]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - arch/x86/kvm/mmu.c
KVM: powerpc: kvmppc_visible_gpa can be boolean
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
54bf36aa 226static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 227{
54bf36aa 228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
54bf36aa 231static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 232 unsigned access)
ce88decf 233{
54bf36aa 234 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
54bf36aa 261static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 265 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
54bf36aa 272static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
54bf36aa 276 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
a9221dd5 360#else
603e0651
XG
361union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367};
a9221dd5 368
c2a2ac2b
XG
369static void count_spte_clear(u64 *sptep, u64 spte)
370{
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379}
380
603e0651
XG
381static void __set_spte(u64 *sptep, u64 spte)
382{
383 union split_spte *ssptep, sspte;
a9221dd5 384
603e0651
XG
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
397 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
398}
399
603e0651
XG
400static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401{
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
407 ssptep->spte_low = sspte.spte_low;
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 416 count_spte_clear(sptep, spte);
603e0651
XG
417}
418
419static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420{
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 430 count_spte_clear(sptep, spte);
603e0651
XG
431
432 return orig.spte;
433}
c2a2ac2b
XG
434
435/*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
452 */
453static u64 __get_spte_lockless(u64 *sptep)
454{
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474}
603e0651
XG
475#endif
476
c7ba5b48
XG
477static bool spte_is_locklessly_modifiable(u64 spte)
478{
feb3eb70
GN
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
481}
482
8672b721
XG
483static bool spte_has_volatile_bits(u64 spte)
484{
c7ba5b48
XG
485 /*
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
490 */
491 if (spte_is_locklessly_modifiable(spte))
492 return true;
493
8672b721
XG
494 if (!shadow_accessed_mask)
495 return false;
496
497 if (!is_shadow_present_pte(spte))
498 return false;
499
4132779b
XG
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
502 return false;
503
504 return true;
505}
506
4132779b
XG
507static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508{
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
510}
511
7e71a59b
KH
512static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513{
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
515}
516
1df9f2dc
XG
517/* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523static void mmu_spte_set(u64 *sptep, u64 new_spte)
524{
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
527}
528
529/* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
1df9f2dc 537 */
6e7d0354 538static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 539{
c7ba5b48 540 u64 old_spte = *sptep;
6e7d0354 541 bool ret = false;
4132779b
XG
542
543 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 544
6e7d0354
XG
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
547 return ret;
548 }
4132779b 549
c7ba5b48 550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, new_spte);
4132779b 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 554
c7ba5b48
XG
555 /*
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
559 */
7f31c959
XG
560 if (spte_is_locklessly_modifiable(old_spte) &&
561 !is_writable_pte(new_spte))
6e7d0354
XG
562 ret = true;
563
4132779b 564 if (!shadow_accessed_mask)
6e7d0354 565 return ret;
4132779b 566
7e71a59b
KH
567 /*
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
570 */
571 if (spte_is_bit_changed(old_spte, new_spte,
572 shadow_accessed_mask | shadow_dirty_mask))
573 ret = true;
574
4132779b
XG
575 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
579
580 return ret;
b79b93f9
AK
581}
582
1df9f2dc
XG
583/*
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
587 */
588static int mmu_spte_clear_track_bits(u64 *sptep)
589{
590 pfn_t pfn;
591 u64 old_spte = *sptep;
592
593 if (!spte_has_volatile_bits(old_spte))
603e0651 594 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 595 else
603e0651 596 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
597
598 if (!is_rmap_spte(old_spte))
599 return 0;
600
601 pfn = spte_to_pfn(old_spte);
86fde74c
XG
602
603 /*
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
607 */
bf4bea8e 608 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 609
1df9f2dc
XG
610 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 kvm_set_pfn_accessed(pfn);
612 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 kvm_set_pfn_dirty(pfn);
614 return 1;
615}
616
617/*
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
621 */
622static void mmu_spte_clear_no_track(u64 *sptep)
623{
603e0651 624 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
625}
626
c2a2ac2b
XG
627static u64 mmu_spte_get_lockless(u64 *sptep)
628{
629 return __get_spte_lockless(sptep);
630}
631
632static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633{
c142786c
AK
634 /*
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 */
638 local_irq_disable();
639 vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 /*
641 * Make sure a following spte read is not reordered ahead of the write
642 * to vcpu->mode.
643 */
644 smp_mb();
c2a2ac2b
XG
645}
646
647static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648{
c142786c
AK
649 /*
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 */
654 smp_mb();
655 vcpu->mode = OUTSIDE_GUEST_MODE;
656 local_irq_enable();
c2a2ac2b
XG
657}
658
e2dec939 659static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 660 struct kmem_cache *base_cache, int min)
714b93da
AK
661{
662 void *obj;
663
664 if (cache->nobjs >= min)
e2dec939 665 return 0;
714b93da 666 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 667 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 668 if (!obj)
e2dec939 669 return -ENOMEM;
714b93da
AK
670 cache->objects[cache->nobjs++] = obj;
671 }
e2dec939 672 return 0;
714b93da
AK
673}
674
f759e2b4
XG
675static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676{
677 return cache->nobjs;
678}
679
e8ad9a70
XG
680static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 struct kmem_cache *cache)
714b93da
AK
682{
683 while (mc->nobjs)
e8ad9a70 684 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
685}
686
c1158e63 687static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 688 int min)
c1158e63 689{
842f22ed 690 void *page;
c1158e63
AK
691
692 if (cache->nobjs >= min)
693 return 0;
694 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 695 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
696 if (!page)
697 return -ENOMEM;
842f22ed 698 cache->objects[cache->nobjs++] = page;
c1158e63
AK
699 }
700 return 0;
701}
702
703static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704{
705 while (mc->nobjs)
c4d198d5 706 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
707}
708
2e3e5882 709static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 710{
e2dec939
AK
711 int r;
712
53c07b18 713 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 714 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
715 if (r)
716 goto out;
ad312c7c 717 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
718 if (r)
719 goto out;
ad312c7c 720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 721 mmu_page_header_cache, 4);
e2dec939
AK
722out:
723 return r;
714b93da
AK
724}
725
726static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727{
53c07b18
XG
728 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 pte_list_desc_cache);
ad312c7c 730 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
731 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 mmu_page_header_cache);
714b93da
AK
733}
734
80feb89a 735static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
736{
737 void *p;
738
739 BUG_ON(!mc->nobjs);
740 p = mc->objects[--mc->nobjs];
714b93da
AK
741 return p;
742}
743
53c07b18 744static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 745{
80feb89a 746 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
747}
748
53c07b18 749static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 750{
53c07b18 751 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
752}
753
2032a93d
LJ
754static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755{
756 if (!sp->role.direct)
757 return sp->gfns[index];
758
759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760}
761
762static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763{
764 if (sp->role.direct)
765 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 else
767 sp->gfns[index] = gfn;
768}
769
05da4558 770/*
d4dbf470
TY
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
05da4558 773 */
d4dbf470
TY
774static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 struct kvm_memory_slot *slot,
776 int level)
05da4558
MT
777{
778 unsigned long idx;
779
fb03cb6f 780 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 781 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
782}
783
3ed1a478 784static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 785{
699023e2 786 struct kvm_memslots *slots;
d25797b2 787 struct kvm_memory_slot *slot;
d4dbf470 788 struct kvm_lpage_info *linfo;
3ed1a478 789 gfn_t gfn;
d25797b2 790 int i;
05da4558 791
3ed1a478 792 gfn = sp->gfn;
699023e2
PB
793 slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->write_count += 1;
d25797b2 798 }
332b207d 799 kvm->arch.indirect_shadow_pages++;
05da4558
MT
800}
801
3ed1a478 802static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 803{
699023e2 804 struct kvm_memslots *slots;
d25797b2 805 struct kvm_memory_slot *slot;
d4dbf470 806 struct kvm_lpage_info *linfo;
3ed1a478 807 gfn_t gfn;
d25797b2 808 int i;
05da4558 809
3ed1a478 810 gfn = sp->gfn;
699023e2
PB
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 813 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->write_count -= 1;
816 WARN_ON(linfo->write_count < 0);
d25797b2 817 }
332b207d 818 kvm->arch.indirect_shadow_pages--;
05da4558
MT
819}
820
5225fdf8
TY
821static int __has_wrprotected_page(gfn_t gfn, int level,
822 struct kvm_memory_slot *slot)
05da4558 823{
d4dbf470 824 struct kvm_lpage_info *linfo;
05da4558
MT
825
826 if (slot) {
d4dbf470
TY
827 linfo = lpage_info_slot(gfn, slot, level);
828 return linfo->write_count;
05da4558
MT
829 }
830
831 return 1;
832}
833
5225fdf8
TY
834static int has_wrprotected_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
835{
836 struct kvm_memory_slot *slot;
837
838 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
839 return __has_wrprotected_page(gfn, level, slot);
840}
841
d25797b2 842static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 843{
8f0b1ab6 844 unsigned long page_size;
d25797b2 845 int i, ret = 0;
05da4558 846
8f0b1ab6 847 page_size = kvm_host_page_size(kvm, gfn);
05da4558 848
8a3d08f1 849 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
850 if (page_size >= KVM_HPAGE_SIZE(i))
851 ret = i;
852 else
853 break;
854 }
855
4c2155ce 856 return ret;
05da4558
MT
857}
858
d8aacf5d
TY
859static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
860 bool no_dirty_log)
861{
862 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
863 return false;
864 if (no_dirty_log && slot->dirty_bitmap)
865 return false;
866
867 return true;
868}
869
5d163b1c
XG
870static struct kvm_memory_slot *
871gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
872 bool no_dirty_log)
05da4558
MT
873{
874 struct kvm_memory_slot *slot;
5d163b1c 875
54bf36aa 876 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 877 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
878 slot = NULL;
879
880 return slot;
881}
882
fd136902
TY
883static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
884 bool *force_pt_level)
936a5fe6
AA
885{
886 int host_level, level, max_level;
d8aacf5d
TY
887 struct kvm_memory_slot *slot;
888
8c85ac1c
TY
889 if (unlikely(*force_pt_level))
890 return PT_PAGE_TABLE_LEVEL;
05da4558 891
8c85ac1c
TY
892 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
893 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
894 if (unlikely(*force_pt_level))
895 return PT_PAGE_TABLE_LEVEL;
896
d25797b2
JR
897 host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899 if (host_level == PT_PAGE_TABLE_LEVEL)
900 return host_level;
901
55dd98c3 902 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
903
904 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
5225fdf8 905 if (__has_wrprotected_page(large_gfn, level, slot))
d25797b2 906 break;
d25797b2
JR
907
908 return level - 1;
05da4558
MT
909}
910
290fc38d 911/*
53c07b18 912 * Pte mapping structures:
cd4a4e53 913 *
53c07b18 914 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 915 *
53c07b18
XG
916 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917 * pte_list_desc containing more mappings.
53a27b39 918 *
53c07b18 919 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
920 * the spte was not added.
921 *
cd4a4e53 922 */
53c07b18
XG
923static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924 unsigned long *pte_list)
cd4a4e53 925{
53c07b18 926 struct pte_list_desc *desc;
53a27b39 927 int i, count = 0;
cd4a4e53 928
53c07b18
XG
929 if (!*pte_list) {
930 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931 *pte_list = (unsigned long)spte;
932 } else if (!(*pte_list & 1)) {
933 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934 desc = mmu_alloc_pte_list_desc(vcpu);
935 desc->sptes[0] = (u64 *)*pte_list;
d555c333 936 desc->sptes[1] = spte;
53c07b18 937 *pte_list = (unsigned long)desc | 1;
cb16a7b3 938 ++count;
cd4a4e53 939 } else {
53c07b18
XG
940 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 943 desc = desc->more;
53c07b18 944 count += PTE_LIST_EXT;
53a27b39 945 }
53c07b18
XG
946 if (desc->sptes[PTE_LIST_EXT-1]) {
947 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
948 desc = desc->more;
949 }
d555c333 950 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 951 ++count;
d555c333 952 desc->sptes[i] = spte;
cd4a4e53 953 }
53a27b39 954 return count;
cd4a4e53
AK
955}
956
53c07b18
XG
957static void
958pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
960{
961 int j;
962
53c07b18 963 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 964 ;
d555c333
AK
965 desc->sptes[i] = desc->sptes[j];
966 desc->sptes[j] = NULL;
cd4a4e53
AK
967 if (j != 0)
968 return;
969 if (!prev_desc && !desc->more)
53c07b18 970 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
971 else
972 if (prev_desc)
973 prev_desc->more = desc->more;
974 else
53c07b18
XG
975 *pte_list = (unsigned long)desc->more | 1;
976 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
977}
978
53c07b18 979static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 980{
53c07b18
XG
981 struct pte_list_desc *desc;
982 struct pte_list_desc *prev_desc;
cd4a4e53
AK
983 int i;
984
53c07b18
XG
985 if (!*pte_list) {
986 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 987 BUG();
53c07b18
XG
988 } else if (!(*pte_list & 1)) {
989 rmap_printk("pte_list_remove: %p 1->0\n", spte);
990 if ((u64 *)*pte_list != spte) {
991 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
992 BUG();
993 }
53c07b18 994 *pte_list = 0;
cd4a4e53 995 } else {
53c07b18
XG
996 rmap_printk("pte_list_remove: %p many->many\n", spte);
997 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
998 prev_desc = NULL;
999 while (desc) {
53c07b18 1000 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1001 if (desc->sptes[i] == spte) {
53c07b18 1002 pte_list_desc_remove_entry(pte_list,
714b93da 1003 desc, i,
cd4a4e53
AK
1004 prev_desc);
1005 return;
1006 }
1007 prev_desc = desc;
1008 desc = desc->more;
1009 }
53c07b18 1010 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1011 BUG();
1012 }
1013}
1014
67052b35
XG
1015typedef void (*pte_list_walk_fn) (u64 *spte);
1016static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017{
1018 struct pte_list_desc *desc;
1019 int i;
1020
1021 if (!*pte_list)
1022 return;
1023
1024 if (!(*pte_list & 1))
1025 return fn((u64 *)*pte_list);
1026
1027 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028 while (desc) {
1029 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030 fn(desc->sptes[i]);
1031 desc = desc->more;
1032 }
1033}
1034
9373e2c0 1035static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1036 struct kvm_memory_slot *slot)
53c07b18 1037{
77d11309 1038 unsigned long idx;
53c07b18 1039
77d11309 1040 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1041 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1042}
1043
9b9b1492
TY
1044/*
1045 * Take gfn and return the reverse mapping to it.
1046 */
e4cd1da9 1047static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
9b9b1492 1048{
699023e2 1049 struct kvm_memslots *slots;
9b9b1492
TY
1050 struct kvm_memory_slot *slot;
1051
699023e2
PB
1052 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1053 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1054 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1055}
1056
f759e2b4
XG
1057static bool rmap_can_add(struct kvm_vcpu *vcpu)
1058{
1059 struct kvm_mmu_memory_cache *cache;
1060
1061 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1062 return mmu_memory_cache_free_objects(cache);
1063}
1064
53c07b18
XG
1065static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1066{
1067 struct kvm_mmu_page *sp;
1068 unsigned long *rmapp;
1069
53c07b18
XG
1070 sp = page_header(__pa(spte));
1071 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
e4cd1da9 1072 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
53c07b18
XG
1073 return pte_list_add(vcpu, spte, rmapp);
1074}
1075
53c07b18
XG
1076static void rmap_remove(struct kvm *kvm, u64 *spte)
1077{
1078 struct kvm_mmu_page *sp;
1079 gfn_t gfn;
1080 unsigned long *rmapp;
1081
1082 sp = page_header(__pa(spte));
1083 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
e4cd1da9 1084 rmapp = gfn_to_rmap(kvm, gfn, sp);
53c07b18
XG
1085 pte_list_remove(spte, rmapp);
1086}
1087
1e3f42f0
TY
1088/*
1089 * Used by the following functions to iterate through the sptes linked by a
1090 * rmap. All fields are private and not assumed to be used outside.
1091 */
1092struct rmap_iterator {
1093 /* private fields */
1094 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1095 int pos; /* index of the sptep */
1096};
1097
1098/*
1099 * Iteration must be started by this function. This should also be used after
1100 * removing/dropping sptes from the rmap link because in such cases the
1101 * information in the itererator may not be valid.
1102 *
1103 * Returns sptep if found, NULL otherwise.
1104 */
1105static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1106{
1107 if (!rmap)
1108 return NULL;
1109
1110 if (!(rmap & 1)) {
1111 iter->desc = NULL;
1112 return (u64 *)rmap;
1113 }
1114
1115 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1116 iter->pos = 0;
1117 return iter->desc->sptes[iter->pos];
1118}
1119
1120/*
1121 * Must be used with a valid iterator: e.g. after rmap_get_first().
1122 *
1123 * Returns sptep if found, NULL otherwise.
1124 */
1125static u64 *rmap_get_next(struct rmap_iterator *iter)
1126{
1127 if (iter->desc) {
1128 if (iter->pos < PTE_LIST_EXT - 1) {
1129 u64 *sptep;
1130
1131 ++iter->pos;
1132 sptep = iter->desc->sptes[iter->pos];
1133 if (sptep)
1134 return sptep;
1135 }
1136
1137 iter->desc = iter->desc->more;
1138
1139 if (iter->desc) {
1140 iter->pos = 0;
1141 /* desc->sptes[0] cannot be NULL */
1142 return iter->desc->sptes[iter->pos];
1143 }
1144 }
1145
1146 return NULL;
1147}
1148
0d536790
XG
1149#define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1150 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1151 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1152 _spte_ = rmap_get_next(_iter_))
1153
c3707958 1154static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1155{
1df9f2dc 1156 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1157 rmap_remove(kvm, sptep);
be38d276
AK
1158}
1159
8e22f955
XG
1160
1161static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1162{
1163 if (is_large_pte(*sptep)) {
1164 WARN_ON(page_header(__pa(sptep))->role.level ==
1165 PT_PAGE_TABLE_LEVEL);
1166 drop_spte(kvm, sptep);
1167 --kvm->stat.lpages;
1168 return true;
1169 }
1170
1171 return false;
1172}
1173
1174static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1175{
1176 if (__drop_large_spte(vcpu->kvm, sptep))
1177 kvm_flush_remote_tlbs(vcpu->kvm);
1178}
1179
1180/*
49fde340 1181 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1182 * spte write-protection is caused by protecting shadow page table.
49fde340 1183 *
b4619660 1184 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1185 * protection:
1186 * - for dirty logging, the spte can be set to writable at anytime if
1187 * its dirty bitmap is properly set.
1188 * - for spte protection, the spte can be writable only after unsync-ing
1189 * shadow page.
8e22f955 1190 *
c126d94f 1191 * Return true if tlb need be flushed.
8e22f955 1192 */
c126d94f 1193static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1194{
1195 u64 spte = *sptep;
1196
49fde340
XG
1197 if (!is_writable_pte(spte) &&
1198 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1199 return false;
1200
1201 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1202
49fde340
XG
1203 if (pt_protect)
1204 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1205 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1206
c126d94f 1207 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1208}
1209
49fde340 1210static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1211 bool pt_protect)
98348e95 1212{
1e3f42f0
TY
1213 u64 *sptep;
1214 struct rmap_iterator iter;
d13bc5b5 1215 bool flush = false;
374cbac0 1216
0d536790 1217 for_each_rmap_spte(rmapp, &iter, sptep)
c126d94f 1218 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1219
d13bc5b5 1220 return flush;
a0ed4607
TY
1221}
1222
f4b4b180
KH
1223static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1224{
1225 u64 spte = *sptep;
1226
1227 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1228
1229 spte &= ~shadow_dirty_mask;
1230
1231 return mmu_spte_update(sptep, spte);
1232}
1233
1234static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1235{
1236 u64 *sptep;
1237 struct rmap_iterator iter;
1238 bool flush = false;
1239
0d536790 1240 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1241 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1242
1243 return flush;
1244}
1245
1246static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1247{
1248 u64 spte = *sptep;
1249
1250 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1251
1252 spte |= shadow_dirty_mask;
1253
1254 return mmu_spte_update(sptep, spte);
1255}
1256
1257static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1258{
1259 u64 *sptep;
1260 struct rmap_iterator iter;
1261 bool flush = false;
1262
0d536790 1263 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1264 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1265
1266 return flush;
1267}
1268
5dc99b23 1269/**
3b0f1d01 1270 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1271 * @kvm: kvm instance
1272 * @slot: slot to protect
1273 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274 * @mask: indicates which pages we should protect
1275 *
1276 * Used when we do not need to care about huge page mappings: e.g. during dirty
1277 * logging we do not have any such mappings.
1278 */
3b0f1d01 1279static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1280 struct kvm_memory_slot *slot,
1281 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1282{
1283 unsigned long *rmapp;
a0ed4607 1284
5dc99b23 1285 while (mask) {
65fbe37c
TY
1286 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1287 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1288 __rmap_write_protect(kvm, rmapp, false);
05da4558 1289
5dc99b23
TY
1290 /* clear the first set bit */
1291 mask &= mask - 1;
1292 }
374cbac0
AK
1293}
1294
f4b4b180
KH
1295/**
1296 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1297 * @kvm: kvm instance
1298 * @slot: slot to clear D-bit
1299 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1300 * @mask: indicates which pages we should clear D-bit
1301 *
1302 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1303 */
1304void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1305 struct kvm_memory_slot *slot,
1306 gfn_t gfn_offset, unsigned long mask)
1307{
1308 unsigned long *rmapp;
1309
1310 while (mask) {
1311 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1312 PT_PAGE_TABLE_LEVEL, slot);
1313 __rmap_clear_dirty(kvm, rmapp);
1314
1315 /* clear the first set bit */
1316 mask &= mask - 1;
1317 }
1318}
1319EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1320
3b0f1d01
KH
1321/**
1322 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1323 * PT level pages.
1324 *
1325 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1326 * enable dirty logging for them.
1327 *
1328 * Used when we do not need to care about huge page mappings: e.g. during dirty
1329 * logging we do not have any such mappings.
1330 */
1331void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1332 struct kvm_memory_slot *slot,
1333 gfn_t gfn_offset, unsigned long mask)
1334{
88178fd4
KH
1335 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1336 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1337 mask);
1338 else
1339 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1340}
1341
54bf36aa 1342static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
95d4c16c
TY
1343{
1344 struct kvm_memory_slot *slot;
5dc99b23
TY
1345 unsigned long *rmapp;
1346 int i;
2f84569f 1347 bool write_protected = false;
95d4c16c 1348
54bf36aa 1349 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
5dc99b23 1350
8a3d08f1 1351 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
5dc99b23 1352 rmapp = __gfn_to_rmap(gfn, i, slot);
54bf36aa 1353 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
5dc99b23
TY
1354 }
1355
1356 return write_protected;
95d4c16c
TY
1357}
1358
6a49f85c 1359static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
e930bffe 1360{
1e3f42f0
TY
1361 u64 *sptep;
1362 struct rmap_iterator iter;
6a49f85c 1363 bool flush = false;
e930bffe 1364
1e3f42f0
TY
1365 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1366 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6a49f85c 1367 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1368
1369 drop_spte(kvm, sptep);
6a49f85c 1370 flush = true;
e930bffe 1371 }
1e3f42f0 1372
6a49f85c
XG
1373 return flush;
1374}
1375
1376static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1377 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1378 unsigned long data)
1379{
1380 return kvm_zap_rmapp(kvm, rmapp);
e930bffe
AA
1381}
1382
8a8365c5 1383static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1384 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1385 unsigned long data)
3da0dd43 1386{
1e3f42f0
TY
1387 u64 *sptep;
1388 struct rmap_iterator iter;
3da0dd43 1389 int need_flush = 0;
1e3f42f0 1390 u64 new_spte;
3da0dd43
IE
1391 pte_t *ptep = (pte_t *)data;
1392 pfn_t new_pfn;
1393
1394 WARN_ON(pte_huge(*ptep));
1395 new_pfn = pte_pfn(*ptep);
1e3f42f0 1396
0d536790
XG
1397restart:
1398 for_each_rmap_spte(rmapp, &iter, sptep) {
8a9522d2
ALC
1399 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1400 sptep, *sptep, gfn, level);
1e3f42f0 1401
3da0dd43 1402 need_flush = 1;
1e3f42f0 1403
3da0dd43 1404 if (pte_write(*ptep)) {
1e3f42f0 1405 drop_spte(kvm, sptep);
0d536790 1406 goto restart;
3da0dd43 1407 } else {
1e3f42f0 1408 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1409 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1410
1411 new_spte &= ~PT_WRITABLE_MASK;
1412 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1413 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1414
1415 mmu_spte_clear_track_bits(sptep);
1416 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1417 }
1418 }
1e3f42f0 1419
3da0dd43
IE
1420 if (need_flush)
1421 kvm_flush_remote_tlbs(kvm);
1422
1423 return 0;
1424}
1425
6ce1f4e2
XG
1426struct slot_rmap_walk_iterator {
1427 /* input fields. */
1428 struct kvm_memory_slot *slot;
1429 gfn_t start_gfn;
1430 gfn_t end_gfn;
1431 int start_level;
1432 int end_level;
1433
1434 /* output fields. */
1435 gfn_t gfn;
1436 unsigned long *rmap;
1437 int level;
1438
1439 /* private field. */
1440 unsigned long *end_rmap;
1441};
1442
1443static void
1444rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1445{
1446 iterator->level = level;
1447 iterator->gfn = iterator->start_gfn;
1448 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1449 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1450 iterator->slot);
1451}
1452
1453static void
1454slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1455 struct kvm_memory_slot *slot, int start_level,
1456 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1457{
1458 iterator->slot = slot;
1459 iterator->start_level = start_level;
1460 iterator->end_level = end_level;
1461 iterator->start_gfn = start_gfn;
1462 iterator->end_gfn = end_gfn;
1463
1464 rmap_walk_init_level(iterator, iterator->start_level);
1465}
1466
1467static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1468{
1469 return !!iterator->rmap;
1470}
1471
1472static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1473{
1474 if (++iterator->rmap <= iterator->end_rmap) {
1475 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1476 return;
1477 }
1478
1479 if (++iterator->level > iterator->end_level) {
1480 iterator->rmap = NULL;
1481 return;
1482 }
1483
1484 rmap_walk_init_level(iterator, iterator->level);
1485}
1486
1487#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1488 _start_gfn, _end_gfn, _iter_) \
1489 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1490 _end_level_, _start_gfn, _end_gfn); \
1491 slot_rmap_walk_okay(_iter_); \
1492 slot_rmap_walk_next(_iter_))
1493
84504ef3
TY
1494static int kvm_handle_hva_range(struct kvm *kvm,
1495 unsigned long start,
1496 unsigned long end,
1497 unsigned long data,
1498 int (*handler)(struct kvm *kvm,
1499 unsigned long *rmapp,
048212d0 1500 struct kvm_memory_slot *slot,
8a9522d2
ALC
1501 gfn_t gfn,
1502 int level,
84504ef3 1503 unsigned long data))
e930bffe 1504{
bc6678a3 1505 struct kvm_memslots *slots;
be6ba0f0 1506 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1507 struct slot_rmap_walk_iterator iterator;
1508 int ret = 0;
9da0e4d5 1509 int i;
bc6678a3 1510
9da0e4d5
PB
1511 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1512 slots = __kvm_memslots(kvm, i);
1513 kvm_for_each_memslot(memslot, slots) {
1514 unsigned long hva_start, hva_end;
1515 gfn_t gfn_start, gfn_end;
e930bffe 1516
9da0e4d5
PB
1517 hva_start = max(start, memslot->userspace_addr);
1518 hva_end = min(end, memslot->userspace_addr +
1519 (memslot->npages << PAGE_SHIFT));
1520 if (hva_start >= hva_end)
1521 continue;
1522 /*
1523 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1524 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1525 */
1526 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1527 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1528
1529 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1530 PT_MAX_HUGEPAGE_LEVEL,
1531 gfn_start, gfn_end - 1,
1532 &iterator)
1533 ret |= handler(kvm, iterator.rmap, memslot,
1534 iterator.gfn, iterator.level, data);
1535 }
e930bffe
AA
1536 }
1537
f395302e 1538 return ret;
e930bffe
AA
1539}
1540
84504ef3
TY
1541static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1542 unsigned long data,
1543 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1544 struct kvm_memory_slot *slot,
8a9522d2 1545 gfn_t gfn, int level,
84504ef3
TY
1546 unsigned long data))
1547{
1548 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1549}
1550
1551int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1552{
3da0dd43
IE
1553 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1554}
1555
b3ae2096
TY
1556int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1557{
1558 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1559}
1560
3da0dd43
IE
1561void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1562{
8a8365c5 1563 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1564}
1565
8a8365c5 1566static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1567 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1568 unsigned long data)
e930bffe 1569{
1e3f42f0 1570 u64 *sptep;
79f702a6 1571 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1572 int young = 0;
1573
57128468 1574 BUG_ON(!shadow_accessed_mask);
534e38b4 1575
0d536790 1576 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1577 if (*sptep & shadow_accessed_mask) {
e930bffe 1578 young = 1;
3f6d8c8a
XH
1579 clear_bit((ffs(shadow_accessed_mask) - 1),
1580 (unsigned long *)sptep);
e930bffe 1581 }
0d536790 1582
8a9522d2 1583 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1584 return young;
1585}
1586
8ee53820 1587static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1588 struct kvm_memory_slot *slot, gfn_t gfn,
1589 int level, unsigned long data)
8ee53820 1590{
1e3f42f0
TY
1591 u64 *sptep;
1592 struct rmap_iterator iter;
8ee53820
AA
1593 int young = 0;
1594
1595 /*
1596 * If there's no access bit in the secondary pte set by the
1597 * hardware it's up to gup-fast/gup to set the access bit in
1598 * the primary pte or in the page structure.
1599 */
1600 if (!shadow_accessed_mask)
1601 goto out;
1602
0d536790 1603 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1604 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1605 young = 1;
1606 break;
1607 }
8ee53820
AA
1608out:
1609 return young;
1610}
1611
53a27b39
MT
1612#define RMAP_RECYCLE_THRESHOLD 1000
1613
852e3c19 1614static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1615{
1616 unsigned long *rmapp;
852e3c19
JR
1617 struct kvm_mmu_page *sp;
1618
1619 sp = page_header(__pa(spte));
53a27b39 1620
e4cd1da9 1621 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1622
8a9522d2 1623 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1624 kvm_flush_remote_tlbs(vcpu->kvm);
1625}
1626
57128468 1627int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1628{
57128468
ALC
1629 /*
1630 * In case of absence of EPT Access and Dirty Bits supports,
1631 * emulate the accessed bit for EPT, by checking if this page has
1632 * an EPT mapping, and clearing it if it does. On the next access,
1633 * a new EPT mapping will be established.
1634 * This has some overhead, but not as much as the cost of swapping
1635 * out actively used pages or breaking up actively used hugepages.
1636 */
1637 if (!shadow_accessed_mask) {
1638 /*
1639 * We are holding the kvm->mmu_lock, and we are blowing up
1640 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1641 * This is correct as long as we don't decouple the mmu_lock
1642 * protected regions (like invalidate_range_start|end does).
1643 */
1644 kvm->mmu_notifier_seq++;
1645 return kvm_handle_hva_range(kvm, start, end, 0,
1646 kvm_unmap_rmapp);
1647 }
1648
1649 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1650}
1651
8ee53820
AA
1652int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1653{
1654 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1655}
1656
d6c69ee9 1657#ifdef MMU_DEBUG
47ad8e68 1658static int is_empty_shadow_page(u64 *spt)
6aa8b732 1659{
139bdb2d
AK
1660 u64 *pos;
1661 u64 *end;
1662
47ad8e68 1663 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1664 if (is_shadow_present_pte(*pos)) {
b8688d51 1665 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1666 pos, *pos);
6aa8b732 1667 return 0;
139bdb2d 1668 }
6aa8b732
AK
1669 return 1;
1670}
d6c69ee9 1671#endif
6aa8b732 1672
45221ab6
DH
1673/*
1674 * This value is the sum of all of the kvm instances's
1675 * kvm->arch.n_used_mmu_pages values. We need a global,
1676 * aggregate version in order to make the slab shrinker
1677 * faster
1678 */
1679static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1680{
1681 kvm->arch.n_used_mmu_pages += nr;
1682 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1683}
1684
834be0d8 1685static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1686{
fa4a2c08 1687 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1688 hlist_del(&sp->hash_link);
bd4c86ea
XG
1689 list_del(&sp->link);
1690 free_page((unsigned long)sp->spt);
834be0d8
GN
1691 if (!sp->role.direct)
1692 free_page((unsigned long)sp->gfns);
e8ad9a70 1693 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1694}
1695
cea0f0e7
AK
1696static unsigned kvm_page_table_hashfn(gfn_t gfn)
1697{
1ae0a13d 1698 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1699}
1700
714b93da 1701static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1702 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1703{
cea0f0e7
AK
1704 if (!parent_pte)
1705 return;
cea0f0e7 1706
67052b35 1707 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1708}
1709
4db35314 1710static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1711 u64 *parent_pte)
1712{
67052b35 1713 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1714}
1715
bcdd9a93
XG
1716static void drop_parent_pte(struct kvm_mmu_page *sp,
1717 u64 *parent_pte)
1718{
1719 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1720 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1721}
1722
67052b35
XG
1723static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1724 u64 *parent_pte, int direct)
ad8cfbe3 1725{
67052b35 1726 struct kvm_mmu_page *sp;
7ddca7e4 1727
80feb89a
TY
1728 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1729 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1730 if (!direct)
80feb89a 1731 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1732 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1733
1734 /*
1735 * The active_mmu_pages list is the FIFO list, do not move the
1736 * page until it is zapped. kvm_zap_obsolete_pages depends on
1737 * this feature. See the comments in kvm_zap_obsolete_pages().
1738 */
67052b35 1739 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1740 sp->parent_ptes = 0;
1741 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1742 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1743 return sp;
ad8cfbe3
MT
1744}
1745
67052b35 1746static void mark_unsync(u64 *spte);
1047df1f 1747static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1748{
67052b35 1749 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1750}
1751
67052b35 1752static void mark_unsync(u64 *spte)
0074ff63 1753{
67052b35 1754 struct kvm_mmu_page *sp;
1047df1f 1755 unsigned int index;
0074ff63 1756
67052b35 1757 sp = page_header(__pa(spte));
1047df1f
XG
1758 index = spte - sp->spt;
1759 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1760 return;
1047df1f 1761 if (sp->unsync_children++)
0074ff63 1762 return;
1047df1f 1763 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1764}
1765
e8bc217a 1766static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1767 struct kvm_mmu_page *sp)
e8bc217a
MT
1768{
1769 return 1;
1770}
1771
a7052897
MT
1772static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1773{
1774}
1775
0f53b5b1
XG
1776static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1777 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1778 const void *pte)
0f53b5b1
XG
1779{
1780 WARN_ON(1);
1781}
1782
60c8aec6
MT
1783#define KVM_PAGE_ARRAY_NR 16
1784
1785struct kvm_mmu_pages {
1786 struct mmu_page_and_offset {
1787 struct kvm_mmu_page *sp;
1788 unsigned int idx;
1789 } page[KVM_PAGE_ARRAY_NR];
1790 unsigned int nr;
1791};
1792
cded19f3
HE
1793static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1794 int idx)
4731d4c7 1795{
60c8aec6 1796 int i;
4731d4c7 1797
60c8aec6
MT
1798 if (sp->unsync)
1799 for (i=0; i < pvec->nr; i++)
1800 if (pvec->page[i].sp == sp)
1801 return 0;
1802
1803 pvec->page[pvec->nr].sp = sp;
1804 pvec->page[pvec->nr].idx = idx;
1805 pvec->nr++;
1806 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1807}
1808
1809static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1810 struct kvm_mmu_pages *pvec)
1811{
1812 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1813
37178b8b 1814 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1815 struct kvm_mmu_page *child;
4731d4c7
MT
1816 u64 ent = sp->spt[i];
1817
7a8f1a74
XG
1818 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1819 goto clear_child_bitmap;
1820
1821 child = page_header(ent & PT64_BASE_ADDR_MASK);
1822
1823 if (child->unsync_children) {
1824 if (mmu_pages_add(pvec, child, i))
1825 return -ENOSPC;
1826
1827 ret = __mmu_unsync_walk(child, pvec);
1828 if (!ret)
1829 goto clear_child_bitmap;
1830 else if (ret > 0)
1831 nr_unsync_leaf += ret;
1832 else
1833 return ret;
1834 } else if (child->unsync) {
1835 nr_unsync_leaf++;
1836 if (mmu_pages_add(pvec, child, i))
1837 return -ENOSPC;
1838 } else
1839 goto clear_child_bitmap;
1840
1841 continue;
1842
1843clear_child_bitmap:
1844 __clear_bit(i, sp->unsync_child_bitmap);
1845 sp->unsync_children--;
1846 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1847 }
1848
4731d4c7 1849
60c8aec6
MT
1850 return nr_unsync_leaf;
1851}
1852
1853static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1854 struct kvm_mmu_pages *pvec)
1855{
1856 if (!sp->unsync_children)
1857 return 0;
1858
1859 mmu_pages_add(pvec, sp, 0);
1860 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1861}
1862
4731d4c7
MT
1863static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1864{
1865 WARN_ON(!sp->unsync);
5e1b3ddb 1866 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1867 sp->unsync = 0;
1868 --kvm->stat.mmu_unsync;
1869}
1870
7775834a
XG
1871static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1872 struct list_head *invalid_list);
1873static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1874 struct list_head *invalid_list);
4731d4c7 1875
f34d251d
XG
1876/*
1877 * NOTE: we should pay more attention on the zapped-obsolete page
1878 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1879 * since it has been deleted from active_mmu_pages but still can be found
1880 * at hast list.
1881 *
1882 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1883 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1884 * all the obsolete pages.
1885 */
1044b030
TY
1886#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1887 hlist_for_each_entry(_sp, \
1888 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1889 if ((_sp)->gfn != (_gfn)) {} else
1890
1891#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1892 for_each_gfn_sp(_kvm, _sp, _gfn) \
1893 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1894
f918b443 1895/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1896static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1897 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1898{
5b7e0102 1899 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1900 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1901 return 1;
1902 }
1903
f918b443 1904 if (clear_unsync)
1d9dc7e0 1905 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1906
a4a8e6f7 1907 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1908 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1909 return 1;
1910 }
1911
77c3913b 1912 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1913 return 0;
1914}
1915
1d9dc7e0
XG
1916static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1917 struct kvm_mmu_page *sp)
1918{
d98ba053 1919 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1920 int ret;
1921
d98ba053 1922 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1923 if (ret)
d98ba053
XG
1924 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1925
1d9dc7e0
XG
1926 return ret;
1927}
1928
e37fa785
XG
1929#ifdef CONFIG_KVM_MMU_AUDIT
1930#include "mmu_audit.c"
1931#else
1932static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1933static void mmu_audit_disable(void) { }
1934#endif
1935
d98ba053
XG
1936static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1937 struct list_head *invalid_list)
1d9dc7e0 1938{
d98ba053 1939 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1940}
1941
9f1a122f
XG
1942/* @gfn should be write-protected at the call site */
1943static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1944{
9f1a122f 1945 struct kvm_mmu_page *s;
d98ba053 1946 LIST_HEAD(invalid_list);
9f1a122f
XG
1947 bool flush = false;
1948
b67bfe0d 1949 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1950 if (!s->unsync)
9f1a122f
XG
1951 continue;
1952
1953 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1954 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1955 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1956 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1957 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1958 continue;
1959 }
9f1a122f
XG
1960 flush = true;
1961 }
1962
d98ba053 1963 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1964 if (flush)
77c3913b 1965 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1966}
1967
60c8aec6
MT
1968struct mmu_page_path {
1969 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1970 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1971};
1972
60c8aec6
MT
1973#define for_each_sp(pvec, sp, parents, i) \
1974 for (i = mmu_pages_next(&pvec, &parents, -1), \
1975 sp = pvec.page[i].sp; \
1976 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1977 i = mmu_pages_next(&pvec, &parents, i))
1978
cded19f3
HE
1979static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1980 struct mmu_page_path *parents,
1981 int i)
60c8aec6
MT
1982{
1983 int n;
1984
1985 for (n = i+1; n < pvec->nr; n++) {
1986 struct kvm_mmu_page *sp = pvec->page[n].sp;
1987
1988 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1989 parents->idx[0] = pvec->page[n].idx;
1990 return n;
1991 }
1992
1993 parents->parent[sp->role.level-2] = sp;
1994 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1995 }
1996
1997 return n;
1998}
1999
cded19f3 2000static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2001{
60c8aec6
MT
2002 struct kvm_mmu_page *sp;
2003 unsigned int level = 0;
2004
2005 do {
2006 unsigned int idx = parents->idx[level];
4731d4c7 2007
60c8aec6
MT
2008 sp = parents->parent[level];
2009 if (!sp)
2010 return;
2011
2012 --sp->unsync_children;
2013 WARN_ON((int)sp->unsync_children < 0);
2014 __clear_bit(idx, sp->unsync_child_bitmap);
2015 level++;
2016 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2017}
2018
60c8aec6
MT
2019static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2020 struct mmu_page_path *parents,
2021 struct kvm_mmu_pages *pvec)
4731d4c7 2022{
60c8aec6
MT
2023 parents->parent[parent->role.level-1] = NULL;
2024 pvec->nr = 0;
2025}
4731d4c7 2026
60c8aec6
MT
2027static void mmu_sync_children(struct kvm_vcpu *vcpu,
2028 struct kvm_mmu_page *parent)
2029{
2030 int i;
2031 struct kvm_mmu_page *sp;
2032 struct mmu_page_path parents;
2033 struct kvm_mmu_pages pages;
d98ba053 2034 LIST_HEAD(invalid_list);
60c8aec6
MT
2035
2036 kvm_mmu_pages_init(parent, &parents, &pages);
2037 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2038 bool protected = false;
b1a36821
MT
2039
2040 for_each_sp(pages, sp, parents, i)
54bf36aa 2041 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2042
2043 if (protected)
2044 kvm_flush_remote_tlbs(vcpu->kvm);
2045
60c8aec6 2046 for_each_sp(pages, sp, parents, i) {
d98ba053 2047 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2048 mmu_pages_clear_parents(&parents);
2049 }
d98ba053 2050 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2051 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2052 kvm_mmu_pages_init(parent, &parents, &pages);
2053 }
4731d4c7
MT
2054}
2055
c3707958
XG
2056static void init_shadow_page_table(struct kvm_mmu_page *sp)
2057{
2058 int i;
2059
2060 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2061 sp->spt[i] = 0ull;
2062}
2063
a30f47cb
XG
2064static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2065{
2066 sp->write_flooding_count = 0;
2067}
2068
2069static void clear_sp_write_flooding_count(u64 *spte)
2070{
2071 struct kvm_mmu_page *sp = page_header(__pa(spte));
2072
2073 __clear_sp_write_flooding_count(sp);
2074}
2075
5304b8d3
XG
2076static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2077{
2078 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2079}
2080
cea0f0e7
AK
2081static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2082 gfn_t gfn,
2083 gva_t gaddr,
2084 unsigned level,
f6e2c02b 2085 int direct,
41074d07 2086 unsigned access,
f7d9c7b7 2087 u64 *parent_pte)
cea0f0e7
AK
2088{
2089 union kvm_mmu_page_role role;
cea0f0e7 2090 unsigned quadrant;
9f1a122f 2091 struct kvm_mmu_page *sp;
9f1a122f 2092 bool need_sync = false;
cea0f0e7 2093
a770f6f2 2094 role = vcpu->arch.mmu.base_role;
cea0f0e7 2095 role.level = level;
f6e2c02b 2096 role.direct = direct;
84b0c8c6 2097 if (role.direct)
5b7e0102 2098 role.cr4_pae = 0;
41074d07 2099 role.access = access;
c5a78f2b
JR
2100 if (!vcpu->arch.mmu.direct_map
2101 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2102 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2103 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2104 role.quadrant = quadrant;
2105 }
b67bfe0d 2106 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2107 if (is_obsolete_sp(vcpu->kvm, sp))
2108 continue;
2109
7ae680eb
XG
2110 if (!need_sync && sp->unsync)
2111 need_sync = true;
4731d4c7 2112
7ae680eb
XG
2113 if (sp->role.word != role.word)
2114 continue;
4731d4c7 2115
7ae680eb
XG
2116 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2117 break;
e02aa901 2118
7ae680eb
XG
2119 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2120 if (sp->unsync_children) {
a8eeb04a 2121 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
2122 kvm_mmu_mark_parents_unsync(sp);
2123 } else if (sp->unsync)
2124 kvm_mmu_mark_parents_unsync(sp);
e02aa901 2125
a30f47cb 2126 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2127 trace_kvm_mmu_get_page(sp, false);
2128 return sp;
2129 }
dfc5aa00 2130 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 2131 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
2132 if (!sp)
2133 return sp;
4db35314
AK
2134 sp->gfn = gfn;
2135 sp->role = role;
7ae680eb
XG
2136 hlist_add_head(&sp->hash_link,
2137 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2138 if (!direct) {
54bf36aa 2139 if (rmap_write_protect(vcpu, gfn))
b1a36821 2140 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2141 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2142 kvm_sync_pages(vcpu, gfn);
2143
3ed1a478 2144 account_shadowed(vcpu->kvm, sp);
4731d4c7 2145 }
5304b8d3 2146 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2147 init_shadow_page_table(sp);
f691fe1d 2148 trace_kvm_mmu_get_page(sp, true);
4db35314 2149 return sp;
cea0f0e7
AK
2150}
2151
2d11123a
AK
2152static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2153 struct kvm_vcpu *vcpu, u64 addr)
2154{
2155 iterator->addr = addr;
2156 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2157 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2158
2159 if (iterator->level == PT64_ROOT_LEVEL &&
2160 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2161 !vcpu->arch.mmu.direct_map)
2162 --iterator->level;
2163
2d11123a
AK
2164 if (iterator->level == PT32E_ROOT_LEVEL) {
2165 iterator->shadow_addr
2166 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2167 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2168 --iterator->level;
2169 if (!iterator->shadow_addr)
2170 iterator->level = 0;
2171 }
2172}
2173
2174static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2175{
2176 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2177 return false;
4d88954d 2178
2d11123a
AK
2179 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2180 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2181 return true;
2182}
2183
c2a2ac2b
XG
2184static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2185 u64 spte)
2d11123a 2186{
c2a2ac2b 2187 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2188 iterator->level = 0;
2189 return;
2190 }
2191
c2a2ac2b 2192 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2193 --iterator->level;
2194}
2195
c2a2ac2b
XG
2196static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2197{
2198 return __shadow_walk_next(iterator, *iterator->sptep);
2199}
2200
0e3d0648 2201static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
32ef26a3
AK
2202{
2203 u64 spte;
2204
7a1638ce
YZ
2205 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2206 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2207
24db2734 2208 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2209 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2210
1df9f2dc 2211 mmu_spte_set(sptep, spte);
32ef26a3
AK
2212}
2213
a357bd22
AK
2214static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2215 unsigned direct_access)
2216{
2217 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2218 struct kvm_mmu_page *child;
2219
2220 /*
2221 * For the direct sp, if the guest pte's dirty bit
2222 * changed form clean to dirty, it will corrupt the
2223 * sp's access: allow writable in the read-only sp,
2224 * so we should update the spte at this point to get
2225 * a new sp with the correct access.
2226 */
2227 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2228 if (child->role.access == direct_access)
2229 return;
2230
bcdd9a93 2231 drop_parent_pte(child, sptep);
a357bd22
AK
2232 kvm_flush_remote_tlbs(vcpu->kvm);
2233 }
2234}
2235
505aef8f 2236static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2237 u64 *spte)
2238{
2239 u64 pte;
2240 struct kvm_mmu_page *child;
2241
2242 pte = *spte;
2243 if (is_shadow_present_pte(pte)) {
505aef8f 2244 if (is_last_spte(pte, sp->role.level)) {
c3707958 2245 drop_spte(kvm, spte);
505aef8f
XG
2246 if (is_large_pte(pte))
2247 --kvm->stat.lpages;
2248 } else {
38e3b2b2 2249 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2250 drop_parent_pte(child, spte);
38e3b2b2 2251 }
505aef8f
XG
2252 return true;
2253 }
2254
2255 if (is_mmio_spte(pte))
ce88decf 2256 mmu_spte_clear_no_track(spte);
c3707958 2257
505aef8f 2258 return false;
38e3b2b2
XG
2259}
2260
90cb0529 2261static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2262 struct kvm_mmu_page *sp)
a436036b 2263{
697fe2e2 2264 unsigned i;
697fe2e2 2265
38e3b2b2
XG
2266 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2267 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2268}
2269
4db35314 2270static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2271{
4db35314 2272 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2273}
2274
31aa2b44 2275static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2276{
1e3f42f0
TY
2277 u64 *sptep;
2278 struct rmap_iterator iter;
a436036b 2279
1e3f42f0
TY
2280 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2281 drop_parent_pte(sp, sptep);
31aa2b44
AK
2282}
2283
60c8aec6 2284static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2285 struct kvm_mmu_page *parent,
2286 struct list_head *invalid_list)
4731d4c7 2287{
60c8aec6
MT
2288 int i, zapped = 0;
2289 struct mmu_page_path parents;
2290 struct kvm_mmu_pages pages;
4731d4c7 2291
60c8aec6 2292 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2293 return 0;
60c8aec6
MT
2294
2295 kvm_mmu_pages_init(parent, &parents, &pages);
2296 while (mmu_unsync_walk(parent, &pages)) {
2297 struct kvm_mmu_page *sp;
2298
2299 for_each_sp(pages, sp, parents, i) {
7775834a 2300 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2301 mmu_pages_clear_parents(&parents);
77662e00 2302 zapped++;
60c8aec6 2303 }
60c8aec6
MT
2304 kvm_mmu_pages_init(parent, &parents, &pages);
2305 }
2306
2307 return zapped;
4731d4c7
MT
2308}
2309
7775834a
XG
2310static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2311 struct list_head *invalid_list)
31aa2b44 2312{
4731d4c7 2313 int ret;
f691fe1d 2314
7775834a 2315 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2316 ++kvm->stat.mmu_shadow_zapped;
7775834a 2317 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2318 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2319 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2320
f6e2c02b 2321 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2322 unaccount_shadowed(kvm, sp);
5304b8d3 2323
4731d4c7
MT
2324 if (sp->unsync)
2325 kvm_unlink_unsync_page(kvm, sp);
4db35314 2326 if (!sp->root_count) {
54a4f023
GJ
2327 /* Count self */
2328 ret++;
7775834a 2329 list_move(&sp->link, invalid_list);
aa6bd187 2330 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2331 } else {
5b5c6a5a 2332 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2333
2334 /*
2335 * The obsolete pages can not be used on any vcpus.
2336 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2337 */
2338 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2339 kvm_reload_remote_mmus(kvm);
2e53d63a 2340 }
7775834a
XG
2341
2342 sp->role.invalid = 1;
4731d4c7 2343 return ret;
a436036b
AK
2344}
2345
7775834a
XG
2346static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2347 struct list_head *invalid_list)
2348{
945315b9 2349 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2350
2351 if (list_empty(invalid_list))
2352 return;
2353
c142786c
AK
2354 /*
2355 * wmb: make sure everyone sees our modifications to the page tables
2356 * rmb: make sure we see changes to vcpu->mode
2357 */
2358 smp_mb();
4f022648 2359
c142786c
AK
2360 /*
2361 * Wait for all vcpus to exit guest mode and/or lockless shadow
2362 * page table walks.
2363 */
2364 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2365
945315b9 2366 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2367 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2368 kvm_mmu_free_page(sp);
945315b9 2369 }
7775834a
XG
2370}
2371
5da59607
TY
2372static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2373 struct list_head *invalid_list)
2374{
2375 struct kvm_mmu_page *sp;
2376
2377 if (list_empty(&kvm->arch.active_mmu_pages))
2378 return false;
2379
2380 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2381 struct kvm_mmu_page, link);
2382 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2383
2384 return true;
2385}
2386
82ce2c96
IE
2387/*
2388 * Changing the number of mmu pages allocated to the vm
49d5ca26 2389 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2390 */
49d5ca26 2391void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2392{
d98ba053 2393 LIST_HEAD(invalid_list);
82ce2c96 2394
b34cb590
TY
2395 spin_lock(&kvm->mmu_lock);
2396
49d5ca26 2397 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2398 /* Need to free some mmu pages to achieve the goal. */
2399 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2400 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2401 break;
82ce2c96 2402
aa6bd187 2403 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2404 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2405 }
82ce2c96 2406
49d5ca26 2407 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2408
2409 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2410}
2411
1cb3f3ae 2412int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2413{
4db35314 2414 struct kvm_mmu_page *sp;
d98ba053 2415 LIST_HEAD(invalid_list);
a436036b
AK
2416 int r;
2417
9ad17b10 2418 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2419 r = 0;
1cb3f3ae 2420 spin_lock(&kvm->mmu_lock);
b67bfe0d 2421 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2422 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2423 sp->role.word);
2424 r = 1;
f41d335a 2425 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2426 }
d98ba053 2427 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2428 spin_unlock(&kvm->mmu_lock);
2429
a436036b 2430 return r;
cea0f0e7 2431}
1cb3f3ae 2432EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2433
9cf5cf5a
XG
2434static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2435{
2436 trace_kvm_mmu_unsync_page(sp);
2437 ++vcpu->kvm->stat.mmu_unsync;
2438 sp->unsync = 1;
2439
2440 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2441}
2442
2443static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2444{
4731d4c7 2445 struct kvm_mmu_page *s;
9cf5cf5a 2446
b67bfe0d 2447 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2448 if (s->unsync)
4731d4c7 2449 continue;
9cf5cf5a
XG
2450 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2451 __kvm_unsync_page(vcpu, s);
4731d4c7 2452 }
4731d4c7
MT
2453}
2454
2455static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2456 bool can_unsync)
2457{
9cf5cf5a 2458 struct kvm_mmu_page *s;
9cf5cf5a
XG
2459 bool need_unsync = false;
2460
b67bfe0d 2461 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2462 if (!can_unsync)
2463 return 1;
2464
9cf5cf5a 2465 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2466 return 1;
9cf5cf5a 2467
9bb4f6b1 2468 if (!s->unsync)
9cf5cf5a 2469 need_unsync = true;
4731d4c7 2470 }
9cf5cf5a
XG
2471 if (need_unsync)
2472 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2473 return 0;
2474}
2475
d1fe9219
PB
2476static bool kvm_is_mmio_pfn(pfn_t pfn)
2477{
2478 if (pfn_valid(pfn))
2479 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2480
2481 return true;
2482}
2483
d555c333 2484static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2485 unsigned pte_access, int level,
c2d0ee46 2486 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2487 bool can_unsync, bool host_writable)
1c4f1fd6 2488{
6e7d0354 2489 u64 spte;
1e73f9dd 2490 int ret = 0;
64d4d521 2491
54bf36aa 2492 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2493 return 0;
2494
982c2565 2495 spte = PT_PRESENT_MASK;
947da538 2496 if (!speculative)
3201b5d9 2497 spte |= shadow_accessed_mask;
640d9b0d 2498
7b52345e
SY
2499 if (pte_access & ACC_EXEC_MASK)
2500 spte |= shadow_x_mask;
2501 else
2502 spte |= shadow_nx_mask;
49fde340 2503
1c4f1fd6 2504 if (pte_access & ACC_USER_MASK)
7b52345e 2505 spte |= shadow_user_mask;
49fde340 2506
852e3c19 2507 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2508 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2509 if (tdp_enabled)
4b12f0de 2510 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2511 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2512
9bdbba13 2513 if (host_writable)
1403283a 2514 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2515 else
2516 pte_access &= ~ACC_WRITE_MASK;
1403283a 2517
35149e21 2518 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2519
c2288505 2520 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2521
c2193463 2522 /*
7751babd
XG
2523 * Other vcpu creates new sp in the window between
2524 * mapping_level() and acquiring mmu-lock. We can
2525 * allow guest to retry the access, the mapping can
2526 * be fixed if guest refault.
c2193463 2527 */
852e3c19 2528 if (level > PT_PAGE_TABLE_LEVEL &&
54bf36aa 2529 has_wrprotected_page(vcpu, gfn, level))
be38d276 2530 goto done;
38187c83 2531
49fde340 2532 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2533
ecc5589f
MT
2534 /*
2535 * Optimization: for pte sync, if spte was writable the hash
2536 * lookup is unnecessary (and expensive). Write protection
2537 * is responsibility of mmu_get_page / kvm_sync_page.
2538 * Same reasoning can be applied to dirty page accounting.
2539 */
8dae4445 2540 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2541 goto set_pte;
2542
4731d4c7 2543 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2544 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2545 __func__, gfn);
1e73f9dd 2546 ret = 1;
1c4f1fd6 2547 pte_access &= ~ACC_WRITE_MASK;
49fde340 2548 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2549 }
2550 }
2551
9b51a630 2552 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2553 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2554 spte |= shadow_dirty_mask;
2555 }
1c4f1fd6 2556
38187c83 2557set_pte:
6e7d0354 2558 if (mmu_spte_update(sptep, spte))
b330aa0c 2559 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2560done:
1e73f9dd
MT
2561 return ret;
2562}
2563
d555c333 2564static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2565 unsigned pte_access, int write_fault, int *emulate,
2566 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2567 bool host_writable)
1e73f9dd
MT
2568{
2569 int was_rmapped = 0;
53a27b39 2570 int rmap_count;
1e73f9dd 2571
f7616203
XG
2572 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2573 *sptep, write_fault, gfn);
1e73f9dd 2574
d555c333 2575 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2576 /*
2577 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2578 * the parent of the now unreachable PTE.
2579 */
852e3c19
JR
2580 if (level > PT_PAGE_TABLE_LEVEL &&
2581 !is_large_pte(*sptep)) {
1e73f9dd 2582 struct kvm_mmu_page *child;
d555c333 2583 u64 pte = *sptep;
1e73f9dd
MT
2584
2585 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2586 drop_parent_pte(child, sptep);
3be2264b 2587 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2588 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2589 pgprintk("hfn old %llx new %llx\n",
d555c333 2590 spte_to_pfn(*sptep), pfn);
c3707958 2591 drop_spte(vcpu->kvm, sptep);
91546356 2592 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2593 } else
2594 was_rmapped = 1;
1e73f9dd 2595 }
852e3c19 2596
c2288505
XG
2597 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2598 true, host_writable)) {
1e73f9dd 2599 if (write_fault)
b90a0e6c 2600 *emulate = 1;
77c3913b 2601 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2602 }
1e73f9dd 2603
ce88decf
XG
2604 if (unlikely(is_mmio_spte(*sptep) && emulate))
2605 *emulate = 1;
2606
d555c333 2607 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2608 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2609 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2610 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2611 *sptep, sptep);
d555c333 2612 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2613 ++vcpu->kvm->stat.lpages;
2614
ffb61bb3 2615 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2616 if (!was_rmapped) {
2617 rmap_count = rmap_add(vcpu, sptep, gfn);
2618 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2619 rmap_recycle(vcpu, sptep, gfn);
2620 }
1c4f1fd6 2621 }
cb9aaa30 2622
f3ac1a4b 2623 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2624}
2625
957ed9ef
XG
2626static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2627 bool no_dirty_log)
2628{
2629 struct kvm_memory_slot *slot;
957ed9ef 2630
5d163b1c 2631 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2632 if (!slot)
6c8ee57b 2633 return KVM_PFN_ERR_FAULT;
957ed9ef 2634
037d92dc 2635 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2636}
2637
2638static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2639 struct kvm_mmu_page *sp,
2640 u64 *start, u64 *end)
2641{
2642 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2643 struct kvm_memory_slot *slot;
957ed9ef
XG
2644 unsigned access = sp->role.access;
2645 int i, ret;
2646 gfn_t gfn;
2647
2648 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2649 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2650 if (!slot)
957ed9ef
XG
2651 return -1;
2652
d9ef13c2 2653 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2654 if (ret <= 0)
2655 return -1;
2656
2657 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2658 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2659 sp->role.level, gfn, page_to_pfn(pages[i]),
2660 true, true);
957ed9ef
XG
2661
2662 return 0;
2663}
2664
2665static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2666 struct kvm_mmu_page *sp, u64 *sptep)
2667{
2668 u64 *spte, *start = NULL;
2669 int i;
2670
2671 WARN_ON(!sp->role.direct);
2672
2673 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2674 spte = sp->spt + i;
2675
2676 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2677 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2678 if (!start)
2679 continue;
2680 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2681 break;
2682 start = NULL;
2683 } else if (!start)
2684 start = spte;
2685 }
2686}
2687
2688static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2689{
2690 struct kvm_mmu_page *sp;
2691
2692 /*
2693 * Since it's no accessed bit on EPT, it's no way to
2694 * distinguish between actually accessed translations
2695 * and prefetched, so disable pte prefetch if EPT is
2696 * enabled.
2697 */
2698 if (!shadow_accessed_mask)
2699 return;
2700
2701 sp = page_header(__pa(sptep));
2702 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2703 return;
2704
2705 __direct_pte_prefetch(vcpu, sp, sptep);
2706}
2707
9f652d21 2708static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2709 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2710 bool prefault)
140754bc 2711{
9f652d21 2712 struct kvm_shadow_walk_iterator iterator;
140754bc 2713 struct kvm_mmu_page *sp;
b90a0e6c 2714 int emulate = 0;
140754bc 2715 gfn_t pseudo_gfn;
6aa8b732 2716
989c6b34
MT
2717 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2718 return 0;
2719
9f652d21 2720 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2721 if (iterator.level == level) {
f7616203 2722 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2723 write, &emulate, level, gfn, pfn,
2724 prefault, map_writable);
957ed9ef 2725 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2726 ++vcpu->stat.pf_fixed;
2727 break;
6aa8b732
AK
2728 }
2729
404381c5 2730 drop_large_spte(vcpu, iterator.sptep);
c3707958 2731 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2732 u64 base_addr = iterator.addr;
2733
2734 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2735 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2736 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2737 iterator.level - 1,
2738 1, ACC_ALL, iterator.sptep);
140754bc 2739
0e3d0648 2740 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2741 }
2742 }
b90a0e6c 2743 return emulate;
6aa8b732
AK
2744}
2745
77db5cbd 2746static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2747{
77db5cbd
HY
2748 siginfo_t info;
2749
2750 info.si_signo = SIGBUS;
2751 info.si_errno = 0;
2752 info.si_code = BUS_MCEERR_AR;
2753 info.si_addr = (void __user *)address;
2754 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2755
77db5cbd 2756 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2757}
2758
d7c55201 2759static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2760{
4d8b81ab
XG
2761 /*
2762 * Do not cache the mmio info caused by writing the readonly gfn
2763 * into the spte otherwise read access on readonly gfn also can
2764 * caused mmio page fault and treat it as mmio access.
2765 * Return 1 to tell kvm to emulate it.
2766 */
2767 if (pfn == KVM_PFN_ERR_RO_FAULT)
2768 return 1;
2769
e6c1502b 2770 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2771 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2772 return 0;
d7c55201 2773 }
edba23e5 2774
d7c55201 2775 return -EFAULT;
bf998156
HY
2776}
2777
936a5fe6
AA
2778static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2779 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2780{
2781 pfn_t pfn = *pfnp;
2782 gfn_t gfn = *gfnp;
2783 int level = *levelp;
2784
2785 /*
2786 * Check if it's a transparent hugepage. If this would be an
2787 * hugetlbfs page, level wouldn't be set to
2788 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2789 * here.
2790 */
bf4bea8e 2791 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2792 level == PT_PAGE_TABLE_LEVEL &&
2793 PageTransCompound(pfn_to_page(pfn)) &&
54bf36aa 2794 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2795 unsigned long mask;
2796 /*
2797 * mmu_notifier_retry was successful and we hold the
2798 * mmu_lock here, so the pmd can't become splitting
2799 * from under us, and in turn
2800 * __split_huge_page_refcount() can't run from under
2801 * us and we can safely transfer the refcount from
2802 * PG_tail to PG_head as we switch the pfn to tail to
2803 * head.
2804 */
2805 *levelp = level = PT_DIRECTORY_LEVEL;
2806 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2807 VM_BUG_ON((gfn & mask) != (pfn & mask));
2808 if (pfn & mask) {
2809 gfn &= ~mask;
2810 *gfnp = gfn;
2811 kvm_release_pfn_clean(pfn);
2812 pfn &= ~mask;
c3586667 2813 kvm_get_pfn(pfn);
936a5fe6
AA
2814 *pfnp = pfn;
2815 }
2816 }
2817}
2818
d7c55201
XG
2819static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2820 pfn_t pfn, unsigned access, int *ret_val)
2821{
2822 bool ret = true;
2823
2824 /* The pfn is invalid, report the error! */
81c52c56 2825 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2826 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2827 goto exit;
2828 }
2829
ce88decf 2830 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2831 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2832
2833 ret = false;
2834exit:
2835 return ret;
2836}
2837
e5552fd2 2838static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2839{
1c118b82
XG
2840 /*
2841 * Do not fix the mmio spte with invalid generation number which
2842 * need to be updated by slow page fault path.
2843 */
2844 if (unlikely(error_code & PFERR_RSVD_MASK))
2845 return false;
2846
c7ba5b48
XG
2847 /*
2848 * #PF can be fast only if the shadow page table is present and it
2849 * is caused by write-protect, that means we just need change the
2850 * W bit of the spte which can be done out of mmu-lock.
2851 */
2852 if (!(error_code & PFERR_PRESENT_MASK) ||
2853 !(error_code & PFERR_WRITE_MASK))
2854 return false;
2855
2856 return true;
2857}
2858
2859static bool
92a476cb
XG
2860fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2861 u64 *sptep, u64 spte)
c7ba5b48 2862{
c7ba5b48
XG
2863 gfn_t gfn;
2864
2865 WARN_ON(!sp->role.direct);
2866
2867 /*
2868 * The gfn of direct spte is stable since it is calculated
2869 * by sp->gfn.
2870 */
2871 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2872
9b51a630
KH
2873 /*
2874 * Theoretically we could also set dirty bit (and flush TLB) here in
2875 * order to eliminate unnecessary PML logging. See comments in
2876 * set_spte. But fast_page_fault is very unlikely to happen with PML
2877 * enabled, so we do not do this. This might result in the same GPA
2878 * to be logged in PML buffer again when the write really happens, and
2879 * eventually to be called by mark_page_dirty twice. But it's also no
2880 * harm. This also avoids the TLB flush needed after setting dirty bit
2881 * so non-PML cases won't be impacted.
2882 *
2883 * Compare with set_spte where instead shadow_dirty_mask is set.
2884 */
c7ba5b48 2885 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2886 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2887
2888 return true;
2889}
2890
2891/*
2892 * Return value:
2893 * - true: let the vcpu to access on the same address again.
2894 * - false: let the real page fault path to fix it.
2895 */
2896static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2897 u32 error_code)
2898{
2899 struct kvm_shadow_walk_iterator iterator;
92a476cb 2900 struct kvm_mmu_page *sp;
c7ba5b48
XG
2901 bool ret = false;
2902 u64 spte = 0ull;
2903
37f6a4e2
MT
2904 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2905 return false;
2906
e5552fd2 2907 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2908 return false;
2909
2910 walk_shadow_page_lockless_begin(vcpu);
2911 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2912 if (!is_shadow_present_pte(spte) || iterator.level < level)
2913 break;
2914
2915 /*
2916 * If the mapping has been changed, let the vcpu fault on the
2917 * same address again.
2918 */
2919 if (!is_rmap_spte(spte)) {
2920 ret = true;
2921 goto exit;
2922 }
2923
92a476cb
XG
2924 sp = page_header(__pa(iterator.sptep));
2925 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2926 goto exit;
2927
2928 /*
2929 * Check if it is a spurious fault caused by TLB lazily flushed.
2930 *
2931 * Need not check the access of upper level table entries since
2932 * they are always ACC_ALL.
2933 */
2934 if (is_writable_pte(spte)) {
2935 ret = true;
2936 goto exit;
2937 }
2938
2939 /*
2940 * Currently, to simplify the code, only the spte write-protected
2941 * by dirty-log can be fast fixed.
2942 */
2943 if (!spte_is_locklessly_modifiable(spte))
2944 goto exit;
2945
c126d94f
XG
2946 /*
2947 * Do not fix write-permission on the large spte since we only dirty
2948 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2949 * that means other pages are missed if its slot is dirty-logged.
2950 *
2951 * Instead, we let the slow page fault path create a normal spte to
2952 * fix the access.
2953 *
2954 * See the comments in kvm_arch_commit_memory_region().
2955 */
2956 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2957 goto exit;
2958
c7ba5b48
XG
2959 /*
2960 * Currently, fast page fault only works for direct mapping since
2961 * the gfn is not stable for indirect shadow page.
2962 * See Documentation/virtual/kvm/locking.txt to get more detail.
2963 */
92a476cb 2964 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2965exit:
a72faf25
XG
2966 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2967 spte, ret);
c7ba5b48
XG
2968 walk_shadow_page_lockless_end(vcpu);
2969
2970 return ret;
2971}
2972
78b2c54a 2973static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2974 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2975static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2976
c7ba5b48
XG
2977static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2978 gfn_t gfn, bool prefault)
10589a46
MT
2979{
2980 int r;
852e3c19 2981 int level;
fd136902 2982 bool force_pt_level = false;
35149e21 2983 pfn_t pfn;
e930bffe 2984 unsigned long mmu_seq;
c7ba5b48 2985 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2986
fd136902 2987 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 2988 if (likely(!force_pt_level)) {
936a5fe6
AA
2989 /*
2990 * This path builds a PAE pagetable - so we can map
2991 * 2mb pages at maximum. Therefore check if the level
2992 * is larger than that.
2993 */
2994 if (level > PT_DIRECTORY_LEVEL)
2995 level = PT_DIRECTORY_LEVEL;
852e3c19 2996
936a5fe6 2997 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 2998 }
05da4558 2999
c7ba5b48
XG
3000 if (fast_page_fault(vcpu, v, level, error_code))
3001 return 0;
3002
e930bffe 3003 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3004 smp_rmb();
060c2abe 3005
78b2c54a 3006 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3007 return 0;
aaee2c94 3008
d7c55201
XG
3009 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3010 return r;
d196e343 3011
aaee2c94 3012 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3013 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3014 goto out_unlock;
450e0b41 3015 make_mmu_pages_available(vcpu);
936a5fe6
AA
3016 if (likely(!force_pt_level))
3017 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
3018 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3019 prefault);
aaee2c94
MT
3020 spin_unlock(&vcpu->kvm->mmu_lock);
3021
aaee2c94 3022
10589a46 3023 return r;
e930bffe
AA
3024
3025out_unlock:
3026 spin_unlock(&vcpu->kvm->mmu_lock);
3027 kvm_release_pfn_clean(pfn);
3028 return 0;
10589a46
MT
3029}
3030
3031
17ac10ad
AK
3032static void mmu_free_roots(struct kvm_vcpu *vcpu)
3033{
3034 int i;
4db35314 3035 struct kvm_mmu_page *sp;
d98ba053 3036 LIST_HEAD(invalid_list);
17ac10ad 3037
ad312c7c 3038 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3039 return;
35af577a 3040
81407ca5
JR
3041 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3042 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3043 vcpu->arch.mmu.direct_map)) {
ad312c7c 3044 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3045
35af577a 3046 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3047 sp = page_header(root);
3048 --sp->root_count;
d98ba053
XG
3049 if (!sp->root_count && sp->role.invalid) {
3050 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3051 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3052 }
aaee2c94 3053 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3054 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3055 return;
3056 }
35af577a
GN
3057
3058 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3059 for (i = 0; i < 4; ++i) {
ad312c7c 3060 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3061
417726a3 3062 if (root) {
417726a3 3063 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3064 sp = page_header(root);
3065 --sp->root_count;
2e53d63a 3066 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3067 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3068 &invalid_list);
417726a3 3069 }
ad312c7c 3070 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3071 }
d98ba053 3072 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3073 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3074 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3075}
3076
8986ecc0
MT
3077static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3078{
3079 int ret = 0;
3080
3081 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3082 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3083 ret = 1;
3084 }
3085
3086 return ret;
3087}
3088
651dd37a
JR
3089static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3090{
3091 struct kvm_mmu_page *sp;
7ebaf15e 3092 unsigned i;
651dd37a
JR
3093
3094 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3095 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3096 make_mmu_pages_available(vcpu);
651dd37a
JR
3097 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3098 1, ACC_ALL, NULL);
3099 ++sp->root_count;
3100 spin_unlock(&vcpu->kvm->mmu_lock);
3101 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3102 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3103 for (i = 0; i < 4; ++i) {
3104 hpa_t root = vcpu->arch.mmu.pae_root[i];
3105
fa4a2c08 3106 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3107 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3108 make_mmu_pages_available(vcpu);
649497d1
AK
3109 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3110 i << 30,
651dd37a
JR
3111 PT32_ROOT_LEVEL, 1, ACC_ALL,
3112 NULL);
3113 root = __pa(sp->spt);
3114 ++sp->root_count;
3115 spin_unlock(&vcpu->kvm->mmu_lock);
3116 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3117 }
6292757f 3118 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3119 } else
3120 BUG();
3121
3122 return 0;
3123}
3124
3125static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3126{
4db35314 3127 struct kvm_mmu_page *sp;
81407ca5
JR
3128 u64 pdptr, pm_mask;
3129 gfn_t root_gfn;
3130 int i;
3bb65a22 3131
5777ed34 3132 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3133
651dd37a
JR
3134 if (mmu_check_root(vcpu, root_gfn))
3135 return 1;
3136
3137 /*
3138 * Do we shadow a long mode page table? If so we need to
3139 * write-protect the guests page table root.
3140 */
3141 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3142 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3143
fa4a2c08 3144 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3145
8facbbff 3146 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3147 make_mmu_pages_available(vcpu);
651dd37a
JR
3148 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3149 0, ACC_ALL, NULL);
4db35314
AK
3150 root = __pa(sp->spt);
3151 ++sp->root_count;
8facbbff 3152 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3153 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3154 return 0;
17ac10ad 3155 }
f87f9288 3156
651dd37a
JR
3157 /*
3158 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3159 * or a PAE 3-level page table. In either case we need to be aware that
3160 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3161 */
81407ca5
JR
3162 pm_mask = PT_PRESENT_MASK;
3163 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3164 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3165
17ac10ad 3166 for (i = 0; i < 4; ++i) {
ad312c7c 3167 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3168
fa4a2c08 3169 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3170 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3171 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3172 if (!is_present_gpte(pdptr)) {
ad312c7c 3173 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3174 continue;
3175 }
6de4f3ad 3176 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3177 if (mmu_check_root(vcpu, root_gfn))
3178 return 1;
5a7388c2 3179 }
8facbbff 3180 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3181 make_mmu_pages_available(vcpu);
4db35314 3182 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3183 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3184 ACC_ALL, NULL);
4db35314
AK
3185 root = __pa(sp->spt);
3186 ++sp->root_count;
8facbbff
AK
3187 spin_unlock(&vcpu->kvm->mmu_lock);
3188
81407ca5 3189 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3190 }
6292757f 3191 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3192
3193 /*
3194 * If we shadow a 32 bit page table with a long mode page
3195 * table we enter this path.
3196 */
3197 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3198 if (vcpu->arch.mmu.lm_root == NULL) {
3199 /*
3200 * The additional page necessary for this is only
3201 * allocated on demand.
3202 */
3203
3204 u64 *lm_root;
3205
3206 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3207 if (lm_root == NULL)
3208 return 1;
3209
3210 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3211
3212 vcpu->arch.mmu.lm_root = lm_root;
3213 }
3214
3215 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3216 }
3217
8986ecc0 3218 return 0;
17ac10ad
AK
3219}
3220
651dd37a
JR
3221static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3222{
3223 if (vcpu->arch.mmu.direct_map)
3224 return mmu_alloc_direct_roots(vcpu);
3225 else
3226 return mmu_alloc_shadow_roots(vcpu);
3227}
3228
0ba73cda
MT
3229static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3230{
3231 int i;
3232 struct kvm_mmu_page *sp;
3233
81407ca5
JR
3234 if (vcpu->arch.mmu.direct_map)
3235 return;
3236
0ba73cda
MT
3237 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3238 return;
6903074c 3239
56f17dd3 3240 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3241 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3242 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3243 hpa_t root = vcpu->arch.mmu.root_hpa;
3244 sp = page_header(root);
3245 mmu_sync_children(vcpu, sp);
0375f7fa 3246 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3247 return;
3248 }
3249 for (i = 0; i < 4; ++i) {
3250 hpa_t root = vcpu->arch.mmu.pae_root[i];
3251
8986ecc0 3252 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3253 root &= PT64_BASE_ADDR_MASK;
3254 sp = page_header(root);
3255 mmu_sync_children(vcpu, sp);
3256 }
3257 }
0375f7fa 3258 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3259}
3260
3261void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3262{
3263 spin_lock(&vcpu->kvm->mmu_lock);
3264 mmu_sync_roots(vcpu);
6cffe8ca 3265 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3266}
bfd0a56b 3267EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3268
1871c602 3269static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3270 u32 access, struct x86_exception *exception)
6aa8b732 3271{
ab9ae313
AK
3272 if (exception)
3273 exception->error_code = 0;
6aa8b732
AK
3274 return vaddr;
3275}
3276
6539e738 3277static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3278 u32 access,
3279 struct x86_exception *exception)
6539e738 3280{
ab9ae313
AK
3281 if (exception)
3282 exception->error_code = 0;
54987b7a 3283 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3284}
3285
d625b155
XG
3286static bool
3287__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3288{
3289 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3290
3291 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3292 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3293}
3294
3295static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3296{
3297 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3298}
3299
3300static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3301{
3302 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3303}
3304
ce88decf
XG
3305static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3306{
3307 if (direct)
3308 return vcpu_match_mmio_gpa(vcpu, addr);
3309
3310 return vcpu_match_mmio_gva(vcpu, addr);
3311}
3312
47ab8751
XG
3313/* return true if reserved bit is detected on spte. */
3314static bool
3315walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3316{
3317 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3318 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3319 int root, leaf;
3320 bool reserved = false;
ce88decf 3321
37f6a4e2 3322 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3323 goto exit;
37f6a4e2 3324
ce88decf 3325 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3326
29ecd660
PB
3327 for (shadow_walk_init(&iterator, vcpu, addr),
3328 leaf = root = iterator.level;
47ab8751
XG
3329 shadow_walk_okay(&iterator);
3330 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3331 spte = mmu_spte_get_lockless(iterator.sptep);
3332
3333 sptes[leaf - 1] = spte;
29ecd660 3334 leaf--;
47ab8751 3335
ce88decf
XG
3336 if (!is_shadow_present_pte(spte))
3337 break;
47ab8751
XG
3338
3339 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3340 iterator.level);
47ab8751
XG
3341 }
3342
ce88decf
XG
3343 walk_shadow_page_lockless_end(vcpu);
3344
47ab8751
XG
3345 if (reserved) {
3346 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3347 __func__, addr);
29ecd660 3348 while (root > leaf) {
47ab8751
XG
3349 pr_err("------ spte 0x%llx level %d.\n",
3350 sptes[root - 1], root);
3351 root--;
3352 }
3353 }
3354exit:
3355 *sptep = spte;
3356 return reserved;
ce88decf
XG
3357}
3358
450869d6 3359int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3360{
3361 u64 spte;
47ab8751 3362 bool reserved;
ce88decf
XG
3363
3364 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3365 return RET_MMIO_PF_EMULATE;
ce88decf 3366
47ab8751 3367 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3368 if (WARN_ON(reserved))
47ab8751 3369 return RET_MMIO_PF_BUG;
ce88decf
XG
3370
3371 if (is_mmio_spte(spte)) {
3372 gfn_t gfn = get_mmio_spte_gfn(spte);
3373 unsigned access = get_mmio_spte_access(spte);
3374
54bf36aa 3375 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3376 return RET_MMIO_PF_INVALID;
3377
ce88decf
XG
3378 if (direct)
3379 addr = 0;
4f022648
XG
3380
3381 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3382 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3383 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3384 }
3385
ce88decf
XG
3386 /*
3387 * If the page table is zapped by other cpus, let CPU fault again on
3388 * the address.
3389 */
b37fbea6 3390 return RET_MMIO_PF_RETRY;
ce88decf 3391}
450869d6 3392EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3393
6aa8b732 3394static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3395 u32 error_code, bool prefault)
6aa8b732 3396{
e833240f 3397 gfn_t gfn;
e2dec939 3398 int r;
6aa8b732 3399
b8688d51 3400 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3401
f8f55942 3402 if (unlikely(error_code & PFERR_RSVD_MASK)) {
450869d6 3403 r = handle_mmio_page_fault(vcpu, gva, true);
f8f55942
XG
3404
3405 if (likely(r != RET_MMIO_PF_INVALID))
3406 return r;
3407 }
ce88decf 3408
e2dec939
AK
3409 r = mmu_topup_memory_caches(vcpu);
3410 if (r)
3411 return r;
714b93da 3412
fa4a2c08 3413 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3414
e833240f 3415 gfn = gva >> PAGE_SHIFT;
6aa8b732 3416
e833240f 3417 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3418 error_code, gfn, prefault);
6aa8b732
AK
3419}
3420
7e1fbeac 3421static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3422{
3423 struct kvm_arch_async_pf arch;
fb67e14f 3424
7c90705b 3425 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3426 arch.gfn = gfn;
c4806acd 3427 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3428 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3429
54bf36aa 3430 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3431}
3432
3433static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3434{
35754c98 3435 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3436 kvm_event_needs_reinjection(vcpu)))
3437 return false;
3438
3439 return kvm_x86_ops->interrupt_allowed(vcpu);
3440}
3441
78b2c54a 3442static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3443 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92 3444{
3520469d 3445 struct kvm_memory_slot *slot;
af585b92
GN
3446 bool async;
3447
54bf36aa 3448 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3449 async = false;
3450 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3451 if (!async)
3452 return false; /* *pfn has correct page already */
3453
78b2c54a 3454 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3455 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3456 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3457 trace_kvm_async_pf_doublefault(gva, gfn);
3458 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3459 return true;
3460 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3461 return true;
3462 }
3463
3520469d 3464 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3465 return false;
3466}
3467
6a39bbc5
XG
3468static bool
3469check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3470{
3471 int page_num = KVM_PAGES_PER_HPAGE(level);
3472
3473 gfn &= ~(page_num - 1);
3474
3475 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3476}
3477
56028d08 3478static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3479 bool prefault)
fb72d167 3480{
35149e21 3481 pfn_t pfn;
fb72d167 3482 int r;
852e3c19 3483 int level;
cd1872f0 3484 bool force_pt_level;
05da4558 3485 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3486 unsigned long mmu_seq;
612819c3
MT
3487 int write = error_code & PFERR_WRITE_MASK;
3488 bool map_writable;
fb72d167 3489
fa4a2c08 3490 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3491
f8f55942 3492 if (unlikely(error_code & PFERR_RSVD_MASK)) {
450869d6 3493 r = handle_mmio_page_fault(vcpu, gpa, true);
f8f55942
XG
3494
3495 if (likely(r != RET_MMIO_PF_INVALID))
3496 return r;
3497 }
ce88decf 3498
fb72d167
JR
3499 r = mmu_topup_memory_caches(vcpu);
3500 if (r)
3501 return r;
3502
fd136902
TY
3503 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3504 PT_DIRECTORY_LEVEL);
3505 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3506 if (likely(!force_pt_level)) {
6a39bbc5
XG
3507 if (level > PT_DIRECTORY_LEVEL &&
3508 !check_hugepage_cache_consistency(vcpu, gfn, level))
3509 level = PT_DIRECTORY_LEVEL;
936a5fe6 3510 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3511 }
852e3c19 3512
c7ba5b48
XG
3513 if (fast_page_fault(vcpu, gpa, level, error_code))
3514 return 0;
3515
e930bffe 3516 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3517 smp_rmb();
af585b92 3518
78b2c54a 3519 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3520 return 0;
3521
d7c55201
XG
3522 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3523 return r;
3524
fb72d167 3525 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3526 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3527 goto out_unlock;
450e0b41 3528 make_mmu_pages_available(vcpu);
936a5fe6
AA
3529 if (likely(!force_pt_level))
3530 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3531 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3532 level, gfn, pfn, prefault);
fb72d167 3533 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3534
3535 return r;
e930bffe
AA
3536
3537out_unlock:
3538 spin_unlock(&vcpu->kvm->mmu_lock);
3539 kvm_release_pfn_clean(pfn);
3540 return 0;
fb72d167
JR
3541}
3542
8a3c1a33
PB
3543static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3544 struct kvm_mmu *context)
6aa8b732 3545{
6aa8b732 3546 context->page_fault = nonpaging_page_fault;
6aa8b732 3547 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3548 context->sync_page = nonpaging_sync_page;
a7052897 3549 context->invlpg = nonpaging_invlpg;
0f53b5b1 3550 context->update_pte = nonpaging_update_pte;
cea0f0e7 3551 context->root_level = 0;
6aa8b732 3552 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3553 context->root_hpa = INVALID_PAGE;
c5a78f2b 3554 context->direct_map = true;
2d48a985 3555 context->nx = false;
6aa8b732
AK
3556}
3557
d8d173da 3558void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3559{
cea0f0e7 3560 mmu_free_roots(vcpu);
6aa8b732
AK
3561}
3562
5777ed34
JR
3563static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3564{
9f8fe504 3565 return kvm_read_cr3(vcpu);
5777ed34
JR
3566}
3567
6389ee94
AK
3568static void inject_page_fault(struct kvm_vcpu *vcpu,
3569 struct x86_exception *fault)
6aa8b732 3570{
6389ee94 3571 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3572}
3573
54bf36aa 3574static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3575 unsigned access, int *nr_present)
ce88decf
XG
3576{
3577 if (unlikely(is_mmio_spte(*sptep))) {
3578 if (gfn != get_mmio_spte_gfn(*sptep)) {
3579 mmu_spte_clear_no_track(sptep);
3580 return true;
3581 }
3582
3583 (*nr_present)++;
54bf36aa 3584 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3585 return true;
3586 }
3587
3588 return false;
3589}
3590
6fd01b71
AK
3591static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3592{
3593 unsigned index;
3594
3595 index = level - 1;
3596 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3597 return mmu->last_pte_bitmap & (1 << index);
3598}
3599
37406aaa
NHE
3600#define PTTYPE_EPT 18 /* arbitrary */
3601#define PTTYPE PTTYPE_EPT
3602#include "paging_tmpl.h"
3603#undef PTTYPE
3604
6aa8b732
AK
3605#define PTTYPE 64
3606#include "paging_tmpl.h"
3607#undef PTTYPE
3608
3609#define PTTYPE 32
3610#include "paging_tmpl.h"
3611#undef PTTYPE
3612
6dc98b86
XG
3613static void
3614__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3615 struct rsvd_bits_validate *rsvd_check,
3616 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3617 bool pse, bool amd)
82725b20 3618{
82725b20 3619 u64 exb_bit_rsvd = 0;
5f7dde7b 3620 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3621 u64 nonleaf_bit8_rsvd = 0;
82725b20 3622
a0a64f50 3623 rsvd_check->bad_mt_xwr = 0;
25d92081 3624
6dc98b86 3625 if (!nx)
82725b20 3626 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3627 if (!gbpages)
5f7dde7b 3628 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3629
3630 /*
3631 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3632 * leaf entries) on AMD CPUs only.
3633 */
6fec2144 3634 if (amd)
a0c0feb5
PB
3635 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3636
6dc98b86 3637 switch (level) {
82725b20
DE
3638 case PT32_ROOT_LEVEL:
3639 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3640 rsvd_check->rsvd_bits_mask[0][1] = 0;
3641 rsvd_check->rsvd_bits_mask[0][0] = 0;
3642 rsvd_check->rsvd_bits_mask[1][0] =
3643 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3644
6dc98b86 3645 if (!pse) {
a0a64f50 3646 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3647 break;
3648 }
3649
82725b20
DE
3650 if (is_cpuid_PSE36())
3651 /* 36bits PSE 4MB page */
a0a64f50 3652 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3653 else
3654 /* 32 bits PSE 4MB page */
a0a64f50 3655 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3656 break;
3657 case PT32E_ROOT_LEVEL:
a0a64f50 3658 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3659 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3660 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3661 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3662 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3663 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3664 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3665 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3666 rsvd_bits(maxphyaddr, 62) |
3667 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3668 rsvd_check->rsvd_bits_mask[1][0] =
3669 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3670 break;
3671 case PT64_ROOT_LEVEL:
a0a64f50
XG
3672 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3673 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3674 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3675 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3676 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3677 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3678 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3679 rsvd_bits(maxphyaddr, 51);
3680 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3681 rsvd_bits(maxphyaddr, 51);
3682 rsvd_check->rsvd_bits_mask[1][3] =
3683 rsvd_check->rsvd_bits_mask[0][3];
3684 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3685 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3686 rsvd_bits(13, 29);
a0a64f50 3687 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3688 rsvd_bits(maxphyaddr, 51) |
3689 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3690 rsvd_check->rsvd_bits_mask[1][0] =
3691 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3692 break;
3693 }
3694}
3695
6dc98b86
XG
3696static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3697 struct kvm_mmu *context)
3698{
3699 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3700 cpuid_maxphyaddr(vcpu), context->root_level,
3701 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3702 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3703}
3704
81b8eebb
XG
3705static void
3706__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3707 int maxphyaddr, bool execonly)
25d92081 3708{
951f9fd7 3709 u64 bad_mt_xwr;
25d92081 3710
a0a64f50 3711 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3712 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3713 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3714 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3715 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3716 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3717 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3718
3719 /* large page */
a0a64f50
XG
3720 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3721 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3722 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3723 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3724 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3725 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3726
951f9fd7
PB
3727 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3728 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3729 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3730 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3731 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3732 if (!execonly) {
3733 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3734 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3735 }
951f9fd7 3736 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3737}
3738
81b8eebb
XG
3739static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3740 struct kvm_mmu *context, bool execonly)
3741{
3742 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3743 cpuid_maxphyaddr(vcpu), execonly);
3744}
3745
c258b62b
XG
3746/*
3747 * the page table on host is the shadow page table for the page
3748 * table in guest or amd nested guest, its mmu features completely
3749 * follow the features in guest.
3750 */
3751void
3752reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3753{
6fec2144
PB
3754 /*
3755 * Passing "true" to the last argument is okay; it adds a check
3756 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3757 */
c258b62b
XG
3758 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3759 boot_cpu_data.x86_phys_bits,
3760 context->shadow_root_level, context->nx,
6fec2144
PB
3761 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3762 true);
c258b62b
XG
3763}
3764EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3765
6fec2144
PB
3766static inline bool boot_cpu_is_amd(void)
3767{
3768 WARN_ON_ONCE(!tdp_enabled);
3769 return shadow_x_mask == 0;
3770}
3771
c258b62b
XG
3772/*
3773 * the direct page table on host, use as much mmu features as
3774 * possible, however, kvm currently does not do execution-protection.
3775 */
3776static void
3777reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3778 struct kvm_mmu *context)
3779{
6fec2144 3780 if (boot_cpu_is_amd())
c258b62b
XG
3781 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3782 boot_cpu_data.x86_phys_bits,
3783 context->shadow_root_level, false,
6fec2144 3784 cpu_has_gbpages, true, true);
c258b62b
XG
3785 else
3786 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3787 boot_cpu_data.x86_phys_bits,
3788 false);
3789
3790}
3791
3792/*
3793 * as the comments in reset_shadow_zero_bits_mask() except it
3794 * is the shadow page table for intel nested guest.
3795 */
3796static void
3797reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3798 struct kvm_mmu *context, bool execonly)
3799{
3800 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3801 boot_cpu_data.x86_phys_bits, execonly);
3802}
3803
edc90b7d
XG
3804static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3805 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3806{
3807 unsigned bit, byte, pfec;
3808 u8 map;
66386ade 3809 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3810
66386ade 3811 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3812 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3813 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3814 pfec = byte << 1;
3815 map = 0;
3816 wf = pfec & PFERR_WRITE_MASK;
3817 uf = pfec & PFERR_USER_MASK;
3818 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3819 /*
3820 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3821 * subject to SMAP restrictions, and cleared otherwise. The
3822 * bit is only meaningful if the SMAP bit is set in CR4.
3823 */
3824 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3825 for (bit = 0; bit < 8; ++bit) {
3826 x = bit & ACC_EXEC_MASK;
3827 w = bit & ACC_WRITE_MASK;
3828 u = bit & ACC_USER_MASK;
3829
25d92081
YZ
3830 if (!ept) {
3831 /* Not really needed: !nx will cause pte.nx to fault */
3832 x |= !mmu->nx;
3833 /* Allow supervisor writes if !cr0.wp */
3834 w |= !is_write_protection(vcpu) && !uf;
3835 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3836 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3837
3838 /*
3839 * SMAP:kernel-mode data accesses from user-mode
3840 * mappings should fault. A fault is considered
3841 * as a SMAP violation if all of the following
3842 * conditions are ture:
3843 * - X86_CR4_SMAP is set in CR4
3844 * - An user page is accessed
3845 * - Page fault in kernel mode
3846 * - if CPL = 3 or X86_EFLAGS_AC is clear
3847 *
3848 * Here, we cover the first three conditions.
3849 * The fourth is computed dynamically in
3850 * permission_fault() and is in smapf.
3851 *
3852 * Also, SMAP does not affect instruction
3853 * fetches, add the !ff check here to make it
3854 * clearer.
3855 */
3856 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3857 } else
3858 /* Not really needed: no U/S accesses on ept */
3859 u = 1;
97d64b78 3860
97ec8c06
FW
3861 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3862 (smapf && smap);
97d64b78
AK
3863 map |= fault << bit;
3864 }
3865 mmu->permissions[byte] = map;
3866 }
3867}
3868
6fd01b71
AK
3869static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3870{
3871 u8 map;
3872 unsigned level, root_level = mmu->root_level;
3873 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3874
3875 if (root_level == PT32E_ROOT_LEVEL)
3876 --root_level;
3877 /* PT_PAGE_TABLE_LEVEL always terminates */
3878 map = 1 | (1 << ps_set_index);
3879 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3880 if (level <= PT_PDPE_LEVEL
3881 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3882 map |= 1 << (ps_set_index | (level - 1));
3883 }
3884 mmu->last_pte_bitmap = map;
3885}
3886
8a3c1a33
PB
3887static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3888 struct kvm_mmu *context,
3889 int level)
6aa8b732 3890{
2d48a985 3891 context->nx = is_nx(vcpu);
4d6931c3 3892 context->root_level = level;
2d48a985 3893
4d6931c3 3894 reset_rsvds_bits_mask(vcpu, context);
25d92081 3895 update_permission_bitmask(vcpu, context, false);
6fd01b71 3896 update_last_pte_bitmap(vcpu, context);
6aa8b732 3897
fa4a2c08 3898 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3899 context->page_fault = paging64_page_fault;
6aa8b732 3900 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3901 context->sync_page = paging64_sync_page;
a7052897 3902 context->invlpg = paging64_invlpg;
0f53b5b1 3903 context->update_pte = paging64_update_pte;
17ac10ad 3904 context->shadow_root_level = level;
17c3ba9d 3905 context->root_hpa = INVALID_PAGE;
c5a78f2b 3906 context->direct_map = false;
6aa8b732
AK
3907}
3908
8a3c1a33
PB
3909static void paging64_init_context(struct kvm_vcpu *vcpu,
3910 struct kvm_mmu *context)
17ac10ad 3911{
8a3c1a33 3912 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3913}
3914
8a3c1a33
PB
3915static void paging32_init_context(struct kvm_vcpu *vcpu,
3916 struct kvm_mmu *context)
6aa8b732 3917{
2d48a985 3918 context->nx = false;
4d6931c3 3919 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3920
4d6931c3 3921 reset_rsvds_bits_mask(vcpu, context);
25d92081 3922 update_permission_bitmask(vcpu, context, false);
6fd01b71 3923 update_last_pte_bitmap(vcpu, context);
6aa8b732 3924
6aa8b732 3925 context->page_fault = paging32_page_fault;
6aa8b732 3926 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3927 context->sync_page = paging32_sync_page;
a7052897 3928 context->invlpg = paging32_invlpg;
0f53b5b1 3929 context->update_pte = paging32_update_pte;
6aa8b732 3930 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3931 context->root_hpa = INVALID_PAGE;
c5a78f2b 3932 context->direct_map = false;
6aa8b732
AK
3933}
3934
8a3c1a33
PB
3935static void paging32E_init_context(struct kvm_vcpu *vcpu,
3936 struct kvm_mmu *context)
6aa8b732 3937{
8a3c1a33 3938 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3939}
3940
8a3c1a33 3941static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3942{
ad896af0 3943 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3944
c445f8ef 3945 context->base_role.word = 0;
699023e2 3946 context->base_role.smm = is_smm(vcpu);
fb72d167 3947 context->page_fault = tdp_page_fault;
e8bc217a 3948 context->sync_page = nonpaging_sync_page;
a7052897 3949 context->invlpg = nonpaging_invlpg;
0f53b5b1 3950 context->update_pte = nonpaging_update_pte;
67253af5 3951 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3952 context->root_hpa = INVALID_PAGE;
c5a78f2b 3953 context->direct_map = true;
1c97f0a0 3954 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3955 context->get_cr3 = get_cr3;
e4e517b4 3956 context->get_pdptr = kvm_pdptr_read;
cb659db8 3957 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3958
3959 if (!is_paging(vcpu)) {
2d48a985 3960 context->nx = false;
fb72d167
JR
3961 context->gva_to_gpa = nonpaging_gva_to_gpa;
3962 context->root_level = 0;
3963 } else if (is_long_mode(vcpu)) {
2d48a985 3964 context->nx = is_nx(vcpu);
fb72d167 3965 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3966 reset_rsvds_bits_mask(vcpu, context);
3967 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3968 } else if (is_pae(vcpu)) {
2d48a985 3969 context->nx = is_nx(vcpu);
fb72d167 3970 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3971 reset_rsvds_bits_mask(vcpu, context);
3972 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3973 } else {
2d48a985 3974 context->nx = false;
fb72d167 3975 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3976 reset_rsvds_bits_mask(vcpu, context);
3977 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3978 }
3979
25d92081 3980 update_permission_bitmask(vcpu, context, false);
6fd01b71 3981 update_last_pte_bitmap(vcpu, context);
c258b62b 3982 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
3983}
3984
ad896af0 3985void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3986{
411c588d 3987 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 3988 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
3989 struct kvm_mmu *context = &vcpu->arch.mmu;
3990
fa4a2c08 3991 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3992
3993 if (!is_paging(vcpu))
8a3c1a33 3994 nonpaging_init_context(vcpu, context);
a9058ecd 3995 else if (is_long_mode(vcpu))
8a3c1a33 3996 paging64_init_context(vcpu, context);
6aa8b732 3997 else if (is_pae(vcpu))
8a3c1a33 3998 paging32E_init_context(vcpu, context);
6aa8b732 3999 else
8a3c1a33 4000 paging32_init_context(vcpu, context);
a770f6f2 4001
ad896af0
PB
4002 context->base_role.nxe = is_nx(vcpu);
4003 context->base_role.cr4_pae = !!is_pae(vcpu);
4004 context->base_role.cr0_wp = is_write_protection(vcpu);
4005 context->base_role.smep_andnot_wp
411c588d 4006 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4007 context->base_role.smap_andnot_wp
4008 = smap && !is_write_protection(vcpu);
699023e2 4009 context->base_role.smm = is_smm(vcpu);
c258b62b 4010 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4011}
4012EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4013
ad896af0 4014void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4015{
ad896af0
PB
4016 struct kvm_mmu *context = &vcpu->arch.mmu;
4017
fa4a2c08 4018 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4019
4020 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4021
4022 context->nx = true;
155a97a3
NHE
4023 context->page_fault = ept_page_fault;
4024 context->gva_to_gpa = ept_gva_to_gpa;
4025 context->sync_page = ept_sync_page;
4026 context->invlpg = ept_invlpg;
4027 context->update_pte = ept_update_pte;
155a97a3
NHE
4028 context->root_level = context->shadow_root_level;
4029 context->root_hpa = INVALID_PAGE;
4030 context->direct_map = false;
4031
4032 update_permission_bitmask(vcpu, context, true);
4033 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4034 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4035}
4036EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4037
8a3c1a33 4038static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4039{
ad896af0
PB
4040 struct kvm_mmu *context = &vcpu->arch.mmu;
4041
4042 kvm_init_shadow_mmu(vcpu);
4043 context->set_cr3 = kvm_x86_ops->set_cr3;
4044 context->get_cr3 = get_cr3;
4045 context->get_pdptr = kvm_pdptr_read;
4046 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4047}
4048
8a3c1a33 4049static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4050{
4051 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4052
4053 g_context->get_cr3 = get_cr3;
e4e517b4 4054 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4055 g_context->inject_page_fault = kvm_inject_page_fault;
4056
4057 /*
4058 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4059 * translation of l2_gpa to l1_gpa addresses is done using the
4060 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4061 * functions between mmu and nested_mmu are swapped.
4062 */
4063 if (!is_paging(vcpu)) {
2d48a985 4064 g_context->nx = false;
02f59dc9
JR
4065 g_context->root_level = 0;
4066 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4067 } else if (is_long_mode(vcpu)) {
2d48a985 4068 g_context->nx = is_nx(vcpu);
02f59dc9 4069 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4070 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4071 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4072 } else if (is_pae(vcpu)) {
2d48a985 4073 g_context->nx = is_nx(vcpu);
02f59dc9 4074 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4075 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4076 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4077 } else {
2d48a985 4078 g_context->nx = false;
02f59dc9 4079 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4080 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4081 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4082 }
4083
25d92081 4084 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4085 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4086}
4087
8a3c1a33 4088static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4089{
02f59dc9 4090 if (mmu_is_nested(vcpu))
e0c6db3e 4091 init_kvm_nested_mmu(vcpu);
02f59dc9 4092 else if (tdp_enabled)
e0c6db3e 4093 init_kvm_tdp_mmu(vcpu);
fb72d167 4094 else
e0c6db3e 4095 init_kvm_softmmu(vcpu);
fb72d167
JR
4096}
4097
8a3c1a33 4098void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4099{
95f93af4 4100 kvm_mmu_unload(vcpu);
8a3c1a33 4101 init_kvm_mmu(vcpu);
17c3ba9d 4102}
8668a3c4 4103EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4104
4105int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4106{
714b93da
AK
4107 int r;
4108
e2dec939 4109 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4110 if (r)
4111 goto out;
8986ecc0 4112 r = mmu_alloc_roots(vcpu);
e2858b4a 4113 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4114 if (r)
4115 goto out;
3662cb1c 4116 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4117 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4118out:
4119 return r;
6aa8b732 4120}
17c3ba9d
AK
4121EXPORT_SYMBOL_GPL(kvm_mmu_load);
4122
4123void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4124{
4125 mmu_free_roots(vcpu);
95f93af4 4126 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4127}
4b16184c 4128EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4129
0028425f 4130static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4131 struct kvm_mmu_page *sp, u64 *spte,
4132 const void *new)
0028425f 4133{
30945387 4134 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4135 ++vcpu->kvm->stat.mmu_pde_zapped;
4136 return;
30945387 4137 }
0028425f 4138
4cee5764 4139 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4140 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4141}
4142
79539cec
AK
4143static bool need_remote_flush(u64 old, u64 new)
4144{
4145 if (!is_shadow_present_pte(old))
4146 return false;
4147 if (!is_shadow_present_pte(new))
4148 return true;
4149 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4150 return true;
53166229
GN
4151 old ^= shadow_nx_mask;
4152 new ^= shadow_nx_mask;
79539cec
AK
4153 return (old & ~new & PT64_PERM_MASK) != 0;
4154}
4155
0671a8e7
XG
4156static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4157 bool remote_flush, bool local_flush)
79539cec 4158{
0671a8e7
XG
4159 if (zap_page)
4160 return;
4161
4162 if (remote_flush)
79539cec 4163 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4164 else if (local_flush)
77c3913b 4165 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4166}
4167
889e5cbc
XG
4168static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4169 const u8 *new, int *bytes)
da4a00f0 4170{
889e5cbc
XG
4171 u64 gentry;
4172 int r;
72016f3a 4173
72016f3a
AK
4174 /*
4175 * Assume that the pte write on a page table of the same type
49b26e26
XG
4176 * as the current vcpu paging mode since we update the sptes only
4177 * when they have the same mode.
72016f3a 4178 */
889e5cbc 4179 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4180 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4181 *gpa &= ~(gpa_t)7;
4182 *bytes = 8;
54bf36aa 4183 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4184 if (r)
4185 gentry = 0;
08e850c6
AK
4186 new = (const u8 *)&gentry;
4187 }
4188
889e5cbc 4189 switch (*bytes) {
08e850c6
AK
4190 case 4:
4191 gentry = *(const u32 *)new;
4192 break;
4193 case 8:
4194 gentry = *(const u64 *)new;
4195 break;
4196 default:
4197 gentry = 0;
4198 break;
72016f3a
AK
4199 }
4200
889e5cbc
XG
4201 return gentry;
4202}
4203
4204/*
4205 * If we're seeing too many writes to a page, it may no longer be a page table,
4206 * or we may be forking, in which case it is better to unmap the page.
4207 */
a138fe75 4208static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4209{
a30f47cb
XG
4210 /*
4211 * Skip write-flooding detected for the sp whose level is 1, because
4212 * it can become unsync, then the guest page is not write-protected.
4213 */
f71fa31f 4214 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4215 return false;
3246af0e 4216
a30f47cb 4217 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4218}
4219
4220/*
4221 * Misaligned accesses are too much trouble to fix up; also, they usually
4222 * indicate a page is not used as a page table.
4223 */
4224static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4225 int bytes)
4226{
4227 unsigned offset, pte_size, misaligned;
4228
4229 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4230 gpa, bytes, sp->role.word);
4231
4232 offset = offset_in_page(gpa);
4233 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4234
4235 /*
4236 * Sometimes, the OS only writes the last one bytes to update status
4237 * bits, for example, in linux, andb instruction is used in clear_bit().
4238 */
4239 if (!(offset & (pte_size - 1)) && bytes == 1)
4240 return false;
4241
889e5cbc
XG
4242 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4243 misaligned |= bytes < 4;
4244
4245 return misaligned;
4246}
4247
4248static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4249{
4250 unsigned page_offset, quadrant;
4251 u64 *spte;
4252 int level;
4253
4254 page_offset = offset_in_page(gpa);
4255 level = sp->role.level;
4256 *nspte = 1;
4257 if (!sp->role.cr4_pae) {
4258 page_offset <<= 1; /* 32->64 */
4259 /*
4260 * A 32-bit pde maps 4MB while the shadow pdes map
4261 * only 2MB. So we need to double the offset again
4262 * and zap two pdes instead of one.
4263 */
4264 if (level == PT32_ROOT_LEVEL) {
4265 page_offset &= ~7; /* kill rounding error */
4266 page_offset <<= 1;
4267 *nspte = 2;
4268 }
4269 quadrant = page_offset >> PAGE_SHIFT;
4270 page_offset &= ~PAGE_MASK;
4271 if (quadrant != sp->role.quadrant)
4272 return NULL;
4273 }
4274
4275 spte = &sp->spt[page_offset / sizeof(*spte)];
4276 return spte;
4277}
4278
4279void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4280 const u8 *new, int bytes)
4281{
4282 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4283 struct kvm_mmu_page *sp;
889e5cbc
XG
4284 LIST_HEAD(invalid_list);
4285 u64 entry, gentry, *spte;
4286 int npte;
a30f47cb 4287 bool remote_flush, local_flush, zap_page;
4141259b
AM
4288 union kvm_mmu_page_role mask = { };
4289
4290 mask.cr0_wp = 1;
4291 mask.cr4_pae = 1;
4292 mask.nxe = 1;
4293 mask.smep_andnot_wp = 1;
4294 mask.smap_andnot_wp = 1;
699023e2 4295 mask.smm = 1;
889e5cbc
XG
4296
4297 /*
4298 * If we don't have indirect shadow pages, it means no page is
4299 * write-protected, so we can exit simply.
4300 */
4301 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4302 return;
4303
4304 zap_page = remote_flush = local_flush = false;
4305
4306 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4307
4308 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4309
4310 /*
4311 * No need to care whether allocation memory is successful
4312 * or not since pte prefetch is skiped if it does not have
4313 * enough objects in the cache.
4314 */
4315 mmu_topup_memory_caches(vcpu);
4316
4317 spin_lock(&vcpu->kvm->mmu_lock);
4318 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4319 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4320
b67bfe0d 4321 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4322 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4323 detect_write_flooding(sp)) {
0671a8e7 4324 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4325 &invalid_list);
4cee5764 4326 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4327 continue;
4328 }
889e5cbc
XG
4329
4330 spte = get_written_sptes(sp, gpa, &npte);
4331 if (!spte)
4332 continue;
4333
0671a8e7 4334 local_flush = true;
ac1b714e 4335 while (npte--) {
79539cec 4336 entry = *spte;
38e3b2b2 4337 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4338 if (gentry &&
4339 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4340 & mask.word) && rmap_can_add(vcpu))
7c562522 4341 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4342 if (need_remote_flush(entry, *spte))
0671a8e7 4343 remote_flush = true;
ac1b714e 4344 ++spte;
9b7a0325 4345 }
9b7a0325 4346 }
0671a8e7 4347 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4348 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4349 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4350 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4351}
4352
a436036b
AK
4353int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4354{
10589a46
MT
4355 gpa_t gpa;
4356 int r;
a436036b 4357
c5a78f2b 4358 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4359 return 0;
4360
1871c602 4361 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4362
10589a46 4363 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4364
10589a46 4365 return r;
a436036b 4366}
577bdc49 4367EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4368
81f4f76b 4369static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4370{
d98ba053 4371 LIST_HEAD(invalid_list);
103ad25a 4372
81f4f76b
TY
4373 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4374 return;
4375
5da59607
TY
4376 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4377 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4378 break;
ebeace86 4379
4cee5764 4380 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4381 }
aa6bd187 4382 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4383}
ebeace86 4384
1cb3f3ae
XG
4385static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4386{
4387 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4388 return vcpu_match_mmio_gpa(vcpu, addr);
4389
4390 return vcpu_match_mmio_gva(vcpu, addr);
4391}
4392
dc25e89e
AP
4393int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4394 void *insn, int insn_len)
3067714c 4395{
1cb3f3ae 4396 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4397 enum emulation_result er;
4398
56028d08 4399 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4400 if (r < 0)
4401 goto out;
4402
4403 if (!r) {
4404 r = 1;
4405 goto out;
4406 }
4407
1cb3f3ae
XG
4408 if (is_mmio_page_fault(vcpu, cr2))
4409 emulation_type = 0;
4410
4411 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4412
4413 switch (er) {
4414 case EMULATE_DONE:
4415 return 1;
ac0a48c3 4416 case EMULATE_USER_EXIT:
3067714c 4417 ++vcpu->stat.mmio_exits;
6d77dbfc 4418 /* fall through */
3067714c 4419 case EMULATE_FAIL:
3f5d18a9 4420 return 0;
3067714c
AK
4421 default:
4422 BUG();
4423 }
4424out:
3067714c
AK
4425 return r;
4426}
4427EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4428
a7052897
MT
4429void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4430{
a7052897 4431 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4432 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4433 ++vcpu->stat.invlpg;
4434}
4435EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4436
18552672
JR
4437void kvm_enable_tdp(void)
4438{
4439 tdp_enabled = true;
4440}
4441EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4442
5f4cb662
JR
4443void kvm_disable_tdp(void)
4444{
4445 tdp_enabled = false;
4446}
4447EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4448
6aa8b732
AK
4449static void free_mmu_pages(struct kvm_vcpu *vcpu)
4450{
ad312c7c 4451 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4452 if (vcpu->arch.mmu.lm_root != NULL)
4453 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4454}
4455
4456static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4457{
17ac10ad 4458 struct page *page;
6aa8b732
AK
4459 int i;
4460
17ac10ad
AK
4461 /*
4462 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4463 * Therefore we need to allocate shadow page tables in the first
4464 * 4GB of memory, which happens to fit the DMA32 zone.
4465 */
4466 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4467 if (!page)
d7fa6ab2
WY
4468 return -ENOMEM;
4469
ad312c7c 4470 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4471 for (i = 0; i < 4; ++i)
ad312c7c 4472 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4473
6aa8b732 4474 return 0;
6aa8b732
AK
4475}
4476
8018c27b 4477int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4478{
e459e322
XG
4479 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4480 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4481 vcpu->arch.mmu.translate_gpa = translate_gpa;
4482 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4483
8018c27b
IM
4484 return alloc_mmu_pages(vcpu);
4485}
6aa8b732 4486
8a3c1a33 4487void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4488{
fa4a2c08 4489 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4490
8a3c1a33 4491 init_kvm_mmu(vcpu);
6aa8b732
AK
4492}
4493
1bad2b2a
XG
4494/* The return value indicates if tlb flush on all vcpus is needed. */
4495typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4496
4497/* The caller should hold mmu-lock before calling this function. */
4498static bool
4499slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4500 slot_level_handler fn, int start_level, int end_level,
4501 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4502{
4503 struct slot_rmap_walk_iterator iterator;
4504 bool flush = false;
4505
4506 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4507 end_gfn, &iterator) {
4508 if (iterator.rmap)
4509 flush |= fn(kvm, iterator.rmap);
4510
4511 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4512 if (flush && lock_flush_tlb) {
4513 kvm_flush_remote_tlbs(kvm);
4514 flush = false;
4515 }
4516 cond_resched_lock(&kvm->mmu_lock);
4517 }
4518 }
4519
4520 if (flush && lock_flush_tlb) {
4521 kvm_flush_remote_tlbs(kvm);
4522 flush = false;
4523 }
4524
4525 return flush;
4526}
4527
4528static bool
4529slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4530 slot_level_handler fn, int start_level, int end_level,
4531 bool lock_flush_tlb)
4532{
4533 return slot_handle_level_range(kvm, memslot, fn, start_level,
4534 end_level, memslot->base_gfn,
4535 memslot->base_gfn + memslot->npages - 1,
4536 lock_flush_tlb);
4537}
4538
4539static bool
4540slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4541 slot_level_handler fn, bool lock_flush_tlb)
4542{
4543 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4544 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4545}
4546
4547static bool
4548slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4549 slot_level_handler fn, bool lock_flush_tlb)
4550{
4551 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4552 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4553}
4554
4555static bool
4556slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4557 slot_level_handler fn, bool lock_flush_tlb)
4558{
4559 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4560 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4561}
4562
efdfe536
XG
4563void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4564{
4565 struct kvm_memslots *slots;
4566 struct kvm_memory_slot *memslot;
9da0e4d5 4567 int i;
efdfe536
XG
4568
4569 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4570 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4571 slots = __kvm_memslots(kvm, i);
4572 kvm_for_each_memslot(memslot, slots) {
4573 gfn_t start, end;
4574
4575 start = max(gfn_start, memslot->base_gfn);
4576 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4577 if (start >= end)
4578 continue;
efdfe536 4579
9da0e4d5
PB
4580 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4581 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4582 start, end - 1, true);
4583 }
efdfe536
XG
4584 }
4585
4586 spin_unlock(&kvm->mmu_lock);
4587}
4588
d77aa73c
XG
4589static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4590{
4591 return __rmap_write_protect(kvm, rmapp, false);
4592}
4593
1c91cad4
KH
4594void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4595 struct kvm_memory_slot *memslot)
6aa8b732 4596{
d77aa73c 4597 bool flush;
6aa8b732 4598
9d1beefb 4599 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4600 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4601 false);
9d1beefb 4602 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4603
4604 /*
4605 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4606 * which do tlb flush out of mmu-lock should be serialized by
4607 * kvm->slots_lock otherwise tlb flush would be missed.
4608 */
4609 lockdep_assert_held(&kvm->slots_lock);
4610
4611 /*
4612 * We can flush all the TLBs out of the mmu lock without TLB
4613 * corruption since we just change the spte from writable to
4614 * readonly so that we only need to care the case of changing
4615 * spte from present to present (changing the spte from present
4616 * to nonpresent will flush all the TLBs immediately), in other
4617 * words, the only case we care is mmu_spte_update() where we
4618 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4619 * instead of PT_WRITABLE_MASK, that means it does not depend
4620 * on PT_WRITABLE_MASK anymore.
4621 */
d91ffee9
KH
4622 if (flush)
4623 kvm_flush_remote_tlbs(kvm);
6aa8b732 4624}
37a7d8b0 4625
3ea3b7fa
WL
4626static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4627 unsigned long *rmapp)
4628{
4629 u64 *sptep;
4630 struct rmap_iterator iter;
4631 int need_tlb_flush = 0;
4632 pfn_t pfn;
4633 struct kvm_mmu_page *sp;
4634
0d536790
XG
4635restart:
4636 for_each_rmap_spte(rmapp, &iter, sptep) {
3ea3b7fa
WL
4637 sp = page_header(__pa(sptep));
4638 pfn = spte_to_pfn(*sptep);
4639
4640 /*
decf6333
XG
4641 * We cannot do huge page mapping for indirect shadow pages,
4642 * which are found on the last rmap (level = 1) when not using
4643 * tdp; such shadow pages are synced with the page table in
4644 * the guest, and the guest page table is using 4K page size
4645 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4646 */
4647 if (sp->role.direct &&
4648 !kvm_is_reserved_pfn(pfn) &&
4649 PageTransCompound(pfn_to_page(pfn))) {
4650 drop_spte(kvm, sptep);
3ea3b7fa 4651 need_tlb_flush = 1;
0d536790
XG
4652 goto restart;
4653 }
3ea3b7fa
WL
4654 }
4655
4656 return need_tlb_flush;
4657}
4658
4659void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4660 const struct kvm_memory_slot *memslot)
3ea3b7fa 4661{
f36f3f28 4662 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4663 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4664 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4665 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4666 spin_unlock(&kvm->mmu_lock);
4667}
4668
f4b4b180
KH
4669void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4670 struct kvm_memory_slot *memslot)
4671{
d77aa73c 4672 bool flush;
f4b4b180
KH
4673
4674 spin_lock(&kvm->mmu_lock);
d77aa73c 4675 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4676 spin_unlock(&kvm->mmu_lock);
4677
4678 lockdep_assert_held(&kvm->slots_lock);
4679
4680 /*
4681 * It's also safe to flush TLBs out of mmu lock here as currently this
4682 * function is only used for dirty logging, in which case flushing TLB
4683 * out of mmu lock also guarantees no dirty pages will be lost in
4684 * dirty_bitmap.
4685 */
4686 if (flush)
4687 kvm_flush_remote_tlbs(kvm);
4688}
4689EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4690
4691void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4692 struct kvm_memory_slot *memslot)
4693{
d77aa73c 4694 bool flush;
f4b4b180
KH
4695
4696 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4697 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4698 false);
f4b4b180
KH
4699 spin_unlock(&kvm->mmu_lock);
4700
4701 /* see kvm_mmu_slot_remove_write_access */
4702 lockdep_assert_held(&kvm->slots_lock);
4703
4704 if (flush)
4705 kvm_flush_remote_tlbs(kvm);
4706}
4707EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4708
4709void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4710 struct kvm_memory_slot *memslot)
4711{
d77aa73c 4712 bool flush;
f4b4b180
KH
4713
4714 spin_lock(&kvm->mmu_lock);
d77aa73c 4715 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4716 spin_unlock(&kvm->mmu_lock);
4717
4718 lockdep_assert_held(&kvm->slots_lock);
4719
4720 /* see kvm_mmu_slot_leaf_clear_dirty */
4721 if (flush)
4722 kvm_flush_remote_tlbs(kvm);
4723}
4724EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4725
e7d11c7a 4726#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4727static void kvm_zap_obsolete_pages(struct kvm *kvm)
4728{
4729 struct kvm_mmu_page *sp, *node;
e7d11c7a 4730 int batch = 0;
5304b8d3
XG
4731
4732restart:
4733 list_for_each_entry_safe_reverse(sp, node,
4734 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4735 int ret;
4736
5304b8d3
XG
4737 /*
4738 * No obsolete page exists before new created page since
4739 * active_mmu_pages is the FIFO list.
4740 */
4741 if (!is_obsolete_sp(kvm, sp))
4742 break;
4743
4744 /*
5304b8d3
XG
4745 * Since we are reversely walking the list and the invalid
4746 * list will be moved to the head, skip the invalid page
4747 * can help us to avoid the infinity list walking.
4748 */
4749 if (sp->role.invalid)
4750 continue;
4751
f34d251d
XG
4752 /*
4753 * Need not flush tlb since we only zap the sp with invalid
4754 * generation number.
4755 */
e7d11c7a 4756 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4757 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4758 batch = 0;
5304b8d3
XG
4759 goto restart;
4760 }
4761
365c8868
XG
4762 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4763 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4764 batch += ret;
4765
4766 if (ret)
5304b8d3
XG
4767 goto restart;
4768 }
4769
f34d251d
XG
4770 /*
4771 * Should flush tlb before free page tables since lockless-walking
4772 * may use the pages.
4773 */
365c8868 4774 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4775}
4776
4777/*
4778 * Fast invalidate all shadow pages and use lock-break technique
4779 * to zap obsolete pages.
4780 *
4781 * It's required when memslot is being deleted or VM is being
4782 * destroyed, in these cases, we should ensure that KVM MMU does
4783 * not use any resource of the being-deleted slot or all slots
4784 * after calling the function.
4785 */
4786void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4787{
4788 spin_lock(&kvm->mmu_lock);
35006126 4789 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4790 kvm->arch.mmu_valid_gen++;
4791
f34d251d
XG
4792 /*
4793 * Notify all vcpus to reload its shadow page table
4794 * and flush TLB. Then all vcpus will switch to new
4795 * shadow page table with the new mmu_valid_gen.
4796 *
4797 * Note: we should do this under the protection of
4798 * mmu-lock, otherwise, vcpu would purge shadow page
4799 * but miss tlb flush.
4800 */
4801 kvm_reload_remote_mmus(kvm);
4802
5304b8d3
XG
4803 kvm_zap_obsolete_pages(kvm);
4804 spin_unlock(&kvm->mmu_lock);
4805}
4806
365c8868
XG
4807static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4808{
4809 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4810}
4811
54bf36aa 4812void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4813{
4814 /*
4815 * The very rare case: if the generation-number is round,
4816 * zap all shadow pages.
f8f55942 4817 */
54bf36aa 4818 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4819 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4820 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4821 }
f8f55942
XG
4822}
4823
70534a73
DC
4824static unsigned long
4825mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4826{
4827 struct kvm *kvm;
1495f230 4828 int nr_to_scan = sc->nr_to_scan;
70534a73 4829 unsigned long freed = 0;
3ee16c81 4830
2f303b74 4831 spin_lock(&kvm_lock);
3ee16c81
IE
4832
4833 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4834 int idx;
d98ba053 4835 LIST_HEAD(invalid_list);
3ee16c81 4836
35f2d16b
TY
4837 /*
4838 * Never scan more than sc->nr_to_scan VM instances.
4839 * Will not hit this condition practically since we do not try
4840 * to shrink more than one VM and it is very unlikely to see
4841 * !n_used_mmu_pages so many times.
4842 */
4843 if (!nr_to_scan--)
4844 break;
19526396
GN
4845 /*
4846 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4847 * here. We may skip a VM instance errorneosly, but we do not
4848 * want to shrink a VM that only started to populate its MMU
4849 * anyway.
4850 */
365c8868
XG
4851 if (!kvm->arch.n_used_mmu_pages &&
4852 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4853 continue;
19526396 4854
f656ce01 4855 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4856 spin_lock(&kvm->mmu_lock);
3ee16c81 4857
365c8868
XG
4858 if (kvm_has_zapped_obsolete_pages(kvm)) {
4859 kvm_mmu_commit_zap_page(kvm,
4860 &kvm->arch.zapped_obsolete_pages);
4861 goto unlock;
4862 }
4863
70534a73
DC
4864 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4865 freed++;
d98ba053 4866 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4867
365c8868 4868unlock:
3ee16c81 4869 spin_unlock(&kvm->mmu_lock);
f656ce01 4870 srcu_read_unlock(&kvm->srcu, idx);
19526396 4871
70534a73
DC
4872 /*
4873 * unfair on small ones
4874 * per-vm shrinkers cry out
4875 * sadness comes quickly
4876 */
19526396
GN
4877 list_move_tail(&kvm->vm_list, &vm_list);
4878 break;
3ee16c81 4879 }
3ee16c81 4880
2f303b74 4881 spin_unlock(&kvm_lock);
70534a73 4882 return freed;
70534a73
DC
4883}
4884
4885static unsigned long
4886mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4887{
45221ab6 4888 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4889}
4890
4891static struct shrinker mmu_shrinker = {
70534a73
DC
4892 .count_objects = mmu_shrink_count,
4893 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4894 .seeks = DEFAULT_SEEKS * 10,
4895};
4896
2ddfd20e 4897static void mmu_destroy_caches(void)
b5a33a75 4898{
53c07b18
XG
4899 if (pte_list_desc_cache)
4900 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4901 if (mmu_page_header_cache)
4902 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4903}
4904
4905int kvm_mmu_module_init(void)
4906{
53c07b18
XG
4907 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4908 sizeof(struct pte_list_desc),
20c2df83 4909 0, 0, NULL);
53c07b18 4910 if (!pte_list_desc_cache)
b5a33a75
AK
4911 goto nomem;
4912
d3d25b04
AK
4913 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4914 sizeof(struct kvm_mmu_page),
20c2df83 4915 0, 0, NULL);
d3d25b04
AK
4916 if (!mmu_page_header_cache)
4917 goto nomem;
4918
908c7f19 4919 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4920 goto nomem;
4921
3ee16c81
IE
4922 register_shrinker(&mmu_shrinker);
4923
b5a33a75
AK
4924 return 0;
4925
4926nomem:
3ee16c81 4927 mmu_destroy_caches();
b5a33a75
AK
4928 return -ENOMEM;
4929}
4930
3ad82a7e
ZX
4931/*
4932 * Caculate mmu pages needed for kvm.
4933 */
4934unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4935{
3ad82a7e
ZX
4936 unsigned int nr_mmu_pages;
4937 unsigned int nr_pages = 0;
bc6678a3 4938 struct kvm_memslots *slots;
be6ba0f0 4939 struct kvm_memory_slot *memslot;
9da0e4d5 4940 int i;
3ad82a7e 4941
9da0e4d5
PB
4942 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4943 slots = __kvm_memslots(kvm, i);
90d83dc3 4944
9da0e4d5
PB
4945 kvm_for_each_memslot(memslot, slots)
4946 nr_pages += memslot->npages;
4947 }
3ad82a7e
ZX
4948
4949 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4950 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4951 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4952
4953 return nr_mmu_pages;
4954}
4955
c42fffe3
XG
4956void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4957{
95f93af4 4958 kvm_mmu_unload(vcpu);
c42fffe3
XG
4959 free_mmu_pages(vcpu);
4960 mmu_free_memory_caches(vcpu);
b034cf01
XG
4961}
4962
b034cf01
XG
4963void kvm_mmu_module_exit(void)
4964{
4965 mmu_destroy_caches();
4966 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4967 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4968 mmu_audit_disable();
4969}