]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 498
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d 44#include <asm/page.h>
aa2e063a 45#include <asm/pat.h>
e495606d 46#include <asm/cmpxchg.h>
0c55671f 47#include <asm/e820/api.h>
4e542370 48#include <asm/io.h>
13673a90 49#include <asm/vmx.h>
3d0c27ad 50#include <asm/kvm_page_track.h>
1261bfa3 51#include "trace.h"
6aa8b732 52
18552672
JR
53/*
54 * When setting this variable to true it enables Two-Dimensional-Paging
55 * where the hardware walks 2 page tables:
56 * 1. the guest-virtual to guest-physical
57 * 2. while doing 1. it walks guest-physical to host-physical
58 * If the hardware supports that we don't need to do shadow paging.
59 */
2f333bcb 60bool tdp_enabled = false;
18552672 61
8b1fe17c
XG
62enum {
63 AUDIT_PRE_PAGE_FAULT,
64 AUDIT_POST_PAGE_FAULT,
65 AUDIT_PRE_PTE_WRITE,
6903074c
XG
66 AUDIT_POST_PTE_WRITE,
67 AUDIT_PRE_SYNC,
68 AUDIT_POST_SYNC
8b1fe17c 69};
37a7d8b0 70
8b1fe17c 71#undef MMU_DEBUG
37a7d8b0
AK
72
73#ifdef MMU_DEBUG
fa4a2c08
PB
74static bool dbg = 0;
75module_param(dbg, bool, 0644);
37a7d8b0
AK
76
77#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
78#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 79#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 80#else
37a7d8b0
AK
81#define pgprintk(x...) do { } while (0)
82#define rmap_printk(x...) do { } while (0)
fa4a2c08 83#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 84#endif
6aa8b732 85
957ed9ef
XG
86#define PTE_PREFETCH_NUM 8
87
00763e41 88#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
89#define PT64_SECOND_AVAIL_BITS_SHIFT 52
90
6aa8b732
AK
91#define PT64_LEVEL_BITS 9
92
93#define PT64_LEVEL_SHIFT(level) \
d77c26fc 94 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 95
6aa8b732
AK
96#define PT64_INDEX(address, level)\
97 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
98
99
100#define PT32_LEVEL_BITS 10
101
102#define PT32_LEVEL_SHIFT(level) \
d77c26fc 103 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 104
e04da980
JR
105#define PT32_LVL_OFFSET_MASK(level) \
106 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
107 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
108
109#define PT32_INDEX(address, level)\
110 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
111
112
8acc0993
KH
113#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
114#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
115#else
116#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
117#endif
e04da980
JR
118#define PT64_LVL_ADDR_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
121#define PT64_LVL_OFFSET_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
124
125#define PT32_BASE_ADDR_MASK PAGE_MASK
126#define PT32_DIR_BASE_ADDR_MASK \
127 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
128#define PT32_LVL_ADDR_MASK(level) \
129 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT32_LEVEL_BITS))) - 1))
6aa8b732 131
53166229 132#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 133 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 134
fe135d2c
AK
135#define ACC_EXEC_MASK 1
136#define ACC_WRITE_MASK PT_WRITABLE_MASK
137#define ACC_USER_MASK PT_USER_MASK
138#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
139
f160c7b7
JS
140/* The mask for the R/X bits in EPT PTEs */
141#define PT64_EPT_READABLE_MASK 0x1ull
142#define PT64_EPT_EXECUTABLE_MASK 0x4ull
143
90bb6fc5
AK
144#include <trace/events/kvm.h>
145
07420171
AK
146#define CREATE_TRACE_POINTS
147#include "mmutrace.h"
148
49fde340
XG
149#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 151
135f8c2b
AK
152#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
220f773a
TY
154/* make pte_list_desc fit well in cache line */
155#define PTE_LIST_EXT 3
156
9b8ebbdb
PB
157/*
158 * Return values of handle_mmio_page_fault and mmu.page_fault:
159 * RET_PF_RETRY: let CPU fault again on the address.
160 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
161 *
162 * For handle_mmio_page_fault only:
163 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
164 */
165enum {
166 RET_PF_RETRY = 0,
167 RET_PF_EMULATE = 1,
168 RET_PF_INVALID = 2,
169};
170
53c07b18
XG
171struct pte_list_desc {
172 u64 *sptes[PTE_LIST_EXT];
173 struct pte_list_desc *more;
cd4a4e53
AK
174};
175
2d11123a
AK
176struct kvm_shadow_walk_iterator {
177 u64 addr;
178 hpa_t shadow_addr;
2d11123a 179 u64 *sptep;
dd3bfd59 180 int level;
2d11123a
AK
181 unsigned index;
182};
183
9fa72119
JS
184static const union kvm_mmu_page_role mmu_base_role_mask = {
185 .cr0_wp = 1,
47c42e6b 186 .gpte_is_8_bytes = 1,
9fa72119
JS
187 .nxe = 1,
188 .smep_andnot_wp = 1,
189 .smap_andnot_wp = 1,
190 .smm = 1,
191 .guest_mode = 1,
192 .ad_disabled = 1,
193};
194
7eb77e9f
JS
195#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
196 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
197 (_root), (_addr)); \
198 shadow_walk_okay(&(_walker)); \
199 shadow_walk_next(&(_walker)))
200
201#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
202 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
203 shadow_walk_okay(&(_walker)); \
204 shadow_walk_next(&(_walker)))
205
c2a2ac2b
XG
206#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
207 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
208 shadow_walk_okay(&(_walker)) && \
209 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
210 __shadow_walk_next(&(_walker), spte))
211
53c07b18 212static struct kmem_cache *pte_list_desc_cache;
d3d25b04 213static struct kmem_cache *mmu_page_header_cache;
45221ab6 214static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 215
7b52345e
SY
216static u64 __read_mostly shadow_nx_mask;
217static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
218static u64 __read_mostly shadow_user_mask;
219static u64 __read_mostly shadow_accessed_mask;
220static u64 __read_mostly shadow_dirty_mask;
ce88decf 221static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 222static u64 __read_mostly shadow_mmio_value;
ffb128c8 223static u64 __read_mostly shadow_present_mask;
d0ec49d4 224static u64 __read_mostly shadow_me_mask;
ce88decf 225
f160c7b7 226/*
ac8d57e5
PF
227 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
228 * Non-present SPTEs with shadow_acc_track_value set are in place for access
229 * tracking.
f160c7b7
JS
230 */
231static u64 __read_mostly shadow_acc_track_mask;
232static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
233
234/*
235 * The mask/shift to use for saving the original R/X bits when marking the PTE
236 * as not-present for access tracking purposes. We do not save the W bit as the
237 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
238 * restored only when a write is attempted to the page.
239 */
240static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
241 PT64_EPT_EXECUTABLE_MASK;
242static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
243
28a1f3ac
JS
244/*
245 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
246 * to guard against L1TF attacks.
247 */
248static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
249
250/*
251 * The number of high-order 1 bits to use in the mask above.
252 */
253static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
254
daa07cbc
SC
255/*
256 * In some cases, we need to preserve the GFN of a non-present or reserved
257 * SPTE when we usurp the upper five bits of the physical address space to
258 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
259 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
260 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
261 * high and low parts. This mask covers the lower bits of the GFN.
262 */
263static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
264
265
ce88decf 266static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
267static union kvm_mmu_page_role
268kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 269
40ef75a7
LT
270
271static inline bool kvm_available_flush_tlb_with_range(void)
272{
273 return kvm_x86_ops->tlb_remote_flush_with_range;
274}
275
276static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
277 struct kvm_tlb_range *range)
278{
279 int ret = -ENOTSUPP;
280
281 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
282 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
283
284 if (ret)
285 kvm_flush_remote_tlbs(kvm);
286}
287
288static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
289 u64 start_gfn, u64 pages)
290{
291 struct kvm_tlb_range range;
292
293 range.start_gfn = start_gfn;
294 range.pages = pages;
295
296 kvm_flush_remote_tlbs_with_range(kvm, &range);
297}
298
dcdca5fe 299void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 300{
dcdca5fe
PF
301 BUG_ON((mmio_mask & mmio_value) != mmio_value);
302 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 303 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
304}
305EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
306
ac8d57e5
PF
307static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
308{
309 return sp->role.ad_disabled;
310}
311
312static inline bool spte_ad_enabled(u64 spte)
313{
314 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
315 return !(spte & shadow_acc_track_value);
316}
317
318static inline u64 spte_shadow_accessed_mask(u64 spte)
319{
320 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
321 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
322}
323
324static inline u64 spte_shadow_dirty_mask(u64 spte)
325{
326 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
327 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
328}
329
f160c7b7
JS
330static inline bool is_access_track_spte(u64 spte)
331{
ac8d57e5 332 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
333}
334
f2fd125d 335/*
cae7ed3c
SC
336 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
337 * the memslots generation and is derived as follows:
ee3d1570 338 *
164bf7e5
SC
339 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
340 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 341 *
164bf7e5
SC
342 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
343 * the MMIO generation number, as doing so would require stealing a bit from
344 * the "real" generation number and thus effectively halve the maximum number
345 * of MMIO generations that can be handled before encountering a wrap (which
346 * requires a full MMU zap). The flag is instead explicitly queried when
347 * checking for MMIO spte cache hits.
f2fd125d 348 */
164bf7e5 349#define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0)
f2fd125d 350
cae7ed3c
SC
351#define MMIO_SPTE_GEN_LOW_START 3
352#define MMIO_SPTE_GEN_LOW_END 11
353#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
354 MMIO_SPTE_GEN_LOW_START)
f2fd125d 355
cae7ed3c
SC
356#define MMIO_SPTE_GEN_HIGH_START 52
357#define MMIO_SPTE_GEN_HIGH_END 61
358#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
359 MMIO_SPTE_GEN_HIGH_START)
5192f9b9 360static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
361{
362 u64 mask;
363
cae7ed3c 364 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
f2fd125d 365
cae7ed3c
SC
366 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
367 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
368 return mask;
369}
370
5192f9b9 371static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 372{
5192f9b9 373 u64 gen;
f2fd125d
XG
374
375 spte &= ~shadow_mmio_mask;
376
cae7ed3c
SC
377 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
378 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
379 return gen;
380}
381
54bf36aa 382static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 383 unsigned access)
ce88decf 384{
cae7ed3c 385 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 386 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 387 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 388
ce88decf 389 access &= ACC_WRITE_MASK | ACC_USER_MASK;
28a1f3ac
JS
390 mask |= shadow_mmio_value | access;
391 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
392 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
393 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 394
4771450c
SC
395 page_header(__pa(sptep))->mmio_cached = true;
396
f8f55942 397 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 398 mmu_spte_set(sptep, mask);
ce88decf
XG
399}
400
401static bool is_mmio_spte(u64 spte)
402{
dcdca5fe 403 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
404}
405
406static gfn_t get_mmio_spte_gfn(u64 spte)
407{
daa07cbc 408 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
409
410 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
411 & shadow_nonpresent_or_rsvd_mask;
412
413 return gpa >> PAGE_SHIFT;
ce88decf
XG
414}
415
416static unsigned get_mmio_spte_access(u64 spte)
417{
cae7ed3c 418 u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
f2fd125d 419 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
420}
421
54bf36aa 422static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 423 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
424{
425 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 426 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
427 return true;
428 }
429
430 return false;
431}
c7addb90 432
54bf36aa 433static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 434{
cae7ed3c 435 u64 kvm_gen, spte_gen, gen;
089504c0 436
cae7ed3c
SC
437 gen = kvm_vcpu_memslots(vcpu)->generation;
438 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
439 return false;
089504c0 440
cae7ed3c 441 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
442 spte_gen = get_mmio_spte_generation(spte);
443
444 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
445 return likely(kvm_gen == spte_gen);
f8f55942
XG
446}
447
ce00053b
PF
448/*
449 * Sets the shadow PTE masks used by the MMU.
450 *
451 * Assumptions:
452 * - Setting either @accessed_mask or @dirty_mask requires setting both
453 * - At least one of @accessed_mask or @acc_track_mask must be set
454 */
7b52345e 455void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 456 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 457 u64 acc_track_mask, u64 me_mask)
7b52345e 458{
ce00053b
PF
459 BUG_ON(!dirty_mask != !accessed_mask);
460 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 461 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 462
7b52345e
SY
463 shadow_user_mask = user_mask;
464 shadow_accessed_mask = accessed_mask;
465 shadow_dirty_mask = dirty_mask;
466 shadow_nx_mask = nx_mask;
467 shadow_x_mask = x_mask;
ffb128c8 468 shadow_present_mask = p_mask;
f160c7b7 469 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 470 shadow_me_mask = me_mask;
7b52345e
SY
471}
472EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
473
28a1f3ac 474static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 475{
daa07cbc
SC
476 u8 low_phys_bits;
477
f160c7b7
JS
478 shadow_user_mask = 0;
479 shadow_accessed_mask = 0;
480 shadow_dirty_mask = 0;
481 shadow_nx_mask = 0;
482 shadow_x_mask = 0;
483 shadow_mmio_mask = 0;
484 shadow_present_mask = 0;
485 shadow_acc_track_mask = 0;
28a1f3ac
JS
486
487 /*
488 * If the CPU has 46 or less physical address bits, then set an
489 * appropriate mask to guard against L1TF attacks. Otherwise, it is
490 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
491 *
492 * Some Intel CPUs address the L1 cache using more PA bits than are
493 * reported by CPUID. Use the PA width of the L1 cache when possible
494 * to achieve more effective mitigation, e.g. if system RAM overlaps
495 * the most significant bits of legal physical address space.
28a1f3ac 496 */
61455bf2
KH
497 shadow_nonpresent_or_rsvd_mask = 0;
498 low_phys_bits = boot_cpu_data.x86_cache_bits;
499 if (boot_cpu_data.x86_cache_bits <
daa07cbc 500 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac 501 shadow_nonpresent_or_rsvd_mask =
61455bf2 502 rsvd_bits(boot_cpu_data.x86_cache_bits -
28a1f3ac 503 shadow_nonpresent_or_rsvd_mask_len,
61455bf2 504 boot_cpu_data.x86_cache_bits - 1);
daa07cbc 505 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
61455bf2
KH
506 } else
507 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
508
daa07cbc
SC
509 shadow_nonpresent_or_rsvd_lower_gfn_mask =
510 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
511}
512
6aa8b732
AK
513static int is_cpuid_PSE36(void)
514{
515 return 1;
516}
517
73b1087e
AK
518static int is_nx(struct kvm_vcpu *vcpu)
519{
f6801dff 520 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
521}
522
c7addb90
AK
523static int is_shadow_present_pte(u64 pte)
524{
f160c7b7 525 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
526}
527
05da4558
MT
528static int is_large_pte(u64 pte)
529{
530 return pte & PT_PAGE_SIZE_MASK;
531}
532
776e6633
MT
533static int is_last_spte(u64 pte, int level)
534{
535 if (level == PT_PAGE_TABLE_LEVEL)
536 return 1;
852e3c19 537 if (is_large_pte(pte))
776e6633
MT
538 return 1;
539 return 0;
540}
541
d3e328f2
JS
542static bool is_executable_pte(u64 spte)
543{
544 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
545}
546
ba049e93 547static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 548{
35149e21 549 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
550}
551
da928521
AK
552static gfn_t pse36_gfn_delta(u32 gpte)
553{
554 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
555
556 return (gpte & PT32_DIR_PSE36_MASK) << shift;
557}
558
603e0651 559#ifdef CONFIG_X86_64
d555c333 560static void __set_spte(u64 *sptep, u64 spte)
e663ee64 561{
b19ee2ff 562 WRITE_ONCE(*sptep, spte);
e663ee64
AK
563}
564
603e0651 565static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 566{
b19ee2ff 567 WRITE_ONCE(*sptep, spte);
603e0651
XG
568}
569
570static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
571{
572 return xchg(sptep, spte);
573}
c2a2ac2b
XG
574
575static u64 __get_spte_lockless(u64 *sptep)
576{
6aa7de05 577 return READ_ONCE(*sptep);
c2a2ac2b 578}
a9221dd5 579#else
603e0651
XG
580union split_spte {
581 struct {
582 u32 spte_low;
583 u32 spte_high;
584 };
585 u64 spte;
586};
a9221dd5 587
c2a2ac2b
XG
588static void count_spte_clear(u64 *sptep, u64 spte)
589{
590 struct kvm_mmu_page *sp = page_header(__pa(sptep));
591
592 if (is_shadow_present_pte(spte))
593 return;
594
595 /* Ensure the spte is completely set before we increase the count */
596 smp_wmb();
597 sp->clear_spte_count++;
598}
599
603e0651
XG
600static void __set_spte(u64 *sptep, u64 spte)
601{
602 union split_spte *ssptep, sspte;
a9221dd5 603
603e0651
XG
604 ssptep = (union split_spte *)sptep;
605 sspte = (union split_spte)spte;
606
607 ssptep->spte_high = sspte.spte_high;
608
609 /*
610 * If we map the spte from nonpresent to present, We should store
611 * the high bits firstly, then set present bit, so cpu can not
612 * fetch this spte while we are setting the spte.
613 */
614 smp_wmb();
615
b19ee2ff 616 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
617}
618
603e0651
XG
619static void __update_clear_spte_fast(u64 *sptep, u64 spte)
620{
621 union split_spte *ssptep, sspte;
622
623 ssptep = (union split_spte *)sptep;
624 sspte = (union split_spte)spte;
625
b19ee2ff 626 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
627
628 /*
629 * If we map the spte from present to nonpresent, we should clear
630 * present bit firstly to avoid vcpu fetch the old high bits.
631 */
632 smp_wmb();
633
634 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 635 count_spte_clear(sptep, spte);
603e0651
XG
636}
637
638static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
639{
640 union split_spte *ssptep, sspte, orig;
641
642 ssptep = (union split_spte *)sptep;
643 sspte = (union split_spte)spte;
644
645 /* xchg acts as a barrier before the setting of the high bits */
646 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
647 orig.spte_high = ssptep->spte_high;
648 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 649 count_spte_clear(sptep, spte);
603e0651
XG
650
651 return orig.spte;
652}
c2a2ac2b
XG
653
654/*
655 * The idea using the light way get the spte on x86_32 guest is from
656 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
657 *
658 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
659 * coalesces them and we are running out of the MMU lock. Therefore
660 * we need to protect against in-progress updates of the spte.
661 *
662 * Reading the spte while an update is in progress may get the old value
663 * for the high part of the spte. The race is fine for a present->non-present
664 * change (because the high part of the spte is ignored for non-present spte),
665 * but for a present->present change we must reread the spte.
666 *
667 * All such changes are done in two steps (present->non-present and
668 * non-present->present), hence it is enough to count the number of
669 * present->non-present updates: if it changed while reading the spte,
670 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
671 */
672static u64 __get_spte_lockless(u64 *sptep)
673{
674 struct kvm_mmu_page *sp = page_header(__pa(sptep));
675 union split_spte spte, *orig = (union split_spte *)sptep;
676 int count;
677
678retry:
679 count = sp->clear_spte_count;
680 smp_rmb();
681
682 spte.spte_low = orig->spte_low;
683 smp_rmb();
684
685 spte.spte_high = orig->spte_high;
686 smp_rmb();
687
688 if (unlikely(spte.spte_low != orig->spte_low ||
689 count != sp->clear_spte_count))
690 goto retry;
691
692 return spte.spte;
693}
603e0651
XG
694#endif
695
ea4114bc 696static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 697{
feb3eb70
GN
698 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
699 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
700}
701
8672b721
XG
702static bool spte_has_volatile_bits(u64 spte)
703{
f160c7b7
JS
704 if (!is_shadow_present_pte(spte))
705 return false;
706
c7ba5b48 707 /*
6a6256f9 708 * Always atomically update spte if it can be updated
c7ba5b48
XG
709 * out of mmu-lock, it can ensure dirty bit is not lost,
710 * also, it can help us to get a stable is_writable_pte()
711 * to ensure tlb flush is not missed.
712 */
f160c7b7
JS
713 if (spte_can_locklessly_be_made_writable(spte) ||
714 is_access_track_spte(spte))
c7ba5b48
XG
715 return true;
716
ac8d57e5 717 if (spte_ad_enabled(spte)) {
f160c7b7
JS
718 if ((spte & shadow_accessed_mask) == 0 ||
719 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
720 return true;
721 }
8672b721 722
f160c7b7 723 return false;
8672b721
XG
724}
725
83ef6c81 726static bool is_accessed_spte(u64 spte)
4132779b 727{
ac8d57e5
PF
728 u64 accessed_mask = spte_shadow_accessed_mask(spte);
729
730 return accessed_mask ? spte & accessed_mask
731 : !is_access_track_spte(spte);
4132779b
XG
732}
733
83ef6c81 734static bool is_dirty_spte(u64 spte)
7e71a59b 735{
ac8d57e5
PF
736 u64 dirty_mask = spte_shadow_dirty_mask(spte);
737
738 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
739}
740
1df9f2dc
XG
741/* Rules for using mmu_spte_set:
742 * Set the sptep from nonpresent to present.
743 * Note: the sptep being assigned *must* be either not present
744 * or in a state where the hardware will not attempt to update
745 * the spte.
746 */
747static void mmu_spte_set(u64 *sptep, u64 new_spte)
748{
749 WARN_ON(is_shadow_present_pte(*sptep));
750 __set_spte(sptep, new_spte);
751}
752
f39a058d
JS
753/*
754 * Update the SPTE (excluding the PFN), but do not track changes in its
755 * accessed/dirty status.
1df9f2dc 756 */
f39a058d 757static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 758{
c7ba5b48 759 u64 old_spte = *sptep;
4132779b 760
afd28fe1 761 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 762
6e7d0354
XG
763 if (!is_shadow_present_pte(old_spte)) {
764 mmu_spte_set(sptep, new_spte);
f39a058d 765 return old_spte;
6e7d0354 766 }
4132779b 767
c7ba5b48 768 if (!spte_has_volatile_bits(old_spte))
603e0651 769 __update_clear_spte_fast(sptep, new_spte);
4132779b 770 else
603e0651 771 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 772
83ef6c81
JS
773 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
774
f39a058d
JS
775 return old_spte;
776}
777
778/* Rules for using mmu_spte_update:
779 * Update the state bits, it means the mapped pfn is not changed.
780 *
781 * Whenever we overwrite a writable spte with a read-only one we
782 * should flush remote TLBs. Otherwise rmap_write_protect
783 * will find a read-only spte, even though the writable spte
784 * might be cached on a CPU's TLB, the return value indicates this
785 * case.
786 *
787 * Returns true if the TLB needs to be flushed
788 */
789static bool mmu_spte_update(u64 *sptep, u64 new_spte)
790{
791 bool flush = false;
792 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
793
794 if (!is_shadow_present_pte(old_spte))
795 return false;
796
c7ba5b48
XG
797 /*
798 * For the spte updated out of mmu-lock is safe, since
6a6256f9 799 * we always atomically update it, see the comments in
c7ba5b48
XG
800 * spte_has_volatile_bits().
801 */
ea4114bc 802 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 803 !is_writable_pte(new_spte))
83ef6c81 804 flush = true;
4132779b 805
7e71a59b 806 /*
83ef6c81 807 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
808 * to guarantee consistency between TLB and page tables.
809 */
7e71a59b 810
83ef6c81
JS
811 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
812 flush = true;
4132779b 813 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
814 }
815
816 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
817 flush = true;
4132779b 818 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 819 }
6e7d0354 820
83ef6c81 821 return flush;
b79b93f9
AK
822}
823
1df9f2dc
XG
824/*
825 * Rules for using mmu_spte_clear_track_bits:
826 * It sets the sptep from present to nonpresent, and track the
827 * state bits, it is used to clear the last level sptep.
83ef6c81 828 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
829 */
830static int mmu_spte_clear_track_bits(u64 *sptep)
831{
ba049e93 832 kvm_pfn_t pfn;
1df9f2dc
XG
833 u64 old_spte = *sptep;
834
835 if (!spte_has_volatile_bits(old_spte))
603e0651 836 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 837 else
603e0651 838 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 839
afd28fe1 840 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
841 return 0;
842
843 pfn = spte_to_pfn(old_spte);
86fde74c
XG
844
845 /*
846 * KVM does not hold the refcount of the page used by
847 * kvm mmu, before reclaiming the page, we should
848 * unmap it from mmu first.
849 */
bf4bea8e 850 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 851
83ef6c81 852 if (is_accessed_spte(old_spte))
1df9f2dc 853 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
854
855 if (is_dirty_spte(old_spte))
1df9f2dc 856 kvm_set_pfn_dirty(pfn);
83ef6c81 857
1df9f2dc
XG
858 return 1;
859}
860
861/*
862 * Rules for using mmu_spte_clear_no_track:
863 * Directly clear spte without caring the state bits of sptep,
864 * it is used to set the upper level spte.
865 */
866static void mmu_spte_clear_no_track(u64 *sptep)
867{
603e0651 868 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
869}
870
c2a2ac2b
XG
871static u64 mmu_spte_get_lockless(u64 *sptep)
872{
873 return __get_spte_lockless(sptep);
874}
875
f160c7b7
JS
876static u64 mark_spte_for_access_track(u64 spte)
877{
ac8d57e5 878 if (spte_ad_enabled(spte))
f160c7b7
JS
879 return spte & ~shadow_accessed_mask;
880
ac8d57e5 881 if (is_access_track_spte(spte))
f160c7b7
JS
882 return spte;
883
884 /*
20d65236
JS
885 * Making an Access Tracking PTE will result in removal of write access
886 * from the PTE. So, verify that we will be able to restore the write
887 * access in the fast page fault path later on.
f160c7b7
JS
888 */
889 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
890 !spte_can_locklessly_be_made_writable(spte),
891 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
892
893 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
894 shadow_acc_track_saved_bits_shift),
895 "kvm: Access Tracking saved bit locations are not zero\n");
896
897 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
898 shadow_acc_track_saved_bits_shift;
899 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
900
901 return spte;
902}
903
d3e328f2
JS
904/* Restore an acc-track PTE back to a regular PTE */
905static u64 restore_acc_track_spte(u64 spte)
906{
907 u64 new_spte = spte;
908 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
909 & shadow_acc_track_saved_bits_mask;
910
ac8d57e5 911 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
912 WARN_ON_ONCE(!is_access_track_spte(spte));
913
914 new_spte &= ~shadow_acc_track_mask;
915 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
916 shadow_acc_track_saved_bits_shift);
917 new_spte |= saved_bits;
918
919 return new_spte;
920}
921
f160c7b7
JS
922/* Returns the Accessed status of the PTE and resets it at the same time. */
923static bool mmu_spte_age(u64 *sptep)
924{
925 u64 spte = mmu_spte_get_lockless(sptep);
926
927 if (!is_accessed_spte(spte))
928 return false;
929
ac8d57e5 930 if (spte_ad_enabled(spte)) {
f160c7b7
JS
931 clear_bit((ffs(shadow_accessed_mask) - 1),
932 (unsigned long *)sptep);
933 } else {
934 /*
935 * Capture the dirty status of the page, so that it doesn't get
936 * lost when the SPTE is marked for access tracking.
937 */
938 if (is_writable_pte(spte))
939 kvm_set_pfn_dirty(spte_to_pfn(spte));
940
941 spte = mark_spte_for_access_track(spte);
942 mmu_spte_update_no_track(sptep, spte);
943 }
944
945 return true;
946}
947
c2a2ac2b
XG
948static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
949{
c142786c
AK
950 /*
951 * Prevent page table teardown by making any free-er wait during
952 * kvm_flush_remote_tlbs() IPI to all active vcpus.
953 */
954 local_irq_disable();
36ca7e0a 955
c142786c
AK
956 /*
957 * Make sure a following spte read is not reordered ahead of the write
958 * to vcpu->mode.
959 */
36ca7e0a 960 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
961}
962
963static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
964{
c142786c
AK
965 /*
966 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 967 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
968 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
969 */
36ca7e0a 970 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 971 local_irq_enable();
c2a2ac2b
XG
972}
973
e2dec939 974static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 975 struct kmem_cache *base_cache, int min)
714b93da
AK
976{
977 void *obj;
978
979 if (cache->nobjs >= min)
e2dec939 980 return 0;
714b93da 981 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 982 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 983 if (!obj)
daefb794 984 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
985 cache->objects[cache->nobjs++] = obj;
986 }
e2dec939 987 return 0;
714b93da
AK
988}
989
f759e2b4
XG
990static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
991{
992 return cache->nobjs;
993}
994
e8ad9a70
XG
995static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
996 struct kmem_cache *cache)
714b93da
AK
997{
998 while (mc->nobjs)
e8ad9a70 999 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1000}
1001
c1158e63 1002static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1003 int min)
c1158e63 1004{
842f22ed 1005 void *page;
c1158e63
AK
1006
1007 if (cache->nobjs >= min)
1008 return 0;
1009 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1010 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1011 if (!page)
daefb794 1012 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1013 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1014 }
1015 return 0;
1016}
1017
1018static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1019{
1020 while (mc->nobjs)
c4d198d5 1021 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1022}
1023
2e3e5882 1024static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1025{
e2dec939
AK
1026 int r;
1027
53c07b18 1028 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1029 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1030 if (r)
1031 goto out;
ad312c7c 1032 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1033 if (r)
1034 goto out;
ad312c7c 1035 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1036 mmu_page_header_cache, 4);
e2dec939
AK
1037out:
1038 return r;
714b93da
AK
1039}
1040
1041static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1042{
53c07b18
XG
1043 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1044 pte_list_desc_cache);
ad312c7c 1045 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1046 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1047 mmu_page_header_cache);
714b93da
AK
1048}
1049
80feb89a 1050static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1051{
1052 void *p;
1053
1054 BUG_ON(!mc->nobjs);
1055 p = mc->objects[--mc->nobjs];
714b93da
AK
1056 return p;
1057}
1058
53c07b18 1059static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1060{
80feb89a 1061 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1062}
1063
53c07b18 1064static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1065{
53c07b18 1066 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1067}
1068
2032a93d
LJ
1069static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1070{
1071 if (!sp->role.direct)
1072 return sp->gfns[index];
1073
1074 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1075}
1076
1077static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1078{
1079 if (sp->role.direct)
1080 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1081 else
1082 sp->gfns[index] = gfn;
1083}
1084
05da4558 1085/*
d4dbf470
TY
1086 * Return the pointer to the large page information for a given gfn,
1087 * handling slots that are not large page aligned.
05da4558 1088 */
d4dbf470
TY
1089static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1090 struct kvm_memory_slot *slot,
1091 int level)
05da4558
MT
1092{
1093 unsigned long idx;
1094
fb03cb6f 1095 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1096 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1097}
1098
547ffaed
XG
1099static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1100 gfn_t gfn, int count)
1101{
1102 struct kvm_lpage_info *linfo;
1103 int i;
1104
1105 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1106 linfo = lpage_info_slot(gfn, slot, i);
1107 linfo->disallow_lpage += count;
1108 WARN_ON(linfo->disallow_lpage < 0);
1109 }
1110}
1111
1112void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1113{
1114 update_gfn_disallow_lpage_count(slot, gfn, 1);
1115}
1116
1117void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1118{
1119 update_gfn_disallow_lpage_count(slot, gfn, -1);
1120}
1121
3ed1a478 1122static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1123{
699023e2 1124 struct kvm_memslots *slots;
d25797b2 1125 struct kvm_memory_slot *slot;
3ed1a478 1126 gfn_t gfn;
05da4558 1127
56ca57f9 1128 kvm->arch.indirect_shadow_pages++;
3ed1a478 1129 gfn = sp->gfn;
699023e2
PB
1130 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1131 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1132
1133 /* the non-leaf shadow pages are keeping readonly. */
1134 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1135 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1136 KVM_PAGE_TRACK_WRITE);
1137
547ffaed 1138 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1139}
1140
3ed1a478 1141static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1142{
699023e2 1143 struct kvm_memslots *slots;
d25797b2 1144 struct kvm_memory_slot *slot;
3ed1a478 1145 gfn_t gfn;
05da4558 1146
56ca57f9 1147 kvm->arch.indirect_shadow_pages--;
3ed1a478 1148 gfn = sp->gfn;
699023e2
PB
1149 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1150 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1151 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1152 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1153 KVM_PAGE_TRACK_WRITE);
1154
547ffaed 1155 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1156}
1157
92f94f1e
XG
1158static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1159 struct kvm_memory_slot *slot)
05da4558 1160{
d4dbf470 1161 struct kvm_lpage_info *linfo;
05da4558
MT
1162
1163 if (slot) {
d4dbf470 1164 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1165 return !!linfo->disallow_lpage;
05da4558
MT
1166 }
1167
92f94f1e 1168 return true;
05da4558
MT
1169}
1170
92f94f1e
XG
1171static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1172 int level)
5225fdf8
TY
1173{
1174 struct kvm_memory_slot *slot;
1175
1176 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1177 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1178}
1179
d25797b2 1180static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1181{
8f0b1ab6 1182 unsigned long page_size;
d25797b2 1183 int i, ret = 0;
05da4558 1184
8f0b1ab6 1185 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1186
8a3d08f1 1187 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1188 if (page_size >= KVM_HPAGE_SIZE(i))
1189 ret = i;
1190 else
1191 break;
1192 }
1193
4c2155ce 1194 return ret;
05da4558
MT
1195}
1196
d8aacf5d
TY
1197static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1198 bool no_dirty_log)
1199{
1200 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1201 return false;
1202 if (no_dirty_log && slot->dirty_bitmap)
1203 return false;
1204
1205 return true;
1206}
1207
5d163b1c
XG
1208static struct kvm_memory_slot *
1209gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1210 bool no_dirty_log)
05da4558
MT
1211{
1212 struct kvm_memory_slot *slot;
5d163b1c 1213
54bf36aa 1214 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1215 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1216 slot = NULL;
1217
1218 return slot;
1219}
1220
fd136902
TY
1221static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1222 bool *force_pt_level)
936a5fe6
AA
1223{
1224 int host_level, level, max_level;
d8aacf5d
TY
1225 struct kvm_memory_slot *slot;
1226
8c85ac1c
TY
1227 if (unlikely(*force_pt_level))
1228 return PT_PAGE_TABLE_LEVEL;
05da4558 1229
8c85ac1c
TY
1230 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1231 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1232 if (unlikely(*force_pt_level))
1233 return PT_PAGE_TABLE_LEVEL;
1234
d25797b2
JR
1235 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1236
1237 if (host_level == PT_PAGE_TABLE_LEVEL)
1238 return host_level;
1239
55dd98c3 1240 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1241
1242 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1243 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1244 break;
d25797b2
JR
1245
1246 return level - 1;
05da4558
MT
1247}
1248
290fc38d 1249/*
018aabb5 1250 * About rmap_head encoding:
cd4a4e53 1251 *
018aabb5
TY
1252 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1253 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1254 * pte_list_desc containing more mappings.
018aabb5
TY
1255 */
1256
1257/*
1258 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1259 */
53c07b18 1260static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1261 struct kvm_rmap_head *rmap_head)
cd4a4e53 1262{
53c07b18 1263 struct pte_list_desc *desc;
53a27b39 1264 int i, count = 0;
cd4a4e53 1265
018aabb5 1266 if (!rmap_head->val) {
53c07b18 1267 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1268 rmap_head->val = (unsigned long)spte;
1269 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1270 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1271 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1272 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1273 desc->sptes[1] = spte;
018aabb5 1274 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1275 ++count;
cd4a4e53 1276 } else {
53c07b18 1277 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1278 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1279 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1280 desc = desc->more;
53c07b18 1281 count += PTE_LIST_EXT;
53a27b39 1282 }
53c07b18
XG
1283 if (desc->sptes[PTE_LIST_EXT-1]) {
1284 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1285 desc = desc->more;
1286 }
d555c333 1287 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1288 ++count;
d555c333 1289 desc->sptes[i] = spte;
cd4a4e53 1290 }
53a27b39 1291 return count;
cd4a4e53
AK
1292}
1293
53c07b18 1294static void
018aabb5
TY
1295pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1296 struct pte_list_desc *desc, int i,
1297 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1298{
1299 int j;
1300
53c07b18 1301 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1302 ;
d555c333
AK
1303 desc->sptes[i] = desc->sptes[j];
1304 desc->sptes[j] = NULL;
cd4a4e53
AK
1305 if (j != 0)
1306 return;
1307 if (!prev_desc && !desc->more)
018aabb5 1308 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1309 else
1310 if (prev_desc)
1311 prev_desc->more = desc->more;
1312 else
018aabb5 1313 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1314 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1315}
1316
8daf3462 1317static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1318{
53c07b18
XG
1319 struct pte_list_desc *desc;
1320 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1321 int i;
1322
018aabb5 1323 if (!rmap_head->val) {
8daf3462 1324 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1325 BUG();
018aabb5 1326 } else if (!(rmap_head->val & 1)) {
8daf3462 1327 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1328 if ((u64 *)rmap_head->val != spte) {
8daf3462 1329 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1330 BUG();
1331 }
018aabb5 1332 rmap_head->val = 0;
cd4a4e53 1333 } else {
8daf3462 1334 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1335 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1336 prev_desc = NULL;
1337 while (desc) {
018aabb5 1338 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1339 if (desc->sptes[i] == spte) {
018aabb5
TY
1340 pte_list_desc_remove_entry(rmap_head,
1341 desc, i, prev_desc);
cd4a4e53
AK
1342 return;
1343 }
018aabb5 1344 }
cd4a4e53
AK
1345 prev_desc = desc;
1346 desc = desc->more;
1347 }
8daf3462 1348 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1349 BUG();
1350 }
1351}
1352
e7912386
WY
1353static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1354{
1355 mmu_spte_clear_track_bits(sptep);
1356 __pte_list_remove(sptep, rmap_head);
1357}
1358
018aabb5
TY
1359static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1360 struct kvm_memory_slot *slot)
53c07b18 1361{
77d11309 1362 unsigned long idx;
53c07b18 1363
77d11309 1364 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1365 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1366}
1367
018aabb5
TY
1368static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1369 struct kvm_mmu_page *sp)
9b9b1492 1370{
699023e2 1371 struct kvm_memslots *slots;
9b9b1492
TY
1372 struct kvm_memory_slot *slot;
1373
699023e2
PB
1374 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1375 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1376 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1377}
1378
f759e2b4
XG
1379static bool rmap_can_add(struct kvm_vcpu *vcpu)
1380{
1381 struct kvm_mmu_memory_cache *cache;
1382
1383 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1384 return mmu_memory_cache_free_objects(cache);
1385}
1386
53c07b18
XG
1387static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1388{
1389 struct kvm_mmu_page *sp;
018aabb5 1390 struct kvm_rmap_head *rmap_head;
53c07b18 1391
53c07b18
XG
1392 sp = page_header(__pa(spte));
1393 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1394 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1395 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1396}
1397
53c07b18
XG
1398static void rmap_remove(struct kvm *kvm, u64 *spte)
1399{
1400 struct kvm_mmu_page *sp;
1401 gfn_t gfn;
018aabb5 1402 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1403
1404 sp = page_header(__pa(spte));
1405 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1406 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1407 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1408}
1409
1e3f42f0
TY
1410/*
1411 * Used by the following functions to iterate through the sptes linked by a
1412 * rmap. All fields are private and not assumed to be used outside.
1413 */
1414struct rmap_iterator {
1415 /* private fields */
1416 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1417 int pos; /* index of the sptep */
1418};
1419
1420/*
1421 * Iteration must be started by this function. This should also be used after
1422 * removing/dropping sptes from the rmap link because in such cases the
1423 * information in the itererator may not be valid.
1424 *
1425 * Returns sptep if found, NULL otherwise.
1426 */
018aabb5
TY
1427static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1428 struct rmap_iterator *iter)
1e3f42f0 1429{
77fbbbd2
TY
1430 u64 *sptep;
1431
018aabb5 1432 if (!rmap_head->val)
1e3f42f0
TY
1433 return NULL;
1434
018aabb5 1435 if (!(rmap_head->val & 1)) {
1e3f42f0 1436 iter->desc = NULL;
77fbbbd2
TY
1437 sptep = (u64 *)rmap_head->val;
1438 goto out;
1e3f42f0
TY
1439 }
1440
018aabb5 1441 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1442 iter->pos = 0;
77fbbbd2
TY
1443 sptep = iter->desc->sptes[iter->pos];
1444out:
1445 BUG_ON(!is_shadow_present_pte(*sptep));
1446 return sptep;
1e3f42f0
TY
1447}
1448
1449/*
1450 * Must be used with a valid iterator: e.g. after rmap_get_first().
1451 *
1452 * Returns sptep if found, NULL otherwise.
1453 */
1454static u64 *rmap_get_next(struct rmap_iterator *iter)
1455{
77fbbbd2
TY
1456 u64 *sptep;
1457
1e3f42f0
TY
1458 if (iter->desc) {
1459 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1460 ++iter->pos;
1461 sptep = iter->desc->sptes[iter->pos];
1462 if (sptep)
77fbbbd2 1463 goto out;
1e3f42f0
TY
1464 }
1465
1466 iter->desc = iter->desc->more;
1467
1468 if (iter->desc) {
1469 iter->pos = 0;
1470 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1471 sptep = iter->desc->sptes[iter->pos];
1472 goto out;
1e3f42f0
TY
1473 }
1474 }
1475
1476 return NULL;
77fbbbd2
TY
1477out:
1478 BUG_ON(!is_shadow_present_pte(*sptep));
1479 return sptep;
1e3f42f0
TY
1480}
1481
018aabb5
TY
1482#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1483 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1484 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1485
c3707958 1486static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1487{
1df9f2dc 1488 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1489 rmap_remove(kvm, sptep);
be38d276
AK
1490}
1491
8e22f955
XG
1492
1493static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1494{
1495 if (is_large_pte(*sptep)) {
1496 WARN_ON(page_header(__pa(sptep))->role.level ==
1497 PT_PAGE_TABLE_LEVEL);
1498 drop_spte(kvm, sptep);
1499 --kvm->stat.lpages;
1500 return true;
1501 }
1502
1503 return false;
1504}
1505
1506static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1507{
c3134ce2
LT
1508 if (__drop_large_spte(vcpu->kvm, sptep)) {
1509 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1510
1511 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1512 KVM_PAGES_PER_HPAGE(sp->role.level));
1513 }
8e22f955
XG
1514}
1515
1516/*
49fde340 1517 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1518 * spte write-protection is caused by protecting shadow page table.
49fde340 1519 *
b4619660 1520 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1521 * protection:
1522 * - for dirty logging, the spte can be set to writable at anytime if
1523 * its dirty bitmap is properly set.
1524 * - for spte protection, the spte can be writable only after unsync-ing
1525 * shadow page.
8e22f955 1526 *
c126d94f 1527 * Return true if tlb need be flushed.
8e22f955 1528 */
c4f138b4 1529static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1530{
1531 u64 spte = *sptep;
1532
49fde340 1533 if (!is_writable_pte(spte) &&
ea4114bc 1534 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1535 return false;
1536
1537 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1538
49fde340
XG
1539 if (pt_protect)
1540 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1541 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1542
c126d94f 1543 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1544}
1545
018aabb5
TY
1546static bool __rmap_write_protect(struct kvm *kvm,
1547 struct kvm_rmap_head *rmap_head,
245c3912 1548 bool pt_protect)
98348e95 1549{
1e3f42f0
TY
1550 u64 *sptep;
1551 struct rmap_iterator iter;
d13bc5b5 1552 bool flush = false;
374cbac0 1553
018aabb5 1554 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1555 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1556
d13bc5b5 1557 return flush;
a0ed4607
TY
1558}
1559
c4f138b4 1560static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1561{
1562 u64 spte = *sptep;
1563
1564 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1565
1566 spte &= ~shadow_dirty_mask;
1567
1568 return mmu_spte_update(sptep, spte);
1569}
1570
ac8d57e5
PF
1571static bool wrprot_ad_disabled_spte(u64 *sptep)
1572{
1573 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1574 (unsigned long *)sptep);
1575 if (was_writable)
1576 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1577
1578 return was_writable;
1579}
1580
1581/*
1582 * Gets the GFN ready for another round of dirty logging by clearing the
1583 * - D bit on ad-enabled SPTEs, and
1584 * - W bit on ad-disabled SPTEs.
1585 * Returns true iff any D or W bits were cleared.
1586 */
018aabb5 1587static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1588{
1589 u64 *sptep;
1590 struct rmap_iterator iter;
1591 bool flush = false;
1592
018aabb5 1593 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1594 if (spte_ad_enabled(*sptep))
1595 flush |= spte_clear_dirty(sptep);
1596 else
1597 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1598
1599 return flush;
1600}
1601
c4f138b4 1602static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1603{
1604 u64 spte = *sptep;
1605
1606 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1607
1608 spte |= shadow_dirty_mask;
1609
1610 return mmu_spte_update(sptep, spte);
1611}
1612
018aabb5 1613static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1614{
1615 u64 *sptep;
1616 struct rmap_iterator iter;
1617 bool flush = false;
1618
018aabb5 1619 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1620 if (spte_ad_enabled(*sptep))
1621 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1622
1623 return flush;
1624}
1625
5dc99b23 1626/**
3b0f1d01 1627 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1628 * @kvm: kvm instance
1629 * @slot: slot to protect
1630 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1631 * @mask: indicates which pages we should protect
1632 *
1633 * Used when we do not need to care about huge page mappings: e.g. during dirty
1634 * logging we do not have any such mappings.
1635 */
3b0f1d01 1636static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1637 struct kvm_memory_slot *slot,
1638 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1639{
018aabb5 1640 struct kvm_rmap_head *rmap_head;
a0ed4607 1641
5dc99b23 1642 while (mask) {
018aabb5
TY
1643 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1644 PT_PAGE_TABLE_LEVEL, slot);
1645 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1646
5dc99b23
TY
1647 /* clear the first set bit */
1648 mask &= mask - 1;
1649 }
374cbac0
AK
1650}
1651
f4b4b180 1652/**
ac8d57e5
PF
1653 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1654 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1655 * @kvm: kvm instance
1656 * @slot: slot to clear D-bit
1657 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1658 * @mask: indicates which pages we should clear D-bit
1659 *
1660 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1661 */
1662void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1663 struct kvm_memory_slot *slot,
1664 gfn_t gfn_offset, unsigned long mask)
1665{
018aabb5 1666 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1667
1668 while (mask) {
018aabb5
TY
1669 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1670 PT_PAGE_TABLE_LEVEL, slot);
1671 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1672
1673 /* clear the first set bit */
1674 mask &= mask - 1;
1675 }
1676}
1677EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1678
3b0f1d01
KH
1679/**
1680 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1681 * PT level pages.
1682 *
1683 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1684 * enable dirty logging for them.
1685 *
1686 * Used when we do not need to care about huge page mappings: e.g. during dirty
1687 * logging we do not have any such mappings.
1688 */
1689void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1690 struct kvm_memory_slot *slot,
1691 gfn_t gfn_offset, unsigned long mask)
1692{
88178fd4
KH
1693 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1694 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1695 mask);
1696 else
1697 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1698}
1699
bab4165e
BD
1700/**
1701 * kvm_arch_write_log_dirty - emulate dirty page logging
1702 * @vcpu: Guest mode vcpu
1703 *
1704 * Emulate arch specific page modification logging for the
1705 * nested hypervisor
1706 */
1707int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1708{
1709 if (kvm_x86_ops->write_log_dirty)
1710 return kvm_x86_ops->write_log_dirty(vcpu);
1711
1712 return 0;
1713}
1714
aeecee2e
XG
1715bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1716 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1717{
018aabb5 1718 struct kvm_rmap_head *rmap_head;
5dc99b23 1719 int i;
2f84569f 1720 bool write_protected = false;
95d4c16c 1721
8a3d08f1 1722 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1723 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1724 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1725 }
1726
1727 return write_protected;
95d4c16c
TY
1728}
1729
aeecee2e
XG
1730static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1731{
1732 struct kvm_memory_slot *slot;
1733
1734 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1735 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1736}
1737
018aabb5 1738static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1739{
1e3f42f0
TY
1740 u64 *sptep;
1741 struct rmap_iterator iter;
6a49f85c 1742 bool flush = false;
e930bffe 1743
018aabb5 1744 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1745 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1746
e7912386 1747 pte_list_remove(rmap_head, sptep);
6a49f85c 1748 flush = true;
e930bffe 1749 }
1e3f42f0 1750
6a49f85c
XG
1751 return flush;
1752}
1753
018aabb5 1754static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1755 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1756 unsigned long data)
1757{
018aabb5 1758 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1759}
1760
018aabb5 1761static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1762 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1763 unsigned long data)
3da0dd43 1764{
1e3f42f0
TY
1765 u64 *sptep;
1766 struct rmap_iterator iter;
3da0dd43 1767 int need_flush = 0;
1e3f42f0 1768 u64 new_spte;
3da0dd43 1769 pte_t *ptep = (pte_t *)data;
ba049e93 1770 kvm_pfn_t new_pfn;
3da0dd43
IE
1771
1772 WARN_ON(pte_huge(*ptep));
1773 new_pfn = pte_pfn(*ptep);
1e3f42f0 1774
0d536790 1775restart:
018aabb5 1776 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1777 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1778 sptep, *sptep, gfn, level);
1e3f42f0 1779
3da0dd43 1780 need_flush = 1;
1e3f42f0 1781
3da0dd43 1782 if (pte_write(*ptep)) {
e7912386 1783 pte_list_remove(rmap_head, sptep);
0d536790 1784 goto restart;
3da0dd43 1785 } else {
1e3f42f0 1786 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1787 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1788
1789 new_spte &= ~PT_WRITABLE_MASK;
1790 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1791
1792 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1793
1794 mmu_spte_clear_track_bits(sptep);
1795 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1796 }
1797 }
1e3f42f0 1798
3cc5ea94
LT
1799 if (need_flush && kvm_available_flush_tlb_with_range()) {
1800 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1801 return 0;
1802 }
1803
0cf853c5 1804 return need_flush;
3da0dd43
IE
1805}
1806
6ce1f4e2
XG
1807struct slot_rmap_walk_iterator {
1808 /* input fields. */
1809 struct kvm_memory_slot *slot;
1810 gfn_t start_gfn;
1811 gfn_t end_gfn;
1812 int start_level;
1813 int end_level;
1814
1815 /* output fields. */
1816 gfn_t gfn;
018aabb5 1817 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1818 int level;
1819
1820 /* private field. */
018aabb5 1821 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1822};
1823
1824static void
1825rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1826{
1827 iterator->level = level;
1828 iterator->gfn = iterator->start_gfn;
1829 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1830 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1831 iterator->slot);
1832}
1833
1834static void
1835slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1836 struct kvm_memory_slot *slot, int start_level,
1837 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1838{
1839 iterator->slot = slot;
1840 iterator->start_level = start_level;
1841 iterator->end_level = end_level;
1842 iterator->start_gfn = start_gfn;
1843 iterator->end_gfn = end_gfn;
1844
1845 rmap_walk_init_level(iterator, iterator->start_level);
1846}
1847
1848static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1849{
1850 return !!iterator->rmap;
1851}
1852
1853static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1854{
1855 if (++iterator->rmap <= iterator->end_rmap) {
1856 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1857 return;
1858 }
1859
1860 if (++iterator->level > iterator->end_level) {
1861 iterator->rmap = NULL;
1862 return;
1863 }
1864
1865 rmap_walk_init_level(iterator, iterator->level);
1866}
1867
1868#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1869 _start_gfn, _end_gfn, _iter_) \
1870 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1871 _end_level_, _start_gfn, _end_gfn); \
1872 slot_rmap_walk_okay(_iter_); \
1873 slot_rmap_walk_next(_iter_))
1874
84504ef3
TY
1875static int kvm_handle_hva_range(struct kvm *kvm,
1876 unsigned long start,
1877 unsigned long end,
1878 unsigned long data,
1879 int (*handler)(struct kvm *kvm,
018aabb5 1880 struct kvm_rmap_head *rmap_head,
048212d0 1881 struct kvm_memory_slot *slot,
8a9522d2
ALC
1882 gfn_t gfn,
1883 int level,
84504ef3 1884 unsigned long data))
e930bffe 1885{
bc6678a3 1886 struct kvm_memslots *slots;
be6ba0f0 1887 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1888 struct slot_rmap_walk_iterator iterator;
1889 int ret = 0;
9da0e4d5 1890 int i;
bc6678a3 1891
9da0e4d5
PB
1892 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1893 slots = __kvm_memslots(kvm, i);
1894 kvm_for_each_memslot(memslot, slots) {
1895 unsigned long hva_start, hva_end;
1896 gfn_t gfn_start, gfn_end;
e930bffe 1897
9da0e4d5
PB
1898 hva_start = max(start, memslot->userspace_addr);
1899 hva_end = min(end, memslot->userspace_addr +
1900 (memslot->npages << PAGE_SHIFT));
1901 if (hva_start >= hva_end)
1902 continue;
1903 /*
1904 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1905 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1906 */
1907 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1908 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1909
1910 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1911 PT_MAX_HUGEPAGE_LEVEL,
1912 gfn_start, gfn_end - 1,
1913 &iterator)
1914 ret |= handler(kvm, iterator.rmap, memslot,
1915 iterator.gfn, iterator.level, data);
1916 }
e930bffe
AA
1917 }
1918
f395302e 1919 return ret;
e930bffe
AA
1920}
1921
84504ef3
TY
1922static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1923 unsigned long data,
018aabb5
TY
1924 int (*handler)(struct kvm *kvm,
1925 struct kvm_rmap_head *rmap_head,
048212d0 1926 struct kvm_memory_slot *slot,
8a9522d2 1927 gfn_t gfn, int level,
84504ef3
TY
1928 unsigned long data))
1929{
1930 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1931}
1932
b3ae2096
TY
1933int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1934{
1935 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1936}
1937
748c0e31 1938int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1939{
0cf853c5 1940 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1941}
1942
018aabb5 1943static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1944 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1945 unsigned long data)
e930bffe 1946{
1e3f42f0 1947 u64 *sptep;
79f702a6 1948 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1949 int young = 0;
1950
f160c7b7
JS
1951 for_each_rmap_spte(rmap_head, &iter, sptep)
1952 young |= mmu_spte_age(sptep);
0d536790 1953
8a9522d2 1954 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1955 return young;
1956}
1957
018aabb5 1958static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1959 struct kvm_memory_slot *slot, gfn_t gfn,
1960 int level, unsigned long data)
8ee53820 1961{
1e3f42f0
TY
1962 u64 *sptep;
1963 struct rmap_iterator iter;
8ee53820 1964
83ef6c81
JS
1965 for_each_rmap_spte(rmap_head, &iter, sptep)
1966 if (is_accessed_spte(*sptep))
1967 return 1;
83ef6c81 1968 return 0;
8ee53820
AA
1969}
1970
53a27b39
MT
1971#define RMAP_RECYCLE_THRESHOLD 1000
1972
852e3c19 1973static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1974{
018aabb5 1975 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1976 struct kvm_mmu_page *sp;
1977
1978 sp = page_header(__pa(spte));
53a27b39 1979
018aabb5 1980 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1981
018aabb5 1982 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1983 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1984 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1985}
1986
57128468 1987int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1988{
57128468 1989 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1990}
1991
8ee53820
AA
1992int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1993{
1994 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1995}
1996
d6c69ee9 1997#ifdef MMU_DEBUG
47ad8e68 1998static int is_empty_shadow_page(u64 *spt)
6aa8b732 1999{
139bdb2d
AK
2000 u64 *pos;
2001 u64 *end;
2002
47ad8e68 2003 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2004 if (is_shadow_present_pte(*pos)) {
b8688d51 2005 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2006 pos, *pos);
6aa8b732 2007 return 0;
139bdb2d 2008 }
6aa8b732
AK
2009 return 1;
2010}
d6c69ee9 2011#endif
6aa8b732 2012
45221ab6
DH
2013/*
2014 * This value is the sum of all of the kvm instances's
2015 * kvm->arch.n_used_mmu_pages values. We need a global,
2016 * aggregate version in order to make the slab shrinker
2017 * faster
2018 */
bc8a3d89 2019static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2020{
2021 kvm->arch.n_used_mmu_pages += nr;
2022 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2023}
2024
834be0d8 2025static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2026{
fa4a2c08 2027 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2028 hlist_del(&sp->hash_link);
bd4c86ea
XG
2029 list_del(&sp->link);
2030 free_page((unsigned long)sp->spt);
834be0d8
GN
2031 if (!sp->role.direct)
2032 free_page((unsigned long)sp->gfns);
e8ad9a70 2033 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2034}
2035
cea0f0e7
AK
2036static unsigned kvm_page_table_hashfn(gfn_t gfn)
2037{
114df303 2038 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2039}
2040
714b93da 2041static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2042 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2043{
cea0f0e7
AK
2044 if (!parent_pte)
2045 return;
cea0f0e7 2046
67052b35 2047 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2048}
2049
4db35314 2050static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2051 u64 *parent_pte)
2052{
8daf3462 2053 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2054}
2055
bcdd9a93
XG
2056static void drop_parent_pte(struct kvm_mmu_page *sp,
2057 u64 *parent_pte)
2058{
2059 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2060 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2061}
2062
47005792 2063static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2064{
67052b35 2065 struct kvm_mmu_page *sp;
7ddca7e4 2066
80feb89a
TY
2067 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2068 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2069 if (!direct)
80feb89a 2070 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
2071 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2072 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2073 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2074 return sp;
ad8cfbe3
MT
2075}
2076
67052b35 2077static void mark_unsync(u64 *spte);
1047df1f 2078static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2079{
74c4e63a
TY
2080 u64 *sptep;
2081 struct rmap_iterator iter;
2082
2083 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2084 mark_unsync(sptep);
2085 }
0074ff63
MT
2086}
2087
67052b35 2088static void mark_unsync(u64 *spte)
0074ff63 2089{
67052b35 2090 struct kvm_mmu_page *sp;
1047df1f 2091 unsigned int index;
0074ff63 2092
67052b35 2093 sp = page_header(__pa(spte));
1047df1f
XG
2094 index = spte - sp->spt;
2095 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2096 return;
1047df1f 2097 if (sp->unsync_children++)
0074ff63 2098 return;
1047df1f 2099 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2100}
2101
e8bc217a 2102static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2103 struct kvm_mmu_page *sp)
e8bc217a 2104{
1f50f1b3 2105 return 0;
e8bc217a
MT
2106}
2107
7eb77e9f 2108static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2109{
2110}
2111
0f53b5b1
XG
2112static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2113 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2114 const void *pte)
0f53b5b1
XG
2115{
2116 WARN_ON(1);
2117}
2118
60c8aec6
MT
2119#define KVM_PAGE_ARRAY_NR 16
2120
2121struct kvm_mmu_pages {
2122 struct mmu_page_and_offset {
2123 struct kvm_mmu_page *sp;
2124 unsigned int idx;
2125 } page[KVM_PAGE_ARRAY_NR];
2126 unsigned int nr;
2127};
2128
cded19f3
HE
2129static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2130 int idx)
4731d4c7 2131{
60c8aec6 2132 int i;
4731d4c7 2133
60c8aec6
MT
2134 if (sp->unsync)
2135 for (i=0; i < pvec->nr; i++)
2136 if (pvec->page[i].sp == sp)
2137 return 0;
2138
2139 pvec->page[pvec->nr].sp = sp;
2140 pvec->page[pvec->nr].idx = idx;
2141 pvec->nr++;
2142 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2143}
2144
fd951457
TY
2145static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2146{
2147 --sp->unsync_children;
2148 WARN_ON((int)sp->unsync_children < 0);
2149 __clear_bit(idx, sp->unsync_child_bitmap);
2150}
2151
60c8aec6
MT
2152static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2153 struct kvm_mmu_pages *pvec)
2154{
2155 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2156
37178b8b 2157 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2158 struct kvm_mmu_page *child;
4731d4c7
MT
2159 u64 ent = sp->spt[i];
2160
fd951457
TY
2161 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2162 clear_unsync_child_bit(sp, i);
2163 continue;
2164 }
7a8f1a74
XG
2165
2166 child = page_header(ent & PT64_BASE_ADDR_MASK);
2167
2168 if (child->unsync_children) {
2169 if (mmu_pages_add(pvec, child, i))
2170 return -ENOSPC;
2171
2172 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2173 if (!ret) {
2174 clear_unsync_child_bit(sp, i);
2175 continue;
2176 } else if (ret > 0) {
7a8f1a74 2177 nr_unsync_leaf += ret;
fd951457 2178 } else
7a8f1a74
XG
2179 return ret;
2180 } else if (child->unsync) {
2181 nr_unsync_leaf++;
2182 if (mmu_pages_add(pvec, child, i))
2183 return -ENOSPC;
2184 } else
fd951457 2185 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2186 }
2187
60c8aec6
MT
2188 return nr_unsync_leaf;
2189}
2190
e23d3fef
XG
2191#define INVALID_INDEX (-1)
2192
60c8aec6
MT
2193static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2194 struct kvm_mmu_pages *pvec)
2195{
0a47cd85 2196 pvec->nr = 0;
60c8aec6
MT
2197 if (!sp->unsync_children)
2198 return 0;
2199
e23d3fef 2200 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2201 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2202}
2203
4731d4c7
MT
2204static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2205{
2206 WARN_ON(!sp->unsync);
5e1b3ddb 2207 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2208 sp->unsync = 0;
2209 --kvm->stat.mmu_unsync;
2210}
2211
83cdb568
SC
2212static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2213 struct list_head *invalid_list);
7775834a
XG
2214static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2215 struct list_head *invalid_list);
4731d4c7 2216
47c42e6b 2217
f3414bc7 2218#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2219 hlist_for_each_entry(_sp, \
2220 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
ea145aac 2221 if ((_sp)->role.invalid) { \
f3414bc7 2222 } else
1044b030
TY
2223
2224#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2225 for_each_valid_sp(_kvm, _sp, _gfn) \
2226 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2227
47c42e6b
SC
2228static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2229{
2230 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2231}
2232
f918b443 2233/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2234static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2235 struct list_head *invalid_list)
4731d4c7 2236{
47c42e6b
SC
2237 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2238 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2239 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2240 return false;
4731d4c7
MT
2241 }
2242
1f50f1b3 2243 return true;
4731d4c7
MT
2244}
2245
a2113634
SC
2246static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2247 struct list_head *invalid_list,
2248 bool remote_flush)
2249{
cfd32acf 2250 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2251 return false;
2252
2253 if (!list_empty(invalid_list))
2254 kvm_mmu_commit_zap_page(kvm, invalid_list);
2255 else
2256 kvm_flush_remote_tlbs(kvm);
2257 return true;
2258}
2259
35a70510
PB
2260static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2261 struct list_head *invalid_list,
2262 bool remote_flush, bool local_flush)
1d9dc7e0 2263{
a2113634 2264 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2265 return;
d98ba053 2266
a2113634 2267 if (local_flush)
35a70510 2268 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2269}
2270
e37fa785
XG
2271#ifdef CONFIG_KVM_MMU_AUDIT
2272#include "mmu_audit.c"
2273#else
2274static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2275static void mmu_audit_disable(void) { }
2276#endif
2277
1f50f1b3 2278static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2279 struct list_head *invalid_list)
1d9dc7e0 2280{
9a43c5d9
PB
2281 kvm_unlink_unsync_page(vcpu->kvm, sp);
2282 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2283}
2284
9f1a122f 2285/* @gfn should be write-protected at the call site */
2a74003a
PB
2286static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2287 struct list_head *invalid_list)
9f1a122f 2288{
9f1a122f 2289 struct kvm_mmu_page *s;
2a74003a 2290 bool ret = false;
9f1a122f 2291
b67bfe0d 2292 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2293 if (!s->unsync)
9f1a122f
XG
2294 continue;
2295
2296 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2297 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2298 }
2299
2a74003a 2300 return ret;
9f1a122f
XG
2301}
2302
60c8aec6 2303struct mmu_page_path {
2a7266a8
YZ
2304 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2305 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2306};
2307
60c8aec6 2308#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2309 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2310 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2311 i = mmu_pages_next(&pvec, &parents, i))
2312
cded19f3
HE
2313static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2314 struct mmu_page_path *parents,
2315 int i)
60c8aec6
MT
2316{
2317 int n;
2318
2319 for (n = i+1; n < pvec->nr; n++) {
2320 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2321 unsigned idx = pvec->page[n].idx;
2322 int level = sp->role.level;
60c8aec6 2323
0a47cd85
PB
2324 parents->idx[level-1] = idx;
2325 if (level == PT_PAGE_TABLE_LEVEL)
2326 break;
60c8aec6 2327
0a47cd85 2328 parents->parent[level-2] = sp;
60c8aec6
MT
2329 }
2330
2331 return n;
2332}
2333
0a47cd85
PB
2334static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2335 struct mmu_page_path *parents)
2336{
2337 struct kvm_mmu_page *sp;
2338 int level;
2339
2340 if (pvec->nr == 0)
2341 return 0;
2342
e23d3fef
XG
2343 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2344
0a47cd85
PB
2345 sp = pvec->page[0].sp;
2346 level = sp->role.level;
2347 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2348
2349 parents->parent[level-2] = sp;
2350
2351 /* Also set up a sentinel. Further entries in pvec are all
2352 * children of sp, so this element is never overwritten.
2353 */
2354 parents->parent[level-1] = NULL;
2355 return mmu_pages_next(pvec, parents, 0);
2356}
2357
cded19f3 2358static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2359{
60c8aec6
MT
2360 struct kvm_mmu_page *sp;
2361 unsigned int level = 0;
2362
2363 do {
2364 unsigned int idx = parents->idx[level];
60c8aec6
MT
2365 sp = parents->parent[level];
2366 if (!sp)
2367 return;
2368
e23d3fef 2369 WARN_ON(idx == INVALID_INDEX);
fd951457 2370 clear_unsync_child_bit(sp, idx);
60c8aec6 2371 level++;
0a47cd85 2372 } while (!sp->unsync_children);
60c8aec6 2373}
4731d4c7 2374
60c8aec6
MT
2375static void mmu_sync_children(struct kvm_vcpu *vcpu,
2376 struct kvm_mmu_page *parent)
2377{
2378 int i;
2379 struct kvm_mmu_page *sp;
2380 struct mmu_page_path parents;
2381 struct kvm_mmu_pages pages;
d98ba053 2382 LIST_HEAD(invalid_list);
50c9e6f3 2383 bool flush = false;
60c8aec6 2384
60c8aec6 2385 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2386 bool protected = false;
b1a36821
MT
2387
2388 for_each_sp(pages, sp, parents, i)
54bf36aa 2389 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2390
50c9e6f3 2391 if (protected) {
b1a36821 2392 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2393 flush = false;
2394 }
b1a36821 2395
60c8aec6 2396 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2397 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2398 mmu_pages_clear_parents(&parents);
2399 }
50c9e6f3
PB
2400 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2401 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2402 cond_resched_lock(&vcpu->kvm->mmu_lock);
2403 flush = false;
2404 }
60c8aec6 2405 }
50c9e6f3
PB
2406
2407 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2408}
2409
a30f47cb
XG
2410static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2411{
e5691a81 2412 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2413}
2414
2415static void clear_sp_write_flooding_count(u64 *spte)
2416{
2417 struct kvm_mmu_page *sp = page_header(__pa(spte));
2418
2419 __clear_sp_write_flooding_count(sp);
2420}
2421
cea0f0e7
AK
2422static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2423 gfn_t gfn,
2424 gva_t gaddr,
2425 unsigned level,
f6e2c02b 2426 int direct,
bb11c6c9 2427 unsigned access)
cea0f0e7
AK
2428{
2429 union kvm_mmu_page_role role;
cea0f0e7 2430 unsigned quadrant;
9f1a122f 2431 struct kvm_mmu_page *sp;
9f1a122f 2432 bool need_sync = false;
2a74003a 2433 bool flush = false;
f3414bc7 2434 int collisions = 0;
2a74003a 2435 LIST_HEAD(invalid_list);
cea0f0e7 2436
36d9594d 2437 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2438 role.level = level;
f6e2c02b 2439 role.direct = direct;
84b0c8c6 2440 if (role.direct)
47c42e6b 2441 role.gpte_is_8_bytes = true;
41074d07 2442 role.access = access;
44dd3ffa
VK
2443 if (!vcpu->arch.mmu->direct_map
2444 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2445 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2446 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2447 role.quadrant = quadrant;
2448 }
f3414bc7
DM
2449 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2450 if (sp->gfn != gfn) {
2451 collisions++;
2452 continue;
2453 }
2454
7ae680eb
XG
2455 if (!need_sync && sp->unsync)
2456 need_sync = true;
4731d4c7 2457
7ae680eb
XG
2458 if (sp->role.word != role.word)
2459 continue;
4731d4c7 2460
2a74003a
PB
2461 if (sp->unsync) {
2462 /* The page is good, but __kvm_sync_page might still end
2463 * up zapping it. If so, break in order to rebuild it.
2464 */
2465 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2466 break;
2467
2468 WARN_ON(!list_empty(&invalid_list));
2469 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2470 }
e02aa901 2471
98bba238 2472 if (sp->unsync_children)
a8eeb04a 2473 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2474
a30f47cb 2475 __clear_sp_write_flooding_count(sp);
7ae680eb 2476 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2477 goto out;
7ae680eb 2478 }
47005792 2479
dfc5aa00 2480 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2481
2482 sp = kvm_mmu_alloc_page(vcpu, direct);
2483
4db35314
AK
2484 sp->gfn = gfn;
2485 sp->role = role;
7ae680eb
XG
2486 hlist_add_head(&sp->hash_link,
2487 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2488 if (!direct) {
56ca57f9
XG
2489 /*
2490 * we should do write protection before syncing pages
2491 * otherwise the content of the synced shadow page may
2492 * be inconsistent with guest page table.
2493 */
2494 account_shadowed(vcpu->kvm, sp);
2495 if (level == PT_PAGE_TABLE_LEVEL &&
2496 rmap_write_protect(vcpu, gfn))
c3134ce2 2497 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2498
9f1a122f 2499 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2500 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2501 }
77492664 2502 clear_page(sp->spt);
f691fe1d 2503 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2504
2505 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2506out:
2507 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2508 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2509 return sp;
cea0f0e7
AK
2510}
2511
7eb77e9f
JS
2512static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2513 struct kvm_vcpu *vcpu, hpa_t root,
2514 u64 addr)
2d11123a
AK
2515{
2516 iterator->addr = addr;
7eb77e9f 2517 iterator->shadow_addr = root;
44dd3ffa 2518 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2519
2a7266a8 2520 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2521 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2522 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2523 --iterator->level;
2524
2d11123a 2525 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2526 /*
2527 * prev_root is currently only used for 64-bit hosts. So only
2528 * the active root_hpa is valid here.
2529 */
44dd3ffa 2530 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2531
2d11123a 2532 iterator->shadow_addr
44dd3ffa 2533 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2534 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2535 --iterator->level;
2536 if (!iterator->shadow_addr)
2537 iterator->level = 0;
2538 }
2539}
2540
7eb77e9f
JS
2541static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2542 struct kvm_vcpu *vcpu, u64 addr)
2543{
44dd3ffa 2544 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2545 addr);
2546}
2547
2d11123a
AK
2548static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2549{
2550 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2551 return false;
4d88954d 2552
2d11123a
AK
2553 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2554 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2555 return true;
2556}
2557
c2a2ac2b
XG
2558static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2559 u64 spte)
2d11123a 2560{
c2a2ac2b 2561 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2562 iterator->level = 0;
2563 return;
2564 }
2565
c2a2ac2b 2566 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2567 --iterator->level;
2568}
2569
c2a2ac2b
XG
2570static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2571{
bb606a9b 2572 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2573}
2574
98bba238
TY
2575static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2576 struct kvm_mmu_page *sp)
32ef26a3
AK
2577{
2578 u64 spte;
2579
ffb128c8 2580 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2581
ffb128c8 2582 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2583 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2584
2585 if (sp_ad_disabled(sp))
2586 spte |= shadow_acc_track_value;
2587 else
2588 spte |= shadow_accessed_mask;
24db2734 2589
1df9f2dc 2590 mmu_spte_set(sptep, spte);
98bba238
TY
2591
2592 mmu_page_add_parent_pte(vcpu, sp, sptep);
2593
2594 if (sp->unsync_children || sp->unsync)
2595 mark_unsync(sptep);
32ef26a3
AK
2596}
2597
a357bd22
AK
2598static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2599 unsigned direct_access)
2600{
2601 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2602 struct kvm_mmu_page *child;
2603
2604 /*
2605 * For the direct sp, if the guest pte's dirty bit
2606 * changed form clean to dirty, it will corrupt the
2607 * sp's access: allow writable in the read-only sp,
2608 * so we should update the spte at this point to get
2609 * a new sp with the correct access.
2610 */
2611 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2612 if (child->role.access == direct_access)
2613 return;
2614
bcdd9a93 2615 drop_parent_pte(child, sptep);
c3134ce2 2616 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2617 }
2618}
2619
505aef8f 2620static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2621 u64 *spte)
2622{
2623 u64 pte;
2624 struct kvm_mmu_page *child;
2625
2626 pte = *spte;
2627 if (is_shadow_present_pte(pte)) {
505aef8f 2628 if (is_last_spte(pte, sp->role.level)) {
c3707958 2629 drop_spte(kvm, spte);
505aef8f
XG
2630 if (is_large_pte(pte))
2631 --kvm->stat.lpages;
2632 } else {
38e3b2b2 2633 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2634 drop_parent_pte(child, spte);
38e3b2b2 2635 }
505aef8f
XG
2636 return true;
2637 }
2638
2639 if (is_mmio_spte(pte))
ce88decf 2640 mmu_spte_clear_no_track(spte);
c3707958 2641
505aef8f 2642 return false;
38e3b2b2
XG
2643}
2644
90cb0529 2645static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2646 struct kvm_mmu_page *sp)
a436036b 2647{
697fe2e2 2648 unsigned i;
697fe2e2 2649
38e3b2b2
XG
2650 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2651 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2652}
2653
31aa2b44 2654static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2655{
1e3f42f0
TY
2656 u64 *sptep;
2657 struct rmap_iterator iter;
a436036b 2658
018aabb5 2659 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2660 drop_parent_pte(sp, sptep);
31aa2b44
AK
2661}
2662
60c8aec6 2663static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2664 struct kvm_mmu_page *parent,
2665 struct list_head *invalid_list)
4731d4c7 2666{
60c8aec6
MT
2667 int i, zapped = 0;
2668 struct mmu_page_path parents;
2669 struct kvm_mmu_pages pages;
4731d4c7 2670
60c8aec6 2671 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2672 return 0;
60c8aec6 2673
60c8aec6
MT
2674 while (mmu_unsync_walk(parent, &pages)) {
2675 struct kvm_mmu_page *sp;
2676
2677 for_each_sp(pages, sp, parents, i) {
7775834a 2678 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2679 mmu_pages_clear_parents(&parents);
77662e00 2680 zapped++;
60c8aec6 2681 }
60c8aec6
MT
2682 }
2683
2684 return zapped;
4731d4c7
MT
2685}
2686
83cdb568
SC
2687static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2688 struct kvm_mmu_page *sp,
2689 struct list_head *invalid_list,
2690 int *nr_zapped)
31aa2b44 2691{
83cdb568 2692 bool list_unstable;
f691fe1d 2693
7775834a 2694 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2695 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2696 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2697 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2698 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2699
83cdb568
SC
2700 /* Zapping children means active_mmu_pages has become unstable. */
2701 list_unstable = *nr_zapped;
2702
f6e2c02b 2703 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2704 unaccount_shadowed(kvm, sp);
5304b8d3 2705
4731d4c7
MT
2706 if (sp->unsync)
2707 kvm_unlink_unsync_page(kvm, sp);
4db35314 2708 if (!sp->root_count) {
54a4f023 2709 /* Count self */
83cdb568 2710 (*nr_zapped)++;
7775834a 2711 list_move(&sp->link, invalid_list);
aa6bd187 2712 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2713 } else {
5b5c6a5a 2714 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2715
5ff05683 2716 if (!sp->role.invalid)
05988d72 2717 kvm_reload_remote_mmus(kvm);
2e53d63a 2718 }
7775834a
XG
2719
2720 sp->role.invalid = 1;
83cdb568
SC
2721 return list_unstable;
2722}
2723
2724static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2725 struct list_head *invalid_list)
2726{
2727 int nr_zapped;
2728
2729 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2730 return nr_zapped;
a436036b
AK
2731}
2732
7775834a
XG
2733static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2734 struct list_head *invalid_list)
2735{
945315b9 2736 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2737
2738 if (list_empty(invalid_list))
2739 return;
2740
c142786c 2741 /*
9753f529
LT
2742 * We need to make sure everyone sees our modifications to
2743 * the page tables and see changes to vcpu->mode here. The barrier
2744 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2745 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2746 *
2747 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2748 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2749 */
2750 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2751
945315b9 2752 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2753 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2754 kvm_mmu_free_page(sp);
945315b9 2755 }
7775834a
XG
2756}
2757
5da59607
TY
2758static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2759 struct list_head *invalid_list)
2760{
2761 struct kvm_mmu_page *sp;
2762
2763 if (list_empty(&kvm->arch.active_mmu_pages))
2764 return false;
2765
d74c0e6b
GT
2766 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2767 struct kvm_mmu_page, link);
42bcbebf 2768 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2769}
2770
82ce2c96
IE
2771/*
2772 * Changing the number of mmu pages allocated to the vm
49d5ca26 2773 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2774 */
bc8a3d89 2775void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2776{
d98ba053 2777 LIST_HEAD(invalid_list);
82ce2c96 2778
b34cb590
TY
2779 spin_lock(&kvm->mmu_lock);
2780
49d5ca26 2781 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2782 /* Need to free some mmu pages to achieve the goal. */
2783 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2784 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2785 break;
82ce2c96 2786
aa6bd187 2787 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2788 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2789 }
82ce2c96 2790
49d5ca26 2791 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2792
2793 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2794}
2795
1cb3f3ae 2796int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2797{
4db35314 2798 struct kvm_mmu_page *sp;
d98ba053 2799 LIST_HEAD(invalid_list);
a436036b
AK
2800 int r;
2801
9ad17b10 2802 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2803 r = 0;
1cb3f3ae 2804 spin_lock(&kvm->mmu_lock);
b67bfe0d 2805 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2806 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2807 sp->role.word);
2808 r = 1;
f41d335a 2809 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2810 }
d98ba053 2811 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2812 spin_unlock(&kvm->mmu_lock);
2813
a436036b 2814 return r;
cea0f0e7 2815}
1cb3f3ae 2816EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2817
5c520e90 2818static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2819{
2820 trace_kvm_mmu_unsync_page(sp);
2821 ++vcpu->kvm->stat.mmu_unsync;
2822 sp->unsync = 1;
2823
2824 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2825}
2826
3d0c27ad
XG
2827static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2828 bool can_unsync)
4731d4c7 2829{
5c520e90 2830 struct kvm_mmu_page *sp;
4731d4c7 2831
3d0c27ad
XG
2832 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2833 return true;
9cf5cf5a 2834
5c520e90 2835 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2836 if (!can_unsync)
3d0c27ad 2837 return true;
36a2e677 2838
5c520e90
XG
2839 if (sp->unsync)
2840 continue;
9cf5cf5a 2841
5c520e90
XG
2842 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2843 kvm_unsync_page(vcpu, sp);
4731d4c7 2844 }
3d0c27ad 2845
578e1c4d
JS
2846 /*
2847 * We need to ensure that the marking of unsync pages is visible
2848 * before the SPTE is updated to allow writes because
2849 * kvm_mmu_sync_roots() checks the unsync flags without holding
2850 * the MMU lock and so can race with this. If the SPTE was updated
2851 * before the page had been marked as unsync-ed, something like the
2852 * following could happen:
2853 *
2854 * CPU 1 CPU 2
2855 * ---------------------------------------------------------------------
2856 * 1.2 Host updates SPTE
2857 * to be writable
2858 * 2.1 Guest writes a GPTE for GVA X.
2859 * (GPTE being in the guest page table shadowed
2860 * by the SP from CPU 1.)
2861 * This reads SPTE during the page table walk.
2862 * Since SPTE.W is read as 1, there is no
2863 * fault.
2864 *
2865 * 2.2 Guest issues TLB flush.
2866 * That causes a VM Exit.
2867 *
2868 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2869 * Since it is false, so it just returns.
2870 *
2871 * 2.4 Guest accesses GVA X.
2872 * Since the mapping in the SP was not updated,
2873 * so the old mapping for GVA X incorrectly
2874 * gets used.
2875 * 1.1 Host marks SP
2876 * as unsync
2877 * (sp->unsync = true)
2878 *
2879 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2880 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2881 * pairs with this write barrier.
2882 */
2883 smp_wmb();
2884
3d0c27ad 2885 return false;
4731d4c7
MT
2886}
2887
ba049e93 2888static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2889{
2890 if (pfn_valid(pfn))
aa2e063a
HZ
2891 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2892 /*
2893 * Some reserved pages, such as those from NVDIMM
2894 * DAX devices, are not for MMIO, and can be mapped
2895 * with cached memory type for better performance.
2896 * However, the above check misconceives those pages
2897 * as MMIO, and results in KVM mapping them with UC
2898 * memory type, which would hurt the performance.
2899 * Therefore, we check the host memory type in addition
2900 * and only treat UC/UC-/WC pages as MMIO.
2901 */
2902 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 2903
0c55671f
KA
2904 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2905 pfn_to_hpa(pfn + 1) - 1,
2906 E820_TYPE_RAM);
d1fe9219
PB
2907}
2908
5ce4786f
JS
2909/* Bits which may be returned by set_spte() */
2910#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2911#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2912
d555c333 2913static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2914 unsigned pte_access, int level,
ba049e93 2915 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2916 bool can_unsync, bool host_writable)
1c4f1fd6 2917{
ffb128c8 2918 u64 spte = 0;
1e73f9dd 2919 int ret = 0;
ac8d57e5 2920 struct kvm_mmu_page *sp;
64d4d521 2921
54bf36aa 2922 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2923 return 0;
2924
ac8d57e5
PF
2925 sp = page_header(__pa(sptep));
2926 if (sp_ad_disabled(sp))
2927 spte |= shadow_acc_track_value;
2928
d95c5568
BD
2929 /*
2930 * For the EPT case, shadow_present_mask is 0 if hardware
2931 * supports exec-only page table entries. In that case,
2932 * ACC_USER_MASK and shadow_user_mask are used to represent
2933 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2934 */
ffb128c8 2935 spte |= shadow_present_mask;
947da538 2936 if (!speculative)
ac8d57e5 2937 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2938
7b52345e
SY
2939 if (pte_access & ACC_EXEC_MASK)
2940 spte |= shadow_x_mask;
2941 else
2942 spte |= shadow_nx_mask;
49fde340 2943
1c4f1fd6 2944 if (pte_access & ACC_USER_MASK)
7b52345e 2945 spte |= shadow_user_mask;
49fde340 2946
852e3c19 2947 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2948 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2949 if (tdp_enabled)
4b12f0de 2950 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2951 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2952
9bdbba13 2953 if (host_writable)
1403283a 2954 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2955 else
2956 pte_access &= ~ACC_WRITE_MASK;
1403283a 2957
daaf216c
TL
2958 if (!kvm_is_mmio_pfn(pfn))
2959 spte |= shadow_me_mask;
2960
35149e21 2961 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2962
c2288505 2963 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2964
c2193463 2965 /*
7751babd
XG
2966 * Other vcpu creates new sp in the window between
2967 * mapping_level() and acquiring mmu-lock. We can
2968 * allow guest to retry the access, the mapping can
2969 * be fixed if guest refault.
c2193463 2970 */
852e3c19 2971 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2972 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2973 goto done;
38187c83 2974
49fde340 2975 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2976
ecc5589f
MT
2977 /*
2978 * Optimization: for pte sync, if spte was writable the hash
2979 * lookup is unnecessary (and expensive). Write protection
2980 * is responsibility of mmu_get_page / kvm_sync_page.
2981 * Same reasoning can be applied to dirty page accounting.
2982 */
8dae4445 2983 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2984 goto set_pte;
2985
4731d4c7 2986 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2987 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2988 __func__, gfn);
5ce4786f 2989 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 2990 pte_access &= ~ACC_WRITE_MASK;
49fde340 2991 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2992 }
2993 }
2994
9b51a630 2995 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2996 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2997 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2998 }
1c4f1fd6 2999
f160c7b7
JS
3000 if (speculative)
3001 spte = mark_spte_for_access_track(spte);
3002
38187c83 3003set_pte:
6e7d0354 3004 if (mmu_spte_update(sptep, spte))
5ce4786f 3005 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 3006done:
1e73f9dd
MT
3007 return ret;
3008}
3009
9b8ebbdb
PB
3010static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3011 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3012 bool speculative, bool host_writable)
1e73f9dd
MT
3013{
3014 int was_rmapped = 0;
53a27b39 3015 int rmap_count;
5ce4786f 3016 int set_spte_ret;
9b8ebbdb 3017 int ret = RET_PF_RETRY;
c2a4eadf 3018 bool flush = false;
1e73f9dd 3019
f7616203
XG
3020 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3021 *sptep, write_fault, gfn);
1e73f9dd 3022
afd28fe1 3023 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3024 /*
3025 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3026 * the parent of the now unreachable PTE.
3027 */
852e3c19
JR
3028 if (level > PT_PAGE_TABLE_LEVEL &&
3029 !is_large_pte(*sptep)) {
1e73f9dd 3030 struct kvm_mmu_page *child;
d555c333 3031 u64 pte = *sptep;
1e73f9dd
MT
3032
3033 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3034 drop_parent_pte(child, sptep);
c2a4eadf 3035 flush = true;
d555c333 3036 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3037 pgprintk("hfn old %llx new %llx\n",
d555c333 3038 spte_to_pfn(*sptep), pfn);
c3707958 3039 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3040 flush = true;
6bed6b9e
JR
3041 } else
3042 was_rmapped = 1;
1e73f9dd 3043 }
852e3c19 3044
5ce4786f
JS
3045 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3046 speculative, true, host_writable);
3047 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3048 if (write_fault)
9b8ebbdb 3049 ret = RET_PF_EMULATE;
77c3913b 3050 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3051 }
c3134ce2 3052
c2a4eadf 3053 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3054 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3055 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3056
029499b4 3057 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3058 ret = RET_PF_EMULATE;
ce88decf 3059
d555c333 3060 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 3061 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 3062 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 3063 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 3064 *sptep, sptep);
d555c333 3065 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3066 ++vcpu->kvm->stat.lpages;
3067
ffb61bb3 3068 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3069 if (!was_rmapped) {
3070 rmap_count = rmap_add(vcpu, sptep, gfn);
3071 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3072 rmap_recycle(vcpu, sptep, gfn);
3073 }
1c4f1fd6 3074 }
cb9aaa30 3075
f3ac1a4b 3076 kvm_release_pfn_clean(pfn);
029499b4 3077
9b8ebbdb 3078 return ret;
1c4f1fd6
AK
3079}
3080
ba049e93 3081static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3082 bool no_dirty_log)
3083{
3084 struct kvm_memory_slot *slot;
957ed9ef 3085
5d163b1c 3086 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3087 if (!slot)
6c8ee57b 3088 return KVM_PFN_ERR_FAULT;
957ed9ef 3089
037d92dc 3090 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3091}
3092
3093static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3094 struct kvm_mmu_page *sp,
3095 u64 *start, u64 *end)
3096{
3097 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3098 struct kvm_memory_slot *slot;
957ed9ef
XG
3099 unsigned access = sp->role.access;
3100 int i, ret;
3101 gfn_t gfn;
3102
3103 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3104 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3105 if (!slot)
957ed9ef
XG
3106 return -1;
3107
d9ef13c2 3108 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3109 if (ret <= 0)
3110 return -1;
3111
3112 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
3113 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3114 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
3115
3116 return 0;
3117}
3118
3119static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3120 struct kvm_mmu_page *sp, u64 *sptep)
3121{
3122 u64 *spte, *start = NULL;
3123 int i;
3124
3125 WARN_ON(!sp->role.direct);
3126
3127 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3128 spte = sp->spt + i;
3129
3130 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3131 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3132 if (!start)
3133 continue;
3134 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3135 break;
3136 start = NULL;
3137 } else if (!start)
3138 start = spte;
3139 }
3140}
3141
3142static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3143{
3144 struct kvm_mmu_page *sp;
3145
ac8d57e5
PF
3146 sp = page_header(__pa(sptep));
3147
957ed9ef 3148 /*
ac8d57e5
PF
3149 * Without accessed bits, there's no way to distinguish between
3150 * actually accessed translations and prefetched, so disable pte
3151 * prefetch if accessed bits aren't available.
957ed9ef 3152 */
ac8d57e5 3153 if (sp_ad_disabled(sp))
957ed9ef
XG
3154 return;
3155
957ed9ef
XG
3156 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3157 return;
3158
3159 __direct_pte_prefetch(vcpu, sp, sptep);
3160}
3161
7ee0e5b2 3162static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 3163 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 3164{
9f652d21 3165 struct kvm_shadow_walk_iterator iterator;
140754bc 3166 struct kvm_mmu_page *sp;
b90a0e6c 3167 int emulate = 0;
140754bc 3168 gfn_t pseudo_gfn;
6aa8b732 3169
44dd3ffa 3170 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
989c6b34
MT
3171 return 0;
3172
9f652d21 3173 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 3174 if (iterator.level == level) {
029499b4
TY
3175 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3176 write, level, gfn, pfn, prefault,
3177 map_writable);
957ed9ef 3178 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
3179 ++vcpu->stat.pf_fixed;
3180 break;
6aa8b732
AK
3181 }
3182
404381c5 3183 drop_large_spte(vcpu, iterator.sptep);
c3707958 3184 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
3185 u64 base_addr = iterator.addr;
3186
3187 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3188 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 3189 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 3190 iterator.level - 1, 1, ACC_ALL);
140754bc 3191
98bba238 3192 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
3193 }
3194 }
b90a0e6c 3195 return emulate;
6aa8b732
AK
3196}
3197
77db5cbd 3198static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3199{
585a8b9b 3200 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3201}
3202
ba049e93 3203static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3204{
4d8b81ab
XG
3205 /*
3206 * Do not cache the mmio info caused by writing the readonly gfn
3207 * into the spte otherwise read access on readonly gfn also can
3208 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3209 */
3210 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3211 return RET_PF_EMULATE;
4d8b81ab 3212
e6c1502b 3213 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3214 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3215 return RET_PF_RETRY;
d7c55201 3216 }
edba23e5 3217
2c151b25 3218 return -EFAULT;
bf998156
HY
3219}
3220
936a5fe6 3221static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3222 gfn_t *gfnp, kvm_pfn_t *pfnp,
3223 int *levelp)
936a5fe6 3224{
ba049e93 3225 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3226 gfn_t gfn = *gfnp;
3227 int level = *levelp;
3228
3229 /*
3230 * Check if it's a transparent hugepage. If this would be an
3231 * hugetlbfs page, level wouldn't be set to
3232 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3233 * here.
3234 */
bf4bea8e 3235 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3236 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3237 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3238 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3239 unsigned long mask;
3240 /*
3241 * mmu_notifier_retry was successful and we hold the
3242 * mmu_lock here, so the pmd can't become splitting
3243 * from under us, and in turn
3244 * __split_huge_page_refcount() can't run from under
3245 * us and we can safely transfer the refcount from
3246 * PG_tail to PG_head as we switch the pfn to tail to
3247 * head.
3248 */
3249 *levelp = level = PT_DIRECTORY_LEVEL;
3250 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3251 VM_BUG_ON((gfn & mask) != (pfn & mask));
3252 if (pfn & mask) {
3253 gfn &= ~mask;
3254 *gfnp = gfn;
3255 kvm_release_pfn_clean(pfn);
3256 pfn &= ~mask;
c3586667 3257 kvm_get_pfn(pfn);
936a5fe6
AA
3258 *pfnp = pfn;
3259 }
3260 }
3261}
3262
d7c55201 3263static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3264 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3265{
d7c55201 3266 /* The pfn is invalid, report the error! */
81c52c56 3267 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3268 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3269 return true;
d7c55201
XG
3270 }
3271
ce88decf 3272 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3273 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3274
798e88b3 3275 return false;
d7c55201
XG
3276}
3277
e5552fd2 3278static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3279{
1c118b82
XG
3280 /*
3281 * Do not fix the mmio spte with invalid generation number which
3282 * need to be updated by slow page fault path.
3283 */
3284 if (unlikely(error_code & PFERR_RSVD_MASK))
3285 return false;
3286
f160c7b7
JS
3287 /* See if the page fault is due to an NX violation */
3288 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3289 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3290 return false;
3291
c7ba5b48 3292 /*
f160c7b7
JS
3293 * #PF can be fast if:
3294 * 1. The shadow page table entry is not present, which could mean that
3295 * the fault is potentially caused by access tracking (if enabled).
3296 * 2. The shadow page table entry is present and the fault
3297 * is caused by write-protect, that means we just need change the W
3298 * bit of the spte which can be done out of mmu-lock.
3299 *
3300 * However, if access tracking is disabled we know that a non-present
3301 * page must be a genuine page fault where we have to create a new SPTE.
3302 * So, if access tracking is disabled, we return true only for write
3303 * accesses to a present page.
c7ba5b48 3304 */
c7ba5b48 3305
f160c7b7
JS
3306 return shadow_acc_track_mask != 0 ||
3307 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3308 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3309}
3310
97dceba2
JS
3311/*
3312 * Returns true if the SPTE was fixed successfully. Otherwise,
3313 * someone else modified the SPTE from its original value.
3314 */
c7ba5b48 3315static bool
92a476cb 3316fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3317 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3318{
c7ba5b48
XG
3319 gfn_t gfn;
3320
3321 WARN_ON(!sp->role.direct);
3322
9b51a630
KH
3323 /*
3324 * Theoretically we could also set dirty bit (and flush TLB) here in
3325 * order to eliminate unnecessary PML logging. See comments in
3326 * set_spte. But fast_page_fault is very unlikely to happen with PML
3327 * enabled, so we do not do this. This might result in the same GPA
3328 * to be logged in PML buffer again when the write really happens, and
3329 * eventually to be called by mark_page_dirty twice. But it's also no
3330 * harm. This also avoids the TLB flush needed after setting dirty bit
3331 * so non-PML cases won't be impacted.
3332 *
3333 * Compare with set_spte where instead shadow_dirty_mask is set.
3334 */
f160c7b7 3335 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3336 return false;
3337
d3e328f2 3338 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3339 /*
3340 * The gfn of direct spte is stable since it is
3341 * calculated by sp->gfn.
3342 */
3343 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3344 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3345 }
c7ba5b48
XG
3346
3347 return true;
3348}
3349
d3e328f2
JS
3350static bool is_access_allowed(u32 fault_err_code, u64 spte)
3351{
3352 if (fault_err_code & PFERR_FETCH_MASK)
3353 return is_executable_pte(spte);
3354
3355 if (fault_err_code & PFERR_WRITE_MASK)
3356 return is_writable_pte(spte);
3357
3358 /* Fault was on Read access */
3359 return spte & PT_PRESENT_MASK;
3360}
3361
c7ba5b48
XG
3362/*
3363 * Return value:
3364 * - true: let the vcpu to access on the same address again.
3365 * - false: let the real page fault path to fix it.
3366 */
3367static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3368 u32 error_code)
3369{
3370 struct kvm_shadow_walk_iterator iterator;
92a476cb 3371 struct kvm_mmu_page *sp;
97dceba2 3372 bool fault_handled = false;
c7ba5b48 3373 u64 spte = 0ull;
97dceba2 3374 uint retry_count = 0;
c7ba5b48 3375
44dd3ffa 3376 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3377 return false;
3378
e5552fd2 3379 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3380 return false;
3381
3382 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3383
97dceba2 3384 do {
d3e328f2 3385 u64 new_spte;
c7ba5b48 3386
d162f30a
JS
3387 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3388 if (!is_shadow_present_pte(spte) ||
3389 iterator.level < level)
3390 break;
3391
97dceba2
JS
3392 sp = page_header(__pa(iterator.sptep));
3393 if (!is_last_spte(spte, sp->role.level))
3394 break;
c7ba5b48 3395
97dceba2 3396 /*
f160c7b7
JS
3397 * Check whether the memory access that caused the fault would
3398 * still cause it if it were to be performed right now. If not,
3399 * then this is a spurious fault caused by TLB lazily flushed,
3400 * or some other CPU has already fixed the PTE after the
3401 * current CPU took the fault.
97dceba2
JS
3402 *
3403 * Need not check the access of upper level table entries since
3404 * they are always ACC_ALL.
3405 */
d3e328f2
JS
3406 if (is_access_allowed(error_code, spte)) {
3407 fault_handled = true;
3408 break;
3409 }
f160c7b7 3410
d3e328f2
JS
3411 new_spte = spte;
3412
3413 if (is_access_track_spte(spte))
3414 new_spte = restore_acc_track_spte(new_spte);
3415
3416 /*
3417 * Currently, to simplify the code, write-protection can
3418 * be removed in the fast path only if the SPTE was
3419 * write-protected for dirty-logging or access tracking.
3420 */
3421 if ((error_code & PFERR_WRITE_MASK) &&
3422 spte_can_locklessly_be_made_writable(spte))
3423 {
3424 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3425
3426 /*
d3e328f2
JS
3427 * Do not fix write-permission on the large spte. Since
3428 * we only dirty the first page into the dirty-bitmap in
3429 * fast_pf_fix_direct_spte(), other pages are missed
3430 * if its slot has dirty logging enabled.
3431 *
3432 * Instead, we let the slow page fault path create a
3433 * normal spte to fix the access.
3434 *
3435 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3436 */
d3e328f2 3437 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3438 break;
97dceba2 3439 }
c7ba5b48 3440
f160c7b7 3441 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3442 if (new_spte == spte ||
3443 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3444 break;
3445
3446 /*
3447 * Currently, fast page fault only works for direct mapping
3448 * since the gfn is not stable for indirect shadow page. See
3449 * Documentation/virtual/kvm/locking.txt to get more detail.
3450 */
3451 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3452 iterator.sptep, spte,
d3e328f2 3453 new_spte);
97dceba2
JS
3454 if (fault_handled)
3455 break;
3456
3457 if (++retry_count > 4) {
3458 printk_once(KERN_WARNING
3459 "kvm: Fast #PF retrying more than 4 times.\n");
3460 break;
3461 }
3462
97dceba2 3463 } while (true);
c126d94f 3464
a72faf25 3465 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3466 spte, fault_handled);
c7ba5b48
XG
3467 walk_shadow_page_lockless_end(vcpu);
3468
97dceba2 3469 return fault_handled;
c7ba5b48
XG
3470}
3471
78b2c54a 3472static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3473 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3474static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3475
c7ba5b48
XG
3476static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3477 gfn_t gfn, bool prefault)
10589a46
MT
3478{
3479 int r;
852e3c19 3480 int level;
fd136902 3481 bool force_pt_level = false;
ba049e93 3482 kvm_pfn_t pfn;
e930bffe 3483 unsigned long mmu_seq;
c7ba5b48 3484 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3485
fd136902 3486 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3487 if (likely(!force_pt_level)) {
936a5fe6
AA
3488 /*
3489 * This path builds a PAE pagetable - so we can map
3490 * 2mb pages at maximum. Therefore check if the level
3491 * is larger than that.
3492 */
3493 if (level > PT_DIRECTORY_LEVEL)
3494 level = PT_DIRECTORY_LEVEL;
852e3c19 3495
936a5fe6 3496 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3497 }
05da4558 3498
c7ba5b48 3499 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3500 return RET_PF_RETRY;
c7ba5b48 3501
e930bffe 3502 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3503 smp_rmb();
060c2abe 3504
78b2c54a 3505 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3506 return RET_PF_RETRY;
aaee2c94 3507
d7c55201
XG
3508 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3509 return r;
d196e343 3510
aaee2c94 3511 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3512 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3513 goto out_unlock;
26eeb53c
WL
3514 if (make_mmu_pages_available(vcpu) < 0)
3515 goto out_unlock;
936a5fe6
AA
3516 if (likely(!force_pt_level))
3517 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3518 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3519 spin_unlock(&vcpu->kvm->mmu_lock);
3520
10589a46 3521 return r;
e930bffe
AA
3522
3523out_unlock:
3524 spin_unlock(&vcpu->kvm->mmu_lock);
3525 kvm_release_pfn_clean(pfn);
9b8ebbdb 3526 return RET_PF_RETRY;
10589a46
MT
3527}
3528
74b566e6
JS
3529static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3530 struct list_head *invalid_list)
17ac10ad 3531{
4db35314 3532 struct kvm_mmu_page *sp;
17ac10ad 3533
74b566e6 3534 if (!VALID_PAGE(*root_hpa))
7b53aa56 3535 return;
35af577a 3536
74b566e6
JS
3537 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3538 --sp->root_count;
3539 if (!sp->root_count && sp->role.invalid)
3540 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3541
74b566e6
JS
3542 *root_hpa = INVALID_PAGE;
3543}
3544
08fb59d8 3545/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3546void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3547 ulong roots_to_free)
74b566e6
JS
3548{
3549 int i;
3550 LIST_HEAD(invalid_list);
08fb59d8 3551 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3552
b94742c9 3553 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3554
08fb59d8 3555 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3556 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3557 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3558 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3559 VALID_PAGE(mmu->prev_roots[i].hpa))
3560 break;
3561
3562 if (i == KVM_MMU_NUM_PREV_ROOTS)
3563 return;
3564 }
35af577a
GN
3565
3566 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3567
b94742c9
JS
3568 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3569 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3570 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3571 &invalid_list);
7c390d35 3572
08fb59d8
JS
3573 if (free_active_root) {
3574 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3575 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3576 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3577 &invalid_list);
3578 } else {
3579 for (i = 0; i < 4; ++i)
3580 if (mmu->pae_root[i] != 0)
3581 mmu_free_root_page(vcpu->kvm,
3582 &mmu->pae_root[i],
3583 &invalid_list);
3584 mmu->root_hpa = INVALID_PAGE;
3585 }
ad7dc69a 3586 mmu->root_cr3 = 0;
17ac10ad 3587 }
74b566e6 3588
d98ba053 3589 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3590 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3591}
74b566e6 3592EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3593
8986ecc0
MT
3594static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3595{
3596 int ret = 0;
3597
3598 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3599 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3600 ret = 1;
3601 }
3602
3603 return ret;
3604}
3605
651dd37a
JR
3606static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3607{
3608 struct kvm_mmu_page *sp;
7ebaf15e 3609 unsigned i;
651dd37a 3610
44dd3ffa 3611 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3612 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3613 if(make_mmu_pages_available(vcpu) < 0) {
3614 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3615 return -ENOSPC;
26eeb53c 3616 }
855feb67 3617 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3618 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3619 ++sp->root_count;
3620 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3621 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3622 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3623 for (i = 0; i < 4; ++i) {
44dd3ffa 3624 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3625
fa4a2c08 3626 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3627 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3628 if (make_mmu_pages_available(vcpu) < 0) {
3629 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3630 return -ENOSPC;
26eeb53c 3631 }
649497d1 3632 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3633 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3634 root = __pa(sp->spt);
3635 ++sp->root_count;
3636 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3637 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3638 }
44dd3ffa 3639 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3640 } else
3641 BUG();
ad7dc69a 3642 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
651dd37a
JR
3643
3644 return 0;
3645}
3646
3647static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3648{
4db35314 3649 struct kvm_mmu_page *sp;
81407ca5 3650 u64 pdptr, pm_mask;
ad7dc69a 3651 gfn_t root_gfn, root_cr3;
81407ca5 3652 int i;
3bb65a22 3653
ad7dc69a
VK
3654 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3655 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3656
651dd37a
JR
3657 if (mmu_check_root(vcpu, root_gfn))
3658 return 1;
3659
3660 /*
3661 * Do we shadow a long mode page table? If so we need to
3662 * write-protect the guests page table root.
3663 */
44dd3ffa
VK
3664 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3665 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3666
fa4a2c08 3667 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3668
8facbbff 3669 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3670 if (make_mmu_pages_available(vcpu) < 0) {
3671 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3672 return -ENOSPC;
26eeb53c 3673 }
855feb67 3674 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3675 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3676 root = __pa(sp->spt);
3677 ++sp->root_count;
8facbbff 3678 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3679 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3680 goto set_root_cr3;
17ac10ad 3681 }
f87f9288 3682
651dd37a
JR
3683 /*
3684 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3685 * or a PAE 3-level page table. In either case we need to be aware that
3686 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3687 */
81407ca5 3688 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3689 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3690 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3691
17ac10ad 3692 for (i = 0; i < 4; ++i) {
44dd3ffa 3693 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3694
fa4a2c08 3695 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3696 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3697 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3698 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3699 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3700 continue;
3701 }
6de4f3ad 3702 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3703 if (mmu_check_root(vcpu, root_gfn))
3704 return 1;
5a7388c2 3705 }
8facbbff 3706 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3707 if (make_mmu_pages_available(vcpu) < 0) {
3708 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3709 return -ENOSPC;
26eeb53c 3710 }
bb11c6c9
TY
3711 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3712 0, ACC_ALL);
4db35314
AK
3713 root = __pa(sp->spt);
3714 ++sp->root_count;
8facbbff
AK
3715 spin_unlock(&vcpu->kvm->mmu_lock);
3716
44dd3ffa 3717 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3718 }
44dd3ffa 3719 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3720
3721 /*
3722 * If we shadow a 32 bit page table with a long mode page
3723 * table we enter this path.
3724 */
44dd3ffa
VK
3725 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3726 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3727 /*
3728 * The additional page necessary for this is only
3729 * allocated on demand.
3730 */
3731
3732 u64 *lm_root;
3733
254272ce 3734 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3735 if (lm_root == NULL)
3736 return 1;
3737
44dd3ffa 3738 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3739
44dd3ffa 3740 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3741 }
3742
44dd3ffa 3743 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3744 }
3745
ad7dc69a
VK
3746set_root_cr3:
3747 vcpu->arch.mmu->root_cr3 = root_cr3;
3748
8986ecc0 3749 return 0;
17ac10ad
AK
3750}
3751
651dd37a
JR
3752static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3753{
44dd3ffa 3754 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3755 return mmu_alloc_direct_roots(vcpu);
3756 else
3757 return mmu_alloc_shadow_roots(vcpu);
3758}
3759
578e1c4d 3760void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3761{
3762 int i;
3763 struct kvm_mmu_page *sp;
3764
44dd3ffa 3765 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3766 return;
3767
44dd3ffa 3768 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3769 return;
6903074c 3770
56f17dd3 3771 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3772
44dd3ffa
VK
3773 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3774 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3775 sp = page_header(root);
578e1c4d
JS
3776
3777 /*
3778 * Even if another CPU was marking the SP as unsync-ed
3779 * simultaneously, any guest page table changes are not
3780 * guaranteed to be visible anyway until this VCPU issues a TLB
3781 * flush strictly after those changes are made. We only need to
3782 * ensure that the other CPU sets these flags before any actual
3783 * changes to the page tables are made. The comments in
3784 * mmu_need_write_protect() describe what could go wrong if this
3785 * requirement isn't satisfied.
3786 */
3787 if (!smp_load_acquire(&sp->unsync) &&
3788 !smp_load_acquire(&sp->unsync_children))
3789 return;
3790
3791 spin_lock(&vcpu->kvm->mmu_lock);
3792 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3793
0ba73cda 3794 mmu_sync_children(vcpu, sp);
578e1c4d 3795
0375f7fa 3796 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3797 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3798 return;
3799 }
578e1c4d
JS
3800
3801 spin_lock(&vcpu->kvm->mmu_lock);
3802 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3803
0ba73cda 3804 for (i = 0; i < 4; ++i) {
44dd3ffa 3805 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3806
8986ecc0 3807 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3808 root &= PT64_BASE_ADDR_MASK;
3809 sp = page_header(root);
3810 mmu_sync_children(vcpu, sp);
3811 }
3812 }
0ba73cda 3813
578e1c4d 3814 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3815 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3816}
bfd0a56b 3817EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3818
1871c602 3819static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3820 u32 access, struct x86_exception *exception)
6aa8b732 3821{
ab9ae313
AK
3822 if (exception)
3823 exception->error_code = 0;
6aa8b732
AK
3824 return vaddr;
3825}
3826
6539e738 3827static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3828 u32 access,
3829 struct x86_exception *exception)
6539e738 3830{
ab9ae313
AK
3831 if (exception)
3832 exception->error_code = 0;
54987b7a 3833 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3834}
3835
d625b155
XG
3836static bool
3837__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3838{
3839 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3840
3841 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3842 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3843}
3844
3845static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3846{
3847 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3848}
3849
3850static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3851{
3852 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3853}
3854
ded58749 3855static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3856{
9034e6e8
PB
3857 /*
3858 * A nested guest cannot use the MMIO cache if it is using nested
3859 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3860 */
3861 if (mmu_is_nested(vcpu))
3862 return false;
3863
ce88decf
XG
3864 if (direct)
3865 return vcpu_match_mmio_gpa(vcpu, addr);
3866
3867 return vcpu_match_mmio_gva(vcpu, addr);
3868}
3869
47ab8751
XG
3870/* return true if reserved bit is detected on spte. */
3871static bool
3872walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3873{
3874 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3875 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3876 int root, leaf;
3877 bool reserved = false;
ce88decf 3878
44dd3ffa 3879 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 3880 goto exit;
37f6a4e2 3881
ce88decf 3882 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3883
29ecd660
PB
3884 for (shadow_walk_init(&iterator, vcpu, addr),
3885 leaf = root = iterator.level;
47ab8751
XG
3886 shadow_walk_okay(&iterator);
3887 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3888 spte = mmu_spte_get_lockless(iterator.sptep);
3889
3890 sptes[leaf - 1] = spte;
29ecd660 3891 leaf--;
47ab8751 3892
ce88decf
XG
3893 if (!is_shadow_present_pte(spte))
3894 break;
47ab8751 3895
44dd3ffa 3896 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 3897 iterator.level);
47ab8751
XG
3898 }
3899
ce88decf
XG
3900 walk_shadow_page_lockless_end(vcpu);
3901
47ab8751
XG
3902 if (reserved) {
3903 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3904 __func__, addr);
29ecd660 3905 while (root > leaf) {
47ab8751
XG
3906 pr_err("------ spte 0x%llx level %d.\n",
3907 sptes[root - 1], root);
3908 root--;
3909 }
3910 }
3911exit:
3912 *sptep = spte;
3913 return reserved;
ce88decf
XG
3914}
3915
e08d26f0 3916static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3917{
3918 u64 spte;
47ab8751 3919 bool reserved;
ce88decf 3920
ded58749 3921 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3922 return RET_PF_EMULATE;
ce88decf 3923
47ab8751 3924 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3925 if (WARN_ON(reserved))
9b8ebbdb 3926 return -EINVAL;
ce88decf
XG
3927
3928 if (is_mmio_spte(spte)) {
3929 gfn_t gfn = get_mmio_spte_gfn(spte);
3930 unsigned access = get_mmio_spte_access(spte);
3931
54bf36aa 3932 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3933 return RET_PF_INVALID;
f8f55942 3934
ce88decf
XG
3935 if (direct)
3936 addr = 0;
4f022648
XG
3937
3938 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3939 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3940 return RET_PF_EMULATE;
ce88decf
XG
3941 }
3942
ce88decf
XG
3943 /*
3944 * If the page table is zapped by other cpus, let CPU fault again on
3945 * the address.
3946 */
9b8ebbdb 3947 return RET_PF_RETRY;
ce88decf 3948}
ce88decf 3949
3d0c27ad
XG
3950static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3951 u32 error_code, gfn_t gfn)
3952{
3953 if (unlikely(error_code & PFERR_RSVD_MASK))
3954 return false;
3955
3956 if (!(error_code & PFERR_PRESENT_MASK) ||
3957 !(error_code & PFERR_WRITE_MASK))
3958 return false;
3959
3960 /*
3961 * guest is writing the page which is write tracked which can
3962 * not be fixed by page fault handler.
3963 */
3964 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3965 return true;
3966
3967 return false;
3968}
3969
e5691a81
XG
3970static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3971{
3972 struct kvm_shadow_walk_iterator iterator;
3973 u64 spte;
3974
44dd3ffa 3975 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
3976 return;
3977
3978 walk_shadow_page_lockless_begin(vcpu);
3979 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3980 clear_sp_write_flooding_count(iterator.sptep);
3981 if (!is_shadow_present_pte(spte))
3982 break;
3983 }
3984 walk_shadow_page_lockless_end(vcpu);
3985}
3986
6aa8b732 3987static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3988 u32 error_code, bool prefault)
6aa8b732 3989{
3d0c27ad 3990 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3991 int r;
6aa8b732 3992
b8688d51 3993 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3994
3d0c27ad 3995 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3996 return RET_PF_EMULATE;
ce88decf 3997
e2dec939
AK
3998 r = mmu_topup_memory_caches(vcpu);
3999 if (r)
4000 return r;
714b93da 4001
44dd3ffa 4002 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 4003
6aa8b732 4004
e833240f 4005 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 4006 error_code, gfn, prefault);
6aa8b732
AK
4007}
4008
7e1fbeac 4009static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
4010{
4011 struct kvm_arch_async_pf arch;
fb67e14f 4012
7c90705b 4013 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4014 arch.gfn = gfn;
44dd3ffa
VK
4015 arch.direct_map = vcpu->arch.mmu->direct_map;
4016 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 4017
54bf36aa 4018 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4019}
4020
9bc1f09f 4021bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 4022{
35754c98 4023 if (unlikely(!lapic_in_kernel(vcpu) ||
2a266f23
HZ
4024 kvm_event_needs_reinjection(vcpu) ||
4025 vcpu->arch.exception.pending))
af585b92
GN
4026 return false;
4027
52a5c155 4028 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
4029 return false;
4030
af585b92
GN
4031 return kvm_x86_ops->interrupt_allowed(vcpu);
4032}
4033
78b2c54a 4034static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 4035 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 4036{
3520469d 4037 struct kvm_memory_slot *slot;
af585b92
GN
4038 bool async;
4039
3a2936de
JM
4040 /*
4041 * Don't expose private memslots to L2.
4042 */
4043 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4044 *pfn = KVM_PFN_NOSLOT;
4045 return false;
4046 }
4047
54bf36aa 4048 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4049 async = false;
4050 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4051 if (!async)
4052 return false; /* *pfn has correct page already */
4053
9bc1f09f 4054 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 4055 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
4056 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4057 trace_kvm_async_pf_doublefault(gva, gfn);
4058 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4059 return true;
4060 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4061 return true;
4062 }
4063
3520469d 4064 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4065 return false;
4066}
4067
1261bfa3 4068int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4069 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4070{
4071 int r = 1;
4072
c595ceee 4073 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4074 switch (vcpu->arch.apf.host_apf_reason) {
4075 default:
4076 trace_kvm_page_fault(fault_address, error_code);
4077
d0006530 4078 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4079 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4080 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4081 insn_len);
4082 break;
4083 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4084 vcpu->arch.apf.host_apf_reason = 0;
4085 local_irq_disable();
a2b7861b 4086 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4087 local_irq_enable();
4088 break;
4089 case KVM_PV_REASON_PAGE_READY:
4090 vcpu->arch.apf.host_apf_reason = 0;
4091 local_irq_disable();
4092 kvm_async_pf_task_wake(fault_address);
4093 local_irq_enable();
4094 break;
4095 }
4096 return r;
4097}
4098EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4099
6a39bbc5
XG
4100static bool
4101check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4102{
4103 int page_num = KVM_PAGES_PER_HPAGE(level);
4104
4105 gfn &= ~(page_num - 1);
4106
4107 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4108}
4109
56028d08 4110static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4111 bool prefault)
fb72d167 4112{
ba049e93 4113 kvm_pfn_t pfn;
fb72d167 4114 int r;
852e3c19 4115 int level;
cd1872f0 4116 bool force_pt_level;
05da4558 4117 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4118 unsigned long mmu_seq;
612819c3
MT
4119 int write = error_code & PFERR_WRITE_MASK;
4120 bool map_writable;
fb72d167 4121
44dd3ffa 4122 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4123
3d0c27ad 4124 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4125 return RET_PF_EMULATE;
ce88decf 4126
fb72d167
JR
4127 r = mmu_topup_memory_caches(vcpu);
4128 if (r)
4129 return r;
4130
fd136902
TY
4131 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4132 PT_DIRECTORY_LEVEL);
4133 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4134 if (likely(!force_pt_level)) {
6a39bbc5
XG
4135 if (level > PT_DIRECTORY_LEVEL &&
4136 !check_hugepage_cache_consistency(vcpu, gfn, level))
4137 level = PT_DIRECTORY_LEVEL;
936a5fe6 4138 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4139 }
852e3c19 4140
c7ba5b48 4141 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4142 return RET_PF_RETRY;
c7ba5b48 4143
e930bffe 4144 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4145 smp_rmb();
af585b92 4146
78b2c54a 4147 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4148 return RET_PF_RETRY;
af585b92 4149
d7c55201
XG
4150 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4151 return r;
4152
fb72d167 4153 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4154 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4155 goto out_unlock;
26eeb53c
WL
4156 if (make_mmu_pages_available(vcpu) < 0)
4157 goto out_unlock;
936a5fe6
AA
4158 if (likely(!force_pt_level))
4159 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 4160 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 4161 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
4162
4163 return r;
e930bffe
AA
4164
4165out_unlock:
4166 spin_unlock(&vcpu->kvm->mmu_lock);
4167 kvm_release_pfn_clean(pfn);
9b8ebbdb 4168 return RET_PF_RETRY;
fb72d167
JR
4169}
4170
8a3c1a33
PB
4171static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4172 struct kvm_mmu *context)
6aa8b732 4173{
6aa8b732 4174 context->page_fault = nonpaging_page_fault;
6aa8b732 4175 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4176 context->sync_page = nonpaging_sync_page;
a7052897 4177 context->invlpg = nonpaging_invlpg;
0f53b5b1 4178 context->update_pte = nonpaging_update_pte;
cea0f0e7 4179 context->root_level = 0;
6aa8b732 4180 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4181 context->direct_map = true;
2d48a985 4182 context->nx = false;
6aa8b732
AK
4183}
4184
b94742c9
JS
4185/*
4186 * Find out if a previously cached root matching the new CR3/role is available.
4187 * The current root is also inserted into the cache.
4188 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4189 * returned.
4190 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4191 * false is returned. This root should now be freed by the caller.
4192 */
4193static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4194 union kvm_mmu_page_role new_role)
4195{
4196 uint i;
4197 struct kvm_mmu_root_info root;
44dd3ffa 4198 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4199
ad7dc69a 4200 root.cr3 = mmu->root_cr3;
b94742c9
JS
4201 root.hpa = mmu->root_hpa;
4202
4203 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4204 swap(root, mmu->prev_roots[i]);
4205
4206 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4207 page_header(root.hpa) != NULL &&
4208 new_role.word == page_header(root.hpa)->role.word)
4209 break;
4210 }
4211
4212 mmu->root_hpa = root.hpa;
ad7dc69a 4213 mmu->root_cr3 = root.cr3;
b94742c9
JS
4214
4215 return i < KVM_MMU_NUM_PREV_ROOTS;
4216}
4217
0aab33e4 4218static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4219 union kvm_mmu_page_role new_role,
4220 bool skip_tlb_flush)
6aa8b732 4221{
44dd3ffa 4222 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4223
4224 /*
4225 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4226 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4227 * later if necessary.
4228 */
4229 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4230 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4231 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4232 return false;
4233
b94742c9 4234 if (cached_root_available(vcpu, new_cr3, new_role)) {
0aab33e4 4235 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4236 if (!skip_tlb_flush) {
4237 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
ade61e28 4238 kvm_x86_ops->tlb_flush(vcpu, true);
956bf353
JS
4239 }
4240
4241 /*
4242 * The last MMIO access's GVA and GPA are cached in the
4243 * VCPU. When switching to a new CR3, that GVA->GPA
4244 * mapping may no longer be valid. So clear any cached
4245 * MMIO info even when we don't need to sync the shadow
4246 * page tables.
4247 */
4248 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4249
7c390d35
JS
4250 __clear_sp_write_flooding_count(
4251 page_header(mmu->root_hpa));
4252
7c390d35
JS
4253 return true;
4254 }
4255 }
4256
4257 return false;
6aa8b732
AK
4258}
4259
0aab33e4 4260static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4261 union kvm_mmu_page_role new_role,
4262 bool skip_tlb_flush)
6aa8b732 4263{
ade61e28 4264 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4265 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4266 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4267}
4268
ade61e28 4269void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4270{
ade61e28
JS
4271 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4272 skip_tlb_flush);
0aab33e4 4273}
50c28f21 4274EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4275
5777ed34
JR
4276static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4277{
9f8fe504 4278 return kvm_read_cr3(vcpu);
5777ed34
JR
4279}
4280
6389ee94
AK
4281static void inject_page_fault(struct kvm_vcpu *vcpu,
4282 struct x86_exception *fault)
6aa8b732 4283{
44dd3ffa 4284 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4285}
4286
54bf36aa 4287static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4288 unsigned access, int *nr_present)
ce88decf
XG
4289{
4290 if (unlikely(is_mmio_spte(*sptep))) {
4291 if (gfn != get_mmio_spte_gfn(*sptep)) {
4292 mmu_spte_clear_no_track(sptep);
4293 return true;
4294 }
4295
4296 (*nr_present)++;
54bf36aa 4297 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4298 return true;
4299 }
4300
4301 return false;
4302}
4303
6bb69c9b
PB
4304static inline bool is_last_gpte(struct kvm_mmu *mmu,
4305 unsigned level, unsigned gpte)
6fd01b71 4306{
6bb69c9b
PB
4307 /*
4308 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4309 * If it is clear, there are no large pages at this level, so clear
4310 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4311 */
4312 gpte &= level - mmu->last_nonleaf_level;
4313
829ee279
LP
4314 /*
4315 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4316 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4317 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4318 */
4319 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4320
6bb69c9b 4321 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4322}
4323
37406aaa
NHE
4324#define PTTYPE_EPT 18 /* arbitrary */
4325#define PTTYPE PTTYPE_EPT
4326#include "paging_tmpl.h"
4327#undef PTTYPE
4328
6aa8b732
AK
4329#define PTTYPE 64
4330#include "paging_tmpl.h"
4331#undef PTTYPE
4332
4333#define PTTYPE 32
4334#include "paging_tmpl.h"
4335#undef PTTYPE
4336
6dc98b86
XG
4337static void
4338__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4339 struct rsvd_bits_validate *rsvd_check,
4340 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4341 bool pse, bool amd)
82725b20 4342{
82725b20 4343 u64 exb_bit_rsvd = 0;
5f7dde7b 4344 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4345 u64 nonleaf_bit8_rsvd = 0;
82725b20 4346
a0a64f50 4347 rsvd_check->bad_mt_xwr = 0;
25d92081 4348
6dc98b86 4349 if (!nx)
82725b20 4350 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4351 if (!gbpages)
5f7dde7b 4352 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4353
4354 /*
4355 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4356 * leaf entries) on AMD CPUs only.
4357 */
6fec2144 4358 if (amd)
a0c0feb5
PB
4359 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4360
6dc98b86 4361 switch (level) {
82725b20
DE
4362 case PT32_ROOT_LEVEL:
4363 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4364 rsvd_check->rsvd_bits_mask[0][1] = 0;
4365 rsvd_check->rsvd_bits_mask[0][0] = 0;
4366 rsvd_check->rsvd_bits_mask[1][0] =
4367 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4368
6dc98b86 4369 if (!pse) {
a0a64f50 4370 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4371 break;
4372 }
4373
82725b20
DE
4374 if (is_cpuid_PSE36())
4375 /* 36bits PSE 4MB page */
a0a64f50 4376 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4377 else
4378 /* 32 bits PSE 4MB page */
a0a64f50 4379 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4380 break;
4381 case PT32E_ROOT_LEVEL:
a0a64f50 4382 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4383 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4384 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4385 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4386 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4387 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4388 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4389 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4390 rsvd_bits(maxphyaddr, 62) |
4391 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4392 rsvd_check->rsvd_bits_mask[1][0] =
4393 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4394 break;
855feb67
YZ
4395 case PT64_ROOT_5LEVEL:
4396 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4397 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4398 rsvd_bits(maxphyaddr, 51);
4399 rsvd_check->rsvd_bits_mask[1][4] =
4400 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4401 /* fall through */
2a7266a8 4402 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4403 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4404 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4405 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4406 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4407 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4408 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4409 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4410 rsvd_bits(maxphyaddr, 51);
4411 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4412 rsvd_bits(maxphyaddr, 51);
4413 rsvd_check->rsvd_bits_mask[1][3] =
4414 rsvd_check->rsvd_bits_mask[0][3];
4415 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4416 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4417 rsvd_bits(13, 29);
a0a64f50 4418 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4419 rsvd_bits(maxphyaddr, 51) |
4420 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4421 rsvd_check->rsvd_bits_mask[1][0] =
4422 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4423 break;
4424 }
4425}
4426
6dc98b86
XG
4427static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4428 struct kvm_mmu *context)
4429{
4430 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4431 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4432 context->nx,
4433 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4434 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4435}
4436
81b8eebb
XG
4437static void
4438__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4439 int maxphyaddr, bool execonly)
25d92081 4440{
951f9fd7 4441 u64 bad_mt_xwr;
25d92081 4442
855feb67
YZ
4443 rsvd_check->rsvd_bits_mask[0][4] =
4444 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4445 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4446 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4447 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4448 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4449 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4450 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4451 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4452
4453 /* large page */
855feb67 4454 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4455 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4456 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4457 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4458 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4459 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4460 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4461
951f9fd7
PB
4462 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4463 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4464 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4465 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4466 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4467 if (!execonly) {
4468 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4469 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4470 }
951f9fd7 4471 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4472}
4473
81b8eebb
XG
4474static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4475 struct kvm_mmu *context, bool execonly)
4476{
4477 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4478 cpuid_maxphyaddr(vcpu), execonly);
4479}
4480
c258b62b
XG
4481/*
4482 * the page table on host is the shadow page table for the page
4483 * table in guest or amd nested guest, its mmu features completely
4484 * follow the features in guest.
4485 */
4486void
4487reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4488{
36d9594d
VK
4489 bool uses_nx = context->nx ||
4490 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4491 struct rsvd_bits_validate *shadow_zero_check;
4492 int i;
5f0b8199 4493
6fec2144
PB
4494 /*
4495 * Passing "true" to the last argument is okay; it adds a check
4496 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4497 */
ea2800dd
BS
4498 shadow_zero_check = &context->shadow_zero_check;
4499 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4500 boot_cpu_data.x86_phys_bits,
5f0b8199 4501 context->shadow_root_level, uses_nx,
d6321d49
RK
4502 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4503 is_pse(vcpu), true);
ea2800dd
BS
4504
4505 if (!shadow_me_mask)
4506 return;
4507
4508 for (i = context->shadow_root_level; --i >= 0;) {
4509 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4510 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4511 }
4512
c258b62b
XG
4513}
4514EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4515
6fec2144
PB
4516static inline bool boot_cpu_is_amd(void)
4517{
4518 WARN_ON_ONCE(!tdp_enabled);
4519 return shadow_x_mask == 0;
4520}
4521
c258b62b
XG
4522/*
4523 * the direct page table on host, use as much mmu features as
4524 * possible, however, kvm currently does not do execution-protection.
4525 */
4526static void
4527reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4528 struct kvm_mmu *context)
4529{
ea2800dd
BS
4530 struct rsvd_bits_validate *shadow_zero_check;
4531 int i;
4532
4533 shadow_zero_check = &context->shadow_zero_check;
4534
6fec2144 4535 if (boot_cpu_is_amd())
ea2800dd 4536 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4537 boot_cpu_data.x86_phys_bits,
4538 context->shadow_root_level, false,
b8291adc
BP
4539 boot_cpu_has(X86_FEATURE_GBPAGES),
4540 true, true);
c258b62b 4541 else
ea2800dd 4542 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4543 boot_cpu_data.x86_phys_bits,
4544 false);
4545
ea2800dd
BS
4546 if (!shadow_me_mask)
4547 return;
4548
4549 for (i = context->shadow_root_level; --i >= 0;) {
4550 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4551 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4552 }
c258b62b
XG
4553}
4554
4555/*
4556 * as the comments in reset_shadow_zero_bits_mask() except it
4557 * is the shadow page table for intel nested guest.
4558 */
4559static void
4560reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4561 struct kvm_mmu *context, bool execonly)
4562{
4563 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4564 boot_cpu_data.x86_phys_bits, execonly);
4565}
4566
09f037aa
PB
4567#define BYTE_MASK(access) \
4568 ((1 & (access) ? 2 : 0) | \
4569 (2 & (access) ? 4 : 0) | \
4570 (3 & (access) ? 8 : 0) | \
4571 (4 & (access) ? 16 : 0) | \
4572 (5 & (access) ? 32 : 0) | \
4573 (6 & (access) ? 64 : 0) | \
4574 (7 & (access) ? 128 : 0))
4575
4576
edc90b7d
XG
4577static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4578 struct kvm_mmu *mmu, bool ept)
97d64b78 4579{
09f037aa
PB
4580 unsigned byte;
4581
4582 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4583 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4584 const u8 u = BYTE_MASK(ACC_USER_MASK);
4585
4586 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4587 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4588 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4589
97d64b78 4590 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4591 unsigned pfec = byte << 1;
4592
97ec8c06 4593 /*
09f037aa
PB
4594 * Each "*f" variable has a 1 bit for each UWX value
4595 * that causes a fault with the given PFEC.
97ec8c06 4596 */
97d64b78 4597
09f037aa
PB
4598 /* Faults from writes to non-writable pages */
4599 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4600 /* Faults from user mode accesses to supervisor pages */
4601 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4602 /* Faults from fetches of non-executable pages*/
4603 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4604 /* Faults from kernel mode fetches of user pages */
4605 u8 smepf = 0;
4606 /* Faults from kernel mode accesses of user pages */
4607 u8 smapf = 0;
4608
4609 if (!ept) {
4610 /* Faults from kernel mode accesses to user pages */
4611 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4612
4613 /* Not really needed: !nx will cause pte.nx to fault */
4614 if (!mmu->nx)
4615 ff = 0;
4616
4617 /* Allow supervisor writes if !cr0.wp */
4618 if (!cr0_wp)
4619 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4620
4621 /* Disallow supervisor fetches of user code if cr4.smep */
4622 if (cr4_smep)
4623 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4624
4625 /*
4626 * SMAP:kernel-mode data accesses from user-mode
4627 * mappings should fault. A fault is considered
4628 * as a SMAP violation if all of the following
39337ad1 4629 * conditions are true:
09f037aa
PB
4630 * - X86_CR4_SMAP is set in CR4
4631 * - A user page is accessed
4632 * - The access is not a fetch
4633 * - Page fault in kernel mode
4634 * - if CPL = 3 or X86_EFLAGS_AC is clear
4635 *
4636 * Here, we cover the first three conditions.
4637 * The fourth is computed dynamically in permission_fault();
4638 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4639 * *not* subject to SMAP restrictions.
4640 */
4641 if (cr4_smap)
4642 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4643 }
09f037aa
PB
4644
4645 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4646 }
4647}
4648
2d344105
HH
4649/*
4650* PKU is an additional mechanism by which the paging controls access to
4651* user-mode addresses based on the value in the PKRU register. Protection
4652* key violations are reported through a bit in the page fault error code.
4653* Unlike other bits of the error code, the PK bit is not known at the
4654* call site of e.g. gva_to_gpa; it must be computed directly in
4655* permission_fault based on two bits of PKRU, on some machine state (CR4,
4656* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4657*
4658* In particular the following conditions come from the error code, the
4659* page tables and the machine state:
4660* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4661* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4662* - PK is always zero if U=0 in the page tables
4663* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4664*
4665* The PKRU bitmask caches the result of these four conditions. The error
4666* code (minus the P bit) and the page table's U bit form an index into the
4667* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4668* with the two bits of the PKRU register corresponding to the protection key.
4669* For the first three conditions above the bits will be 00, thus masking
4670* away both AD and WD. For all reads or if the last condition holds, WD
4671* only will be masked away.
4672*/
4673static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4674 bool ept)
4675{
4676 unsigned bit;
4677 bool wp;
4678
4679 if (ept) {
4680 mmu->pkru_mask = 0;
4681 return;
4682 }
4683
4684 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4685 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4686 mmu->pkru_mask = 0;
4687 return;
4688 }
4689
4690 wp = is_write_protection(vcpu);
4691
4692 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4693 unsigned pfec, pkey_bits;
4694 bool check_pkey, check_write, ff, uf, wf, pte_user;
4695
4696 pfec = bit << 1;
4697 ff = pfec & PFERR_FETCH_MASK;
4698 uf = pfec & PFERR_USER_MASK;
4699 wf = pfec & PFERR_WRITE_MASK;
4700
4701 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4702 pte_user = pfec & PFERR_RSVD_MASK;
4703
4704 /*
4705 * Only need to check the access which is not an
4706 * instruction fetch and is to a user page.
4707 */
4708 check_pkey = (!ff && pte_user);
4709 /*
4710 * write access is controlled by PKRU if it is a
4711 * user access or CR0.WP = 1.
4712 */
4713 check_write = check_pkey && wf && (uf || wp);
4714
4715 /* PKRU.AD stops both read and write access. */
4716 pkey_bits = !!check_pkey;
4717 /* PKRU.WD stops write access. */
4718 pkey_bits |= (!!check_write) << 1;
4719
4720 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4721 }
4722}
4723
6bb69c9b 4724static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4725{
6bb69c9b
PB
4726 unsigned root_level = mmu->root_level;
4727
4728 mmu->last_nonleaf_level = root_level;
4729 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4730 mmu->last_nonleaf_level++;
6fd01b71
AK
4731}
4732
8a3c1a33
PB
4733static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4734 struct kvm_mmu *context,
4735 int level)
6aa8b732 4736{
2d48a985 4737 context->nx = is_nx(vcpu);
4d6931c3 4738 context->root_level = level;
2d48a985 4739
4d6931c3 4740 reset_rsvds_bits_mask(vcpu, context);
25d92081 4741 update_permission_bitmask(vcpu, context, false);
2d344105 4742 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4743 update_last_nonleaf_level(vcpu, context);
6aa8b732 4744
fa4a2c08 4745 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4746 context->page_fault = paging64_page_fault;
6aa8b732 4747 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4748 context->sync_page = paging64_sync_page;
a7052897 4749 context->invlpg = paging64_invlpg;
0f53b5b1 4750 context->update_pte = paging64_update_pte;
17ac10ad 4751 context->shadow_root_level = level;
c5a78f2b 4752 context->direct_map = false;
6aa8b732
AK
4753}
4754
8a3c1a33
PB
4755static void paging64_init_context(struct kvm_vcpu *vcpu,
4756 struct kvm_mmu *context)
17ac10ad 4757{
855feb67
YZ
4758 int root_level = is_la57_mode(vcpu) ?
4759 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4760
4761 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4762}
4763
8a3c1a33
PB
4764static void paging32_init_context(struct kvm_vcpu *vcpu,
4765 struct kvm_mmu *context)
6aa8b732 4766{
2d48a985 4767 context->nx = false;
4d6931c3 4768 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4769
4d6931c3 4770 reset_rsvds_bits_mask(vcpu, context);
25d92081 4771 update_permission_bitmask(vcpu, context, false);
2d344105 4772 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4773 update_last_nonleaf_level(vcpu, context);
6aa8b732 4774
6aa8b732 4775 context->page_fault = paging32_page_fault;
6aa8b732 4776 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4777 context->sync_page = paging32_sync_page;
a7052897 4778 context->invlpg = paging32_invlpg;
0f53b5b1 4779 context->update_pte = paging32_update_pte;
6aa8b732 4780 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4781 context->direct_map = false;
6aa8b732
AK
4782}
4783
8a3c1a33
PB
4784static void paging32E_init_context(struct kvm_vcpu *vcpu,
4785 struct kvm_mmu *context)
6aa8b732 4786{
8a3c1a33 4787 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4788}
4789
a336282d
VK
4790static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4791{
4792 union kvm_mmu_extended_role ext = {0};
4793
7dcd5755 4794 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4795 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4796 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4797 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4798 ext.cr4_pse = !!is_pse(vcpu);
4799 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4800 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
de3ccd26 4801 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4802
4803 ext.valid = 1;
4804
4805 return ext;
4806}
4807
7dcd5755
VK
4808static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4809 bool base_only)
4810{
4811 union kvm_mmu_role role = {0};
4812
4813 role.base.access = ACC_ALL;
4814 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4815 role.base.cr0_wp = is_write_protection(vcpu);
4816 role.base.smm = is_smm(vcpu);
4817 role.base.guest_mode = is_guest_mode(vcpu);
4818
4819 if (base_only)
4820 return role;
4821
4822 role.ext = kvm_calc_mmu_role_ext(vcpu);
4823
4824 return role;
4825}
4826
4827static union kvm_mmu_role
4828kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4829{
7dcd5755 4830 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4831
7dcd5755
VK
4832 role.base.ad_disabled = (shadow_accessed_mask == 0);
4833 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4834 role.base.direct = true;
47c42e6b 4835 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4836
4837 return role;
4838}
4839
8a3c1a33 4840static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4841{
44dd3ffa 4842 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4843 union kvm_mmu_role new_role =
4844 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4845
7dcd5755
VK
4846 new_role.base.word &= mmu_base_role_mask.word;
4847 if (new_role.as_u64 == context->mmu_role.as_u64)
4848 return;
4849
4850 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 4851 context->page_fault = tdp_page_fault;
e8bc217a 4852 context->sync_page = nonpaging_sync_page;
a7052897 4853 context->invlpg = nonpaging_invlpg;
0f53b5b1 4854 context->update_pte = nonpaging_update_pte;
855feb67 4855 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4856 context->direct_map = true;
1c97f0a0 4857 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4858 context->get_cr3 = get_cr3;
e4e517b4 4859 context->get_pdptr = kvm_pdptr_read;
cb659db8 4860 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4861
4862 if (!is_paging(vcpu)) {
2d48a985 4863 context->nx = false;
fb72d167
JR
4864 context->gva_to_gpa = nonpaging_gva_to_gpa;
4865 context->root_level = 0;
4866 } else if (is_long_mode(vcpu)) {
2d48a985 4867 context->nx = is_nx(vcpu);
855feb67
YZ
4868 context->root_level = is_la57_mode(vcpu) ?
4869 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4870 reset_rsvds_bits_mask(vcpu, context);
4871 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4872 } else if (is_pae(vcpu)) {
2d48a985 4873 context->nx = is_nx(vcpu);
fb72d167 4874 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4875 reset_rsvds_bits_mask(vcpu, context);
4876 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4877 } else {
2d48a985 4878 context->nx = false;
fb72d167 4879 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4880 reset_rsvds_bits_mask(vcpu, context);
4881 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4882 }
4883
25d92081 4884 update_permission_bitmask(vcpu, context, false);
2d344105 4885 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4886 update_last_nonleaf_level(vcpu, context);
c258b62b 4887 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4888}
4889
7dcd5755
VK
4890static union kvm_mmu_role
4891kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4892{
4893 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4894
4895 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4896 !is_write_protection(vcpu);
4897 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4898 !is_write_protection(vcpu);
4899 role.base.direct = !is_paging(vcpu);
47c42e6b 4900 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4901
4902 if (!is_long_mode(vcpu))
7dcd5755 4903 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4904 else if (is_la57_mode(vcpu))
7dcd5755 4905 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4906 else
7dcd5755 4907 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4908
4909 return role;
4910}
4911
4912void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4913{
44dd3ffa 4914 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4915 union kvm_mmu_role new_role =
4916 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4917
4918 new_role.base.word &= mmu_base_role_mask.word;
4919 if (new_role.as_u64 == context->mmu_role.as_u64)
4920 return;
6aa8b732
AK
4921
4922 if (!is_paging(vcpu))
8a3c1a33 4923 nonpaging_init_context(vcpu, context);
a9058ecd 4924 else if (is_long_mode(vcpu))
8a3c1a33 4925 paging64_init_context(vcpu, context);
6aa8b732 4926 else if (is_pae(vcpu))
8a3c1a33 4927 paging32E_init_context(vcpu, context);
6aa8b732 4928 else
8a3c1a33 4929 paging32_init_context(vcpu, context);
a770f6f2 4930
7dcd5755 4931 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4932 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4933}
4934EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4935
a336282d
VK
4936static union kvm_mmu_role
4937kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4938 bool execonly)
9fa72119 4939{
552c69b1 4940 union kvm_mmu_role role = {0};
14c07ad8 4941
47c42e6b
SC
4942 /* SMM flag is inherited from root_mmu */
4943 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 4944
a336282d 4945 role.base.level = PT64_ROOT_4LEVEL;
47c42e6b 4946 role.base.gpte_is_8_bytes = true;
a336282d
VK
4947 role.base.direct = false;
4948 role.base.ad_disabled = !accessed_dirty;
4949 role.base.guest_mode = true;
4950 role.base.access = ACC_ALL;
9fa72119 4951
47c42e6b
SC
4952 /*
4953 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4954 * SMAP variation to denote shadow EPT entries.
4955 */
4956 role.base.cr0_wp = true;
4957 role.base.smap_andnot_wp = true;
4958
552c69b1 4959 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 4960 role.ext.execonly = execonly;
9fa72119
JS
4961
4962 return role;
4963}
4964
ae1e2d10 4965void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4966 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4967{
44dd3ffa 4968 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
4969 union kvm_mmu_role new_role =
4970 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4971 execonly);
4972
4973 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4974
4975 new_role.base.word &= mmu_base_role_mask.word;
4976 if (new_role.as_u64 == context->mmu_role.as_u64)
4977 return;
ad896af0 4978
855feb67 4979 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4980
4981 context->nx = true;
ae1e2d10 4982 context->ept_ad = accessed_dirty;
155a97a3
NHE
4983 context->page_fault = ept_page_fault;
4984 context->gva_to_gpa = ept_gva_to_gpa;
4985 context->sync_page = ept_sync_page;
4986 context->invlpg = ept_invlpg;
4987 context->update_pte = ept_update_pte;
855feb67 4988 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 4989 context->direct_map = false;
a336282d 4990 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4991
155a97a3 4992 update_permission_bitmask(vcpu, context, true);
2d344105 4993 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4994 update_last_nonleaf_level(vcpu, context);
155a97a3 4995 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4996 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4997}
4998EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4999
8a3c1a33 5000static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5001{
44dd3ffa 5002 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
5003
5004 kvm_init_shadow_mmu(vcpu);
5005 context->set_cr3 = kvm_x86_ops->set_cr3;
5006 context->get_cr3 = get_cr3;
5007 context->get_pdptr = kvm_pdptr_read;
5008 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5009}
5010
8a3c1a33 5011static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5012{
bf627a92 5013 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5014 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5015
bf627a92
VK
5016 new_role.base.word &= mmu_base_role_mask.word;
5017 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5018 return;
5019
5020 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 5021 g_context->get_cr3 = get_cr3;
e4e517b4 5022 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5023 g_context->inject_page_fault = kvm_inject_page_fault;
5024
5025 /*
44dd3ffa 5026 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5027 * L1's nested page tables (e.g. EPT12). The nested translation
5028 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5029 * L2's page tables as the first level of translation and L1's
5030 * nested page tables as the second level of translation. Basically
5031 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5032 */
5033 if (!is_paging(vcpu)) {
2d48a985 5034 g_context->nx = false;
02f59dc9
JR
5035 g_context->root_level = 0;
5036 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5037 } else if (is_long_mode(vcpu)) {
2d48a985 5038 g_context->nx = is_nx(vcpu);
855feb67
YZ
5039 g_context->root_level = is_la57_mode(vcpu) ?
5040 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5041 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5042 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5043 } else if (is_pae(vcpu)) {
2d48a985 5044 g_context->nx = is_nx(vcpu);
02f59dc9 5045 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5046 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5047 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5048 } else {
2d48a985 5049 g_context->nx = false;
02f59dc9 5050 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5051 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5052 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5053 }
5054
25d92081 5055 update_permission_bitmask(vcpu, g_context, false);
2d344105 5056 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5057 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5058}
5059
1c53da3f 5060void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5061{
1c53da3f 5062 if (reset_roots) {
b94742c9
JS
5063 uint i;
5064
44dd3ffa 5065 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5066
5067 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5068 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5069 }
5070
02f59dc9 5071 if (mmu_is_nested(vcpu))
e0c6db3e 5072 init_kvm_nested_mmu(vcpu);
02f59dc9 5073 else if (tdp_enabled)
e0c6db3e 5074 init_kvm_tdp_mmu(vcpu);
fb72d167 5075 else
e0c6db3e 5076 init_kvm_softmmu(vcpu);
fb72d167 5077}
1c53da3f 5078EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5079
9fa72119
JS
5080static union kvm_mmu_page_role
5081kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5082{
7dcd5755
VK
5083 union kvm_mmu_role role;
5084
9fa72119 5085 if (tdp_enabled)
7dcd5755 5086 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5087 else
7dcd5755
VK
5088 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5089
5090 return role.base;
9fa72119 5091}
fb72d167 5092
8a3c1a33 5093void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5094{
95f93af4 5095 kvm_mmu_unload(vcpu);
1c53da3f 5096 kvm_init_mmu(vcpu, true);
17c3ba9d 5097}
8668a3c4 5098EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5099
5100int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5101{
714b93da
AK
5102 int r;
5103
e2dec939 5104 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5105 if (r)
5106 goto out;
8986ecc0 5107 r = mmu_alloc_roots(vcpu);
e2858b4a 5108 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5109 if (r)
5110 goto out;
6e42782f 5111 kvm_mmu_load_cr3(vcpu);
afe828d1 5112 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5113out:
5114 return r;
6aa8b732 5115}
17c3ba9d
AK
5116EXPORT_SYMBOL_GPL(kvm_mmu_load);
5117
5118void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5119{
14c07ad8
VK
5120 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5121 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5122 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5123 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5124}
4b16184c 5125EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5126
0028425f 5127static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5128 struct kvm_mmu_page *sp, u64 *spte,
5129 const void *new)
0028425f 5130{
30945387 5131 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5132 ++vcpu->kvm->stat.mmu_pde_zapped;
5133 return;
30945387 5134 }
0028425f 5135
4cee5764 5136 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5137 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5138}
5139
79539cec
AK
5140static bool need_remote_flush(u64 old, u64 new)
5141{
5142 if (!is_shadow_present_pte(old))
5143 return false;
5144 if (!is_shadow_present_pte(new))
5145 return true;
5146 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5147 return true;
53166229
GN
5148 old ^= shadow_nx_mask;
5149 new ^= shadow_nx_mask;
79539cec
AK
5150 return (old & ~new & PT64_PERM_MASK) != 0;
5151}
5152
889e5cbc 5153static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5154 int *bytes)
da4a00f0 5155{
0e0fee5c 5156 u64 gentry = 0;
889e5cbc 5157 int r;
72016f3a 5158
72016f3a
AK
5159 /*
5160 * Assume that the pte write on a page table of the same type
49b26e26
XG
5161 * as the current vcpu paging mode since we update the sptes only
5162 * when they have the same mode.
72016f3a 5163 */
889e5cbc 5164 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5165 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5166 *gpa &= ~(gpa_t)7;
5167 *bytes = 8;
08e850c6
AK
5168 }
5169
0e0fee5c
JS
5170 if (*bytes == 4 || *bytes == 8) {
5171 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5172 if (r)
5173 gentry = 0;
72016f3a
AK
5174 }
5175
889e5cbc
XG
5176 return gentry;
5177}
5178
5179/*
5180 * If we're seeing too many writes to a page, it may no longer be a page table,
5181 * or we may be forking, in which case it is better to unmap the page.
5182 */
a138fe75 5183static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5184{
a30f47cb
XG
5185 /*
5186 * Skip write-flooding detected for the sp whose level is 1, because
5187 * it can become unsync, then the guest page is not write-protected.
5188 */
f71fa31f 5189 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5190 return false;
3246af0e 5191
e5691a81
XG
5192 atomic_inc(&sp->write_flooding_count);
5193 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5194}
5195
5196/*
5197 * Misaligned accesses are too much trouble to fix up; also, they usually
5198 * indicate a page is not used as a page table.
5199 */
5200static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5201 int bytes)
5202{
5203 unsigned offset, pte_size, misaligned;
5204
5205 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5206 gpa, bytes, sp->role.word);
5207
5208 offset = offset_in_page(gpa);
47c42e6b 5209 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5210
5211 /*
5212 * Sometimes, the OS only writes the last one bytes to update status
5213 * bits, for example, in linux, andb instruction is used in clear_bit().
5214 */
5215 if (!(offset & (pte_size - 1)) && bytes == 1)
5216 return false;
5217
889e5cbc
XG
5218 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5219 misaligned |= bytes < 4;
5220
5221 return misaligned;
5222}
5223
5224static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5225{
5226 unsigned page_offset, quadrant;
5227 u64 *spte;
5228 int level;
5229
5230 page_offset = offset_in_page(gpa);
5231 level = sp->role.level;
5232 *nspte = 1;
47c42e6b 5233 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5234 page_offset <<= 1; /* 32->64 */
5235 /*
5236 * A 32-bit pde maps 4MB while the shadow pdes map
5237 * only 2MB. So we need to double the offset again
5238 * and zap two pdes instead of one.
5239 */
5240 if (level == PT32_ROOT_LEVEL) {
5241 page_offset &= ~7; /* kill rounding error */
5242 page_offset <<= 1;
5243 *nspte = 2;
5244 }
5245 quadrant = page_offset >> PAGE_SHIFT;
5246 page_offset &= ~PAGE_MASK;
5247 if (quadrant != sp->role.quadrant)
5248 return NULL;
5249 }
5250
5251 spte = &sp->spt[page_offset / sizeof(*spte)];
5252 return spte;
5253}
5254
13d268ca 5255static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5256 const u8 *new, int bytes,
5257 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5258{
5259 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5260 struct kvm_mmu_page *sp;
889e5cbc
XG
5261 LIST_HEAD(invalid_list);
5262 u64 entry, gentry, *spte;
5263 int npte;
b8c67b7a 5264 bool remote_flush, local_flush;
889e5cbc
XG
5265
5266 /*
5267 * If we don't have indirect shadow pages, it means no page is
5268 * write-protected, so we can exit simply.
5269 */
6aa7de05 5270 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5271 return;
5272
b8c67b7a 5273 remote_flush = local_flush = false;
889e5cbc
XG
5274
5275 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5276
889e5cbc
XG
5277 /*
5278 * No need to care whether allocation memory is successful
5279 * or not since pte prefetch is skiped if it does not have
5280 * enough objects in the cache.
5281 */
5282 mmu_topup_memory_caches(vcpu);
5283
5284 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5285
5286 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5287
889e5cbc 5288 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5289 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5290
b67bfe0d 5291 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5292 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5293 detect_write_flooding(sp)) {
b8c67b7a 5294 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5295 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5296 continue;
5297 }
889e5cbc
XG
5298
5299 spte = get_written_sptes(sp, gpa, &npte);
5300 if (!spte)
5301 continue;
5302
0671a8e7 5303 local_flush = true;
ac1b714e 5304 while (npte--) {
36d9594d
VK
5305 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5306
79539cec 5307 entry = *spte;
38e3b2b2 5308 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5309 if (gentry &&
36d9594d 5310 !((sp->role.word ^ base_role)
9fa72119 5311 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5312 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5313 if (need_remote_flush(entry, *spte))
0671a8e7 5314 remote_flush = true;
ac1b714e 5315 ++spte;
9b7a0325 5316 }
9b7a0325 5317 }
b8c67b7a 5318 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5319 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5320 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5321}
5322
a436036b
AK
5323int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5324{
10589a46
MT
5325 gpa_t gpa;
5326 int r;
a436036b 5327
44dd3ffa 5328 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5329 return 0;
5330
1871c602 5331 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5332
10589a46 5333 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5334
10589a46 5335 return r;
a436036b 5336}
577bdc49 5337EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5338
26eeb53c 5339static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5340{
d98ba053 5341 LIST_HEAD(invalid_list);
103ad25a 5342
81f4f76b 5343 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5344 return 0;
81f4f76b 5345
5da59607
TY
5346 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5347 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5348 break;
ebeace86 5349
4cee5764 5350 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5351 }
aa6bd187 5352 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5353
5354 if (!kvm_mmu_available_pages(vcpu->kvm))
5355 return -ENOSPC;
5356 return 0;
ebeace86 5357}
ebeace86 5358
14727754 5359int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5360 void *insn, int insn_len)
3067714c 5361{
472faffa 5362 int r, emulation_type = 0;
3067714c 5363 enum emulation_result er;
44dd3ffa 5364 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5365
618232e2 5366 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5367 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5368 vcpu->arch.gpa_available = true;
5369 vcpu->arch.gpa_val = cr2;
5370 }
3067714c 5371
9b8ebbdb 5372 r = RET_PF_INVALID;
e9ee956e
TY
5373 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5374 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5375 if (r == RET_PF_EMULATE)
e9ee956e 5376 goto emulate;
e9ee956e 5377 }
3067714c 5378
9b8ebbdb 5379 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5380 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5381 lower_32_bits(error_code),
5382 false);
9b8ebbdb
PB
5383 WARN_ON(r == RET_PF_INVALID);
5384 }
5385
5386 if (r == RET_PF_RETRY)
5387 return 1;
3067714c 5388 if (r < 0)
e9ee956e 5389 return r;
3067714c 5390
14727754
TL
5391 /*
5392 * Before emulating the instruction, check if the error code
5393 * was due to a RO violation while translating the guest page.
5394 * This can occur when using nested virtualization with nested
5395 * paging in both guests. If true, we simply unprotect the page
5396 * and resume the guest.
14727754 5397 */
44dd3ffa 5398 if (vcpu->arch.mmu->direct_map &&
eebed243 5399 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5400 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5401 return 1;
5402 }
5403
472faffa
SC
5404 /*
5405 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5406 * optimistically try to just unprotect the page and let the processor
5407 * re-execute the instruction that caused the page fault. Do not allow
5408 * retrying MMIO emulation, as it's not only pointless but could also
5409 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5410 * faulting on the non-existent MMIO address. Retrying an instruction
5411 * from a nested guest is also pointless and dangerous as we are only
5412 * explicitly shadowing L1's page tables, i.e. unprotecting something
5413 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5414 */
6c3dfeb6 5415 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5416 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5417emulate:
00b10fe1
BS
5418 /*
5419 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5420 * This can happen if a guest gets a page-fault on data access but the HW
5421 * table walker is not able to read the instruction page (e.g instruction
5422 * page is not present in memory). In those cases we simply restart the
05d5a486 5423 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5424 */
05d5a486
SB
5425 if (unlikely(insn && !insn_len)) {
5426 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5427 return 1;
5428 }
00b10fe1 5429
1cb3f3ae 5430 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
5431
5432 switch (er) {
5433 case EMULATE_DONE:
5434 return 1;
ac0a48c3 5435 case EMULATE_USER_EXIT:
3067714c 5436 ++vcpu->stat.mmio_exits;
6d77dbfc 5437 /* fall through */
3067714c 5438 case EMULATE_FAIL:
3f5d18a9 5439 return 0;
3067714c
AK
5440 default:
5441 BUG();
5442 }
3067714c
AK
5443}
5444EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5445
a7052897
MT
5446void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5447{
44dd3ffa 5448 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5449 int i;
7eb77e9f 5450
faff8758
JS
5451 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5452 if (is_noncanonical_address(gva, vcpu))
5453 return;
5454
7eb77e9f 5455 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5456
5457 /*
5458 * INVLPG is required to invalidate any global mappings for the VA,
5459 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5460 * of work to determine whether any of the prev_root mappings of the VA
5461 * is marked global, or to just sync it blindly, so we might as well
5462 * just always sync it.
956bf353 5463 *
b94742c9
JS
5464 * Mappings not reachable via the current cr3 or the prev_roots will be
5465 * synced when switching to that cr3, so nothing needs to be done here
5466 * for them.
956bf353 5467 */
b94742c9
JS
5468 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5469 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5470 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5471
faff8758 5472 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5473 ++vcpu->stat.invlpg;
5474}
5475EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5476
eb4b248e
JS
5477void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5478{
44dd3ffa 5479 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5480 bool tlb_flush = false;
b94742c9 5481 uint i;
eb4b248e
JS
5482
5483 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5484 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5485 tlb_flush = true;
eb4b248e
JS
5486 }
5487
b94742c9
JS
5488 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5489 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5490 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5491 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5492 tlb_flush = true;
5493 }
956bf353 5494 }
ade61e28 5495
faff8758
JS
5496 if (tlb_flush)
5497 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5498
eb4b248e
JS
5499 ++vcpu->stat.invlpg;
5500
5501 /*
b94742c9
JS
5502 * Mappings not reachable via the current cr3 or the prev_roots will be
5503 * synced when switching to that cr3, so nothing needs to be done here
5504 * for them.
eb4b248e
JS
5505 */
5506}
5507EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5508
18552672
JR
5509void kvm_enable_tdp(void)
5510{
5511 tdp_enabled = true;
5512}
5513EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5514
5f4cb662
JR
5515void kvm_disable_tdp(void)
5516{
5517 tdp_enabled = false;
5518}
5519EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5520
85875a13
SC
5521
5522/* The return value indicates if tlb flush on all vcpus is needed. */
5523typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5524
5525/* The caller should hold mmu-lock before calling this function. */
5526static __always_inline bool
5527slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5528 slot_level_handler fn, int start_level, int end_level,
5529 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5530{
5531 struct slot_rmap_walk_iterator iterator;
5532 bool flush = false;
5533
5534 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5535 end_gfn, &iterator) {
5536 if (iterator.rmap)
5537 flush |= fn(kvm, iterator.rmap);
5538
5539 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5540 if (flush && lock_flush_tlb) {
f285c633
BG
5541 kvm_flush_remote_tlbs_with_address(kvm,
5542 start_gfn,
5543 iterator.gfn - start_gfn + 1);
85875a13
SC
5544 flush = false;
5545 }
5546 cond_resched_lock(&kvm->mmu_lock);
5547 }
5548 }
5549
5550 if (flush && lock_flush_tlb) {
f285c633
BG
5551 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5552 end_gfn - start_gfn + 1);
85875a13
SC
5553 flush = false;
5554 }
5555
5556 return flush;
5557}
5558
5559static __always_inline bool
5560slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5561 slot_level_handler fn, int start_level, int end_level,
5562 bool lock_flush_tlb)
5563{
5564 return slot_handle_level_range(kvm, memslot, fn, start_level,
5565 end_level, memslot->base_gfn,
5566 memslot->base_gfn + memslot->npages - 1,
5567 lock_flush_tlb);
5568}
5569
5570static __always_inline bool
5571slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5572 slot_level_handler fn, bool lock_flush_tlb)
5573{
5574 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5575 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5576}
5577
5578static __always_inline bool
5579slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5580 slot_level_handler fn, bool lock_flush_tlb)
5581{
5582 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5583 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5584}
5585
5586static __always_inline bool
5587slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5588 slot_level_handler fn, bool lock_flush_tlb)
5589{
5590 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5591 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5592}
5593
6aa8b732
AK
5594static void free_mmu_pages(struct kvm_vcpu *vcpu)
5595{
44dd3ffa
VK
5596 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5597 free_page((unsigned long)vcpu->arch.mmu->lm_root);
6aa8b732
AK
5598}
5599
5600static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5601{
17ac10ad 5602 struct page *page;
6aa8b732
AK
5603 int i;
5604
ee6268ba
LC
5605 if (tdp_enabled)
5606 return 0;
5607
17ac10ad
AK
5608 /*
5609 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5610 * Therefore we need to allocate shadow page tables in the first
5611 * 4GB of memory, which happens to fit the DMA32 zone.
5612 */
254272ce 5613 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5614 if (!page)
d7fa6ab2
WY
5615 return -ENOMEM;
5616
44dd3ffa 5617 vcpu->arch.mmu->pae_root = page_address(page);
17ac10ad 5618 for (i = 0; i < 4; ++i)
44dd3ffa 5619 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5620
6aa8b732 5621 return 0;
6aa8b732
AK
5622}
5623
8018c27b 5624int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5625{
b94742c9
JS
5626 uint i;
5627
44dd3ffa
VK
5628 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5629 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5630
44dd3ffa 5631 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5632 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5633 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5634 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5635 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5636
14c07ad8 5637 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5638 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5639 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5640 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5641 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5642
14c07ad8 5643 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
8018c27b 5644 return alloc_mmu_pages(vcpu);
6aa8b732
AK
5645}
5646
b5f5fdca 5647static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5648 struct kvm_memory_slot *slot,
5649 struct kvm_page_track_notifier_node *node)
b5f5fdca 5650{
4e103134
SC
5651 struct kvm_mmu_page *sp;
5652 LIST_HEAD(invalid_list);
5653 unsigned long i;
5654 bool flush;
5655 gfn_t gfn;
13d268ca 5656
4e103134 5657 spin_lock(&kvm->mmu_lock);
13d268ca 5658
4e103134
SC
5659 if (list_empty(&kvm->arch.active_mmu_pages))
5660 goto out_unlock;
13d268ca 5661
4e103134 5662 flush = slot_handle_all_level(kvm, slot, kvm_zap_rmapp, false);
1bad2b2a 5663
4e103134
SC
5664 for (i = 0; i < slot->npages; i++) {
5665 gfn = slot->base_gfn + i;
1bad2b2a 5666
4e103134
SC
5667 for_each_valid_sp(kvm, sp, gfn) {
5668 if (sp->gfn != gfn)
5669 continue;
1bad2b2a 5670
4e103134
SC
5671 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5672 }
1bad2b2a 5673 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4e103134
SC
5674 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
5675 flush = false;
1bad2b2a
XG
5676 cond_resched_lock(&kvm->mmu_lock);
5677 }
5678 }
4e103134 5679 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
1bad2b2a 5680
4e103134
SC
5681out_unlock:
5682 spin_unlock(&kvm->mmu_lock);
1bad2b2a
XG
5683}
5684
13d268ca 5685void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5686{
13d268ca 5687 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5688
13d268ca 5689 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5690 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5691 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5692}
5693
13d268ca 5694void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5695{
13d268ca 5696 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5697
13d268ca 5698 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5699}
5700
efdfe536
XG
5701void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5702{
5703 struct kvm_memslots *slots;
5704 struct kvm_memory_slot *memslot;
9da0e4d5 5705 int i;
efdfe536
XG
5706
5707 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5708 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5709 slots = __kvm_memslots(kvm, i);
5710 kvm_for_each_memslot(memslot, slots) {
5711 gfn_t start, end;
5712
5713 start = max(gfn_start, memslot->base_gfn);
5714 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5715 if (start >= end)
5716 continue;
efdfe536 5717
92da008f
BG
5718 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5719 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5720 start, end - 1, true);
9da0e4d5 5721 }
efdfe536
XG
5722 }
5723
5724 spin_unlock(&kvm->mmu_lock);
5725}
5726
018aabb5
TY
5727static bool slot_rmap_write_protect(struct kvm *kvm,
5728 struct kvm_rmap_head *rmap_head)
d77aa73c 5729{
018aabb5 5730 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5731}
5732
1c91cad4
KH
5733void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5734 struct kvm_memory_slot *memslot)
6aa8b732 5735{
d77aa73c 5736 bool flush;
6aa8b732 5737
9d1beefb 5738 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5739 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5740 false);
9d1beefb 5741 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5742
5743 /*
5744 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5745 * which do tlb flush out of mmu-lock should be serialized by
5746 * kvm->slots_lock otherwise tlb flush would be missed.
5747 */
5748 lockdep_assert_held(&kvm->slots_lock);
5749
5750 /*
5751 * We can flush all the TLBs out of the mmu lock without TLB
5752 * corruption since we just change the spte from writable to
5753 * readonly so that we only need to care the case of changing
5754 * spte from present to present (changing the spte from present
5755 * to nonpresent will flush all the TLBs immediately), in other
5756 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5757 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5758 * instead of PT_WRITABLE_MASK, that means it does not depend
5759 * on PT_WRITABLE_MASK anymore.
5760 */
d91ffee9 5761 if (flush)
c3134ce2
LT
5762 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5763 memslot->npages);
6aa8b732 5764}
37a7d8b0 5765
3ea3b7fa 5766static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5767 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5768{
5769 u64 *sptep;
5770 struct rmap_iterator iter;
5771 int need_tlb_flush = 0;
ba049e93 5772 kvm_pfn_t pfn;
3ea3b7fa
WL
5773 struct kvm_mmu_page *sp;
5774
0d536790 5775restart:
018aabb5 5776 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5777 sp = page_header(__pa(sptep));
5778 pfn = spte_to_pfn(*sptep);
5779
5780 /*
decf6333
XG
5781 * We cannot do huge page mapping for indirect shadow pages,
5782 * which are found on the last rmap (level = 1) when not using
5783 * tdp; such shadow pages are synced with the page table in
5784 * the guest, and the guest page table is using 4K page size
5785 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5786 */
5787 if (sp->role.direct &&
5788 !kvm_is_reserved_pfn(pfn) &&
127393fb 5789 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 5790 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5791
5792 if (kvm_available_flush_tlb_with_range())
5793 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5794 KVM_PAGES_PER_HPAGE(sp->role.level));
5795 else
5796 need_tlb_flush = 1;
5797
0d536790
XG
5798 goto restart;
5799 }
3ea3b7fa
WL
5800 }
5801
5802 return need_tlb_flush;
5803}
5804
5805void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5806 const struct kvm_memory_slot *memslot)
3ea3b7fa 5807{
f36f3f28 5808 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5809 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5810 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5811 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5812 spin_unlock(&kvm->mmu_lock);
5813}
5814
f4b4b180
KH
5815void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5816 struct kvm_memory_slot *memslot)
5817{
d77aa73c 5818 bool flush;
f4b4b180
KH
5819
5820 spin_lock(&kvm->mmu_lock);
d77aa73c 5821 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5822 spin_unlock(&kvm->mmu_lock);
5823
5824 lockdep_assert_held(&kvm->slots_lock);
5825
5826 /*
5827 * It's also safe to flush TLBs out of mmu lock here as currently this
5828 * function is only used for dirty logging, in which case flushing TLB
5829 * out of mmu lock also guarantees no dirty pages will be lost in
5830 * dirty_bitmap.
5831 */
5832 if (flush)
c3134ce2
LT
5833 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5834 memslot->npages);
f4b4b180
KH
5835}
5836EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5837
5838void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5839 struct kvm_memory_slot *memslot)
5840{
d77aa73c 5841 bool flush;
f4b4b180
KH
5842
5843 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5844 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5845 false);
f4b4b180
KH
5846 spin_unlock(&kvm->mmu_lock);
5847
5848 /* see kvm_mmu_slot_remove_write_access */
5849 lockdep_assert_held(&kvm->slots_lock);
5850
5851 if (flush)
c3134ce2
LT
5852 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5853 memslot->npages);
f4b4b180
KH
5854}
5855EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5856
5857void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5858 struct kvm_memory_slot *memslot)
5859{
d77aa73c 5860 bool flush;
f4b4b180
KH
5861
5862 spin_lock(&kvm->mmu_lock);
d77aa73c 5863 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5864 spin_unlock(&kvm->mmu_lock);
5865
5866 lockdep_assert_held(&kvm->slots_lock);
5867
5868 /* see kvm_mmu_slot_leaf_clear_dirty */
5869 if (flush)
c3134ce2
LT
5870 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5871 memslot->npages);
f4b4b180
KH
5872}
5873EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5874
8ab3c471 5875static void __kvm_mmu_zap_all(struct kvm *kvm, bool mmio_only)
5304b8d3
XG
5876{
5877 struct kvm_mmu_page *sp, *node;
7390de1e 5878 LIST_HEAD(invalid_list);
83cdb568 5879 int ign;
5304b8d3 5880
7390de1e 5881 spin_lock(&kvm->mmu_lock);
5304b8d3 5882restart:
8a674adc 5883 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
8ab3c471 5884 if (mmio_only && !sp->mmio_cached)
5304b8d3 5885 continue;
8ab3c471 5886 if (sp->role.invalid && sp->root_count)
4771450c 5887 continue;
24efe61f 5888 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) {
8ab3c471 5889 WARN_ON_ONCE(mmio_only);
5304b8d3
XG
5890 goto restart;
5891 }
24efe61f 5892 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
5893 goto restart;
5894 }
5895
4771450c 5896 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
5897 spin_unlock(&kvm->mmu_lock);
5898}
5899
8ab3c471 5900void kvm_mmu_zap_all(struct kvm *kvm)
365c8868 5901{
8ab3c471 5902 return __kvm_mmu_zap_all(kvm, false);
365c8868
XG
5903}
5904
15248258 5905void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 5906{
164bf7e5 5907 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 5908
164bf7e5 5909 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 5910
f8f55942 5911 /*
e1359e2b
SC
5912 * Generation numbers are incremented in multiples of the number of
5913 * address spaces in order to provide unique generations across all
5914 * address spaces. Strip what is effectively the address space
5915 * modifier prior to checking for a wrap of the MMIO generation so
5916 * that a wrap in any address space is detected.
5917 */
5918 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5919
f8f55942 5920 /*
e1359e2b 5921 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 5922 * zap all shadow pages.
f8f55942 5923 */
e1359e2b 5924 if (unlikely(gen == 0)) {
ae0f5499 5925 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
8ab3c471 5926 __kvm_mmu_zap_all(kvm, true);
7a2e8aaf 5927 }
f8f55942
XG
5928}
5929
70534a73
DC
5930static unsigned long
5931mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5932{
5933 struct kvm *kvm;
1495f230 5934 int nr_to_scan = sc->nr_to_scan;
70534a73 5935 unsigned long freed = 0;
3ee16c81 5936
2f303b74 5937 spin_lock(&kvm_lock);
3ee16c81
IE
5938
5939 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5940 int idx;
d98ba053 5941 LIST_HEAD(invalid_list);
3ee16c81 5942
35f2d16b
TY
5943 /*
5944 * Never scan more than sc->nr_to_scan VM instances.
5945 * Will not hit this condition practically since we do not try
5946 * to shrink more than one VM and it is very unlikely to see
5947 * !n_used_mmu_pages so many times.
5948 */
5949 if (!nr_to_scan--)
5950 break;
19526396
GN
5951 /*
5952 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5953 * here. We may skip a VM instance errorneosly, but we do not
5954 * want to shrink a VM that only started to populate its MMU
5955 * anyway.
5956 */
52d5dedc 5957 if (!kvm->arch.n_used_mmu_pages)
19526396 5958 continue;
19526396 5959
f656ce01 5960 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5961 spin_lock(&kvm->mmu_lock);
3ee16c81 5962
70534a73
DC
5963 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5964 freed++;
d98ba053 5965 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5966
3ee16c81 5967 spin_unlock(&kvm->mmu_lock);
f656ce01 5968 srcu_read_unlock(&kvm->srcu, idx);
19526396 5969
70534a73
DC
5970 /*
5971 * unfair on small ones
5972 * per-vm shrinkers cry out
5973 * sadness comes quickly
5974 */
19526396
GN
5975 list_move_tail(&kvm->vm_list, &vm_list);
5976 break;
3ee16c81 5977 }
3ee16c81 5978
2f303b74 5979 spin_unlock(&kvm_lock);
70534a73 5980 return freed;
70534a73
DC
5981}
5982
5983static unsigned long
5984mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5985{
45221ab6 5986 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5987}
5988
5989static struct shrinker mmu_shrinker = {
70534a73
DC
5990 .count_objects = mmu_shrink_count,
5991 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5992 .seeks = DEFAULT_SEEKS * 10,
5993};
5994
2ddfd20e 5995static void mmu_destroy_caches(void)
b5a33a75 5996{
c1bd743e
TH
5997 kmem_cache_destroy(pte_list_desc_cache);
5998 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5999}
6000
6001int kvm_mmu_module_init(void)
6002{
ab271bd4
AB
6003 int ret = -ENOMEM;
6004
36d9594d
VK
6005 /*
6006 * MMU roles use union aliasing which is, generally speaking, an
6007 * undefined behavior. However, we supposedly know how compilers behave
6008 * and the current status quo is unlikely to change. Guardians below are
6009 * supposed to let us know if the assumption becomes false.
6010 */
6011 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6012 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6013 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6014
28a1f3ac 6015 kvm_mmu_reset_all_pte_masks();
f160c7b7 6016
53c07b18
XG
6017 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6018 sizeof(struct pte_list_desc),
46bea48a 6019 0, SLAB_ACCOUNT, NULL);
53c07b18 6020 if (!pte_list_desc_cache)
ab271bd4 6021 goto out;
b5a33a75 6022
d3d25b04
AK
6023 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6024 sizeof(struct kvm_mmu_page),
46bea48a 6025 0, SLAB_ACCOUNT, NULL);
d3d25b04 6026 if (!mmu_page_header_cache)
ab271bd4 6027 goto out;
d3d25b04 6028
908c7f19 6029 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6030 goto out;
45bf21a8 6031
ab271bd4
AB
6032 ret = register_shrinker(&mmu_shrinker);
6033 if (ret)
6034 goto out;
3ee16c81 6035
b5a33a75
AK
6036 return 0;
6037
ab271bd4 6038out:
3ee16c81 6039 mmu_destroy_caches();
ab271bd4 6040 return ret;
b5a33a75
AK
6041}
6042
3ad82a7e 6043/*
39337ad1 6044 * Calculate mmu pages needed for kvm.
3ad82a7e 6045 */
bc8a3d89 6046unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6047{
bc8a3d89
BG
6048 unsigned long nr_mmu_pages;
6049 unsigned long nr_pages = 0;
bc6678a3 6050 struct kvm_memslots *slots;
be6ba0f0 6051 struct kvm_memory_slot *memslot;
9da0e4d5 6052 int i;
3ad82a7e 6053
9da0e4d5
PB
6054 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6055 slots = __kvm_memslots(kvm, i);
90d83dc3 6056
9da0e4d5
PB
6057 kvm_for_each_memslot(memslot, slots)
6058 nr_pages += memslot->npages;
6059 }
3ad82a7e
ZX
6060
6061 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6062 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6063
6064 return nr_mmu_pages;
6065}
6066
c42fffe3
XG
6067void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6068{
95f93af4 6069 kvm_mmu_unload(vcpu);
c42fffe3
XG
6070 free_mmu_pages(vcpu);
6071 mmu_free_memory_caches(vcpu);
b034cf01
XG
6072}
6073
b034cf01
XG
6074void kvm_mmu_module_exit(void)
6075{
6076 mmu_destroy_caches();
6077 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6078 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6079 mmu_audit_disable();
6080}