]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: page track: add notifier support
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
3d0c27ad 44#include <asm/kvm_page_track.h>
6aa8b732 45
18552672
JR
46/*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
2f333bcb 53bool tdp_enabled = false;
18552672 54
8b1fe17c
XG
55enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
6903074c
XG
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
8b1fe17c 62};
37a7d8b0 63
8b1fe17c 64#undef MMU_DEBUG
37a7d8b0
AK
65
66#ifdef MMU_DEBUG
fa4a2c08
PB
67static bool dbg = 0;
68module_param(dbg, bool, 0644);
37a7d8b0
AK
69
70#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 72#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 73#else
37a7d8b0
AK
74#define pgprintk(x...) do { } while (0)
75#define rmap_printk(x...) do { } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 77#endif
6aa8b732 78
957ed9ef
XG
79#define PTE_PREFETCH_NUM 8
80
00763e41 81#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
6aa8b732
AK
84#define PT64_LEVEL_BITS 9
85
86#define PT64_LEVEL_SHIFT(level) \
d77c26fc 87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 88
6aa8b732
AK
89#define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93#define PT32_LEVEL_BITS 10
94
95#define PT32_LEVEL_SHIFT(level) \
d77c26fc 96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 97
e04da980
JR
98#define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
101
102#define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
27aba766 106#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
107#define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
109#define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112#define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
115
116#define PT32_BASE_ADDR_MASK PAGE_MASK
117#define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
119#define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
6aa8b732 122
53166229
GN
123#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
6aa8b732 125
fe135d2c
AK
126#define ACC_EXEC_MASK 1
127#define ACC_WRITE_MASK PT_WRITABLE_MASK
128#define ACC_USER_MASK PT_USER_MASK
129#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
90bb6fc5
AK
131#include <trace/events/kvm.h>
132
07420171
AK
133#define CREATE_TRACE_POINTS
134#include "mmutrace.h"
135
49fde340
XG
136#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 138
135f8c2b
AK
139#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
220f773a
TY
141/* make pte_list_desc fit well in cache line */
142#define PTE_LIST_EXT 3
143
53c07b18
XG
144struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
cd4a4e53
AK
147};
148
2d11123a
AK
149struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
2d11123a 152 u64 *sptep;
dd3bfd59 153 int level;
2d11123a
AK
154 unsigned index;
155};
156
157#define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
c2a2ac2b
XG
162#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
53c07b18 168static struct kmem_cache *pte_list_desc_cache;
d3d25b04 169static struct kmem_cache *mmu_page_header_cache;
45221ab6 170static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 171
7b52345e
SY
172static u64 __read_mostly shadow_nx_mask;
173static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174static u64 __read_mostly shadow_user_mask;
175static u64 __read_mostly shadow_accessed_mask;
176static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
177static u64 __read_mostly shadow_mmio_mask;
178
179static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 180static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
181
182void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183{
184 shadow_mmio_mask = mmio_mask;
185}
186EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
f2fd125d 188/*
ee3d1570
DM
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 196 */
ee3d1570 197#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
198#define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
ee3d1570
DM
200#define MMIO_GEN_SHIFT 20
201#define MMIO_GEN_LOW_SHIFT 10
202#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 203#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
204
205static u64 generation_mmio_spte_mask(unsigned int gen)
206{
207 u64 mask;
208
842bb26a 209 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214}
215
216static unsigned int get_mmio_spte_generation(u64 spte)
217{
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225}
226
54bf36aa 227static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 228{
54bf36aa 229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
230}
231
54bf36aa 232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 233 unsigned access)
ce88decf 234{
54bf36aa 235 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 236 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 237
ce88decf 238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 240
f8f55942 241 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 242 mmu_spte_set(sptep, mask);
ce88decf
XG
243}
244
245static bool is_mmio_spte(u64 spte)
246{
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248}
249
250static gfn_t get_mmio_spte_gfn(u64 spte)
251{
842bb26a 252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 253 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
254}
255
256static unsigned get_mmio_spte_access(u64 spte)
257{
842bb26a 258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 259 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
260}
261
54bf36aa 262static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 263 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
264{
265 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 266 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
267 return true;
268 }
269
270 return false;
271}
c7addb90 272
54bf36aa 273static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 274{
089504c0
XG
275 unsigned int kvm_gen, spte_gen;
276
54bf36aa 277 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
f8f55942
XG
282}
283
7b52345e 284void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
286{
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292}
293EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
6aa8b732
AK
295static int is_cpuid_PSE36(void)
296{
297 return 1;
298}
299
73b1087e
AK
300static int is_nx(struct kvm_vcpu *vcpu)
301{
f6801dff 302 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
303}
304
c7addb90
AK
305static int is_shadow_present_pte(u64 pte)
306{
ce88decf 307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
308}
309
05da4558
MT
310static int is_large_pte(u64 pte)
311{
312 return pte & PT_PAGE_SIZE_MASK;
313}
314
776e6633
MT
315static int is_last_spte(u64 pte, int level)
316{
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
852e3c19 319 if (is_large_pte(pte))
776e6633
MT
320 return 1;
321 return 0;
322}
323
ba049e93 324static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 325{
35149e21 326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
327}
328
da928521
AK
329static gfn_t pse36_gfn_delta(u32 gpte)
330{
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334}
335
603e0651 336#ifdef CONFIG_X86_64
d555c333 337static void __set_spte(u64 *sptep, u64 spte)
e663ee64 338{
603e0651 339 *sptep = spte;
e663ee64
AK
340}
341
603e0651 342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 343{
603e0651
XG
344 *sptep = spte;
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
c2a2ac2b
XG
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return ACCESS_ONCE(*sptep);
355}
a9221dd5 356#else
603e0651
XG
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
a9221dd5 364
c2a2ac2b
XG
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
603e0651
XG
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
a9221dd5 380
603e0651
XG
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
394}
395
603e0651
XG
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 412 count_spte_clear(sptep, spte);
603e0651
XG
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 426 count_spte_clear(sptep, spte);
603e0651
XG
427
428 return orig.spte;
429}
c2a2ac2b
XG
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
603e0651
XG
471#endif
472
c7ba5b48
XG
473static bool spte_is_locklessly_modifiable(u64 spte)
474{
feb3eb70
GN
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
477}
478
8672b721
XG
479static bool spte_has_volatile_bits(u64 spte)
480{
c7ba5b48
XG
481 /*
482 * Always atomicly update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
8672b721
XG
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
4132779b
XG
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
498 return false;
499
500 return true;
501}
502
4132779b
XG
503static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504{
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506}
507
7e71a59b
KH
508static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509{
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511}
512
1df9f2dc
XG
513/* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519static void mmu_spte_set(u64 *sptep, u64 new_spte)
520{
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523}
524
525/* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
1df9f2dc 533 */
6e7d0354 534static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 535{
c7ba5b48 536 u64 old_spte = *sptep;
6e7d0354 537 bool ret = false;
4132779b 538
afd28fe1 539 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 540
6e7d0354
XG
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
4132779b 545
c7ba5b48 546 if (!spte_has_volatile_bits(old_spte))
603e0651 547 __update_clear_spte_fast(sptep, new_spte);
4132779b 548 else
603e0651 549 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 550
c7ba5b48
XG
551 /*
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomicly update it, see the comments in
554 * spte_has_volatile_bits().
555 */
7f31c959
XG
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
6e7d0354
XG
558 ret = true;
559
4132779b 560 if (!shadow_accessed_mask)
6e7d0354 561 return ret;
4132779b 562
7e71a59b
KH
563 /*
564 * Flush TLB when accessed/dirty bits are changed in the page tables,
565 * to guarantee consistency between TLB and page tables.
566 */
567 if (spte_is_bit_changed(old_spte, new_spte,
568 shadow_accessed_mask | shadow_dirty_mask))
569 ret = true;
570
4132779b
XG
571 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
575
576 return ret;
b79b93f9
AK
577}
578
1df9f2dc
XG
579/*
580 * Rules for using mmu_spte_clear_track_bits:
581 * It sets the sptep from present to nonpresent, and track the
582 * state bits, it is used to clear the last level sptep.
583 */
584static int mmu_spte_clear_track_bits(u64 *sptep)
585{
ba049e93 586 kvm_pfn_t pfn;
1df9f2dc
XG
587 u64 old_spte = *sptep;
588
589 if (!spte_has_volatile_bits(old_spte))
603e0651 590 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 591 else
603e0651 592 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 593
afd28fe1 594 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
595 return 0;
596
597 pfn = spte_to_pfn(old_spte);
86fde74c
XG
598
599 /*
600 * KVM does not hold the refcount of the page used by
601 * kvm mmu, before reclaiming the page, we should
602 * unmap it from mmu first.
603 */
bf4bea8e 604 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 605
1df9f2dc
XG
606 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607 kvm_set_pfn_accessed(pfn);
608 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609 kvm_set_pfn_dirty(pfn);
610 return 1;
611}
612
613/*
614 * Rules for using mmu_spte_clear_no_track:
615 * Directly clear spte without caring the state bits of sptep,
616 * it is used to set the upper level spte.
617 */
618static void mmu_spte_clear_no_track(u64 *sptep)
619{
603e0651 620 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
621}
622
c2a2ac2b
XG
623static u64 mmu_spte_get_lockless(u64 *sptep)
624{
625 return __get_spte_lockless(sptep);
626}
627
628static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629{
c142786c
AK
630 /*
631 * Prevent page table teardown by making any free-er wait during
632 * kvm_flush_remote_tlbs() IPI to all active vcpus.
633 */
634 local_irq_disable();
635 vcpu->mode = READING_SHADOW_PAGE_TABLES;
636 /*
637 * Make sure a following spte read is not reordered ahead of the write
638 * to vcpu->mode.
639 */
640 smp_mb();
c2a2ac2b
XG
641}
642
643static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644{
c142786c
AK
645 /*
646 * Make sure the write to vcpu->mode is not reordered in front of
647 * reads to sptes. If it does, kvm_commit_zap_page() can see us
648 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649 */
650 smp_mb();
651 vcpu->mode = OUTSIDE_GUEST_MODE;
652 local_irq_enable();
c2a2ac2b
XG
653}
654
e2dec939 655static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 656 struct kmem_cache *base_cache, int min)
714b93da
AK
657{
658 void *obj;
659
660 if (cache->nobjs >= min)
e2dec939 661 return 0;
714b93da 662 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 663 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 664 if (!obj)
e2dec939 665 return -ENOMEM;
714b93da
AK
666 cache->objects[cache->nobjs++] = obj;
667 }
e2dec939 668 return 0;
714b93da
AK
669}
670
f759e2b4
XG
671static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672{
673 return cache->nobjs;
674}
675
e8ad9a70
XG
676static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677 struct kmem_cache *cache)
714b93da
AK
678{
679 while (mc->nobjs)
e8ad9a70 680 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
681}
682
c1158e63 683static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 684 int min)
c1158e63 685{
842f22ed 686 void *page;
c1158e63
AK
687
688 if (cache->nobjs >= min)
689 return 0;
690 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 691 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
692 if (!page)
693 return -ENOMEM;
842f22ed 694 cache->objects[cache->nobjs++] = page;
c1158e63
AK
695 }
696 return 0;
697}
698
699static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700{
701 while (mc->nobjs)
c4d198d5 702 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
703}
704
2e3e5882 705static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 706{
e2dec939
AK
707 int r;
708
53c07b18 709 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 710 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
711 if (r)
712 goto out;
ad312c7c 713 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
714 if (r)
715 goto out;
ad312c7c 716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 717 mmu_page_header_cache, 4);
e2dec939
AK
718out:
719 return r;
714b93da
AK
720}
721
722static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723{
53c07b18
XG
724 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725 pte_list_desc_cache);
ad312c7c 726 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
727 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728 mmu_page_header_cache);
714b93da
AK
729}
730
80feb89a 731static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
732{
733 void *p;
734
735 BUG_ON(!mc->nobjs);
736 p = mc->objects[--mc->nobjs];
714b93da
AK
737 return p;
738}
739
53c07b18 740static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 741{
80feb89a 742 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
743}
744
53c07b18 745static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 746{
53c07b18 747 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
748}
749
2032a93d
LJ
750static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751{
752 if (!sp->role.direct)
753 return sp->gfns[index];
754
755 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756}
757
758static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759{
760 if (sp->role.direct)
761 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762 else
763 sp->gfns[index] = gfn;
764}
765
05da4558 766/*
d4dbf470
TY
767 * Return the pointer to the large page information for a given gfn,
768 * handling slots that are not large page aligned.
05da4558 769 */
d4dbf470
TY
770static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771 struct kvm_memory_slot *slot,
772 int level)
05da4558
MT
773{
774 unsigned long idx;
775
fb03cb6f 776 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 777 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
778}
779
547ffaed
XG
780static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781 gfn_t gfn, int count)
782{
783 struct kvm_lpage_info *linfo;
784 int i;
785
786 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787 linfo = lpage_info_slot(gfn, slot, i);
788 linfo->disallow_lpage += count;
789 WARN_ON(linfo->disallow_lpage < 0);
790 }
791}
792
793void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794{
795 update_gfn_disallow_lpage_count(slot, gfn, 1);
796}
797
798void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799{
800 update_gfn_disallow_lpage_count(slot, gfn, -1);
801}
802
3ed1a478 803static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 804{
699023e2 805 struct kvm_memslots *slots;
d25797b2 806 struct kvm_memory_slot *slot;
3ed1a478 807 gfn_t gfn;
05da4558 808
3ed1a478 809 gfn = sp->gfn;
699023e2
PB
810 slots = kvm_memslots_for_spte_role(kvm, sp->role);
811 slot = __gfn_to_memslot(slots, gfn);
547ffaed 812 kvm_mmu_gfn_disallow_lpage(slot, gfn);
332b207d 813 kvm->arch.indirect_shadow_pages++;
05da4558
MT
814}
815
3ed1a478 816static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 817{
699023e2 818 struct kvm_memslots *slots;
d25797b2 819 struct kvm_memory_slot *slot;
3ed1a478 820 gfn_t gfn;
05da4558 821
3ed1a478 822 gfn = sp->gfn;
699023e2
PB
823 slots = kvm_memslots_for_spte_role(kvm, sp->role);
824 slot = __gfn_to_memslot(slots, gfn);
547ffaed 825 kvm_mmu_gfn_allow_lpage(slot, gfn);
332b207d 826 kvm->arch.indirect_shadow_pages--;
05da4558
MT
827}
828
92f94f1e
XG
829static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
830 struct kvm_memory_slot *slot)
05da4558 831{
d4dbf470 832 struct kvm_lpage_info *linfo;
05da4558
MT
833
834 if (slot) {
d4dbf470 835 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 836 return !!linfo->disallow_lpage;
05da4558
MT
837 }
838
92f94f1e 839 return true;
05da4558
MT
840}
841
92f94f1e
XG
842static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
843 int level)
5225fdf8
TY
844{
845 struct kvm_memory_slot *slot;
846
847 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 848 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
849}
850
d25797b2 851static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 852{
8f0b1ab6 853 unsigned long page_size;
d25797b2 854 int i, ret = 0;
05da4558 855
8f0b1ab6 856 page_size = kvm_host_page_size(kvm, gfn);
05da4558 857
8a3d08f1 858 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
859 if (page_size >= KVM_HPAGE_SIZE(i))
860 ret = i;
861 else
862 break;
863 }
864
4c2155ce 865 return ret;
05da4558
MT
866}
867
d8aacf5d
TY
868static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
869 bool no_dirty_log)
870{
871 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
872 return false;
873 if (no_dirty_log && slot->dirty_bitmap)
874 return false;
875
876 return true;
877}
878
5d163b1c
XG
879static struct kvm_memory_slot *
880gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
881 bool no_dirty_log)
05da4558
MT
882{
883 struct kvm_memory_slot *slot;
5d163b1c 884
54bf36aa 885 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 886 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
887 slot = NULL;
888
889 return slot;
890}
891
fd136902
TY
892static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
893 bool *force_pt_level)
936a5fe6
AA
894{
895 int host_level, level, max_level;
d8aacf5d
TY
896 struct kvm_memory_slot *slot;
897
8c85ac1c
TY
898 if (unlikely(*force_pt_level))
899 return PT_PAGE_TABLE_LEVEL;
05da4558 900
8c85ac1c
TY
901 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
902 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
903 if (unlikely(*force_pt_level))
904 return PT_PAGE_TABLE_LEVEL;
905
d25797b2
JR
906 host_level = host_mapping_level(vcpu->kvm, large_gfn);
907
908 if (host_level == PT_PAGE_TABLE_LEVEL)
909 return host_level;
910
55dd98c3 911 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
912
913 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 914 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 915 break;
d25797b2
JR
916
917 return level - 1;
05da4558
MT
918}
919
290fc38d 920/*
018aabb5 921 * About rmap_head encoding:
cd4a4e53 922 *
018aabb5
TY
923 * If the bit zero of rmap_head->val is clear, then it points to the only spte
924 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 925 * pte_list_desc containing more mappings.
018aabb5
TY
926 */
927
928/*
929 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 930 */
53c07b18 931static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 932 struct kvm_rmap_head *rmap_head)
cd4a4e53 933{
53c07b18 934 struct pte_list_desc *desc;
53a27b39 935 int i, count = 0;
cd4a4e53 936
018aabb5 937 if (!rmap_head->val) {
53c07b18 938 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
939 rmap_head->val = (unsigned long)spte;
940 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
941 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
942 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 943 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 944 desc->sptes[1] = spte;
018aabb5 945 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 946 ++count;
cd4a4e53 947 } else {
53c07b18 948 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 949 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 950 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 951 desc = desc->more;
53c07b18 952 count += PTE_LIST_EXT;
53a27b39 953 }
53c07b18
XG
954 if (desc->sptes[PTE_LIST_EXT-1]) {
955 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
956 desc = desc->more;
957 }
d555c333 958 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 959 ++count;
d555c333 960 desc->sptes[i] = spte;
cd4a4e53 961 }
53a27b39 962 return count;
cd4a4e53
AK
963}
964
53c07b18 965static void
018aabb5
TY
966pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
967 struct pte_list_desc *desc, int i,
968 struct pte_list_desc *prev_desc)
cd4a4e53
AK
969{
970 int j;
971
53c07b18 972 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 973 ;
d555c333
AK
974 desc->sptes[i] = desc->sptes[j];
975 desc->sptes[j] = NULL;
cd4a4e53
AK
976 if (j != 0)
977 return;
978 if (!prev_desc && !desc->more)
018aabb5 979 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
980 else
981 if (prev_desc)
982 prev_desc->more = desc->more;
983 else
018aabb5 984 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 985 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
986}
987
018aabb5 988static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 989{
53c07b18
XG
990 struct pte_list_desc *desc;
991 struct pte_list_desc *prev_desc;
cd4a4e53
AK
992 int i;
993
018aabb5 994 if (!rmap_head->val) {
53c07b18 995 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 996 BUG();
018aabb5 997 } else if (!(rmap_head->val & 1)) {
53c07b18 998 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 999 if ((u64 *)rmap_head->val != spte) {
53c07b18 1000 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1001 BUG();
1002 }
018aabb5 1003 rmap_head->val = 0;
cd4a4e53 1004 } else {
53c07b18 1005 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1006 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1007 prev_desc = NULL;
1008 while (desc) {
018aabb5 1009 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1010 if (desc->sptes[i] == spte) {
018aabb5
TY
1011 pte_list_desc_remove_entry(rmap_head,
1012 desc, i, prev_desc);
cd4a4e53
AK
1013 return;
1014 }
018aabb5 1015 }
cd4a4e53
AK
1016 prev_desc = desc;
1017 desc = desc->more;
1018 }
53c07b18 1019 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1020 BUG();
1021 }
1022}
1023
018aabb5
TY
1024static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1025 struct kvm_memory_slot *slot)
53c07b18 1026{
77d11309 1027 unsigned long idx;
53c07b18 1028
77d11309 1029 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1030 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1031}
1032
018aabb5
TY
1033static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1034 struct kvm_mmu_page *sp)
9b9b1492 1035{
699023e2 1036 struct kvm_memslots *slots;
9b9b1492
TY
1037 struct kvm_memory_slot *slot;
1038
699023e2
PB
1039 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1040 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1041 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1042}
1043
f759e2b4
XG
1044static bool rmap_can_add(struct kvm_vcpu *vcpu)
1045{
1046 struct kvm_mmu_memory_cache *cache;
1047
1048 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1049 return mmu_memory_cache_free_objects(cache);
1050}
1051
53c07b18
XG
1052static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1053{
1054 struct kvm_mmu_page *sp;
018aabb5 1055 struct kvm_rmap_head *rmap_head;
53c07b18 1056
53c07b18
XG
1057 sp = page_header(__pa(spte));
1058 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1059 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1060 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1061}
1062
53c07b18
XG
1063static void rmap_remove(struct kvm *kvm, u64 *spte)
1064{
1065 struct kvm_mmu_page *sp;
1066 gfn_t gfn;
018aabb5 1067 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1068
1069 sp = page_header(__pa(spte));
1070 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1071 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1072 pte_list_remove(spte, rmap_head);
53c07b18
XG
1073}
1074
1e3f42f0
TY
1075/*
1076 * Used by the following functions to iterate through the sptes linked by a
1077 * rmap. All fields are private and not assumed to be used outside.
1078 */
1079struct rmap_iterator {
1080 /* private fields */
1081 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1082 int pos; /* index of the sptep */
1083};
1084
1085/*
1086 * Iteration must be started by this function. This should also be used after
1087 * removing/dropping sptes from the rmap link because in such cases the
1088 * information in the itererator may not be valid.
1089 *
1090 * Returns sptep if found, NULL otherwise.
1091 */
018aabb5
TY
1092static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1093 struct rmap_iterator *iter)
1e3f42f0 1094{
77fbbbd2
TY
1095 u64 *sptep;
1096
018aabb5 1097 if (!rmap_head->val)
1e3f42f0
TY
1098 return NULL;
1099
018aabb5 1100 if (!(rmap_head->val & 1)) {
1e3f42f0 1101 iter->desc = NULL;
77fbbbd2
TY
1102 sptep = (u64 *)rmap_head->val;
1103 goto out;
1e3f42f0
TY
1104 }
1105
018aabb5 1106 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1107 iter->pos = 0;
77fbbbd2
TY
1108 sptep = iter->desc->sptes[iter->pos];
1109out:
1110 BUG_ON(!is_shadow_present_pte(*sptep));
1111 return sptep;
1e3f42f0
TY
1112}
1113
1114/*
1115 * Must be used with a valid iterator: e.g. after rmap_get_first().
1116 *
1117 * Returns sptep if found, NULL otherwise.
1118 */
1119static u64 *rmap_get_next(struct rmap_iterator *iter)
1120{
77fbbbd2
TY
1121 u64 *sptep;
1122
1e3f42f0
TY
1123 if (iter->desc) {
1124 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1125 ++iter->pos;
1126 sptep = iter->desc->sptes[iter->pos];
1127 if (sptep)
77fbbbd2 1128 goto out;
1e3f42f0
TY
1129 }
1130
1131 iter->desc = iter->desc->more;
1132
1133 if (iter->desc) {
1134 iter->pos = 0;
1135 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1136 sptep = iter->desc->sptes[iter->pos];
1137 goto out;
1e3f42f0
TY
1138 }
1139 }
1140
1141 return NULL;
77fbbbd2
TY
1142out:
1143 BUG_ON(!is_shadow_present_pte(*sptep));
1144 return sptep;
1e3f42f0
TY
1145}
1146
018aabb5
TY
1147#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1148 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1149 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1150
c3707958 1151static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1152{
1df9f2dc 1153 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1154 rmap_remove(kvm, sptep);
be38d276
AK
1155}
1156
8e22f955
XG
1157
1158static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1159{
1160 if (is_large_pte(*sptep)) {
1161 WARN_ON(page_header(__pa(sptep))->role.level ==
1162 PT_PAGE_TABLE_LEVEL);
1163 drop_spte(kvm, sptep);
1164 --kvm->stat.lpages;
1165 return true;
1166 }
1167
1168 return false;
1169}
1170
1171static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1172{
1173 if (__drop_large_spte(vcpu->kvm, sptep))
1174 kvm_flush_remote_tlbs(vcpu->kvm);
1175}
1176
1177/*
49fde340 1178 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1179 * spte write-protection is caused by protecting shadow page table.
49fde340 1180 *
b4619660 1181 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1182 * protection:
1183 * - for dirty logging, the spte can be set to writable at anytime if
1184 * its dirty bitmap is properly set.
1185 * - for spte protection, the spte can be writable only after unsync-ing
1186 * shadow page.
8e22f955 1187 *
c126d94f 1188 * Return true if tlb need be flushed.
8e22f955 1189 */
c126d94f 1190static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1191{
1192 u64 spte = *sptep;
1193
49fde340
XG
1194 if (!is_writable_pte(spte) &&
1195 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1196 return false;
1197
1198 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1199
49fde340
XG
1200 if (pt_protect)
1201 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1202 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1203
c126d94f 1204 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1205}
1206
018aabb5
TY
1207static bool __rmap_write_protect(struct kvm *kvm,
1208 struct kvm_rmap_head *rmap_head,
245c3912 1209 bool pt_protect)
98348e95 1210{
1e3f42f0
TY
1211 u64 *sptep;
1212 struct rmap_iterator iter;
d13bc5b5 1213 bool flush = false;
374cbac0 1214
018aabb5 1215 for_each_rmap_spte(rmap_head, &iter, sptep)
c126d94f 1216 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1217
d13bc5b5 1218 return flush;
a0ed4607
TY
1219}
1220
f4b4b180
KH
1221static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1222{
1223 u64 spte = *sptep;
1224
1225 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1226
1227 spte &= ~shadow_dirty_mask;
1228
1229 return mmu_spte_update(sptep, spte);
1230}
1231
018aabb5 1232static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1233{
1234 u64 *sptep;
1235 struct rmap_iterator iter;
1236 bool flush = false;
1237
018aabb5 1238 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1239 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1240
1241 return flush;
1242}
1243
1244static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1245{
1246 u64 spte = *sptep;
1247
1248 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1249
1250 spte |= shadow_dirty_mask;
1251
1252 return mmu_spte_update(sptep, spte);
1253}
1254
018aabb5 1255static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1256{
1257 u64 *sptep;
1258 struct rmap_iterator iter;
1259 bool flush = false;
1260
018aabb5 1261 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1262 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1263
1264 return flush;
1265}
1266
5dc99b23 1267/**
3b0f1d01 1268 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1269 * @kvm: kvm instance
1270 * @slot: slot to protect
1271 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1272 * @mask: indicates which pages we should protect
1273 *
1274 * Used when we do not need to care about huge page mappings: e.g. during dirty
1275 * logging we do not have any such mappings.
1276 */
3b0f1d01 1277static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1278 struct kvm_memory_slot *slot,
1279 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1280{
018aabb5 1281 struct kvm_rmap_head *rmap_head;
a0ed4607 1282
5dc99b23 1283 while (mask) {
018aabb5
TY
1284 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1285 PT_PAGE_TABLE_LEVEL, slot);
1286 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1287
5dc99b23
TY
1288 /* clear the first set bit */
1289 mask &= mask - 1;
1290 }
374cbac0
AK
1291}
1292
f4b4b180
KH
1293/**
1294 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1295 * @kvm: kvm instance
1296 * @slot: slot to clear D-bit
1297 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1298 * @mask: indicates which pages we should clear D-bit
1299 *
1300 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1301 */
1302void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1303 struct kvm_memory_slot *slot,
1304 gfn_t gfn_offset, unsigned long mask)
1305{
018aabb5 1306 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1307
1308 while (mask) {
018aabb5
TY
1309 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1310 PT_PAGE_TABLE_LEVEL, slot);
1311 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1312
1313 /* clear the first set bit */
1314 mask &= mask - 1;
1315 }
1316}
1317EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1318
3b0f1d01
KH
1319/**
1320 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1321 * PT level pages.
1322 *
1323 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1324 * enable dirty logging for them.
1325 *
1326 * Used when we do not need to care about huge page mappings: e.g. during dirty
1327 * logging we do not have any such mappings.
1328 */
1329void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1330 struct kvm_memory_slot *slot,
1331 gfn_t gfn_offset, unsigned long mask)
1332{
88178fd4
KH
1333 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1334 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1335 mask);
1336 else
1337 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1338}
1339
aeecee2e
XG
1340bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1341 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1342{
018aabb5 1343 struct kvm_rmap_head *rmap_head;
5dc99b23 1344 int i;
2f84569f 1345 bool write_protected = false;
95d4c16c 1346
8a3d08f1 1347 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1348 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1349 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1350 }
1351
1352 return write_protected;
95d4c16c
TY
1353}
1354
aeecee2e
XG
1355static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1356{
1357 struct kvm_memory_slot *slot;
1358
1359 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1360 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1361}
1362
018aabb5 1363static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1364{
1e3f42f0
TY
1365 u64 *sptep;
1366 struct rmap_iterator iter;
6a49f85c 1367 bool flush = false;
e930bffe 1368
018aabb5 1369 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1370 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1371
1372 drop_spte(kvm, sptep);
6a49f85c 1373 flush = true;
e930bffe 1374 }
1e3f42f0 1375
6a49f85c
XG
1376 return flush;
1377}
1378
018aabb5 1379static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1380 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1381 unsigned long data)
1382{
018aabb5 1383 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1384}
1385
018aabb5 1386static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1387 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1388 unsigned long data)
3da0dd43 1389{
1e3f42f0
TY
1390 u64 *sptep;
1391 struct rmap_iterator iter;
3da0dd43 1392 int need_flush = 0;
1e3f42f0 1393 u64 new_spte;
3da0dd43 1394 pte_t *ptep = (pte_t *)data;
ba049e93 1395 kvm_pfn_t new_pfn;
3da0dd43
IE
1396
1397 WARN_ON(pte_huge(*ptep));
1398 new_pfn = pte_pfn(*ptep);
1e3f42f0 1399
0d536790 1400restart:
018aabb5 1401 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1402 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1403 sptep, *sptep, gfn, level);
1e3f42f0 1404
3da0dd43 1405 need_flush = 1;
1e3f42f0 1406
3da0dd43 1407 if (pte_write(*ptep)) {
1e3f42f0 1408 drop_spte(kvm, sptep);
0d536790 1409 goto restart;
3da0dd43 1410 } else {
1e3f42f0 1411 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1412 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1413
1414 new_spte &= ~PT_WRITABLE_MASK;
1415 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1416 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1417
1418 mmu_spte_clear_track_bits(sptep);
1419 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1420 }
1421 }
1e3f42f0 1422
3da0dd43
IE
1423 if (need_flush)
1424 kvm_flush_remote_tlbs(kvm);
1425
1426 return 0;
1427}
1428
6ce1f4e2
XG
1429struct slot_rmap_walk_iterator {
1430 /* input fields. */
1431 struct kvm_memory_slot *slot;
1432 gfn_t start_gfn;
1433 gfn_t end_gfn;
1434 int start_level;
1435 int end_level;
1436
1437 /* output fields. */
1438 gfn_t gfn;
018aabb5 1439 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1440 int level;
1441
1442 /* private field. */
018aabb5 1443 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1444};
1445
1446static void
1447rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1448{
1449 iterator->level = level;
1450 iterator->gfn = iterator->start_gfn;
1451 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1452 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1453 iterator->slot);
1454}
1455
1456static void
1457slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1458 struct kvm_memory_slot *slot, int start_level,
1459 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1460{
1461 iterator->slot = slot;
1462 iterator->start_level = start_level;
1463 iterator->end_level = end_level;
1464 iterator->start_gfn = start_gfn;
1465 iterator->end_gfn = end_gfn;
1466
1467 rmap_walk_init_level(iterator, iterator->start_level);
1468}
1469
1470static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1471{
1472 return !!iterator->rmap;
1473}
1474
1475static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1476{
1477 if (++iterator->rmap <= iterator->end_rmap) {
1478 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1479 return;
1480 }
1481
1482 if (++iterator->level > iterator->end_level) {
1483 iterator->rmap = NULL;
1484 return;
1485 }
1486
1487 rmap_walk_init_level(iterator, iterator->level);
1488}
1489
1490#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1491 _start_gfn, _end_gfn, _iter_) \
1492 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1493 _end_level_, _start_gfn, _end_gfn); \
1494 slot_rmap_walk_okay(_iter_); \
1495 slot_rmap_walk_next(_iter_))
1496
84504ef3
TY
1497static int kvm_handle_hva_range(struct kvm *kvm,
1498 unsigned long start,
1499 unsigned long end,
1500 unsigned long data,
1501 int (*handler)(struct kvm *kvm,
018aabb5 1502 struct kvm_rmap_head *rmap_head,
048212d0 1503 struct kvm_memory_slot *slot,
8a9522d2
ALC
1504 gfn_t gfn,
1505 int level,
84504ef3 1506 unsigned long data))
e930bffe 1507{
bc6678a3 1508 struct kvm_memslots *slots;
be6ba0f0 1509 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1510 struct slot_rmap_walk_iterator iterator;
1511 int ret = 0;
9da0e4d5 1512 int i;
bc6678a3 1513
9da0e4d5
PB
1514 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1515 slots = __kvm_memslots(kvm, i);
1516 kvm_for_each_memslot(memslot, slots) {
1517 unsigned long hva_start, hva_end;
1518 gfn_t gfn_start, gfn_end;
e930bffe 1519
9da0e4d5
PB
1520 hva_start = max(start, memslot->userspace_addr);
1521 hva_end = min(end, memslot->userspace_addr +
1522 (memslot->npages << PAGE_SHIFT));
1523 if (hva_start >= hva_end)
1524 continue;
1525 /*
1526 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1527 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1528 */
1529 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1530 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1531
1532 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1533 PT_MAX_HUGEPAGE_LEVEL,
1534 gfn_start, gfn_end - 1,
1535 &iterator)
1536 ret |= handler(kvm, iterator.rmap, memslot,
1537 iterator.gfn, iterator.level, data);
1538 }
e930bffe
AA
1539 }
1540
f395302e 1541 return ret;
e930bffe
AA
1542}
1543
84504ef3
TY
1544static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1545 unsigned long data,
018aabb5
TY
1546 int (*handler)(struct kvm *kvm,
1547 struct kvm_rmap_head *rmap_head,
048212d0 1548 struct kvm_memory_slot *slot,
8a9522d2 1549 gfn_t gfn, int level,
84504ef3
TY
1550 unsigned long data))
1551{
1552 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1553}
1554
1555int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1556{
3da0dd43
IE
1557 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1558}
1559
b3ae2096
TY
1560int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1561{
1562 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1563}
1564
3da0dd43
IE
1565void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1566{
8a8365c5 1567 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1568}
1569
018aabb5 1570static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1571 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1572 unsigned long data)
e930bffe 1573{
1e3f42f0 1574 u64 *sptep;
79f702a6 1575 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1576 int young = 0;
1577
57128468 1578 BUG_ON(!shadow_accessed_mask);
534e38b4 1579
018aabb5 1580 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1581 if (*sptep & shadow_accessed_mask) {
e930bffe 1582 young = 1;
3f6d8c8a
XH
1583 clear_bit((ffs(shadow_accessed_mask) - 1),
1584 (unsigned long *)sptep);
e930bffe 1585 }
018aabb5 1586 }
0d536790 1587
8a9522d2 1588 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1589 return young;
1590}
1591
018aabb5 1592static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1593 struct kvm_memory_slot *slot, gfn_t gfn,
1594 int level, unsigned long data)
8ee53820 1595{
1e3f42f0
TY
1596 u64 *sptep;
1597 struct rmap_iterator iter;
8ee53820
AA
1598 int young = 0;
1599
1600 /*
1601 * If there's no access bit in the secondary pte set by the
1602 * hardware it's up to gup-fast/gup to set the access bit in
1603 * the primary pte or in the page structure.
1604 */
1605 if (!shadow_accessed_mask)
1606 goto out;
1607
018aabb5 1608 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1609 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1610 young = 1;
1611 break;
1612 }
018aabb5 1613 }
8ee53820
AA
1614out:
1615 return young;
1616}
1617
53a27b39
MT
1618#define RMAP_RECYCLE_THRESHOLD 1000
1619
852e3c19 1620static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1621{
018aabb5 1622 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1623 struct kvm_mmu_page *sp;
1624
1625 sp = page_header(__pa(spte));
53a27b39 1626
018aabb5 1627 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1628
018aabb5 1629 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1630 kvm_flush_remote_tlbs(vcpu->kvm);
1631}
1632
57128468 1633int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1634{
57128468
ALC
1635 /*
1636 * In case of absence of EPT Access and Dirty Bits supports,
1637 * emulate the accessed bit for EPT, by checking if this page has
1638 * an EPT mapping, and clearing it if it does. On the next access,
1639 * a new EPT mapping will be established.
1640 * This has some overhead, but not as much as the cost of swapping
1641 * out actively used pages or breaking up actively used hugepages.
1642 */
1643 if (!shadow_accessed_mask) {
1644 /*
1645 * We are holding the kvm->mmu_lock, and we are blowing up
1646 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1647 * This is correct as long as we don't decouple the mmu_lock
1648 * protected regions (like invalidate_range_start|end does).
1649 */
1650 kvm->mmu_notifier_seq++;
1651 return kvm_handle_hva_range(kvm, start, end, 0,
1652 kvm_unmap_rmapp);
1653 }
1654
1655 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1656}
1657
8ee53820
AA
1658int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1659{
1660 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1661}
1662
d6c69ee9 1663#ifdef MMU_DEBUG
47ad8e68 1664static int is_empty_shadow_page(u64 *spt)
6aa8b732 1665{
139bdb2d
AK
1666 u64 *pos;
1667 u64 *end;
1668
47ad8e68 1669 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1670 if (is_shadow_present_pte(*pos)) {
b8688d51 1671 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1672 pos, *pos);
6aa8b732 1673 return 0;
139bdb2d 1674 }
6aa8b732
AK
1675 return 1;
1676}
d6c69ee9 1677#endif
6aa8b732 1678
45221ab6
DH
1679/*
1680 * This value is the sum of all of the kvm instances's
1681 * kvm->arch.n_used_mmu_pages values. We need a global,
1682 * aggregate version in order to make the slab shrinker
1683 * faster
1684 */
1685static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1686{
1687 kvm->arch.n_used_mmu_pages += nr;
1688 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1689}
1690
834be0d8 1691static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1692{
fa4a2c08 1693 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1694 hlist_del(&sp->hash_link);
bd4c86ea
XG
1695 list_del(&sp->link);
1696 free_page((unsigned long)sp->spt);
834be0d8
GN
1697 if (!sp->role.direct)
1698 free_page((unsigned long)sp->gfns);
e8ad9a70 1699 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1700}
1701
cea0f0e7
AK
1702static unsigned kvm_page_table_hashfn(gfn_t gfn)
1703{
1ae0a13d 1704 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1705}
1706
714b93da 1707static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1708 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1709{
cea0f0e7
AK
1710 if (!parent_pte)
1711 return;
cea0f0e7 1712
67052b35 1713 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1714}
1715
4db35314 1716static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1717 u64 *parent_pte)
1718{
67052b35 1719 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1720}
1721
bcdd9a93
XG
1722static void drop_parent_pte(struct kvm_mmu_page *sp,
1723 u64 *parent_pte)
1724{
1725 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1726 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1727}
1728
47005792 1729static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1730{
67052b35 1731 struct kvm_mmu_page *sp;
7ddca7e4 1732
80feb89a
TY
1733 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1734 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1735 if (!direct)
80feb89a 1736 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1737 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1738
1739 /*
1740 * The active_mmu_pages list is the FIFO list, do not move the
1741 * page until it is zapped. kvm_zap_obsolete_pages depends on
1742 * this feature. See the comments in kvm_zap_obsolete_pages().
1743 */
67052b35 1744 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1745 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1746 return sp;
ad8cfbe3
MT
1747}
1748
67052b35 1749static void mark_unsync(u64 *spte);
1047df1f 1750static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1751{
74c4e63a
TY
1752 u64 *sptep;
1753 struct rmap_iterator iter;
1754
1755 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1756 mark_unsync(sptep);
1757 }
0074ff63
MT
1758}
1759
67052b35 1760static void mark_unsync(u64 *spte)
0074ff63 1761{
67052b35 1762 struct kvm_mmu_page *sp;
1047df1f 1763 unsigned int index;
0074ff63 1764
67052b35 1765 sp = page_header(__pa(spte));
1047df1f
XG
1766 index = spte - sp->spt;
1767 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1768 return;
1047df1f 1769 if (sp->unsync_children++)
0074ff63 1770 return;
1047df1f 1771 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1772}
1773
e8bc217a 1774static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1775 struct kvm_mmu_page *sp)
e8bc217a
MT
1776{
1777 return 1;
1778}
1779
a7052897
MT
1780static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1781{
1782}
1783
0f53b5b1
XG
1784static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1785 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1786 const void *pte)
0f53b5b1
XG
1787{
1788 WARN_ON(1);
1789}
1790
60c8aec6
MT
1791#define KVM_PAGE_ARRAY_NR 16
1792
1793struct kvm_mmu_pages {
1794 struct mmu_page_and_offset {
1795 struct kvm_mmu_page *sp;
1796 unsigned int idx;
1797 } page[KVM_PAGE_ARRAY_NR];
1798 unsigned int nr;
1799};
1800
cded19f3
HE
1801static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1802 int idx)
4731d4c7 1803{
60c8aec6 1804 int i;
4731d4c7 1805
60c8aec6
MT
1806 if (sp->unsync)
1807 for (i=0; i < pvec->nr; i++)
1808 if (pvec->page[i].sp == sp)
1809 return 0;
1810
1811 pvec->page[pvec->nr].sp = sp;
1812 pvec->page[pvec->nr].idx = idx;
1813 pvec->nr++;
1814 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1815}
1816
fd951457
TY
1817static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1818{
1819 --sp->unsync_children;
1820 WARN_ON((int)sp->unsync_children < 0);
1821 __clear_bit(idx, sp->unsync_child_bitmap);
1822}
1823
60c8aec6
MT
1824static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1825 struct kvm_mmu_pages *pvec)
1826{
1827 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1828
37178b8b 1829 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1830 struct kvm_mmu_page *child;
4731d4c7
MT
1831 u64 ent = sp->spt[i];
1832
fd951457
TY
1833 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1834 clear_unsync_child_bit(sp, i);
1835 continue;
1836 }
7a8f1a74
XG
1837
1838 child = page_header(ent & PT64_BASE_ADDR_MASK);
1839
1840 if (child->unsync_children) {
1841 if (mmu_pages_add(pvec, child, i))
1842 return -ENOSPC;
1843
1844 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1845 if (!ret) {
1846 clear_unsync_child_bit(sp, i);
1847 continue;
1848 } else if (ret > 0) {
7a8f1a74 1849 nr_unsync_leaf += ret;
fd951457 1850 } else
7a8f1a74
XG
1851 return ret;
1852 } else if (child->unsync) {
1853 nr_unsync_leaf++;
1854 if (mmu_pages_add(pvec, child, i))
1855 return -ENOSPC;
1856 } else
fd951457 1857 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1858 }
1859
60c8aec6
MT
1860 return nr_unsync_leaf;
1861}
1862
1863static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1864 struct kvm_mmu_pages *pvec)
1865{
1866 if (!sp->unsync_children)
1867 return 0;
1868
1869 mmu_pages_add(pvec, sp, 0);
1870 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1871}
1872
4731d4c7
MT
1873static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1874{
1875 WARN_ON(!sp->unsync);
5e1b3ddb 1876 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1877 sp->unsync = 0;
1878 --kvm->stat.mmu_unsync;
1879}
1880
7775834a
XG
1881static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1882 struct list_head *invalid_list);
1883static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1884 struct list_head *invalid_list);
4731d4c7 1885
f34d251d
XG
1886/*
1887 * NOTE: we should pay more attention on the zapped-obsolete page
1888 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1889 * since it has been deleted from active_mmu_pages but still can be found
1890 * at hast list.
1891 *
1892 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1893 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1894 * all the obsolete pages.
1895 */
1044b030
TY
1896#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1897 hlist_for_each_entry(_sp, \
1898 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1899 if ((_sp)->gfn != (_gfn)) {} else
1900
1901#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1902 for_each_gfn_sp(_kvm, _sp, _gfn) \
1903 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1904
f918b443 1905/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1906static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1907 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1908{
5b7e0102 1909 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1910 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1911 return 1;
1912 }
1913
f918b443 1914 if (clear_unsync)
1d9dc7e0 1915 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1916
a4a8e6f7 1917 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1918 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1919 return 1;
1920 }
1921
77c3913b 1922 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1923 return 0;
1924}
1925
1d9dc7e0
XG
1926static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1927 struct kvm_mmu_page *sp)
1928{
d98ba053 1929 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1930 int ret;
1931
d98ba053 1932 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1933 if (ret)
d98ba053
XG
1934 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1935
1d9dc7e0
XG
1936 return ret;
1937}
1938
e37fa785
XG
1939#ifdef CONFIG_KVM_MMU_AUDIT
1940#include "mmu_audit.c"
1941#else
1942static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1943static void mmu_audit_disable(void) { }
1944#endif
1945
d98ba053
XG
1946static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1947 struct list_head *invalid_list)
1d9dc7e0 1948{
d98ba053 1949 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1950}
1951
9f1a122f
XG
1952/* @gfn should be write-protected at the call site */
1953static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1954{
9f1a122f 1955 struct kvm_mmu_page *s;
d98ba053 1956 LIST_HEAD(invalid_list);
9f1a122f
XG
1957 bool flush = false;
1958
b67bfe0d 1959 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1960 if (!s->unsync)
9f1a122f
XG
1961 continue;
1962
1963 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1964 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1965 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1966 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1967 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1968 continue;
1969 }
9f1a122f
XG
1970 flush = true;
1971 }
1972
d98ba053 1973 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1974 if (flush)
77c3913b 1975 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1976}
1977
60c8aec6
MT
1978struct mmu_page_path {
1979 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1980 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1981};
1982
60c8aec6
MT
1983#define for_each_sp(pvec, sp, parents, i) \
1984 for (i = mmu_pages_next(&pvec, &parents, -1), \
1985 sp = pvec.page[i].sp; \
1986 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1987 i = mmu_pages_next(&pvec, &parents, i))
1988
cded19f3
HE
1989static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1990 struct mmu_page_path *parents,
1991 int i)
60c8aec6
MT
1992{
1993 int n;
1994
1995 for (n = i+1; n < pvec->nr; n++) {
1996 struct kvm_mmu_page *sp = pvec->page[n].sp;
1997
1998 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1999 parents->idx[0] = pvec->page[n].idx;
2000 return n;
2001 }
2002
2003 parents->parent[sp->role.level-2] = sp;
2004 parents->idx[sp->role.level-1] = pvec->page[n].idx;
2005 }
2006
2007 return n;
2008}
2009
cded19f3 2010static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2011{
60c8aec6
MT
2012 struct kvm_mmu_page *sp;
2013 unsigned int level = 0;
2014
2015 do {
2016 unsigned int idx = parents->idx[level];
4731d4c7 2017
60c8aec6
MT
2018 sp = parents->parent[level];
2019 if (!sp)
2020 return;
2021
fd951457 2022 clear_unsync_child_bit(sp, idx);
60c8aec6
MT
2023 level++;
2024 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2025}
2026
60c8aec6
MT
2027static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2028 struct mmu_page_path *parents,
2029 struct kvm_mmu_pages *pvec)
4731d4c7 2030{
60c8aec6
MT
2031 parents->parent[parent->role.level-1] = NULL;
2032 pvec->nr = 0;
2033}
4731d4c7 2034
60c8aec6
MT
2035static void mmu_sync_children(struct kvm_vcpu *vcpu,
2036 struct kvm_mmu_page *parent)
2037{
2038 int i;
2039 struct kvm_mmu_page *sp;
2040 struct mmu_page_path parents;
2041 struct kvm_mmu_pages pages;
d98ba053 2042 LIST_HEAD(invalid_list);
60c8aec6
MT
2043
2044 kvm_mmu_pages_init(parent, &parents, &pages);
2045 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2046 bool protected = false;
b1a36821
MT
2047
2048 for_each_sp(pages, sp, parents, i)
54bf36aa 2049 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2050
2051 if (protected)
2052 kvm_flush_remote_tlbs(vcpu->kvm);
2053
60c8aec6 2054 for_each_sp(pages, sp, parents, i) {
d98ba053 2055 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2056 mmu_pages_clear_parents(&parents);
2057 }
d98ba053 2058 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2059 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2060 kvm_mmu_pages_init(parent, &parents, &pages);
2061 }
4731d4c7
MT
2062}
2063
a30f47cb
XG
2064static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2065{
e5691a81 2066 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2067}
2068
2069static void clear_sp_write_flooding_count(u64 *spte)
2070{
2071 struct kvm_mmu_page *sp = page_header(__pa(spte));
2072
2073 __clear_sp_write_flooding_count(sp);
2074}
2075
5304b8d3
XG
2076static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2077{
2078 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2079}
2080
cea0f0e7
AK
2081static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2082 gfn_t gfn,
2083 gva_t gaddr,
2084 unsigned level,
f6e2c02b 2085 int direct,
bb11c6c9 2086 unsigned access)
cea0f0e7
AK
2087{
2088 union kvm_mmu_page_role role;
cea0f0e7 2089 unsigned quadrant;
9f1a122f 2090 struct kvm_mmu_page *sp;
9f1a122f 2091 bool need_sync = false;
cea0f0e7 2092
a770f6f2 2093 role = vcpu->arch.mmu.base_role;
cea0f0e7 2094 role.level = level;
f6e2c02b 2095 role.direct = direct;
84b0c8c6 2096 if (role.direct)
5b7e0102 2097 role.cr4_pae = 0;
41074d07 2098 role.access = access;
c5a78f2b
JR
2099 if (!vcpu->arch.mmu.direct_map
2100 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2101 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2102 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2103 role.quadrant = quadrant;
2104 }
b67bfe0d 2105 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2106 if (is_obsolete_sp(vcpu->kvm, sp))
2107 continue;
2108
7ae680eb
XG
2109 if (!need_sync && sp->unsync)
2110 need_sync = true;
4731d4c7 2111
7ae680eb
XG
2112 if (sp->role.word != role.word)
2113 continue;
4731d4c7 2114
7ae680eb
XG
2115 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2116 break;
e02aa901 2117
98bba238 2118 if (sp->unsync_children)
a8eeb04a 2119 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2120
a30f47cb 2121 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2122 trace_kvm_mmu_get_page(sp, false);
2123 return sp;
2124 }
47005792 2125
dfc5aa00 2126 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2127
2128 sp = kvm_mmu_alloc_page(vcpu, direct);
2129
4db35314
AK
2130 sp->gfn = gfn;
2131 sp->role = role;
7ae680eb
XG
2132 hlist_add_head(&sp->hash_link,
2133 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2134 if (!direct) {
54bf36aa 2135 if (rmap_write_protect(vcpu, gfn))
b1a36821 2136 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2137 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2138 kvm_sync_pages(vcpu, gfn);
2139
3ed1a478 2140 account_shadowed(vcpu->kvm, sp);
4731d4c7 2141 }
5304b8d3 2142 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2143 clear_page(sp->spt);
f691fe1d 2144 trace_kvm_mmu_get_page(sp, true);
4db35314 2145 return sp;
cea0f0e7
AK
2146}
2147
2d11123a
AK
2148static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2149 struct kvm_vcpu *vcpu, u64 addr)
2150{
2151 iterator->addr = addr;
2152 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2153 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2154
2155 if (iterator->level == PT64_ROOT_LEVEL &&
2156 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2157 !vcpu->arch.mmu.direct_map)
2158 --iterator->level;
2159
2d11123a
AK
2160 if (iterator->level == PT32E_ROOT_LEVEL) {
2161 iterator->shadow_addr
2162 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2163 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2164 --iterator->level;
2165 if (!iterator->shadow_addr)
2166 iterator->level = 0;
2167 }
2168}
2169
2170static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2171{
2172 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2173 return false;
4d88954d 2174
2d11123a
AK
2175 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2176 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2177 return true;
2178}
2179
c2a2ac2b
XG
2180static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2181 u64 spte)
2d11123a 2182{
c2a2ac2b 2183 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2184 iterator->level = 0;
2185 return;
2186 }
2187
c2a2ac2b 2188 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2189 --iterator->level;
2190}
2191
c2a2ac2b
XG
2192static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2193{
2194 return __shadow_walk_next(iterator, *iterator->sptep);
2195}
2196
98bba238
TY
2197static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2198 struct kvm_mmu_page *sp)
32ef26a3
AK
2199{
2200 u64 spte;
2201
7a1638ce
YZ
2202 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2203 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2204
24db2734 2205 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2206 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2207
1df9f2dc 2208 mmu_spte_set(sptep, spte);
98bba238
TY
2209
2210 mmu_page_add_parent_pte(vcpu, sp, sptep);
2211
2212 if (sp->unsync_children || sp->unsync)
2213 mark_unsync(sptep);
32ef26a3
AK
2214}
2215
a357bd22
AK
2216static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2217 unsigned direct_access)
2218{
2219 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2220 struct kvm_mmu_page *child;
2221
2222 /*
2223 * For the direct sp, if the guest pte's dirty bit
2224 * changed form clean to dirty, it will corrupt the
2225 * sp's access: allow writable in the read-only sp,
2226 * so we should update the spte at this point to get
2227 * a new sp with the correct access.
2228 */
2229 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2230 if (child->role.access == direct_access)
2231 return;
2232
bcdd9a93 2233 drop_parent_pte(child, sptep);
a357bd22
AK
2234 kvm_flush_remote_tlbs(vcpu->kvm);
2235 }
2236}
2237
505aef8f 2238static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2239 u64 *spte)
2240{
2241 u64 pte;
2242 struct kvm_mmu_page *child;
2243
2244 pte = *spte;
2245 if (is_shadow_present_pte(pte)) {
505aef8f 2246 if (is_last_spte(pte, sp->role.level)) {
c3707958 2247 drop_spte(kvm, spte);
505aef8f
XG
2248 if (is_large_pte(pte))
2249 --kvm->stat.lpages;
2250 } else {
38e3b2b2 2251 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2252 drop_parent_pte(child, spte);
38e3b2b2 2253 }
505aef8f
XG
2254 return true;
2255 }
2256
2257 if (is_mmio_spte(pte))
ce88decf 2258 mmu_spte_clear_no_track(spte);
c3707958 2259
505aef8f 2260 return false;
38e3b2b2
XG
2261}
2262
90cb0529 2263static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2264 struct kvm_mmu_page *sp)
a436036b 2265{
697fe2e2 2266 unsigned i;
697fe2e2 2267
38e3b2b2
XG
2268 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2269 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2270}
2271
31aa2b44 2272static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2273{
1e3f42f0
TY
2274 u64 *sptep;
2275 struct rmap_iterator iter;
a436036b 2276
018aabb5 2277 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2278 drop_parent_pte(sp, sptep);
31aa2b44
AK
2279}
2280
60c8aec6 2281static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2282 struct kvm_mmu_page *parent,
2283 struct list_head *invalid_list)
4731d4c7 2284{
60c8aec6
MT
2285 int i, zapped = 0;
2286 struct mmu_page_path parents;
2287 struct kvm_mmu_pages pages;
4731d4c7 2288
60c8aec6 2289 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2290 return 0;
60c8aec6
MT
2291
2292 kvm_mmu_pages_init(parent, &parents, &pages);
2293 while (mmu_unsync_walk(parent, &pages)) {
2294 struct kvm_mmu_page *sp;
2295
2296 for_each_sp(pages, sp, parents, i) {
7775834a 2297 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2298 mmu_pages_clear_parents(&parents);
77662e00 2299 zapped++;
60c8aec6 2300 }
60c8aec6
MT
2301 kvm_mmu_pages_init(parent, &parents, &pages);
2302 }
2303
2304 return zapped;
4731d4c7
MT
2305}
2306
7775834a
XG
2307static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2308 struct list_head *invalid_list)
31aa2b44 2309{
4731d4c7 2310 int ret;
f691fe1d 2311
7775834a 2312 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2313 ++kvm->stat.mmu_shadow_zapped;
7775834a 2314 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2315 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2316 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2317
f6e2c02b 2318 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2319 unaccount_shadowed(kvm, sp);
5304b8d3 2320
4731d4c7
MT
2321 if (sp->unsync)
2322 kvm_unlink_unsync_page(kvm, sp);
4db35314 2323 if (!sp->root_count) {
54a4f023
GJ
2324 /* Count self */
2325 ret++;
7775834a 2326 list_move(&sp->link, invalid_list);
aa6bd187 2327 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2328 } else {
5b5c6a5a 2329 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2330
2331 /*
2332 * The obsolete pages can not be used on any vcpus.
2333 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2334 */
2335 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2336 kvm_reload_remote_mmus(kvm);
2e53d63a 2337 }
7775834a
XG
2338
2339 sp->role.invalid = 1;
4731d4c7 2340 return ret;
a436036b
AK
2341}
2342
7775834a
XG
2343static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2344 struct list_head *invalid_list)
2345{
945315b9 2346 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2347
2348 if (list_empty(invalid_list))
2349 return;
2350
c142786c
AK
2351 /*
2352 * wmb: make sure everyone sees our modifications to the page tables
2353 * rmb: make sure we see changes to vcpu->mode
2354 */
2355 smp_mb();
4f022648 2356
c142786c
AK
2357 /*
2358 * Wait for all vcpus to exit guest mode and/or lockless shadow
2359 * page table walks.
2360 */
2361 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2362
945315b9 2363 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2364 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2365 kvm_mmu_free_page(sp);
945315b9 2366 }
7775834a
XG
2367}
2368
5da59607
TY
2369static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2370 struct list_head *invalid_list)
2371{
2372 struct kvm_mmu_page *sp;
2373
2374 if (list_empty(&kvm->arch.active_mmu_pages))
2375 return false;
2376
d74c0e6b
GT
2377 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2378 struct kvm_mmu_page, link);
5da59607
TY
2379 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2380
2381 return true;
2382}
2383
82ce2c96
IE
2384/*
2385 * Changing the number of mmu pages allocated to the vm
49d5ca26 2386 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2387 */
49d5ca26 2388void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2389{
d98ba053 2390 LIST_HEAD(invalid_list);
82ce2c96 2391
b34cb590
TY
2392 spin_lock(&kvm->mmu_lock);
2393
49d5ca26 2394 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2395 /* Need to free some mmu pages to achieve the goal. */
2396 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2397 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2398 break;
82ce2c96 2399
aa6bd187 2400 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2401 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2402 }
82ce2c96 2403
49d5ca26 2404 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2405
2406 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2407}
2408
1cb3f3ae 2409int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2410{
4db35314 2411 struct kvm_mmu_page *sp;
d98ba053 2412 LIST_HEAD(invalid_list);
a436036b
AK
2413 int r;
2414
9ad17b10 2415 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2416 r = 0;
1cb3f3ae 2417 spin_lock(&kvm->mmu_lock);
b67bfe0d 2418 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2419 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2420 sp->role.word);
2421 r = 1;
f41d335a 2422 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2423 }
d98ba053 2424 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2425 spin_unlock(&kvm->mmu_lock);
2426
a436036b 2427 return r;
cea0f0e7 2428}
1cb3f3ae 2429EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2430
9cf5cf5a
XG
2431static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2432{
2433 trace_kvm_mmu_unsync_page(sp);
2434 ++vcpu->kvm->stat.mmu_unsync;
2435 sp->unsync = 1;
2436
2437 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2438}
2439
2440static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2441{
4731d4c7 2442 struct kvm_mmu_page *s;
9cf5cf5a 2443
b67bfe0d 2444 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2445 if (s->unsync)
4731d4c7 2446 continue;
9cf5cf5a
XG
2447 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2448 __kvm_unsync_page(vcpu, s);
4731d4c7 2449 }
4731d4c7
MT
2450}
2451
3d0c27ad
XG
2452static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2453 bool can_unsync)
4731d4c7 2454{
9cf5cf5a 2455 struct kvm_mmu_page *s;
9cf5cf5a
XG
2456 bool need_unsync = false;
2457
3d0c27ad
XG
2458 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2459 return true;
2460
b67bfe0d 2461 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677 2462 if (!can_unsync)
3d0c27ad 2463 return true;
36a2e677 2464
9cf5cf5a 2465 if (s->role.level != PT_PAGE_TABLE_LEVEL)
3d0c27ad 2466 return true;
9cf5cf5a 2467
9bb4f6b1 2468 if (!s->unsync)
9cf5cf5a 2469 need_unsync = true;
4731d4c7 2470 }
9cf5cf5a
XG
2471 if (need_unsync)
2472 kvm_unsync_pages(vcpu, gfn);
3d0c27ad
XG
2473
2474 return false;
4731d4c7
MT
2475}
2476
ba049e93 2477static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2478{
2479 if (pfn_valid(pfn))
2480 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2481
2482 return true;
2483}
2484
d555c333 2485static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2486 unsigned pte_access, int level,
ba049e93 2487 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2488 bool can_unsync, bool host_writable)
1c4f1fd6 2489{
6e7d0354 2490 u64 spte;
1e73f9dd 2491 int ret = 0;
64d4d521 2492
54bf36aa 2493 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2494 return 0;
2495
982c2565 2496 spte = PT_PRESENT_MASK;
947da538 2497 if (!speculative)
3201b5d9 2498 spte |= shadow_accessed_mask;
640d9b0d 2499
7b52345e
SY
2500 if (pte_access & ACC_EXEC_MASK)
2501 spte |= shadow_x_mask;
2502 else
2503 spte |= shadow_nx_mask;
49fde340 2504
1c4f1fd6 2505 if (pte_access & ACC_USER_MASK)
7b52345e 2506 spte |= shadow_user_mask;
49fde340 2507
852e3c19 2508 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2509 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2510 if (tdp_enabled)
4b12f0de 2511 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2512 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2513
9bdbba13 2514 if (host_writable)
1403283a 2515 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2516 else
2517 pte_access &= ~ACC_WRITE_MASK;
1403283a 2518
35149e21 2519 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2520
c2288505 2521 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2522
c2193463 2523 /*
7751babd
XG
2524 * Other vcpu creates new sp in the window between
2525 * mapping_level() and acquiring mmu-lock. We can
2526 * allow guest to retry the access, the mapping can
2527 * be fixed if guest refault.
c2193463 2528 */
852e3c19 2529 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2530 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2531 goto done;
38187c83 2532
49fde340 2533 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2534
ecc5589f
MT
2535 /*
2536 * Optimization: for pte sync, if spte was writable the hash
2537 * lookup is unnecessary (and expensive). Write protection
2538 * is responsibility of mmu_get_page / kvm_sync_page.
2539 * Same reasoning can be applied to dirty page accounting.
2540 */
8dae4445 2541 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2542 goto set_pte;
2543
4731d4c7 2544 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2545 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2546 __func__, gfn);
1e73f9dd 2547 ret = 1;
1c4f1fd6 2548 pte_access &= ~ACC_WRITE_MASK;
49fde340 2549 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2550 }
2551 }
2552
9b51a630 2553 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2554 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2555 spte |= shadow_dirty_mask;
2556 }
1c4f1fd6 2557
38187c83 2558set_pte:
6e7d0354 2559 if (mmu_spte_update(sptep, spte))
b330aa0c 2560 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2561done:
1e73f9dd
MT
2562 return ret;
2563}
2564
029499b4 2565static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2566 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2567 bool speculative, bool host_writable)
1e73f9dd
MT
2568{
2569 int was_rmapped = 0;
53a27b39 2570 int rmap_count;
029499b4 2571 bool emulate = false;
1e73f9dd 2572
f7616203
XG
2573 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2574 *sptep, write_fault, gfn);
1e73f9dd 2575
afd28fe1 2576 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2577 /*
2578 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2579 * the parent of the now unreachable PTE.
2580 */
852e3c19
JR
2581 if (level > PT_PAGE_TABLE_LEVEL &&
2582 !is_large_pte(*sptep)) {
1e73f9dd 2583 struct kvm_mmu_page *child;
d555c333 2584 u64 pte = *sptep;
1e73f9dd
MT
2585
2586 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2587 drop_parent_pte(child, sptep);
3be2264b 2588 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2589 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2590 pgprintk("hfn old %llx new %llx\n",
d555c333 2591 spte_to_pfn(*sptep), pfn);
c3707958 2592 drop_spte(vcpu->kvm, sptep);
91546356 2593 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2594 } else
2595 was_rmapped = 1;
1e73f9dd 2596 }
852e3c19 2597
c2288505
XG
2598 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2599 true, host_writable)) {
1e73f9dd 2600 if (write_fault)
029499b4 2601 emulate = true;
77c3913b 2602 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2603 }
1e73f9dd 2604
029499b4
TY
2605 if (unlikely(is_mmio_spte(*sptep)))
2606 emulate = true;
ce88decf 2607
d555c333 2608 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2609 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2610 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2611 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2612 *sptep, sptep);
d555c333 2613 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2614 ++vcpu->kvm->stat.lpages;
2615
ffb61bb3 2616 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2617 if (!was_rmapped) {
2618 rmap_count = rmap_add(vcpu, sptep, gfn);
2619 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2620 rmap_recycle(vcpu, sptep, gfn);
2621 }
1c4f1fd6 2622 }
cb9aaa30 2623
f3ac1a4b 2624 kvm_release_pfn_clean(pfn);
029499b4
TY
2625
2626 return emulate;
1c4f1fd6
AK
2627}
2628
ba049e93 2629static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2630 bool no_dirty_log)
2631{
2632 struct kvm_memory_slot *slot;
957ed9ef 2633
5d163b1c 2634 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2635 if (!slot)
6c8ee57b 2636 return KVM_PFN_ERR_FAULT;
957ed9ef 2637
037d92dc 2638 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2639}
2640
2641static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2642 struct kvm_mmu_page *sp,
2643 u64 *start, u64 *end)
2644{
2645 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2646 struct kvm_memory_slot *slot;
957ed9ef
XG
2647 unsigned access = sp->role.access;
2648 int i, ret;
2649 gfn_t gfn;
2650
2651 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2652 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2653 if (!slot)
957ed9ef
XG
2654 return -1;
2655
d9ef13c2 2656 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2657 if (ret <= 0)
2658 return -1;
2659
2660 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2661 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2662 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2663
2664 return 0;
2665}
2666
2667static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2668 struct kvm_mmu_page *sp, u64 *sptep)
2669{
2670 u64 *spte, *start = NULL;
2671 int i;
2672
2673 WARN_ON(!sp->role.direct);
2674
2675 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2676 spte = sp->spt + i;
2677
2678 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2679 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2680 if (!start)
2681 continue;
2682 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2683 break;
2684 start = NULL;
2685 } else if (!start)
2686 start = spte;
2687 }
2688}
2689
2690static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2691{
2692 struct kvm_mmu_page *sp;
2693
2694 /*
2695 * Since it's no accessed bit on EPT, it's no way to
2696 * distinguish between actually accessed translations
2697 * and prefetched, so disable pte prefetch if EPT is
2698 * enabled.
2699 */
2700 if (!shadow_accessed_mask)
2701 return;
2702
2703 sp = page_header(__pa(sptep));
2704 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2705 return;
2706
2707 __direct_pte_prefetch(vcpu, sp, sptep);
2708}
2709
7ee0e5b2 2710static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2711 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2712{
9f652d21 2713 struct kvm_shadow_walk_iterator iterator;
140754bc 2714 struct kvm_mmu_page *sp;
b90a0e6c 2715 int emulate = 0;
140754bc 2716 gfn_t pseudo_gfn;
6aa8b732 2717
989c6b34
MT
2718 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2719 return 0;
2720
9f652d21 2721 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2722 if (iterator.level == level) {
029499b4
TY
2723 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2724 write, level, gfn, pfn, prefault,
2725 map_writable);
957ed9ef 2726 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2727 ++vcpu->stat.pf_fixed;
2728 break;
6aa8b732
AK
2729 }
2730
404381c5 2731 drop_large_spte(vcpu, iterator.sptep);
c3707958 2732 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2733 u64 base_addr = iterator.addr;
2734
2735 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2736 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2737 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2738 iterator.level - 1, 1, ACC_ALL);
140754bc 2739
98bba238 2740 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2741 }
2742 }
b90a0e6c 2743 return emulate;
6aa8b732
AK
2744}
2745
77db5cbd 2746static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2747{
77db5cbd
HY
2748 siginfo_t info;
2749
2750 info.si_signo = SIGBUS;
2751 info.si_errno = 0;
2752 info.si_code = BUS_MCEERR_AR;
2753 info.si_addr = (void __user *)address;
2754 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2755
77db5cbd 2756 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2757}
2758
ba049e93 2759static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2760{
4d8b81ab
XG
2761 /*
2762 * Do not cache the mmio info caused by writing the readonly gfn
2763 * into the spte otherwise read access on readonly gfn also can
2764 * caused mmio page fault and treat it as mmio access.
2765 * Return 1 to tell kvm to emulate it.
2766 */
2767 if (pfn == KVM_PFN_ERR_RO_FAULT)
2768 return 1;
2769
e6c1502b 2770 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2771 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2772 return 0;
d7c55201 2773 }
edba23e5 2774
d7c55201 2775 return -EFAULT;
bf998156
HY
2776}
2777
936a5fe6 2778static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2779 gfn_t *gfnp, kvm_pfn_t *pfnp,
2780 int *levelp)
936a5fe6 2781{
ba049e93 2782 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2783 gfn_t gfn = *gfnp;
2784 int level = *levelp;
2785
2786 /*
2787 * Check if it's a transparent hugepage. If this would be an
2788 * hugetlbfs page, level wouldn't be set to
2789 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2790 * here.
2791 */
bf4bea8e 2792 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2793 level == PT_PAGE_TABLE_LEVEL &&
2794 PageTransCompound(pfn_to_page(pfn)) &&
92f94f1e 2795 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2796 unsigned long mask;
2797 /*
2798 * mmu_notifier_retry was successful and we hold the
2799 * mmu_lock here, so the pmd can't become splitting
2800 * from under us, and in turn
2801 * __split_huge_page_refcount() can't run from under
2802 * us and we can safely transfer the refcount from
2803 * PG_tail to PG_head as we switch the pfn to tail to
2804 * head.
2805 */
2806 *levelp = level = PT_DIRECTORY_LEVEL;
2807 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2808 VM_BUG_ON((gfn & mask) != (pfn & mask));
2809 if (pfn & mask) {
2810 gfn &= ~mask;
2811 *gfnp = gfn;
2812 kvm_release_pfn_clean(pfn);
2813 pfn &= ~mask;
c3586667 2814 kvm_get_pfn(pfn);
936a5fe6
AA
2815 *pfnp = pfn;
2816 }
2817 }
2818}
2819
d7c55201 2820static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2821 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201
XG
2822{
2823 bool ret = true;
2824
2825 /* The pfn is invalid, report the error! */
81c52c56 2826 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2827 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2828 goto exit;
2829 }
2830
ce88decf 2831 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2832 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2833
2834 ret = false;
2835exit:
2836 return ret;
2837}
2838
e5552fd2 2839static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2840{
1c118b82
XG
2841 /*
2842 * Do not fix the mmio spte with invalid generation number which
2843 * need to be updated by slow page fault path.
2844 */
2845 if (unlikely(error_code & PFERR_RSVD_MASK))
2846 return false;
2847
c7ba5b48
XG
2848 /*
2849 * #PF can be fast only if the shadow page table is present and it
2850 * is caused by write-protect, that means we just need change the
2851 * W bit of the spte which can be done out of mmu-lock.
2852 */
2853 if (!(error_code & PFERR_PRESENT_MASK) ||
2854 !(error_code & PFERR_WRITE_MASK))
2855 return false;
2856
2857 return true;
2858}
2859
2860static bool
92a476cb
XG
2861fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2862 u64 *sptep, u64 spte)
c7ba5b48 2863{
c7ba5b48
XG
2864 gfn_t gfn;
2865
2866 WARN_ON(!sp->role.direct);
2867
2868 /*
2869 * The gfn of direct spte is stable since it is calculated
2870 * by sp->gfn.
2871 */
2872 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2873
9b51a630
KH
2874 /*
2875 * Theoretically we could also set dirty bit (and flush TLB) here in
2876 * order to eliminate unnecessary PML logging. See comments in
2877 * set_spte. But fast_page_fault is very unlikely to happen with PML
2878 * enabled, so we do not do this. This might result in the same GPA
2879 * to be logged in PML buffer again when the write really happens, and
2880 * eventually to be called by mark_page_dirty twice. But it's also no
2881 * harm. This also avoids the TLB flush needed after setting dirty bit
2882 * so non-PML cases won't be impacted.
2883 *
2884 * Compare with set_spte where instead shadow_dirty_mask is set.
2885 */
c7ba5b48 2886 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2887 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2888
2889 return true;
2890}
2891
2892/*
2893 * Return value:
2894 * - true: let the vcpu to access on the same address again.
2895 * - false: let the real page fault path to fix it.
2896 */
2897static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2898 u32 error_code)
2899{
2900 struct kvm_shadow_walk_iterator iterator;
92a476cb 2901 struct kvm_mmu_page *sp;
c7ba5b48
XG
2902 bool ret = false;
2903 u64 spte = 0ull;
2904
37f6a4e2
MT
2905 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2906 return false;
2907
e5552fd2 2908 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2909 return false;
2910
2911 walk_shadow_page_lockless_begin(vcpu);
2912 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2913 if (!is_shadow_present_pte(spte) || iterator.level < level)
2914 break;
2915
2916 /*
2917 * If the mapping has been changed, let the vcpu fault on the
2918 * same address again.
2919 */
afd28fe1 2920 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2921 ret = true;
2922 goto exit;
2923 }
2924
92a476cb
XG
2925 sp = page_header(__pa(iterator.sptep));
2926 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2927 goto exit;
2928
2929 /*
2930 * Check if it is a spurious fault caused by TLB lazily flushed.
2931 *
2932 * Need not check the access of upper level table entries since
2933 * they are always ACC_ALL.
2934 */
2935 if (is_writable_pte(spte)) {
2936 ret = true;
2937 goto exit;
2938 }
2939
2940 /*
2941 * Currently, to simplify the code, only the spte write-protected
2942 * by dirty-log can be fast fixed.
2943 */
2944 if (!spte_is_locklessly_modifiable(spte))
2945 goto exit;
2946
c126d94f
XG
2947 /*
2948 * Do not fix write-permission on the large spte since we only dirty
2949 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2950 * that means other pages are missed if its slot is dirty-logged.
2951 *
2952 * Instead, we let the slow page fault path create a normal spte to
2953 * fix the access.
2954 *
2955 * See the comments in kvm_arch_commit_memory_region().
2956 */
2957 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2958 goto exit;
2959
c7ba5b48
XG
2960 /*
2961 * Currently, fast page fault only works for direct mapping since
2962 * the gfn is not stable for indirect shadow page.
2963 * See Documentation/virtual/kvm/locking.txt to get more detail.
2964 */
92a476cb 2965 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2966exit:
a72faf25
XG
2967 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2968 spte, ret);
c7ba5b48
XG
2969 walk_shadow_page_lockless_end(vcpu);
2970
2971 return ret;
2972}
2973
78b2c54a 2974static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 2975 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 2976static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2977
c7ba5b48
XG
2978static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2979 gfn_t gfn, bool prefault)
10589a46
MT
2980{
2981 int r;
852e3c19 2982 int level;
fd136902 2983 bool force_pt_level = false;
ba049e93 2984 kvm_pfn_t pfn;
e930bffe 2985 unsigned long mmu_seq;
c7ba5b48 2986 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2987
fd136902 2988 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 2989 if (likely(!force_pt_level)) {
936a5fe6
AA
2990 /*
2991 * This path builds a PAE pagetable - so we can map
2992 * 2mb pages at maximum. Therefore check if the level
2993 * is larger than that.
2994 */
2995 if (level > PT_DIRECTORY_LEVEL)
2996 level = PT_DIRECTORY_LEVEL;
852e3c19 2997
936a5fe6 2998 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 2999 }
05da4558 3000
c7ba5b48
XG
3001 if (fast_page_fault(vcpu, v, level, error_code))
3002 return 0;
3003
e930bffe 3004 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3005 smp_rmb();
060c2abe 3006
78b2c54a 3007 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3008 return 0;
aaee2c94 3009
d7c55201
XG
3010 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3011 return r;
d196e343 3012
aaee2c94 3013 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3014 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3015 goto out_unlock;
450e0b41 3016 make_mmu_pages_available(vcpu);
936a5fe6
AA
3017 if (likely(!force_pt_level))
3018 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3019 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3020 spin_unlock(&vcpu->kvm->mmu_lock);
3021
10589a46 3022 return r;
e930bffe
AA
3023
3024out_unlock:
3025 spin_unlock(&vcpu->kvm->mmu_lock);
3026 kvm_release_pfn_clean(pfn);
3027 return 0;
10589a46
MT
3028}
3029
3030
17ac10ad
AK
3031static void mmu_free_roots(struct kvm_vcpu *vcpu)
3032{
3033 int i;
4db35314 3034 struct kvm_mmu_page *sp;
d98ba053 3035 LIST_HEAD(invalid_list);
17ac10ad 3036
ad312c7c 3037 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3038 return;
35af577a 3039
81407ca5
JR
3040 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3041 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3042 vcpu->arch.mmu.direct_map)) {
ad312c7c 3043 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3044
35af577a 3045 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3046 sp = page_header(root);
3047 --sp->root_count;
d98ba053
XG
3048 if (!sp->root_count && sp->role.invalid) {
3049 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3050 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3051 }
aaee2c94 3052 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3053 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3054 return;
3055 }
35af577a
GN
3056
3057 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3058 for (i = 0; i < 4; ++i) {
ad312c7c 3059 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3060
417726a3 3061 if (root) {
417726a3 3062 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3063 sp = page_header(root);
3064 --sp->root_count;
2e53d63a 3065 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3066 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3067 &invalid_list);
417726a3 3068 }
ad312c7c 3069 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3070 }
d98ba053 3071 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3072 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3073 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3074}
3075
8986ecc0
MT
3076static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3077{
3078 int ret = 0;
3079
3080 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3081 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3082 ret = 1;
3083 }
3084
3085 return ret;
3086}
3087
651dd37a
JR
3088static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3089{
3090 struct kvm_mmu_page *sp;
7ebaf15e 3091 unsigned i;
651dd37a
JR
3092
3093 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3094 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3095 make_mmu_pages_available(vcpu);
bb11c6c9 3096 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3097 ++sp->root_count;
3098 spin_unlock(&vcpu->kvm->mmu_lock);
3099 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3100 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3101 for (i = 0; i < 4; ++i) {
3102 hpa_t root = vcpu->arch.mmu.pae_root[i];
3103
fa4a2c08 3104 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3105 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3106 make_mmu_pages_available(vcpu);
649497d1 3107 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3108 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3109 root = __pa(sp->spt);
3110 ++sp->root_count;
3111 spin_unlock(&vcpu->kvm->mmu_lock);
3112 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3113 }
6292757f 3114 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3115 } else
3116 BUG();
3117
3118 return 0;
3119}
3120
3121static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3122{
4db35314 3123 struct kvm_mmu_page *sp;
81407ca5
JR
3124 u64 pdptr, pm_mask;
3125 gfn_t root_gfn;
3126 int i;
3bb65a22 3127
5777ed34 3128 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3129
651dd37a
JR
3130 if (mmu_check_root(vcpu, root_gfn))
3131 return 1;
3132
3133 /*
3134 * Do we shadow a long mode page table? If so we need to
3135 * write-protect the guests page table root.
3136 */
3137 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3138 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3139
fa4a2c08 3140 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3141
8facbbff 3142 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3143 make_mmu_pages_available(vcpu);
651dd37a 3144 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3145 0, ACC_ALL);
4db35314
AK
3146 root = __pa(sp->spt);
3147 ++sp->root_count;
8facbbff 3148 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3149 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3150 return 0;
17ac10ad 3151 }
f87f9288 3152
651dd37a
JR
3153 /*
3154 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3155 * or a PAE 3-level page table. In either case we need to be aware that
3156 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3157 */
81407ca5
JR
3158 pm_mask = PT_PRESENT_MASK;
3159 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3160 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3161
17ac10ad 3162 for (i = 0; i < 4; ++i) {
ad312c7c 3163 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3164
fa4a2c08 3165 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3166 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3167 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3168 if (!is_present_gpte(pdptr)) {
ad312c7c 3169 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3170 continue;
3171 }
6de4f3ad 3172 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3173 if (mmu_check_root(vcpu, root_gfn))
3174 return 1;
5a7388c2 3175 }
8facbbff 3176 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3177 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3178 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3179 0, ACC_ALL);
4db35314
AK
3180 root = __pa(sp->spt);
3181 ++sp->root_count;
8facbbff
AK
3182 spin_unlock(&vcpu->kvm->mmu_lock);
3183
81407ca5 3184 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3185 }
6292757f 3186 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3187
3188 /*
3189 * If we shadow a 32 bit page table with a long mode page
3190 * table we enter this path.
3191 */
3192 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3193 if (vcpu->arch.mmu.lm_root == NULL) {
3194 /*
3195 * The additional page necessary for this is only
3196 * allocated on demand.
3197 */
3198
3199 u64 *lm_root;
3200
3201 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3202 if (lm_root == NULL)
3203 return 1;
3204
3205 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3206
3207 vcpu->arch.mmu.lm_root = lm_root;
3208 }
3209
3210 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3211 }
3212
8986ecc0 3213 return 0;
17ac10ad
AK
3214}
3215
651dd37a
JR
3216static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3217{
3218 if (vcpu->arch.mmu.direct_map)
3219 return mmu_alloc_direct_roots(vcpu);
3220 else
3221 return mmu_alloc_shadow_roots(vcpu);
3222}
3223
0ba73cda
MT
3224static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3225{
3226 int i;
3227 struct kvm_mmu_page *sp;
3228
81407ca5
JR
3229 if (vcpu->arch.mmu.direct_map)
3230 return;
3231
0ba73cda
MT
3232 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3233 return;
6903074c 3234
56f17dd3 3235 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3236 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3237 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3238 hpa_t root = vcpu->arch.mmu.root_hpa;
3239 sp = page_header(root);
3240 mmu_sync_children(vcpu, sp);
0375f7fa 3241 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3242 return;
3243 }
3244 for (i = 0; i < 4; ++i) {
3245 hpa_t root = vcpu->arch.mmu.pae_root[i];
3246
8986ecc0 3247 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3248 root &= PT64_BASE_ADDR_MASK;
3249 sp = page_header(root);
3250 mmu_sync_children(vcpu, sp);
3251 }
3252 }
0375f7fa 3253 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3254}
3255
3256void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3257{
3258 spin_lock(&vcpu->kvm->mmu_lock);
3259 mmu_sync_roots(vcpu);
6cffe8ca 3260 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3261}
bfd0a56b 3262EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3263
1871c602 3264static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3265 u32 access, struct x86_exception *exception)
6aa8b732 3266{
ab9ae313
AK
3267 if (exception)
3268 exception->error_code = 0;
6aa8b732
AK
3269 return vaddr;
3270}
3271
6539e738 3272static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3273 u32 access,
3274 struct x86_exception *exception)
6539e738 3275{
ab9ae313
AK
3276 if (exception)
3277 exception->error_code = 0;
54987b7a 3278 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3279}
3280
d625b155
XG
3281static bool
3282__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3283{
3284 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3285
3286 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3287 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3288}
3289
3290static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3291{
3292 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3293}
3294
3295static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3296{
3297 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3298}
3299
ded58749 3300static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3301{
3302 if (direct)
3303 return vcpu_match_mmio_gpa(vcpu, addr);
3304
3305 return vcpu_match_mmio_gva(vcpu, addr);
3306}
3307
47ab8751
XG
3308/* return true if reserved bit is detected on spte. */
3309static bool
3310walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3311{
3312 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3313 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3314 int root, leaf;
3315 bool reserved = false;
ce88decf 3316
37f6a4e2 3317 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3318 goto exit;
37f6a4e2 3319
ce88decf 3320 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3321
29ecd660
PB
3322 for (shadow_walk_init(&iterator, vcpu, addr),
3323 leaf = root = iterator.level;
47ab8751
XG
3324 shadow_walk_okay(&iterator);
3325 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3326 spte = mmu_spte_get_lockless(iterator.sptep);
3327
3328 sptes[leaf - 1] = spte;
29ecd660 3329 leaf--;
47ab8751 3330
ce88decf
XG
3331 if (!is_shadow_present_pte(spte))
3332 break;
47ab8751
XG
3333
3334 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3335 iterator.level);
47ab8751
XG
3336 }
3337
ce88decf
XG
3338 walk_shadow_page_lockless_end(vcpu);
3339
47ab8751
XG
3340 if (reserved) {
3341 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3342 __func__, addr);
29ecd660 3343 while (root > leaf) {
47ab8751
XG
3344 pr_err("------ spte 0x%llx level %d.\n",
3345 sptes[root - 1], root);
3346 root--;
3347 }
3348 }
3349exit:
3350 *sptep = spte;
3351 return reserved;
ce88decf
XG
3352}
3353
450869d6 3354int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3355{
3356 u64 spte;
47ab8751 3357 bool reserved;
ce88decf 3358
ded58749 3359 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3360 return RET_MMIO_PF_EMULATE;
ce88decf 3361
47ab8751 3362 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3363 if (WARN_ON(reserved))
47ab8751 3364 return RET_MMIO_PF_BUG;
ce88decf
XG
3365
3366 if (is_mmio_spte(spte)) {
3367 gfn_t gfn = get_mmio_spte_gfn(spte);
3368 unsigned access = get_mmio_spte_access(spte);
3369
54bf36aa 3370 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3371 return RET_MMIO_PF_INVALID;
3372
ce88decf
XG
3373 if (direct)
3374 addr = 0;
4f022648
XG
3375
3376 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3377 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3378 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3379 }
3380
ce88decf
XG
3381 /*
3382 * If the page table is zapped by other cpus, let CPU fault again on
3383 * the address.
3384 */
b37fbea6 3385 return RET_MMIO_PF_RETRY;
ce88decf 3386}
450869d6 3387EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3388
3d0c27ad
XG
3389static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3390 u32 error_code, gfn_t gfn)
3391{
3392 if (unlikely(error_code & PFERR_RSVD_MASK))
3393 return false;
3394
3395 if (!(error_code & PFERR_PRESENT_MASK) ||
3396 !(error_code & PFERR_WRITE_MASK))
3397 return false;
3398
3399 /*
3400 * guest is writing the page which is write tracked which can
3401 * not be fixed by page fault handler.
3402 */
3403 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3404 return true;
3405
3406 return false;
3407}
3408
e5691a81
XG
3409static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3410{
3411 struct kvm_shadow_walk_iterator iterator;
3412 u64 spte;
3413
3414 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3415 return;
3416
3417 walk_shadow_page_lockless_begin(vcpu);
3418 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3419 clear_sp_write_flooding_count(iterator.sptep);
3420 if (!is_shadow_present_pte(spte))
3421 break;
3422 }
3423 walk_shadow_page_lockless_end(vcpu);
3424}
3425
6aa8b732 3426static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3427 u32 error_code, bool prefault)
6aa8b732 3428{
3d0c27ad 3429 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3430 int r;
6aa8b732 3431
b8688d51 3432 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3433
3d0c27ad
XG
3434 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3435 return 1;
3436
e2dec939
AK
3437 r = mmu_topup_memory_caches(vcpu);
3438 if (r)
3439 return r;
714b93da 3440
fa4a2c08 3441 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3442
6aa8b732 3443
e833240f 3444 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3445 error_code, gfn, prefault);
6aa8b732
AK
3446}
3447
7e1fbeac 3448static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3449{
3450 struct kvm_arch_async_pf arch;
fb67e14f 3451
7c90705b 3452 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3453 arch.gfn = gfn;
c4806acd 3454 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3455 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3456
54bf36aa 3457 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3458}
3459
3460static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3461{
35754c98 3462 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3463 kvm_event_needs_reinjection(vcpu)))
3464 return false;
3465
3466 return kvm_x86_ops->interrupt_allowed(vcpu);
3467}
3468
78b2c54a 3469static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3470 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3471{
3520469d 3472 struct kvm_memory_slot *slot;
af585b92
GN
3473 bool async;
3474
54bf36aa 3475 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3476 async = false;
3477 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3478 if (!async)
3479 return false; /* *pfn has correct page already */
3480
78b2c54a 3481 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3482 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3483 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3484 trace_kvm_async_pf_doublefault(gva, gfn);
3485 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3486 return true;
3487 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3488 return true;
3489 }
3490
3520469d 3491 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3492 return false;
3493}
3494
6a39bbc5
XG
3495static bool
3496check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3497{
3498 int page_num = KVM_PAGES_PER_HPAGE(level);
3499
3500 gfn &= ~(page_num - 1);
3501
3502 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3503}
3504
56028d08 3505static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3506 bool prefault)
fb72d167 3507{
ba049e93 3508 kvm_pfn_t pfn;
fb72d167 3509 int r;
852e3c19 3510 int level;
cd1872f0 3511 bool force_pt_level;
05da4558 3512 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3513 unsigned long mmu_seq;
612819c3
MT
3514 int write = error_code & PFERR_WRITE_MASK;
3515 bool map_writable;
fb72d167 3516
fa4a2c08 3517 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3518
3d0c27ad
XG
3519 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3520 return 1;
3521
fb72d167
JR
3522 r = mmu_topup_memory_caches(vcpu);
3523 if (r)
3524 return r;
3525
fd136902
TY
3526 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3527 PT_DIRECTORY_LEVEL);
3528 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3529 if (likely(!force_pt_level)) {
6a39bbc5
XG
3530 if (level > PT_DIRECTORY_LEVEL &&
3531 !check_hugepage_cache_consistency(vcpu, gfn, level))
3532 level = PT_DIRECTORY_LEVEL;
936a5fe6 3533 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3534 }
852e3c19 3535
c7ba5b48
XG
3536 if (fast_page_fault(vcpu, gpa, level, error_code))
3537 return 0;
3538
e930bffe 3539 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3540 smp_rmb();
af585b92 3541
78b2c54a 3542 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3543 return 0;
3544
d7c55201
XG
3545 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3546 return r;
3547
fb72d167 3548 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3549 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3550 goto out_unlock;
450e0b41 3551 make_mmu_pages_available(vcpu);
936a5fe6
AA
3552 if (likely(!force_pt_level))
3553 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3554 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3555 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3556
3557 return r;
e930bffe
AA
3558
3559out_unlock:
3560 spin_unlock(&vcpu->kvm->mmu_lock);
3561 kvm_release_pfn_clean(pfn);
3562 return 0;
fb72d167
JR
3563}
3564
8a3c1a33
PB
3565static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3566 struct kvm_mmu *context)
6aa8b732 3567{
6aa8b732 3568 context->page_fault = nonpaging_page_fault;
6aa8b732 3569 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3570 context->sync_page = nonpaging_sync_page;
a7052897 3571 context->invlpg = nonpaging_invlpg;
0f53b5b1 3572 context->update_pte = nonpaging_update_pte;
cea0f0e7 3573 context->root_level = 0;
6aa8b732 3574 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3575 context->root_hpa = INVALID_PAGE;
c5a78f2b 3576 context->direct_map = true;
2d48a985 3577 context->nx = false;
6aa8b732
AK
3578}
3579
d8d173da 3580void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3581{
cea0f0e7 3582 mmu_free_roots(vcpu);
6aa8b732
AK
3583}
3584
5777ed34
JR
3585static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3586{
9f8fe504 3587 return kvm_read_cr3(vcpu);
5777ed34
JR
3588}
3589
6389ee94
AK
3590static void inject_page_fault(struct kvm_vcpu *vcpu,
3591 struct x86_exception *fault)
6aa8b732 3592{
6389ee94 3593 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3594}
3595
54bf36aa 3596static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3597 unsigned access, int *nr_present)
ce88decf
XG
3598{
3599 if (unlikely(is_mmio_spte(*sptep))) {
3600 if (gfn != get_mmio_spte_gfn(*sptep)) {
3601 mmu_spte_clear_no_track(sptep);
3602 return true;
3603 }
3604
3605 (*nr_present)++;
54bf36aa 3606 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3607 return true;
3608 }
3609
3610 return false;
3611}
3612
6fd01b71
AK
3613static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3614{
3615 unsigned index;
3616
3617 index = level - 1;
3618 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3619 return mmu->last_pte_bitmap & (1 << index);
3620}
3621
37406aaa
NHE
3622#define PTTYPE_EPT 18 /* arbitrary */
3623#define PTTYPE PTTYPE_EPT
3624#include "paging_tmpl.h"
3625#undef PTTYPE
3626
6aa8b732
AK
3627#define PTTYPE 64
3628#include "paging_tmpl.h"
3629#undef PTTYPE
3630
3631#define PTTYPE 32
3632#include "paging_tmpl.h"
3633#undef PTTYPE
3634
6dc98b86
XG
3635static void
3636__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3637 struct rsvd_bits_validate *rsvd_check,
3638 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3639 bool pse, bool amd)
82725b20 3640{
82725b20 3641 u64 exb_bit_rsvd = 0;
5f7dde7b 3642 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3643 u64 nonleaf_bit8_rsvd = 0;
82725b20 3644
a0a64f50 3645 rsvd_check->bad_mt_xwr = 0;
25d92081 3646
6dc98b86 3647 if (!nx)
82725b20 3648 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3649 if (!gbpages)
5f7dde7b 3650 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3651
3652 /*
3653 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3654 * leaf entries) on AMD CPUs only.
3655 */
6fec2144 3656 if (amd)
a0c0feb5
PB
3657 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3658
6dc98b86 3659 switch (level) {
82725b20
DE
3660 case PT32_ROOT_LEVEL:
3661 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3662 rsvd_check->rsvd_bits_mask[0][1] = 0;
3663 rsvd_check->rsvd_bits_mask[0][0] = 0;
3664 rsvd_check->rsvd_bits_mask[1][0] =
3665 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3666
6dc98b86 3667 if (!pse) {
a0a64f50 3668 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3669 break;
3670 }
3671
82725b20
DE
3672 if (is_cpuid_PSE36())
3673 /* 36bits PSE 4MB page */
a0a64f50 3674 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3675 else
3676 /* 32 bits PSE 4MB page */
a0a64f50 3677 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3678 break;
3679 case PT32E_ROOT_LEVEL:
a0a64f50 3680 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3681 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3682 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3683 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3684 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3685 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3686 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3687 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3688 rsvd_bits(maxphyaddr, 62) |
3689 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3690 rsvd_check->rsvd_bits_mask[1][0] =
3691 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3692 break;
3693 case PT64_ROOT_LEVEL:
a0a64f50
XG
3694 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3695 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3696 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3697 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3698 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3699 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3700 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3701 rsvd_bits(maxphyaddr, 51);
3702 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3703 rsvd_bits(maxphyaddr, 51);
3704 rsvd_check->rsvd_bits_mask[1][3] =
3705 rsvd_check->rsvd_bits_mask[0][3];
3706 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3707 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3708 rsvd_bits(13, 29);
a0a64f50 3709 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3710 rsvd_bits(maxphyaddr, 51) |
3711 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3712 rsvd_check->rsvd_bits_mask[1][0] =
3713 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3714 break;
3715 }
3716}
3717
6dc98b86
XG
3718static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3719 struct kvm_mmu *context)
3720{
3721 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3722 cpuid_maxphyaddr(vcpu), context->root_level,
3723 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3724 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3725}
3726
81b8eebb
XG
3727static void
3728__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3729 int maxphyaddr, bool execonly)
25d92081 3730{
951f9fd7 3731 u64 bad_mt_xwr;
25d92081 3732
a0a64f50 3733 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3734 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3735 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3736 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3737 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3738 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3739 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3740
3741 /* large page */
a0a64f50
XG
3742 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3743 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3744 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3745 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3746 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3747 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3748
951f9fd7
PB
3749 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3750 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3751 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3752 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3753 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3754 if (!execonly) {
3755 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3756 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3757 }
951f9fd7 3758 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3759}
3760
81b8eebb
XG
3761static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3762 struct kvm_mmu *context, bool execonly)
3763{
3764 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3765 cpuid_maxphyaddr(vcpu), execonly);
3766}
3767
c258b62b
XG
3768/*
3769 * the page table on host is the shadow page table for the page
3770 * table in guest or amd nested guest, its mmu features completely
3771 * follow the features in guest.
3772 */
3773void
3774reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3775{
6fec2144
PB
3776 /*
3777 * Passing "true" to the last argument is okay; it adds a check
3778 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3779 */
c258b62b
XG
3780 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3781 boot_cpu_data.x86_phys_bits,
3782 context->shadow_root_level, context->nx,
6fec2144
PB
3783 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3784 true);
c258b62b
XG
3785}
3786EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3787
6fec2144
PB
3788static inline bool boot_cpu_is_amd(void)
3789{
3790 WARN_ON_ONCE(!tdp_enabled);
3791 return shadow_x_mask == 0;
3792}
3793
c258b62b
XG
3794/*
3795 * the direct page table on host, use as much mmu features as
3796 * possible, however, kvm currently does not do execution-protection.
3797 */
3798static void
3799reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3800 struct kvm_mmu *context)
3801{
6fec2144 3802 if (boot_cpu_is_amd())
c258b62b
XG
3803 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3804 boot_cpu_data.x86_phys_bits,
3805 context->shadow_root_level, false,
6fec2144 3806 cpu_has_gbpages, true, true);
c258b62b
XG
3807 else
3808 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3809 boot_cpu_data.x86_phys_bits,
3810 false);
3811
3812}
3813
3814/*
3815 * as the comments in reset_shadow_zero_bits_mask() except it
3816 * is the shadow page table for intel nested guest.
3817 */
3818static void
3819reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3820 struct kvm_mmu *context, bool execonly)
3821{
3822 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3823 boot_cpu_data.x86_phys_bits, execonly);
3824}
3825
edc90b7d
XG
3826static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3827 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3828{
3829 unsigned bit, byte, pfec;
3830 u8 map;
66386ade 3831 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3832
66386ade 3833 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3834 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3835 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3836 pfec = byte << 1;
3837 map = 0;
3838 wf = pfec & PFERR_WRITE_MASK;
3839 uf = pfec & PFERR_USER_MASK;
3840 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3841 /*
3842 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3843 * subject to SMAP restrictions, and cleared otherwise. The
3844 * bit is only meaningful if the SMAP bit is set in CR4.
3845 */
3846 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3847 for (bit = 0; bit < 8; ++bit) {
3848 x = bit & ACC_EXEC_MASK;
3849 w = bit & ACC_WRITE_MASK;
3850 u = bit & ACC_USER_MASK;
3851
25d92081
YZ
3852 if (!ept) {
3853 /* Not really needed: !nx will cause pte.nx to fault */
3854 x |= !mmu->nx;
3855 /* Allow supervisor writes if !cr0.wp */
3856 w |= !is_write_protection(vcpu) && !uf;
3857 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3858 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3859
3860 /*
3861 * SMAP:kernel-mode data accesses from user-mode
3862 * mappings should fault. A fault is considered
3863 * as a SMAP violation if all of the following
3864 * conditions are ture:
3865 * - X86_CR4_SMAP is set in CR4
3866 * - An user page is accessed
3867 * - Page fault in kernel mode
3868 * - if CPL = 3 or X86_EFLAGS_AC is clear
3869 *
3870 * Here, we cover the first three conditions.
3871 * The fourth is computed dynamically in
3872 * permission_fault() and is in smapf.
3873 *
3874 * Also, SMAP does not affect instruction
3875 * fetches, add the !ff check here to make it
3876 * clearer.
3877 */
3878 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3879 } else
3880 /* Not really needed: no U/S accesses on ept */
3881 u = 1;
97d64b78 3882
97ec8c06
FW
3883 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3884 (smapf && smap);
97d64b78
AK
3885 map |= fault << bit;
3886 }
3887 mmu->permissions[byte] = map;
3888 }
3889}
3890
6fd01b71
AK
3891static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3892{
3893 u8 map;
3894 unsigned level, root_level = mmu->root_level;
3895 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3896
3897 if (root_level == PT32E_ROOT_LEVEL)
3898 --root_level;
3899 /* PT_PAGE_TABLE_LEVEL always terminates */
3900 map = 1 | (1 << ps_set_index);
3901 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3902 if (level <= PT_PDPE_LEVEL
3903 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3904 map |= 1 << (ps_set_index | (level - 1));
3905 }
3906 mmu->last_pte_bitmap = map;
3907}
3908
8a3c1a33
PB
3909static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3910 struct kvm_mmu *context,
3911 int level)
6aa8b732 3912{
2d48a985 3913 context->nx = is_nx(vcpu);
4d6931c3 3914 context->root_level = level;
2d48a985 3915
4d6931c3 3916 reset_rsvds_bits_mask(vcpu, context);
25d92081 3917 update_permission_bitmask(vcpu, context, false);
6fd01b71 3918 update_last_pte_bitmap(vcpu, context);
6aa8b732 3919
fa4a2c08 3920 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3921 context->page_fault = paging64_page_fault;
6aa8b732 3922 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3923 context->sync_page = paging64_sync_page;
a7052897 3924 context->invlpg = paging64_invlpg;
0f53b5b1 3925 context->update_pte = paging64_update_pte;
17ac10ad 3926 context->shadow_root_level = level;
17c3ba9d 3927 context->root_hpa = INVALID_PAGE;
c5a78f2b 3928 context->direct_map = false;
6aa8b732
AK
3929}
3930
8a3c1a33
PB
3931static void paging64_init_context(struct kvm_vcpu *vcpu,
3932 struct kvm_mmu *context)
17ac10ad 3933{
8a3c1a33 3934 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3935}
3936
8a3c1a33
PB
3937static void paging32_init_context(struct kvm_vcpu *vcpu,
3938 struct kvm_mmu *context)
6aa8b732 3939{
2d48a985 3940 context->nx = false;
4d6931c3 3941 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3942
4d6931c3 3943 reset_rsvds_bits_mask(vcpu, context);
25d92081 3944 update_permission_bitmask(vcpu, context, false);
6fd01b71 3945 update_last_pte_bitmap(vcpu, context);
6aa8b732 3946
6aa8b732 3947 context->page_fault = paging32_page_fault;
6aa8b732 3948 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3949 context->sync_page = paging32_sync_page;
a7052897 3950 context->invlpg = paging32_invlpg;
0f53b5b1 3951 context->update_pte = paging32_update_pte;
6aa8b732 3952 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3953 context->root_hpa = INVALID_PAGE;
c5a78f2b 3954 context->direct_map = false;
6aa8b732
AK
3955}
3956
8a3c1a33
PB
3957static void paging32E_init_context(struct kvm_vcpu *vcpu,
3958 struct kvm_mmu *context)
6aa8b732 3959{
8a3c1a33 3960 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3961}
3962
8a3c1a33 3963static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3964{
ad896af0 3965 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3966
c445f8ef 3967 context->base_role.word = 0;
699023e2 3968 context->base_role.smm = is_smm(vcpu);
fb72d167 3969 context->page_fault = tdp_page_fault;
e8bc217a 3970 context->sync_page = nonpaging_sync_page;
a7052897 3971 context->invlpg = nonpaging_invlpg;
0f53b5b1 3972 context->update_pte = nonpaging_update_pte;
67253af5 3973 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3974 context->root_hpa = INVALID_PAGE;
c5a78f2b 3975 context->direct_map = true;
1c97f0a0 3976 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3977 context->get_cr3 = get_cr3;
e4e517b4 3978 context->get_pdptr = kvm_pdptr_read;
cb659db8 3979 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3980
3981 if (!is_paging(vcpu)) {
2d48a985 3982 context->nx = false;
fb72d167
JR
3983 context->gva_to_gpa = nonpaging_gva_to_gpa;
3984 context->root_level = 0;
3985 } else if (is_long_mode(vcpu)) {
2d48a985 3986 context->nx = is_nx(vcpu);
fb72d167 3987 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3988 reset_rsvds_bits_mask(vcpu, context);
3989 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3990 } else if (is_pae(vcpu)) {
2d48a985 3991 context->nx = is_nx(vcpu);
fb72d167 3992 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3993 reset_rsvds_bits_mask(vcpu, context);
3994 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3995 } else {
2d48a985 3996 context->nx = false;
fb72d167 3997 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3998 reset_rsvds_bits_mask(vcpu, context);
3999 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4000 }
4001
25d92081 4002 update_permission_bitmask(vcpu, context, false);
6fd01b71 4003 update_last_pte_bitmap(vcpu, context);
c258b62b 4004 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4005}
4006
ad896af0 4007void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4008{
411c588d 4009 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4010 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4011 struct kvm_mmu *context = &vcpu->arch.mmu;
4012
fa4a2c08 4013 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4014
4015 if (!is_paging(vcpu))
8a3c1a33 4016 nonpaging_init_context(vcpu, context);
a9058ecd 4017 else if (is_long_mode(vcpu))
8a3c1a33 4018 paging64_init_context(vcpu, context);
6aa8b732 4019 else if (is_pae(vcpu))
8a3c1a33 4020 paging32E_init_context(vcpu, context);
6aa8b732 4021 else
8a3c1a33 4022 paging32_init_context(vcpu, context);
a770f6f2 4023
ad896af0
PB
4024 context->base_role.nxe = is_nx(vcpu);
4025 context->base_role.cr4_pae = !!is_pae(vcpu);
4026 context->base_role.cr0_wp = is_write_protection(vcpu);
4027 context->base_role.smep_andnot_wp
411c588d 4028 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4029 context->base_role.smap_andnot_wp
4030 = smap && !is_write_protection(vcpu);
699023e2 4031 context->base_role.smm = is_smm(vcpu);
c258b62b 4032 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4033}
4034EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4035
ad896af0 4036void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4037{
ad896af0
PB
4038 struct kvm_mmu *context = &vcpu->arch.mmu;
4039
fa4a2c08 4040 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4041
4042 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4043
4044 context->nx = true;
155a97a3
NHE
4045 context->page_fault = ept_page_fault;
4046 context->gva_to_gpa = ept_gva_to_gpa;
4047 context->sync_page = ept_sync_page;
4048 context->invlpg = ept_invlpg;
4049 context->update_pte = ept_update_pte;
155a97a3
NHE
4050 context->root_level = context->shadow_root_level;
4051 context->root_hpa = INVALID_PAGE;
4052 context->direct_map = false;
4053
4054 update_permission_bitmask(vcpu, context, true);
4055 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4056 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4057}
4058EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4059
8a3c1a33 4060static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4061{
ad896af0
PB
4062 struct kvm_mmu *context = &vcpu->arch.mmu;
4063
4064 kvm_init_shadow_mmu(vcpu);
4065 context->set_cr3 = kvm_x86_ops->set_cr3;
4066 context->get_cr3 = get_cr3;
4067 context->get_pdptr = kvm_pdptr_read;
4068 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4069}
4070
8a3c1a33 4071static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4072{
4073 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4074
4075 g_context->get_cr3 = get_cr3;
e4e517b4 4076 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4077 g_context->inject_page_fault = kvm_inject_page_fault;
4078
4079 /*
0af2593b
DM
4080 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4081 * L1's nested page tables (e.g. EPT12). The nested translation
4082 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4083 * L2's page tables as the first level of translation and L1's
4084 * nested page tables as the second level of translation. Basically
4085 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4086 */
4087 if (!is_paging(vcpu)) {
2d48a985 4088 g_context->nx = false;
02f59dc9
JR
4089 g_context->root_level = 0;
4090 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4091 } else if (is_long_mode(vcpu)) {
2d48a985 4092 g_context->nx = is_nx(vcpu);
02f59dc9 4093 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4094 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4095 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4096 } else if (is_pae(vcpu)) {
2d48a985 4097 g_context->nx = is_nx(vcpu);
02f59dc9 4098 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4099 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4100 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4101 } else {
2d48a985 4102 g_context->nx = false;
02f59dc9 4103 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4104 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4105 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4106 }
4107
25d92081 4108 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4109 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4110}
4111
8a3c1a33 4112static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4113{
02f59dc9 4114 if (mmu_is_nested(vcpu))
e0c6db3e 4115 init_kvm_nested_mmu(vcpu);
02f59dc9 4116 else if (tdp_enabled)
e0c6db3e 4117 init_kvm_tdp_mmu(vcpu);
fb72d167 4118 else
e0c6db3e 4119 init_kvm_softmmu(vcpu);
fb72d167
JR
4120}
4121
8a3c1a33 4122void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4123{
95f93af4 4124 kvm_mmu_unload(vcpu);
8a3c1a33 4125 init_kvm_mmu(vcpu);
17c3ba9d 4126}
8668a3c4 4127EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4128
4129int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4130{
714b93da
AK
4131 int r;
4132
e2dec939 4133 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4134 if (r)
4135 goto out;
8986ecc0 4136 r = mmu_alloc_roots(vcpu);
e2858b4a 4137 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4138 if (r)
4139 goto out;
3662cb1c 4140 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4141 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4142out:
4143 return r;
6aa8b732 4144}
17c3ba9d
AK
4145EXPORT_SYMBOL_GPL(kvm_mmu_load);
4146
4147void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4148{
4149 mmu_free_roots(vcpu);
95f93af4 4150 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4151}
4b16184c 4152EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4153
0028425f 4154static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4155 struct kvm_mmu_page *sp, u64 *spte,
4156 const void *new)
0028425f 4157{
30945387 4158 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4159 ++vcpu->kvm->stat.mmu_pde_zapped;
4160 return;
30945387 4161 }
0028425f 4162
4cee5764 4163 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4164 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4165}
4166
79539cec
AK
4167static bool need_remote_flush(u64 old, u64 new)
4168{
4169 if (!is_shadow_present_pte(old))
4170 return false;
4171 if (!is_shadow_present_pte(new))
4172 return true;
4173 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4174 return true;
53166229
GN
4175 old ^= shadow_nx_mask;
4176 new ^= shadow_nx_mask;
79539cec
AK
4177 return (old & ~new & PT64_PERM_MASK) != 0;
4178}
4179
0671a8e7
XG
4180static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4181 bool remote_flush, bool local_flush)
79539cec 4182{
0671a8e7
XG
4183 if (zap_page)
4184 return;
4185
4186 if (remote_flush)
79539cec 4187 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4188 else if (local_flush)
77c3913b 4189 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4190}
4191
889e5cbc
XG
4192static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4193 const u8 *new, int *bytes)
da4a00f0 4194{
889e5cbc
XG
4195 u64 gentry;
4196 int r;
72016f3a 4197
72016f3a
AK
4198 /*
4199 * Assume that the pte write on a page table of the same type
49b26e26
XG
4200 * as the current vcpu paging mode since we update the sptes only
4201 * when they have the same mode.
72016f3a 4202 */
889e5cbc 4203 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4204 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4205 *gpa &= ~(gpa_t)7;
4206 *bytes = 8;
54bf36aa 4207 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4208 if (r)
4209 gentry = 0;
08e850c6
AK
4210 new = (const u8 *)&gentry;
4211 }
4212
889e5cbc 4213 switch (*bytes) {
08e850c6
AK
4214 case 4:
4215 gentry = *(const u32 *)new;
4216 break;
4217 case 8:
4218 gentry = *(const u64 *)new;
4219 break;
4220 default:
4221 gentry = 0;
4222 break;
72016f3a
AK
4223 }
4224
889e5cbc
XG
4225 return gentry;
4226}
4227
4228/*
4229 * If we're seeing too many writes to a page, it may no longer be a page table,
4230 * or we may be forking, in which case it is better to unmap the page.
4231 */
a138fe75 4232static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4233{
a30f47cb
XG
4234 /*
4235 * Skip write-flooding detected for the sp whose level is 1, because
4236 * it can become unsync, then the guest page is not write-protected.
4237 */
f71fa31f 4238 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4239 return false;
3246af0e 4240
e5691a81
XG
4241 atomic_inc(&sp->write_flooding_count);
4242 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4243}
4244
4245/*
4246 * Misaligned accesses are too much trouble to fix up; also, they usually
4247 * indicate a page is not used as a page table.
4248 */
4249static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4250 int bytes)
4251{
4252 unsigned offset, pte_size, misaligned;
4253
4254 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4255 gpa, bytes, sp->role.word);
4256
4257 offset = offset_in_page(gpa);
4258 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4259
4260 /*
4261 * Sometimes, the OS only writes the last one bytes to update status
4262 * bits, for example, in linux, andb instruction is used in clear_bit().
4263 */
4264 if (!(offset & (pte_size - 1)) && bytes == 1)
4265 return false;
4266
889e5cbc
XG
4267 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4268 misaligned |= bytes < 4;
4269
4270 return misaligned;
4271}
4272
4273static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4274{
4275 unsigned page_offset, quadrant;
4276 u64 *spte;
4277 int level;
4278
4279 page_offset = offset_in_page(gpa);
4280 level = sp->role.level;
4281 *nspte = 1;
4282 if (!sp->role.cr4_pae) {
4283 page_offset <<= 1; /* 32->64 */
4284 /*
4285 * A 32-bit pde maps 4MB while the shadow pdes map
4286 * only 2MB. So we need to double the offset again
4287 * and zap two pdes instead of one.
4288 */
4289 if (level == PT32_ROOT_LEVEL) {
4290 page_offset &= ~7; /* kill rounding error */
4291 page_offset <<= 1;
4292 *nspte = 2;
4293 }
4294 quadrant = page_offset >> PAGE_SHIFT;
4295 page_offset &= ~PAGE_MASK;
4296 if (quadrant != sp->role.quadrant)
4297 return NULL;
4298 }
4299
4300 spte = &sp->spt[page_offset / sizeof(*spte)];
4301 return spte;
4302}
4303
4304void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4305 const u8 *new, int bytes)
4306{
4307 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4308 struct kvm_mmu_page *sp;
889e5cbc
XG
4309 LIST_HEAD(invalid_list);
4310 u64 entry, gentry, *spte;
4311 int npte;
a30f47cb 4312 bool remote_flush, local_flush, zap_page;
4141259b
AM
4313 union kvm_mmu_page_role mask = { };
4314
4315 mask.cr0_wp = 1;
4316 mask.cr4_pae = 1;
4317 mask.nxe = 1;
4318 mask.smep_andnot_wp = 1;
4319 mask.smap_andnot_wp = 1;
699023e2 4320 mask.smm = 1;
889e5cbc
XG
4321
4322 /*
4323 * If we don't have indirect shadow pages, it means no page is
4324 * write-protected, so we can exit simply.
4325 */
4326 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4327 return;
4328
4329 zap_page = remote_flush = local_flush = false;
4330
4331 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4332
4333 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4334
4335 /*
4336 * No need to care whether allocation memory is successful
4337 * or not since pte prefetch is skiped if it does not have
4338 * enough objects in the cache.
4339 */
4340 mmu_topup_memory_caches(vcpu);
4341
4342 spin_lock(&vcpu->kvm->mmu_lock);
4343 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4344 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4345
b67bfe0d 4346 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4347 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4348 detect_write_flooding(sp)) {
0671a8e7 4349 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4350 &invalid_list);
4cee5764 4351 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4352 continue;
4353 }
889e5cbc
XG
4354
4355 spte = get_written_sptes(sp, gpa, &npte);
4356 if (!spte)
4357 continue;
4358
0671a8e7 4359 local_flush = true;
ac1b714e 4360 while (npte--) {
79539cec 4361 entry = *spte;
38e3b2b2 4362 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4363 if (gentry &&
4364 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4365 & mask.word) && rmap_can_add(vcpu))
7c562522 4366 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4367 if (need_remote_flush(entry, *spte))
0671a8e7 4368 remote_flush = true;
ac1b714e 4369 ++spte;
9b7a0325 4370 }
9b7a0325 4371 }
0671a8e7 4372 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4373 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4374 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4375 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4376}
4377
a436036b
AK
4378int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4379{
10589a46
MT
4380 gpa_t gpa;
4381 int r;
a436036b 4382
c5a78f2b 4383 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4384 return 0;
4385
1871c602 4386 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4387
10589a46 4388 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4389
10589a46 4390 return r;
a436036b 4391}
577bdc49 4392EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4393
81f4f76b 4394static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4395{
d98ba053 4396 LIST_HEAD(invalid_list);
103ad25a 4397
81f4f76b
TY
4398 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4399 return;
4400
5da59607
TY
4401 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4402 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4403 break;
ebeace86 4404
4cee5764 4405 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4406 }
aa6bd187 4407 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4408}
ebeace86 4409
dc25e89e
AP
4410int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4411 void *insn, int insn_len)
3067714c 4412{
1cb3f3ae 4413 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4414 enum emulation_result er;
ded58749 4415 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4416
e9ee956e
TY
4417 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4418 r = handle_mmio_page_fault(vcpu, cr2, direct);
4419 if (r == RET_MMIO_PF_EMULATE) {
4420 emulation_type = 0;
4421 goto emulate;
4422 }
4423 if (r == RET_MMIO_PF_RETRY)
4424 return 1;
4425 if (r < 0)
4426 return r;
4427 }
4428
56028d08 4429 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4430 if (r < 0)
e9ee956e
TY
4431 return r;
4432 if (!r)
4433 return 1;
3067714c 4434
ded58749 4435 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4436 emulation_type = 0;
e9ee956e 4437emulate:
1cb3f3ae 4438 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4439
4440 switch (er) {
4441 case EMULATE_DONE:
4442 return 1;
ac0a48c3 4443 case EMULATE_USER_EXIT:
3067714c 4444 ++vcpu->stat.mmio_exits;
6d77dbfc 4445 /* fall through */
3067714c 4446 case EMULATE_FAIL:
3f5d18a9 4447 return 0;
3067714c
AK
4448 default:
4449 BUG();
4450 }
3067714c
AK
4451}
4452EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4453
a7052897
MT
4454void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4455{
a7052897 4456 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4457 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4458 ++vcpu->stat.invlpg;
4459}
4460EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4461
18552672
JR
4462void kvm_enable_tdp(void)
4463{
4464 tdp_enabled = true;
4465}
4466EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4467
5f4cb662
JR
4468void kvm_disable_tdp(void)
4469{
4470 tdp_enabled = false;
4471}
4472EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4473
6aa8b732
AK
4474static void free_mmu_pages(struct kvm_vcpu *vcpu)
4475{
ad312c7c 4476 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4477 if (vcpu->arch.mmu.lm_root != NULL)
4478 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4479}
4480
4481static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4482{
17ac10ad 4483 struct page *page;
6aa8b732
AK
4484 int i;
4485
17ac10ad
AK
4486 /*
4487 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4488 * Therefore we need to allocate shadow page tables in the first
4489 * 4GB of memory, which happens to fit the DMA32 zone.
4490 */
4491 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4492 if (!page)
d7fa6ab2
WY
4493 return -ENOMEM;
4494
ad312c7c 4495 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4496 for (i = 0; i < 4; ++i)
ad312c7c 4497 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4498
6aa8b732 4499 return 0;
6aa8b732
AK
4500}
4501
8018c27b 4502int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4503{
e459e322
XG
4504 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4505 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4506 vcpu->arch.mmu.translate_gpa = translate_gpa;
4507 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4508
8018c27b
IM
4509 return alloc_mmu_pages(vcpu);
4510}
6aa8b732 4511
8a3c1a33 4512void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4513{
fa4a2c08 4514 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4515
8a3c1a33 4516 init_kvm_mmu(vcpu);
6aa8b732
AK
4517}
4518
1bad2b2a 4519/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4520typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4521
4522/* The caller should hold mmu-lock before calling this function. */
4523static bool
4524slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4525 slot_level_handler fn, int start_level, int end_level,
4526 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4527{
4528 struct slot_rmap_walk_iterator iterator;
4529 bool flush = false;
4530
4531 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4532 end_gfn, &iterator) {
4533 if (iterator.rmap)
4534 flush |= fn(kvm, iterator.rmap);
4535
4536 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4537 if (flush && lock_flush_tlb) {
4538 kvm_flush_remote_tlbs(kvm);
4539 flush = false;
4540 }
4541 cond_resched_lock(&kvm->mmu_lock);
4542 }
4543 }
4544
4545 if (flush && lock_flush_tlb) {
4546 kvm_flush_remote_tlbs(kvm);
4547 flush = false;
4548 }
4549
4550 return flush;
4551}
4552
4553static bool
4554slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4555 slot_level_handler fn, int start_level, int end_level,
4556 bool lock_flush_tlb)
4557{
4558 return slot_handle_level_range(kvm, memslot, fn, start_level,
4559 end_level, memslot->base_gfn,
4560 memslot->base_gfn + memslot->npages - 1,
4561 lock_flush_tlb);
4562}
4563
4564static bool
4565slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4566 slot_level_handler fn, bool lock_flush_tlb)
4567{
4568 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4569 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4570}
4571
4572static bool
4573slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4574 slot_level_handler fn, bool lock_flush_tlb)
4575{
4576 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4577 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4578}
4579
4580static bool
4581slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4582 slot_level_handler fn, bool lock_flush_tlb)
4583{
4584 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4585 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4586}
4587
efdfe536
XG
4588void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4589{
4590 struct kvm_memslots *slots;
4591 struct kvm_memory_slot *memslot;
9da0e4d5 4592 int i;
efdfe536
XG
4593
4594 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4595 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4596 slots = __kvm_memslots(kvm, i);
4597 kvm_for_each_memslot(memslot, slots) {
4598 gfn_t start, end;
4599
4600 start = max(gfn_start, memslot->base_gfn);
4601 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4602 if (start >= end)
4603 continue;
efdfe536 4604
9da0e4d5
PB
4605 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4606 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4607 start, end - 1, true);
4608 }
efdfe536
XG
4609 }
4610
4611 spin_unlock(&kvm->mmu_lock);
4612}
4613
018aabb5
TY
4614static bool slot_rmap_write_protect(struct kvm *kvm,
4615 struct kvm_rmap_head *rmap_head)
d77aa73c 4616{
018aabb5 4617 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4618}
4619
1c91cad4
KH
4620void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4621 struct kvm_memory_slot *memslot)
6aa8b732 4622{
d77aa73c 4623 bool flush;
6aa8b732 4624
9d1beefb 4625 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4626 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4627 false);
9d1beefb 4628 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4629
4630 /*
4631 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4632 * which do tlb flush out of mmu-lock should be serialized by
4633 * kvm->slots_lock otherwise tlb flush would be missed.
4634 */
4635 lockdep_assert_held(&kvm->slots_lock);
4636
4637 /*
4638 * We can flush all the TLBs out of the mmu lock without TLB
4639 * corruption since we just change the spte from writable to
4640 * readonly so that we only need to care the case of changing
4641 * spte from present to present (changing the spte from present
4642 * to nonpresent will flush all the TLBs immediately), in other
4643 * words, the only case we care is mmu_spte_update() where we
4644 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4645 * instead of PT_WRITABLE_MASK, that means it does not depend
4646 * on PT_WRITABLE_MASK anymore.
4647 */
d91ffee9
KH
4648 if (flush)
4649 kvm_flush_remote_tlbs(kvm);
6aa8b732 4650}
37a7d8b0 4651
3ea3b7fa 4652static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4653 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4654{
4655 u64 *sptep;
4656 struct rmap_iterator iter;
4657 int need_tlb_flush = 0;
ba049e93 4658 kvm_pfn_t pfn;
3ea3b7fa
WL
4659 struct kvm_mmu_page *sp;
4660
0d536790 4661restart:
018aabb5 4662 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4663 sp = page_header(__pa(sptep));
4664 pfn = spte_to_pfn(*sptep);
4665
4666 /*
decf6333
XG
4667 * We cannot do huge page mapping for indirect shadow pages,
4668 * which are found on the last rmap (level = 1) when not using
4669 * tdp; such shadow pages are synced with the page table in
4670 * the guest, and the guest page table is using 4K page size
4671 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4672 */
4673 if (sp->role.direct &&
4674 !kvm_is_reserved_pfn(pfn) &&
4675 PageTransCompound(pfn_to_page(pfn))) {
4676 drop_spte(kvm, sptep);
3ea3b7fa 4677 need_tlb_flush = 1;
0d536790
XG
4678 goto restart;
4679 }
3ea3b7fa
WL
4680 }
4681
4682 return need_tlb_flush;
4683}
4684
4685void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4686 const struct kvm_memory_slot *memslot)
3ea3b7fa 4687{
f36f3f28 4688 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4689 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4690 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4691 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4692 spin_unlock(&kvm->mmu_lock);
4693}
4694
f4b4b180
KH
4695void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4696 struct kvm_memory_slot *memslot)
4697{
d77aa73c 4698 bool flush;
f4b4b180
KH
4699
4700 spin_lock(&kvm->mmu_lock);
d77aa73c 4701 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4702 spin_unlock(&kvm->mmu_lock);
4703
4704 lockdep_assert_held(&kvm->slots_lock);
4705
4706 /*
4707 * It's also safe to flush TLBs out of mmu lock here as currently this
4708 * function is only used for dirty logging, in which case flushing TLB
4709 * out of mmu lock also guarantees no dirty pages will be lost in
4710 * dirty_bitmap.
4711 */
4712 if (flush)
4713 kvm_flush_remote_tlbs(kvm);
4714}
4715EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4716
4717void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4718 struct kvm_memory_slot *memslot)
4719{
d77aa73c 4720 bool flush;
f4b4b180
KH
4721
4722 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4723 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4724 false);
f4b4b180
KH
4725 spin_unlock(&kvm->mmu_lock);
4726
4727 /* see kvm_mmu_slot_remove_write_access */
4728 lockdep_assert_held(&kvm->slots_lock);
4729
4730 if (flush)
4731 kvm_flush_remote_tlbs(kvm);
4732}
4733EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4734
4735void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4736 struct kvm_memory_slot *memslot)
4737{
d77aa73c 4738 bool flush;
f4b4b180
KH
4739
4740 spin_lock(&kvm->mmu_lock);
d77aa73c 4741 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4742 spin_unlock(&kvm->mmu_lock);
4743
4744 lockdep_assert_held(&kvm->slots_lock);
4745
4746 /* see kvm_mmu_slot_leaf_clear_dirty */
4747 if (flush)
4748 kvm_flush_remote_tlbs(kvm);
4749}
4750EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4751
e7d11c7a 4752#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4753static void kvm_zap_obsolete_pages(struct kvm *kvm)
4754{
4755 struct kvm_mmu_page *sp, *node;
e7d11c7a 4756 int batch = 0;
5304b8d3
XG
4757
4758restart:
4759 list_for_each_entry_safe_reverse(sp, node,
4760 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4761 int ret;
4762
5304b8d3
XG
4763 /*
4764 * No obsolete page exists before new created page since
4765 * active_mmu_pages is the FIFO list.
4766 */
4767 if (!is_obsolete_sp(kvm, sp))
4768 break;
4769
4770 /*
5304b8d3
XG
4771 * Since we are reversely walking the list and the invalid
4772 * list will be moved to the head, skip the invalid page
4773 * can help us to avoid the infinity list walking.
4774 */
4775 if (sp->role.invalid)
4776 continue;
4777
f34d251d
XG
4778 /*
4779 * Need not flush tlb since we only zap the sp with invalid
4780 * generation number.
4781 */
e7d11c7a 4782 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4783 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4784 batch = 0;
5304b8d3
XG
4785 goto restart;
4786 }
4787
365c8868
XG
4788 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4789 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4790 batch += ret;
4791
4792 if (ret)
5304b8d3
XG
4793 goto restart;
4794 }
4795
f34d251d
XG
4796 /*
4797 * Should flush tlb before free page tables since lockless-walking
4798 * may use the pages.
4799 */
365c8868 4800 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4801}
4802
4803/*
4804 * Fast invalidate all shadow pages and use lock-break technique
4805 * to zap obsolete pages.
4806 *
4807 * It's required when memslot is being deleted or VM is being
4808 * destroyed, in these cases, we should ensure that KVM MMU does
4809 * not use any resource of the being-deleted slot or all slots
4810 * after calling the function.
4811 */
4812void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4813{
4814 spin_lock(&kvm->mmu_lock);
35006126 4815 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4816 kvm->arch.mmu_valid_gen++;
4817
f34d251d
XG
4818 /*
4819 * Notify all vcpus to reload its shadow page table
4820 * and flush TLB. Then all vcpus will switch to new
4821 * shadow page table with the new mmu_valid_gen.
4822 *
4823 * Note: we should do this under the protection of
4824 * mmu-lock, otherwise, vcpu would purge shadow page
4825 * but miss tlb flush.
4826 */
4827 kvm_reload_remote_mmus(kvm);
4828
5304b8d3
XG
4829 kvm_zap_obsolete_pages(kvm);
4830 spin_unlock(&kvm->mmu_lock);
4831}
4832
365c8868
XG
4833static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4834{
4835 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4836}
4837
54bf36aa 4838void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4839{
4840 /*
4841 * The very rare case: if the generation-number is round,
4842 * zap all shadow pages.
f8f55942 4843 */
54bf36aa 4844 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4845 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4846 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4847 }
f8f55942
XG
4848}
4849
70534a73
DC
4850static unsigned long
4851mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4852{
4853 struct kvm *kvm;
1495f230 4854 int nr_to_scan = sc->nr_to_scan;
70534a73 4855 unsigned long freed = 0;
3ee16c81 4856
2f303b74 4857 spin_lock(&kvm_lock);
3ee16c81
IE
4858
4859 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4860 int idx;
d98ba053 4861 LIST_HEAD(invalid_list);
3ee16c81 4862
35f2d16b
TY
4863 /*
4864 * Never scan more than sc->nr_to_scan VM instances.
4865 * Will not hit this condition practically since we do not try
4866 * to shrink more than one VM and it is very unlikely to see
4867 * !n_used_mmu_pages so many times.
4868 */
4869 if (!nr_to_scan--)
4870 break;
19526396
GN
4871 /*
4872 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4873 * here. We may skip a VM instance errorneosly, but we do not
4874 * want to shrink a VM that only started to populate its MMU
4875 * anyway.
4876 */
365c8868
XG
4877 if (!kvm->arch.n_used_mmu_pages &&
4878 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4879 continue;
19526396 4880
f656ce01 4881 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4882 spin_lock(&kvm->mmu_lock);
3ee16c81 4883
365c8868
XG
4884 if (kvm_has_zapped_obsolete_pages(kvm)) {
4885 kvm_mmu_commit_zap_page(kvm,
4886 &kvm->arch.zapped_obsolete_pages);
4887 goto unlock;
4888 }
4889
70534a73
DC
4890 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4891 freed++;
d98ba053 4892 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4893
365c8868 4894unlock:
3ee16c81 4895 spin_unlock(&kvm->mmu_lock);
f656ce01 4896 srcu_read_unlock(&kvm->srcu, idx);
19526396 4897
70534a73
DC
4898 /*
4899 * unfair on small ones
4900 * per-vm shrinkers cry out
4901 * sadness comes quickly
4902 */
19526396
GN
4903 list_move_tail(&kvm->vm_list, &vm_list);
4904 break;
3ee16c81 4905 }
3ee16c81 4906
2f303b74 4907 spin_unlock(&kvm_lock);
70534a73 4908 return freed;
70534a73
DC
4909}
4910
4911static unsigned long
4912mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4913{
45221ab6 4914 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4915}
4916
4917static struct shrinker mmu_shrinker = {
70534a73
DC
4918 .count_objects = mmu_shrink_count,
4919 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4920 .seeks = DEFAULT_SEEKS * 10,
4921};
4922
2ddfd20e 4923static void mmu_destroy_caches(void)
b5a33a75 4924{
53c07b18
XG
4925 if (pte_list_desc_cache)
4926 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4927 if (mmu_page_header_cache)
4928 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4929}
4930
4931int kvm_mmu_module_init(void)
4932{
53c07b18
XG
4933 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4934 sizeof(struct pte_list_desc),
20c2df83 4935 0, 0, NULL);
53c07b18 4936 if (!pte_list_desc_cache)
b5a33a75
AK
4937 goto nomem;
4938
d3d25b04
AK
4939 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4940 sizeof(struct kvm_mmu_page),
20c2df83 4941 0, 0, NULL);
d3d25b04
AK
4942 if (!mmu_page_header_cache)
4943 goto nomem;
4944
908c7f19 4945 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4946 goto nomem;
4947
3ee16c81
IE
4948 register_shrinker(&mmu_shrinker);
4949
b5a33a75
AK
4950 return 0;
4951
4952nomem:
3ee16c81 4953 mmu_destroy_caches();
b5a33a75
AK
4954 return -ENOMEM;
4955}
4956
3ad82a7e
ZX
4957/*
4958 * Caculate mmu pages needed for kvm.
4959 */
4960unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4961{
3ad82a7e
ZX
4962 unsigned int nr_mmu_pages;
4963 unsigned int nr_pages = 0;
bc6678a3 4964 struct kvm_memslots *slots;
be6ba0f0 4965 struct kvm_memory_slot *memslot;
9da0e4d5 4966 int i;
3ad82a7e 4967
9da0e4d5
PB
4968 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4969 slots = __kvm_memslots(kvm, i);
90d83dc3 4970
9da0e4d5
PB
4971 kvm_for_each_memslot(memslot, slots)
4972 nr_pages += memslot->npages;
4973 }
3ad82a7e
ZX
4974
4975 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4976 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4977 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4978
4979 return nr_mmu_pages;
4980}
4981
c42fffe3
XG
4982void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4983{
95f93af4 4984 kvm_mmu_unload(vcpu);
c42fffe3
XG
4985 free_mmu_pages(vcpu);
4986 mmu_free_memory_caches(vcpu);
b034cf01
XG
4987}
4988
b034cf01
XG
4989void kvm_mmu_module_exit(void)
4990{
4991 mmu_destroy_caches();
4992 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4993 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4994 mmu_audit_disable();
4995}