 struct kvm_mmu_page *sp;
7ebaf15e 2916 unsigned i;
651dd37a
JR
2917
2918 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2919 spin_lock(&vcpu->kvm->mmu_lock);
2920 kvm_mmu_free_some_pages(vcpu);
2921 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2922 1, ACC_ALL, NULL);
2923 ++sp->root_count;
2924 spin_unlock(&vcpu->kvm->mmu_lock);
2925 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2926 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2927 for (i = 0; i < 4; ++i) {
2928 hpa_t root = vcpu->arch.mmu.pae_root[i];
2929
2930 ASSERT(!VALID_PAGE(root));
2931 spin_lock(&vcpu->kvm->mmu_lock);
2932 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2933 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2934 i << 30,
651dd37a
JR
2935 PT32_ROOT_LEVEL, 1, ACC_ALL,
2936 NULL);
2937 root = __pa(sp->spt);
2938 ++sp->root_count;
2939 spin_unlock(&vcpu->kvm->mmu_lock);
2940 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2941 }
6292757f 2942 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2943 } else
2944 BUG();
2945
2946 return 0;
2947}
2948
2949static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2950{
4db35314 2951 struct kvm_mmu_page *sp;
81407ca5
JR
2952 u64 pdptr, pm_mask;
2953 gfn_t root_gfn;
2954 int i;
3bb65a22 2955
5777ed34 2956 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2957
651dd37a
JR
2958 if (mmu_check_root(vcpu, root_gfn))
2959 return 1;
2960
2961 /*
2962 * Do we shadow a long mode page table? If so we need to
2963 * write-protect the guests page table root.
2964 */
2965 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2966 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2967
2968 ASSERT(!VALID_PAGE(root));
651dd37a 2969
8facbbff 2970 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2971 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2972 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2973 0, ACC_ALL, NULL);
4db35314
AK
2974 root = __pa(sp->spt);
2975 ++sp->root_count;
8facbbff 2976 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2977 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2978 return 0;
17ac10ad 2979 }
f87f9288 2980
651dd37a
JR
2981 /*
2982 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2983 * or a PAE 3-level page table. In either case we need to be aware that
2984 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2985 */
81407ca5
JR
2986 pm_mask = PT_PRESENT_MASK;
2987 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2988 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2989
17ac10ad 2990 for (i = 0; i < 4; ++i) {
ad312c7c 2991 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2992
2993 ASSERT(!VALID_PAGE(root));
ad312c7c 2994 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2995 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2996 if (!is_present_gpte(pdptr)) {
ad312c7c 2997 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2998 continue;
2999 }
6de4f3ad 3000 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3001 if (mmu_check_root(vcpu, root_gfn))
3002 return 1;
5a7388c2 3003 }
8facbbff 3004 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3005 kvm_mmu_free_some_pages(vcpu);
4db35314 3006 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3007 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3008 ACC_ALL, NULL);
4db35314
AK
3009 root = __pa(sp->spt);
3010 ++sp->root_count;
8facbbff
AK
3011 spin_unlock(&vcpu->kvm->mmu_lock);
3012
81407ca5 3013 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3014 }
6292757f 3015 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3016
3017 /*
3018 * If we shadow a 32 bit page table with a long mode page
3019 * table we enter this path.
3020 */
3021 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3022 if (vcpu->arch.mmu.lm_root == NULL) {
3023 /*
3024 * The additional page necessary for this is only
3025 * allocated on demand.
3026 */
3027
3028 u64 *lm_root;
3029
3030 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3031 if (lm_root == NULL)
3032 return 1;
3033
3034 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3035
3036 vcpu->arch.mmu.lm_root = lm_root;
3037 }
3038
3039 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3040 }
3041
8986ecc0 3042 return 0;
17ac10ad
AK
3043}
3044
651dd37a
JR
3045static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3046{
3047 if (vcpu->arch.mmu.direct_map)
3048 return mmu_alloc_direct_roots(vcpu);
3049 else
3050 return mmu_alloc_shadow_roots(vcpu);
3051}
3052
0ba73cda
MT
3053static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3054{
3055 int i;
3056 struct kvm_mmu_page *sp;
3057
81407ca5
JR
3058 if (vcpu->arch.mmu.direct_map)
3059 return;
3060
0ba73cda
MT
3061 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3062 return;
6903074c 3063
bebb106a 3064 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3065 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3066 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3067 hpa_t root = vcpu->arch.mmu.root_hpa;
3068 sp = page_header(root);
3069 mmu_sync_children(vcpu, sp);
0375f7fa 3070 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3071 return;
3072 }
3073 for (i = 0; i < 4; ++i) {
3074 hpa_t root = vcpu->arch.mmu.pae_root[i];
3075
8986ecc0 3076 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3077 root &= PT64_BASE_ADDR_MASK;
3078 sp = page_header(root);
3079 mmu_sync_children(vcpu, sp);
3080 }
3081 }
0375f7fa 3082 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3083}
3084
3085void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3086{
3087 spin_lock(&vcpu->kvm->mmu_lock);
3088 mmu_sync_roots(vcpu);
6cffe8ca 3089 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3090}
3091
1871c602 3092static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3093 u32 access, struct x86_exception *exception)
6aa8b732 3094{
ab9ae313
AK
3095 if (exception)
3096 exception->error_code = 0;
6aa8b732
AK
3097 return vaddr;
3098}
3099
6539e738 3100static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3101 u32 access,
3102 struct x86_exception *exception)
6539e738 3103{
ab9ae313
AK
3104 if (exception)
3105 exception->error_code = 0;
6539e738
JR
3106 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3107}
3108
ce88decf
XG
3109static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3110{
3111 if (direct)
3112 return vcpu_match_mmio_gpa(vcpu, addr);
3113
3114 return vcpu_match_mmio_gva(vcpu, addr);
3115}
3116
3117
3118/*
3119 * On direct hosts, the last spte is only allows two states
3120 * for mmio page fault:
3121 * - It is the mmio spte
3122 * - It is zapped or it is being zapped.
3123 *
3124 * This function completely checks the spte when the last spte
3125 * is not the mmio spte.
3126 */
3127static bool check_direct_spte_mmio_pf(u64 spte)
3128{
3129 return __check_direct_spte_mmio_pf(spte);
3130}
3131
3132static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3133{
3134 struct kvm_shadow_walk_iterator iterator;
3135 u64 spte = 0ull;
3136
3137 walk_shadow_page_lockless_begin(vcpu);
3138 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3139 if (!is_shadow_present_pte(spte))
3140 break;
3141 walk_shadow_page_lockless_end(vcpu);
3142
3143 return spte;
3144}
3145
3146/*
3147 * If it is a real mmio page fault, return 1 and emulat the instruction
3148 * directly, return 0 to let CPU fault again on the address, -1 is
3149 * returned if bug is detected.
3150 */
3151int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3152{
3153 u64 spte;
3154
3155 if (quickly_check_mmio_pf(vcpu, addr, direct))
3156 return 1;
3157
3158 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3159
3160 if (is_mmio_spte(spte)) {
3161 gfn_t gfn = get_mmio_spte_gfn(spte);
3162 unsigned access = get_mmio_spte_access(spte);
3163
3164 if (direct)
3165 addr = 0;
4f022648
XG
3166
3167 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3168 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3169 return 1;
3170 }
3171
3172 /*
3173 * It's ok if the gva is remapped by other cpus on shadow guest,
3174 * it's a BUG if the gfn is not a mmio page.
3175 */
3176 if (direct && !check_direct_spte_mmio_pf(spte))
3177 return -1;
3178
3179 /*
3180 * If the page table is zapped by other cpus, let CPU fault again on
3181 * the address.
3182 */
3183 return 0;
3184}
3185EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3186
3187static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3188 u32 error_code, bool direct)
3189{
3190 int ret;
3191
3192 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3193 WARN_ON(ret < 0);
3194 return ret;
3195}
3196
6aa8b732 3197static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3198 u32 error_code, bool prefault)
6aa8b732 3199{
e833240f 3200 gfn_t gfn;
e2dec939 3201 int r;
6aa8b732 3202
b8688d51 3203 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3204
3205 if (unlikely(error_code & PFERR_RSVD_MASK))
3206 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3207
e2dec939
AK
3208 r = mmu_topup_memory_caches(vcpu);
3209 if (r)
3210 return r;
714b93da 3211
6aa8b732 3212 ASSERT(vcpu);
ad312c7c 3213 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3214
e833240f 3215 gfn = gva >> PAGE_SHIFT;
6aa8b732 3216
e833240f 3217 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3218 error_code, gfn, prefault);
6aa8b732
AK
3219}
3220
7e1fbeac 3221static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3222{
3223 struct kvm_arch_async_pf arch;
fb67e14f 3224
7c90705b 3225 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3226 arch.gfn = gfn;
c4806acd 3227 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3228 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3229
3230 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3231}
3232
3233static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3234{
3235 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3236 kvm_event_needs_reinjection(vcpu)))
3237 return false;
3238
3239 return kvm_x86_ops->interrupt_allowed(vcpu);
3240}
3241
78b2c54a 3242static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3243 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3244{
3245 bool async;
3246
612819c3 3247 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3248
3249 if (!async)
3250 return false; /* *pfn has correct page already */
3251
78b2c54a 3252 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3253 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3254 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3255 trace_kvm_async_pf_doublefault(gva, gfn);
3256 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3257 return true;
3258 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3259 return true;
3260 }
3261
612819c3 3262 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3263
3264 return false;
3265}
3266
56028d08 3267static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3268 bool prefault)
fb72d167 3269{
35149e21 3270 pfn_t pfn;
fb72d167 3271 int r;
852e3c19 3272 int level;
936a5fe6 3273 int force_pt_level;
05da4558 3274 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3275 unsigned long mmu_seq;
612819c3
MT
3276 int write = error_code & PFERR_WRITE_MASK;
3277 bool map_writable;
fb72d167
JR
3278
3279 ASSERT(vcpu);
3280 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3281
ce88decf
XG
3282 if (unlikely(error_code & PFERR_RSVD_MASK))
3283 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3284
fb72d167
JR
3285 r = mmu_topup_memory_caches(vcpu);
3286 if (r)
3287 return r;
3288
936a5fe6
AA
3289 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3290 if (likely(!force_pt_level)) {
3291 level = mapping_level(vcpu, gfn);
3292 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3293 } else
3294 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3295
c7ba5b48
XG
3296 if (fast_page_fault(vcpu, gpa, level, error_code))
3297 return 0;
3298
e930bffe 3299 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3300 smp_rmb();
af585b92 3301
78b2c54a 3302 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3303 return 0;
3304
d7c55201
XG
3305 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3306 return r;
3307
fb72d167 3308 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3309 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3310 goto out_unlock;
fb72d167 3311 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3312 if (likely(!force_pt_level))
3313 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3314 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3315 level, gfn, pfn, prefault);
fb72d167 3316 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3317
3318 return r;
e930bffe
AA
3319
3320out_unlock:
3321 spin_unlock(&vcpu->kvm->mmu_lock);
3322 kvm_release_pfn_clean(pfn);
3323 return 0;
fb72d167
JR
3324}
3325
6aa8b732
AK
3326static void nonpaging_free(struct kvm_vcpu *vcpu)
3327{
17ac10ad 3328 mmu_free_roots(vcpu);
6aa8b732
AK
3329}
3330
52fde8df
JR
3331static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3332 struct kvm_mmu *context)
6aa8b732 3333{
6aa8b732
AK
3334 context->new_cr3 = nonpaging_new_cr3;
3335 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3336 context->gva_to_gpa = nonpaging_gva_to_gpa;
3337 context->free = nonpaging_free;
e8bc217a 3338 context->sync_page = nonpaging_sync_page;
a7052897 3339 context->invlpg = nonpaging_invlpg;
0f53b5b1 3340 context->update_pte = nonpaging_update_pte;
cea0f0e7 3341 context->root_level = 0;
6aa8b732 3342 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3343 context->root_hpa = INVALID_PAGE;
c5a78f2b 3344 context->direct_map = true;
2d48a985 3345 context->nx = false;
6aa8b732
AK
3346 return 0;
3347}
3348
d835dfec 3349void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3350{
1165f5fe 3351 ++vcpu->stat.tlb_flush;
a8eeb04a 3352 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3353}
3354
3355static void paging_new_cr3(struct kvm_vcpu *vcpu)
3356{
9f8fe504 3357 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3358 mmu_free_roots(vcpu);
6aa8b732
AK
3359}
3360
5777ed34
JR
3361static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3362{
9f8fe504 3363 return kvm_read_cr3(vcpu);
5777ed34
JR
3364}
3365
6389ee94
AK
3366static void inject_page_fault(struct kvm_vcpu *vcpu,
3367 struct x86_exception *fault)
6aa8b732 3368{
6389ee94 3369 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3370}
3371
6aa8b732
AK
3372static void paging_free(struct kvm_vcpu *vcpu)
3373{
3374 nonpaging_free(vcpu);
3375}
3376
8ea667f2
AK
3377static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3378{
3379 unsigned mask;
3380
3381 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3382
3383 mask = (unsigned)~ACC_WRITE_MASK;
3384 /* Allow write access to dirty gptes */
3385 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3386 *access &= mask;
3387}
3388
ce88decf
XG
3389static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3390 int *nr_present)
3391{
3392 if (unlikely(is_mmio_spte(*sptep))) {
3393 if (gfn != get_mmio_spte_gfn(*sptep)) {
3394 mmu_spte_clear_no_track(sptep);
3395 return true;
3396 }
3397
3398 (*nr_present)++;
3399 mark_mmio_spte(sptep, gfn, access);
3400 return true;
3401 }
3402
3403 return false;
3404}
3405
3d34adec
AK
3406static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3407{
3408 unsigned access;
3409
3410 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3411 access &= ~(gpte >> PT64_NX_SHIFT);
3412
3413 return access;
3414}
3415
6fd01b71
AK
3416static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3417{
3418 unsigned index;
3419
3420 index = level - 1;
3421 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3422 return mmu->last_pte_bitmap & (1 << index);
3423}
3424
6aa8b732
AK
3425#define PTTYPE 64
3426#include "paging_tmpl.h"
3427#undef PTTYPE
3428
3429#define PTTYPE 32
3430#include "paging_tmpl.h"
3431#undef PTTYPE
3432
52fde8df 3433static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3434 struct kvm_mmu *context)
82725b20 3435{
82725b20
DE
3436 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3437 u64 exb_bit_rsvd = 0;
3438
2d48a985 3439 if (!context->nx)
82725b20 3440 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3441 switch (context->root_level) {
82725b20
DE
3442 case PT32_ROOT_LEVEL:
3443 /* no rsvd bits for 2 level 4K page table entries */
3444 context->rsvd_bits_mask[0][1] = 0;
3445 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3446 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3447
3448 if (!is_pse(vcpu)) {
3449 context->rsvd_bits_mask[1][1] = 0;
3450 break;
3451 }
3452
82725b20
DE
3453 if (is_cpuid_PSE36())
3454 /* 36bits PSE 4MB page */
3455 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3456 else
3457 /* 32 bits PSE 4MB page */
3458 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3459 break;
3460 case PT32E_ROOT_LEVEL:
20c466b5
DE
3461 context->rsvd_bits_mask[0][2] =
3462 rsvd_bits(maxphyaddr, 63) |
3463 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3464 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3465 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3466 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3467 rsvd_bits(maxphyaddr, 62); /* PTE */
3468 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3469 rsvd_bits(maxphyaddr, 62) |
3470 rsvd_bits(13, 20); /* large page */
f815bce8 3471 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3472 break;
3473 case PT64_ROOT_LEVEL:
3474 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3475 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3476 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3477 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3478 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3479 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3480 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3481 rsvd_bits(maxphyaddr, 51);
3482 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3483 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3484 rsvd_bits(maxphyaddr, 51) |
3485 rsvd_bits(13, 29);
82725b20 3486 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3487 rsvd_bits(maxphyaddr, 51) |
3488 rsvd_bits(13, 20); /* large page */
f815bce8 3489 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3490 break;
3491 }
3492}
3493
97d64b78
AK
3494static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3495{
3496 unsigned bit, byte, pfec;
3497 u8 map;
3498 bool fault, x, w, u, wf, uf, ff, smep;
3499
3500 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3501 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3502 pfec = byte << 1;
3503 map = 0;
3504 wf = pfec & PFERR_WRITE_MASK;
3505 uf = pfec & PFERR_USER_MASK;
3506 ff = pfec & PFERR_FETCH_MASK;
3507 for (bit = 0; bit < 8; ++bit) {
3508 x = bit & ACC_EXEC_MASK;
3509 w = bit & ACC_WRITE_MASK;
3510 u = bit & ACC_USER_MASK;
3511
3512 /* Not really needed: !nx will cause pte.nx to fault */
3513 x |= !mmu->nx;
3514 /* Allow supervisor writes if !cr0.wp */
3515 w |= !is_write_protection(vcpu) && !uf;
3516 /* Disallow supervisor fetches of user code if cr4.smep */
3517 x &= !(smep && u && !uf);
3518
3519 fault = (ff && !x) || (uf && !u) || (wf && !w);
3520 map |= fault << bit;
3521 }
3522 mmu->permissions[byte] = map;
3523 }
3524}
3525
6fd01b71
AK
3526static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3527{
3528 u8 map;
3529 unsigned level, root_level = mmu->root_level;
3530 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3531
3532 if (root_level == PT32E_ROOT_LEVEL)
3533 --root_level;
3534 /* PT_PAGE_TABLE_LEVEL always terminates */
3535 map = 1 | (1 << ps_set_index);
3536 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3537 if (level <= PT_PDPE_LEVEL
3538 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3539 map |= 1 << (ps_set_index | (level - 1));
3540 }
3541 mmu->last_pte_bitmap = map;
3542}
3543
52fde8df
JR
3544static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3545 struct kvm_mmu *context,
3546 int level)
6aa8b732 3547{
2d48a985 3548 context->nx = is_nx(vcpu);
4d6931c3 3549 context->root_level = level;
2d48a985 3550
4d6931c3 3551 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3552 update_permission_bitmask(vcpu, context);
6fd01b71 3553 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3554
3555 ASSERT(is_pae(vcpu));
3556 context->new_cr3 = paging_new_cr3;
3557 context->page_fault = paging64_page_fault;
6aa8b732 3558 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3559 context->sync_page = paging64_sync_page;
a7052897 3560 context->invlpg = paging64_invlpg;
0f53b5b1 3561 context->update_pte = paging64_update_pte;
6aa8b732 3562 context->free = paging_free;
17ac10ad 3563 context->shadow_root_level = level;
17c3ba9d 3564 context->root_hpa = INVALID_PAGE;
c5a78f2b 3565 context->direct_map = false;
6aa8b732
AK
3566 return 0;
3567}
3568
52fde8df
JR
3569static int paging64_init_context(struct kvm_vcpu *vcpu,
3570 struct kvm_mmu *context)
17ac10ad 3571{
52fde8df 3572 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3573}
3574
52fde8df
JR
3575static int paging32_init_context(struct kvm_vcpu *vcpu,
3576 struct kvm_mmu *context)
6aa8b732 3577{
2d48a985 3578 context->nx = false;
4d6931c3 3579 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3580
4d6931c3 3581 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3582 update_permission_bitmask(vcpu, context);
6fd01b71 3583 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3584
3585 context->new_cr3 = paging_new_cr3;
3586 context->page_fault = paging32_page_fault;
6aa8b732
AK
3587 context->gva_to_gpa = paging32_gva_to_gpa;
3588 context->free = paging_free;
e8bc217a 3589 context->sync_page = paging32_sync_page;
a7052897 3590 context->invlpg = paging32_invlpg;
0f53b5b1 3591 context->update_pte = paging32_update_pte;
6aa8b732 3592 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3593 context->root_hpa = INVALID_PAGE;
c5a78f2b 3594 context->direct_map = false;
6aa8b732
AK
3595 return 0;
3596}
3597
52fde8df
JR
3598static int paging32E_init_context(struct kvm_vcpu *vcpu,
3599 struct kvm_mmu *context)
6aa8b732 3600{
52fde8df 3601 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3602}
3603
fb72d167
JR
3604static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3605{
14dfe855 3606 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3607
c445f8ef 3608 context->base_role.word = 0;
fb72d167
JR
3609 context->new_cr3 = nonpaging_new_cr3;
3610 context->page_fault = tdp_page_fault;
3611 context->free = nonpaging_free;
e8bc217a 3612 context->sync_page = nonpaging_sync_page;
a7052897 3613 context->invlpg = nonpaging_invlpg;
0f53b5b1 3614 context->update_pte = nonpaging_update_pte;
67253af5 3615 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3616 context->root_hpa = INVALID_PAGE;
c5a78f2b 3617 context->direct_map = true;
1c97f0a0 3618 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3619 context->get_cr3 = get_cr3;
e4e517b4 3620 context->get_pdptr = kvm_pdptr_read;
cb659db8 3621 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3622
3623 if (!is_paging(vcpu)) {
2d48a985 3624 context->nx = false;
fb72d167
JR
3625 context->gva_to_gpa = nonpaging_gva_to_gpa;
3626 context->root_level = 0;
3627 } else if (is_long_mode(vcpu)) {
2d48a985 3628 context->nx = is_nx(vcpu);
fb72d167 3629 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3630 reset_rsvds_bits_mask(vcpu, context);
3631 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3632 } else if (is_pae(vcpu)) {
2d48a985 3633 context->nx = is_nx(vcpu);
fb72d167 3634 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3635 reset_rsvds_bits_mask(vcpu, context);
3636 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3637 } else {
2d48a985 3638 context->nx = false;
fb72d167 3639 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3640 reset_rsvds_bits_mask(vcpu, context);
3641 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3642 }
3643
97d64b78 3644 update_permission_bitmask(vcpu, context);
6fd01b71 3645 update_last_pte_bitmap(vcpu, context);
97d64b78 3646
fb72d167
JR
3647 return 0;
3648}
3649
52fde8df 3650int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3651{
a770f6f2 3652 int r;
411c588d 3653 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3654 ASSERT(vcpu);
ad312c7c 3655 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3656
3657 if (!is_paging(vcpu))
52fde8df 3658 r = nonpaging_init_context(vcpu, context);
a9058ecd 3659 else if (is_long_mode(vcpu))
52fde8df 3660 r = paging64_init_context(vcpu, context);
6aa8b732 3661 else if (is_pae(vcpu))
52fde8df 3662 r = paging32E_init_context(vcpu, context);
6aa8b732 3663 else
52fde8df 3664 r = paging32_init_context(vcpu, context);
a770f6f2 3665
2c9afa52 3666 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3667 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3668 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3669 vcpu->arch.mmu.base_role.smep_andnot_wp
3670 = smep && !is_write_protection(vcpu);
52fde8df
JR
3671
3672 return r;
3673}
3674EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3675
3676static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3677{
14dfe855 3678 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3679
14dfe855
JR
3680 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3681 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3682 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3683 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3684
3685 return r;
6aa8b732
AK
3686}
3687
02f59dc9
JR
3688static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3689{
3690 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3691
3692 g_context->get_cr3 = get_cr3;
e4e517b4 3693 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3694 g_context->inject_page_fault = kvm_inject_page_fault;
3695
3696 /*
3697 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3698 * translation of l2_gpa to l1_gpa addresses is done using the
3699 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3700 * functions between mmu and nested_mmu are swapped.
3701 */
3702 if (!is_paging(vcpu)) {
2d48a985 3703 g_context->nx = false;
02f59dc9
JR
3704 g_context->root_level = 0;
3705 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3706 } else if (is_long_mode(vcpu)) {
2d48a985 3707 g_context->nx = is_nx(vcpu);
02f59dc9 3708 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3709 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3710 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3711 } else if (is_pae(vcpu)) {
2d48a985 3712 g_context->nx = is_nx(vcpu);
02f59dc9 3713 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3714 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3715 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3716 } else {
2d48a985 3717 g_context->nx = false;
02f59dc9 3718 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3719 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3720 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3721 }
3722
97d64b78 3723 update_permission_bitmask(vcpu, g_context);
6fd01b71 3724 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3725
02f59dc9
JR
3726 return 0;
3727}
3728
fb72d167
JR
3729static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3730{
02f59dc9
JR
3731 if (mmu_is_nested(vcpu))
3732 return init_kvm_nested_mmu(vcpu);
3733 else if (tdp_enabled)
fb72d167
JR
3734 return init_kvm_tdp_mmu(vcpu);
3735 else
3736 return init_kvm_softmmu(vcpu);
3737}
3738
6aa8b732
AK
3739static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3740{
3741 ASSERT(vcpu);
62ad0755
SY
3742 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3743 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3744 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3745}
3746
3747int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3748{
3749 destroy_kvm_mmu(vcpu);
f8f7e5ee 3750 return init_kvm_mmu(vcpu);
17c3ba9d 3751}
8668a3c4 3752EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3753
3754int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3755{
714b93da
AK
3756 int r;
3757
e2dec939 3758 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3759 if (r)
3760 goto out;
8986ecc0 3761 r = mmu_alloc_roots(vcpu);
8facbbff 3762 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3763 mmu_sync_roots(vcpu);
aaee2c94 3764 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3765 if (r)
3766 goto out;
3662cb1c 3767 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3768 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3769out:
3770 return r;
6aa8b732 3771}
17c3ba9d
AK
3772EXPORT_SYMBOL_GPL(kvm_mmu_load);
3773
3774void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3775{
3776 mmu_free_roots(vcpu);
3777}
4b16184c 3778EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3779
0028425f 3780static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3781 struct kvm_mmu_page *sp, u64 *spte,
3782 const void *new)
0028425f 3783{
30945387 3784 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3785 ++vcpu->kvm->stat.mmu_pde_zapped;
3786 return;
30945387 3787 }
0028425f 3788
4cee5764 3789 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3790 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3791}
3792
79539cec
AK
3793static bool need_remote_flush(u64 old, u64 new)
3794{
3795 if (!is_shadow_present_pte(old))
3796 return false;
3797 if (!is_shadow_present_pte(new))
3798 return true;
3799 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3800 return true;
3801 old ^= PT64_NX_MASK;
3802 new ^= PT64_NX_MASK;
3803 return (old & ~new & PT64_PERM_MASK) != 0;
3804}
3805
0671a8e7
XG
3806static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3807 bool remote_flush, bool local_flush)
79539cec 3808{
0671a8e7
XG
3809 if (zap_page)
3810 return;
3811
3812 if (remote_flush)
79539cec 3813 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3814 else if (local_flush)
79539cec
AK
3815 kvm_mmu_flush_tlb(vcpu);
3816}
3817
889e5cbc
XG
3818static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3819 const u8 *new, int *bytes)
da4a00f0 3820{
889e5cbc
XG
3821 u64 gentry;
3822 int r;
72016f3a 3823
72016f3a
AK
3824 /*
3825 * Assume that the pte write on a page table of the same type
49b26e26
XG
3826 * as the current vcpu paging mode since we update the sptes only
3827 * when they have the same mode.
72016f3a 3828 */
889e5cbc 3829 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3830 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3831 *gpa &= ~(gpa_t)7;
3832 *bytes = 8;
116eb3d3 3833 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3834 if (r)
3835 gentry = 0;
08e850c6
AK
3836 new = (const u8 *)&gentry;
3837 }
3838
889e5cbc 3839 switch (*bytes) {
08e850c6
AK
3840 case 4:
3841 gentry = *(const u32 *)new;
3842 break;
3843 case 8:
3844 gentry = *(const u64 *)new;
3845 break;
3846 default:
3847 gentry = 0;
3848 break;
72016f3a
AK
3849 }
3850
889e5cbc
XG
3851 return gentry;
3852}
3853
3854/*
3855 * If we're seeing too many writes to a page, it may no longer be a page table,
3856 * or we may be forking, in which case it is better to unmap the page.
3857 */
a138fe75 3858static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3859{
a30f47cb
XG
3860 /*
3861 * Skip write-flooding detected for the sp whose level is 1, because
3862 * it can become unsync, then the guest page is not write-protected.
3863 */
f71fa31f 3864 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3865 return false;
3246af0e 3866
a30f47cb 3867 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3868}
3869
3870/*
3871 * Misaligned accesses are too much trouble to fix up; also, they usually
3872 * indicate a page is not used as a page table.
3873 */
3874static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3875 int bytes)
3876{
3877 unsigned offset, pte_size, misaligned;
3878
3879 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3880 gpa, bytes, sp->role.word);
3881
3882 offset = offset_in_page(gpa);
3883 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3884
3885 /*
3886 * Sometimes, the OS only writes the last one bytes to update status
3887 * bits, for example, in linux, andb instruction is used in clear_bit().
3888 */
3889 if (!(offset & (pte_size - 1)) && bytes == 1)
3890 return false;
3891
889e5cbc
XG
3892 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3893 misaligned |= bytes < 4;
3894
3895 return misaligned;
3896}
3897
3898static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3899{
3900 unsigned page_offset, quadrant;
3901 u64 *spte;
3902 int level;
3903
3904 page_offset = offset_in_page(gpa);
3905 level = sp->role.level;
3906 *nspte = 1;
3907 if (!sp->role.cr4_pae) {
3908 page_offset <<= 1; /* 32->64 */
3909 /*
3910 * A 32-bit pde maps 4MB while the shadow pdes map
3911 * only 2MB. So we need to double the offset again
3912 * and zap two pdes instead of one.
3913 */
3914 if (level == PT32_ROOT_LEVEL) {
3915 page_offset &= ~7; /* kill rounding error */
3916 page_offset <<= 1;
3917 *nspte = 2;
3918 }
3919 quadrant = page_offset >> PAGE_SHIFT;
3920 page_offset &= ~PAGE_MASK;
3921 if (quadrant != sp->role.quadrant)
3922 return NULL;
3923 }
3924
3925 spte = &sp->spt[page_offset / sizeof(*spte)];
3926 return spte;
3927}
3928
3929void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3930 const u8 *new, int bytes)
3931{
3932 gfn_t gfn = gpa >> PAGE_SHIFT;
3933 union kvm_mmu_page_role mask = { .word = 0 };
3934 struct kvm_mmu_page *sp;
889e5cbc
XG
3935 LIST_HEAD(invalid_list);
3936 u64 entry, gentry, *spte;
3937 int npte;
a30f47cb 3938 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3939
3940 /*
3941 * If we don't have indirect shadow pages, it means no page is
3942 * write-protected, so we can exit simply.
3943 */
3944 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3945 return;
3946
3947 zap_page = remote_flush = local_flush = false;
3948
3949 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3950
3951 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3952
3953 /*
3954 * No need to care whether allocation memory is successful
3955 * or not since pte prefetch is skiped if it does not have
3956 * enough objects in the cache.
3957 */
3958 mmu_topup_memory_caches(vcpu);
3959
3960 spin_lock(&vcpu->kvm->mmu_lock);
3961 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3962 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3963
fa1de2bf 3964 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 3965 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 3966 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3967 detect_write_flooding(sp)) {
0671a8e7 3968 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3969 &invalid_list);
4cee5764 3970 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3971 continue;
3972 }
889e5cbc
XG
3973
3974 spte = get_written_sptes(sp, gpa, &npte);
3975 if (!spte)
3976 continue;
3977
0671a8e7 3978 local_flush = true;
ac1b714e 3979 while (npte--) {
79539cec 3980 entry = *spte;
38e3b2b2 3981 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3982 if (gentry &&
3983 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3984 & mask.word) && rmap_can_add(vcpu))
7c562522 3985 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 3986 if (need_remote_flush(entry, *spte))
0671a8e7 3987 remote_flush = true;
ac1b714e 3988 ++spte;
9b7a0325 3989 }
9b7a0325 3990 }
0671a8e7 3991 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3992 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3993 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3994 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3995}
3996
a436036b
AK
3997int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3998{
10589a46
MT
3999 gpa_t gpa;
4000 int r;
a436036b 4001
c5a78f2b 4002 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4003 return 0;
4004
1871c602 4005 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4006
10589a46 4007 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4008
10589a46 4009 return r;
a436036b 4010}
577bdc49 4011EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4012
22d95b12 4013void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4014{
d98ba053 4015 LIST_HEAD(invalid_list);
103ad25a 4016
5da59607
TY
4017 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4018 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4019 break;
ebeace86 4020
4cee5764 4021 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4022 }
aa6bd187 4023 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4024}
ebeace86 4025
1cb3f3ae
XG
4026static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4027{
4028 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4029 return vcpu_match_mmio_gpa(vcpu, addr);
4030
4031 return vcpu_match_mmio_gva(vcpu, addr);
4032}
4033
dc25e89e
AP
4034int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4035 void *insn, int insn_len)
3067714c 4036{
1cb3f3ae 4037 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4038 enum emulation_result er;
4039
56028d08 4040 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4041 if (r < 0)
4042 goto out;
4043
4044 if (!r) {
4045 r = 1;
4046 goto out;
4047 }
4048
1cb3f3ae
XG
4049 if (is_mmio_page_fault(vcpu, cr2))
4050 emulation_type = 0;
4051
4052 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4053
4054 switch (er) {
4055 case EMULATE_DONE:
4056 return 1;
4057 case EMULATE_DO_MMIO:
4058 ++vcpu->stat.mmio_exits;
6d77dbfc 4059 /* fall through */
3067714c 4060 case EMULATE_FAIL:
3f5d18a9 4061 return 0;
3067714c
AK
4062 default:
4063 BUG();
4064 }
4065out:
3067714c
AK
4066 return r;
4067}
4068EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4069
a7052897
MT
4070void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4071{
a7052897 4072 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4073 kvm_mmu_flush_tlb(vcpu);
4074 ++vcpu->stat.invlpg;
4075}
4076EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4077
18552672
JR
4078void kvm_enable_tdp(void)
4079{
4080 tdp_enabled = true;
4081}
4082EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4083
5f4cb662
JR
4084void kvm_disable_tdp(void)
4085{
4086 tdp_enabled = false;
4087}
4088EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4089
6aa8b732
AK
4090static void free_mmu_pages(struct kvm_vcpu *vcpu)
4091{
ad312c7c 4092 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4093 if (vcpu->arch.mmu.lm_root != NULL)
4094 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4095}
4096
4097static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4098{
17ac10ad 4099 struct page *page;
6aa8b732
AK
4100 int i;
4101
4102 ASSERT(vcpu);
4103
17ac10ad
AK
4104 /*
4105 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4106 * Therefore we need to allocate shadow page tables in the first
4107 * 4GB of memory, which happens to fit the DMA32 zone.
4108 */
4109 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4110 if (!page)
d7fa6ab2
WY
4111 return -ENOMEM;
4112
ad312c7c 4113 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4114 for (i = 0; i < 4; ++i)
ad312c7c 4115 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4116
6aa8b732 4117 return 0;
6aa8b732
AK
4118}
4119
8018c27b 4120int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4121{
6aa8b732 4122 ASSERT(vcpu);
e459e322
XG
4123
4124 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4125 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4126 vcpu->arch.mmu.translate_gpa = translate_gpa;
4127 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4128
8018c27b
IM
4129 return alloc_mmu_pages(vcpu);
4130}
6aa8b732 4131
8018c27b
IM
4132int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4133{
4134 ASSERT(vcpu);
ad312c7c 4135 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4136
8018c27b 4137 return init_kvm_mmu(vcpu);
6aa8b732
AK
4138}
4139
90cb0529 4140void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4141{
b99db1d3
TY
4142 struct kvm_memory_slot *memslot;
4143 gfn_t last_gfn;
4144 int i;
6aa8b732 4145
b99db1d3
TY
4146 memslot = id_to_memslot(kvm->memslots, slot);
4147 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4148
9d1beefb
TY
4149 spin_lock(&kvm->mmu_lock);
4150
b99db1d3
TY
4151 for (i = PT_PAGE_TABLE_LEVEL;
4152 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4153 unsigned long *rmapp;
4154 unsigned long last_index, index;
6aa8b732 4155
b99db1d3
TY
4156 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4157 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4158
b99db1d3
TY
4159 for (index = 0; index <= last_index; ++index, ++rmapp) {
4160 if (*rmapp)
4161 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4162
4163 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4164 kvm_flush_remote_tlbs(kvm);
4165 cond_resched_lock(&kvm->mmu_lock);
4166 }
8234b22e 4167 }
6aa8b732 4168 }
b99db1d3 4169
171d595d 4170 kvm_flush_remote_tlbs(kvm);
9d1beefb 4171 spin_unlock(&kvm->mmu_lock);
6aa8b732 4172}
37a7d8b0 4173
90cb0529 4174void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4175{
4db35314 4176 struct kvm_mmu_page *sp, *node;
d98ba053 4177 LIST_HEAD(invalid_list);
e0fa826f 4178
aaee2c94 4179 spin_lock(&kvm->mmu_lock);
3246af0e 4180restart:
f05e70ac 4181 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4182 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4183 goto restart;
4184
d98ba053 4185 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4186 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4187}
4188
1495f230 4189static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4190{
4191 struct kvm *kvm;
1495f230 4192 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4193
4194 if (nr_to_scan == 0)
4195 goto out;
3ee16c81 4196
e935b837 4197 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4198
4199 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4200 int idx;
d98ba053 4201 LIST_HEAD(invalid_list);
3ee16c81 4202
35f2d16b
TY
4203 /*
4204 * Never scan more than sc->nr_to_scan VM instances.
4205 * Will not hit this condition practically since we do not try
4206 * to shrink more than one VM and it is very unlikely to see
4207 * !n_used_mmu_pages so many times.
4208 */
4209 if (!nr_to_scan--)
4210 break;
19526396
GN
4211 /*
4212 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4213 * here. We may skip a VM instance errorneosly, but we do not
4214 * want to shrink a VM that only started to populate its MMU
4215 * anyway.
4216 */
35f2d16b 4217 if (!kvm->arch.n_used_mmu_pages)
19526396 4218 continue;
19526396 4219
f656ce01 4220 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4221 spin_lock(&kvm->mmu_lock);
3ee16c81 4222
5da59607 4223 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
d98ba053 4224 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4225
3ee16c81 4226 spin_unlock(&kvm->mmu_lock);
f656ce01 4227 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4228
4229 list_move_tail(&kvm->vm_list, &vm_list);
4230 break;
3ee16c81 4231 }
3ee16c81 4232
e935b837 4233 raw_spin_unlock(&kvm_lock);
3ee16c81 4234
45221ab6
DH
4235out:
4236 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4237}
4238
4239static struct shrinker mmu_shrinker = {
4240 .shrink = mmu_shrink,
4241 .seeks = DEFAULT_SEEKS * 10,
4242};
4243
2ddfd20e 4244static void mmu_destroy_caches(void)
b5a33a75 4245{
53c07b18
XG
4246 if (pte_list_desc_cache)
4247 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4248 if (mmu_page_header_cache)
4249 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4250}
4251
4252int kvm_mmu_module_init(void)
4253{
53c07b18
XG
4254 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4255 sizeof(struct pte_list_desc),
20c2df83 4256 0, 0, NULL);
53c07b18 4257 if (!pte_list_desc_cache)
b5a33a75
AK
4258 goto nomem;
4259
d3d25b04
AK
4260 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4261 sizeof(struct kvm_mmu_page),
20c2df83 4262 0, 0, NULL);
d3d25b04
AK
4263 if (!mmu_page_header_cache)
4264 goto nomem;
4265
45bf21a8
WY
4266 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4267 goto nomem;
4268
3ee16c81
IE
4269 register_shrinker(&mmu_shrinker);
4270
b5a33a75
AK
4271 return 0;
4272
4273nomem:
3ee16c81 4274 mmu_destroy_caches();
b5a33a75
AK
4275 return -ENOMEM;
4276}
4277
3ad82a7e
ZX
4278/*
4279 * Caculate mmu pages needed for kvm.
4280 */
4281unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4282{
3ad82a7e
ZX
4283 unsigned int nr_mmu_pages;
4284 unsigned int nr_pages = 0;
bc6678a3 4285 struct kvm_memslots *slots;
be6ba0f0 4286 struct kvm_memory_slot *memslot;
3ad82a7e 4287
90d83dc3
LJ
4288 slots = kvm_memslots(kvm);
4289
be6ba0f0
XG
4290 kvm_for_each_memslot(memslot, slots)
4291 nr_pages += memslot->npages;
3ad82a7e
ZX
4292
4293 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4294 nr_mmu_pages = max(nr_mmu_pages,
4295 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4296
4297 return nr_mmu_pages;
4298}
4299
94d8b056
MT
4300int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4301{
4302 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4303 u64 spte;
94d8b056
MT
4304 int nr_sptes = 0;
4305
c2a2ac2b
XG
4306 walk_shadow_page_lockless_begin(vcpu);
4307 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4308 sptes[iterator.level-1] = spte;
94d8b056 4309 nr_sptes++;
c2a2ac2b 4310 if (!is_shadow_present_pte(spte))
94d8b056
MT
4311 break;
4312 }
c2a2ac2b 4313 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4314
4315 return nr_sptes;
4316}
4317EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4318
c42fffe3
XG
4319void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4320{
4321 ASSERT(vcpu);
4322
4323 destroy_kvm_mmu(vcpu);
4324 free_mmu_pages(vcpu);
4325 mmu_free_memory_caches(vcpu);
b034cf01
XG
4326}
4327
b034cf01
XG
4328void kvm_mmu_module_exit(void)
4329{
4330 mmu_destroy_caches();
4331 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4332 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4333 mmu_audit_disable();
4334}