]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: MMU: Fix and clean up for_each_gfn_* macros
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
feb3eb70
GN
451 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
453}
454
8672b721
XG
455static bool spte_has_volatile_bits(u64 spte)
456{
c7ba5b48
XG
457 /*
458 * Always atomicly update spte if it can be updated
459 * out of mmu-lock, it can ensure dirty bit is not lost,
460 * also, it can help us to get a stable is_writable_pte()
461 * to ensure tlb flush is not missed.
462 */
463 if (spte_is_locklessly_modifiable(spte))
464 return true;
465
8672b721
XG
466 if (!shadow_accessed_mask)
467 return false;
468
469 if (!is_shadow_present_pte(spte))
470 return false;
471
4132779b
XG
472 if ((spte & shadow_accessed_mask) &&
473 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
474 return false;
475
476 return true;
477}
478
4132779b
XG
479static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480{
481 return (old_spte & bit_mask) && !(new_spte & bit_mask);
482}
483
1df9f2dc
XG
484/* Rules for using mmu_spte_set:
485 * Set the sptep from nonpresent to present.
486 * Note: the sptep being assigned *must* be either not present
487 * or in a state where the hardware will not attempt to update
488 * the spte.
489 */
490static void mmu_spte_set(u64 *sptep, u64 new_spte)
491{
492 WARN_ON(is_shadow_present_pte(*sptep));
493 __set_spte(sptep, new_spte);
494}
495
496/* Rules for using mmu_spte_update:
497 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
498 *
499 * Whenever we overwrite a writable spte with a read-only one we
500 * should flush remote TLBs. Otherwise rmap_write_protect
501 * will find a read-only spte, even though the writable spte
502 * might be cached on a CPU's TLB, the return value indicates this
503 * case.
1df9f2dc 504 */
6e7d0354 505static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 506{
c7ba5b48 507 u64 old_spte = *sptep;
6e7d0354 508 bool ret = false;
4132779b
XG
509
510 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 511
6e7d0354
XG
512 if (!is_shadow_present_pte(old_spte)) {
513 mmu_spte_set(sptep, new_spte);
514 return ret;
515 }
4132779b 516
c7ba5b48 517 if (!spte_has_volatile_bits(old_spte))
603e0651 518 __update_clear_spte_fast(sptep, new_spte);
4132779b 519 else
603e0651 520 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 521
c7ba5b48
XG
522 /*
523 * For the spte updated out of mmu-lock is safe, since
524 * we always atomicly update it, see the comments in
525 * spte_has_volatile_bits().
526 */
6e7d0354
XG
527 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528 ret = true;
529
4132779b 530 if (!shadow_accessed_mask)
6e7d0354 531 return ret;
4132779b
XG
532
533 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
537
538 return ret;
b79b93f9
AK
539}
540
1df9f2dc
XG
541/*
542 * Rules for using mmu_spte_clear_track_bits:
543 * It sets the sptep from present to nonpresent, and track the
544 * state bits, it is used to clear the last level sptep.
545 */
546static int mmu_spte_clear_track_bits(u64 *sptep)
547{
548 pfn_t pfn;
549 u64 old_spte = *sptep;
550
551 if (!spte_has_volatile_bits(old_spte))
603e0651 552 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 553 else
603e0651 554 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
555
556 if (!is_rmap_spte(old_spte))
557 return 0;
558
559 pfn = spte_to_pfn(old_spte);
86fde74c
XG
560
561 /*
562 * KVM does not hold the refcount of the page used by
563 * kvm mmu, before reclaiming the page, we should
564 * unmap it from mmu first.
565 */
566 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
1df9f2dc
XG
568 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569 kvm_set_pfn_accessed(pfn);
570 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571 kvm_set_pfn_dirty(pfn);
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
590static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591{
c142786c
AK
592 /*
593 * Prevent page table teardown by making any free-er wait during
594 * kvm_flush_remote_tlbs() IPI to all active vcpus.
595 */
596 local_irq_disable();
597 vcpu->mode = READING_SHADOW_PAGE_TABLES;
598 /*
599 * Make sure a following spte read is not reordered ahead of the write
600 * to vcpu->mode.
601 */
602 smp_mb();
c2a2ac2b
XG
603}
604
605static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606{
c142786c
AK
607 /*
608 * Make sure the write to vcpu->mode is not reordered in front of
609 * reads to sptes. If it does, kvm_commit_zap_page() can see us
610 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611 */
612 smp_mb();
613 vcpu->mode = OUTSIDE_GUEST_MODE;
614 local_irq_enable();
c2a2ac2b
XG
615}
616
e2dec939 617static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 618 struct kmem_cache *base_cache, int min)
714b93da
AK
619{
620 void *obj;
621
622 if (cache->nobjs >= min)
e2dec939 623 return 0;
714b93da 624 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 625 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 626 if (!obj)
e2dec939 627 return -ENOMEM;
714b93da
AK
628 cache->objects[cache->nobjs++] = obj;
629 }
e2dec939 630 return 0;
714b93da
AK
631}
632
f759e2b4
XG
633static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634{
635 return cache->nobjs;
636}
637
e8ad9a70
XG
638static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639 struct kmem_cache *cache)
714b93da
AK
640{
641 while (mc->nobjs)
e8ad9a70 642 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
643}
644
c1158e63 645static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 646 int min)
c1158e63 647{
842f22ed 648 void *page;
c1158e63
AK
649
650 if (cache->nobjs >= min)
651 return 0;
652 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 653 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
654 if (!page)
655 return -ENOMEM;
842f22ed 656 cache->objects[cache->nobjs++] = page;
c1158e63
AK
657 }
658 return 0;
659}
660
661static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662{
663 while (mc->nobjs)
c4d198d5 664 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
665}
666
2e3e5882 667static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 668{
e2dec939
AK
669 int r;
670
53c07b18 671 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 672 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
673 if (r)
674 goto out;
ad312c7c 675 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 679 mmu_page_header_cache, 4);
e2dec939
AK
680out:
681 return r;
714b93da
AK
682}
683
684static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685{
53c07b18
XG
686 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687 pte_list_desc_cache);
ad312c7c 688 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690 mmu_page_header_cache);
714b93da
AK
691}
692
80feb89a 693static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
694{
695 void *p;
696
697 BUG_ON(!mc->nobjs);
698 p = mc->objects[--mc->nobjs];
714b93da
AK
699 return p;
700}
701
53c07b18 702static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 703{
80feb89a 704 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
705}
706
53c07b18 707static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 708{
53c07b18 709 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
710}
711
2032a93d
LJ
712static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713{
714 if (!sp->role.direct)
715 return sp->gfns[index];
716
717 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718}
719
720static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721{
722 if (sp->role.direct)
723 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724 else
725 sp->gfns[index] = gfn;
726}
727
05da4558 728/*
d4dbf470
TY
729 * Return the pointer to the large page information for a given gfn,
730 * handling slots that are not large page aligned.
05da4558 731 */
d4dbf470
TY
732static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733 struct kvm_memory_slot *slot,
734 int level)
05da4558
MT
735{
736 unsigned long idx;
737
fb03cb6f 738 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 739 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
740}
741
742static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743{
d25797b2 744 struct kvm_memory_slot *slot;
d4dbf470 745 struct kvm_lpage_info *linfo;
d25797b2 746 int i;
05da4558 747
a1f4d395 748 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
749 for (i = PT_DIRECTORY_LEVEL;
750 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
751 linfo = lpage_info_slot(gfn, slot, i);
752 linfo->write_count += 1;
d25797b2 753 }
332b207d 754 kvm->arch.indirect_shadow_pages++;
05da4558
MT
755}
756
757static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758{
d25797b2 759 struct kvm_memory_slot *slot;
d4dbf470 760 struct kvm_lpage_info *linfo;
d25797b2 761 int i;
05da4558 762
a1f4d395 763 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
764 for (i = PT_DIRECTORY_LEVEL;
765 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
766 linfo = lpage_info_slot(gfn, slot, i);
767 linfo->write_count -= 1;
768 WARN_ON(linfo->write_count < 0);
d25797b2 769 }
332b207d 770 kvm->arch.indirect_shadow_pages--;
05da4558
MT
771}
772
d25797b2
JR
773static int has_wrprotected_page(struct kvm *kvm,
774 gfn_t gfn,
775 int level)
05da4558 776{
2843099f 777 struct kvm_memory_slot *slot;
d4dbf470 778 struct kvm_lpage_info *linfo;
05da4558 779
a1f4d395 780 slot = gfn_to_memslot(kvm, gfn);
05da4558 781 if (slot) {
d4dbf470
TY
782 linfo = lpage_info_slot(gfn, slot, level);
783 return linfo->write_count;
05da4558
MT
784 }
785
786 return 1;
787}
788
d25797b2 789static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 790{
8f0b1ab6 791 unsigned long page_size;
d25797b2 792 int i, ret = 0;
05da4558 793
8f0b1ab6 794 page_size = kvm_host_page_size(kvm, gfn);
05da4558 795
d25797b2
JR
796 for (i = PT_PAGE_TABLE_LEVEL;
797 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798 if (page_size >= KVM_HPAGE_SIZE(i))
799 ret = i;
800 else
801 break;
802 }
803
4c2155ce 804 return ret;
05da4558
MT
805}
806
5d163b1c
XG
807static struct kvm_memory_slot *
808gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809 bool no_dirty_log)
05da4558
MT
810{
811 struct kvm_memory_slot *slot;
5d163b1c
XG
812
813 slot = gfn_to_memslot(vcpu->kvm, gfn);
814 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815 (no_dirty_log && slot->dirty_bitmap))
816 slot = NULL;
817
818 return slot;
819}
820
821static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822{
a0a8eaba 823 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
824}
825
826static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827{
828 int host_level, level, max_level;
05da4558 829
d25797b2
JR
830 host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832 if (host_level == PT_PAGE_TABLE_LEVEL)
833 return host_level;
834
55dd98c3 835 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
d25797b2
JR
840
841 return level - 1;
05da4558
MT
842}
843
290fc38d 844/*
53c07b18 845 * Pte mapping structures:
cd4a4e53 846 *
53c07b18 847 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 848 *
53c07b18
XG
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
53a27b39 851 *
53c07b18 852 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
853 * the spte was not added.
854 *
cd4a4e53 855 */
53c07b18
XG
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
cd4a4e53 858{
53c07b18 859 struct pte_list_desc *desc;
53a27b39 860 int i, count = 0;
cd4a4e53 861
53c07b18
XG
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
d555c333 869 desc->sptes[1] = spte;
53c07b18 870 *pte_list = (unsigned long)desc | 1;
cb16a7b3 871 ++count;
cd4a4e53 872 } else {
53c07b18
XG
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 876 desc = desc->more;
53c07b18 877 count += PTE_LIST_EXT;
53a27b39 878 }
53c07b18
XG
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
881 desc = desc->more;
882 }
d555c333 883 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 884 ++count;
d555c333 885 desc->sptes[i] = spte;
cd4a4e53 886 }
53a27b39 887 return count;
cd4a4e53
AK
888}
889
53c07b18
XG
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
893{
894 int j;
895
53c07b18 896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 897 ;
d555c333
AK
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
cd4a4e53
AK
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
53c07b18 903 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
53c07b18
XG
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
910}
911
53c07b18 912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 913{
53c07b18
XG
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
cd4a4e53
AK
916 int i;
917
53c07b18
XG
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 920 BUG();
53c07b18
XG
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
925 BUG();
926 }
53c07b18 927 *pte_list = 0;
cd4a4e53 928 } else {
53c07b18
XG
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
931 prev_desc = NULL;
932 while (desc) {
53c07b18 933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 934 if (desc->sptes[i] == spte) {
53c07b18 935 pte_list_desc_remove_entry(pte_list,
714b93da 936 desc, i,
cd4a4e53
AK
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
53c07b18 943 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
944 BUG();
945 }
946}
947
67052b35
XG
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
9373e2c0 968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 969 struct kvm_memory_slot *slot)
53c07b18 970{
77d11309 971 unsigned long idx;
53c07b18 972
77d11309 973 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 974 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
975}
976
9b9b1492
TY
977/*
978 * Take gfn and return the reverse mapping to it.
979 */
980static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981{
982 struct kvm_memory_slot *slot;
983
984 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 985 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
986}
987
f759e2b4
XG
988static bool rmap_can_add(struct kvm_vcpu *vcpu)
989{
990 struct kvm_mmu_memory_cache *cache;
991
992 cache = &vcpu->arch.mmu_pte_list_desc_cache;
993 return mmu_memory_cache_free_objects(cache);
994}
995
53c07b18
XG
996static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997{
998 struct kvm_mmu_page *sp;
999 unsigned long *rmapp;
1000
53c07b18
XG
1001 sp = page_header(__pa(spte));
1002 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004 return pte_list_add(vcpu, spte, rmapp);
1005}
1006
53c07b18
XG
1007static void rmap_remove(struct kvm *kvm, u64 *spte)
1008{
1009 struct kvm_mmu_page *sp;
1010 gfn_t gfn;
1011 unsigned long *rmapp;
1012
1013 sp = page_header(__pa(spte));
1014 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016 pte_list_remove(spte, rmapp);
1017}
1018
1e3f42f0
TY
1019/*
1020 * Used by the following functions to iterate through the sptes linked by a
1021 * rmap. All fields are private and not assumed to be used outside.
1022 */
1023struct rmap_iterator {
1024 /* private fields */
1025 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1026 int pos; /* index of the sptep */
1027};
1028
1029/*
1030 * Iteration must be started by this function. This should also be used after
1031 * removing/dropping sptes from the rmap link because in such cases the
1032 * information in the itererator may not be valid.
1033 *
1034 * Returns sptep if found, NULL otherwise.
1035 */
1036static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037{
1038 if (!rmap)
1039 return NULL;
1040
1041 if (!(rmap & 1)) {
1042 iter->desc = NULL;
1043 return (u64 *)rmap;
1044 }
1045
1046 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047 iter->pos = 0;
1048 return iter->desc->sptes[iter->pos];
1049}
1050
1051/*
1052 * Must be used with a valid iterator: e.g. after rmap_get_first().
1053 *
1054 * Returns sptep if found, NULL otherwise.
1055 */
1056static u64 *rmap_get_next(struct rmap_iterator *iter)
1057{
1058 if (iter->desc) {
1059 if (iter->pos < PTE_LIST_EXT - 1) {
1060 u64 *sptep;
1061
1062 ++iter->pos;
1063 sptep = iter->desc->sptes[iter->pos];
1064 if (sptep)
1065 return sptep;
1066 }
1067
1068 iter->desc = iter->desc->more;
1069
1070 if (iter->desc) {
1071 iter->pos = 0;
1072 /* desc->sptes[0] cannot be NULL */
1073 return iter->desc->sptes[iter->pos];
1074 }
1075 }
1076
1077 return NULL;
1078}
1079
c3707958 1080static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1081{
1df9f2dc 1082 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1083 rmap_remove(kvm, sptep);
be38d276
AK
1084}
1085
8e22f955
XG
1086
1087static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088{
1089 if (is_large_pte(*sptep)) {
1090 WARN_ON(page_header(__pa(sptep))->role.level ==
1091 PT_PAGE_TABLE_LEVEL);
1092 drop_spte(kvm, sptep);
1093 --kvm->stat.lpages;
1094 return true;
1095 }
1096
1097 return false;
1098}
1099
1100static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101{
1102 if (__drop_large_spte(vcpu->kvm, sptep))
1103 kvm_flush_remote_tlbs(vcpu->kvm);
1104}
1105
1106/*
49fde340 1107 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1108 * spte writ-protection is caused by protecting shadow page table.
1109 * @flush indicates whether tlb need be flushed.
49fde340
XG
1110 *
1111 * Note: write protection is difference between drity logging and spte
1112 * protection:
1113 * - for dirty logging, the spte can be set to writable at anytime if
1114 * its dirty bitmap is properly set.
1115 * - for spte protection, the spte can be writable only after unsync-ing
1116 * shadow page.
8e22f955 1117 *
6b73a960 1118 * Return true if the spte is dropped.
8e22f955 1119 */
6b73a960
MT
1120static bool
1121spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1122{
1123 u64 spte = *sptep;
1124
49fde340
XG
1125 if (!is_writable_pte(spte) &&
1126 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1127 return false;
1128
1129 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
6b73a960
MT
1131 if (__drop_large_spte(kvm, sptep)) {
1132 *flush |= true;
1133 return true;
1134 }
1135
49fde340
XG
1136 if (pt_protect)
1137 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1138 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1139
6b73a960
MT
1140 *flush |= mmu_spte_update(sptep, spte);
1141 return false;
d13bc5b5
XG
1142}
1143
49fde340 1144static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1145 bool pt_protect)
98348e95 1146{
1e3f42f0
TY
1147 u64 *sptep;
1148 struct rmap_iterator iter;
d13bc5b5 1149 bool flush = false;
374cbac0 1150
1e3f42f0
TY
1151 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1153 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154 sptep = rmap_get_first(*rmapp, &iter);
1155 continue;
1156 }
a0ed4607 1157
d13bc5b5 1158 sptep = rmap_get_next(&iter);
374cbac0 1159 }
855149aa 1160
d13bc5b5 1161 return flush;
a0ed4607
TY
1162}
1163
5dc99b23
TY
1164/**
1165 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166 * @kvm: kvm instance
1167 * @slot: slot to protect
1168 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169 * @mask: indicates which pages we should protect
1170 *
1171 * Used when we do not need to care about huge page mappings: e.g. during dirty
1172 * logging we do not have any such mappings.
1173 */
1174void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175 struct kvm_memory_slot *slot,
1176 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1177{
1178 unsigned long *rmapp;
a0ed4607 1179
5dc99b23 1180 while (mask) {
65fbe37c
TY
1181 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1183 __rmap_write_protect(kvm, rmapp, false);
05da4558 1184
5dc99b23
TY
1185 /* clear the first set bit */
1186 mask &= mask - 1;
1187 }
374cbac0
AK
1188}
1189
2f84569f 1190static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1191{
1192 struct kvm_memory_slot *slot;
5dc99b23
TY
1193 unsigned long *rmapp;
1194 int i;
2f84569f 1195 bool write_protected = false;
95d4c16c
TY
1196
1197 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1198
1199 for (i = PT_PAGE_TABLE_LEVEL;
1200 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1202 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1203 }
1204
1205 return write_protected;
95d4c16c
TY
1206}
1207
8a8365c5 1208static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1209 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1210{
1e3f42f0
TY
1211 u64 *sptep;
1212 struct rmap_iterator iter;
e930bffe
AA
1213 int need_tlb_flush = 0;
1214
1e3f42f0
TY
1215 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219 drop_spte(kvm, sptep);
e930bffe
AA
1220 need_tlb_flush = 1;
1221 }
1e3f42f0 1222
e930bffe
AA
1223 return need_tlb_flush;
1224}
1225
8a8365c5 1226static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1227 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1228{
1e3f42f0
TY
1229 u64 *sptep;
1230 struct rmap_iterator iter;
3da0dd43 1231 int need_flush = 0;
1e3f42f0 1232 u64 new_spte;
3da0dd43
IE
1233 pte_t *ptep = (pte_t *)data;
1234 pfn_t new_pfn;
1235
1236 WARN_ON(pte_huge(*ptep));
1237 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1238
1239 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 BUG_ON(!is_shadow_present_pte(*sptep));
1241 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
3da0dd43 1243 need_flush = 1;
1e3f42f0 1244
3da0dd43 1245 if (pte_write(*ptep)) {
1e3f42f0
TY
1246 drop_spte(kvm, sptep);
1247 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1248 } else {
1e3f42f0 1249 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1250 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252 new_spte &= ~PT_WRITABLE_MASK;
1253 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1254 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1255
1256 mmu_spte_clear_track_bits(sptep);
1257 mmu_spte_set(sptep, new_spte);
1258 sptep = rmap_get_next(&iter);
3da0dd43
IE
1259 }
1260 }
1e3f42f0 1261
3da0dd43
IE
1262 if (need_flush)
1263 kvm_flush_remote_tlbs(kvm);
1264
1265 return 0;
1266}
1267
84504ef3
TY
1268static int kvm_handle_hva_range(struct kvm *kvm,
1269 unsigned long start,
1270 unsigned long end,
1271 unsigned long data,
1272 int (*handler)(struct kvm *kvm,
1273 unsigned long *rmapp,
048212d0 1274 struct kvm_memory_slot *slot,
84504ef3 1275 unsigned long data))
e930bffe 1276{
be6ba0f0 1277 int j;
f395302e 1278 int ret = 0;
bc6678a3 1279 struct kvm_memslots *slots;
be6ba0f0 1280 struct kvm_memory_slot *memslot;
bc6678a3 1281
90d83dc3 1282 slots = kvm_memslots(kvm);
e930bffe 1283
be6ba0f0 1284 kvm_for_each_memslot(memslot, slots) {
84504ef3 1285 unsigned long hva_start, hva_end;
bcd3ef58 1286 gfn_t gfn_start, gfn_end;
e930bffe 1287
84504ef3
TY
1288 hva_start = max(start, memslot->userspace_addr);
1289 hva_end = min(end, memslot->userspace_addr +
1290 (memslot->npages << PAGE_SHIFT));
1291 if (hva_start >= hva_end)
1292 continue;
1293 /*
1294 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1295 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1296 */
bcd3ef58 1297 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1298 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1299
bcd3ef58
TY
1300 for (j = PT_PAGE_TABLE_LEVEL;
1301 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302 unsigned long idx, idx_end;
1303 unsigned long *rmapp;
d4dbf470 1304
bcd3ef58
TY
1305 /*
1306 * {idx(page_j) | page_j intersects with
1307 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308 */
1309 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1311
bcd3ef58 1312 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1313
bcd3ef58
TY
1314 for (; idx <= idx_end; ++idx)
1315 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1316 }
1317 }
1318
f395302e 1319 return ret;
e930bffe
AA
1320}
1321
84504ef3
TY
1322static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1325 struct kvm_memory_slot *slot,
84504ef3
TY
1326 unsigned long data))
1327{
1328 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1329}
1330
1331int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332{
3da0dd43
IE
1333 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334}
1335
b3ae2096
TY
1336int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337{
1338 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339}
1340
3da0dd43
IE
1341void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342{
8a8365c5 1343 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1344}
1345
8a8365c5 1346static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1347 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1348{
1e3f42f0 1349 u64 *sptep;
79f702a6 1350 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1351 int young = 0;
1352
6316e1c8 1353 /*
3f6d8c8a
XH
1354 * In case of absence of EPT Access and Dirty Bits supports,
1355 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1356 * an EPT mapping, and clearing it if it does. On the next access,
1357 * a new EPT mapping will be established.
1358 * This has some overhead, but not as much as the cost of swapping
1359 * out actively used pages or breaking up actively used hugepages.
1360 */
f395302e
TY
1361 if (!shadow_accessed_mask) {
1362 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363 goto out;
1364 }
534e38b4 1365
1e3f42f0
TY
1366 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1368 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1369
3f6d8c8a 1370 if (*sptep & shadow_accessed_mask) {
e930bffe 1371 young = 1;
3f6d8c8a
XH
1372 clear_bit((ffs(shadow_accessed_mask) - 1),
1373 (unsigned long *)sptep);
e930bffe 1374 }
e930bffe 1375 }
f395302e
TY
1376out:
1377 /* @data has hva passed to kvm_age_hva(). */
1378 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1379 return young;
1380}
1381
8ee53820 1382static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1383 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1384{
1e3f42f0
TY
1385 u64 *sptep;
1386 struct rmap_iterator iter;
8ee53820
AA
1387 int young = 0;
1388
1389 /*
1390 * If there's no access bit in the secondary pte set by the
1391 * hardware it's up to gup-fast/gup to set the access bit in
1392 * the primary pte or in the page structure.
1393 */
1394 if (!shadow_accessed_mask)
1395 goto out;
1396
1e3f42f0
TY
1397 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1399 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1400
3f6d8c8a 1401 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1402 young = 1;
1403 break;
1404 }
8ee53820
AA
1405 }
1406out:
1407 return young;
1408}
1409
53a27b39
MT
1410#define RMAP_RECYCLE_THRESHOLD 1000
1411
852e3c19 1412static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1413{
1414 unsigned long *rmapp;
852e3c19
JR
1415 struct kvm_mmu_page *sp;
1416
1417 sp = page_header(__pa(spte));
53a27b39 1418
852e3c19 1419 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1420
048212d0 1421 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1422 kvm_flush_remote_tlbs(vcpu->kvm);
1423}
1424
e930bffe
AA
1425int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426{
f395302e 1427 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1428}
1429
8ee53820
AA
1430int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431{
1432 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433}
1434
d6c69ee9 1435#ifdef MMU_DEBUG
47ad8e68 1436static int is_empty_shadow_page(u64 *spt)
6aa8b732 1437{
139bdb2d
AK
1438 u64 *pos;
1439 u64 *end;
1440
47ad8e68 1441 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1442 if (is_shadow_present_pte(*pos)) {
b8688d51 1443 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1444 pos, *pos);
6aa8b732 1445 return 0;
139bdb2d 1446 }
6aa8b732
AK
1447 return 1;
1448}
d6c69ee9 1449#endif
6aa8b732 1450
45221ab6
DH
1451/*
1452 * This value is the sum of all of the kvm instances's
1453 * kvm->arch.n_used_mmu_pages values. We need a global,
1454 * aggregate version in order to make the slab shrinker
1455 * faster
1456 */
1457static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458{
1459 kvm->arch.n_used_mmu_pages += nr;
1460 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461}
1462
834be0d8 1463static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1464{
4db35314 1465 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1466 hlist_del(&sp->hash_link);
bd4c86ea
XG
1467 list_del(&sp->link);
1468 free_page((unsigned long)sp->spt);
834be0d8
GN
1469 if (!sp->role.direct)
1470 free_page((unsigned long)sp->gfns);
e8ad9a70 1471 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1472}
1473
cea0f0e7
AK
1474static unsigned kvm_page_table_hashfn(gfn_t gfn)
1475{
1ae0a13d 1476 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1477}
1478
714b93da 1479static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1480 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1481{
cea0f0e7
AK
1482 if (!parent_pte)
1483 return;
cea0f0e7 1484
67052b35 1485 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1486}
1487
4db35314 1488static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1489 u64 *parent_pte)
1490{
67052b35 1491 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1492}
1493
bcdd9a93
XG
1494static void drop_parent_pte(struct kvm_mmu_page *sp,
1495 u64 *parent_pte)
1496{
1497 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1498 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1499}
1500
67052b35
XG
1501static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1502 u64 *parent_pte, int direct)
ad8cfbe3 1503{
67052b35 1504 struct kvm_mmu_page *sp;
80feb89a
TY
1505 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1506 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1507 if (!direct)
80feb89a 1508 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1509 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1510 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1511 sp->parent_ptes = 0;
1512 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1513 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1514 return sp;
ad8cfbe3
MT
1515}
1516
67052b35 1517static void mark_unsync(u64 *spte);
1047df1f 1518static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1519{
67052b35 1520 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1521}
1522
67052b35 1523static void mark_unsync(u64 *spte)
0074ff63 1524{
67052b35 1525 struct kvm_mmu_page *sp;
1047df1f 1526 unsigned int index;
0074ff63 1527
67052b35 1528 sp = page_header(__pa(spte));
1047df1f
XG
1529 index = spte - sp->spt;
1530 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1531 return;
1047df1f 1532 if (sp->unsync_children++)
0074ff63 1533 return;
1047df1f 1534 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1535}
1536
e8bc217a 1537static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1538 struct kvm_mmu_page *sp)
e8bc217a
MT
1539{
1540 return 1;
1541}
1542
a7052897
MT
1543static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1544{
1545}
1546
0f53b5b1
XG
1547static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1548 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1549 const void *pte)
0f53b5b1
XG
1550{
1551 WARN_ON(1);
1552}
1553
60c8aec6
MT
1554#define KVM_PAGE_ARRAY_NR 16
1555
1556struct kvm_mmu_pages {
1557 struct mmu_page_and_offset {
1558 struct kvm_mmu_page *sp;
1559 unsigned int idx;
1560 } page[KVM_PAGE_ARRAY_NR];
1561 unsigned int nr;
1562};
1563
cded19f3
HE
1564static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1565 int idx)
4731d4c7 1566{
60c8aec6 1567 int i;
4731d4c7 1568
60c8aec6
MT
1569 if (sp->unsync)
1570 for (i=0; i < pvec->nr; i++)
1571 if (pvec->page[i].sp == sp)
1572 return 0;
1573
1574 pvec->page[pvec->nr].sp = sp;
1575 pvec->page[pvec->nr].idx = idx;
1576 pvec->nr++;
1577 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1578}
1579
1580static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1581 struct kvm_mmu_pages *pvec)
1582{
1583 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1584
37178b8b 1585 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1586 struct kvm_mmu_page *child;
4731d4c7
MT
1587 u64 ent = sp->spt[i];
1588
7a8f1a74
XG
1589 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1590 goto clear_child_bitmap;
1591
1592 child = page_header(ent & PT64_BASE_ADDR_MASK);
1593
1594 if (child->unsync_children) {
1595 if (mmu_pages_add(pvec, child, i))
1596 return -ENOSPC;
1597
1598 ret = __mmu_unsync_walk(child, pvec);
1599 if (!ret)
1600 goto clear_child_bitmap;
1601 else if (ret > 0)
1602 nr_unsync_leaf += ret;
1603 else
1604 return ret;
1605 } else if (child->unsync) {
1606 nr_unsync_leaf++;
1607 if (mmu_pages_add(pvec, child, i))
1608 return -ENOSPC;
1609 } else
1610 goto clear_child_bitmap;
1611
1612 continue;
1613
1614clear_child_bitmap:
1615 __clear_bit(i, sp->unsync_child_bitmap);
1616 sp->unsync_children--;
1617 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1618 }
1619
4731d4c7 1620
60c8aec6
MT
1621 return nr_unsync_leaf;
1622}
1623
1624static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1625 struct kvm_mmu_pages *pvec)
1626{
1627 if (!sp->unsync_children)
1628 return 0;
1629
1630 mmu_pages_add(pvec, sp, 0);
1631 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1632}
1633
4731d4c7
MT
1634static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1635{
1636 WARN_ON(!sp->unsync);
5e1b3ddb 1637 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1638 sp->unsync = 0;
1639 --kvm->stat.mmu_unsync;
1640}
1641
7775834a
XG
1642static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1643 struct list_head *invalid_list);
1644static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1645 struct list_head *invalid_list);
4731d4c7 1646
1044b030
TY
1647#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1648 hlist_for_each_entry(_sp, \
1649 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1650 if ((_sp)->gfn != (_gfn)) {} else
1651
1652#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1653 for_each_gfn_sp(_kvm, _sp, _gfn) \
1654 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1655
f918b443 1656/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1657static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1658 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1659{
5b7e0102 1660 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1661 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1662 return 1;
1663 }
1664
f918b443 1665 if (clear_unsync)
1d9dc7e0 1666 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1667
a4a8e6f7 1668 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1669 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1670 return 1;
1671 }
1672
1673 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1674 return 0;
1675}
1676
1d9dc7e0
XG
1677static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1678 struct kvm_mmu_page *sp)
1679{
d98ba053 1680 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1681 int ret;
1682
d98ba053 1683 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1684 if (ret)
d98ba053
XG
1685 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1686
1d9dc7e0
XG
1687 return ret;
1688}
1689
e37fa785
XG
1690#ifdef CONFIG_KVM_MMU_AUDIT
1691#include "mmu_audit.c"
1692#else
1693static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1694static void mmu_audit_disable(void) { }
1695#endif
1696
d98ba053
XG
1697static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1698 struct list_head *invalid_list)
1d9dc7e0 1699{
d98ba053 1700 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1701}
1702
9f1a122f
XG
1703/* @gfn should be write-protected at the call site */
1704static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1705{
9f1a122f 1706 struct kvm_mmu_page *s;
d98ba053 1707 LIST_HEAD(invalid_list);
9f1a122f
XG
1708 bool flush = false;
1709
b67bfe0d 1710 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1711 if (!s->unsync)
9f1a122f
XG
1712 continue;
1713
1714 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1715 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1716 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1717 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1718 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1719 continue;
1720 }
9f1a122f
XG
1721 flush = true;
1722 }
1723
d98ba053 1724 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1725 if (flush)
1726 kvm_mmu_flush_tlb(vcpu);
1727}
1728
60c8aec6
MT
1729struct mmu_page_path {
1730 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1731 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1732};
1733
60c8aec6
MT
1734#define for_each_sp(pvec, sp, parents, i) \
1735 for (i = mmu_pages_next(&pvec, &parents, -1), \
1736 sp = pvec.page[i].sp; \
1737 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1738 i = mmu_pages_next(&pvec, &parents, i))
1739
cded19f3
HE
1740static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1741 struct mmu_page_path *parents,
1742 int i)
60c8aec6
MT
1743{
1744 int n;
1745
1746 for (n = i+1; n < pvec->nr; n++) {
1747 struct kvm_mmu_page *sp = pvec->page[n].sp;
1748
1749 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1750 parents->idx[0] = pvec->page[n].idx;
1751 return n;
1752 }
1753
1754 parents->parent[sp->role.level-2] = sp;
1755 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1756 }
1757
1758 return n;
1759}
1760
cded19f3 1761static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1762{
60c8aec6
MT
1763 struct kvm_mmu_page *sp;
1764 unsigned int level = 0;
1765
1766 do {
1767 unsigned int idx = parents->idx[level];
4731d4c7 1768
60c8aec6
MT
1769 sp = parents->parent[level];
1770 if (!sp)
1771 return;
1772
1773 --sp->unsync_children;
1774 WARN_ON((int)sp->unsync_children < 0);
1775 __clear_bit(idx, sp->unsync_child_bitmap);
1776 level++;
1777 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1778}
1779
60c8aec6
MT
1780static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1781 struct mmu_page_path *parents,
1782 struct kvm_mmu_pages *pvec)
4731d4c7 1783{
60c8aec6
MT
1784 parents->parent[parent->role.level-1] = NULL;
1785 pvec->nr = 0;
1786}
4731d4c7 1787
60c8aec6
MT
1788static void mmu_sync_children(struct kvm_vcpu *vcpu,
1789 struct kvm_mmu_page *parent)
1790{
1791 int i;
1792 struct kvm_mmu_page *sp;
1793 struct mmu_page_path parents;
1794 struct kvm_mmu_pages pages;
d98ba053 1795 LIST_HEAD(invalid_list);
60c8aec6
MT
1796
1797 kvm_mmu_pages_init(parent, &parents, &pages);
1798 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1799 bool protected = false;
b1a36821
MT
1800
1801 for_each_sp(pages, sp, parents, i)
1802 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1803
1804 if (protected)
1805 kvm_flush_remote_tlbs(vcpu->kvm);
1806
60c8aec6 1807 for_each_sp(pages, sp, parents, i) {
d98ba053 1808 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1809 mmu_pages_clear_parents(&parents);
1810 }
d98ba053 1811 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1812 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1813 kvm_mmu_pages_init(parent, &parents, &pages);
1814 }
4731d4c7
MT
1815}
1816
c3707958
XG
1817static void init_shadow_page_table(struct kvm_mmu_page *sp)
1818{
1819 int i;
1820
1821 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1822 sp->spt[i] = 0ull;
1823}
1824
a30f47cb
XG
1825static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1826{
1827 sp->write_flooding_count = 0;
1828}
1829
1830static void clear_sp_write_flooding_count(u64 *spte)
1831{
1832 struct kvm_mmu_page *sp = page_header(__pa(spte));
1833
1834 __clear_sp_write_flooding_count(sp);
1835}
1836
cea0f0e7
AK
1837static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1838 gfn_t gfn,
1839 gva_t gaddr,
1840 unsigned level,
f6e2c02b 1841 int direct,
41074d07 1842 unsigned access,
f7d9c7b7 1843 u64 *parent_pte)
cea0f0e7
AK
1844{
1845 union kvm_mmu_page_role role;
cea0f0e7 1846 unsigned quadrant;
9f1a122f 1847 struct kvm_mmu_page *sp;
9f1a122f 1848 bool need_sync = false;
cea0f0e7 1849
a770f6f2 1850 role = vcpu->arch.mmu.base_role;
cea0f0e7 1851 role.level = level;
f6e2c02b 1852 role.direct = direct;
84b0c8c6 1853 if (role.direct)
5b7e0102 1854 role.cr4_pae = 0;
41074d07 1855 role.access = access;
c5a78f2b
JR
1856 if (!vcpu->arch.mmu.direct_map
1857 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1858 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1859 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1860 role.quadrant = quadrant;
1861 }
b67bfe0d 1862 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7ae680eb
XG
1863 if (!need_sync && sp->unsync)
1864 need_sync = true;
4731d4c7 1865
7ae680eb
XG
1866 if (sp->role.word != role.word)
1867 continue;
4731d4c7 1868
7ae680eb
XG
1869 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1870 break;
e02aa901 1871
7ae680eb
XG
1872 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1873 if (sp->unsync_children) {
a8eeb04a 1874 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1875 kvm_mmu_mark_parents_unsync(sp);
1876 } else if (sp->unsync)
1877 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1878
a30f47cb 1879 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1880 trace_kvm_mmu_get_page(sp, false);
1881 return sp;
1882 }
dfc5aa00 1883 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1884 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1885 if (!sp)
1886 return sp;
4db35314
AK
1887 sp->gfn = gfn;
1888 sp->role = role;
7ae680eb
XG
1889 hlist_add_head(&sp->hash_link,
1890 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1891 if (!direct) {
b1a36821
MT
1892 if (rmap_write_protect(vcpu->kvm, gfn))
1893 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1894 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1895 kvm_sync_pages(vcpu, gfn);
1896
4731d4c7
MT
1897 account_shadowed(vcpu->kvm, gfn);
1898 }
c3707958 1899 init_shadow_page_table(sp);
f691fe1d 1900 trace_kvm_mmu_get_page(sp, true);
4db35314 1901 return sp;
cea0f0e7
AK
1902}
1903
2d11123a
AK
1904static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1905 struct kvm_vcpu *vcpu, u64 addr)
1906{
1907 iterator->addr = addr;
1908 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1909 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1910
1911 if (iterator->level == PT64_ROOT_LEVEL &&
1912 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1913 !vcpu->arch.mmu.direct_map)
1914 --iterator->level;
1915
2d11123a
AK
1916 if (iterator->level == PT32E_ROOT_LEVEL) {
1917 iterator->shadow_addr
1918 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1919 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1920 --iterator->level;
1921 if (!iterator->shadow_addr)
1922 iterator->level = 0;
1923 }
1924}
1925
1926static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1927{
1928 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1929 return false;
4d88954d 1930
2d11123a
AK
1931 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1932 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1933 return true;
1934}
1935
c2a2ac2b
XG
1936static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1937 u64 spte)
2d11123a 1938{
c2a2ac2b 1939 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1940 iterator->level = 0;
1941 return;
1942 }
1943
c2a2ac2b 1944 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1945 --iterator->level;
1946}
1947
c2a2ac2b
XG
1948static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1949{
1950 return __shadow_walk_next(iterator, *iterator->sptep);
1951}
1952
32ef26a3
AK
1953static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1954{
1955 u64 spte;
1956
24db2734
XG
1957 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1958 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1959
1df9f2dc 1960 mmu_spte_set(sptep, spte);
32ef26a3
AK
1961}
1962
a357bd22
AK
1963static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1964 unsigned direct_access)
1965{
1966 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1967 struct kvm_mmu_page *child;
1968
1969 /*
1970 * For the direct sp, if the guest pte's dirty bit
1971 * changed form clean to dirty, it will corrupt the
1972 * sp's access: allow writable in the read-only sp,
1973 * so we should update the spte at this point to get
1974 * a new sp with the correct access.
1975 */
1976 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1977 if (child->role.access == direct_access)
1978 return;
1979
bcdd9a93 1980 drop_parent_pte(child, sptep);
a357bd22
AK
1981 kvm_flush_remote_tlbs(vcpu->kvm);
1982 }
1983}
1984
505aef8f 1985static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1986 u64 *spte)
1987{
1988 u64 pte;
1989 struct kvm_mmu_page *child;
1990
1991 pte = *spte;
1992 if (is_shadow_present_pte(pte)) {
505aef8f 1993 if (is_last_spte(pte, sp->role.level)) {
c3707958 1994 drop_spte(kvm, spte);
505aef8f
XG
1995 if (is_large_pte(pte))
1996 --kvm->stat.lpages;
1997 } else {
38e3b2b2 1998 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1999 drop_parent_pte(child, spte);
38e3b2b2 2000 }
505aef8f
XG
2001 return true;
2002 }
2003
2004 if (is_mmio_spte(pte))
ce88decf 2005 mmu_spte_clear_no_track(spte);
c3707958 2006
505aef8f 2007 return false;
38e3b2b2
XG
2008}
2009
90cb0529 2010static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2011 struct kvm_mmu_page *sp)
a436036b 2012{
697fe2e2 2013 unsigned i;
697fe2e2 2014
38e3b2b2
XG
2015 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2016 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2017}
2018
4db35314 2019static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2020{
4db35314 2021 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2022}
2023
31aa2b44 2024static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2025{
1e3f42f0
TY
2026 u64 *sptep;
2027 struct rmap_iterator iter;
a436036b 2028
1e3f42f0
TY
2029 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2030 drop_parent_pte(sp, sptep);
31aa2b44
AK
2031}
2032
60c8aec6 2033static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2034 struct kvm_mmu_page *parent,
2035 struct list_head *invalid_list)
4731d4c7 2036{
60c8aec6
MT
2037 int i, zapped = 0;
2038 struct mmu_page_path parents;
2039 struct kvm_mmu_pages pages;
4731d4c7 2040
60c8aec6 2041 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2042 return 0;
60c8aec6
MT
2043
2044 kvm_mmu_pages_init(parent, &parents, &pages);
2045 while (mmu_unsync_walk(parent, &pages)) {
2046 struct kvm_mmu_page *sp;
2047
2048 for_each_sp(pages, sp, parents, i) {
7775834a 2049 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2050 mmu_pages_clear_parents(&parents);
77662e00 2051 zapped++;
60c8aec6 2052 }
60c8aec6
MT
2053 kvm_mmu_pages_init(parent, &parents, &pages);
2054 }
2055
2056 return zapped;
4731d4c7
MT
2057}
2058
7775834a
XG
2059static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2060 struct list_head *invalid_list)
31aa2b44 2061{
4731d4c7 2062 int ret;
f691fe1d 2063
7775834a 2064 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2065 ++kvm->stat.mmu_shadow_zapped;
7775834a 2066 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2067 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2068 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2069 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2070 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2071 if (sp->unsync)
2072 kvm_unlink_unsync_page(kvm, sp);
4db35314 2073 if (!sp->root_count) {
54a4f023
GJ
2074 /* Count self */
2075 ret++;
7775834a 2076 list_move(&sp->link, invalid_list);
aa6bd187 2077 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2078 } else {
5b5c6a5a 2079 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2080 kvm_reload_remote_mmus(kvm);
2081 }
7775834a
XG
2082
2083 sp->role.invalid = 1;
4731d4c7 2084 return ret;
a436036b
AK
2085}
2086
7775834a
XG
2087static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2088 struct list_head *invalid_list)
2089{
2090 struct kvm_mmu_page *sp;
2091
2092 if (list_empty(invalid_list))
2093 return;
2094
c142786c
AK
2095 /*
2096 * wmb: make sure everyone sees our modifications to the page tables
2097 * rmb: make sure we see changes to vcpu->mode
2098 */
2099 smp_mb();
4f022648 2100
c142786c
AK
2101 /*
2102 * Wait for all vcpus to exit guest mode and/or lockless shadow
2103 * page table walks.
2104 */
2105 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2106
7775834a
XG
2107 do {
2108 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2109 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2110 kvm_mmu_free_page(sp);
7775834a 2111 } while (!list_empty(invalid_list));
7775834a
XG
2112}
2113
82ce2c96
IE
2114/*
2115 * Changing the number of mmu pages allocated to the vm
49d5ca26 2116 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2117 */
49d5ca26 2118void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2119{
d98ba053 2120 LIST_HEAD(invalid_list);
82ce2c96
IE
2121 /*
2122 * If we set the number of mmu pages to be smaller be than the
2123 * number of actived pages , we must to free some mmu pages before we
2124 * change the value
2125 */
2126
b34cb590
TY
2127 spin_lock(&kvm->mmu_lock);
2128
49d5ca26
DH
2129 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2130 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2131 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2132 struct kvm_mmu_page *page;
2133
f05e70ac 2134 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2135 struct kvm_mmu_page, link);
80b63faf 2136 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2137 }
aa6bd187 2138 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2139 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2140 }
82ce2c96 2141
49d5ca26 2142 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2143
2144 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2145}
2146
1cb3f3ae 2147int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2148{
4db35314 2149 struct kvm_mmu_page *sp;
d98ba053 2150 LIST_HEAD(invalid_list);
a436036b
AK
2151 int r;
2152
9ad17b10 2153 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2154 r = 0;
1cb3f3ae 2155 spin_lock(&kvm->mmu_lock);
b67bfe0d 2156 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2157 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2158 sp->role.word);
2159 r = 1;
f41d335a 2160 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2161 }
d98ba053 2162 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2163 spin_unlock(&kvm->mmu_lock);
2164
a436036b 2165 return r;
cea0f0e7 2166}
1cb3f3ae 2167EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2168
74be52e3
SY
2169/*
2170 * The function is based on mtrr_type_lookup() in
2171 * arch/x86/kernel/cpu/mtrr/generic.c
2172 */
2173static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2174 u64 start, u64 end)
2175{
2176 int i;
2177 u64 base, mask;
2178 u8 prev_match, curr_match;
2179 int num_var_ranges = KVM_NR_VAR_MTRR;
2180
2181 if (!mtrr_state->enabled)
2182 return 0xFF;
2183
2184 /* Make end inclusive end, instead of exclusive */
2185 end--;
2186
2187 /* Look in fixed ranges. Just return the type as per start */
2188 if (mtrr_state->have_fixed && (start < 0x100000)) {
2189 int idx;
2190
2191 if (start < 0x80000) {
2192 idx = 0;
2193 idx += (start >> 16);
2194 return mtrr_state->fixed_ranges[idx];
2195 } else if (start < 0xC0000) {
2196 idx = 1 * 8;
2197 idx += ((start - 0x80000) >> 14);
2198 return mtrr_state->fixed_ranges[idx];
2199 } else if (start < 0x1000000) {
2200 idx = 3 * 8;
2201 idx += ((start - 0xC0000) >> 12);
2202 return mtrr_state->fixed_ranges[idx];
2203 }
2204 }
2205
2206 /*
2207 * Look in variable ranges
2208 * Look of multiple ranges matching this address and pick type
2209 * as per MTRR precedence
2210 */
2211 if (!(mtrr_state->enabled & 2))
2212 return mtrr_state->def_type;
2213
2214 prev_match = 0xFF;
2215 for (i = 0; i < num_var_ranges; ++i) {
2216 unsigned short start_state, end_state;
2217
2218 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2219 continue;
2220
2221 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2222 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2223 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2224 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2225
2226 start_state = ((start & mask) == (base & mask));
2227 end_state = ((end & mask) == (base & mask));
2228 if (start_state != end_state)
2229 return 0xFE;
2230
2231 if ((start & mask) != (base & mask))
2232 continue;
2233
2234 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2235 if (prev_match == 0xFF) {
2236 prev_match = curr_match;
2237 continue;
2238 }
2239
2240 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2241 curr_match == MTRR_TYPE_UNCACHABLE)
2242 return MTRR_TYPE_UNCACHABLE;
2243
2244 if ((prev_match == MTRR_TYPE_WRBACK &&
2245 curr_match == MTRR_TYPE_WRTHROUGH) ||
2246 (prev_match == MTRR_TYPE_WRTHROUGH &&
2247 curr_match == MTRR_TYPE_WRBACK)) {
2248 prev_match = MTRR_TYPE_WRTHROUGH;
2249 curr_match = MTRR_TYPE_WRTHROUGH;
2250 }
2251
2252 if (prev_match != curr_match)
2253 return MTRR_TYPE_UNCACHABLE;
2254 }
2255
2256 if (prev_match != 0xFF)
2257 return prev_match;
2258
2259 return mtrr_state->def_type;
2260}
2261
4b12f0de 2262u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2263{
2264 u8 mtrr;
2265
2266 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2267 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2268 if (mtrr == 0xfe || mtrr == 0xff)
2269 mtrr = MTRR_TYPE_WRBACK;
2270 return mtrr;
2271}
4b12f0de 2272EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2273
9cf5cf5a
XG
2274static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2275{
2276 trace_kvm_mmu_unsync_page(sp);
2277 ++vcpu->kvm->stat.mmu_unsync;
2278 sp->unsync = 1;
2279
2280 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2281}
2282
2283static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2284{
4731d4c7 2285 struct kvm_mmu_page *s;
9cf5cf5a 2286
b67bfe0d 2287 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2288 if (s->unsync)
4731d4c7 2289 continue;
9cf5cf5a
XG
2290 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2291 __kvm_unsync_page(vcpu, s);
4731d4c7 2292 }
4731d4c7
MT
2293}
2294
2295static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2296 bool can_unsync)
2297{
9cf5cf5a 2298 struct kvm_mmu_page *s;
9cf5cf5a
XG
2299 bool need_unsync = false;
2300
b67bfe0d 2301 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2302 if (!can_unsync)
2303 return 1;
2304
9cf5cf5a 2305 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2306 return 1;
9cf5cf5a 2307
9bb4f6b1 2308 if (!s->unsync)
9cf5cf5a 2309 need_unsync = true;
4731d4c7 2310 }
9cf5cf5a
XG
2311 if (need_unsync)
2312 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2313 return 0;
2314}
2315
d555c333 2316static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2317 unsigned pte_access, int level,
c2d0ee46 2318 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2319 bool can_unsync, bool host_writable)
1c4f1fd6 2320{
6e7d0354 2321 u64 spte;
1e73f9dd 2322 int ret = 0;
64d4d521 2323
ce88decf
XG
2324 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2325 return 0;
2326
982c2565 2327 spte = PT_PRESENT_MASK;
947da538 2328 if (!speculative)
3201b5d9 2329 spte |= shadow_accessed_mask;
640d9b0d 2330
7b52345e
SY
2331 if (pte_access & ACC_EXEC_MASK)
2332 spte |= shadow_x_mask;
2333 else
2334 spte |= shadow_nx_mask;
49fde340 2335
1c4f1fd6 2336 if (pte_access & ACC_USER_MASK)
7b52345e 2337 spte |= shadow_user_mask;
49fde340 2338
852e3c19 2339 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2340 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2341 if (tdp_enabled)
4b12f0de
SY
2342 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2343 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2344
9bdbba13 2345 if (host_writable)
1403283a 2346 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2347 else
2348 pte_access &= ~ACC_WRITE_MASK;
1403283a 2349
35149e21 2350 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2351
c2288505 2352 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2353
c2193463 2354 /*
7751babd
XG
2355 * Other vcpu creates new sp in the window between
2356 * mapping_level() and acquiring mmu-lock. We can
2357 * allow guest to retry the access, the mapping can
2358 * be fixed if guest refault.
c2193463 2359 */
852e3c19 2360 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2361 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2362 goto done;
38187c83 2363
49fde340 2364 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2365
ecc5589f
MT
2366 /*
2367 * Optimization: for pte sync, if spte was writable the hash
2368 * lookup is unnecessary (and expensive). Write protection
2369 * is responsibility of mmu_get_page / kvm_sync_page.
2370 * Same reasoning can be applied to dirty page accounting.
2371 */
8dae4445 2372 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2373 goto set_pte;
2374
4731d4c7 2375 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2376 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2377 __func__, gfn);
1e73f9dd 2378 ret = 1;
1c4f1fd6 2379 pte_access &= ~ACC_WRITE_MASK;
49fde340 2380 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2381 }
2382 }
2383
1c4f1fd6
AK
2384 if (pte_access & ACC_WRITE_MASK)
2385 mark_page_dirty(vcpu->kvm, gfn);
2386
38187c83 2387set_pte:
6e7d0354 2388 if (mmu_spte_update(sptep, spte))
b330aa0c 2389 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2390done:
1e73f9dd
MT
2391 return ret;
2392}
2393
d555c333 2394static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2395 unsigned pte_access, int write_fault, int *emulate,
2396 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2397 bool host_writable)
1e73f9dd
MT
2398{
2399 int was_rmapped = 0;
53a27b39 2400 int rmap_count;
1e73f9dd 2401
f7616203
XG
2402 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2403 *sptep, write_fault, gfn);
1e73f9dd 2404
d555c333 2405 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2406 /*
2407 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2408 * the parent of the now unreachable PTE.
2409 */
852e3c19
JR
2410 if (level > PT_PAGE_TABLE_LEVEL &&
2411 !is_large_pte(*sptep)) {
1e73f9dd 2412 struct kvm_mmu_page *child;
d555c333 2413 u64 pte = *sptep;
1e73f9dd
MT
2414
2415 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2416 drop_parent_pte(child, sptep);
3be2264b 2417 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2418 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2419 pgprintk("hfn old %llx new %llx\n",
d555c333 2420 spte_to_pfn(*sptep), pfn);
c3707958 2421 drop_spte(vcpu->kvm, sptep);
91546356 2422 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2423 } else
2424 was_rmapped = 1;
1e73f9dd 2425 }
852e3c19 2426
c2288505
XG
2427 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2428 true, host_writable)) {
1e73f9dd 2429 if (write_fault)
b90a0e6c 2430 *emulate = 1;
5304efde 2431 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2432 }
1e73f9dd 2433
ce88decf
XG
2434 if (unlikely(is_mmio_spte(*sptep) && emulate))
2435 *emulate = 1;
2436
d555c333 2437 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2438 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2439 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2440 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2441 *sptep, sptep);
d555c333 2442 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2443 ++vcpu->kvm->stat.lpages;
2444
ffb61bb3 2445 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2446 if (!was_rmapped) {
2447 rmap_count = rmap_add(vcpu, sptep, gfn);
2448 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2449 rmap_recycle(vcpu, sptep, gfn);
2450 }
1c4f1fd6 2451 }
cb9aaa30 2452
f3ac1a4b 2453 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2454}
2455
6aa8b732
AK
2456static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2457{
e676505a 2458 mmu_free_roots(vcpu);
6aa8b732
AK
2459}
2460
a052b42b
XG
2461static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2462{
2463 int bit7;
2464
2465 bit7 = (gpte >> 7) & 1;
2466 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2467}
2468
957ed9ef
XG
2469static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2470 bool no_dirty_log)
2471{
2472 struct kvm_memory_slot *slot;
957ed9ef 2473
5d163b1c 2474 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2475 if (!slot)
6c8ee57b 2476 return KVM_PFN_ERR_FAULT;
957ed9ef 2477
037d92dc 2478 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2479}
2480
a052b42b
XG
2481static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2482 struct kvm_mmu_page *sp, u64 *spte,
2483 u64 gpte)
2484{
2485 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2486 goto no_present;
2487
2488 if (!is_present_gpte(gpte))
2489 goto no_present;
2490
2491 if (!(gpte & PT_ACCESSED_MASK))
2492 goto no_present;
2493
2494 return false;
2495
2496no_present:
2497 drop_spte(vcpu->kvm, spte);
2498 return true;
2499}
2500
957ed9ef
XG
2501static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2502 struct kvm_mmu_page *sp,
2503 u64 *start, u64 *end)
2504{
2505 struct page *pages[PTE_PREFETCH_NUM];
2506 unsigned access = sp->role.access;
2507 int i, ret;
2508 gfn_t gfn;
2509
2510 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2511 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2512 return -1;
2513
2514 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2515 if (ret <= 0)
2516 return -1;
2517
2518 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2519 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2520 sp->role.level, gfn, page_to_pfn(pages[i]),
2521 true, true);
957ed9ef
XG
2522
2523 return 0;
2524}
2525
2526static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2527 struct kvm_mmu_page *sp, u64 *sptep)
2528{
2529 u64 *spte, *start = NULL;
2530 int i;
2531
2532 WARN_ON(!sp->role.direct);
2533
2534 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2535 spte = sp->spt + i;
2536
2537 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2538 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2539 if (!start)
2540 continue;
2541 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2542 break;
2543 start = NULL;
2544 } else if (!start)
2545 start = spte;
2546 }
2547}
2548
2549static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2550{
2551 struct kvm_mmu_page *sp;
2552
2553 /*
2554 * Since it's no accessed bit on EPT, it's no way to
2555 * distinguish between actually accessed translations
2556 * and prefetched, so disable pte prefetch if EPT is
2557 * enabled.
2558 */
2559 if (!shadow_accessed_mask)
2560 return;
2561
2562 sp = page_header(__pa(sptep));
2563 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2564 return;
2565
2566 __direct_pte_prefetch(vcpu, sp, sptep);
2567}
2568
9f652d21 2569static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2570 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2571 bool prefault)
140754bc 2572{
9f652d21 2573 struct kvm_shadow_walk_iterator iterator;
140754bc 2574 struct kvm_mmu_page *sp;
b90a0e6c 2575 int emulate = 0;
140754bc 2576 gfn_t pseudo_gfn;
6aa8b732 2577
9f652d21 2578 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2579 if (iterator.level == level) {
f7616203 2580 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2581 write, &emulate, level, gfn, pfn,
2582 prefault, map_writable);
957ed9ef 2583 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2584 ++vcpu->stat.pf_fixed;
2585 break;
6aa8b732
AK
2586 }
2587
c3707958 2588 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2589 u64 base_addr = iterator.addr;
2590
2591 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2592 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2593 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2594 iterator.level - 1,
2595 1, ACC_ALL, iterator.sptep);
140754bc 2596
24db2734 2597 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2598 }
2599 }
b90a0e6c 2600 return emulate;
6aa8b732
AK
2601}
2602
77db5cbd 2603static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2604{
77db5cbd
HY
2605 siginfo_t info;
2606
2607 info.si_signo = SIGBUS;
2608 info.si_errno = 0;
2609 info.si_code = BUS_MCEERR_AR;
2610 info.si_addr = (void __user *)address;
2611 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2612
77db5cbd 2613 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2614}
2615
d7c55201 2616static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2617{
4d8b81ab
XG
2618 /*
2619 * Do not cache the mmio info caused by writing the readonly gfn
2620 * into the spte otherwise read access on readonly gfn also can
2621 * caused mmio page fault and treat it as mmio access.
2622 * Return 1 to tell kvm to emulate it.
2623 */
2624 if (pfn == KVM_PFN_ERR_RO_FAULT)
2625 return 1;
2626
e6c1502b 2627 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2628 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2629 return 0;
d7c55201 2630 }
edba23e5 2631
d7c55201 2632 return -EFAULT;
bf998156
HY
2633}
2634
936a5fe6
AA
2635static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2636 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2637{
2638 pfn_t pfn = *pfnp;
2639 gfn_t gfn = *gfnp;
2640 int level = *levelp;
2641
2642 /*
2643 * Check if it's a transparent hugepage. If this would be an
2644 * hugetlbfs page, level wouldn't be set to
2645 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2646 * here.
2647 */
81c52c56 2648 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2649 level == PT_PAGE_TABLE_LEVEL &&
2650 PageTransCompound(pfn_to_page(pfn)) &&
2651 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2652 unsigned long mask;
2653 /*
2654 * mmu_notifier_retry was successful and we hold the
2655 * mmu_lock here, so the pmd can't become splitting
2656 * from under us, and in turn
2657 * __split_huge_page_refcount() can't run from under
2658 * us and we can safely transfer the refcount from
2659 * PG_tail to PG_head as we switch the pfn to tail to
2660 * head.
2661 */
2662 *levelp = level = PT_DIRECTORY_LEVEL;
2663 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2664 VM_BUG_ON((gfn & mask) != (pfn & mask));
2665 if (pfn & mask) {
2666 gfn &= ~mask;
2667 *gfnp = gfn;
2668 kvm_release_pfn_clean(pfn);
2669 pfn &= ~mask;
c3586667 2670 kvm_get_pfn(pfn);
936a5fe6
AA
2671 *pfnp = pfn;
2672 }
2673 }
2674}
2675
d7c55201
XG
2676static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2677 pfn_t pfn, unsigned access, int *ret_val)
2678{
2679 bool ret = true;
2680
2681 /* The pfn is invalid, report the error! */
81c52c56 2682 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2683 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2684 goto exit;
2685 }
2686
ce88decf 2687 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2688 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2689
2690 ret = false;
2691exit:
2692 return ret;
2693}
2694
c7ba5b48
XG
2695static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2696{
2697 /*
2698 * #PF can be fast only if the shadow page table is present and it
2699 * is caused by write-protect, that means we just need change the
2700 * W bit of the spte which can be done out of mmu-lock.
2701 */
2702 if (!(error_code & PFERR_PRESENT_MASK) ||
2703 !(error_code & PFERR_WRITE_MASK))
2704 return false;
2705
2706 return true;
2707}
2708
2709static bool
2710fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2711{
2712 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2713 gfn_t gfn;
2714
2715 WARN_ON(!sp->role.direct);
2716
2717 /*
2718 * The gfn of direct spte is stable since it is calculated
2719 * by sp->gfn.
2720 */
2721 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2722
2723 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2724 mark_page_dirty(vcpu->kvm, gfn);
2725
2726 return true;
2727}
2728
2729/*
2730 * Return value:
2731 * - true: let the vcpu to access on the same address again.
2732 * - false: let the real page fault path to fix it.
2733 */
2734static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2735 u32 error_code)
2736{
2737 struct kvm_shadow_walk_iterator iterator;
2738 bool ret = false;
2739 u64 spte = 0ull;
2740
2741 if (!page_fault_can_be_fast(vcpu, error_code))
2742 return false;
2743
2744 walk_shadow_page_lockless_begin(vcpu);
2745 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2746 if (!is_shadow_present_pte(spte) || iterator.level < level)
2747 break;
2748
2749 /*
2750 * If the mapping has been changed, let the vcpu fault on the
2751 * same address again.
2752 */
2753 if (!is_rmap_spte(spte)) {
2754 ret = true;
2755 goto exit;
2756 }
2757
2758 if (!is_last_spte(spte, level))
2759 goto exit;
2760
2761 /*
2762 * Check if it is a spurious fault caused by TLB lazily flushed.
2763 *
2764 * Need not check the access of upper level table entries since
2765 * they are always ACC_ALL.
2766 */
2767 if (is_writable_pte(spte)) {
2768 ret = true;
2769 goto exit;
2770 }
2771
2772 /*
2773 * Currently, to simplify the code, only the spte write-protected
2774 * by dirty-log can be fast fixed.
2775 */
2776 if (!spte_is_locklessly_modifiable(spte))
2777 goto exit;
2778
2779 /*
2780 * Currently, fast page fault only works for direct mapping since
2781 * the gfn is not stable for indirect shadow page.
2782 * See Documentation/virtual/kvm/locking.txt to get more detail.
2783 */
2784 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2785exit:
a72faf25
XG
2786 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2787 spte, ret);
c7ba5b48
XG
2788 walk_shadow_page_lockless_end(vcpu);
2789
2790 return ret;
2791}
2792
78b2c54a 2793static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2794 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2795
c7ba5b48
XG
2796static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2797 gfn_t gfn, bool prefault)
10589a46
MT
2798{
2799 int r;
852e3c19 2800 int level;
936a5fe6 2801 int force_pt_level;
35149e21 2802 pfn_t pfn;
e930bffe 2803 unsigned long mmu_seq;
c7ba5b48 2804 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2805
936a5fe6
AA
2806 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2807 if (likely(!force_pt_level)) {
2808 level = mapping_level(vcpu, gfn);
2809 /*
2810 * This path builds a PAE pagetable - so we can map
2811 * 2mb pages at maximum. Therefore check if the level
2812 * is larger than that.
2813 */
2814 if (level > PT_DIRECTORY_LEVEL)
2815 level = PT_DIRECTORY_LEVEL;
852e3c19 2816
936a5fe6
AA
2817 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2818 } else
2819 level = PT_PAGE_TABLE_LEVEL;
05da4558 2820
c7ba5b48
XG
2821 if (fast_page_fault(vcpu, v, level, error_code))
2822 return 0;
2823
e930bffe 2824 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2825 smp_rmb();
060c2abe 2826
78b2c54a 2827 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2828 return 0;
aaee2c94 2829
d7c55201
XG
2830 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2831 return r;
d196e343 2832
aaee2c94 2833 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2834 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2835 goto out_unlock;
eb787d10 2836 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2837 if (likely(!force_pt_level))
2838 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2839 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2840 prefault);
aaee2c94
MT
2841 spin_unlock(&vcpu->kvm->mmu_lock);
2842
aaee2c94 2843
10589a46 2844 return r;
e930bffe
AA
2845
2846out_unlock:
2847 spin_unlock(&vcpu->kvm->mmu_lock);
2848 kvm_release_pfn_clean(pfn);
2849 return 0;
10589a46
MT
2850}
2851
2852
17ac10ad
AK
2853static void mmu_free_roots(struct kvm_vcpu *vcpu)
2854{
2855 int i;
4db35314 2856 struct kvm_mmu_page *sp;
d98ba053 2857 LIST_HEAD(invalid_list);
17ac10ad 2858
ad312c7c 2859 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2860 return;
aaee2c94 2861 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2862 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2863 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2864 vcpu->arch.mmu.direct_map)) {
ad312c7c 2865 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2866
4db35314
AK
2867 sp = page_header(root);
2868 --sp->root_count;
d98ba053
XG
2869 if (!sp->root_count && sp->role.invalid) {
2870 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2871 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2872 }
ad312c7c 2873 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2874 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2875 return;
2876 }
17ac10ad 2877 for (i = 0; i < 4; ++i) {
ad312c7c 2878 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2879
417726a3 2880 if (root) {
417726a3 2881 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2882 sp = page_header(root);
2883 --sp->root_count;
2e53d63a 2884 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2885 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2886 &invalid_list);
417726a3 2887 }
ad312c7c 2888 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2889 }
d98ba053 2890 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2891 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2892 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2893}
2894
8986ecc0
MT
2895static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2896{
2897 int ret = 0;
2898
2899 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2900 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2901 ret = 1;
2902 }
2903
2904 return ret;
2905}
2906
651dd37a
JR
2907static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2908{
2909 struct kvm_mmu_page *sp;
7ebaf15e 2910 unsigned i;
651dd37a
JR
2911
2912 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2913 spin_lock(&vcpu->kvm->mmu_lock);
2914 kvm_mmu_free_some_pages(vcpu);
2915 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2916 1, ACC_ALL, NULL);
2917 ++sp->root_count;
2918 spin_unlock(&vcpu->kvm->mmu_lock);
2919 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2920 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2921 for (i = 0; i < 4; ++i) {
2922 hpa_t root = vcpu->arch.mmu.pae_root[i];
2923
2924 ASSERT(!VALID_PAGE(root));
2925 spin_lock(&vcpu->kvm->mmu_lock);
2926 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2927 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2928 i << 30,
651dd37a
JR
2929 PT32_ROOT_LEVEL, 1, ACC_ALL,
2930 NULL);
2931 root = __pa(sp->spt);
2932 ++sp->root_count;
2933 spin_unlock(&vcpu->kvm->mmu_lock);
2934 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2935 }
6292757f 2936 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2937 } else
2938 BUG();
2939
2940 return 0;
2941}
2942
2943static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2944{
4db35314 2945 struct kvm_mmu_page *sp;
81407ca5
JR
2946 u64 pdptr, pm_mask;
2947 gfn_t root_gfn;
2948 int i;
3bb65a22 2949
5777ed34 2950 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2951
651dd37a
JR
2952 if (mmu_check_root(vcpu, root_gfn))
2953 return 1;
2954
2955 /*
2956 * Do we shadow a long mode page table? If so we need to
2957 * write-protect the guests page table root.
2958 */
2959 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2960 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2961
2962 ASSERT(!VALID_PAGE(root));
651dd37a 2963
8facbbff 2964 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2965 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2966 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2967 0, ACC_ALL, NULL);
4db35314
AK
2968 root = __pa(sp->spt);
2969 ++sp->root_count;
8facbbff 2970 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2971 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2972 return 0;
17ac10ad 2973 }
f87f9288 2974
651dd37a
JR
2975 /*
2976 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2977 * or a PAE 3-level page table. In either case we need to be aware that
2978 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2979 */
81407ca5
JR
2980 pm_mask = PT_PRESENT_MASK;
2981 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2982 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2983
17ac10ad 2984 for (i = 0; i < 4; ++i) {
ad312c7c 2985 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2986
2987 ASSERT(!VALID_PAGE(root));
ad312c7c 2988 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2989 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2990 if (!is_present_gpte(pdptr)) {
ad312c7c 2991 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2992 continue;
2993 }
6de4f3ad 2994 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2995 if (mmu_check_root(vcpu, root_gfn))
2996 return 1;
5a7388c2 2997 }
8facbbff 2998 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2999 kvm_mmu_free_some_pages(vcpu);
4db35314 3000 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3001 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3002 ACC_ALL, NULL);
4db35314
AK
3003 root = __pa(sp->spt);
3004 ++sp->root_count;
8facbbff
AK
3005 spin_unlock(&vcpu->kvm->mmu_lock);
3006
81407ca5 3007 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3008 }
6292757f 3009 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3010
3011 /*
3012 * If we shadow a 32 bit page table with a long mode page
3013 * table we enter this path.
3014 */
3015 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3016 if (vcpu->arch.mmu.lm_root == NULL) {
3017 /*
3018 * The additional page necessary for this is only
3019 * allocated on demand.
3020 */
3021
3022 u64 *lm_root;
3023
3024 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3025 if (lm_root == NULL)
3026 return 1;
3027
3028 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3029
3030 vcpu->arch.mmu.lm_root = lm_root;
3031 }
3032
3033 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3034 }
3035
8986ecc0 3036 return 0;
17ac10ad
AK
3037}
3038
651dd37a
JR
3039static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3040{
3041 if (vcpu->arch.mmu.direct_map)
3042 return mmu_alloc_direct_roots(vcpu);
3043 else
3044 return mmu_alloc_shadow_roots(vcpu);
3045}
3046
0ba73cda
MT
3047static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3048{
3049 int i;
3050 struct kvm_mmu_page *sp;
3051
81407ca5
JR
3052 if (vcpu->arch.mmu.direct_map)
3053 return;
3054
0ba73cda
MT
3055 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3056 return;
6903074c 3057
bebb106a 3058 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3059 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3060 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3061 hpa_t root = vcpu->arch.mmu.root_hpa;
3062 sp = page_header(root);
3063 mmu_sync_children(vcpu, sp);
0375f7fa 3064 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3065 return;
3066 }
3067 for (i = 0; i < 4; ++i) {
3068 hpa_t root = vcpu->arch.mmu.pae_root[i];
3069
8986ecc0 3070 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3071 root &= PT64_BASE_ADDR_MASK;
3072 sp = page_header(root);
3073 mmu_sync_children(vcpu, sp);
3074 }
3075 }
0375f7fa 3076 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3077}
3078
3079void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3080{
3081 spin_lock(&vcpu->kvm->mmu_lock);
3082 mmu_sync_roots(vcpu);
6cffe8ca 3083 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3084}
3085
1871c602 3086static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3087 u32 access, struct x86_exception *exception)
6aa8b732 3088{
ab9ae313
AK
3089 if (exception)
3090 exception->error_code = 0;
6aa8b732
AK
3091 return vaddr;
3092}
3093
6539e738 3094static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3095 u32 access,
3096 struct x86_exception *exception)
6539e738 3097{
ab9ae313
AK
3098 if (exception)
3099 exception->error_code = 0;
6539e738
JR
3100 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3101}
3102
ce88decf
XG
3103static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3104{
3105 if (direct)
3106 return vcpu_match_mmio_gpa(vcpu, addr);
3107
3108 return vcpu_match_mmio_gva(vcpu, addr);
3109}
3110
3111
3112/*
3113 * On direct hosts, the last spte is only allows two states
3114 * for mmio page fault:
3115 * - It is the mmio spte
3116 * - It is zapped or it is being zapped.
3117 *
3118 * This function completely checks the spte when the last spte
3119 * is not the mmio spte.
3120 */
3121static bool check_direct_spte_mmio_pf(u64 spte)
3122{
3123 return __check_direct_spte_mmio_pf(spte);
3124}
3125
3126static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3127{
3128 struct kvm_shadow_walk_iterator iterator;
3129 u64 spte = 0ull;
3130
3131 walk_shadow_page_lockless_begin(vcpu);
3132 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3133 if (!is_shadow_present_pte(spte))
3134 break;
3135 walk_shadow_page_lockless_end(vcpu);
3136
3137 return spte;
3138}
3139
3140/*
3141 * If it is a real mmio page fault, return 1 and emulat the instruction
3142 * directly, return 0 to let CPU fault again on the address, -1 is
3143 * returned if bug is detected.
3144 */
3145int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3146{
3147 u64 spte;
3148
3149 if (quickly_check_mmio_pf(vcpu, addr, direct))
3150 return 1;
3151
3152 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3153
3154 if (is_mmio_spte(spte)) {
3155 gfn_t gfn = get_mmio_spte_gfn(spte);
3156 unsigned access = get_mmio_spte_access(spte);
3157
3158 if (direct)
3159 addr = 0;
4f022648
XG
3160
3161 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3162 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3163 return 1;
3164 }
3165
3166 /*
3167 * It's ok if the gva is remapped by other cpus on shadow guest,
3168 * it's a BUG if the gfn is not a mmio page.
3169 */
3170 if (direct && !check_direct_spte_mmio_pf(spte))
3171 return -1;
3172
3173 /*
3174 * If the page table is zapped by other cpus, let CPU fault again on
3175 * the address.
3176 */
3177 return 0;
3178}
3179EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3180
3181static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3182 u32 error_code, bool direct)
3183{
3184 int ret;
3185
3186 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3187 WARN_ON(ret < 0);
3188 return ret;
3189}
3190
6aa8b732 3191static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3192 u32 error_code, bool prefault)
6aa8b732 3193{
e833240f 3194 gfn_t gfn;
e2dec939 3195 int r;
6aa8b732 3196
b8688d51 3197 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3198
3199 if (unlikely(error_code & PFERR_RSVD_MASK))
3200 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3201
e2dec939
AK
3202 r = mmu_topup_memory_caches(vcpu);
3203 if (r)
3204 return r;
714b93da 3205
6aa8b732 3206 ASSERT(vcpu);
ad312c7c 3207 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3208
e833240f 3209 gfn = gva >> PAGE_SHIFT;
6aa8b732 3210
e833240f 3211 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3212 error_code, gfn, prefault);
6aa8b732
AK
3213}
3214
7e1fbeac 3215static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3216{
3217 struct kvm_arch_async_pf arch;
fb67e14f 3218
7c90705b 3219 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3220 arch.gfn = gfn;
c4806acd 3221 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3222 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3223
3224 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3225}
3226
3227static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3228{
3229 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3230 kvm_event_needs_reinjection(vcpu)))
3231 return false;
3232
3233 return kvm_x86_ops->interrupt_allowed(vcpu);
3234}
3235
78b2c54a 3236static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3237 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3238{
3239 bool async;
3240
612819c3 3241 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3242
3243 if (!async)
3244 return false; /* *pfn has correct page already */
3245
78b2c54a 3246 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3247 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3248 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3249 trace_kvm_async_pf_doublefault(gva, gfn);
3250 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3251 return true;
3252 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3253 return true;
3254 }
3255
612819c3 3256 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3257
3258 return false;
3259}
3260
56028d08 3261static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3262 bool prefault)
fb72d167 3263{
35149e21 3264 pfn_t pfn;
fb72d167 3265 int r;
852e3c19 3266 int level;
936a5fe6 3267 int force_pt_level;
05da4558 3268 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3269 unsigned long mmu_seq;
612819c3
MT
3270 int write = error_code & PFERR_WRITE_MASK;
3271 bool map_writable;
fb72d167
JR
3272
3273 ASSERT(vcpu);
3274 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3275
ce88decf
XG
3276 if (unlikely(error_code & PFERR_RSVD_MASK))
3277 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3278
fb72d167
JR
3279 r = mmu_topup_memory_caches(vcpu);
3280 if (r)
3281 return r;
3282
936a5fe6
AA
3283 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3284 if (likely(!force_pt_level)) {
3285 level = mapping_level(vcpu, gfn);
3286 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3287 } else
3288 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3289
c7ba5b48
XG
3290 if (fast_page_fault(vcpu, gpa, level, error_code))
3291 return 0;
3292
e930bffe 3293 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3294 smp_rmb();
af585b92 3295
78b2c54a 3296 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3297 return 0;
3298
d7c55201
XG
3299 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3300 return r;
3301
fb72d167 3302 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3303 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3304 goto out_unlock;
fb72d167 3305 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3306 if (likely(!force_pt_level))
3307 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3308 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3309 level, gfn, pfn, prefault);
fb72d167 3310 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3311
3312 return r;
e930bffe
AA
3313
3314out_unlock:
3315 spin_unlock(&vcpu->kvm->mmu_lock);
3316 kvm_release_pfn_clean(pfn);
3317 return 0;
fb72d167
JR
3318}
3319
6aa8b732
AK
3320static void nonpaging_free(struct kvm_vcpu *vcpu)
3321{
17ac10ad 3322 mmu_free_roots(vcpu);
6aa8b732
AK
3323}
3324
52fde8df
JR
3325static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3326 struct kvm_mmu *context)
6aa8b732 3327{
6aa8b732
AK
3328 context->new_cr3 = nonpaging_new_cr3;
3329 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3330 context->gva_to_gpa = nonpaging_gva_to_gpa;
3331 context->free = nonpaging_free;
e8bc217a 3332 context->sync_page = nonpaging_sync_page;
a7052897 3333 context->invlpg = nonpaging_invlpg;
0f53b5b1 3334 context->update_pte = nonpaging_update_pte;
cea0f0e7 3335 context->root_level = 0;
6aa8b732 3336 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3337 context->root_hpa = INVALID_PAGE;
c5a78f2b 3338 context->direct_map = true;
2d48a985 3339 context->nx = false;
6aa8b732
AK
3340 return 0;
3341}
3342
d835dfec 3343void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3344{
1165f5fe 3345 ++vcpu->stat.tlb_flush;
a8eeb04a 3346 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3347}
3348
3349static void paging_new_cr3(struct kvm_vcpu *vcpu)
3350{
9f8fe504 3351 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3352 mmu_free_roots(vcpu);
6aa8b732
AK
3353}
3354
5777ed34
JR
3355static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3356{
9f8fe504 3357 return kvm_read_cr3(vcpu);
5777ed34
JR
3358}
3359
6389ee94
AK
3360static void inject_page_fault(struct kvm_vcpu *vcpu,
3361 struct x86_exception *fault)
6aa8b732 3362{
6389ee94 3363 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3364}
3365
6aa8b732
AK
3366static void paging_free(struct kvm_vcpu *vcpu)
3367{
3368 nonpaging_free(vcpu);
3369}
3370
8ea667f2
AK
3371static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3372{
3373 unsigned mask;
3374
3375 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3376
3377 mask = (unsigned)~ACC_WRITE_MASK;
3378 /* Allow write access to dirty gptes */
3379 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3380 *access &= mask;
3381}
3382
ce88decf
XG
3383static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3384 int *nr_present)
3385{
3386 if (unlikely(is_mmio_spte(*sptep))) {
3387 if (gfn != get_mmio_spte_gfn(*sptep)) {
3388 mmu_spte_clear_no_track(sptep);
3389 return true;
3390 }
3391
3392 (*nr_present)++;
3393 mark_mmio_spte(sptep, gfn, access);
3394 return true;
3395 }
3396
3397 return false;
3398}
3399
3d34adec
AK
3400static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3401{
3402 unsigned access;
3403
3404 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3405 access &= ~(gpte >> PT64_NX_SHIFT);
3406
3407 return access;
3408}
3409
6fd01b71
AK
3410static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3411{
3412 unsigned index;
3413
3414 index = level - 1;
3415 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3416 return mmu->last_pte_bitmap & (1 << index);
3417}
3418
6aa8b732
AK
3419#define PTTYPE 64
3420#include "paging_tmpl.h"
3421#undef PTTYPE
3422
3423#define PTTYPE 32
3424#include "paging_tmpl.h"
3425#undef PTTYPE
3426
52fde8df 3427static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3428 struct kvm_mmu *context)
82725b20 3429{
82725b20
DE
3430 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3431 u64 exb_bit_rsvd = 0;
3432
2d48a985 3433 if (!context->nx)
82725b20 3434 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3435 switch (context->root_level) {
82725b20
DE
3436 case PT32_ROOT_LEVEL:
3437 /* no rsvd bits for 2 level 4K page table entries */
3438 context->rsvd_bits_mask[0][1] = 0;
3439 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3440 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3441
3442 if (!is_pse(vcpu)) {
3443 context->rsvd_bits_mask[1][1] = 0;
3444 break;
3445 }
3446
82725b20
DE
3447 if (is_cpuid_PSE36())
3448 /* 36bits PSE 4MB page */
3449 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3450 else
3451 /* 32 bits PSE 4MB page */
3452 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3453 break;
3454 case PT32E_ROOT_LEVEL:
20c466b5
DE
3455 context->rsvd_bits_mask[0][2] =
3456 rsvd_bits(maxphyaddr, 63) |
3457 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3458 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3459 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3460 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3461 rsvd_bits(maxphyaddr, 62); /* PTE */
3462 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3463 rsvd_bits(maxphyaddr, 62) |
3464 rsvd_bits(13, 20); /* large page */
f815bce8 3465 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3466 break;
3467 case PT64_ROOT_LEVEL:
3468 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3469 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3470 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3471 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3472 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3473 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3474 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3475 rsvd_bits(maxphyaddr, 51);
3476 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3477 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3478 rsvd_bits(maxphyaddr, 51) |
3479 rsvd_bits(13, 29);
82725b20 3480 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3481 rsvd_bits(maxphyaddr, 51) |
3482 rsvd_bits(13, 20); /* large page */
f815bce8 3483 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3484 break;
3485 }
3486}
3487
97d64b78
AK
3488static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3489{
3490 unsigned bit, byte, pfec;
3491 u8 map;
3492 bool fault, x, w, u, wf, uf, ff, smep;
3493
3494 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3495 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3496 pfec = byte << 1;
3497 map = 0;
3498 wf = pfec & PFERR_WRITE_MASK;
3499 uf = pfec & PFERR_USER_MASK;
3500 ff = pfec & PFERR_FETCH_MASK;
3501 for (bit = 0; bit < 8; ++bit) {
3502 x = bit & ACC_EXEC_MASK;
3503 w = bit & ACC_WRITE_MASK;
3504 u = bit & ACC_USER_MASK;
3505
3506 /* Not really needed: !nx will cause pte.nx to fault */
3507 x |= !mmu->nx;
3508 /* Allow supervisor writes if !cr0.wp */
3509 w |= !is_write_protection(vcpu) && !uf;
3510 /* Disallow supervisor fetches of user code if cr4.smep */
3511 x &= !(smep && u && !uf);
3512
3513 fault = (ff && !x) || (uf && !u) || (wf && !w);
3514 map |= fault << bit;
3515 }
3516 mmu->permissions[byte] = map;
3517 }
3518}
3519
6fd01b71
AK
3520static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3521{
3522 u8 map;
3523 unsigned level, root_level = mmu->root_level;
3524 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3525
3526 if (root_level == PT32E_ROOT_LEVEL)
3527 --root_level;
3528 /* PT_PAGE_TABLE_LEVEL always terminates */
3529 map = 1 | (1 << ps_set_index);
3530 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3531 if (level <= PT_PDPE_LEVEL
3532 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3533 map |= 1 << (ps_set_index | (level - 1));
3534 }
3535 mmu->last_pte_bitmap = map;
3536}
3537
52fde8df
JR
3538static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3539 struct kvm_mmu *context,
3540 int level)
6aa8b732 3541{
2d48a985 3542 context->nx = is_nx(vcpu);
4d6931c3 3543 context->root_level = level;
2d48a985 3544
4d6931c3 3545 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3546 update_permission_bitmask(vcpu, context);
6fd01b71 3547 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3548
3549 ASSERT(is_pae(vcpu));
3550 context->new_cr3 = paging_new_cr3;
3551 context->page_fault = paging64_page_fault;
6aa8b732 3552 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3553 context->sync_page = paging64_sync_page;
a7052897 3554 context->invlpg = paging64_invlpg;
0f53b5b1 3555 context->update_pte = paging64_update_pte;
6aa8b732 3556 context->free = paging_free;
17ac10ad 3557 context->shadow_root_level = level;
17c3ba9d 3558 context->root_hpa = INVALID_PAGE;
c5a78f2b 3559 context->direct_map = false;
6aa8b732
AK
3560 return 0;
3561}
3562
52fde8df
JR
3563static int paging64_init_context(struct kvm_vcpu *vcpu,
3564 struct kvm_mmu *context)
17ac10ad 3565{
52fde8df 3566 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3567}
3568
52fde8df
JR
3569static int paging32_init_context(struct kvm_vcpu *vcpu,
3570 struct kvm_mmu *context)
6aa8b732 3571{
2d48a985 3572 context->nx = false;
4d6931c3 3573 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3574
4d6931c3 3575 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3576 update_permission_bitmask(vcpu, context);
6fd01b71 3577 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3578
3579 context->new_cr3 = paging_new_cr3;
3580 context->page_fault = paging32_page_fault;
6aa8b732
AK
3581 context->gva_to_gpa = paging32_gva_to_gpa;
3582 context->free = paging_free;
e8bc217a 3583 context->sync_page = paging32_sync_page;
a7052897 3584 context->invlpg = paging32_invlpg;
0f53b5b1 3585 context->update_pte = paging32_update_pte;
6aa8b732 3586 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3587 context->root_hpa = INVALID_PAGE;
c5a78f2b 3588 context->direct_map = false;
6aa8b732
AK
3589 return 0;
3590}
3591
52fde8df
JR
3592static int paging32E_init_context(struct kvm_vcpu *vcpu,
3593 struct kvm_mmu *context)
6aa8b732 3594{
52fde8df 3595 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3596}
3597
fb72d167
JR
3598static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3599{
14dfe855 3600 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3601
c445f8ef 3602 context->base_role.word = 0;
fb72d167
JR
3603 context->new_cr3 = nonpaging_new_cr3;
3604 context->page_fault = tdp_page_fault;
3605 context->free = nonpaging_free;
e8bc217a 3606 context->sync_page = nonpaging_sync_page;
a7052897 3607 context->invlpg = nonpaging_invlpg;
0f53b5b1 3608 context->update_pte = nonpaging_update_pte;
67253af5 3609 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3610 context->root_hpa = INVALID_PAGE;
c5a78f2b 3611 context->direct_map = true;
1c97f0a0 3612 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3613 context->get_cr3 = get_cr3;
e4e517b4 3614 context->get_pdptr = kvm_pdptr_read;
cb659db8 3615 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3616
3617 if (!is_paging(vcpu)) {
2d48a985 3618 context->nx = false;
fb72d167
JR
3619 context->gva_to_gpa = nonpaging_gva_to_gpa;
3620 context->root_level = 0;
3621 } else if (is_long_mode(vcpu)) {
2d48a985 3622 context->nx = is_nx(vcpu);
fb72d167 3623 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3624 reset_rsvds_bits_mask(vcpu, context);
3625 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3626 } else if (is_pae(vcpu)) {
2d48a985 3627 context->nx = is_nx(vcpu);
fb72d167 3628 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3629 reset_rsvds_bits_mask(vcpu, context);
3630 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3631 } else {
2d48a985 3632 context->nx = false;
fb72d167 3633 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3634 reset_rsvds_bits_mask(vcpu, context);
3635 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3636 }
3637
97d64b78 3638 update_permission_bitmask(vcpu, context);
6fd01b71 3639 update_last_pte_bitmap(vcpu, context);
97d64b78 3640
fb72d167
JR
3641 return 0;
3642}
3643
52fde8df 3644int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3645{
a770f6f2 3646 int r;
411c588d 3647 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3648 ASSERT(vcpu);
ad312c7c 3649 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3650
3651 if (!is_paging(vcpu))
52fde8df 3652 r = nonpaging_init_context(vcpu, context);
a9058ecd 3653 else if (is_long_mode(vcpu))
52fde8df 3654 r = paging64_init_context(vcpu, context);
6aa8b732 3655 else if (is_pae(vcpu))
52fde8df 3656 r = paging32E_init_context(vcpu, context);
6aa8b732 3657 else
52fde8df 3658 r = paging32_init_context(vcpu, context);
a770f6f2 3659
2c9afa52 3660 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3661 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3662 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3663 vcpu->arch.mmu.base_role.smep_andnot_wp
3664 = smep && !is_write_protection(vcpu);
52fde8df
JR
3665
3666 return r;
3667}
3668EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3669
3670static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3671{
14dfe855 3672 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3673
14dfe855
JR
3674 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3675 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3676 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3677 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3678
3679 return r;
6aa8b732
AK
3680}
3681
02f59dc9
JR
3682static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3683{
3684 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3685
3686 g_context->get_cr3 = get_cr3;
e4e517b4 3687 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3688 g_context->inject_page_fault = kvm_inject_page_fault;
3689
3690 /*
3691 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3692 * translation of l2_gpa to l1_gpa addresses is done using the
3693 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3694 * functions between mmu and nested_mmu are swapped.
3695 */
3696 if (!is_paging(vcpu)) {
2d48a985 3697 g_context->nx = false;
02f59dc9
JR
3698 g_context->root_level = 0;
3699 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3700 } else if (is_long_mode(vcpu)) {
2d48a985 3701 g_context->nx = is_nx(vcpu);
02f59dc9 3702 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3703 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3704 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3705 } else if (is_pae(vcpu)) {
2d48a985 3706 g_context->nx = is_nx(vcpu);
02f59dc9 3707 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3708 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3709 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3710 } else {
2d48a985 3711 g_context->nx = false;
02f59dc9 3712 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3713 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3714 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3715 }
3716
97d64b78 3717 update_permission_bitmask(vcpu, g_context);
6fd01b71 3718 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3719
02f59dc9
JR
3720 return 0;
3721}
3722
fb72d167
JR
3723static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3724{
02f59dc9
JR
3725 if (mmu_is_nested(vcpu))
3726 return init_kvm_nested_mmu(vcpu);
3727 else if (tdp_enabled)
fb72d167
JR
3728 return init_kvm_tdp_mmu(vcpu);
3729 else
3730 return init_kvm_softmmu(vcpu);
3731}
3732
6aa8b732
AK
3733static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3734{
3735 ASSERT(vcpu);
62ad0755
SY
3736 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3737 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3738 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3739}
3740
3741int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3742{
3743 destroy_kvm_mmu(vcpu);
f8f7e5ee 3744 return init_kvm_mmu(vcpu);
17c3ba9d 3745}
8668a3c4 3746EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3747
3748int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3749{
714b93da
AK
3750 int r;
3751
e2dec939 3752 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3753 if (r)
3754 goto out;
8986ecc0 3755 r = mmu_alloc_roots(vcpu);
8facbbff 3756 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3757 mmu_sync_roots(vcpu);
aaee2c94 3758 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3759 if (r)
3760 goto out;
3662cb1c 3761 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3762 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3763out:
3764 return r;
6aa8b732 3765}
17c3ba9d
AK
3766EXPORT_SYMBOL_GPL(kvm_mmu_load);
3767
3768void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3769{
3770 mmu_free_roots(vcpu);
3771}
4b16184c 3772EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3773
0028425f 3774static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3775 struct kvm_mmu_page *sp, u64 *spte,
3776 const void *new)
0028425f 3777{
30945387 3778 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3779 ++vcpu->kvm->stat.mmu_pde_zapped;
3780 return;
30945387 3781 }
0028425f 3782
4cee5764 3783 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3784 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3785}
3786
79539cec
AK
3787static bool need_remote_flush(u64 old, u64 new)
3788{
3789 if (!is_shadow_present_pte(old))
3790 return false;
3791 if (!is_shadow_present_pte(new))
3792 return true;
3793 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3794 return true;
3795 old ^= PT64_NX_MASK;
3796 new ^= PT64_NX_MASK;
3797 return (old & ~new & PT64_PERM_MASK) != 0;
3798}
3799
0671a8e7
XG
3800static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3801 bool remote_flush, bool local_flush)
79539cec 3802{
0671a8e7
XG
3803 if (zap_page)
3804 return;
3805
3806 if (remote_flush)
79539cec 3807 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3808 else if (local_flush)
79539cec
AK
3809 kvm_mmu_flush_tlb(vcpu);
3810}
3811
889e5cbc
XG
3812static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3813 const u8 *new, int *bytes)
da4a00f0 3814{
889e5cbc
XG
3815 u64 gentry;
3816 int r;
72016f3a 3817
72016f3a
AK
3818 /*
3819 * Assume that the pte write on a page table of the same type
49b26e26
XG
3820 * as the current vcpu paging mode since we update the sptes only
3821 * when they have the same mode.
72016f3a 3822 */
889e5cbc 3823 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3824 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3825 *gpa &= ~(gpa_t)7;
3826 *bytes = 8;
116eb3d3 3827 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3828 if (r)
3829 gentry = 0;
08e850c6
AK
3830 new = (const u8 *)&gentry;
3831 }
3832
889e5cbc 3833 switch (*bytes) {
08e850c6
AK
3834 case 4:
3835 gentry = *(const u32 *)new;
3836 break;
3837 case 8:
3838 gentry = *(const u64 *)new;
3839 break;
3840 default:
3841 gentry = 0;
3842 break;
72016f3a
AK
3843 }
3844
889e5cbc
XG
3845 return gentry;
3846}
3847
3848/*
3849 * If we're seeing too many writes to a page, it may no longer be a page table,
3850 * or we may be forking, in which case it is better to unmap the page.
3851 */
a138fe75 3852static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3853{
a30f47cb
XG
3854 /*
3855 * Skip write-flooding detected for the sp whose level is 1, because
3856 * it can become unsync, then the guest page is not write-protected.
3857 */
f71fa31f 3858 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3859 return false;
3246af0e 3860
a30f47cb 3861 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3862}
3863
3864/*
3865 * Misaligned accesses are too much trouble to fix up; also, they usually
3866 * indicate a page is not used as a page table.
3867 */
3868static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3869 int bytes)
3870{
3871 unsigned offset, pte_size, misaligned;
3872
3873 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3874 gpa, bytes, sp->role.word);
3875
3876 offset = offset_in_page(gpa);
3877 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3878
3879 /*
3880 * Sometimes, the OS only writes the last one bytes to update status
3881 * bits, for example, in linux, andb instruction is used in clear_bit().
3882 */
3883 if (!(offset & (pte_size - 1)) && bytes == 1)
3884 return false;
3885
889e5cbc
XG
3886 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3887 misaligned |= bytes < 4;
3888
3889 return misaligned;
3890}
3891
3892static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3893{
3894 unsigned page_offset, quadrant;
3895 u64 *spte;
3896 int level;
3897
3898 page_offset = offset_in_page(gpa);
3899 level = sp->role.level;
3900 *nspte = 1;
3901 if (!sp->role.cr4_pae) {
3902 page_offset <<= 1; /* 32->64 */
3903 /*
3904 * A 32-bit pde maps 4MB while the shadow pdes map
3905 * only 2MB. So we need to double the offset again
3906 * and zap two pdes instead of one.
3907 */
3908 if (level == PT32_ROOT_LEVEL) {
3909 page_offset &= ~7; /* kill rounding error */
3910 page_offset <<= 1;
3911 *nspte = 2;
3912 }
3913 quadrant = page_offset >> PAGE_SHIFT;
3914 page_offset &= ~PAGE_MASK;
3915 if (quadrant != sp->role.quadrant)
3916 return NULL;
3917 }
3918
3919 spte = &sp->spt[page_offset / sizeof(*spte)];
3920 return spte;
3921}
3922
3923void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3924 const u8 *new, int bytes)
3925{
3926 gfn_t gfn = gpa >> PAGE_SHIFT;
3927 union kvm_mmu_page_role mask = { .word = 0 };
3928 struct kvm_mmu_page *sp;
889e5cbc
XG
3929 LIST_HEAD(invalid_list);
3930 u64 entry, gentry, *spte;
3931 int npte;
a30f47cb 3932 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3933
3934 /*
3935 * If we don't have indirect shadow pages, it means no page is
3936 * write-protected, so we can exit simply.
3937 */
3938 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3939 return;
3940
3941 zap_page = remote_flush = local_flush = false;
3942
3943 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3944
3945 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3946
3947 /*
3948 * No need to care whether allocation memory is successful
3949 * or not since pte prefetch is skiped if it does not have
3950 * enough objects in the cache.
3951 */
3952 mmu_topup_memory_caches(vcpu);
3953
3954 spin_lock(&vcpu->kvm->mmu_lock);
3955 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3956 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3957
fa1de2bf 3958 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 3959 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 3960 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3961 detect_write_flooding(sp)) {
0671a8e7 3962 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3963 &invalid_list);
4cee5764 3964 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3965 continue;
3966 }
889e5cbc
XG
3967
3968 spte = get_written_sptes(sp, gpa, &npte);
3969 if (!spte)
3970 continue;
3971
0671a8e7 3972 local_flush = true;
ac1b714e 3973 while (npte--) {
79539cec 3974 entry = *spte;
38e3b2b2 3975 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3976 if (gentry &&
3977 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3978 & mask.word) && rmap_can_add(vcpu))
7c562522 3979 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 3980 if (need_remote_flush(entry, *spte))
0671a8e7 3981 remote_flush = true;
ac1b714e 3982 ++spte;
9b7a0325 3983 }
9b7a0325 3984 }
0671a8e7 3985 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3986 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3987 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3988 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3989}
3990
a436036b
AK
3991int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3992{
10589a46
MT
3993 gpa_t gpa;
3994 int r;
a436036b 3995
c5a78f2b 3996 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3997 return 0;
3998
1871c602 3999 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4000
10589a46 4001 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4002
10589a46 4003 return r;
a436036b 4004}
577bdc49 4005EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4006
22d95b12 4007void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4008{
d98ba053 4009 LIST_HEAD(invalid_list);
103ad25a 4010
e0df7b9f 4011 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 4012 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 4013 struct kvm_mmu_page *sp;
ebeace86 4014
f05e70ac 4015 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 4016 struct kvm_mmu_page, link);
e0df7b9f 4017 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4018 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4019 }
aa6bd187 4020 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4021}
ebeace86 4022
1cb3f3ae
XG
4023static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4024{
4025 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4026 return vcpu_match_mmio_gpa(vcpu, addr);
4027
4028 return vcpu_match_mmio_gva(vcpu, addr);
4029}
4030
dc25e89e
AP
4031int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4032 void *insn, int insn_len)
3067714c 4033{
1cb3f3ae 4034 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4035 enum emulation_result er;
4036
56028d08 4037 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4038 if (r < 0)
4039 goto out;
4040
4041 if (!r) {
4042 r = 1;
4043 goto out;
4044 }
4045
1cb3f3ae
XG
4046 if (is_mmio_page_fault(vcpu, cr2))
4047 emulation_type = 0;
4048
4049 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4050
4051 switch (er) {
4052 case EMULATE_DONE:
4053 return 1;
4054 case EMULATE_DO_MMIO:
4055 ++vcpu->stat.mmio_exits;
6d77dbfc 4056 /* fall through */
3067714c 4057 case EMULATE_FAIL:
3f5d18a9 4058 return 0;
3067714c
AK
4059 default:
4060 BUG();
4061 }
4062out:
3067714c
AK
4063 return r;
4064}
4065EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4066
a7052897
MT
4067void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4068{
a7052897 4069 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4070 kvm_mmu_flush_tlb(vcpu);
4071 ++vcpu->stat.invlpg;
4072}
4073EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4074
18552672
JR
4075void kvm_enable_tdp(void)
4076{
4077 tdp_enabled = true;
4078}
4079EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4080
5f4cb662
JR
4081void kvm_disable_tdp(void)
4082{
4083 tdp_enabled = false;
4084}
4085EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4086
6aa8b732
AK
4087static void free_mmu_pages(struct kvm_vcpu *vcpu)
4088{
ad312c7c 4089 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4090 if (vcpu->arch.mmu.lm_root != NULL)
4091 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4092}
4093
4094static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4095{
17ac10ad 4096 struct page *page;
6aa8b732
AK
4097 int i;
4098
4099 ASSERT(vcpu);
4100
17ac10ad
AK
4101 /*
4102 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4103 * Therefore we need to allocate shadow page tables in the first
4104 * 4GB of memory, which happens to fit the DMA32 zone.
4105 */
4106 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4107 if (!page)
d7fa6ab2
WY
4108 return -ENOMEM;
4109
ad312c7c 4110 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4111 for (i = 0; i < 4; ++i)
ad312c7c 4112 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4113
6aa8b732 4114 return 0;
6aa8b732
AK
4115}
4116
8018c27b 4117int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4118{
6aa8b732 4119 ASSERT(vcpu);
e459e322
XG
4120
4121 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4122 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4123 vcpu->arch.mmu.translate_gpa = translate_gpa;
4124 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4125
8018c27b
IM
4126 return alloc_mmu_pages(vcpu);
4127}
6aa8b732 4128
8018c27b
IM
4129int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4130{
4131 ASSERT(vcpu);
ad312c7c 4132 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4133
8018c27b 4134 return init_kvm_mmu(vcpu);
6aa8b732
AK
4135}
4136
90cb0529 4137void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4138{
b99db1d3
TY
4139 struct kvm_memory_slot *memslot;
4140 gfn_t last_gfn;
4141 int i;
6aa8b732 4142
b99db1d3
TY
4143 memslot = id_to_memslot(kvm->memslots, slot);
4144 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4145
9d1beefb
TY
4146 spin_lock(&kvm->mmu_lock);
4147
b99db1d3
TY
4148 for (i = PT_PAGE_TABLE_LEVEL;
4149 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4150 unsigned long *rmapp;
4151 unsigned long last_index, index;
6aa8b732 4152
b99db1d3
TY
4153 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4154 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4155
b99db1d3
TY
4156 for (index = 0; index <= last_index; ++index, ++rmapp) {
4157 if (*rmapp)
4158 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4159
4160 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4161 kvm_flush_remote_tlbs(kvm);
4162 cond_resched_lock(&kvm->mmu_lock);
4163 }
8234b22e 4164 }
6aa8b732 4165 }
b99db1d3 4166
171d595d 4167 kvm_flush_remote_tlbs(kvm);
9d1beefb 4168 spin_unlock(&kvm->mmu_lock);
6aa8b732 4169}
37a7d8b0 4170
90cb0529 4171void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4172{
4db35314 4173 struct kvm_mmu_page *sp, *node;
d98ba053 4174 LIST_HEAD(invalid_list);
e0fa826f 4175
aaee2c94 4176 spin_lock(&kvm->mmu_lock);
3246af0e 4177restart:
f05e70ac 4178 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4179 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4180 goto restart;
4181
d98ba053 4182 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4183 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4184}
4185
3d56cbdf
JK
4186static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4187 struct list_head *invalid_list)
3ee16c81
IE
4188{
4189 struct kvm_mmu_page *page;
4190
85b70591
XG
4191 if (list_empty(&kvm->arch.active_mmu_pages))
4192 return;
4193
3ee16c81
IE
4194 page = container_of(kvm->arch.active_mmu_pages.prev,
4195 struct kvm_mmu_page, link);
3d56cbdf 4196 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4197}
4198
1495f230 4199static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4200{
4201 struct kvm *kvm;
1495f230 4202 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4203
4204 if (nr_to_scan == 0)
4205 goto out;
3ee16c81 4206
e935b837 4207 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4208
4209 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4210 int idx;
d98ba053 4211 LIST_HEAD(invalid_list);
3ee16c81 4212
35f2d16b
TY
4213 /*
4214 * Never scan more than sc->nr_to_scan VM instances.
4215 * Will not hit this condition practically since we do not try
4216 * to shrink more than one VM and it is very unlikely to see
4217 * !n_used_mmu_pages so many times.
4218 */
4219 if (!nr_to_scan--)
4220 break;
19526396
GN
4221 /*
4222 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4223 * here. We may skip a VM instance errorneosly, but we do not
4224 * want to shrink a VM that only started to populate its MMU
4225 * anyway.
4226 */
35f2d16b 4227 if (!kvm->arch.n_used_mmu_pages)
19526396 4228 continue;
19526396 4229
f656ce01 4230 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4231 spin_lock(&kvm->mmu_lock);
3ee16c81 4232
19526396 4233 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4234 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4235
3ee16c81 4236 spin_unlock(&kvm->mmu_lock);
f656ce01 4237 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4238
4239 list_move_tail(&kvm->vm_list, &vm_list);
4240 break;
3ee16c81 4241 }
3ee16c81 4242
e935b837 4243 raw_spin_unlock(&kvm_lock);
3ee16c81 4244
45221ab6
DH
4245out:
4246 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4247}
4248
4249static struct shrinker mmu_shrinker = {
4250 .shrink = mmu_shrink,
4251 .seeks = DEFAULT_SEEKS * 10,
4252};
4253
2ddfd20e 4254static void mmu_destroy_caches(void)
b5a33a75 4255{
53c07b18
XG
4256 if (pte_list_desc_cache)
4257 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4258 if (mmu_page_header_cache)
4259 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4260}
4261
4262int kvm_mmu_module_init(void)
4263{
53c07b18
XG
4264 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4265 sizeof(struct pte_list_desc),
20c2df83 4266 0, 0, NULL);
53c07b18 4267 if (!pte_list_desc_cache)
b5a33a75
AK
4268 goto nomem;
4269
d3d25b04
AK
4270 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4271 sizeof(struct kvm_mmu_page),
20c2df83 4272 0, 0, NULL);
d3d25b04
AK
4273 if (!mmu_page_header_cache)
4274 goto nomem;
4275
45bf21a8
WY
4276 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4277 goto nomem;
4278
3ee16c81
IE
4279 register_shrinker(&mmu_shrinker);
4280
b5a33a75
AK
4281 return 0;
4282
4283nomem:
3ee16c81 4284 mmu_destroy_caches();
b5a33a75
AK
4285 return -ENOMEM;
4286}
4287
3ad82a7e
ZX
4288/*
4289 * Caculate mmu pages needed for kvm.
4290 */
4291unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4292{
3ad82a7e
ZX
4293 unsigned int nr_mmu_pages;
4294 unsigned int nr_pages = 0;
bc6678a3 4295 struct kvm_memslots *slots;
be6ba0f0 4296 struct kvm_memory_slot *memslot;
3ad82a7e 4297
90d83dc3
LJ
4298 slots = kvm_memslots(kvm);
4299
be6ba0f0
XG
4300 kvm_for_each_memslot(memslot, slots)
4301 nr_pages += memslot->npages;
3ad82a7e
ZX
4302
4303 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4304 nr_mmu_pages = max(nr_mmu_pages,
4305 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4306
4307 return nr_mmu_pages;
4308}
4309
94d8b056
MT
4310int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4311{
4312 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4313 u64 spte;
94d8b056
MT
4314 int nr_sptes = 0;
4315
c2a2ac2b
XG
4316 walk_shadow_page_lockless_begin(vcpu);
4317 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4318 sptes[iterator.level-1] = spte;
94d8b056 4319 nr_sptes++;
c2a2ac2b 4320 if (!is_shadow_present_pte(spte))
94d8b056
MT
4321 break;
4322 }
c2a2ac2b 4323 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4324
4325 return nr_sptes;
4326}
4327EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4328
c42fffe3
XG
4329void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4330{
4331 ASSERT(vcpu);
4332
4333 destroy_kvm_mmu(vcpu);
4334 free_mmu_pages(vcpu);
4335 mmu_free_memory_caches(vcpu);
b034cf01
XG
4336}
4337
b034cf01
XG
4338void kvm_mmu_module_exit(void)
4339{
4340 mmu_destroy_caches();
4341 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4342 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4343 mmu_audit_disable();
4344}